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RÉSUMÉ 

Les séismes peuvent avoir des conséquences désastreuses en termes de pertes humaines et 

matérielles. Parmi les phénomènes géotechniques qui peuvent mener à des pertes pendant un 

tremblement de terre, la liquéfaction des sols granulaires a été le plus étudié, bien que 

l’amollissement cyclique des argiles puisse générer des dommages significatifs. Par exemple, le 

tremblement de 1964 en Alaska a déclenché un glissement de terrain majeur le long de la 4ième 

avenue à Anchorage, dont la cause principale était l’amollissement cyclique.  

Pour étudier l'impact de tels phénomènes, des simulations numériques dynamiques non linéaires 

peuvent être utilisées. Ces simulations s'appuient sur des modèles constitutifs qui sont formulés 

pour capturer le déclenchement de la liquéfaction ou de l’amollissement cyclique. L'utilisation de 

ces modèles nécessite une connaissance de leur formulation et des essais et erreurs fastidieux pour 

calibrer leurs nombreux paramètres d'entrée. La calibration difficile a rendu difficile l'utilisation de 

modèles constitutifs avancés pour les applications géotechniques sismiques. En conséquence, les 

modèles constitutifs avancés n'ont pas été largement adoptés dans la pratique malgré l'attention 

significative qu'ils ont reçue ces dernières années. 

Parmi les modèles constitutifs développés pour les applications géotechniques sismiques, la plupart 

ont été créés pour simuler le comportement de sols granulaires liquéfiables, et prédire le 

déclenchement de la liquéfaction. En revanche, peu de travaux ont été réalisés concernant la 

modélisation de l’amollissement cyclique des sols cohésifs. De plus, les quelques modèles 

constitutifs développés pour modéliser le comportement des argiles sous chargement cyclique, 

aucun ne considère une dépendance au taux de chargement du fait de la complexité des lois de 

comportement nécessaires pour développer un modèle viscoplastique. 

Le premier objectif de cette étude est d'évaluer l'utilisation des techniques d'optimisation pour 

calibrer les modèles constitutifs du sol et de les améliorer pour les applications de chargement 

cyclique. Le deuxième objectif est de développer un modèle constitutif dépendant du taux qui peut 

simuler le comportement de sols cohésifs sous chargement cyclique. 

Dans cette thèse, deux algorithmes d'optimisation sont étudiés, les algorithmes Gauss-Newton 

(GN) et Particle Swarm Optimization (PSO), et appliqués pour calibrer plusieurs modèles 
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constitutifs formulés pour des applications cycliques. Des ajustements aux algorithmes sont 

présentés pour améliorer leur efficacité et les rendre plus adaptés à l'application présentée. 

Plusieurs exemples de validation sont utilisés sur une variété de modèles constitutifs, et la 

conclusion est que ces algorithmes peuvent faciliter la procédure d'étalonnage et peuvent être 

considérés comme des alternatives efficaces et précieuses aux étalonnages par essais et erreurs. 

Dans la deuxième partie de cette thèse, un modèle viscoplastique est introduit. Le modèle est 

d'abord formulé dans l'espace triaxial, et généralisé pour un espace multiaxial. Les lois de 

comportement du modèle proposé sont dérivées en modifiant des modèles de comportement 

avancés récents pour capturer le comportement dépendant du taux de déformation présenté dans la 

littérature par divers auteurs. Le modèle développé est validé en comparant les résultats à quelques 

études et tests cycliques en laboratoire réalisés sur une argile de plasticité moyenne prélevée au 

Québec. Le modèle proposé montre la capacité de capturer les principales caractéristiques du 

comportement cyclique du sol, telles que la dégradation cyclique, la réduction du module et le 

comportement d'amortissement, et la dépendance à la vitesse de déformation de la résistance au 

cisaillement présentée dans la littérature. 

Cette thèse fournit aux praticiens et aux chercheurs un moyen de calibrer des modèles constitutifs 

avancés de manière avancée et un modèle constitutif qui peut être utilisé dans des simulations 

numériques non linéaires où les argiles devraient subir une perte de résistance. 
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ABSTRACT 

Earthquakes can have dire consequences both in terms of loss of human lives and properties. 

Among the geotechnical phenomena that can induce losses during an earthquake, liquefaction of 

granular soils is the most well-studied but cyclic softening of clays is also capable of producing 

significant damages. For instance, the 1964 Alaska earthquake triggered a major landslide along 

the 4th avenue in Anchorage, attributed to cyclic softening.  

To study the impact of such phenomena, numerical dynamic nonlinear simulations can be used. 

These simulations rely on constitutive models that are formulated to capture the triggering of 

liquefaction or cyclic softening. The use of these models requires knowledge of their formulation, 

and time-consuming trial and error efforts to calibrate their numerous input parameters. The 

arduous calibration has rendered the use of advanced constitutive models for earthquake 

geotechnical applications in practice challenging. As a results advanced constitutive models have 

not been widely adopted in practice despite the significant attention they have received in recent 

years. 

Among the constitutive models developed for earthquake geotechnical applications, most of them 

have been created to simulate the behavior of liquefiable granular soils, and predict the triggering 

of liquefaction. In contrast, little work has been done regarding the modeling of cyclic softening of 

cohesive soils. In addition, the few constitutive models developed to model the behavior of clays 

under cyclic loading, none consider a dependency on the loading rate due to the complexity of the 

constitutive laws required to develop a viscoplastic model. 

This study's first objective is to evaluate the use of optimization techniques to calibrate soil 

constitutive models, and improve them for cyclic loading applications. The second objective is to 

develop a rate-dependent constitutive model that can simulate the behavior of cohesive soils under 

cyclic loading.  

In this dissertation, two optimization algorithms are studied, the Gauss-Newton (GN) and the 

Particle Swarm Optimization (PSO) algorithms, and applied to calibrate several constitutive 

models formulated for cyclic applications. Adjustments to the algorithms are presented to improve 

their efficiency and make them more suitable for the presented application. Several validation 
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examples are used on a variety of constitutive models, and the conclusion is that these algorithms 

can ease the calibration procedure and may be considered as efficient, and valuable alternatives to 

trial and error calibrations. 

In the second part of this dissertation, a viscoplastic model is introduced. The model is first 

formulated in the triaxial space, and generalized for a multiaxial space. The proposed model's 

constitutive laws are derived by modifying recent advanced constitutive models to capture the 

strain-rate dependent behavior presented in the literature by various authors. The developed model 

is validated by comparing the results with a few studies and laboratory cyclic tests performed on a 

medium plasticity clay sampled in Québec. The proposed model shows the ability to capture the 

salient features of the soil cyclic behavior, such as cyclic degradation, modulus reduction and 

damping behavior, and the strain-rate dependency of shear strength presented in the literature.  

This dissertation provides practitioners and researchers a means to calibrate advanced constitutive 

models in an advanced manner and a constitutive model that can be used in nonlinear numerical 

simulations where clays are expected to undergo strength loss.    
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CHAPTER 1 INTRODUCTION    

There can be several phenomena occurring in soils under earthquake loading, among which 

“liquefaction” is the most well-understood. Liquefaction is characterized as a loss of shear strength 

due to pore water pressure generation and can happen in granular soils (Jefferies and Been, 2015). 

However, cyclic softening of fine-grained soil can be as disastrous but studied to a lesser extent 

(Boulanger and Idriss, 2007). Albeit the mechanisms are similar, there exist fundamental 

differences between liquefaction and cyclic softening. In both cases, soils experience a loss of shear 

strength, usually accompanied by severe deformations.  

For example, liquefaction-induced damages to human-made and natural earth structures followed 

by loss of human properties and lives reported in many major earthquakes such as the 1964 Niigata 

earthquake (Seed and Idriss, 1971) and the 2011 Christchurch earthquake (Bradley and 

Cubrinovski, 2011) to name a few). Similarly, the evidence of such strength loss in materials with 

clay-like behavior has been reported in a few case histories (such as the fourth avenue landslide 

during the 1964 Alaskan earthquake (Stark and Contreras, 1998)).  

The study of the aforementioned phenomena, as well as other geotechnical problems, requires 

numerical simulations. However, the validity of the numerical simulations is positively related to 

the applied constitutive models. Therefore, several models have been emerged so far based on 

different assumptions to predict more realistically the behavior of soils for different problems. 

The modified Cam-Clay model (Roscoe and Burland, 1968) is one of the earliest models that are 

still popular among practitioners due to its simplicity. Recently, a family of models called 

SANICLAY (Dafalias et al., 2006; Taiebat et al., 2010;) built upon the modified Cam-Clay to 

simulate more accurately the behavior of clays under monotonic loading. The SANICLAY model 

family has provided a powerful tool for capturing several key features of clays, such as anisotropy 

and destructuration, but their applications are limited to monotonic loading cases. To extend the 

SANICLAY model family for cyclic loading applications, Seidalinov and Taiebat (2014) and Shi 

et al. (2018) developed two models by recasting the SANICLAY framework into the bounding 

surface plasticity and provided valuable tools to investigate the potential of failure of clays under 

cyclic loading. However, compared to the significant amount of work done on the constitutive 
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modeling of granular soils with liquefaction susceptibility (e.g., Dafalias and Manzari, 2004; 

UBCSAND (Beaty and Byrne, 2011), PM4SAND (Boulanger and Ziotopoulou, 2017)), much less 

attention has been given to the modeling of clays under cyclic loading. In addition, none of the 

developed models for cyclic clay behavior takes into account the effect of loading time or loading 

rates in their formulation.  

In addition, although advanced soil models could simulate soil response more accurately, the 

challenges associated with their calibration could prevent them from being widely used in practice. 

One of the common limitations of the constitutive models that renders their application challenging 

for practitioners is that they include numerous input parameters. The calibration of these input 

parameters requires field data and/or several laboratory tests under different loading and drainage 

conditions, which may often be unavailable. On the other hand, in cases where sufficient field and 

lab data are available, the calibration of the myriad of input parameters to match the soil behavior 

under different types of loading conditions is a challenging task (Yang and Elgamal, 2003), because 

of their combined effect on the volumetric and deviatoric behavior. Hence finding the optimal 

parameters using a trial and error procedure can be a time-consuming task. Therefore, a systematic, 

efficient, and convenient tool is required to calibrate a model based on a large body of literature 

and data to tackle the calibration difficulties, especially for sophisticated models developed for 

cyclic loading applications.  

The general objective of this study is, firstly, to modify optimization techniques to be used as 

alternatives for trial and error efforts to calibrate models developed for cyclic loading applications, 

and secondly, to introduce a robust constitutive model to capture clays' behavior under cyclic 

loading while considering loading rate/frequency effects. Therefore, the specific objectives of this 

dissertation could be stated as: 

1- Modify and adjust the optimization techniques to calibrate soil constitutive models for 

cyclic loading applications. 

2-  Evaluate the performance of the optimization techniques as alternations for trial and error 

calibrations.  

3- Develop a viscoplastic constitutive model for clays under cyclic loading. 
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4- Provide guidance for the calibration of the input parameters of the developed model. 

5- Calibrate the developed model using the provided guideline and the optimization 

techniques. 

6- Validate the model against the experimental data published in the literature.  

In addition to this introduction, this dissertation is composed of six chapters, the organization of 

which is as follows:  

In the 2nd chapter, the underlying features of fine-grained soils’ behavior, i.e., silts and clays, under 

seismic loading are reviewed so that the behavior necessary for the development of a constitutive 

model be adequately distinguished. This chapter's main topics could be summarized as liquefaction 

and cyclic softening, the difference between soils exhibiting clay-like and sand-like behavior, 

loading rate effects, and the effects of soil plasticity on modulus reduction and damping ratio 

curves.  

Chapter 3 of this dissertation is divided into two main parts; In the first part, a short review of the 

following subjects needed to understand soil constitutive models are presented: the Cauchy stress 

and strain tensors along with their invariants, the critical state soil mechanics, and an introduction 

to classic elastoplasticity. In the second part of this chapter, a literature review on soil constitutive 

models is presented. The presented constitutive models in this part include rate-independent models 

for cyclic loading applications developed mainly for clays (mainly upon the MCC and SANICLAY 

framework), and less, for sands and silts. At the end of this chapter, some rate-dependent models 

are reviewed and discussed.   

The 4th chapter of this dissertation mainly discusses the application of two sophisticated 

optimization techniques to calibrate advanced soil constitutive models. In the first part of this 

chapter, the Gauss-Newton Optimization (GNO) algorithm is discussed and applied to calibrate 

two soil constitutive models for cyclic loading applications (one for sands, namely the Dafalias and 

Manzari model, and one for clays, the SANICLAY bounding surface model) against different data 

sets. In the second part of this chapter, the Particle Swarm Optimization (PSO) algorithm is 

reviewed and applied to calibrate three soil models, the SANICLAY with a hybrid flow rule, and 

two models mentioned above. In both parts of this chapter, the predictive abilities of the models 
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are discussed and compared. In addition, the performance of the applied optimization algorithms 

in calibrating advanced soil constitutive models is compared in the final part of this chapter.  

In the 5th chapter of the dissertation, the formulation of the proposed model is presented. The model 

developed in this study combines several underlying features and concepts such as the isotropic 

hardening rule to consider soil consolidation state, the rotational hardening rule for simulating soil 

anisotropy induced by stress history, the bounding surface with the proper relocation of the 

projection center, a decaying plastic modulus to capture the soil behavior under cyclic loading, a 

hybrid flow rule to improve the pore water pressure generation of the model in a cyclic event, and 

Perzyna’s theory of viscoplasticity, to name a few, to allow the model to capture time or loading 

rate effects. The model formulation is first discussed regarding the triaxial space. Then, its 

formulation with respect to a generalized multiaxial space is presented.  

