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INTRODUCTION

General

Piles are common structural elements used to transmit
loads through weak or compressible surface soils to lower,
more suitable soil strata. They are relatively small diameter
shafts that are forced into the ground. Typical examples of
pile utilization can be found at nearly any site where a major
structure is being constructed.

Many waterfront structures are built on partially
embedded piles. In this case, the pile transfers the load of
the structure to the lower soil strata and also serves as a
column for the portion of the structure above the mud line.
Many bridges and buildings are also supported by partially
embedded piles. This is especially true for structures in

permafrost areas.



The load bearing capacity of totally embedded and
partially embedded piles can usually be determined using readily
accepted design procedures. However, the design of partially
embedded piles is further complicated by the fact that the
column portion of the pile extends below the surface to some
point where it can be considered as fixed. It follows, then,
that before the design process can proceed, this point of fixity

must be defined.

Literature Review

Davisson and Robinson have presented an analytical
approach for computing the depth to fixity for a long, partially
embedded pile (1). They added this depth to fixity to the
unrestrained length to form an equivalent, idealized column.
Euler's formula was used to determine the buckling load.

Klohn and Hughes conducted a full scale: pile loading
test on a timber pile which had an unsupported length of
52 feet (2). A buckling failure was observed and subsequent
calculations indicated that the effective length of an equivalent
column was 62 feet. Therefore, the depth to fixity was

determined to be 10 feet. Davisson, in a discussion of their




paper, has shown that good agreement existed between the
test results and the critical load calculated by using the
analytical approach set forth by Davisson and Robinson (3).

Lee conducted tests on a number of model piles partially
embedded in sand (4). He reported good agreement between the
depth to fixity determined experimentally and the depth to fixity
predicted by the analytical approach set forth by Davisson and
Robinson,

Timoshenko and Gere present a history of, and design
formulas for, columns in their book, "Theory of Elastic
Stability' (5). They state that for slenderness ratios greater
than 105, experimental critical loads agreed very closely with
critical loads calculated using Euler's equation.

Rocha stated that for studies in cohesive soils,
materials used in models can be the same as the materials
of the prototype if the weight can be ignored. In granular
soils, the same materials can be used even if weight is a

factor (6).

Scope
The analytical approach for determining the depth to

fixity can be easily applied to design problems. Once this



depth has been determined, design analysis can proceed
utilizing common column design procedures. However, there
appear to be no experimental investigations confirming the
validity of the analytical method for determining depth to fixity
for partially embedded piles in preloaded cohesive soils and
only two limited investigations to determine this depth experi-
mentally in noncohesive soils (2 and 4).

In order to attempt to validate the analytical method
for determining the depth to fixity for partially embedded piles
in preloaded clays, a number of load tests were performed
on miniature piles. Tests were also performed on piles
partially embedded in a noncohesive soil.

This study is an analysis of these tests.



ANALYTICAL PROCEDURES

The analytical approach for defining the depth to fixity of
a partially embedded pile has been presented by Davisson and
Robinson (1). The primary features of the partially embedded
pile utilized in their paper are shown in Figure la. The pile has
a length equal to an embedded length, L, plus an unrestrained
portion, Lu' The pile may be loaded by an axial load, P, or a
moment, M, or a lateral load, Q, or any possible combination
of the three. Davisson and Robinson's basic hypothesis was that
the partially embedded pile could be idealized by a fixed base
column of length, Le, equal to the unrzstrained length, L, plus
some length equal to the depth to fixity, D;. Euler's buckling
equations are then used to find the critical load for the fixed base
column length, L. Figure 1b shows the ideal column utilized
in these assumptions.

The depth to fixity has been found to be a function of the

soils- subgrade modulus, k, and the pile stiffness, E I. The



i)
P
=
‘,’ ——n Q
Lu
Ly Le
Y GRC’L.J'I\:D w
i T o i & i | i v GF o g _1(_
le
I FIXED BASE
¥

(a) (b)

FIGURE 1, , PARTIALI Y EMEBEDDED PILE



equation for subgrade modulus is

k=p/y (1)
in which p is the lateral force of the soil per unit length of pile,
and y is the lateral deflection. According to Terzaghi, the value
of k may be assumed to be constant for preloaded clays and to
vary directly with depth for granular soils and normally loaded
silts and clays (7). Figure 2 shows variations of subgrade
modulus with depth. Davisson tabulated typical wvalues of the
subgrade modulus and these are presented in Appendixes B and
C (8).

