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Abstract: Phytochemicals, such as monoterpenes, polyphenols, curcuminoids, and flavonoids, are known
to have anti-inflammatory, antioxidant, neuroprotective, and procognitive effects. In this study, the effects
of several polyhydroxy flavonoids, as derivatives of differently substituted 5,7-dihydroxy-4H-chromen-
4-one including apigenin, genistein, luteolin, kaempferol, quercetin, gossypetin, and phloretin with
different lipophilicities (cLogP), as well as topological polar surface area (TPSA), were tested for
induction of Ca2+ transients by α7 human nicotinic acetylcholine (α7 nACh) receptors expressed
in SH-EP1 cells. Apigenin (10 µM) caused a significant potentiation of ACh (30 µM)-induced Ca2+

transients, but did not affect Ca2+ transients induced by high K+ (60 mM) containing solutions.
Co-application of apigenin with ACh was equally effective as apigenin preincubation. However,
the effect of apigenin significantly diminished by increasing ACh concentrations. The flavonoids
tested also potentiated α7 nACh mediated Ca2+ transients with descending potency (highest to low-
est) by genistein, gossypetin, kaempferol, luteolin, phloretin, quercetin, and apigenin. The specific
binding of α7 nACh receptor antagonist [125I]-bungarotoxin remained unchanged in the presence of
any of the tested polyhydroxy flavonoids, suggesting that these compounds act as positive allosteric
modulators of the α7-nACh receptor in SH-EP1 cells. These findings suggest a clinical potential for
these phytochemicals in the treatment of various human diseases from pain to inflammation and
neural disease.

Keywords: nicotinic receptors; apigenin; flavonoids; positive allosteric modulator; pain; inflamma-
tion; neurodegenerative disorders

1. Introduction

Nicotinic acetylcholine (nACh) receptors belong to the ligand-gated ion channel fam-
ily that includes serotonin type-3, glycine, and γ-aminobutyric acid (GABA)-A receptors.
The homomeric α7 nACh receptor subtype is expressed in both central and peripheral
nervous systems, as well as non-neuronal cells, and plays an important role in synaptic plas-
ticity and various disease pathologies [1]. Thus, α7-nACh receptors are recognized targets
for drug development in several preclinical experimental models of pain, inflammation,
neurodegenerative diseases, and psychosis [1,2]. Therefore, chemical entities modulating
the function these receptors have clinical significance in treating pain and inflammation,
and alleviating several neurodegenerative disorders.

Phytochemicals, such as terpenes, polyphenols, curcuminoids, and flavonoids, have been
shown extensively to exert antioxidant, anti-inflammatory, anti-hypertensive, neuropro-
tective, antiepileptic, and procognitive effects [3–7]. In search of new compounds, several
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phytochemicals including terpenes, such as menthol [8], thujone [9], and carveol [10],
as well as capsaicin [11], cannabidiol [12], and cannabis terpenes, such as bisabolol [13],
have been shown to allosterically modulate the function of α7 nACh receptors in cellular
systems. Further studies with more complex phytochemicals identified curcumin and
its metabolites as positive allosteric modulators (PAM) of α7 nACh receptor [14–17]. Im-
portantly, some of the flavonoid-group phytochemicals, such as genistein and quercetin,
were recently shown to act as a PAM of α7 nACh receptor [17–19]. In the present study,
we have investigated the effects of a panel of polyhydroxy flavonoids that are the products
of differently substituted 5,7-dihydroxy-4H-chromen-4-one structural skeleton (Figure 1).
This includes apigenin, genistein, luteolin, kaempferol, quercetin, gossypetin, and phloretin
on human α7-nACh receptors expressed in SH-EP1 cells. In addition, the modulating role
of different substituents at the 2-, 3-, 6-, and 8-position of 5,7-dihydroxy-4H-chromen-4-
one, the selected compounds on metric parameters were assessed to predictably quantify
the lipophilicity (clogP), the water solubility (clogS), and drug-likeness score applying
Molinspiration Property, Osiris Property Explorer, and MolSoft toolkits [20–23].
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dihydroxy-4H-chromen-4-one.