The 6th chapter of this dissertation discusses the model calibration and validation. In the first part 

of this chapter, the calibration of the parameters of the developed model is presented by providing 

explanations for the physical meaning of the parameters and discussing the appropriate tests and 

closed-form solutions to obtain the parameters. In the second part of this chapter, first, the 

performance of the model in simulating the soil response under monotonic and seismic loading is 

presented, and then, the model is calibrated and validated against a series of experimental data.  

The final chapter of this dissertation presents a summary, conclusions, and future research 

recommendations. 
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CHAPTER 2 CYCLIC RESPONSE OF FINE-GRAINED SOILS 

2.1 Introduction 

In this chapter, the main features of fine-grained soils' behavior, i.e., silts and clays, under seismic 

loading, are described. Overall, clayey material's cyclic behavior has been less studied than that of 

sandy soils, and a significant amount of work remains to be done. However, essential features have 

been clearly identified and defined, and these are sufficient for the development of a constitutive 

model. 

2.2 Liquefaction and Cyclic Softening   

Boulanger and Idriss (2006) suggested that the significant strength loss or strain development 

accompanied by a sharp increase in the excess pore water pressure be referred to as “liquefaction” 

for fine-grained-soils exhibiting sand-like behavior, while the same phenomenon be referred to as 

“cyclic softening” for those exhibiting clay-like behavior (Leboeuf et al., 2016). Either a soil is 

showing a clay-like or a sand-like behavior may be found out in different ways.  

One key feature that differentiates the behavior of clay-like soils from that of the sand-like soils is 

the monotonic strength normalization. Soils exhibiting a clay-like behavior have a unique ratio of 

monotonic undrained shear stress over the consolidation pressure ratio (
𝑠𝑢

𝜎𝑣𝑐
) which is highly 

dependent on the soil overconsolidation ratio (OCR) (Ladd, 1991; Ladd and Foott, 1974), as 

illustrated in Figure 2.1.  
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Figure 2.1  Monotonic normalized stress-strain behavior as a function of OCR (Boulanger and 

Idriss, 2006; Ladd and Foott, 1974) for clay-like fine-grained soils. 

This figure shows the monotonic strength normalization (
𝜏ℎ

𝜎𝑣𝑐
) versus the shear strain (𝛾) for various 

OCR. Ladd and Foott (1974) expressed the monotonic strength normalization relation with OCR 

as:   

𝑠𝑢

𝜎𝑣𝑐
= 𝑆 ∙ 𝑂𝐶𝑅𝑚 (2.1) 

Where S is the ratio (
𝑠𝑢

𝜎𝑣𝑐
) at OCR=1 and m is the slope of the (

𝑠𝑢

𝜎𝑣𝑐
) versus OCR relation in a log-

log plot. 

Similar to monotonic strength normalization, Boulanger and Idriss (2007) showed that, for soils 

exhibiting a clay-like behavior, the cyclic strength ratio (
𝜏𝑐𝑦𝑐

𝑠𝑢
) remains constant at different soil 

plasticity values (𝑃𝐼). The cyclic normalized strength versus the soil plasticity (PI) is shown in 

Figure 2.2 (a). Boulanger and Idriss (2007) stated that the cyclic strength ratio (
𝜏𝑐𝑦𝑐

𝑠𝑢
) for N=30 

cycles ((
𝜏𝑐𝑦𝑐

𝑠𝑢
)𝑁=30) be taken as 0.83 for normally consolidated clays. The same trend has also 

reported for 
𝜏𝑐𝑦𝑐

𝜎𝑣𝑐
 (Figure 2.2 (b)) in which (

𝜏𝑐𝑦𝑐

𝜎𝑣𝑐
)𝑁=30 of 0.183 is suggested for normally 

consolidated specimens.  
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Figure 2.2 Cyclic normalized strength versus plasticity index (Boulanger and Idriss, 2007) 

Whether a soil exhibits a clay-like or a sand-like behavior could also be understood from the cyclic 

stress ratio (CSR) versus the number of loading cycles to reach large deformations (3% shear strain, 

for example). CSR-N for soils with clay-like behavior is illustrated in Figure 2.3. For clay-like soils, 

𝑞𝑐𝑦𝑐(=𝜎1−𝜎3)

2𝑆𝑢
 or 𝜏𝑐𝑦𝑐/ 𝑆𝑢 falls within a narrow range for normally consolidated clays. However, 

such a narrow range in terms of the cyclic strength (or stress) ratio is not reported for sands; As 

illustrated in Figure 2.4, the CSR-N for sand-like soils, which is expressed in the form of 𝐶𝑆𝑅 =

𝑎 ∙ 𝑁𝑏, where N is the number of cycles and a and b are fitting parameters, is highly dependent on 

the relative density and is not limited to a narrow range (Boulanger and Idriss, 2007).  

The behavior of a sand-like soil under cyclic loading is shown by Boulanger and Truman (1996) 

in Figure 2.5. In a cyclic event, sands tend to have sharp stress-strain loops and reach zero stiffness 

(the stress-strain loops becomes almost flat) during cyclic loading once the soil has liquefied. More 

importantly, their mean effective stress can reach zero due to the excess pore water pressure ratio 

(ru), reaching 100%. 
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Figure 2.3 Cyclic stress ratio versus the number of cycles to reach 3% shear strain for different 

clays, mainly normally consolidated or slightly overconsolidated (OCR=2), (Boulanger and 

Idriss, 2007). 

 

Figure 2.4 Cyclic stress ratio versus the number of cycles to reach (a) initial liquefaction (b) 5% 

shear strain for clean sands (Ziotopoulou and Boulanger, 2012). 
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Figure 2.5 Stress-strain response and effective stress paths of Sacramento River sand under cyclic 

loading (Boulanger and Truman, 1996). 

However, soils with clay-like behavior have a slightly different response to cyclic loading. For 

example, the response of Cloverdale clay under cyclic loading, presented by Zergoun and Vaid 

(1994), is shown in Figure 2.6. As opposed to sands, hysteretic loops are thicker for clays, and their 

stiffness does not reduce to zero as loops do not become flat when the cycles reach zero after the 

softening. Moreover, the cyclic loading generates pore water pressure and reduces the mean 

effective stress but not to a level sufficient to cancel the mean effective stress completely.  

  

Figure 2.6 Stress-strain response and effective stress paths of Cloverdale clay under cyclic 

loading (Zergoun and Vaid, 1994). 

As discussed, both liquefaction and cyclic softening are susceptible to occur in soils depending on 

whether they are showing a clay-like behavior or a sand-like behavior (Boulanger and Idriss, 2006). 

Boulanger and Idriss (2006) discussed cyclic tests' results on three blended silt mixtures tested in 
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undrained triaxial tests by Romero (1995). The three silt mixtures #1, #2, and #3 were classified as 

ML and had Plasticity Indexes of PI=0, 4, 10.5, respectively. The undrained cyclic stress-strain 

paths of the normally consolidated specimens of silt 1 and 3 are plotted in Figure 2.7. 

 
 

Figure 2.7 Stress-strain response and effective stress paths of normally consolidated silt mixtures 

#1 (a) and #3 (b) under cyclic loading (Boulanger and Idriss, 2006; Romero, 1995) 

From this figure, it can be clearly observed that silt #1, with zero plasticity, exhibited sharp stress-

strain loops with almost zero-stiffness intervals while silt #3 exhibited the opposite behavior, i.e., 

broader hysteretic loops without developing stiffness equal or near to zero. These cyclic responses 

are those that can be observed for sands and clays, respectively. It is worth mentioning that Silt #2, 

not shown in the figure, has been reported to have intermediate hysteretic behavior. 

Boulanger and Idriss (2006) illustrated the transition behavior of these silt mixtures from clay-like 

behavior to a sand-like one in terms of the critical state line (CSL) and the isotropic consolidation 

line (ICL) (Figure 2.8). As shown in this figure, Silt #3 has a CSL parallel to ICL, and a phase 

transformation tendency did not exhibit (i.e. there is no quasi-steady state line (QSSL)), which is 

typical of a clay-like behavior, especially for normally consolidated clays. In silt #1, the critical 

state and the isotropic consolidated lines are not parallel. Also, it exhibited a QSSL, indicating a 

tendency for a phase transformation from contraction to dilation before reaching the critical state 

line, which is below the isotropic consolidated line. Silt #2 showed an intermediate behavior in a 

way that the ICL and CSL are almost parallel, and at the same time, a phase transformation tendency 

is exhibited (with QSSL being located below the CSL). 
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It should be mentioned that the goal of this comparison was to compare a transition behavior, from 

clay-like to sand-like, in a cyclic loading as the plasticity index decreases. In fact, other factors 

could influence the position of CSL and ICL, especially in sands. As shown in Figure 2.10 for 

Toyoura sand, the isotropic consolidation line could be either below or above the critical state line 

depending on the initial state of the soil (Verdugo and Ishihara, 1996; Been et al., 1991; Biarez and 

Hicher, 1994). Also, as can be seen in this figure, the ICL may be either parallel to the CSL, for 

loose states, or unparallel, for dense states.  

 

Figure 2.8  Comparisons of the critical state (CSL), isotropic consolidation (ICL), and quasisteady 

state lines (QSSL) of soils with sand-like and clay-like behavior (Romero, 1995) 
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Figure 2.9  The critical state line (CSL) and isotropic consolidation lines (ICL) for Toyoura sand 

in loose and dense states (Verdugo and Ishihara, 1996) 

2.3 Loading Rate Effects 

Sheahan et al. (1996) investigated the combined effects of soil stress history (OCR) and loading 

rate on clay's cyclic strength. For this purpose, they performed twenty-five constant strain rate 

𝐶𝐾0𝑈𝐶 (𝐾0-consolidated undrained triaxial compression) tests on resedimented Boston blue clay 

(BCC) at four different axial strain rates (𝜀𝑎̇ = 0.05, 0.5, 5, 𝑎𝑛𝑑 50 %/ℎ) consolidated under four 

different over consolidation ratios (OCR= 1, 2, 4, and 8). This study's results in terms of the 

normalized shear strength and shear-induced pore pressure are presented in Figure 2.10. The slope 

of the lines between the points are indicated in parentheses as a percentage of 𝑆𝑢/𝜎𝑣𝑚
′  at 𝜀𝑎̇=0.5%/h. 

The results show that the effect of strain rate on the normalized undrained strength increase is more 

pronounced for lower OCR values (OCR = 1 and 2), and as OCR increases, the rate sensitivity 

decreases. For normally consolidated specimens, a constant increase in normalized undrained 

strength of about 6.5% has been observed, and as the OCR increases, this value reduces. However, 

regardless of the OCR level, all specimens showed an average increase of 9.5% when subjected to 

fast axial strain rate (i.e., 𝜀𝑎̇=50%/h). The induced pore water pressure seems to be rate-independent 

for high OCR values (OCR=4 and 8) and decreases sharply for lower OCR values (OCR=1 and 2). 

However, like the normalized strength, all specimens showed a decrease in pore water pressure at 

high strain rates (𝜀𝑎̇=0.5%/h.) regardless of the OCR values.  
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Figure 2.10 Normalized (a) shear strength and (b) shear-induced pore pressure versus axial strain 

rate (Sheahan et al., 1996) 

2.4 Effect of Soil Plasticity (PI) 

Vucetic and Dobry (1989) conducted a comprehensive study to investigate the effects of soil 

plasticity (PI) on the soil shear modulus G and damping ratios 𝜆 under undrained cyclic loading. 

They compiled a database composed of various undrained cyclic tests (e.g., triaxial, simple shear, 

resonant column, etc.) on normally and overconsolidated clays (OCR=1-15) published in 16 

different publications. The results of this study are shown in Figure 2.11 as ready-to-use shear 

modulus reduction 𝐺 𝐺𝑚𝑎𝑥
⁄  and damping ratio 𝜆 versus cyclic shear strain (𝛾𝑐) charts.    

  

Figure 2.11 Shear modulus reduction (a) and equivalent damping ratio (b) versus shear strain for 

clays (Vucetic and Dobry, 1989) 

(a) (b) 

(b) (a) 
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As can be seen, as the plasticity index increases, the reduction in modulus becomes less important, 

the modulus reduction values increase, and the damping ratio decreases. 

2.5 Loading Rate Effects on Modus Reduction and Damping Ratios 

To study the effect of strain rate on the shear modulus and damping of clays, Lo Presti et al. (1996) 

and Lo Presti et al. (1997) performed a series of cyclic torsional shear tests (CLTST) and resonant 

column tests (RCT) on the Pisa and Augusta clays, which are two types of undisturbed Italian clays. 

The tests were performed in a stepwise manner using a sinusoidal wave pattern with an applied 

frequency ranging between 30 and 200 Hz for RCTs and 0.1 and 1 Hz for CLTSTs. Figure 2.12 

shows the damping and shear modulus ratios obtained from the cyclic torsional shear tests as well 

as rotational column tests on samples of the Pisa clay with the OCR and PI in the range of 1.5-2 

and 22-55, respectively. According to this figure, shear modulus and damping ratios obtained by 

RCT and CLTST are different. Lo Presti et al. (1996) and Lo Presti et al. (1997) believed that this 

difference originated from the fact that RCT and CLTST were performed at different loading rates, 

and thus, concluded that the shear modulus and damping curves are rate dependent.  