The basic equation which defines equilibrium for

ernbedded and deflected piles has been presented by Hetenyi (9).

This equaticn is

2

EI d* y + P @& y + k(®y=0 (2)
dx:I clx:2

in which P is the axial load; x and y are the coordinate system

used; and k (x) is the subgrade modulus.

Preloaded Cohesive Soils

In the analytical approach for defining the depth to
fixity for preloaded clays, the applicability of the solutions to

Equation 2 become more apparent if the following changes of
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variables are made:

R- VEI/E (3)
F= x/R (4)
U=PR2/EI (5)

Also, the physical properties of the pile can be expressed as
a series of dimensionless numbers where

Length of pile below ground, 1 z.Ipg /| B (6)

Depth to fixity, Sgp = D / R (7)

Unsupported length of pile above ground,

JR = Lu il B (8)
The various nondimensional parameters are shown in Figure 3.
Equation 2 was solved by Davisson and Robinson for each
loading condition. The criterion for solution was that the pile
could be assumed to be infinitely long providing 1 .. exceeded
four.

The effect of the various types of loading systems they
investigated resulted in two different stress situations. The
lateral load, Q, and the moment, M, create bending stresses;
the axial load, P, exerts a buckling force.

The lateral load, Q, or the moment, M, will create a

deflection at the free end of the pile equal to y. By solving
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either the equation where

1

o (9)

or where 1

2

ARYEI v /| M (10)

one can obtain the length of an equivalent cantilever pile (10).
This length can then be converted to a dimensionless number

R’ SR and JR can

be varied and Equations 9 and 10 solved for the various

which will, in turn, be equal to SR plus J

lengths. This in turn yields a definite relationship between S

and J,. This relationship is shown in Figure 4a. As J

R R

increases, the relationship between SR and JR approaches a
value of 1. 3, regardless of loading system.
The solution of Equation 2 for buckling loads leads
to
P, = U, (E1/ R? (11)

Utilizing Euler's equation, the buckling load may also be

defined as

P =c7"r2 E I (12)

Ccr 2
(sR + JR)

where C is a constant, dependent on the end conditions of the
equivalent column (5). By combining Equations 11 and 12,

results outlined in Figure 4b are obtained. For values of JR
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greater than about two, SR remains nearly constant and only

dependent on the particular end conditions of the pile. For the

average situation S, will equal 1.5. By combining the results

R

indicated in Figures 4a and 4b, the average value of SR ig 1. 4.
The depth to fixity then becomes

. = 1.4 R (13)

Noncohesive Soils and Normally Loaded Cohesive Soils

The major difference between the analytical approach for
preloaded clay soils and the analytical approach for granular
soils is a result of their different k values. As previously
mentioned, the subgrade modulus for noncohesive soils is
dependent on the depth. Equation 2 can be readily solved for
the case where

k = nygx (14)
where ny; is the constant of subgrade reaction for granular

soils if the following changes in variables are made:

T = s/EI/nH (15)
@ i 4 LT (16)
V= PT2/ EI (17)

Also, the physical properties of the pile can be expressed as a

256765
SOUTH DAKOTA STATE UNIVERSITY LIBRARY
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series of dimensionless numbers where

Length of pile below ground, 2 oadl L+ T (18)

Depth to fixity, Sp = D; { P (19)

Unsupported length of pile above ground,

.IT = Lu ‘A (20)

This series of nondimensional parameters is shown in Figure 5.

The solution of Equation 2 for each loading condition,
assuming that Z ax exceeds four, leads to the relationship

between ST and JT expressed in Figures 6a and 6b.

The various loads, Q, M, and P create types of stress
similar to those in preloaded cohesive soils - the lateral load,
Q, and the moment, M, create bending stresses; the axial
load, P, creates a buckling load.

