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Abstract: Most existing life cycle assessment models of waste management have so far underplayed
the importance of the waste collection phase, addressing it only in a simplified fashion, either by
requesting the total amount of fuel used as a direct user input or by calculating it based on a set
of input parameters and fixed diesel consumption factors. However, if the main purpose of the
study is to improve the efficiency of the collection system itself, a more detailed analysis of the
collection phase is required, avoiding oversimplified and potentially misleading conclusions. The
new LCA collection model presented here relies on a large number of parameters (number and type
of containers, collection frequency, distances for the various legs of transport, etc.) and allows the
detailed predictive analysis of alternative collection scenarios. The results of applying this newly
developed model to a number of experimental case studies in Portugal are analyzed, discussed, and
compared to those produced by a selection of pre-existing, more simplified models such as ORWARE
and MSW-DST. The new model is confirmed as being the most accurate and, importantly, as the only
one capable of predicting the consequences of a range of possible changes in the collection parameters.

Keywords: LCA; waste management; waste collection; predictive model

1. Introduction

LCA was originally developed to analyze the environmental performance of product
systems; however, since the end of the 1990s, this methodology has also been used for
the analysis of waste management systems [1]. Since then, hundreds of scientific papers
on this topic have been published. Proof of this sharp increase all over the world is the
review of 222 LCA studies comparing waste management systems before 2013 performed
by Laurent et al. in 2014 [2]; the review of 153 worldwide studies after 2013 performed by
Khandelwal et al. in 2019 [3]; and the even more recent reviews of 79 papers performed by
Iqbal et al. in 2020 [4] and of 45 studies by Zhang et al. in 2021 [5], both of which included
selected case studies from developing and developed regions. Until 2013, the majority of
studies were performed in Europe, whereas from this date on, there has been a remarkable
increase in the use of LCA in China and also a progressive extension to other low-income
or less developed countries such as India, Brazil, or Pakistan.

In all these studies, LCA was used to compare different alternatives for the treatment
of a specific waste flow such as paper [6–9], plastic [10–12], or organic waste [13–15]; to
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compare or improve different technologies [16–20]; and also to compare more complex
systems such as complete integrated waste management systems, including all waste
fractions [21–33]. The benefit of using LCA in this context is that it helps to expand the
scope of the analysis and to obtain a complete view of the entire system, including all
processes and associated environmental impacts. This approach can avoid the unintentional
shifting of environmental loads between different stages of the waste management system,
geographic areas, environmental compartments (air, land, and water), or impact categories
(e.g., global warming, acidification, etc.).

In this context, LCA has gained importance in recent years as a tool to assist decision
making for waste management policy and planning in Europe [34,35]. Although some
authors performed their studies using conventional LCA software and databases such as
Simapro and Ecoinvent [14,28], the methodological development of LCA for waste manage-
ment has gone hand in hand with the development of models and specific software tools
to facilitate its implementation by non-LCA experts. These models have been developed
almost independently, and mainly in Europe and North America, from the mid-1990s
onwards by a wide range of universities, consultancy firms, and environmental protection
agencies (Table 1).

Table 1. The most widely known, used, and complete waste LCA models.

Software Country Launch Time Reference

ORWARE (a) Sweden 1997 [36,37]

EPIC/CSR (b) CA 1999 [38–40]

MSW-DTS (c) USA 1999 [41,42]

WIZARD (d) UK, FR, NZ 1999 [43]

IWM-2 (e) United Kingdom 2001 [44]

SSWMSS (f) Japan 2004 [45,46]

LCA IWM (g) European Union 2005 [47–49]

WRATE (h) United Kingdom 2007 [50,51]

EASEWASTE (i) Denmark 2008–2009 [52]

EASETECH (j) Denmark 2013 [53]

SWOLF (k) USA 2014 [54]
Notes: (a) ORWARE (ORganic WAste REsearch) was initially focused on organic waste but extended afterwards
to other waste fractions. (b) EPIC/CSR is an Integrated Waste Management model produced by the Environment
and Plastics Industry Council (EPIC) and Corporations Supporting Recycling (CSR). (c) MSW-DST (Municipal
Solid Waste Decision Support Tool). (d) WIZARD (Waste-Integrated Systems Assessment for Recovery and
Disposal). (e) Integrated Waste Management (IWM), first version launched in 1995 [55]. (f) SSWMSS (Strategic
Solid Waste Management Supporting Software). (g) LCA IWM (Life Cycle Assessment-Integrated Waste Manage-
ment) software was developed under a research project financed by the European Commission between 2002
and 2005. It also includes a prognostic tool for estimating the future generation of waste in European Cities.
(h) WRATE (Waste and Resources Assessment Tool for the Environment) software is an evolution of the older
WIZARD. (i) EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies). (j) EASETECH
(Environmental Assessment System for Environmental TECHnologies) is an evolution of the older EASEWASTE.
(k) SWOLF (Solid Waste Optimization Life-Cycle Framework). Information extracted from Gentil et al., 2010 and
updated [56].

