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Seismic velocity estimation: A deep recurrent neural-network approach

Gabriel Fabien-Ouellet1 and Rahul Sarkar2

ABSTRACT

Applying deep learning to 3D velocity model building re-
mains a challenge due to the sheer volume of data required
to train large-scale artificial neural networks. Moreover, little
is known about what types of network architectures are appro-
priate for such a complex task. To ease the development of a
deep-learning approach for seismic velocity estimation, we have
evaluated a simplified surrogate problem — the estimation of
the root-mean-square (rms) and interval velocity in time from
common-midpoint gathers — for 1D layered velocity models.
We have developed a deep neural network, whose design was
inspired by the information flow found in semblance analysis.
The network replaces semblance estimation by a representation
built with a deep convolutional neural network, and then it per-
forms velocity estimation automatically with recurrent neural

networks. The network is trained with synthetic data to identify
primary reflection events, rms velocity, and interval velocity.
For a synthetic test set containing 1D layered models, we find
that rms and interval velocity are accurately estimated, with an
error of less than 44 m∕s for the rms velocity. We apply the
neural network to a real 2D marine survey and obtain accurate
rms velocity predictions leading to a coherent stacked section, in
addition to an estimation of the interval velocity that reproduces
the main structures in the stacked section. Our results provide
strong evidence that neural networks can estimate velocity from
seismic data and that good performance can be achieved on real
data even if the training is based on synthetics. The findings for
the 1D problem suggest that deep convolutional encoders and
recurrent neural networks are promising components of more
complex networks that can perform 2D and 3D velocity model
building.

INTRODUCTION

In recent years, deep-learning algorithms have become increas-
ingly better at solving many real-world problems to the extent of
being competitive and in some cases exceeding human-level perfor-
mance. The application of deep learning to seismic imaging problems
is getting more and more attention. So far, most work has focused on
seismic interpretation or event detection. For example, Di et al. (2017)
and Di and AlRegib (2017) use cluster analysis and classification
techniques for salt-boundary detection, Alaudah et al. (2017) use ma-
chine-learning techniques for seismic structure labeling, and Lu et al.
(2018) use a generative adversarial network to perform fault detec-
tion. A notable application to full-waveform inversion is by Lewis
et al. (2017), who propose to use deep learning as a way to interpret
migrated images and build prior velocity models for full-waveform
inversion. The literature on the application of deep learning for seis-
mic interpretation is already vast and expanding at a very fast pace.

Although the application of machine learning to seismic inver-
sion is not new (Roth and Tarantola, 1994; Langer et al., 1996;
Baronian et al., 2009), there exist very few studies on automating
seismic inversion and processing with deep learning. These early
studies were promising, but the use of shallow fully connected ar-
tificial neural networks (NNs) limited the number of parameters that
could be estimated and did not scale to the size of real seismic data.
Deep learning allows the application of NNs to much more complex
tasks, with very large input and output spaces. Araya-Polo et al.
(2018) show the potential of deep learning for seismic tomography
— they directly predict gridded velocity models with deep NNs
using semblance as input. Data-driven seismic inversion and imag-
ing based on deep learning thus now seems a plausible scenario.
Building a general and efficient deep NN for robust seismic

inversion is still challenging. One difficulty is the large quantity
of data required for inversion, which leads to long training times,
making the process of testing different architectures costly. In this
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paper, we propose a benchmark problem that is simpler to solve,
bearing enough resemblance to seismic inversion — so its study
should bring relevant insights. The problem in question is the
estimation of the root-mean-square (rms) and interval velocities
in time for flat-layered velocity models. This problem is typically
solved by semblance analysis, which is routinely used to obtain
coherent stacked sections. In contrast, we aim to estimate the rms
velocity directly from the seismic gathers, without computing sem-
blance. Indeed, semblance is a lossy, non-invertible transform that
removes the amplitude and phase information relevant for seismic
inversion. This is why modern seismic inversion procedures, such
as full waveform inversion (FWI), rely instead on the full recorded
waveform, and why the full waveform should be the input to a
NN-based approach.
In this study, we address two questions by studying the 1D

velocity estimation problem. First, we want to know what kind
of network architecture is suitable to estimate velocities directly
from the seismic waveforms. Second, we want to determine if a
NN can be trained on synthetic data and still perform well with real
data. We will first discuss the problem statement and its link to sem-
blance analysis. Then, we will present our network architecture and
our training approach. Finally, we will evaluate the performance of
the NN on different test data sets: (1) synthetics computed from 1D
velocity models, (2) synthetics computed from gently dipping 2D
velocity models, and (3) a real marine seismic 2D line. For specific
details about the implementation or to reproduce the results, see our
GitHub repository (Fabien-Ouellet and Sarkar, 2019).