A similar study was performed by Isenhower and Stokoe (1981) to assess the effect of rate and 

shear strain amplitude on the shear modulus of the San Francisco Bay mud using a torsional 

shear/resonant column apparatus. Figure 2.13 shows the variation of shear modulus corresponding 

to the applied constant shear strain amplitudes at different shear strain rates. Findings from these 

measurements indicate that the shear modulus increases about 4% per log cycle with the increase 

of shear strain rates, and that, this increase is independent of the shear strain amplitudes and the 

mean effective stress. 
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Figure 2.12 Strain rate effects on (a) shear modulus (Lo Presti et al., 1996) and (b) damping ratio 

(Lo Presti et al., 1997) 

 

Figure 2.13 Shear modulus of San Francisco Bay Mud at various strain rates (Isenhower and 

Stokoe, 1981) 

2.6 Cyclic Stiffness Degradation 

Several studies have shown that cohesive soils exhibit stiffness degradation (Vucetic and Dobry, 

1989; Idriss et al., 1978; Zhou and Gong, 2001; Vucetic, 1989). Stiffness degradation is usually 

measured using the “degradation index”, which is expressed as:  

𝛿 =
𝐺𝑆𝑁

𝐺𝑆1
=

𝜎𝑑

𝜀𝐶𝑁
𝜎𝑑

𝜀𝐶1

=
𝜀𝐶1

𝜀𝐶𝑁
 (2.2) 

(a) 
(b) 
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Where 𝜀𝐶1 and 𝜀𝐶𝑁 are the cyclic axial strains at the 1st and the Nth cycles, respectively; 

Correspondingly, 𝐺𝑆1 and 𝐺𝑆𝑁 are the secant moduli at the 1st and the Nth cycles, respectively.  

The cyclic stiffness degradation is highly related to the cyclic amplitude applied to the soil in a 

way that higher cyclically induced strains will cause higher stiffness degradation. Figure 2.14 

shows the degradation index with the number of cycles for different OCR values. The stiffness 

degradation decreases with the increase of the number of cycles for all OCR values. However, at 

lower OCR values, the stiffness degradation is more pronounced, meaning that the shear modulus 

degrades more and faster than when the soil is over-consolidated.   

   

Figure 2.14 Degradation index versus the number of cycles for different OCR values (Vucetic 

and Dobry, 1988) 

2.7 Anisotropic Consolidation Effects 

Lefebvre and Pfendler (1996) recommended that cyclic tests for clays be carried out with initial 

static shear stress to simulate end-of construction conditions. The main reason is that seismic 

analyses for clays are mostly involved with anisotropic consolidation (e.g., the existence of an 

embankment or a structure, the lateral earth pressure other than one, etc.). Therefore, they 

performed a set of constant volume direct and simple shear tests under undrained conditions to 

study the initial static shear stress effects on clays' cyclic resistance. The specimens of the study 

were intact sensitive clay obtained from the St. Lawrence valley. All specimens were 

reconsolidated in the laboratory to achieve an OCR of 2.2. They reported that the applied initial 
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shear stress decreased the cyclic resistance, but it also decreased the cyclic degradation rate (Figure 

2.12 (a)) tremendously. Moreover, the main result of the study was that any combination of static 

and cyclic shear stress (𝜏𝑠𝑡 and 𝜏𝑐) increased the total resistance of the soil (i.e., 𝜏𝑠𝑡 + 𝜏𝑐) at the 

12th cycle by 30% provided that the applied static shear stress falls between 0.3𝐶𝑢 < 𝜏𝑠𝑡 < 0.8𝐶𝑢 

(Figure 2.15 (b)). The main reason for this increase is referred to as an elimination of the stress 

reversal (the direction changes of the cyclic shear stress from positive to negative) that the initial 

static shear stress causes. 

 
 

Figure 2.15 Cyclic shear stress (a) and total undrained shear stress (b) as a function of the number 

of cycles for initial static shear stress range of 0 to 0.8 𝐶𝑢 (Lefebvre and Pfendler, 1996) 

2.8 Cyclic Threshold 

Lefebvre et al. (1989) studied a stability threshold for a saturated sensitive clay under slow and 

rapid cyclic loading. They defined the cyclic stability threshold as the highest CSR at which soil 

does not exhibit damage or alteration to the peak failure envelope, under an infinite number of 

loading cycles. They reported a normalized stability threshold of 60-65% of the monotonic 

undrained shear strength for both structured and normally consolidated specimens under repeated 

cyclic loading. Both the axial strain and pore water pressure has been observed to be stabilized and 

constant under further cyclic loading below the normalized stability threshold (Figure 2.16). They 

also reported that this normalized threshold is independent of the consolidation pressure and 

(a) (b) 
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structure effects but can be increased up to 33% by increasing the strain rate from 0.01 to 2.0 Hz 

(Figure 2.17).  

 

Figure 2.16 Stress path of a normally consolidated clay under cyclic loading followed by 

monotonic loading after stabilization (Lefebvre et al., 1989) 

 

Figure 2.17 Stability threshold versus frequency (Lefebvre et al., 1989). 

In another study, Mortezaie and Vucetic (2016) performed a series of multistage strain-controlled 

tests using direct shear tests on laboratory-made clays, kaolinite, and kaolinite bentonite, with 

different PIs of 28 and 55, respectively, to find the threshold shear strains bellow which cyclic 

degradation and pore water pressure is negligible. The tests were performed with various vertical 

consolidation stress, 𝜎′𝑣𝑐, (113 kPa, 216 kPa, and 674 kPa), overconsolidation ratios, OCR, (1, 4, 

and 7.8), and loading frequencies (0.01 and 0.1 Hz). The study’s findings along with investigations 
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performed by other studies are plotted in Figure 2.18 (a) and (b) in terms of the threshold shear 

strains for cyclic degradation, 𝛾𝑡𝑑, and pore water pressure generation, 𝛾𝑡𝑝. The findings of 

Mortezaie and Vucetic (2016) show that 𝛾𝑡𝑑 and 𝛾𝑡𝑝 fall into the range of 0.006-0.05% and 0.01-

0.1%, respectively, and increase with soil plasticity. Also, they observed no apparent effects of 

𝜎′𝑣𝑐, OCR, and frequencis on 𝛾𝑡𝑑 and 𝛾𝑡𝑝. 

 
 

Figure 2.18 Threshold shear strains for (a) cyclic degradation and (b) pore water pressure 

(Mortezaie and Vucetic, 2016). 

(a) (b) 
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CHAPTER 3 LITERATURE REVIEW OF SOIL CONSTITUTIVE 

MODELING 

3.1 Introduction 

The first part of this chapter consists of the principles of constitutive modeling in geotechnical 

engineering. The main topics in this part are the stress state of soils, the critical state concept (which 

constitutes the main framework for most soil constitutive models), and an introduction to 

elastoplasticity. In the second part of the chapter, the developments of clay’s models from the well 

known MCC for monotonic applications up to the recent complex, sophisticated models for cyclic 

softening and liquefaction are discussed. At the end of the chapter, some rate-dependent models 

will be and reviewed.   

3.2 Introduction to Constitutive Modeling 

3.2.1 Stress States 

Constitutive models are usually formulated in the general stress space. However, in soil mechanics, 

models are typically presented in terms of deviatoric and mean effective stress (p-q space) for 

simplicity.  

3.2.1.1 Full Stress Space 

The stress state at a point can be represented with a stress tensor. In geotechnical engineering, the 

Cauchy stress tensor is typically used to represent the stress state of a soil element. The Cauchy 

stress tensor is a three-dimensional full stress tensor (𝝈) which is defined as (note that a bold font 

denotes a second-order tensor):  

𝝈 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] (3.1) 

In which 𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜎𝑧𝑧 are normal stresses components having normals parallel to the axis of x, y, 

and z, respectively, and 𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑥𝑧 = 𝜏𝑧𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦 are shear stresses.  
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𝝈 is usually divided into two separate components: volumetric (𝑝′) and deviatoric (𝒔). The 

apostrophe indicates an effective stress quantity. For simplicity, and as in the convention in 

geotechnical engineering, the apostrophe is dropped in the rest of this dissertation. The scalar 

quantity volumetric component (p), which is also called mean effective stress, is related to the first 

stress invariant 𝐼1: 

𝑝 =
𝐼1
3

=
𝑡𝑟(𝝈)

3
=

𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3
 (3.2) 

𝒔 = 𝝈 − 𝑝 ∙ 𝑰 = [

𝜎𝑥𝑥 − 𝑝 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦𝑦 − 𝑝 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧 − 𝑝
] (3.3) 

Where “𝑡𝑟(𝝈)” is the trace of 𝝈, and I is a 3 × 3 identity matrix. 

Similarly, the full strain tensor 𝜺 can be written in general stress/strain space as: 

𝜺 = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧

] =

[
 
 
 
 
 𝜀𝑥𝑥

𝛾𝑥𝑦

2

𝛾𝑥𝑧

2
𝛾𝑦𝑥

2
𝜀𝑦𝑦

𝛾𝑦𝑧

2
𝛾𝑧𝑥

2

𝛾𝑧𝑦

2
𝜀𝑧𝑧]

 
 
 
 
 

 (3.4) 

Where 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧 are normal strain components acting on planes that have a normal parallel to 

the axis of x, y, and z, respectively, and 𝛾𝑥𝑦 = 𝛾𝑦𝑥 , 𝛾𝑥𝑧 = 𝛾𝑧𝑥, 𝛾𝑦𝑧 = 𝛾𝑧𝑦 are engineering shear 

strains. 𝜺 may also be divided into two separate components: a volumetric strain part (𝜀𝑣) and a 

deviatoric one (𝜺𝒅): 

𝜀𝑣 = 𝑡𝑟(𝜺) = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 (3.5) 

𝜺𝒅 = 𝜺 −
1

3
𝜀𝑣. 𝑰 =

[
 
 
 
 
 𝜀𝑥𝑥 −

1

3
𝑡𝑟(𝜺)

𝛾𝑥𝑦

2

𝛾𝑥𝑧

2
𝛾𝑥𝑦

2
𝜀𝑦𝑦 −

1

3
𝑡𝑟(𝜺)

𝛾𝑦𝑧

2
𝛾𝑥𝑧

2
𝛾𝑦𝑧 𝜀𝑧𝑧 −

1

3
𝑡𝑟(𝜺)]

 
 
 
 
 

 (3.6) 
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3.2.1.2 Deviatoric-mean effective stress (p-q) space 

Stresses are also presented in p-q space, where q is the scalar deviatoric stress, which is calculated 

based on the second deviatoric stress invariant 𝐽2:  

𝑞 = √3𝐽2 (3.7) 

𝐽2 =
1

2
𝒔: 𝒔 (3.8) 

“:” denotes the inner products or dot products of two tensors, which is defined as 𝑿:𝒀 =

∑ ∑ 𝑋𝑖𝑗𝑌𝑖𝑗𝑗𝑖 . Therefore, based on equations (3.3) and (3.7), the scalar q can be calculated as: 

𝑞 = √
3

2
𝒔: 𝒔 = √

1

2
⌈(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + (𝜎𝑥𝑥 − 𝜎𝑧𝑧)

2 + (𝜎𝑧𝑧 − 𝜎𝑦𝑦)2⌉ + 3(𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2 + 𝜏𝑦𝑧
2) (3.9) 

Like stresses, strains are also expressed in p-q space. Therefore, the scalar deviatoric strain (𝜀𝑞), 

which is the counterpart of the 𝜺𝒅, can be written as: 

𝜀𝑞 = √
2

3
𝜺𝒅: 𝜺𝒅 =

1

3
√2⌈(𝜀𝑥𝑥 − 𝜀𝑦𝑦)

2 + (𝜀𝑥𝑥 − 𝜀𝑧𝑧)
2 + (𝜀𝑧𝑧 − 𝜀𝑦𝑦)2⌉ + 3(𝛾𝑥𝑦

2 + 𝛾𝑥𝑧
2 + 𝛾𝑦𝑧

2) (3.10) 

3.2.2 Classic Plasticity Theory 

3.2.2.1 Elasto-plasticity Formulation 

The main assumption in elastoplasticity is the decomposition of strain increments in elastic and 

plastic parts: 

𝜺̇ = 𝜺̇𝒆 + 𝜺̇𝒑 (3. 11) 

It was also mentioned that the strain tensor decomposes into volumetric and deviatoric parts, and 

so does the increments of strain: 
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𝜺̇ =
1

3
𝜀𝑣̇ ∙ 𝑰 + 𝜺𝒅̇ (3. 12) 

Therefore, volumetric and deviatoric components are each decomposed into elastic and plastic 

parts: 

𝜀𝑣̇ = 𝜀𝑣̇
𝑒 + 𝜀𝑣̇

𝑝
 (3. 13) 

𝜺𝒅̇ = 𝜺̇𝒅
𝒆 + 𝜺̇𝒅

𝒑
 (3. 14) 

𝜀𝑞̇ = 𝜀𝑞̇
𝑒 + 𝜀𝑞̇

𝑝
 (3. 15) 

The increments of the elastic strain rate are given by:  

𝜀𝑣̇
𝑒 =

𝑝̇

𝐾
 (3. 16) 

𝜺̇𝒅
𝒆 =

𝒔̇

2𝐺
 (3. 17) 

𝜀𝑞̇
𝑒 =

𝑞̇

3𝐺
 (3. 18) 

Rearrangement of the Equations (3.16), (3.17), and (3.18) will lead to: 

𝑝̇ = 𝐾 ∙ 𝜀𝑣̇
𝑒 = 𝐾(𝜀𝑣̇ − 𝜀𝑣̇

𝑝) (3. 19) 

𝑠̇ = 2𝐺 ∙ 𝜀𝑑̇
𝑒 = 2𝐺(𝜀𝑑̇ − 𝜀𝑑̇

𝑝) (3. 20) 

𝑞̇ = 3𝐺 ∙ 𝜀𝑞̇
𝑒 = 3𝐺(𝜀𝑞̇ − 𝜀𝑞̇

𝑝
) (3. 21) 

Where 𝐾 and 𝐺 are defined as the bulk and shear modulus, respectively, which are typically 

considered in critical state soil mechanics as: 

𝐾 =
𝑝 ∙ 𝑣0

𝜅
 (3. 22) 
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𝐺 =
3(1 − 2𝑣)

2(1 + 𝑣)
𝐾 (3. 23) 

Where 𝑣 is the Poison’s ratio, 𝑣0 = 1 + 𝑒0 is the initial specific volume, and e0 is the initial void 

ratio. Note that other equations for bulk and shear modulus are sometimes used. 