2. Materials and Methods
2.1. Cell Culturing

Culturing of SH-EP1 cells [24] and stable transfection methods used to produce
this cell line were described earlier [25]. Briefly, Dulbecco’s modified Eagle’s medium
supplemented with 10% heat inactivated horse serum, 5% fetal bovine serum, 100 U/mL
penicillin G, 100 µg/mL streptomycin, 0.25 µg/mL amphotericin B, 0.4 mg/mL hygromycin
B, 0.25 mg/mL Zeocin, and 1 mM sodium pyruvate (all from Invitrogen, Carlsbad, CA,
USA) were used to grow SH-EP1 cells on 35 mm dishes. Subsequently, cells were plated at
a density of 2 × 105 cells per well into 96-well plates and were held for 2–3 days in 5% CO2
saturated with H2O at 37 ◦C.

2.2. Intracellular [Ca2+] Measurements

These experiments were conducted as described earlier [9,14] at room temperature
(24 ± 2 ◦C). Briefly, SH-EP1 cells were loaded with 10 µM fluo-4 AM (Molecular Probes, Life
Technologies, Paisley, UK) in Krebs-HEPES solution (in mM: 144 NaCl, 5.9 KCl, 1.2 MgCl2,
2 CaCl2, 11 D-glucose, 10 HEPES, pH 7.4) for 45 min at 37 ◦C in the dark. Next, fluo-4
AM loaded cells were washed twice with Krebs-HEPES at room temperature. All test
and incubation solutions contained atropine (1 µM). Fluorescence changes (excitation
485 nm, emission 520 nm) were measured using a fluorescent plate reader (Fluostar, BMG
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Labtech Inc., Cary, NC, USA). Changes in basal fluorescence levels were monitored before
and after adding ACh containing solution through an automatic dispenser. Fluorescence
changes were recorded for 30 s. The responses from each well were calibrated by measuring
maximum and minimum fluorescence values to normalize fluo-4 signals. The Fmax value
was obtained by the addition of 75 µL of 5% Triton X-100 and Fmin was attained by
addition of 50 µL of 1 M MnCl2 at the end of the experiment. Data were presented as a
percentage (%) of Fmax–Fmin or area under fluorescence curve (AUC). Apigenin, genistein,
gossypetin, kaempferol, luteolin, phloretin, and quercetin were purchased from Sigma
(Sigma, St. Louis, MO, USA). Flavonoids were dissolved in DMSO. At final concentrations
of 0.01%, DMSO did not affect ACh-induced Ca2+ transient (n = 4).

2.3. Radioligand Binding Experiments

In 35 mm dishes, the SH-EP1 cells were grown to confluence, collected by scraping
in 50 mM HEPES buffer solution containing 1 mM MgCl2, 2.5 mM CaCl2, 0.1% (w/v)
bovine serum albumin, 0.025% (w/v) bacitracin, and 0.025% (w/v) sodium azide (pH 7.4),
and centrifuged at 1200 r.p.m. for 15 min at 4 ◦C. Subsequently, the supernatant was
removed and cells were frozen at −80 ◦C until the day of the experiment. For binding
assays, using a Polytron tissue homogenizer at setting 4 for 20 s, the cells were resuspended
in 50 mM Tris-HCl buffer containing 120 mM NaCl, 5 mM EDTA, 1.5 mM MgCl2, and 5 mM
KCl (pH 7.4). In a total of 250 µL volume, 150 µL cell suspension, 50 µL radioligand [125I]-
α-bungarotoxin (2200 Ci/mmol; Perkin-Elmer, Inc. Waltham, MA, USA) and 50 µL test
compound, were added to 96-well microtitre plates. The α-bungarotoxin (3 µM) was used
to determine non-specific binding. Subsequent to 45 min incubation at room temperature,
the plates were filtered through Packard Unifilter-96, GF/C plates and washed twice with
500 µL ice-cold 10 mM Tris-HCl buffer containing 150 mM NaCl (pH 7.4). The radioactivity
bound to filters was counted in 50 µL of scintillation solution (MicroScint 40, Perkin-
Elmer, Inc. Waltham, MA, USA) in Packard TopCount scintillation counter. Assays were
performed in triplicate.