METHODS

Problem statement

The problem we propose to solve is the problem of estimating the
rms velocity in time when the earth is represented as a series of flat
constant-velocity layers. This is the basic assumption behind the tra-
ditional velocity analysis based on semblance. In a sense, we can for-
mulate our problem as automating semblance analysis with a NN.
For semblance analysis, we make the assumption of flat layers,

which imply that a reflection will appear to follow a hyperbola on a
common-midpoint (CMP) gather at short offsets. The hyperbola is
given by the normal moveout (NMO) equation:

t2 ¼ t20 þ
x2

v2rms

; (1)

where t is the two-way traveltime at offset x, t0 ¼ 2z∕vrms is the zero-
offset two-way traveltime, z is the depth to the reflector, and vrms is
the rms velocity defined by

vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 v

2
iΔtiP

N
i¼1 Δti

s
; (2)

where vi is the interval velocity and Δti is the one-way traveltime in
the ith layer. The NMO correction consists of removing the depend-
ency of the reflection traveltimes on offset, given by

dNMOðt; xÞ ¼ d

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2∕v2rms

q
; x

�
; (3)

where d is the original CMP gather and dNMO is the NMO-corrected
CMP gather. After NMO correction with the correct vrms, reflection
events should ideally form a straight line. The right velocity can thus
be found by searching for the velocity that aligns an event after NMO
correction. This alignment can be measured by semblance defined as

St ¼
Pi¼tþl

i¼t−l

�Pj¼Nx
j¼1 dNMO

ij

�
2

Pi¼tþl
i¼t−l

Pj¼Nx
j¼1 ðdNMO

ij Þ2 ; (4)

for Nx traces, and a window length l, where dNMO
ij now refers to the

discretely sampled version of dNMOðt; xÞ.
Semblance-based processing builds the rms velocity profile by

computing the semblance of a CMP gather on a range of test veloc-
ities. Viewing a CMP gather dðt; xÞ as a tensor of size Nt × Nx × 1,
with Nt time samples and Nx uniformly spaced traces, semblance
analysis is a tensor transformation comprising of the following steps:

1) Representation building: Compute the NMO-corrected gather
(equation 3) for each of the Nv test velocities, resulting in a
tensor of size Nt × Nx × Nv.

2) Data reduction: Compute the semblance of the NMO-corrected
gather (equation 4) for each test velocity and time sample, re-
sulting in a tensor of size Nt × 1 × Nv.

3) Velocity decoding: Build the rms velocity profile from the sem-
blance panel by picking the maximum at each reflection event,
resulting in a tensor of size Nt × 1 × 1.

Two by-products also result from the semblance-analysis workflow
— the identification of primary reflections and the possibility of
estimating the interval velocity from the rms velocity. We thus for-
mulate the following problem. Given as input a CMP gather, output:

1) the arrival time of the primary reflections
2) the rms velocity profile in time
3) the interval velocity profile in time.

Neural-network-based analysis

To perform this task, we need to design the architecture of our NN.
To guide this design, we tried to incorporate the important physical
intuitions that are contained in the traditional semblance-analysis
process. In what follows, we will discuss the architecture of the NN,
explaining the links with semblance analysis along the way. A sche-
matic representation of the proposed NN can be found in Figure 1.