When the stress results from bending and JT exceeds

four, ST can be assumed to equal approximately 1.75. When

the stress results from buckling and J,, exceeds three, S

T iy

equals 1.8. A comparison of the bending and buckling results

shows that the conservative wvalue of ST is 1.8. Therefore, the

depth to fixity becomes

IJf = '1.8 T (21)

14
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Design Formula for Buckling

Because the cross-sectional area and the radius of
gyration for a specimen are constant, a critical buckling load
may be computed by using Euler's formula for long, slender
columns. This formula states that

2
e e ® it E?A (22)
(Le [ 1)

where Le =L, t Df, r is the radius of gyration, E is the

modulus of elasticity, and A is the cross-sectional area (5).
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EXPERIMENTAL INVESTIGATIONS

Loading tests to determine buckling loads were performed
on thirty-five model piles. The model piles consisted of steel
and copper specimens having tubular, rectangular, or circular
cross-sections. Table 1 lists the various physical properties

of the test specimens.

Subgrade Modulus

An integral part of the analytical considerations for
determining depth to fixity is the k value of the particular soil.
Before predicted critical loads could be determined, it was

necessary to determine the k value.

Experimental Determination of k

The first series of tests were performed in a cohesive
soil. Classification data for the clay used in this investigation
are included in Appendix D. Because the soil was recom-

pacted for each test, it was almost impossible to maintain



Specimen

3/16 inch
steel rod

1/4 inch
steel rod

5/16 inch
steel rod

3/8 inch
steel rod

1/4 inch
steel bar

1/8 inch
steel pipe

1/2 inch

copper pipe

TABLE 1,

Length in
inches

48

48

48

48

48

48

48

Outside
diameter
in inches
0.1875
0.25

0/, 3112i5
0. 376
1.0
(width)

0.402

0.627

Inside
diameter
in inches

0.25

(thickness)

0. 272

0. 567

Iin
inches

0.000061

0.000192

0.000468

0. 000977

0.001302

0.001013

0.002506

PHYSICAL PROPERTIES OF MODEL PILE SPECIMENS

E in

pounds
per inch
30 x 106
30x 10
30 x10
30 x 106
30 x 10

30 x 10

16.5x 10

BRI iinl

pound =

inches

1820.1

5752. 4

14044.0

29322.0

39062, 5

30383. 6

41348. 6

61
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identical density and moisture conditions in consecutive tests.
Therefore, it was necessary to determine k for each test. This
was done using the loading apparatus shown in Figure 7. The
procedures employed were a modification of those suggested by
Terzaghi for field tests (7).

The test apparatus was a solid 7/8-inch square, 42-inch
long steel bar embedded in the soil to a depth equal to L for the
maodel pile being tested.. The bottom' end was restraimed in a
ball-and-socket arrangement and a load, Q, was applied to the
upper end of the bar.

When a lateral load was applied to the top of the bar, a
resisting pressure developed in the soil. Figure 8b shows the
anticipated soil reaction from a lateral load. The deflection of
the top of the bar, y1s was measured for each load, Q. Figure
9 shows a graph of a typical load vs deflection test. Summing
moments about the pivot leads to the equation:

k=3 (H+H) (H+H) Q (23)

H® Y1

where H, Hjp, and Hy are as shown in Figure 8a; and Q is a

load at some deflection, Y-



TEST TO DETERMINE SUBGRADE MODULUS

FIGURE 7.
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Because the soil did not act elastically, the values of
Q / yy varied within each test. This forced the calculation
of a number of values for k. A value of k based on the initial

tangent, k,, was found to have the greatest value, while k

1’
based on a secant through y = 0. 05 inches, k2, was found to
have a smaller value.

Discussion regarding the incorporation of a width ratio,
‘B, has been presented by Terzaghi (7) and also by Davisson
(3). There appears to be little agreement regarding the suit-
ability of using width factors in the various methods used to

find k.

Both kl and k, were modified to include the ratio of the

7
width of the test pile to the width of the bar used to determine

k, B, and the following formulas are the result:

k3 =k, B (24)

k4 = k2 B (25)

Values of k for a typical test are summarized in Table 2.