2.4. Metric Parameters and Drug-Likeness Properties

Molecular weight (MW), water solubility (clogS), and Lipophilicity (clogP) of Lip-
inski’s rule for drug-likeness were calculated using the computational tool Osiris Prop-
erty explorer. (Molinspiration software or free molecular property calculation services
(last accessed 23 February 2021)) and Molinspiration property calculation toolkit [22,23].
The observed metric parameters for the tested polyphenol flavonoids are summarized in
Table 1.

Table 1. Drug-likeness calculations and Lipinski parameters for tested polyphenol flavonoids.
a molecular weight, b topological polar surface area, c water solubility (clogS), d lipophilicity (clogP),
e Molinspiration software or free molecular property calculation services (Molinspiration software or
free molecular property calculation services (last accessed 23 February 2021)).

Compound MW a TPSA b cLogS c cLogP d Drug-Likeness
Model Score e

Apigenin 270.24 90.89 −2.86 2.34 1.21
Genistein 270.24 86.99 −2.73 1.63 1.16
Luteolin 286.24 111.12 −2.56 1.99 1.91

Kaempferol 286.24 107.21 −2.79 1.84 0.91
Quercetin 302.24 131.35 −2.49 1.49 1.64

Gossypetin 318.24 127.42 −2.19 1.14 0.67
Phloretin 258.27 77.75 −2.52 2.04 −0.56
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2.5. Statistical Analysis

The mean ± standard error means (S.E.M.) was used to present data. Statistical signifi-
cance between measurements in different groups was determined using One-way ANOVA.
When differences were found, pair-wise post-hoc comparisons using the Bonferroni correc-
tion were applied. The p values < 0.05 were considered significant. Radioligand saturation
curves were obtained by fitting the data to the logistic equation, using non-linear hyperbolic
curve fitting function of OriginPro 8.5 (OriginLab Corp., Northampton, MA, USA).

3. Results

In preliminary experiments, no detectable changes in intracellular Ca2+ levels were
observed after 30 s application of apigenin alone (up to 100 µM) in Fluo-4 loaded SH-
EP1 cells (n = 11 from 3 separate experiments). On the other hand, rapid increases in
intracellular Ca2+ concentrations were consistently observed following the application
of 30 µM acetylcholine (ACh) (Figure 2A, control). These ACh-induced Ca2+ transients
were completely inhibited after 5 min pre-incubation with methyllycaconitine (10 µM),
a selective antagonist for α7-nACh receptor (Figure 2A).
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Figure 2. The effects of apigenin on Ca2+ transients elicited by the stimulation of human α7 nACh
receptors expressed in SH-EP1 cells. (A) The effect of 10 µM apigenin and 10 µM methyllycaconitine
(MLA) on Ca2+ transients induced by 30 µM ACh in 10 µM Fluo-4 AM loaded SH-EP1 cells. (B) Cu-
mulative effects of apigenin and MLA on the area under curve (AUC) of Ca2+ transients induced
by ACh. Bars indicate the mean ± S.E.M. * indicates p < 0.05 (ANOVA, n= 14–17). (C) The effect
of preincubation time on the apigenin potentiation of Ca2+ transients induced by ACh (n = 9–12;
ANOVA, p > 0.05). (D) The effect of increasing concentrations of ACh on the apigenin (10 µM)
potentiation of ACh (30 µM)-induced Ca2+ transients. Bars indicate the mean % potentiation ± S.E.M.
n = 11–15.