Step 1: Representation building

The input of semblance analysis is a CMP gather, a tensor of size
Nt × Nx × 1, which will also be the input to our NN. In semblance-
based velocity analysis, the semblance is used as the feature on which
the velocity is chosen. On the other hand, NNs can build powerful
representations of data and identify features commonly disregarded
by the semblance. As deep convolutional neural networks (CNNs)
have been found to be particularly efficient for automatic feature
detection, for example in image analysis, we decided to build a
representation of an input CMP gather through several layers of
CNNs with rectified linear unit (RELU) activation functions. Math-
ematically, we can express a CNN layer as
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ytxj ¼ max

�
0;
XCi

i¼1

XLt

p¼1

XLx

q¼1

Wpqijxtþp;xþq;i þ bj

�
; (5)

where x is the layer input, a tensor of sizeNt × Nx × Ci, y is the layer
output, a tensor of sizeNt × Nx × Co,W is a weight matrix (or filter)
of size Lt × Lx × Ci × Co, and b is a tensor of size Co. The RELU
activation function takes the form of the max function, zeroing the
convolution output if it is smaller than zero. The weight and the bias
are the parameters that are optimized during training.
The encoder part of the NN found in Figure 1 is made up of four

consecutive CNN layers, with filter shapes 15 × 1 × 1 × 16,
1 × 9 × 16 × 16, 15 × 1 × 16 × 32, and 1 × 9 × 32 × 32. The first
CNNs gradually increase the number of feature maps (or channels)
from 1 to 32. The encoder is completed by recursively applying
seven times the same CNN filter of shape 15 × 3 × 32 × 32. This
last step aims to increase the receptive field in time of the NN, as
reflection hyperbolas can spread over a vast number of time samples
across traces. The output from the encoder is a tensor of dimensions
Nt × Nx × 32 and represents a set of automatically learned features
from the data. Thus, the encoder is analogous to step 1 of the sem-
blance-analysis workflow — 32 feature maps are created by the NN,
whereas multiple NMO-corrected gathers (one per trial velocity) are
created during semblance analysis.

Step 2: Data reduction

Step 2 of semblance analysis involves measuring the semblance
of each NMO-corrected gather, at each time sample. In other words,
we reduce the data size from Nt × Nx × Nv to Nt × 1 × Nv. We
mimic this data-reduction procedure in our NN with a recursive
convolutional layer (RCNN), which has been reported to be quite
successful for sequential data analysis (Socher et al., 2010; Kim et al.,
2016). The RCNN is formed by applying recursively the same CNN
filter of shape 1 × 2 × 32 × 32, with a stride of 2, that is, skipping
every other element in the output. As a consequence, the offset di-
mension is reduced twofold after each convolution pass. The CNN is
applied until the offset dimension is reduced to 1, giving a final tensor
with a shape of Nt × 1 × 32. Note that this data-reduction strategy
has the advantage of being applicable to a different number of offsets,
in contrast to a matrix multiplication of fixed input and output sizes,
as performed by fully connected layers.

Step 3: Velocity decoding

The final step of semblance analysis is picking
the maxima to build the velocity profile in time;
that is, we want to reduce the Nt × 1 × Nv tensor
to Nt × 1 × 1. This decoding phase implies that
the interpreter has to choose the maxima corre-
sponding to primary reflections and that the rms
velocity profile should be realistic, so that the cor-
responding interval velocity profiles obey reason-
able bounds (e.g., it should be positive). In the
same fashion, the NN decodes the input from
the RCNN into three different outputs — primary
reflection detection, rms velocity estimation, and
interval velocity estimation.
To detect primary reflections, we define a binary

classification problem, with classes defined as

Rt ¼
�
1 if ti0 − l < t < ti0 þ l; for i ∈ P;
0 otherwise;

(6)

where P is the set of primary reflections and l is the window width. To
perform the classification, we apply a final CNN layer with a shape of
1 × 1 × 32 × 2 to the output of the RCNN. This results in a tensor of
dimensions Nt × 1 × 2. The last dimension contains the classification
scores for each classRpred. Jointly building the capacity to differentiate
primary reflections from multiples should make the NN robust to the
presence of multiples, for the velocity-estimation process.
For predicting the rms and interval velocity profiles in time, we use

recurrent NNs, or more precisely long short time memory (LSTM)
units (Hochreiter and Schmidhuber, 1997; Gers et al., 2000). Recur-
rent NNs are commonly used for prediction tasks based on sequential
data where the prediction for the current input depends on the history
of inputs fed to the NN (Elman, 1990, 1991; Servan-Schreiber et al.,
1991). Such a scenario is encountered for example in speech recog-
nition and language translation (Graves and Jaitly, 2014), sequence
labeling (Graves et al., 2006), and certain computer vision tasks.
The capacity of recurrent NNs to build coherent outputs from causal
sequences is the main property that motivates us to apply them to the
estimation of the rms velocity. Indeed, the rms velocity at a particular
time depends on the rms velocities at earlier times, as shown by equa-
tion 2. The output of the RCNN layer is fed to an LSTM cell, as a
sequence in time of vectors with 32 elements, xt. The LSTM cell
follows the formulation of Sak et al. (2014)