3.2.2.2 Formulation of Classical Plasticity 

3.2.2.2.1 Yield Surface and Hardening Variables 

In classical elastoplasticity, a yield surface (𝑓) limits the region in the stress space where the 

behavior of the material is perfectly elastic, and only elastic strains can develop (Figure 3.1). Plastic 

strains start developing when the stress state goes beyond the yield surface, which then moves so 

that the stress state is on the yield surface. As a result, the stress state can either be inside the yield 

surface or on the yield surface.  

 

Figure 3.1: Schematic of the yield surface and the elastic region (Wood, 2014) 

Mathematically, the general form of the yield surface can be written as: 

𝑓(𝝈, 𝒒𝒏) = 0 (3. 24) 

The yield surface is a function of a stress state (𝝈), and internal hardening variables (𝒒𝒏 =

(𝑞1, 𝑞2, … , 𝑞𝑛)), that define the position and the size of the yield surface. Note that the previously 

defined scalar-valued deviatoric stress q should not be mistaken with the vector 𝒒𝒏 consisting of 

different internal hardening variables. Internal hardening variables control how the yield surface 
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changes in shape, size, and position as plastic strains develop. There are three existing hardening 

rules that are typically used in constitutive models upon plastic straining: 

• Isotropic hardening rule, in which the yield surface increases in size but without a change 

of position of its center.  

• Kinematic hardening rule, in which the center of yield surface translates without a change 

of size. 

• Rotational and/or distortional hardening rule, in which the yield surface rotates and/or 

distorts. 

3.2.2.2.2 Consistency Condition 

The consistency condition is one of the main requirements of elastoplasticity based on which every 

single stress point should always be either inside or on the yield surface. Once the material has 

yielded, internal hardening variables are updated to increase the size and/or adjust the yield 

surface’s position so that the new stress point is on the yield surface. As a result, the yield function 

is constant (zero) upon plastic loading. The consistency condition and Kuhn Tucker loading-

unloading condition are usually used to solve equations in plasticity using the loading index or 

plastic multiplier 𝛾̇, which has also been referred to as (𝐿) in some references (Dafalias and 

Manzari, 2004; Dafalias et al., 2006):  

𝛾̇ =
1

𝐾𝑃
(𝑵: 𝝈̇) =

1

𝐾𝑃
(
𝜕𝑓

𝜕𝝈
: 𝝈̇) (3. 25) 

Where 𝑵 =
𝜕𝑓

𝜕𝝈
 is the loading direction. 𝛾̇ can be re-written in triaxial space (p-q space) as: 

𝛾̇ =
1

𝐾𝑝
(
𝜕𝑓

𝜕𝑝
𝑝̇ +

𝜕𝑓

𝜕𝑞
𝑞̇) (3. 26) 
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Where 𝐾𝑝 is the plastic modulus, which is generally formulated as: 

𝐾𝑝 =
𝜎̇

𝜀𝑝̇
 

The plastic modulus is also shown by: 

(3. 27) 

𝐾𝑝 = −
𝜕𝑓

𝜕𝑞𝑛
: 𝑞𝑛̅̅ ̅ (3. 28) 

Finally, the Prager consistency condition can be expressed mathematically as: 

𝛾̇𝑓̇(𝝈, 𝒒𝒏) = 0 (3. 29) 

This condition can be simplified as: 

𝑓̇ =
𝜕𝑓

𝜕𝝈
: 𝝈̇ +

𝜕𝑓

𝜕𝒒𝒏
: 𝒒𝒏̇ = 0 (3. 30) 

The Kuhn Tucker loading-unloading condition is also used to solve equations in plasticity and is 

given as: 

𝛾̇ ≥ 0, 𝑓(𝝈, 𝒒𝒏) ≤ 0 and 𝛾̇𝑓(𝝈, 𝒒𝒏) = 0 (3. 31) 

3.2.2.2.3 Associative and Non-Associative Flow Rules 

Plastic strain increments are generally defined in plasticity with a flow rule as: 

𝜺̇ = 〈𝛾̇〉𝑹 (3. 32) 

Where 〈 〉 denotes the McCauley brackets, which returns only positive values (i.e., 〈𝛾̇〉 =

max (0, 𝛾̇)). 𝑹 =
𝜕𝑔

𝜕𝝈
 is the normal to the plastic potential surface, g, which controls the direction 
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of the plastic strains. If 𝑔 = 𝑓 the flow rule is called an associated flow rule, meaning the plastic 

potential and the yield surface coincide, and their normals have the same direction.  

3.2.3 Critical State Concept 

Elasto-plasticity of soils is usually defined within the framework of critical state soil mechanics, 

which combines the consolidation response with the deviatoric response as a function of normal 

stress. The critical state is defined as a soil state in which the rate of change of deviatoric stress, 

mean effective stress, and the void ratio is zero upon further shearing: 

𝜕𝑞

𝜕𝜀𝑞
=

𝜕𝑝

𝜕𝜀𝑞
=

𝜕𝜐

𝜕𝜀𝑞
= 0 (3. 33) 

The stress states at which the critical state is reached define a critical state line (CSL) in 𝑝 − 𝑞 and 

𝜐 − 𝑝 spaces (𝜐 = 1 + 𝑒 refers to the specific volume). This line is a property of soil that does not 

depend on the stress state of the soil. A schematic CSL of soil is illustrated in p-q space and p-ν 

space in Figure 3.2. The final state of soil upon loading is on the CSL for every loading conditions. 

The soil stress path toward this line depends on drainage conditions (i.e., drained or undrained 

loading), types of loading (e.g., simple shear test or triaxial test), and the degree of soil 

consolidation (i.e., normally consolidated or overconsolidated).    

 

 

 

Figure 3.2: CSL in p-q (a) and p-ν (b) space (Wood, 1990) 

(a) (b) 
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3.3 Rate-independent Constitutive Models  

Up until now, there have been several soil constitutive models developed that are meant to capture 

the behavior of soils under specific conditions (e.g., static or cyclic loading, dry or saturated, etc.). 

Each model is based on different assumptions and, therefore, lead to precise results only if the 

model is being used in accordance with said assumptions. Most constitutive soil models use the 

critical state framework to predict the stress-strain behavior of soils under monotonic and/or cyclic 

loading. In the following subsection, some of the rate-independent constitutive models and their 

implementation are discussed. 

3.3.1 Modified Cam-Clay (MCC) 

This model is a modified version of the original Cam-Clay formulated by Roscoe and Schofield in 

1963. Cam-Clay can be considered as the platform of many advanced constitutive models in that 

most of them are developed based on the MCC`s framework. The main modification from the 

original Cam-Clay was made by Roscoe and Burland in 1968, in which the logarithmic curve of 

the yield surface was substituted for an elliptical one.    

MCC is an elastoplastic model with an elliptical yield surface defined in the triaxial space with the 

following function:  

𝑓 =
𝑞2

𝑀2 
+ 𝑝2 + 𝑝0𝑝 = 0 (3. 34) 

While in the multiaxial space, the yield surface is given by: 

𝑓 =
3

2𝑀2 
𝒔: 𝒔 + (𝑝 −

𝑝0

2
)2 − (

𝑝0

2
)2 = 0 (3. 35) 

Where 𝑝0 is a hardening variable that controls the size and the position of the yield surface, and M 

is the stress ratio at the critical state line (critical stress ratio). The yield surface of the MCC and 

the original Cam-clay, as well as the critical state line, are shown in p-q space in Figure 3.3. It is 

worth mentioning that the yield surface always has its apex on the critical state line, defined in p-

q space as a line with a slope of M. 
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Figure 3.3: The original and modified Cam-Clay in p-q space (Eslami, 2017) 

The MCC uses an associative flow rule, which means that the plastic potential surface is similar to 

the yield surface. Plastic volumetric and deviatoric strains are calculated according to the flow rule 

as: 

𝜀𝑣
𝑝 = 𝛾̇

𝜕𝑓

𝜕𝑝
= 𝛾̇(2𝑝 − 𝑝0) (3. 36) 

𝜀𝑞
𝑝 = 𝛾̇

𝜕𝑓

𝜕𝑞
= 𝛾̇

2𝑞

𝑀2
 (3. 37) 

This model follows both isotropic and kinematic hardening rules, which respectively means that 

the size and the center of the yield center change upon yielding. These changes are associated with 

a change in 𝑝0 which is given in this model by: 

𝑝̇0 =
𝜗 ∙ 𝑝0 ∙ 𝜀𝑣

𝑝̇

𝜆 − 𝜅
 (3. 38) 

This model is one of the most often used constitutive models in geotechnical engineering because 

of both its simplicity and its ability to simulate the behavior of clays accurately under monotonic 

loading. Figure 3.4 shows examples of undrained simulations using different OCRs. One of the 

drawbacks of this model is its unrealistic large elastic range. Also, at OCR=2, the model shows an 

unrealistic elasto perfectly plastic behavior due to the vertical stress path crossing the yield surface 
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at its apex. In addition, the post-peak strain softening that is typical of overconsolidated and/or 

sensitive clays could not be simulated using MCC.   

One of the big merits of the MCC is that it works with only 5 model parameters that all have a 

physical meaning:  

• The slope of the critical state line (M) which is related to the friction angle (𝜙′) as: 

𝑀 =
6sin (𝜙′)

3 − sin (𝜙′)
 (3. 39) 

• The slope of the isotropic normal consolidation line (NCL) in e-ln 𝑝′plane related to the 

compression index (𝐶𝑐): 

𝜆 =
𝐶𝑐

𝑙𝑛 10
 (3. 40) 

• The slope of the unloading-reloading line in e-ln 𝑝′plane related to the recompression index 

(𝐶𝑟): 

𝜅 =
𝐶𝑟

𝑙𝑛 10
 (3. 41) 

• 𝛤 or the specific volume of the CSL at 𝑝0 = 1. 

• Poisson’s ratio, 𝜈. 
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Figure 3.4: Simulations of the MCC with different OCRs (Yniesta, 2016). 

3.3.2 SANICLAY- Simple Anisotropic Clay Model 

SANICLAY is a plasticity model developed for the monotonic softening response of clays that 

considers the effect of soil anisotropy (Dafalias et al., 2006). The model uses a non-associative 

flow rule by defining a plastic potential surface other than the yield surface. As it was mentioned 

earlier, the normal to the plastic potential surface expresses plastic strains’ direction. The yield and 

plastic potential surfaces evolve according to a distortional and rotational hardening rule in p-q 

space based on the following expressions: 

𝑓 = (𝑞 − 𝑝 ∙ 𝛽)2 − (𝑁2 − 𝛽2)𝑝(𝑝0 − 𝑝) = 0 (3. 42) 

𝑔 = (𝑞 − 𝑝 ∙ 𝛼)2 − (𝑀2 − 𝛼2)𝑝(𝑝𝛼 − 𝑝) = 0 (3. 43) 
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The corresponding expressions for the volumetric and deviatoric plastic strain rates are obtained 

as follow using the flow rule: 

𝜀𝑣
𝑝̇ = 〈𝐿〉

𝜕𝑔

𝜕𝑝
= 〈𝐿〉𝑝(𝑀2 − 𝜂2) (3. 44) 

𝜀𝑞
𝑝̇ = 〈𝐿〉

𝜕𝑔

𝜕𝑞
= 〈𝐿〉2𝑝(𝜂 − 𝛼) (3. 45) 

Where 𝜂 = 𝑞/𝑝 is the stress ratio, and 𝐿 is the loading index. The model surfaces in p-q space are 

illustrated in Figure 3.5. 

 

Figure 3.5 SANICLAY Surfaces in triaxial stress space (Dafalias et al., 2006) 

𝛼 is a non-dimensional anisotropic variable controlling the degree of anisotropy, which is 

considered in the model by the rotation and distortion of the plastic potential surface. It also takes 

into account the coupling of deviatoric and volumetric plastic strain rates. 𝛽 and 𝑝0  are rotational 

and isotropic hardening variables of the yield surface, respectively. 𝑀 is the critical stress ratio, 

and N is a limiting constant similar to M. Both M and N serve as bounds for 𝛼 and 𝛽, respectively. 
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𝑝𝛼 adjust the size of the plastic potential surface. 𝑝𝑜, 𝛼, and 𝛽 are functions of plastic volumetric 

strain evolving according to the following formulations. 