All these software packages have in common the inclusion of specific datasets for a
wide range of unit processes (waste collection, sorting, recycling, incineration, landfilling,
composting, or anaerobic digestion), and the possibility for users to build their own waste
management systems by combining these unit processes and specifying waste generation,
waste composition, and/or recovery rates to arrive at specific results for their system(s)
of interest.

In-depth reviews of the existing models were carried out by Björklund et al. [57] and
Gentil et al. [56]. Both studies featured comparisons based on methodological issues, input
parameters, and modeling assumptions, and concluded that there are substantial differ-



Sustainability 2021, 13, 5810 3 of 17

ences in the models, often linked to the date of development and the level of knowledge at
that time. Along the same lines, other authors evaluated the same management systems
or waste management processes using different models to check if the results were com-
parable. Examples of such comparative work are those by Hansen and Christensen [58],
comparing organic waste treatments; Winkler and Bilitewski [59], comparing the entire
management system of the city of Dresden in Germany; and Rimaityté et al. [60], comparing
the outcomes of waste incineration using different models and also vs. experimental data.

However, no comparative meta-analyses of the results of applying different LCA
models to the waste collection phase were found in the literature. This is probably due to
the fact that, while this latter phase of the management system accounts for a major part of
the total costs of modern waste management systems [61], several LCAs have shown that
its overall effect in terms of energy demand and emissions of CO2, SO2, and NOx remains
comparatively small, provided that the collection and transport systems are reasonably
efficient [62–65]. In fact, the recent review by Iqbal et al. of the use of LCA for WMS
revealed that about 16% of the studies excluded waste collection and transport altogether,
assuming that their contributions would be insignificant compared to the rest of waste
management chain [4]. The general validity of these findings in relative terms, i.e., that
the waste collection stage is the smallest contributor to the overall environmental impacts
of the entire waste management chain, is not questioned. However, in many cases, waste
collection is in fact the one process that can be most directly controlled and optimized by
actors such as local municipalities and waste management companies, and its impacts
can still be rather large in absolute terms. Therefore, the lack of a detailed predictive tool
capable of accurately estimating the environmental consequences of a range of specific
collection alternatives represents a significant gap in the existing LCA knowledge base.

The drive for implementing a source-separated collection system for different waste
fractions rests on the assumption that the amount and quality of the waste collected in such
a way are sufficient to overcompensate for the additional environmental burdens entailed
by the more complex collection system (thanks to the environmental credits arising from
the recovered materials and/or energy), or, in other words, that the collection and transport
systems are reasonably efficient. The national implementation of the Directive 2008/98/EC
of the European Parliament and the Council on waste [66] led many countries to introduce
a legal obligation of establishing a source-separated collection for plastics, glass, paper and
cardboard, metals, and also organic waste. However, in countries like Spain or Portugal,
where many of the municipalities are very small (under 5000 inhabitants) and scattered
around the territory, whether source-separated collection is really environmentally sound
and effective in all cases remains to be carefully assessed.

Some authors have questioned the premise of collection efficiency and pointed out
that this stage of the waste management system can have a major influence on the overall
outcome, depending on how it is implemented. For instance, Klang [67] states that in
rural and sparsely populated areas of Sweden, it is “more difficult to transform their waste
systems in a more sustainable direction”, due to small waste volumes, long collection routes,
and distant treatment facilities. Along the same lines, Tanskanen and Kaila [68] pointed out
that the increasing complexity of the collection systems in terms of the amount of different
waste fractions collected separately, and the associated transport and fuel consumption,
may increase the relevance of this stage. Salhofer and colleagues [69] demonstrated how
transport distances may affect the environmental benefit of recycling a range of waste flows
(refrigerators, waste paper, polyethylene films, and expanded polystyrene). In the same
way, Aryan et al. in India [70] and Ahamed et al. in Singapore [14] demonstrated that the
collection and transport of PET and PE in the former and food waste in the latter may have
a high contribution to the global warming potential of the systems, ranging from 23% for
food waste up to 40% for PET, due to the large distances to recycling facilities. All this
calls for a better focus on the collection phase to assess whether (or the extent to which)
the additional environmental burdens associated to the source-separated collection of



Sustainability 2021, 13, 5810 4 of 17

municipal solid waste are in fact offset by the attainable higher recovery rates of materials
and energy from waste.

The aim of this paper is thus two-fold. Firstly, it provides a careful review of existing
models for the LCA of waste management systems and looks at whether or not they
do a satisfactory job of estimating the fuel consumption and the associated impacts in
the waste collection phase. Secondly, it introduces a new, more complete and detailed
model to predict the environmental performance of the waste collection phase, in which
changes in the operational parameters of the system (such as, e.g., the number or volume
of waste containers, changes in the distances between containers or between the collection
area and unloading site, etc.) have a direct effect on the modeled fuel consumption and
emission rates.