it ¼ σðWixxt þWimmt−1 þWicct−1 þ biÞ; (7)

f t ¼ σðWfxxt þWfmmt−1 þWfcct−1 þ bfÞ; (8)

ct ¼ f t⊙ct−1 þ it⊙hðWcxxt þWcmmt−1 þ bcÞ; (9)

ot ¼ σðWoxxt þWommt−1 þWocct þ boÞ; (10)

mt ¼ ot⊙hðctÞ: (11)

Figure 1. A schematic representation of the deep NN architecture used for velocity
prediction. The architecture of the three main components of NN (the CNN encoder,
the recursive CNN, and the LSTM decoder) are described in the text.
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Here, theW terms are the weight matrices,mt is the state or output of
the cell at time t, and it, f t, ot, ct, and mt are, respectively, the input
gate, forget gate, output gate, cell activation vectors, and cell output.
All of these vectors have the same size, chosen to be 200 in this work.
The operator ⊙ stands for the element-wise vector product, σ is the
logistic sigmoid function, and h is the hyperbolic tangent function. As
can be seen, the output at time t of the cellmt depends on the previous
output mt−1 as well as the input xt, which allows to model complex,
nonlinear behaviors. Also, the architecture of recurrent NNs allows
inputs of different lengths, whichmeans that CMPs of different acquis-
ition time can be processed without the need to retrain the network.
The output of the LSTM unit is finally decoded using a matrix of

trainable parameters of dimensions 200 × 1, resulting in a tensor of
dimensions Nt × 1 × 1. Two sequential LSTM cells are used to ob-
tain the predicted rms velocities vrms

pred and interval velocities vintpred.

Training the network

The training of a deep NN requires a large data set containing thou-
sands to millions of examples in which each input is labeled with the
appropriate output. The challenge for seismic processing is to obtain
sufficient seismic data with accurate labeling, that is, CMP gathers for
which we know the accurate velocity model. Because no such data
set currently exists, we trained the NN on synthetic data, created to be
similar to the real marine 2D survey processed later on. Synthetics
allow us to generate a large quantity of accurately labeled data and
allow a precise appraisal of the performance of the NN. Furthermore,
as will be shown in the “Results” sections, the NN still performs well
on real data despite being trained on synthetics.

Generation of labeled data

The synthetic data are generated by a finite-difference code (Fa-
bien-Ouellet et al., 2017). We generate random 2D laterally homo-
geneous isotropic velocity models, with velocities between 1300 and
4000 m∕s. We use absorbing boundary conditions on all sides of the
model, preventing the occurrence of surface multiples in the resulting
gathers. This is consistent with the industry practice of removing sur-
face multiples before performing any velocity analysis. The data are
modeled using first- and second-derivative Gaussian wavelets, ran-
domly phase rotated with a peak frequency fmax chosen randomly
between 21 and 31 Hz. We use an end-on spread acquisition geom-
etry, with a minimum offset of 470 m and a maximum offset of
4075 m. The maximum time is chosen as 8 s. Time sampling ðΔtÞ
and trace spacing ðΔxÞ are chosen to reproduce the acquisition
parameters of the real seismic line presented later on. The dimensions
of the resulting CMP gathers areNt ¼ 2000 andNx ¼ 72. The labels
for the true rms velocities vtrue are generated using equation 2, and the
labels for primary reflection detection Rtrue are generated using equa-
tion 6 and l ¼ ð1∕4fmaxÞ∕Δt, on the basis of the randomly generated
layered models.
The training set contains a total of 40,000 random models. To

balance the complexity of those models, the training set is divided
into four subsets. Each subset differs by the minimum number of
layers contained in a model, chosen to be 5, 10, 30, and 50.