𝑝0̇ = 〈𝐿〉𝑝0̅̅ ̅ = 〈𝐿〉(
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
)𝑝0̅̅ ̅(

𝜕𝑔

𝜕𝑝
) (3. 46) 

𝛼̇ = 〈𝐿〉𝛼̅ = 〈𝐿〉 (
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
)𝐶 (

𝑝

𝑝0
)

2

|
𝜕𝑔

𝜕𝑝
| |𝜂 − 𝑥 ∙ 𝛼|(𝛼𝑏 − 𝛼) (3. 47) 

𝛽̇ = 〈𝐿〉𝛽̅ = 〈𝐿〉 (
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
)𝐶 (

𝑝

𝑝0
)
2

|
𝜕𝑔

𝜕𝑝
| |𝜂 − 𝛽|(𝛽𝑏 − 𝛽) (3. 48) 

Finally, the loading index (𝐿) and plastic modulus (𝐾𝑝) are calculated by applying the consistency 

condition as follows: 

𝐿 =
1

𝐾𝑝
(
𝜕𝑓

𝜕𝑝
𝑝̇ +

𝜕𝑓

𝜕𝑞
𝑞̇) =

1

𝐾𝑝
𝑝[(𝑁2 − 𝜂2)𝑝̇ + 2(𝜂 − 𝛽)𝑞̇] (3. 49) 

𝐾𝑝 = −(
𝜕𝑓

𝜕𝑝0
𝑝0̅̅ ̅ +

𝜕𝑓

𝜕𝛽
𝛽̅) = 𝑝[(𝑁2 − 𝛽2)𝑝0̅̅ ̅ + 2(𝑞 − 𝑝0 ∙ 𝛽)𝛽̅] (3. 50) 

Based on these equations, the inward local movement of the yield surface occurs if 𝐾𝑝 is negative 

while an outward one occurs when 𝐾𝑝 is positive. The SANICLAY requires the calibration of eight 

constants, five of which are those of the MCC model (Table 3.1). 
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Table 3.1: Constants of the SANICLAY (Dafalias et al., 2006) 

 

 

Figure 3.6 shows the predictive ability of the model. The results show that the model can simulate 

the response of soils with high and low OCR values (OCR = 1–4) successfully. However, the 

disadvantage of the model is the lack of accounting for softening that occurs in some clays (Dafalias 

et al., 2006).  

 

Figure 3.6 Comparison of data and simulations for undrained plane strain compression tests on a 

clay using the SANICLAY model (Dafalias et al., 2006) 

3.3.3 SANICLAY-D: SANICLAY with Destructuration 

This model is a developed version of the SANICLAY model that accounts for destructuration by 

including undisturbed and remolded shear strength of clays associated with softening (Taiebat et 

al., 2010). Destructuration is defined by the authors of the model as “a sudden post-yield increase 
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in compressibility, or a post-peak decrease in strength under shearing”. In general, two types of 

destructuration are defined in this model: isotropic and frictional. Isotropic destructuration occurs 

due to the isotropic softening of the yield surface, and frictional destructuration is due to the 

reduction of the critical stress ratio. For incorporating the effect of destructuration, Taiebat et al. 

(2010) introduced the isotropic (𝑆𝑖) and frictional (𝑆𝑓) structuration factors. These factors and their 

rates of changes (𝑆̇𝑖, 𝑆̇𝑓) are expressed as: 

𝑆𝑖 = 1 + (𝑆𝑖0 − 1)exp (
−𝑘𝑖(1 + 𝑒)𝜀𝑑

𝑝

𝜆 − 𝜅
) (3. 51) 

𝑆𝑓 = 1 + (𝑆𝑓0 − 1)exp (
−𝑘𝑓(1 + 𝑒)𝜀𝑑

𝑝

𝜆 − 𝜅
) (3. 52) 

𝑆̇𝑖 = −𝑘𝑖(
1 + 𝑒

𝜆 − 𝜅
)(𝑆𝑖 − 1)𝜀𝑑

𝑝̇
 (3. 53) 

𝑆𝑓̇ = −𝑘𝑓(
1 + 𝑒

𝜆 − 𝜅
)(𝑆𝑓 − 1)𝜀𝑑

𝑝̇
 (3. 54) 

Where 𝜀𝑑
𝑝̇
 is a destructuration plastic strain rate which distributes the increments of volumetric (𝜀𝑣

𝑝̇
) 

and deviatoric (𝜀𝑞
𝑝̇
) plastic strain to destructuration rates (𝑆̇𝑖 and 𝑆̇𝑓), since destructuration develop 

as plastic strains do: 

𝜀𝑑
𝑝̇ = √(1 − 𝐴)𝜀𝑣

𝑝̇2
+ 𝐴𝜀𝑞

𝑝̇  
(3. 55) 

 

In which A is a distributing material constant. In this constitutive model, the effect of 

destructuration is expressed by changing 𝑝0, M, and N of the SANICLAY model to 𝑝𝑜
∗, 𝑀∗, and 𝑁∗ 

by means of the two isotropic (𝑆𝑖) and frictional destructuration (𝑆𝑓) factors. 

𝑝𝑜
∗ = 𝑆𝑖 ∙ 𝑝0 (3. 56) 

𝑁∗ = 𝑆𝑓 ∙ 𝑁 (3. 57) 
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𝑀∗ = 𝑆𝑓 ∙ 𝑀 (3. 58) 

The evolution rates of these variables are as follow: 

𝑝𝑜
∗̇ = 𝑆̇𝑖 ∙ 𝑝0 + 𝑆𝑖 ∙ 𝑝0̇ = 〈𝐿〉(𝑆̇𝑖 ∙ 𝑝0 + 𝑆𝑖 ∙ 𝑝0̅̅ ̅) = 〈𝐿〉𝑝𝑜

∗̅̅ ̅ (3. 59) 

𝑁∗̇ = 𝑆𝑓̇ ∙ 𝑁 = 〈𝐿〉(𝑆𝑓̅ ∙ 𝑁) = 〈𝐿〉𝑁∗̅̅̅̅  (3. 60) 

𝑀∗̇ = 𝑆𝑓̇ ∙ 𝑀 = 〈𝐿〉(𝑆𝑓̅ ∙ 𝑀) = 〈𝐿〉𝑀∗̅̅ ̅̅  (3. 61) 

It is worth mentioning that assigning 1 for each of the 𝑆𝑖 or 𝑆𝑓 makes the corresponding 

destructuration mechanism inactive and turns the model to the SANICLAY model. Therefore, the 

model’s yield and plastic potential surfaces are similar to the SANICLAY’s with the difference that 

the destructuration mechanism is included by substitution of M, N, and 𝑝0 with 𝑀∗, 𝑁∗, and 𝑝𝑜
∗, 

respectively:  

𝑓 = (𝑞 − 𝑝 ∙ 𝛽)2 − (𝑁∗2 − 𝛽2)𝑝(𝑝𝑜
∗̅̅ ̅ − 𝑝) = 0 (3. 62) 

𝑔 = (𝑞 − 𝑝 ∙ 𝛼)2 − (𝑀∗2 − 𝛽2)𝑝(𝑝𝛼 − 𝑝) = 0 (3. 63) 

In addition, 𝑝0̇, 𝛼̇, and 𝛽̇ are calculated accordingly to incorporate the effect of destructuration:  

𝑝0̇ = 〈𝐿〉 (
1 + 𝑒

𝜆 − 𝜅
) 𝑝0

𝜕𝑔

𝜕𝑝
= 〈𝐿〉 (

1 + 𝑒

𝜆 − 𝜅
)𝑝0 ∙ 𝑝(𝑀∗2 − 𝜂2) = 〈𝐿〉𝑝0̅̅ ̅ (3. 64) 

𝛼̇ = 〈𝐿〉(𝛼̅ + 𝛼̅𝑓) = 〈𝐿〉𝛼̅𝑓
∗ = 〈𝐿〉 [(

1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝

𝑝0
∗
)
2

|
𝜕𝑔

𝜕𝑝
| |𝜂 − 𝑥𝛼 ∙ 𝛼|(𝛼𝑏 − 𝛼) +

𝑆𝑓̅

𝑆𝑓
𝛼] (3. 65) 

𝛽̇ = 〈𝐿〉(𝛽̅ + 𝛽̅𝑓) = 〈𝐿〉𝛽̅𝑓
∗
= 〈𝐿〉 [(

1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝

𝑝0
∗
)
2

|
𝜕𝑔

𝜕𝑝
| |𝜂 − 𝑥𝛽 ∙ 𝛽|(𝛽𝑏 − 𝛽) +

𝑆𝑓̅

𝑆𝑓
𝛽] (3. 66) 

The model uses the same concept for obtaining loading index and plastic modulus, but comparing 

to SANICLAY, 𝑁̅∗ is a new term which is added to the plastic modulus formulation:  
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𝐾𝑝 = −(
𝜕𝑓

𝜕𝑝0
∗
𝑝̅0

∗ +
𝜕𝑓

𝜕𝑁∗
𝑁̅∗ +

𝜕𝑓

𝜕𝛽
𝛽̅∗) (3. 67) 

Model constants are presented in Table 3.2. Except for the SANICLAY constants, three new 

constants are added to this model. 𝑘𝑖 and 𝑘𝑓 describe the rate of isotropic and frictional 

destructuration, and A is a parameter that distributes the effect of destructuration to volumetric and 

deviatoric plastic strain. 

Table 3.2: Constants of the SANICLAY with destructuration (Taiebat et al., 2010) 

 

 

One could activate isotropic and/or frictional destructuration alone or in combination depending 

on the expected intensity of the softening response of the soil. Figure 3.7 shows the performance 

of the model for a combination of different destructuration patterns. Sudden softening response 

after the peak shear resistance, which is expected from the model, is clear in this figure. Authors 

believe that when a unique bound for 𝛼 and 𝛽 is used, i.e., N=M, or when an associative flow rule 

is used, i.e., f=g, the model shows fair response while the best performance of the model may be 

achieved when it is used as a two-surface model with N different than M. One of the drawbacks of 

the model is that the calibration of the model for a structured clay is not an easy task, especially as 

a truly intact sample may be impossible to obtain (Taiebat et al., 2010). 
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Figure 3.7 Illustration of the effects of isotropic and frictional destructuration mechanism 

independently and in combination. (Taiebat et al., 2010) 

3.3.4 SANICLAY-B: Bounding Surface SANICLAY Model 

The bounding surface SANICLAY model (SANICLAY-B) was specifically developed to simulate 

the response of clays under cyclic loading. To do so, this model uses the yield surface of the 

SANICLAY models (Dafalias et al., 2006; Taiebat et al., 2010) as its bounding surface (Seidalinov 

and Taiebat, 2014). Using the bounding surface concept allows plastic strains to develop under 

both monotonic and/or cyclic loadings for all the stress states inside the bounding surface. In 

particular, such an algorithm allows for nonlinearities to develop at low strains. The model uses a 

radial mapping rule to project the stress point inside the bounding surface (q, p) to the 

corresponding image point on it (𝑝̅, 𝑞̅) from the projection center (𝑝𝑐, 𝑞𝑐). According to the radial 

mapping rule, the image stress is found by:   

𝑝̅ = 𝑝𝑐 + 𝑏(𝑝 − 𝑝𝑐) (3. 68) 

𝑞̅ = 𝑞𝑐 + 𝑏(𝑞 − 𝑞𝑐) (3. 69) 

Where b is a similarity ratio representing the distance between the loading surface f=0 and the 

bounding surface F=0. The loading surface, which is not explicitly defined, is a surface that has a 

center located at the projection center (PC = (𝑝𝑐, 𝑞𝑐)) that expands and shrinks in a way that the 

actual stress point (𝑝̅, 𝑞̅) always stays on it. The bounding surface, which represents the locus of 
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the ‘image’ stress (𝑝̅, 𝑞̅), is a rotated and distorted ellipse, like previous versions of the model 

(Figure 3.8).  

 

Figure 3.8 Plastic potential, bounding, and loading surfaces of the SANICLA-B model in the p-q 

stress space (Seidalinov and Taiebat, 2014). 

The model follows a non-associative flow rule, where the plastic strain increment direction is 

parallel to the gradient of the plastic potential surface at the image stress point. The bounding and 

plastic potential surfaces are mathematically given in the triaxial stress space as: 

𝑓 = (𝑞̅ − 𝑝̅ ∙ 𝛼)2 − (𝑁2 − 𝛼2)𝑝̅(𝑝0 − 𝑝̅) = 0 (3. 70) 

𝑔 = (𝑞̅ − 𝑝̅ ∙ 𝛼)2 − (𝑀2 − 𝛼2)𝑝̅(𝑝𝛼 − 𝑝̅) = 0 (3. 71) 

Where 𝑝0, and 𝛼 are isotropic, related to density change, and rotational, related to anisotropy, 

hardening variables, respectively. The former accounts for the size, and the latter for the rotation 

(and/or distortion) of the bounding surface. They are obtained from the hardening rules mentioned 

for the SANICLAY with the destructuration model. M and N are the critical stress ratio and the stress 

ratio at the peak of the bounding surface, respectively. They also serve as bounds for the evolution 

of 𝛼 of the bounding surface and plastic potential, respectively. It means that the bounding surface 
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F=0 and the plastic potential surface g =0 use an identical rotational variable (𝛼), but with different 

limiting bounds of M, and N respectively.  

The implicitly defined loading surface in Figure 3.8 is similar to the bounding surface with the 

similarity ratio of b and a homology center at PC (𝑝𝑐, 𝑞𝑐). This ratio (b) varies from 1 to ∞ that 

corresponds to when the current stress reaches the bounding surface (𝑝 = 𝑝̅, 𝑞 = 𝑞̅) or the 

projection center (𝑝 = 𝑝𝑐, 𝑞 = 𝑞𝑐), respectively. 