Experimental Determinations of Ny

The method utilized for determing ny was similar to

the method used for determining k for the cohesive soil. The



TABLE 2.

Specimen ky in ko in
pounds pounds

per per

inch2 inch2

3/8 inch steel rod 147.8 %9. 4
1/2 inch copper pipe 1692 105. 4
1/4 inch steel bar 191. 7 SN 7

25

TYPICAL"VALUES OF k FOR TEIE W IRAN

pounds pounds
per per,
inch2 inch2
63. 4 839
1T8? 75.6
219, 1 e s
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apparatus used was identical. It was easier to maintain
consistent densities because the granular soil was dry and was"
not compacted. Therefore, it was only necessary to conduct
one series of tests to determine nyy. Modification of Equation
23 for granular soils results in

gy = 12 (H + Hy) (H+H2) Q (26)

a4 Y1

The values of nyy are summarized in Table 3. A value of ny
equal to 15.6 pounds per inch3 was used in the theoretical
calculations. This is somewhat higher than the value of

ny = 8 pounds per inch? suggested for a loose sand, but less
than the suggested value of = 24 pounds per inch3 for a
medium dense sand (3). Classification data for the sand used

in this investigation are included in Appendix E.

Loading Tests on the Model Piles

Loading tests were conducted on thirty-five model pile
specimens. The loading device was a specially designed
machine which was capable of exerting an axial load in excess
of 5000 pounds. It consisted ofabox 2 ft x 2 ft x 3 ft and a
loading frame. Figure 10 shows the machine with a test

specimen in place. Figure 11 shows the arrangement of the



TABIGE: 8.

Test number

VALUES OF ny FOR SAND

H in inches nyy in pounds
per inch
12.0 24.6
1526 16. 4
24.13 14.9

27
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FIGURE 11. DEFLECTION GAGE AND PROVING RING
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proving ring which was used to measure loads and the
deflection gage which was used to measure compression of
each test specimen,

Before loading, the modulus of elasticity, E, and the
moment of inertia, I, were determined for each specimen.
Calculations were then made to insure compliance with the
limitations established for Equations 6, 8, 18, and 20.

Table 1 is a summary of the physical properties of the pile
specimens. Table 4 is a summary of the range of nondimen-
sional parameters for the pile specimens.

A load was then applied to each pile at a controlled
rate of strain; and pile loads and deflections were measured
and recorded at uniform intervals. A representative load vs
deflection graph for a pile which failed elastically is shown in
Figure 12. Each test was continued until the failing load had

been reached.



Specimen

3/16 inch
steel rod

1/4 inch
steel rod

5/16 inch
steel rod

3/8 inch
steel rod

1/4 inch
steel bar

1/8 inch
steel pipe

1/2 inch
copper pipe

TABLE 4.

VALUES OF NONDIMENSIONAL PARAMETERS

k

max

11.10

5.30 to
(Sl ]

5.59 to
5.79

5.41 to
6. 60

5.24 toe
e S

= constant

10. 39 to
15.87

6. 46 to
7.89

6.47 to
6.91

5.00 to

6.88 to
(=

max

5.89 to
8.56

6.17 to
6. 33

4,73 to
5. 33

k=on

6. 12 to
8. 79

B:' 0l to
6.17

5. 22 to
5.82

1€
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OBSERVED PERFORMANCE

Cohesive Soil

Predicted critical loads are calculated using some length,
Le’ which is equal to L, plus D;. Because Df is a function of
k, the dependability of the predicted critical load depends on the
selection of an appropriate k wvalue. F:igures 13 through 16 show
experimental critical loads versus predicted critical loads. The
predicted critical load in Figure 13 is based on k;. Figure 14
takes into account the value, kg, Figure 15 shows results using
ks and finally, k4'is used in Figure 16. Of particular interest
is the fact that while the values of k vary by as much as a factor
of 6.2 (average: k; = 3.3 k4), the experimental results
consistently fall within 20% of that predicted by the theory.