Loss function engineering

The total loss for learning the rms velocity contains several parts,
needed to regularize the problem. For the classification task, we

used the softmax cross-entropy loss function as a measure of the
classification error

L0 ¼ −
XNt

n¼1

X2
j¼1

pnj log qnj; (12)

where p represents the true class labels Rtrue and q is the softmax nor-
malized probability distribution of the predicted class labels Rpred. De-
noted by k · k22 the sum of squares for all time samples, the second
component of the loss function is given by the standard l2 error

Lrmsjint
1 ¼ kvrmsjintpred − vrmsjinttrue k22; (13)

where vrmsjint
pred and vrmsjint

true refer either to the rms or the interval veloc-
ities. To favor smooth velocity profiles, a contribution penalizing the
velocity time-derivative misfits is also included with another l2 error
term

Lrmsjint
2 ¼ k∂tvrmsjintpred − ∂tv

rmsjint
true k22; (14)

where ∂t denotes the time-derivative operator. The total loss function
L is then given as a weighted sum of all these individual losses:

L ¼ α0L0 þ α1Lrms
1 þ α2Lrms

2 þ α3Lint
1 þ α4Lint

2 ; (15)

where α0, α1, α2, α3, and α4 are the scaling factors.

Training strategy

We adopted a hierarchical strategy divided into three phases with
different choices of α0; α1; α2; α3; α4 — (1) reflection identification
(α0 ¼ 0.95, α1 ¼ 0.05, α2 ¼ 0, α3 ¼ 0, and α4 ¼ 0), (2) rms veloc-
ity training (α0 ¼ 0.1, α1 ¼ 0.85, α2 ¼ 0.05, α3 ¼ 0, and α4 ¼ 0),
and (3) interval and rms velocity training (α0 ¼ 0.1, α1 ¼ 0.45,
α2 ¼ 0.05, α3 ¼ 0.35, and α4 ¼ 0.05). We performed 1000 itera-
tions for the first stage and 10,000 iterations for the later stages,
using the Adam optimizer (Kingma and Ba, 2014), with a batch
size of 40 CMPs. We developed this training strategy from the heu-
ristic that the training should start from simple problems and gradu-
ally progress to more complex problems. The choice of the free
parameters αið0 ≤ i ≤ 4Þ is performed by trial and error, until a rea-
sonable convergence rate is achieved. The hierarchical strategy
proved to be essential in achieving low prediction errors, in a rea-
sonable amount of training time.
We also used ensemble learning (Opitz and Maclin, 1999), which

has been shown to reduce the generalization error, leading to more
robust predictions. We trained 16 different NNs, which differ by the
random weight initialization and the order in which they see the
training examples. The predictions are given by the mean of the
ensemble. The standard error of the predictions is also computed,
which provide a measure of the variability and stability of the esti-
mated velocities.

RESULTS

1D synthetic data

For this first test, we built a test data set comprising of 1600 1D
layered models. Note that the models in the test set were not seen by
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the NN during training. Because the network has been trained on a
similar data distribution, these results represent an upper limit on the
performance of the NN.
Figure 2a shows the loss as a function of the epoch during train-

ing, which goes up to 20. In other words, an example from the train-
ing set was seen 20 times on average during iterations. The three
steps of the scheduling appear in blue, orange, and green, for phase
0, 1, and 2, respectively. As the cost function is different for each
phase, their magnitude cannot be readily compared. Note, however,
that in the three cases, the training error decreases rather slowly after
the first few epochs. Figure 2b shows the prediction error for the rms
velocity. As can be seen, the prediction error decreases for all
epochs, which means that we did not overfit the training set. Finally,
Figure 2c shows the prediction error for the interval velocity. The
rms error does not decrease until phase 2 because no training on
interval velocity occurs for phases 0 and 1.
The 10th, 50th, and 90th percentiles of the predicted rms velocity

rms error are shown in Figure 3d–3f, respectively. Overall, the rms
error for the rms velocity predictions is 44 m∕s. As can be visually
seen, predictions are quite accurate and follows the semblance trend.
The predicted velocities vary smoothly in time and nicely follow the
trend of the true rms velocity profiles. The standard deviation of the
ensemble is 36 m∕s, below the rms error, which means that the es-
timates provided by the ensemble are stable.

The interval velocity, although noisier than the rms velocity, is still
quite well-predicted with an rms error of 323 m∕s. The interval veloc-
ity profiles contain sharp interfaces, and the NN is able to predict
them even for very large velocity contrasts. The standard deviation
of the interval velocity predicted by the ensemble is 91 m∕s, well
below the rms error. Hence, the standard deviation of the ensemble

Figure 2. (a) Loss function during training as several epochs, (b) the
rms error on the test set for the rms velocity, and (c) the rms error on
the test set for the interval velocity.