Using a fixed PC does not ensure that the PC is always inside the bounding surface. Therefore, the 

authors adopted a moving PC to ensure that it is positioned inside the bounding surface. It 

guarantees to have unique image stress (𝑝̅, 𝑞̅) and solves the problem of having overdamping 

associated with using a fixed projection canter (Seidalinov, 2012). It is also required that the 

projection center be updated to the current stress (𝑝, 𝑞) upon any stress reversal. A stress reversal 

is defined as when the loading index L becomes lower than 0. This allows the model to predict 

plastic strains even at the very early stages of cyclic loading. The proposed evolution rule aiming 

to maintain a constant relative location of the projection center with the bounding surface is 

mathematically expressed by: 

𝑝𝑐̇ =
𝑝𝑐

𝑝0
𝑝0̇ (3. 72) 

𝑞𝑐̇ =
𝑞𝑐

𝑝0
𝑝0̇ + [𝑝𝑐 − 𝑋

𝑝𝑐(𝑝0 − 𝑝𝑐)𝛼

[(𝑁2 − 𝛼2)𝑝𝑐(𝑝0 − 𝑝𝑐)]
1

2⁄
] 𝛼̇ (3. 73) 

𝑋 = (𝑞𝑐 − 𝑞𝑎)/(𝑞𝑏 − 𝑞𝑎) (3. 74) 

In the bounding surface concept, in order to have plastic strains even if the stress point is inside the 

bounding surface, the plastic modulus 𝐾𝑝 at the actual stress state (p, q) is set proportional to a 

bounding plastic modulus 𝐾̅𝑝 at the corresponding image stress (𝑝̅, 𝑞̅) and the Euclidian distance 𝛿 

between (𝑝̅, 𝑞̅) and (p, q) and r (between (𝑝̅, 𝑞̅) and (𝑝𝑐, 𝑞𝑐)):  

𝐾𝑝 = 𝐾̅𝑝 +
ℎ ∙ 𝑝0

3 ∙ 𝛿

〈𝑟 − 𝑠 ∙ 𝛿〉
= 𝐾̅𝑝 +

ℎ ∙ 𝑝0
3

〈
𝑏

𝑏 − 1
− 𝑠〉

 (3. 75) 
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𝐾̅𝑝 = −(
𝜕𝐹

𝜕𝑝0
𝑝̅0 +

𝜕𝐹

𝜕𝛼
𝛼̅) (3. 76) 

ℎ =
ℎ0

1 + 𝑑
; 𝑑̇ = 𝑎𝑑 |𝜀𝑑

𝑝̇| (3. 77) 

Where h and d are positive shape hardening and damage parameters, respectively. ℎ0 is the initial 

value of h, and 𝑎𝑑 is a material constant. Also, 𝑠 ≥ 1 indirectly defines the size of the elastic region 

as a surface similar to the bounding surface with the PC its center of similarity. Overall, the model 

requires 11 model constants (Table 3.3), 2 of which are those related to the bounding surface 

formulation (ℎ0 and 𝑎𝑑).  

Table 3.3: Constants of the SANICLAY-B (Seidalinov and Taiebat, 2014) 

 

 

The model only employs the isotropic destructuration mechanism, out of two mechanisms 

introduced by Taiebat et al. (2010), meaning that the frictional destructuration mechanism is not 

included in this version of the model. An example of simulations of the model is illustrated in 

Figure 3.9. The model renders a realistic cyclic stress-strain response; however, the model shows 

an unrealistic effective stress lock-up that occurs after a few cycles of loading. This hinders the 

model’s ability to realistically predict the pore water pressure build-up of a cyclically loaded soil.  
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Figure 3.9  The SANICLAY-B model simulations (Seidalinov and Taiebat, 2014)  

3.3.5 SANICLAY-H: SANICLAY with a Hybrid Flow Rule 

The radial mapping rule that is used to find the image stress by projecting the current stress point 

on the bounding surface from a projection surface is referred to as the image stress flow rule by 

Shi (2016) and Shi et al. (2018). In their work, the use of an image stress flow rule is substituted 

by a hybrid flow rule to improve the model’s ability to simulate the excess pore water pressure 

build-up. The new hybrid flow rule is using a plastic strain operator (flow rule) that depends not 

only on flow characteristics of the image stress, but also on those of the current stress: 

𝑅 = 𝑅𝑖 + 𝑅𝑐 (3. 78) 

Where R is the direction of plastic strains which is decomposed into 𝑅𝑖 and 𝑅𝑐 that are plastic 

directions at the image (𝑝̅, 𝑞̅) and current stress (𝑝, 𝑞) point, respectively, as shown in  Figure 3.10 

schematically. 
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Figure 3.10 Schematic diagram of plastic flow vectors at the current stress (Rc) and image stress 

(Ri) (Shi et al., 2018).  

The new hybrid flow rule proposes that the image and the current stress point gradients of the 

volumetric plastic flow direction (𝑅𝑣
𝑖  and 𝑅𝑣

𝑐) as well as the image stress point gradient of the 

deviatoric plastic flow direction (𝑅𝑑
𝑖 ) be used to find the plastic strains as follows:  

𝑅𝑣 = 𝑅𝑣
𝑖 ∙ 𝑔𝑖 + 𝑅𝑣

𝑐(1 − 𝑔𝑖) (3. 79) 

𝑅𝑑 = 𝑅𝑑
𝑖  (3. 80) 

Where 𝑔𝑖 is a distribution variable which is given by: 

𝑔𝑖 = (
1

𝑏
)𝑤 (3. 81) 

Where 𝑤 is a material constant coupling the relative contribution of 𝑅𝑣
𝑖  and 𝑅𝑣

𝑐. The special case 

of the model, which is the image stress flow rule of Seidalinov and Taiebat (2014), is obtained 

when 𝑤 = 0. b is the same similarity ratio introduced by Seidalinov and Taiebat (2014). As it was 

mentioned in the previous section, the two limits of this ratio (b) are 1 and ∞ that happens when 

the current stress is on the bounding surface (𝑝 = 𝑝̅, 𝑞 = 𝑞̅) and on the projection center (𝑝 = 𝑝𝑐, 
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𝑞 = 𝑞𝑐), respectively. In addition, the projection center is updated to the current stress point at 

every stress reversal. Therefore, it means that at stress reversals, b takes a large value, 𝑔𝑖 tends to 

be zero, and as a result, the current stress component of the volumetric plastic flow direction (𝑅𝑣
𝑐) 

plays a key role in developing plastic strains. The opposite occurs when b=1, where the current 

stress and the image stress coincide. In this case, the effect of the image stress component of the 

volumetric plastic flow direction (𝑅𝑣
𝑖 ) to develop plastic strains is more pronounced.      

Building upon SANICLAY-B, the plastic potential of that is also used for this model. The 

volumetric (𝑅𝑣
𝑖 ) and deviatoric (𝑅𝑑

𝑖 ) components of the plastic flow direction at image stress as 

well as the volumetric component of the plastic flow direction at the current stress (𝑅𝑣
𝑐)  are given 

as:  

𝑅𝑣
𝑖 =

𝜕𝑔

𝜕𝑝̅
= 𝑝̅(𝑀2 − 𝜂̅2) (3. 82) 

𝑅𝑑
𝑖 =

𝜕𝑔

𝜕𝑞̅
= 2𝑝̅(𝜂̅ − 𝛼) (3. 83) 

𝑅𝑣
𝑐 = 𝑝(𝑀2 − 𝑠𝑙 ∙ 𝜂2) (3. 84) 

where 𝜂̅ is the image stress ratio (𝜂̅ =
𝑞̅

𝑝̅
), and 𝑠𝑙 a variable that alternates between 1 and -1 

depending on the loading direction and the stress ratio. Besides the applied hybrid plastic flow rule, 

the model benefits from the new evolution rule for the projection center update, which is worth 

describing. In the SANICLAY bounding surface model, the evolution rule is based on the 

assumption that 𝑝0 or 𝛼 changes separately. To modify that, the model proposes substitutions for 

the projection center (𝑝𝑐, 𝑎𝑐) update that may consider the simultaneous change of 𝑝0 or 𝛼:  

𝑝𝑐̇ =
𝑝𝑐

𝑝0
𝑝0̇ (3. 85) 

𝑞𝑐̇ =
𝑞𝑐

𝑝0
𝑝0̇ +

𝑁𝑐
2 ∙ 𝑝𝑐 − 𝛼 ∙ 𝑞𝑐

𝑁𝑐
2 − 𝛼2

𝛼̇ (3. 86) 
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The performance of the model is shown in Figure 3.11. As it is clear from this figure, the 

modifications of this model have resulted in capturing well the butterfly shape of the stress path, 

and as a result, the excess pore water pressure build-up. 

 

Figure 3.11 Illustration of the bounding surface and the damage parameter effects in the 

simulation of undrained cyclic triaxial loading (Shi et al., 2018) 

Although the model has improved the SANICLAY model family's predictive capability, it lacks 

some of the main features for clays described in the literature. One of the model's underlying 

limitations is that it does not consider time rate effects crucial to simulate clay’s behavior under 

monotonic and cyclic loadings.This model uses 17 model constants, which are summarised along 

with definitions in Table 3.4. 

Table 3.4: Parameters of the model (Shi et al., 2018) 
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3.3.6 Dafalias and Manzari (2004) (DM04): 

This model is a modified and improved version of the model proposed by Manzari and Dafalias 

(1997). This model is formulated in p-q and full stress spaces for simulations of both monotonic 

and cyclic responses of sands. The most interesting feature of the model is that it considers the 

effect of fabric changes upon the dilation. The model is formulated in terms of the stress ratio (𝜂 =

𝑞

𝑝
)  and uses 4 different surfaces, which are lines (i.e., stress ratios) in p-q space: yield, critical, 

dilatancy, and bounding lines, which are illustrated in Figure 3.12. The main framework of this 

model is made such that only a change of stress ratio can cause plastic strains, and a loading 

condition resulting in no change in stress ratio will only develop elastic strains. 

 

Figure 3.12: Schematic of the yield, critical, dilatancy, and bounding lines in p-q space (Dafalias 

and Manzari, 2004) 

The yield surface of the model in p-q space is given by: 

𝑓 = |𝜂 − 𝛼| − 𝑚 = 0 (3. 87) 

The yield surface geometrically represents a wedge in p-q space inside which only elastic strains 

occur. 𝛼 is the center of the yield surface or slope of the middle line of the elastic wedge, and 𝑚 

represents the width of the elastic wedge.  



47 

 

         

 The model uses a non-associative flow rule. The deviatoric and volumetric plastic strain 

increments formulation are postulated as: 

𝜀𝑞
𝑝̇ =

𝜂̇

𝐻
 (3. 88) 

𝜀𝑣
𝑝̇ = 𝑑 |𝜀𝑞

𝑝̇| (3. 89) 

Based on these equations, the plastic deviatoric strain increment (𝜀𝑞
𝑝̇
) depends on the increment of 

stress ratio (𝜂̇) and the plastic modulus (𝐻). The increment of plastic volumetric strain (𝜀𝑣
𝑝̇
) is 

associated directly with the plastic deviatoric strain increment (𝜀𝑞
𝑝̇
) via the dilatancy parameter (𝑑). 

𝐻 and 𝑑 are proportional to the distance of the stress ratio (𝜂) with bounding (𝑀𝑏) and dilatancy 

(𝑀𝑑) stress ratios in the contraction and dilation phase of loading, respectively: 

𝐻 = ℎ(𝑀𝑏 − 𝜂) (3. 90) 

𝑑 = 𝐴𝑑(𝑀𝑑 − 𝜂) (3. 91) 

The values of 𝑀𝑏 and 𝑀𝑑 are controlled by the state parameter, which is defined as the distance 

between the void ratio at the current stress point (𝑒) and that at the critical state line (𝑒𝑐) in the e-p 

space: 

𝜓 = 𝑒 − 𝑒𝑐 (3. 92) 

Which gives 𝑀𝑏 and 𝑀𝑑 as:  

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝(−𝑛𝑏 ∙ 𝜓)  (3. 93) 

𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝(𝑛𝑑 ∙ 𝜓) (3. 94) 

Where 𝑛𝑏 and 𝑛𝑑are positive model constants and h and 𝐴𝑑 are functions of the state parameter. 

The summary of all model equations is provided in Table 3.5. Also, the model uses 15 different 

constants that are shown in Table 3.6. 
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In Figure 3.13, the results of monotonic simulations of the model are compared with those obtained 

from undrained compression tests on Toyoura sand at different effective stress levels and void 

ratios. As it can be observed, the contractive and dilative behavior of the soil, as well as the peak 

shear strength, is reasonably well predicted by this model. 

Table 3.5: Summary of the Dafalias and Manzari model’s equations (Dafalias and Manzari, 2004) 
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Table 3.6: Summary of the model constants (Dafalias and Manzari, 2004) 

 

 

 

Figure 3.13: Numerical and experimental results of undrained compression tests on Toyoura sand 

at different effective confining pressures and initial void ratios (Dafalias and Manzari 2004). 
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In Figure 3.14, the model performance in simulating a cyclic triaxial test is compared with 

experimental data. Although this simulation is not as accurate as the monotonic counterparts, the 

model has been shown to capture the general trend of sands behavior well in terms of stress reversal 

and associated changes from dilation to contraction and vice versa.  

  

Figure 3.14: Simulation and experiment results for Toyoura sand (Dafalias and Manzari 2004).  

3.3.7 PM4SAND: Plasticity Model for Sands 

Boulanger (2010) published the first version of the plasticity model for sand (PM4SAND) in 2010. 

This model is based on the Dafalias and Manzari model, and similarly, it is a stress ratio-based 

model cast within the critical state framework and the bounding surface plasticity. Since the earlier 

version of the model, it has been modified several times to improve the model’s ability to predict 

sands' cyclic response under cyclic loadings. One of the emphases in this model is that in its 

simplest application, the model only requires three input parameters, which are soil relative density, 

the shear modulus coefficient, and the contraction rate parameter. In this section, the last version 

of the model published by Boulanger and Ziotopoulou (2017, version 3.1) will be briefly discussed.  