Five min. pre-incubation of cells with 10 µM apigenin caused a significant potentiation
(48% ± 5, n = 14, ANOVA, p = 0.001) of the ACh-induced Ca2+ transients (Figure 2A,B).
Notably, a 5 min. application of 10 µM apigenin did not change the magnitude of the Ca2+

transient induced by the application of high-K+ (60 mM KCl, n = 11, ANOVA, p = 0.634),
suggesting that the effects of apigenin are not due to the activity of voltage-dependent
Ca2+ channels. Since most of the phytochemical effects were previously shown to be
enhanced by the duration of the pre-application [8–12], we compared the effects of 5 min,
2 min, and 30 s apigenin pre-application, and also examined the effect of co-application
of apigenin and ACh. The extent of apigenin potentiation of ACh-induced Ca2+ transient
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was found unchanged (Figure 2C) under various pre-application, as well as co-application
time conditions. In earlier studies with curcumin, we observed that its potentiating ef-
fect was significantly diminished with increasing agonist concentrations [15]. Therefore,
we tested the effect of increasing ACh concentration on apigenin potentiation of the Ca2+

transient. Interestingly, the effect of apigenin was significantly decreased at higher ACh
concentrations (Figure 2D).

Next, we investigated the effects of the other polyhydroxy flavonoids genistein,
gossypetin, kaempferol, luteolin, phloretin, and quercetin on ACh-induced Ca2+ transients
in the same cell line. No detectable changes in intracellular Ca2+ levels were observed after
30 s applications of these flavonoids alone (up to 30 µM) in Fluo-4 loaded SH-EP1 cells
(n = 7–12 from 4 separate experiments). At 10 µM, all flavonoids tested caused a significant
potentiation of ACh (30 µM)-induced Ca2+ transients (Figure 3A), with a potency profile of:
phloretin (112% ± 12) > genistein (83% ± 7) ≥ kaempferol (81% ± 8) > quercetin (73% ± 6)
≥ luteolin (72% ± 5) > gossypetin (65% ± 4).
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Figure 3. The effect of flavonoids on the Ca2+ transients induced by ACh and specific [125I] α-
bungarotoxin binding in SH-EP1 cells. (A) The effect of 10 µM of genistein, gossypetin, kaempferol,
luteolin, phloretin, and quercetin on ACh (30 µM)-induced intracellular Ca2+ transients. Bars indicate
the mean ± S.E.M. n = 12–17. (B) The effect of apigenin on the binding saturation of [125I] α-
bungarotoxin. Increasing concentrations of [125I] α-bungarotoxin are shown in X-axis as free ligand.
SH-EP1 cells were incubated for 45 min. with the indicated concentrations of [125I] α-bungarotoxin
in the absence (filled circles) and presence (open circles) of apigenin (10 µM). Unlabeled bungarotoxin
(3 µM) was added to incubation buffer to determine non-specific binding (n = 4–6) (C) Scatchard
analysis, apigenin effects on saturation binding of [125I] α-bungarotoxin. Units are fmol/mg protein
and fmol/mg protein/nM for x and y axis, respectively. (D) Effects of flavonoids on the specific
binding of 2 nM [125I] α-bungarotoxin in the same cell line. Bars indicate the mean ± S.E.M. n = 9–12.
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In subsequent studies, we investigated the effect of apigenin on specific binding
of [125I] α-bungarotoxin, a competitive antagonist of ACh at the α7-nACh receptor [1].
Saturation curves for [125I] α-bungarotoxin binding in the absence (controls) and presence
of apigenin are shown in Figure 3B. In SH-EP1 cells preincubated (45 min) with 10 µM
apigenin, there was no significant change in [125I] α-bungarotoxin binding. The apparent
affinity (KD) of the receptor for [125I] α-bungarotoxin was 1.18 ± 0.29 and 1.03 ± 0.32 pM
for controls and apigenin, respectively (n = 14 in 3 experiments; ANOVA, p = 0.097). In line
with this finding, Scatchard analysis of saturation binding data indicated that Bmax values
in the absence and presence of apigenin (10 µM) were not changed significantly (Figure 3C).
The Bmax values were 1.73 ± 0.09 pmol/mg in controls and 1.71 ± 0.11 pmol/mg in
the presence of apigenin (n = 11 measurement from 3 experiments, ANOVA, p = 0.086).
Finally, we tested the effects of 10 µM genistein, gossypetin, kaempferol, luteolin, phloretin,
and quercetin on [125I] α-bungarotoxin binding. Similarly to apigenin, these polyhydroxy
flavonoids did not change [125I] α-bungarotoxin binding in SH-EP1 cells (Figure 3D).