Figure 3. Examples of the prediction of the NN for three different
input CMP gathers. Gathers are shown in (a-c), corresponding, re-
spectively, to the 10th, 50th, and 90th percentiles of the predicted
rms velocity rms error. The corresponding true and predicted rms
velocities (vrmstrue and vrmspred), and the true and predicted interval veloc-
ities (vinttrue and vintpred) are shown overlain on the semblance panels in
(d-f), respectively, along with their standard deviation, in light green
and light blue, respectively. Models are clipped at the time of the last
reflection.
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cannot be viewed as an uncertainty of the predictions, although it
tends to be larger in areas of larger prediction errors.
Finally, the CMP gathers corresponding to the velocity profiles in

Figure 3d–3f are shown in Figure 3a–3c, respectively. The rate of
detection of primary reflection events is very good — 7.4% of true
positives, 89.2% of true negatives, 2.4% of false negatives, and
1.0% of false positives. As Figure 3 shows, the NN does a pretty
good job of detecting primary reflections and ignoring multiples.
Although far from perfect, these results show that some robustness
to multiples can be learned by deep NNs.
We interpret the good performance of our NN as evidence that it

has built a representation of the CMP gather that is linked to the rms
and interval velocities for a 1D flat-layered earth medium (equa-
tion 2). It can be argued that most of this knowledge is specific to
1D velocity models, with synthetic data. However, 1D analysis is the
basis of more complete processing, and our results can be generalized
to more complex models, as shown by the next set of results.

2D synthetic data

To show the potential for generalization of our approach, we
tested the capacity of the trained NN to reconstruct 2D velocity
models. We generated a testing set of 100 2D models containing
slightly dipping layers (maximum dip of 6°) and random velocity
perturbations (maximum of 8% of the layer velocity). We used the
same acquisition configuration as for the 1D training.
The 2D interval-velocity models predicted by the NN are shown in

Figure 4. The models shown correspond to the 10th, 50th, and 90th
percentiles of the predicted interval velocity rms error. As can be
seen, the 2D structure is well-recovered, albeit with less accuracy
than for 1D flat-layered earth models. The total rms error for the in-
terval velocity increased from 322 to 424 m∕s, and the rms velocity
rms error increased from 42 to 44 m∕s. Still, the NN manages to
generalize to simple 2D models. Although our simple NN is not ap-
propriate for more complex cases, the representation built by our
CNN encoder could be used as pretrained layers for deeper NNs.

Application to real data

As a final test, we present the application of the NN to a marine
data set. The USGS has made public 21 seismic lines acquired in the
1970s along the U.S. Atlantic Continental Margin (Hutchinson et al.,
1997). The shot gathers as well as the stacked section are available for
download through the USGS website (USGS, 1978).
We applied our NN on the deepest section of line 32. The prepro-

cessing of the CMP gathers is kept minimal. We first interpolated the
traces to a constant interval of 50 m and applied a bandpass Butter-
worth filter between 10 and 35 Hz. Because the acquisition param-
eters of the training set and the real data set are the same, the NN can
readily be applied to the real seismic line without further training.
Figure 5 shows CMPs 250, 1000, and 1750, along with the NN

average outputs and standard deviation. No sonic well-log data exist
for this seismic line. Assessment of the quality of the results will
thus remain qualitative. Reflection identification is noisier for the
real data set than for the synthetic case, due to overlapping multiples
at early times. Because this output is only an accessory to train the
NN for velocity estimation, it is a minor setback. On the other hand,
the estimated rms velocity in all cases follows the trend shown by
the semblance maximas. It does not follow all maximas, skipping
what may be interbed multiples. The results are, however, clearly
affected by free surface multiples, which causes the semblance max-
imas to decrease rapidly to an rms velocity close to the water veloc-
ity of 1500 m∕s. Free surface multiples can be seen from 9.5 s in
Figure 5d, 8.3 s in Figure 5e, and 6 s in Figure 5f. Although the
predicted rms velocity does not fall back to 1500 m∕s, it decreases
substantially. The same behavior can be seen for the interval veloc-
ity. This is expected because no free surface multiples are present in
the training set, so the NN could not learn how to process those
arrivals. One way to address this issue is to apply standard surface
multiple removal techniques to process the CMPs before feeding
them to the NN. Alternatively, a NN trained to be robust to free
surface multiples could be designed.
The light-blue and light-green lines in Figure 5 show the standard