2. Review of Existing Models

When dealing with the environmental performance of the waste collection phase,
three different levels of complexity can be found among the LCA software packages listed
in Table 1. The first level comprises those models that require that the user input the
total amount of fuel (e.g., diesel) consumed directly (such is the case of IWM-2), and then
apply fixed emission factors associated to the combustion of this fuel. Second level models
require the input of fuel consumption (or efficiency) rates (e.g., in terms of km traveled
per liter of diesel, liters of diesel consumed per ton of collected waste, or liters of diesel
consumed per hour of service) and the input of the amount of waste and/or km traveled
and/or the overall collection time in order to calculate the total fuel consumption. Then,
corresponding emission factors are also applied. Within this second type of model, a
distinction can be made between models in which the user is required to specify their
own consumption factors (for instance, IWM-Canada and EASEWASTE/EASETECH), and
others in which default values are provided, which may be changed by the user either
manually or by selecting different truck types from a database (WRATE and LCA-IWM).
Third level models are those in which the distances or time spent in the collection stage
are not directly entered by the user but instead calculated by means of a set of operational
parameters like travel speed, distances between individual collection points along the
route, time spent in different operations, etc. Such km or hours spent are then multiplied
by fixed consumption factors (L/km, L/h, or L/(t.km)), either introduced by the user or
provided by default (as in MSW-DST and ORWARE). Like in the previous cases, emission
factors are then applied to convert the diesel consumption into airborne emissions in order
to evaluate the environmental impact of the collection stage.

It is worth noting that, in the end, existing simplified models (both level 2 and
‘level 3′ types) are still similarly limited in assuming a straightforward direct correlation
between the distance traveled, waste collected or time spent collecting (in the case of
MSW-DST), and the fuel consumed. These models may be regarded as arguably sufficient
only for a quick estimate of the environmental impacts of the collection phase within the
framework of a broader analysis of a complete waste management system, especially when
the average collection performance (in terms of L (fuel)/t (waste), L (fuel)/km, or total
fuel consumption) is already known. However, they fail to provide a sufficient level of
detail if the focus of the analysis is on the optimization of the waste collection system
itself. Questions like the following cannot be answered using such simplified models if no
real data are available: “what if rear-loading trucks were replaced by side-loading trucks,
using fewer larger containers?” or “what if the number of containers were reduced and the
collection frequency were doubled?”. In order to answer these types of questions, more
sophisticated models are needed, which must be able to predict the ensuing changes in the
performance of the waste collection system. The original model presented in this paper is
aimed squarely at filling this knowledge gap.
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3. Materials and Methods

The steps followed in order to achieve the aims of this research are summarized in
Figure 1. The materials and methods used are described in the following subsections.

Figure 1. Research steps.

3.1. Selection of Pre-Existing Models for Review and Comparison

The scope of this review and comparison will be restricted to level 3 models, plus the
stock model for waste collection trucks included in Ecoinvent, since the latter is arguably
the most widely-used life cycle inventory database used by LCA practitioners. The selected
models are described below.

• ORWARE: This model is based on the calculation of fuel consumption and emissions
for waste collection trucks, considering two different situations: while collecting waste
and while traveling from the collection area to the unloading site. Data on average
load, average speed, etc. are used as input parameters. Data on energy consumption
(MJ/(t.km)) were obtained from average data provided by the Uppsala Public Service
Work in 1994 and emissions from a simulation of an average bus tour in an urban area
with many stop-and-go cycles and a rather low average speed. The author explicitly
mentions that this model is only valid for the collection of waste in urban areas. Data
for energy consumption (converted to the international system of units (SI)) are shown
in Table 2. A complete description can be found in [71].

Table 2. Default diesel consumption rates used in the analyzed models.

Units of Energy
Consumption

Waste Truck, in
Collecting Route

Waste Truck, from the Collection
Area to the Unloading Point

Waste Truck,
Idling

ORWARE (a) L/(t.km) 0.24 0.13

MSW-DST (a) L/km 1.18 0.47
L/h 0.26

Ecoinvent L/(t.km) 0.42

Notes: (a) original consumption rates were transformed to international system (SI) units.

• MSW-DST: This model includes a set of equations to calculate the time required for
the individual activities of the collection vehicles in a typical working day (driving to
the collection area, driving in stop-and-go cycles, and idling at the stops). These times
are then used to calculate the associated fuel consumption, based on corresponding
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fixed consumption factors (gallons per mile and gallons per hour)—see Table 2 for
the values converted to SI. A complete description of the model and equations can be
found in [72].

• Ecoinvent dataset for collection trucks (”CH: transport, municipal waste collection,
lorry 21 t”): This dataset is based on five case studies for German and Swiss mu-
nicipalities, from which an average consumption rate of 4 L/t was obtained. The
(fixed) transportation distance was estimated from the standard transport distance
to municipal solid waste incineration plants in Ecoinvent, i.e., 10 km. From these
values, an average fuel consumption factor expressed as L/(t·km) was derived—also
included in Table 2. For further details, the reader is referred to Doka [73].