The PM4SAND model is developed to be only in terms of the in-plane stresses to simplify the 

model and reduce the computations and corresponding time required for solving complex 

engineering problems. The yield surface of the PM4SAND model is expressed in terms of the back-

stress ratio, 𝛼: 

f = √(𝑟 − 𝛼): (𝑟 − 𝛼) − √1/2𝑚 (3. 95) 
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This expression implies that the yield surface is a cone in the stress space where the back-stress 

ratio and elastic parameter, 𝑚, defines the center and radius of the cone, respectively, as shown in 

Figure 3.15. 

 

Figure 3.15: Schematic of the bounding, dilatancy, and yield surfaces on the stress-ratio plane 

Boulanger and Ziotopoulou (2017, version 3.1). 

The volumetric (𝜺𝑣
𝑝̇
) and deviatoric (𝜺𝑑

𝑝̇
) increments of the plastic strains are expressed as:  

𝜺𝑑
𝑝̇ =< 𝐿 > 𝑹′  (3. 96) 

𝜀𝑣
𝑝̇ =< 𝐿 > 𝐷 (3. 97) 

Where D is the dilatancy and 𝑹′ is the deviatoric component of the plastic strain direction, 𝑹, which 

is expressed as: 

𝑹 = 𝒏 +
1

3
𝐷 ∙ 𝑰  (3. 98) 

Where 𝑰 is the identity tensor, and 𝒏 is the unit normal to the yield surface. It should be noted that 

one of the applied changes to this model compared to the DM04 is the exclusion of the Lode angle 

dependency, meaning that the same friction angles are used in compressive and extension loading. 

Employing a no Lode angle dependency assumption in this model implies that 𝑹′ = 𝒏. Although 
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the Lode angle independency has simplified the model and its implementation, it brings the 

responsibility of selecting a representative friction angle to the user  

Similar to the yield surface, bounding and dilatancy surfaces are also conical-shape surfaces in the 

stress space, which are mathematically shown in terms of back stress ratios as:  

𝛼𝑏 = √1
2⁄ [𝑀𝑏 − 𝑚]𝑛 (3. 99) 

𝛼𝑑 = √1
2⁄ [𝑀𝑑 − 𝑚]𝑛 

(3. 100) 

Where 𝑀𝑏and 𝑀𝑑 are bounding and dilatancy ratios which are related to the critical state, 𝑀 . 

The bounding and dilatancy ratios are associated with the critical state line via the relative state 

parameter index, 𝜉𝑅, which is defined in the model using the empirical Bolton’s dilatancy 

relationship (Bolton, 1986). Based on this relationship 𝐷𝑅,𝑐𝑠, which is the relative density at the 

critical state, is calculated using Bolton parameters, 𝑄 and 𝑅 as:   

𝐷𝑅,𝑐𝑠 =
𝑅

𝑄 − ln (100
𝑝
𝑃𝐴

)
 (3. 101) 

Where 𝑃𝐴 is the atmospheric pressure. One of the improvements of the PM4SAND compared to the 

DM04 is the modification of the shear modulus formulation to be only dependent on one constant, 

i.e. 𝐺0, but not both 𝐺0 and void ratio, 𝑒, that was the case in the DM04 model. In fact, the authors 

of the model believe that confining stress has more effect on 𝐺 than the void ratio does. In addition, 

removing 𝑒 eases calibration purposes. Instead, two other factors are added to the shear modulus 

formulation to better predict the soil hysteretic stress-strain response at large shear strains where 

liquefaction happens. The model performance on simulating a cyclic direct simple shear test on 

sands with three different relative densities of 0.35, 055, and 0.75% is shown in Figure 3.16.  
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Figure 3.16: Undrained cyclic DSS loading response of PM4SAND for sands with three different 

relative densities Boulanger and Ziotopoulou (2017, version 3.1). 

This figure shows that the hysteresis loops and the stress path response can be simulated closely to 

what is expected for sands (shown in the literature review). The sharp hysteresis loops, the ability 

to predict the butterfly loops when reaching the critical state line, and the contractive and dilative 

behavior under cyclic loading are the main features that the model could predict very well.   
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3.3.8 PM4SILT: Plasticity Model for Silts 

The PM4Silt model has been developed by Boulanger and Ziotopoulou (2018) for geotechnical 

cyclic applications of low plasticity silts and clays. The model is cast in the same framework as the 

PM4Sand model (version 3), and therefore, shares several features with that model. Like the 

PM4SAND, the PM4SILT is a stress-ratio controlled model that has been framed in a bounding 

surface plasticity and critical state concept. Improvements to the model have been made such that 

the model predicts the undrained cyclic and monotonic response of low to non-plastic silts with 

high precision. One of the main emphases in the model that also holds for the PM4SAND is that 

the model is pre-calibrated so that the practitioners may use the model by only providing three 

input parameters that are: the undrained shear strength ratio (or undrained shear strength), the shear 

modulus coefficient, and the contraction rate parameter. However, assigning different values other 

than default values to the model's internal or secondary parameters is possible if desired by the 

user.  

PM4SILT shares the same yield, bounding, and dilatancy surfaces as well as the same expressions 

for the volumetric and deviatoric plastic strain increments with PM4SAND. The main difference 

between this model with PM4SAND is the way by which the critical state is employed. The state 

parameter, which calculates the difference between the current void ratio (𝑒 ) and the void ratio at 

the critical state line (𝑒𝑐𝑠) is adopted in this model from the work of Been and Jefferies (1985) in 

which (𝑒𝑐𝑠) is calculated  by the following expression: 

𝑒𝑐𝑠 = Γ − 𝜆 ⋅ 𝑙𝑛 (
𝑝

1𝑘𝑃𝑎
) (3. 102) 

This expression implies a linear critical state line in void ratio versus the natural logarithm of mean 

effective stress space with a slope of 𝜆 and an intercept of Γ when 𝑝′ = 1 𝑘𝑃𝑎. 

The model uses the same bounding, 𝑀𝑏, dilatancy, 𝑀𝑑, and critical stress, 𝑀 , surfaces that are 

incorporated in the PM4SAND model. Similar to the PM4SAND model, reaching the critical state 

causes the bounding and dilatancy surfaces to collapse onto the critical stress surface. 

The performance of the model to simulate cyclic direct simple shear tests on specimens with 

different normalized strength ratios (S𝑢,𝑐𝑠/𝜎′𝑣𝑐) of 0.25, 0.5, and 0.75 are plotted in Figure 3.17. 
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The model’s simulations show that it could fairly simulate the cyclic response of low plasticity silts 

and clays.  

 

 

 

Figure 3.17: Undrained cyclic DSS loading response of PM4SILT for silt with three different 

normalized strength ratios Boulanger and Ziotopoulou (2018). 

3.4 Rate-dependent Constitutive Models  

All the discussed models in the previous section were rate-independent models. To consider the 

time-dependency of the soil, it is crucial to use a time-dependent constitutive model. Time and time 
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dependency are usually recognized as creep, stress relaxation, and strain-rate effects related to the 

soil skeleton's viscosity (Liingaard et al. 2004). A wide range of constitutive models has been 

developed so far to capture the time dependency of soils, among which the general stress-strain-

time models have received the most attention. These models are mostly given in terms of the 

incremental forms and include a wide range of time-dependent and viscoelastic-viscoplastic 

models (Karim and Gnanendran, 2014).  

Perzyna’s (1963) theory of viscoplasticity is one of the most popular propositions used for 

incorporating time or rate effects in soil plasticity. According to this theory, the total strain 

increments 𝜺̇ is decomposed into a time-independent elastic 𝜺̇𝒆 part and an irreversible and time-

dependent (viscoplastic) 𝜺̇𝒗𝒑 part:  

𝜺̇ = 𝜺̇𝒆 + 𝜺̇𝒗𝒑 (3. 103) 

A static loading surface (𝑓𝑠) as well as a dynamic loading surface (𝑓𝑑) are used in Perzyna’s theory 

to calculate elastic and viscoplastic strain increments. The static loading surface represents the 

soil's time-independent behavior, while the dynamic loading surface represents that of the time-

dependent. In other words, elastic strains occur inside the static loading surface (SLS) while 

viscoplastic strains may develop anywhere inside, on, or outside the static loading surface with the 

following expression:  

𝜺̇𝒗𝒑 = 𝜇. 〈𝜑(𝑓)〉.
𝜕𝑔

𝜕𝝈
 (3. 104) 

Where 𝜇 is the fluidity parameter, and g is the viscoplastic potential surface, which has the same 

direction as the dynamic loading surface (DLS), if an associate flow rule is used. 𝜑(𝑓) is called the 

overstress or excess stress function, which is a distance between static and dynamic loading 

surfaces. In fact, the distance between static and dynamic loading surfaces, or the departure from 

the static loading surface, produces the viscoplastic increments. Different components of Perzyna’s 

theory are schematically demonstrated in Figure 3.18. Most of the viscoplastic constitutive models 

use Perzyna’s theory with different relationships for the overstress function 𝜑(𝑓) (Adachi and Oka, 

1982; Shahrour and Meimon, 1995; Rezania et al., 2016) 
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Figure 3.18: Schematic of the static and dynamic loading surfaces, elastic and viscoplastic 

regimes in Perzyna’s model (Karim and Gnanendran, 2014) 

According to Perzyna’s theory, the overstress function, 𝜑(𝑓),  produces viscoplastic strains only 

if the elastic nucleus, 𝑓, is greater than zero. Therefore, the state of the soil inside the elastic nucleus 

does not develop viscoplastic deformation. This criterion can be expressed as: 

〈𝜑(𝑓)〉 = {
𝜑(𝑓)   𝑖𝑓 𝜑(𝑓) ≥ 0

0         𝑖𝑓 𝜑(𝑓) < 0
 (3. 105) 

In the rest of the section, some of the recent visco-plastic models are discussed by mainly focusing 

on capturing the stress or strain rate dependency, while creep is also covered as a by-product. 

3.4.1 A Visco-plastic SANICLAY Model 

Rezania et al. (2006) introduced a model for clays to account for rate dependency, soil anisotropy, 

consolidation state, and destructuration. For this purpose, Perzyna’s theory of viscoplasticity is 

anchored to the SANICLAY framework. Therefore, the model employs a rotated elliptical surface 

in the stress space, similar to that of the SANICLAY model family, as the static loading surface. 

Due to the application of an associated flow rule, the dynamic loading surface, which shares the 

same shape as the static loading surface, functions as the visco-plastic potential function in this 

model. The static and dynamic loading surfaces are shown in Figure 3.19.    
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Figure 3.19: Schematic illustration of the visco-plastic SANICLAY model (Rezania et al., 2006). 

In the multiaxial stress space, the static loading surface of the model is expressed as: 

𝑓 =
3

2
(𝐬 − 𝑝 ∙ 𝜶): (𝐬 − 𝑝 ∙ 𝜶) − (𝑀∗(𝜃)2 −

3

2
𝜶:𝜶 )𝑝(𝑝𝑜

∗s − 𝑝) = 0 (3. 106) 

Where 𝐬 and 𝑝 are the deviatoric and volumetric components of the stress tensor, respectively 

(defined in Eq.(3.2)and Eq.(3.3)). 𝑀∗(𝜃)  is the Lode angle , 𝜃, dependent function that interpolates 

the slope of the critical state line in the stress space between its values in compression,𝑀𝑐, and 

extension , 𝑀𝑒.  𝑝𝑜
∗s and 𝜶 adjust the size and rotation of the structured static loading surface using 

isotropic and rotational hardening rules. The isotropic and rotational hardening rules discussed in 

this model are similar to those discussed for SANICLAY with destructuration; therefore, they are 

not repeated here.    

As mentioned earlier, in Perzyna’s theory, once the stress exits the static yield surface, the visco-

plastic deformations occur, the magnitude of which corresponds to the departure of the stress from 

the static loading surface (the overstress). The overstress function required in Perzyna’s theory to 

find the visco-plastic strains (refer to Eq. (3.104) are expressed in terms of the size of the static, 

𝑝0
𝑠, and dynamic , 𝑝0

𝑑, loading surfaces, respectively, as:   

𝜑(𝐹) = exp(𝐹) − 1 = 𝑒𝑥𝑝 [𝑁 (
𝑝

0
𝑑

𝑝
0
𝑠
− 1)] − 1 (3. 107) 



59 

 

         

Where 𝑁 is a model viscosity parameter with which the model has a total of twelve input 

parameters, provided in Table 3.7 

Table 3.7: Input parameters of the visco-plastic SANICLAY (Rezania et al., 2006) 

 

 

The model performance in predicting the soil's undrained monotonic response at different loading 

rates is shown in Figure 3.20. The model captures well the effects of the time on compression tests; 

however, less predictive accuracy could be observed for extension tests.   

 

Figure 3.20: Undrained monotonic simulations of visco-plastic SANICLAY (Rezania et al., 2006) 

3.4.2 TVP UH: Thermo-Viscoplastic Unified Hardening Model  

Kong et al. (2020) developed a thermo-visco-plastic model upon the unified hardening model 

(developed by Yao et al. (2009), Yao et al. (2013), and Yao et al. (2014) to evaluate the combined 
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effects of time and temperature on monotonic soil behavior and their influence on the 

overconsolidation history of the soil. The following assumptions are made for the development of 

the TVP UH model: 

1- A parallel-line concept, proposed by Bjerrum (1967), is adopted for the normally 

consolidation curves in the 𝑒 − 𝑙𝑛𝑝 space, according to which the compression curves at 

different creep times are parallel to the normally consolidated line (the one at the farthest 

top is called the instant normally consolidate line (INCS)) and that the creep may 

consolidate the soil.  