deviation of the predicted rms and interval velocities, respectively. As
can be seen, the standard deviation remains small
when clear reflections are visible and becomes
large when free surface multiples are present.
Figure 6 shows the predicted rms velocity, the

predicted interval velocity, and the stacked section
using the predicted velocities, for CMPs 1–2080.
The stacked section is obtained by processing
each CMP individually with the following se-
quence: (1) application of the NMO correction
based on the estimated rms velocity, (2) summa-
tion of all the traces of the CMP, (3) application of
gain proportional to t2, and (4) rms trace normali-
zation. The processing workflow is kept as simple
as possible to better appraise the output of the NN.
Note first that the rms velocity is consistent among
all CMPs. The velocity starts increasing from
the arrival time of the seafloor reflection, which
decreases from CMP 0 to CMP 2080. It then in-
creases up to the arrival time of the seafloor sur-
face multiple, which causes a rapid decrease in the
estimated velocity. For interval and rms velocities,
the range of valid estimation is thus between times
0 and the time of the first seafloor multiple. The

Figure 4. Generalization of 2D-layered models of the 1D-trained NN. The right panels
in (a-c) correspond to the predicted interval velocity models for 10th, 50th, and 90th
percentiles of predicted interval velocity rms error on the 2D data set. The corresponding
true models are shown in the left panel of each figure. Models are clipped at the time of
the last reflection.
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estimated rms velocity produced a coherent stacked section that is
comparable to what Hutchinson et al. (1997) obtained, reproduced
in Figure 6d. This shows that the NN is readily applicable for process-
ing real surveys, even with the rudimentary training set that is used.
Comparing the stacked section and the interval velocity, most

sharp velocity variations are linked to coherent reflectors. This is
especially true for the deeper reflections below
8 s, between CMP 0 and 1250. The shallower
section shows more heterogeneous velocity var-
iations, which is linked to less coherent reflec-
tions and strong diffraction hyperbolas. As the
1D velocity assumption is less applicable in the
shallow section, the estimated velocities may
be less reliable than for the deeper section. The
velocity range between 2000 and 3000 m∕s is
coherent with the geology of the Blake Plateau
and Outer Ridge. In particular, the increase from
2200 m∕s to more than 2800 m∕s is linked to
reflectors identified as the top of the Cretaceous
by Hutchinson et al. (1997).

DISCUSSION

Our findings indicate that a deep NN has the
potential to estimate the rms and interval veloc-
ities accurately for complex 1D-layered and gen-
tly dipping 2D-layered models directly from the
seismic waveform. Recent studies point to the
same direction. Araya-Polo et al. (2018) show
that velocity in depth could be estimated with a
combination of a deep convolutional network
with fully connected layers. However, their esti-
mation is based on semblance, which limits the
potential of the NN to use the phase and ampli-
tude information of the seismic waveform. Yang
and Ma (2019) recover 2D velocity models with
a deep convolutional NN model directly from the
seismic waveform, but their training and testing
models remain quite simple, with large layer thick-
nesses compared with the wavelength. Our results
show the validity of the approach for complex 1D
models with thin layers (the minimum layer thick-
ness was 1/4 the maximumwavelength). The level
of complexity of the training models required to
train a NN to obtain good performance on real
data remains, however, an open question.
Another major finding is that NNs can be

trained purely with synthetic seismic data and still
perform adequately well with real data. For a data-
driven approach such as deep learning, accessibil-
ity to an extensive labeled database is paramount.
This is problematic for seismic processing in two
ways: data are often proprietary and are hence
difficult to share among researchers, and, most im-
portantly, obtaining correctly labeled data is diffi-
cult or even impossible as the true velocity models
are never known exactly. Synthetics solve both of
these issues because they can be generated rela-
tively cheaply and allow us to fix all parameters
needed to generate accurate labeling of the data

set. The drawback is that some important features found in real data,
such as noise, may be missing from synthetics, preventing the net-
work from performing well on real data. This happened in this work
in the case of free surface multiples — because they were absent
from the synthetic training set, their presence greatly affected the
estimated velocity for the real data set. Surface multiples can be