3.2. Experimental Data Collection

Weekly experimental data from 14 different curb-side collection routes were gathered
in 2012 in Portugal (Lisbon and surrounding areas). These routes refer to the source-
separated collection of different waste fractions, namely: mixed municipal solid waste
(MSW), light packaging waste (LPW), paper and cardboard (P), and glass (G). All the routes
correspond to more residential areas, except routes (LP2 and P2) that correspond to more
commercial areas. For all routes, specific data were gathered, including total amount of
waste collected, number of containers, distances between different parts of the collection
route, and total fuel (diesel) consumption.

3.3. Development of a New Model: The FENIX Model

Within the EU Life+ project “FENIX”, a new predictive LCA model for the assessment
of the environmental performance of the waste collection stage (hereinafter, the FENIX
model) was developed. In this model, the collection stage includes both the effective
collection leg of the route (within urban areas) as well as other distances traveled by the
collection trucks, from the moment they leave the parking until they return to it (the latter
distances collectively referred to as “transportation” in the model) (see Figure 2).

Figure 2. Simplified diagram of the collection model to calculate distances, share of km in each type
of service, and utilization ratio.

The development started by modifying a pre-existing model for a conventional trans-
port truck to factor in the additional fuel consumption due to the specific stop-and-go
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drive cycles and other intrinsic characteristics of the waste collection truck, as well as to
lifting the waste containers and compacting the waste. Finally, a detailed model for the
calculation of the needed input parameters to run the modified collection truck model was
developed based on a set of operational parameters and limiting factors.

3.3.1. Starting Point: A Conventional Commercial Truck

The FENIX model is based on the parameterized truck models developed by Sphera
and available in the built-in database of the GaBi LCA software package, as well as in
the (now discontinued) European Reference Life Cycle Database (ELCD). Essentially,
those models calculate variable fuel (diesel) consumption and emission factors (CO2, CO,
N2O, NH3, NMVOC, CH4, NOx, SO2, Toluene, Xylene, and PM) in terms of mass units per
(kg·km) of transport. The fuel consumption factors are computed according to Equation (1):

Dieselc f =
3

∑
j=1

[
αj ×

(
Aj +

(
Bj − Aj

)
×Ur

)
/(Pl ×Ur)

]
(1)

where Dieselcf is the diesel consumption factor (kg(diesel)/(kg·km)); j is the type of road
(1 = urban; 2 = extra-urban; 3 = motorway); αj is the share of km traveled in each type of
road (-); Aj is the diesel consumption of the empty truck, depending on the type of road
(speed and driving conditions) (kg(diesel)/km); Bj is the diesel consumption of the full
truck, depending on the type of road (speed and driving conditions) (kg(diesel)/km); Pl is
the maximum payload capacity of the truck (kg); and Ur is the utilization (fill) ratio of the
truck by mass (-).

Then, the total amount of diesel consumed to transport goods is calculated as detailed
in Equation (2):

Diesel = Dieselc f × Load × DT (2)

where DieselT is the total diesel consumption (kg(diesel)); Load refers to the total transported
mass (kg); and DT refers to the total distance traveled to transport the load (km).

In such base models, Equations (1) and (2) are formulated in the same way for calcu-
lating the emissions of CO2, CO, NMVOC, CH4, NOx, Toluene, Xylene, and PM. The only
difference is that factors Aj and Bj refer to the correspondent mass of substance emitted per
km. The remaining emission factors, namely those for N2O, NH3, and SO2 are calculated
according to Equations (3)–(5), respectively.

N2Oe f =
3

∑
j=1

[
αj × Ej/(Pl ×Ur)

]
(3)

NH3e f = E/(Pl ×Ur) (4)

SO2e f = PPM× 2× Dieselc f (5)

where Ej is the emission factor, depending on the type of road (speed and driving condi-
tions) (mg/km); E is the average emission factor (mg/km); PPM is the proportion of sulfur
in diesel (ppm), and 2 is the ratio of the molecular mass of SO2 to that of S (kg(SO2)/kg(S)).

3.3.2. Adaptation of the Conventional Truck to Waste Collection Vehicles

Waste collection vehicles differ from conventional trucks in their performance because
they have different intrinsic characteristics. First of all, waste collection vehicles continu-
ously carry the additional load of the heavy box and equipment used to collect and compact
the waste. Moreover, their operation entails more stop-and-go cycles in comparison to
conventional trucks, since they have to stop and start again every time they collect the
waste at each collection point. Additionally, while the trucks are stationary, the engines still
operate at high revolutions per minute (RPMs) in order to lift the waste containers from the
curb and compress their content. Another important difference is related to the utilization
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ratio (Ur) of the truck. Whereas the Ur of a conventional truck would remain constant, from
the loading site all the way to the unloading site, the same parameter for a waste collection
truck varies along the collection route (increasing as more and more waste is collected).
For all these reasons, it was necessary to modify the basic truck model described above in
order to incorporate the additional diesel consumption and related emissions.