4. Discussion

In the present study, we provide evidence that flavonoids, such as apigenin, genistein,
gossypetin, kaempferol, luteolin, phloretin, and quercetin, allosterically potentiate human
α7-nACh receptors expressed in SH-EP1 cells. In addition, we present some important
physicochemical parameters suggested to be useful in selecting oral drug candidates to fa-
cilitate drug discovery and development processes [22,26]. In this context, water-solubility
(clogS), lipophilicity (clogP), molecular weight (MW), drug-likeness score, and topological
polar surface area (TPSA), parameters closely related to Lipinski’s rule, were calculated for
the current panel of tested compounds (Figure 1) by applying the Osiris Property explorer
and the Molinspiration property calculation toolkit (Table 1) [26,27]. The clogS value indi-
cating the drug solubility affects its absorption and distribution properties. Accordingly,
the solubility of the tested compounds was found in an acceptable range (<−4 clogS).
In addition to solubility, drug-likeness scores and the lipophilicity-related physicochemical
parameters, such as clogP, have been shown to modify drug potency, pharmacokinetics,
and toxicity, and are recognized as useful tools in the lead optimization process [21,23,26].
Consequently, ligands with a clogP < 5 were suggested to present more promising drug-
likeness profile [28,29]. Among the current panel of tested compounds, the clogP values
were calculated as <5 suggesting the suitability of the compounds for oral administra-
tion (Table 1). The TPSA values have also been used in development of a successful
drug candidate. In general, compounds with TPSA values > 60 Å2 are considered poorly
membrane-permeable molecules with relatively decreased CNS bioavailability [22,26].
Among the tested polyphenol flavonoids, the calculated TPSA values were in the range of
77–131 Å2, suggesting physicochemical parameters expected from drug-like compounds,
especially regarding TPSA (Table 1). Another numerical value useful in drug development
process is the drug-likeness model score which signifies a combined result of physic-
ochemical, pharmacokinetic, and pharmacodynamic properties of the compound [22].
Thus, ligands having zero or negative values are considered less suitable as a drug-like
candidate. In this study, all flavonoids, except for phloretin, have drug-likeness scores in
the range of 0.67–1.91; with apigenin, luteolin, and quercetin showing maximum-likeness
scores of 1.12, 1.91, 1.64, respectively (Table 1; Figure 1).

Preincubation with apigenin did not alter the extent of its effect, and co-application
with ACh was sufficient for potentiation of ACh-induced Ca2+ transients, suggesting
that membrane partitioning and/or the phosphorylation of the α7-nACh receptor are
not required for the observed effect. Importantly, positive modulatory effect of apigenin
was significantly diminished by increasing concentrations of ACh. It is possible that
desensitized α7-nACh receptors at high ACh concentrations have lower affinity to apigenin.
In line with this hypothesis, after complete desensitization of α7-nACh receptors with
(100 µM ACh for 1 min), apigenin failed to potentiate Ca2+ transients (data not shown,
n = 3).
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Moreover, other polyhydroxy flavonoids tested also potentiated ACh-induced Ca2+

transients with potency order of genistein > gossypetin > kaempferol > luteolin, phloretin,
and quercetin. Radioligand binding experiments indicate that apigenin and other flavonoids
does not alter [125I] α-bungarotoxin binding suggesting that these compounds act as al-
losteric modulators of the α7-nACh receptor. These results confirm earlier findings with
genistein and quercetin [17–19], and identify apigenin, and other flavonoids, as likely
PAM of the human α7-nACh receptor. The PAMs are promising therapeutic agents since
they maintain the temporal and spatial characteristics of the endogenous activation of the
receptor and are usually more selective than agonists [1].

Combining these results, apigenin and structurally related other polyhydroxy flavonoids
revealed promising drug-likeness values, and underlined a role for polyphenol flavonoids in
the regulation of α7-nACh receptor signaling and their potential clinical use in conditions
ranging from the treatment of pain and inflammation to alleviating neurodegenerative
disorders.
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