Figure 5. The NN predictions for three CMPs from seismic line 32. The CMPs 150,
1000, and 1750 are shown in (a-c), their semblance panels are shown in (d-f), and the
NMO-corrected gathers are shown in (g-i), respectively. Note that the pale-blue and
pale-green lines are the bounds given by the standard deviation of the predictions of
an ensemble of 16 NNs.
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modeled quite easily, so this is not a real shortcoming. However, it
raises the question of the accuracy of the synthetic data required for
training a network that generalizes well to real data. This issue should
be the focus of further research.
For the moment, it is too early to say whether the NN we propose

has real applicability for seismic processing. The real data results
show that adequate estimation of the rms velocity can be obtained
with the NN. However, the NN was neither designed to maximize
the stacking power nor obtain a coherent stacked section. More rig-
orous testing on multiple surveys and comparison with expert seis-
mic processors would be required to assess how accurate the NN is,

compared with human experts. The main advantage of the NN is
that rms estimation is automatic and cheap to compute — the
2000 CMPs of seismic line 32 took less than 5 min to complete
on a single Nvidia Quadro 6000 GPU. The cost of training the net-
work is much higher (approximately 24 h on a single GPU). Ideally,
training should be performed once and lead to a network that can
perform well with different survey acquisitions. This would render
the training time irrelevant. In fact, our NN can be used on slightly
different acquisition parameters — with different source signatures
(as shown in our training set and test set) and different number of
traces or sampling intervals (tested, but not shown herein). How-

ever, more work is required to develop a truly
general NN, able to handle arbitrary geometries,
sensors, or environments (land or marine).
The main aim of this work was to propose a

benchmark problem, simple enough so that dif-
ferent NN designs can be tested at a small cost,
but complex enough so that insights learned from
it can be applicable to more realistic applications.
As a matter of fact, due to the sheer volume of
data required for 3D data processing, simple
design options should be tested beforehand on
smaller, simplified problems. The estimation of
1D velocity profile from a CMP gather is such
a test. NNs trained on the 1D benchmark prob-
lems will generally have limited practical appli-
cability. For instance, our NN is adequate only
for gently dipping layered earth models and can-
not handle more complex structures, which is a
general limitation of simple NMO-based analy-
sis. However, NNs trained on 1D-layered models
such as ours can be used as a building block
for more elaborate networks. For example, the
encoder could be embedded in a larger network
with pretrained weights to reduce the training
time of a network designed to predict 3D velocity
models.

CONCLUSION

In this work, we proposed to study the simpli-
fied problem of 1D velocity estimation to gain
insights on the design of NN for general velocity
inversion. We have shown that by using a deep
convolutional NN, one can build a representation
of seismic data that is suitable for automated
velocity analysis. Based on this representation,
the rms and interval velocities were estimated
with recurrent NNs, for complex 1D velocity
models with high velocity contrasts and thin
layers. This provides evidence that a data-driven
approach using NNs has the potential to auto-
mate velocity analysis in realistically complex
environments and suggests the plausibility of au-
tomating modern velocity model-building work-
flows used for imaging the subsurface.
We further showed that training with synthetic

data is a plausible option to develop a NN that
performs reasonably well on real data. The esti-
mated velocities correlate well with semblance

Figure 6. (a) Predicted rms velocity, (b) predicted interval velocity, (c) stacked section
using the predicted velocity, and (d) the stacked section provided by USGS for seismic
line 32.

U28 Fabien-Ouellet and Sarkar

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/85/1/U21/4927714/geo-2018-0786.1.pdf
by Polytechnique Montréal user
on 04 May 2021



and lead to a coherent stack section. However, further testing is
required for estimating its true applicability for the purpose of stack-
ing or migration. Rather, our work focused on proposing a bench-
mark problem simple enough to guide the development of more
sophisticated NNs capable of predicting 3D velocity models in
depth.
A major limitation of the NN architecture discussed in this paper

is that it is only efficient for gently dipping layered earth models. It
should be noted that the same limitation applies to conventional
processing based on normal moveout analysis, which is still rou-
tinely used in time velocity analysis. However, our results showed
that deep convolutional networks and recurrent NNs are promising
architectures for larger networks, capable of handling 3D velocity
structures.
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