The additional consumption due to the heavy box and equipment, the additional stop-
and-go cycles, and the variable utilization ratio were considered by including a correction
parameter (βj), which is the ratio of consumption/emission factor of a waste collection
truck to that of a conventional one (Equation (6)).

β j = Dieselc f
′/Dieselc f (6)

where Dieselcf
′ is the diesel consumption factor (kg(diesel)/(kg·km) of the collection truck.

Dieselc f
′ =

2

∑
j=1

[
αj ×

(
Aj
′ +
(

Bj
′ − Aj

′)×Ur
′)/(Pl

′ ×Ur
′)] (7)

where αj is the share of km traveled in each leg of the collection route (respectively, j = 1 for
transport and j = 2 for effective collection), Aj

′ is the diesel consumption of the empty col-
lection truck (including the box) in each leg [kg(diesel/)km]; Bj

′ is the diesel consumption
of the full collection truck (including the box) in each leg, also depending on the number of
additional stops per trip (kg(diesel)/km); Ur

′ is the utilization (fill) ratio of the collection
truck by mass (-); and P′l = (Pl −Wbox)) is the maximum effective payload capacity of the
truck (discounting the weight of the box) (kg); and Wbox is the weight of the box used to
store and compact the waste (kg).

The share of km travelled during the effective collection and the transportation legs or
the route (αj) and the total distance per collection trip (DT) are calculated as detailed in
Equations (8)–(11).

α2 = 1− α1 (8)

α1 = (DT − D2)/ DT (9)

DT = [D1 + D2 + (N − 1)× 2D3 + D3 + D4]/ N (10)

D2 = (C− 1)× Dc (11)

where, again α2 is the share of km travelled during the effective collection (-); α1 is the
share of km traveled the rest of the collection route (-); C is the number of containers (or
collection stops) (-); D1 is the distance between the parking lot and the collection route
(km); D2 is the total distance while collecting waste (effective collection) (km); D3 is the
distance from the collection area to the unloading site (km); D4 is the distance between
the unloading site and the parking lot (km); and Dc is the average distance in between
individual containers or collection stops (km).

All calculations were carried out in an Excel worksheet. The number of trips per truck
(N) was calculated taking into account the following limiting factors in an iterative way:
(1) the maximum number of containers in the collection route, (2) the maximum volume or
weight capacity of the truck, and (3) the maximum duration of the working day. These and
other default parameters and intermediate calculations needed to obtain the output data
are described in Table 3. It was first assumed that, after collecting all the waste from the
curb-side waste containers, if neither the volume, mass, nor time limits have been reached,
then the truck will travel to the unloading site, unload its content there, and then go back
to the parking area. If, however, during the collection route the truck reaches its maximum
capacity either by weight or volume, then it will also go to unload its content, and then
the algorithm in the model evaluates whether there is still enough time (the third limiting
factor) to go back and continue the collection. If yes, the same truck is then assumed to
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return to the collection area and continue collecting—this iterative process is allowed to
occur up to 3 times.

Table 3. Main operational data included in the model to calculate model key parameters.

Input Data Default Parameters and Intermediate Calculations

WT: total amount of waste collected (kg)
dens: waste density (kg/m3)
Freq: collection frequency (year-1)
C: number of containers (-)
Vc: average volume per container (m3/C)
Vt: volume capacity of the truck (m3/truck)
D1: distance between the parking lot and the
collection route (a) (km)
D3: distance from the collection area (a) to the
unloading site (km)
Dc: distance in between individual containers
(km/C)
D4: distance between the unloading site and
the parking lot (km)
TT: duration of the working day (h)

βj: consumption truck correction factor (-)
Pl: maximum payload capacity of the truck (kgload)
Aj: diesel consumption of the empty truck, depending on the type of road (kgdiesel/km)
Bj: diesel consumption of the full truck, depending on the type of road (kgdiesel/km)
Fcomp: diesel consumption factor while the truck is lifting containers and compacting waste
(kgdiesel/h)
Wbox: weight of the box truck (kg)
Fillc: average container fill ratio (%)
crt: compaction ratio of the truck (-)
ef: collection efficiency in number of containers collected per hour (C/h)
Scol: average speed while collecting (km/h)
Stransp: average speed while transporting (km/h)
Tcomp: time spent loading and compacting waste (h)
Tunload: time spent unloading waste (h)
Tluch: time for lunch break (h)
Ttransp: total time spent while transporting (h)
Tcol: time spent collecting (h)
D2: total distance spent while collecting waste (effective collection distance) (km)
N: number of trips per truck (-)

Output Data

αj: share of km traveled in each type of road (-)
Ur: utilization (fill) ratio of the truck by mass (-)
DT: distance of one full trip of the waste
collection truck (km)

(a) This distance is modeled as the weighted mean distance to the different collection points within the collection area.