It appears that the predicted critical loads using k1 give

results most nearly duplicating the experimental critical loads,

while the greatest deviation results from using the value of k,.
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It should be noted, however, that in nearly all cases,
experimental critical loads exceeded the predicted critical loads.
(i. e., the analytical approach tends to be conservative.)

Figures 17 through 21 represent test data of the critical
experimental loads vs slenderness ratio for the various values
of EI. Values plotted to the right of the theoretical line repre-
sent experimental critical loads which exceeded loads predicted
by solution of Euler's equation.

An analysis of plotted data indicates general agreement
with the theoretical. This is especially true for specimens with
higher E I values. This could be explained by the fact that for
small E I values, any problems inherent in the testing procedure
would tend to contribute a larger percentage of error to the
final buckling load than for similar specimens with large E I

values.

Noncohesive Soil

Figure 22 is a graph comparing experimental critical
loads to predicted critical loads for a test épecimen embedded
in a loose sand. Of particular importance is the fact that in
almost all cases, the predicted critical load exceeded the

experimental critical load. In a number of cases, the deviation
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exceeded 40%. This would suggest that the subgrade modulus
value used was too high.

Figures 23 through 25 represent data comparing critical
experimental loads with slenderness ratios for tests run in the
granular soil. The plotted data appear to follow the theoretical
predictions in a manner similar to the results attained from
cohesive soils. However, in a majority of tests, the predicted

critical load exceeded the experimental critical load.
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CONCLUSIONS

Cohesive Soil

1. Experimental critical loads are, in most cases,
greater than the loads predicted using Davisson and Robinson's
analytical approach.

2. There is a limited amount of latitude in selecting
a value of k.

3. The incorporation of a width ratio does not
appreciably affect the agreement between predicted and exper-
imental results.

4. TUsing the slenderness ratio of the equivalent column
(Le /| r) in conjunction with Euler's buckling equation appears
to be a valid means of predicting approximate buckling loads.

5. The testing procedure used does not appear to be
as applicable to smaller specimens as it is to larger

specimens.
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Noncohesive Soil

1. Experimental critical loads are, in most cases,
less than the loads predicted using Davisson and Robinson's
analytical method.

2. Using the slenderness ratio of the equivalent column
(Le / r) in conjunction with Euler's buckling equation appears
to be a valid means of predicting approximate buckling loads.

3. The testing procedure used does not appear to be

as applicable to smaller specimens as it is to larger specimens.



RECOMMENDATIONS FOR FURTHER STUDY

1. Model tests should be performed on piles partially
embedded in silty soil.

2. An attempt should be made to compare test results
from model tests in preloaded clays to model tests in normally
loaded clays.

3. The experiment should be extended to include model
piles having slenderness ratios ranging from 105 to 300.

4. Tests should be performed on piles approaching the
size of typical prototypes.

5. The analytical approach should be extended to include
piles of variable cross-section (tapered and step tapered).

6. Model tests should be performed on piles of
variable cross-section (tapered and step tapered).

7. Strain gages should be utilized to determine stress
patterns and points of flexure in that portion of the pile which

is embedded in soil.

48



8. Model tests should be performed on piles with

various types of upper end conditions.

49



50

LITERATURE CITED

Davisson, M.T. and Robinson, K. E., ''Bending and
Buckling of Partially Embedded Piles, Proceedings,
6th International Conference of Soil Mechanics and
Foundation Engineering, Montreal, 1965, Vol. 2,
pp. 243-246.

Klohn, E. J. and Hughes, G. T., ''Buckling of Long
Unsupported Timber Piles,' Journal of the Soil
Mechanics and Foundation Division, ASCE, Vol. 90,
No. SM6, November, 1964, pp. 107-123.

Davisson, M. T., discussion of reference 2, Journal of
the Soil Mechanics and Foundation Division, ASCE,
Vol. 91, No. SN4; July, 1965, pp. 234-225.

Lee, Kenneth L., '"Buckling of Partially Embedded Piles
in Sand, " Journal of the Soil Mechanics and Foun-
dation Division, ASCE, Vol. 94, No. SM1,
January, 1968; "pp.. 2%5=270=

Timoshenko, S. P. and Gere, J.M., Theory of Elastic
Stability, McGraw-Hill Book Company, Inc.,
New York, 1936, pp. 204-238.