If adopting the same basic model as for a conventional truck, the utilization ratio may
be calculated as:

Ur = WT/(N × Pl) (12)

where WT is the total waste mass collected per year and N is the number of trips per year.
A variable utilization ratio of the collection truck could instead be calculated as

described in Equation (13):

U′r =
(

WT
N(Pl−Wbox)

× (D1+D4+(N−1)D3)
DT

× r1

)
+
(

WT
N(Pl−Wbox)

× ND3
DT
× r2

)
+
(

WT
N(Pl−Wbox)

× D2
DT
× r3

) (13)

where DT is the distance of one complete trip (km); N is the number of trips (-); r1 is the
effective load while the truck travels empty (-); r2 is the effective load while the truck
travels full (-); and r3 is the effective load while the truck is collecting waste (-).

Taking into account the values for the effective load of the truck in each individual leg
of the route (r1 = 0, r2 = 1 and r3 = 0.5), Equation (13) may be simplified as described in
Equation (14).

U′r =
(

WT
N(Pl −Wbox)

)
×
(

ND3

DT
+

D2

2DT

)
(14)

However, based on the experimental fuel consumption values obtained for a number
of collection routes in the north of Spain (Galicia), it was found that in virtually all cases,
the resulting βj factor for a truck of 20–26 t of maximum authorized weight and 17.3 of
payload capacity (in relation to the corresponding collection truck) was invariably around
2. It was therefore decided to refrain from implementing this additional level of complexity
in the model, and instead settle for using the simpler Equation (12) for the calculation of
Ur, and then applying a fixed parameter βj = 2 throughout.

The additional fuel consumption to lift the containers and compress the waste (Add_diesel)
was modeled assuming that the truck uses the same amount of fuel per hour as when
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traveling on urban roads, since it was impossible to obtain the additional fuel consumption
due to these operations from experimental sources:

Add_diesel = C × ∗ Tcomp × Fcomp (15)

where C is the number of containers (or collection stops) (-); Tcomp is the average time
spent in emptying one container and compacting the waste contained therein (or the corre-
spondent amount spent at a collection stop) (h), which depends on the type of container
used; and Fcomp is the diesel consumption factor while the truck is lifting containers and
compacting waste (kg(diesel)/h), which was set by adopting the average fuel consumption
of conventional trucks when traveling on urban roads at a speed used of 27 km/h.

Finally, the total fuel consumption of a waste collection vehicle (DieselTCT) (kg(diesel))
results from Equation (16):

DieselTCT =

(
2

∑
j=1

β j × Dieselc f

)
×WT × DT + Add_diesel (16)

where WT is the total amount of waste collected (kg) and DT refers to one complete trip of
the waste collection truck (km).

In the same way, the formulae to calculate the emissions of substances associated
to diesel consumption were corrected using adapted βj factors and additional emis-
sion amounts.

4. Results

This section is divided into three main parts. Firstly, the performance of the existing
methods (ORWARE, MSW-DST, and Ecoinvent) in predicting the performance of the
collection trucks in terms of fuel (diesel) consumption in comparison to the experimental
data from the known collection routes in Portugal (see Table 4) is presented. Secondly, the
performance of the FENIX model in comparison to the aforementioned methods as well as
experimental data are shown. Finally, the FENIX model’s ability to accurately estimate the
environmental performance of the collection phase when selected changes are made to the
operational parameters is discussed.

Table 4. Average experimental data of different curb-side collection routes in Portugal.

Waste Fraction
Collected

Route
Code

Amount Collected
(t/year)

Annual Distance
(km/year)

Annual Diesel
Consumption (L/year)

Performance
Indicators

L/100 km L/t

Glass
G1 189 5996 1716 28.6 9.1
G2 124 2637 755 28.6 6.1

MSW MSW1 2039 22,919 24,935 108.8 12.2
MSW2 3015 47,265 30,216 63.9 10.0
MSW3 1990 35,078 23,475 66.9 11.8

Light
Packaging

Waste

LP1 76 3877 1956 50.4 25.6
LP2 (a) 139 2990 1765 59.1 12.7

LP3 165 5347 4390 82.1 26.6
LP4 92 2147 2335 108.8 25.3

Paper and
Cardboard

P1 144 2773 1606 57.9 11.2
P2 (a) 248 2584 1525 59.1 6.2

P3 293 6747 5540 82.1 18.9
P4 201 2651 2884 108.8 14.4
P5 332 5788 3873 66.9 11.7

(a) Correspond to the more commercial routes, which are more efficient in environmental performance (L/t).
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4.1. Comparison of Experimental Data to Results of Existing Models

Average experimental data from the 14 curb-side collection routes in Portugal are
presented in Table 3. The experimental data on total fuel consumption were then com-
pared with the results obtained by multiplying the default consumption rates assumed by
ORWARE, MSW-DST, and Ecoinvent by the experimental data gathered in terms of total
amount of waste (t), transport and effective collection distances (km), number of containers
(-) and idling time while stopped to lift up the containers (h). Results of this comparison
are shown in Figure 3. Vertical axes are expressed in a base-2 logarithmic scale.
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and cardboard.

An analysis of the results reveals that, overall, none of the total fuel consumption
figures produced by these models match the experimental data. Only in those cases in
which the characteristics of the experimental routes happened to coincide somehow with
those of the calibration routes on which the average fuel consumption rates used in the
models are based, were the results any better. In other cases, for instance for light packaging
waste, the model estimates were found to be low by a factor of 4, when using Ecoinvent
and ORWARE. In general, it was confirmed that if the objective of an LCA is to predict the
potential impacts of a specific waste collection option, or to compare and choose among
different alternatives, the use of models based on fixed ‘average’ fuel consumption factors
may lead to rather inaccurate results.

4.2. Comparison of FENIX Model Results to Those Produced by Previous Models and to
Experimental Data

The results produced by the FENIX model were also checked against the experimental
data from the 14 curb-side collection routes in Portugal, for which all required input data
included in Table 4 were gathered. The results of this comparison are shown in Table 5.
This revealed that, on average, the FENIX model produces much more balanced and
accurate results than all other models, and for all waste routes. This is quantitatively
proven by the sum of the squared deviations of the results of each individual model vs. the
experimental data.
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Table 5. Comparison of FENIX results with experimental and existing models.

Waste Fraction
Collected Route Code Experimental(L/t)

Relative Deviation from Experimental Data

FENIX ORWARE MSW-DST Ecoinvent

Glass
G1 9.1 −0.34 0.54 −0.04 0.70
G2 6.1 0.20 0.92 0.85 1.25

MSW MSW1 12.2 0.44 −0.19 −0.69 −0.26
MSW2 10.0 −0.11 0.46 −0.55 0.07
MSW3 11.8 0.63 0.06 −0.62 −0.34

Light Packaging
Waste LP1 25.6 −0.11 −0.48 0.57 −0.38

LP2 12.7 −0.13 −0.09 0.48 0.22
LP3 26.6 −0.25 −0.66 −0.01 −0.58
LP4 25.3 0.26 −0.73 −0.27 −0.69

Paper and
Cardboard P1 11.2 −0.01 −0.17 0.20 −0.19

P2 6.2 0.12 0.48 0.36 0.80
P3 18.9 −0.11 −0.38 −0.02 −0.26
P4 14.4 0.19 −0.45 −0.31 −0.42
P5 11.7 0.65 −0.27 −0.48 −0.41

Sum of the squared deviations 1.41 3.27 3.01 4.35

4.3. Sensitivity to Model Parameters

The main reason for developing the FENIX model was the identified need for a model
which would be able to predict changes in the environmental performance of the waste
collecting phase before changes in operational parameters are applied in real life, in order
to help decision makers to make environmentally and economically sound choices.

Table 6 presents some illustrative examples in which the potential effects of the
variation of some of these operational parameters are assessed. Specifically, the following
aspects were analyzed: the total number of containers (scenarios 1–2), the collection
frequency (3–4), the length of the working day (5–6), and, finally, the collection in more
rural areas (7–8). The latter was parameterized by increasing the distances between the
parking area and the collection area, between the collection area and the unloading point,
and from the unloading point back to the parking area, as well as increasing the distance
between the individual collection sites within the collection area (a distance along which
no effective waste collection is carried out).

As it can be seen, by reducing the number of containers in scenario 1 from 449 to
269 (the latter being the minimum number of containers calculated by the model as neces-
sary for this particular route), or by increasing the number of containers by 10% (scenario
2), the performance of the collection phase (L/t was respectively improved by ~25% or
worsened by ~17%. Increasing the collection frequency by 25% (scenario 3), or doubling it
(scenario 4), produced a worsening in the performance by ~41% and ~120%, respectively.
Changes in the duration of the working day (the new limiting factor included in this model)
also had a large effect on the results. Reducing the available time by 2 h (scenario 5) or by
one half (scenario 6) led to a worsening in the performance by ~32% and ~46%, respectively.
Finally, collecting the same amount of waste with the same operational parameters but in
more rural areas, exemplified by doubling the distances in the collection route and also
considering 25 (scenario 7) or 50 (scenario 8) additional km traveled to reach the collection
site, produced a worsening of the performance by ~68% and ~87% respectively.
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Table 6. Effects of selected operational parameters of the route on the waste collection performance.
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Baseline 92.2 8 55 449 0.25 22 1.7 10.2 10.7 0 41.2 0.86 3462 31 2928.48 31.76
1 92.2 8 55 269 0.25 22 1.7 10.2 10.7 0 41.2 0.49 2184 40 2171.13 23.55
2 92.2 8 55 494 0.25 22 1.7 10.2 10.7 0 41.2 1.00 3462 31 3419.55 37.09
3 92.2 8 70 449 0.25 22 1.7 10.2 10.7 0 41.2 1.20 4406 31 4123.59 44.72
4 92.2 8 110 449 0.25 22 1.7 10.2 10.7 0 41.2 1.88 6923 31 6435.03 69.79
5 92.2 6 55 449 0.25 22 1.7 10.2 10.7 0 41.2 1.20 4739 29 3853.33 41.79
6 92.2 4 55 449 0.25 22 1.7 10.2 10.7 0 41.2 1.44 6016 27 4280.64 46.43
7 92.2 8 55 449 0.25 22 3.4 20.4 21.4 25 39.3 0.67 7257 66 4915.81 53.32
8 92.2 8 55 449 0.25 22 3.4 20.4 21.4 50 37.5 0.64 8602 78 5469.50 59.32