Rocha, M., '"The Possibility of Solving Soil Mechanics
Problems by the Use of Models,' Proceedings,
4th International Conference on Soil Mechanics
and Foundation Engineering, London, 1957, Vol. 1,
pp. 183-188.

Terzaghi, K., ""Evaluation of Coefficients of Subgrade
Reaction," Geotechnique, Vol. 5, November, 1955,
pp. 297-326.




10.

51

Davisson, M. T., "Estimating Buckling Loads For Piles, '
Proceedings, 2nd Pan American Conference on Soil
Mechanics and Foundation Engineering, Sao Paulo,
Brazil, July) k680 VeltilL A ped 351 ~-371.

Hetenyi, M., Beams on Elastic Foundations, University
of Michigan Press, Ann Arbor, 1946.

Arges, K. P. and Palmer, A. E., Mechanics of Materials,
McGraw-Hill Book Company, Inc., New York,
1963, pp. 3D8




APPENDIX A, NOTATION

The following symbols are used in this paper:

A

B

cross sectional area

ratio of pile width to width
of bar used to determine k

constant dependent on end
conditions of a pile

depth to fixity

modulus of elasticity

pile stiffness

moment of inertia
dimensionless unsupported
length of pile above ground
for pile in clay
dimensionless unsupported
length of pile above ground
for pile in sand

modulus of subgrade reaction

embedded length of pile

length of equivalent fixed base
column

LE

dimensionless

dimensionless

dimensionless

dimensionless
P
L

L
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cr

BXIR

(I

(G

PRERD

unrestrained length of pile

length of equivalent cantilever
pile

dimensionless length of pile
below ground for clay

moment load

constant of horizontal subgrade
reaction for granular soils

axial load
critical buckling load

experimental critical buckling
load

predicted critical buckling load

lateral force per unit length
of pile

lateral load

nondimensionalizing parameter
for clay

radius of gyration

dimensionless depth to fixity
for clay

dimensionless depth to (fixity
for sand

nondimensionalizing parameter
for sand

L

dimensionless

FL

FL~

F

FL

L

dimensionless

dimensionless

L
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cr

max

dimensionless axial load for
clay

dimensionless critical buckling
load for clay

dimensionless axial load for
sand

depth coordinate
lateral deflection

dimensionless length of pile
below ground for sand

dimensionless

dimensionless

dimensionless

L

L °

dimensionless

o4



Consistency

Medium

Stiff

Very stiff

Hard

APPENDIX B.

TYPICAL VALUES OF k FOR PRELOADED

Unconfined
compressive
strength in tons
per foot

0,2 = 4

Range of k in
pounds per inch

100 - 600
463 - 926
926 - 1852
1852

CLAYS

Probable value

of k in pounds

per inch

110

694

1390

2780

Gs
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APPENDIX C. TYPICAL VALUES OF Ny

Soil Type ny in pounds per inch3
Dry Submerged
Sand:
Loose 9.4 HarsS
Medium 28 19
Dense S 45
Very loose, under
repeated loading 1.5
Silt:
Very soft, organic 0.4 -1.0
Clay:
Very soft
static loads 2

repeated loads 1



APPENDIX D, COHESIVE SOIL CLASSIFICATION DATA

Classification based on Unified system: Silty CLAY, CL

Percent passing 200 sieve 60. 4%
Liquid Limit 26. 3%
Plastic Limit | 18. 7%
Plastic Index 7. 6%

Proctor Density: 126. 6 pounds per foot3
Optimum Moisture 10. 5%
Average density during tests: 115.3 pounds per foo‘c3

Average moisture content during tests 15.2%

L



APPENDIX E. NONCOHESIVE SOIL CLASSIFICATION DATA

Classification based on Unified system: SAND, SP

Percent passing 4 sieve 100. 0%
Percent passing 200 sieve 0.5%
DlO 0. 20mm
Dgo 0. 67mm
Cy 3:35

Density at maximum void ratio: 101.3 pounds per foot3

Density at minimum void ratio: 112.0 pounds per foot3

Relative density during testing 0.0%
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