Note: Changes with respect to the baseline scenario are marked in bold.

5. Discussion

When performing LCAs of waste management systems, the environmental benefits
of recycling must often be balanced against the additional environmental impacts arising
from increased transportation [74]. As has been demonstrated by experimental results,
using fixed consumption factors may lead to some serious shortcomings in calculating
the environmental impact of the collection phase, especially when the characteristics of
the real collection routes do not coincide with those that were used to derive the default
consumption factors. In particular, the effects of changes in operational parameters of the
waste collection route on the fuel consumption rates have been discussed in the previous
section and shown in Table 6. However, the effect of time (in terms of the overall duration
of the waste collection trip) merits special attention and additional discussion.

In the guidelines for conducing LCA of waste management systems developed in the
last decades [65,75], time is not given any consideration, and only the overall volume and
weight of the waste are mentioned as limiting factors to be considered for the calculation
of the environmental impacts of the collection and transport of waste. In addition, other
studies evaluating the significance of the collection and transport phases in LCAs of
integrated waste management systems indicate that ”time is not relevant for assessing the
environmental loads of waste collection“ [57,76]. However, this assertion appears to be
questionable based on the results illustrated in Table 6, where changes in the duration of
the waste collection journey were found to have an important effect on the results. In fact,
once the maximum allotted time for the collection of waste is reached, it no longer matters
whether there is any capacity available left in the truck, since the truck will still return to
the parking area and another truck will resume the collection on the following day from
where it was interrupted. In so doing, the total cumulative distance traveled to collect
the same overall amount of waste will increase, thereby negatively affecting the average
collection performance in terms of L(diesel)/t(waste collected). The time factor may not
have a significant influence in urban areas, but it does have a larger influence in more rural
areas, where long distances are driven so waste collection is less efficient to begin with.

This is particularly relevant for countries like Spain and Portugal, where the perfor-
mance of the waste collection phase is often far from optimal. In these countries a large
percentage of municipalities under the obligation of implementing source-separated collec-
tion systems have less than 5000 inhabitants. Moreover, collection frequencies are much
higher than in other countries. Whereas in Denmark, for instance, collection for paper and
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glass waste is carried out once or twice per month [76], in Spain the collection frequency is
typically once per week and in Portugal twice per month. In the case of MSW, the situation
is even more extreme. In Denmark, MSW is collected from 2 to 4 times per month, whereas
in Spain and Portugal, MSW is typically collected every 1 to 3 days. This situation leads to
higher fuel consumption rates, in terms of liters of diesel per ton of collected waste, than in
other countries. The higher intensity in collection frequency may be due to specific climate
conditions with result in a more rapid decomposition of organic waste (especially in the
summer), which causes undesirable odors and inconvenience to citizens, but may also be
partly due to perceived citizen demand.

6. Conclusions

As discussed in the previous sections, it is safe to conclude that the fixed consumption
rates included in some LCA tools or databases for waste management to calculate the
environmental performance of the waste collection phase are to be used warily. If the
aim of the study at hand is to evaluate the environmental performance of the currently
implemented waste collection system, real fuel consumption data should be used instead,
while adjusting the characteristics of the route on which the average parameters are based
to match the characteristics of the real-world system under analysis. Conversely, for some
applications, especially if the focus of the study is the optimization of the collection phase
itself, and where predictive results are needed before implementing changes in the system,
it is arguably necessary to use a more complex model (such as the FENIX model presented
here), duly taking into account many more characteristics of the collection scheme and
the associated operational parameters in the model itself, in which consumption and
emission factors depend on the characteristics of the route and are not fixed. Specifically,
one parameter which has been identified as particularly relevant in the development of
the FENIX model, but which had hitherto been neglected in most previously available
models, is the duration of the working day. The recommendation is thus made to pay
special attention to this parameter in all future LCA modeling of waste collection.
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