2- Like the above concept, the authors used the same parallel lines concept for the temperature 

effects. According to this concept, and supported based on Campanella and Mitchell's 

(1968) observations, the normally consolidated lines are supposed to be parallel to each 

other at different temperatures. However, the temperature does not over consolidate the 

soil. These two concepts are schematically shown in Figure 3.21.  

3- The increase of the temperature could increase the slope of the critical state line, 𝑀, in the 

𝑝 − 𝑞 space while does not influence other parameters of the soil such as 𝜆, 𝜅, etc.  

  

 Figure 3.21: Parallel line concepts for time and temperature (Kong et al., 2020). 

The model has two yield surfaces (similar to other unified hardening models); a current yield 

surface that indicates the overconsolidation state of the soil and a reference yield surface indicating 

the soil state at the corresponding normally consolidation. Similar to the MCC, elliptical surfaces 

in the 𝑝 − 𝑞 space are adopted for these two surfaces (Figure 3.22).  



61 

 

         

 

Figure 3.22: The schematic illustration of the current and reference yield surface used in the UH 

TVP model (Kong et al., 2020).  

The current and the reference yield surfaces are expressed as: 

𝑝 +
𝑞 

2

𝑝 ∙ 𝑀𝑇
2 − 𝑝𝑚 = 0 (3. 108) 

𝑝̅ +
𝑞̅ 

2

𝑝̅ ∙ 𝑀𝑇
2 − 𝑝̅𝑚 = 0 (3. 109) 

where 𝑝𝑚 and  𝑝̅𝑚 are the cap pressures (their intersection with the effective stress axes) of the 

current and the reference surfaces, respectively, and (𝑝 , 𝑞) and (𝑝̅ , 𝑞̅ ) are the stress pairs on the 

current and reference surfaces, respectively. 𝑀𝑇 is a strength parameter that adjusts the slope of the 

critical state according to the applied temperature, 𝑇, using the slope of the Hvorslev line, 𝑀ℎ, the 

slopes of the loading, 𝜆𝑇, and reloading, 𝜅𝑇, lines in the p-ln(e) space, and the reference 

temperature, 𝑇0 (usually 20°𝐶). 
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𝑀𝑇 = (𝑀 − 𝑀ℎ)𝑒𝑥𝑝 [
𝜆 𝑇 − 𝜅𝑇

𝜆  − 𝜅 
 (1 + 𝑒0)(𝑇 − 𝑇0)] + 𝑀ℎ (3. 110) 

Similar to other models developed under the unified hardening framework, the model employs 

different hardening rules for the current and reference surfaces.  

𝑝𝑚 = 𝑝𝑚0 ∙ 𝑒𝑥𝑝 [
1 + 𝑒0

𝜆  − 𝜅 

(𝐻′ − 𝑡′ − 𝑇′)] (3. 111) 

𝑝̅𝑚 = 𝑝̅𝑚0 ∙ 𝑒𝑥𝑝 [
1 + 𝑒0

𝜆  − 𝜅 
(𝜀𝑣

𝑝 − 𝑇′)] (3. 112) 

𝐻′ is the unified hardening parameter, whereas 𝑡′ and 𝑇′ are time and temperature variables, 

respectively. Notice that only the temperature variable is included in the hardening law of the 

reference surface. This highlights the idea that only temperature affects the INCL and that this line 

is time-independent; therefore, creep does not influence it.  

The TVP UH model has nine input parameters, provided in Table 3.8, among which four are shared 

with the MCC, one is related to the overconsolidation state, two are associated with the viscosity, 

and two are thermal parameters. The model’s performance is shown in Figure 2.5, in which the 

effects of loading rates and temperature are compared with experiments using undrained triaxial 

and isotropic compression tests. The increasing effect of the loading time and temperature could 

be fairly captured with this model. Especially, it could be observed that the compression curves at 

different loading rates and temperatures are parallel. However, a sudden change in the soil structure 

could not be captured in this model due to the lack of a destructuration mechanism.  
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Table 3.8: Input parameters of the UH TVP (Kong et al., 2020) 

 

 

 
 

Figure 3.23: Undrained triaxial and isotropic simulations with the UH EVP model (Kong et al., 

2020). 
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3.4.3 AVISA: an Anisotropic Visco-ISA Model 

Tafili and Triantafyllidis (2020) introduced a constitutive model that could capture loading rates, 

anisotropy, and overconsolidation ratios for monotonic and cyclic loadings. The model which is 

called AVISA (an anisotropic visco-ISA model), is an updated version of the ISA model (Fuentes 

and Triantafyllidis, 2015) in which the intergranular strain (IS) concept (initially proposed by 

Niemunis and Herle (1997) for modulus reduction curves and small strain stiffness is reformulated. 

In the ISA framework, a hypersphere moving yield surface with diameter 𝑅/2 is used in the strain 

space to define the locus of the elastic locus. The movement of the yield surface is governed by the 

tensors of the intergranular strain, 𝒉, and the kinematic hardening, 𝒄. In addition to the yield 

surface, A bounding surface is employed in this framework, with a diameter d time greater than 

that of the yield surface, limiting the movements of the yield surface. The yield and bounding 

surface, shown in Figure 3.24, may be expressed as: 

𝐹𝐻 = ‖𝒉 − 𝒄‖ −
𝑅

2
= 0 (3. 113) 

𝐹𝐻 = ‖𝒉‖ − 𝑅 = 0 (3. 114) 

In the above equation, the intergranular strain tensor is evolved as the plastic condition satisfies, 

i.e., 𝐹𝐻 = 0, according to:  

𝒉̇ = 𝜺̇ − 𝜆̇𝐻𝑵 (3. 115) 

Where 𝜆̇𝐻 is the consistency parameter that may be obtained by satisfying the consistency 

condition. 
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Figure 3.24: Schematic of the yield and bounding surface of the extended ISA (AVISA model) 

(Tafili and Triantafyllidis, 2020). 

Once the yield surface is reached, the center of the yield surface evolves towards the image tenser, 

𝒄𝑏, according to a kinematic hardening rule:  

𝒄̇ = 𝜆̇𝐻𝒄̅ (3. 116) 

Where the hardening function, 𝒄̅, is suggested to have the following form: 

𝒄̅ = 𝛽(𝒄𝑏 − 𝒄)/(𝑑 ∙ 𝑅) (3. 117) 

𝒄𝑏 = 𝑅(𝑑 − 1/2) 𝜺̇ (3. 118) 

This model's adopted ISA plasticity implies that the material state inside the yield surface induces 

a visco-plastic response, whereas reaching this surface causes visco-hypo-plastic deformations. 

The corresponding visco-elastic and fully mobilized visco-hypo-plastic constitution relations could 

be expressed as: 

𝝈̇ = 𝑚 ∙ 𝑬: (𝜺̇ − 𝜺̇𝑣𝑖𝑠)  (3. 119) 

𝝈̇ = 𝑚 ∙ 𝑬: (𝜺̇ − 𝑦ℎ ∙ 𝜺̇ℎ𝑝−𝜺̇𝑣𝑖𝑠)  (3. 120) 
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Where the variables 1 ≤ 𝑚 ≤ 𝑚𝑟 and 0 ≤ 𝑦ℎ ≤ 1, respectively, adjust the stiffness degradation 

and the reduction of the plastic strains upon stress reversal. In fact, these parameters ensure a 

smooth transition between the visco-plastic response and the fully mobilized visco-hypo-plastic 

response. In addition, 𝑚𝑟 > 1 is a material constant that adjusts the strain stiffness at small 

amplitudes. The following interpreting functions, proposed by Fuentes and Triantafyllidis (2015), 

are adopted for 𝑚𝑟 and 𝑦ℎ. 

𝑚 = 𝑚𝑅 + (1 − 𝑚𝑅)𝑦ℎ  (3. 121) 

𝑦ℎ = 𝜌𝜒 〈𝑵: 𝜀̇〉  (3. 122) 

The term 𝜌𝜒 in the formulation of 𝑦ℎ adjusted the model for cyclic loading applications in a way 

that the exponent 𝜒  increases from 𝜒0 when there are no cycles of loading to its max value, 𝜒𝑚𝑎𝑥, 

(𝜒0 and 𝜒𝑚𝑎𝑥 are model constants) after several loading cycles.   

The increments of the hypoplastic and viscous strains in the above formulations are expressed as: 

𝜺̇ℎ𝑝 =  𝑌 ∙ 𝒎 ∙ ‖𝜺̇‖ (3. 123) 

𝜺̇𝑣𝑖𝑠 = 𝐼𝜈 ∙ 𝜆 ∙ 𝒎 ∙ (
1

𝑂𝐶𝑅
)1/𝐼𝜈 (3. 124) 

Where 𝐼𝜈, 𝜆, and 𝑌 are the viscosity parameter, the slope of the critical state in the p-ln(e) space, 

and the degree of nonlinearity. In addition, it can be inferred from the above equations that the 

same direction, 𝒎, is adopted for both plastic strains.  

The model has sixteen input parameters listed in Table 3.9, along with their approximate range and 

their calibrated values against two types of clays. The model's performance is evaluated by 

simulating undrained triaxial tests at six different displacement rates of 0.01 to 0.5 mm/min under 

the deviatoric stress amplitude of 50 kPa and the initial mean effective stress of 200 kPa. The results 

of these simulations are shown in Figure 3.25 and Figure 3.26 in terms of the stress path and 

hysteresis loops versus the number of cycles. These tests show that the model’s response in 

capturing the combined effects of cyclic loading and loading rates is promising in terms of the 

stress path and the pore water generation. Thus, the model is able to consider the effect of frequency 
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on cyclic loading. However, the model’s response in terms of capturing the hysteresis loops is not 

satisfactory.  

Table 3.9: Summary of AVISA input parameters (Tafili and Triantafyllidis, 2020) 

 

 

 

Figure 3.25: AVISA predictive ability (in red) at different loading rates against experiments (in 

blue) (Tafili and Triantafyllidis, 2020).   
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Figure 3.26: AVISA predictive ability (in red) against experiments (in blue) in simulating the 

hysteresis loops at two different loading rates (Tafili and Triantafyllidis, 2020).   
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CHAPTER 4 CALIBRATION IN CONSTITUTIVE MODELING 

The information presented in this chapter is included in several publications:   

Zarrabi, M., Eslami, M.M., and Yniesta, S. "Cyclic Application of an Advanced Calibration 

Algorithm to Three Cyclic Bounding Surface Soil Constitutive Models." (under review at 

ASCE's International Journal of Geomechanics). 

Zarrabi, M., Eslami, M.M., and Yniesta, S. "Experimental and Numerical Investigations of Low 

Plasticity Soil Mixtures under Cyclic Loading using Three Constitutive Models." (to be 

submitted to the Canadian Geotechnical Journal). 

Eslami, M., Zarrabi, M., and Yniesta, S. (2019). “Evaluation of Two Constitutive Models in 

Predicting Cyclic Behavior of a Natural Clay.” In Eighth International Conference on Case 

Histories in Geotechnical Engineering, Associazione Geotecnica Italiana, Rome, Italy, pp. 

2275-2282. 

Eslami, M., Zarrabi, M., and Yniesta, S. (2019). “Performance of Bounding Surface Constitutive 

Models in Predicting Cyclic Behavior of Low-Plasticity Fine-Grained Soils.” In Geo-

Congress: Geotechnical Materials, Modeling, and Testing, Reston, American Society of Civil 

Engineers, pp. 57-66. 

4.1 Introduction 

MCC may be considered as one of the earlier well-known models that only requires five easy-to-

calibrate physically meaningful parameters to work. However, modern constitutive models are 

complex, requiring multiple input parameters, and users need to be familiar with the mathematical 

laws that control the model, which renders the calibration task tedious. These shortcomings of 

complex models partially explain why simplified models such as the MCC model are still in use 

by practitioners, whereas many more advanced constitutive models have been developed in recent 

years.  

Recent advanced developed constitutive models, such as SANISAND (Dafalias et al., 2010), and 

SANICLAY (Dafalias et al., 2006), require several parameters to work. These parameters are either 

physically meaningless or require numerous monotonic and/or cyclic tests to be calibrated, and 
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such a dataset is not often available in practice. In addition, when calibrating such models, 

practitioners usually rely on a time-consuming and ineffective trial and error procedure. To avoid 

such shortcomings, model developers are seeking alternates for trial and error calibration efforts. 

For instance, recently, the PM4SAND model (Boulanger and Ziotopoulou, 2017) was published 

with a pre-calibration that allows practitioners to use it easily by having to calibrate only three 

parameters (although it has secondary parameters that are set to default values but could be altered 

if desired by the users). The three parameters are easily obtained from field tests, which makes this 

model popular among practicing engineers. However, such a pre-calibrated model for clays does 

not exist, which is both reliable and easy to use. 

To ease the challenges associated with finding the right model’s input parameters, several studies 

have been focused on the development of efficient optimization algorithms to calibrate constitutive 

models against different types of soils and loading conditions (e.g., Mousa, 2017; Liu et al., 2016; 

Sadoghi Yazdi et al., 2012; Desai and Chen, 2006; Calvello, and Finno, 2004; Finno and Calvello, 

2005; Yang and Elgamal, 2003).  

In this chapter, two advanced optimization algorithms, namely the Gauss-Newton (GNO) 

optimization as well as the Particle Swarm Optimization (PSO) algorithms, are discussed, adjusted, 

and used to calibrate three advanced cyclic constitutive models for sands (Dafalias and Manzari, 

2004) and clays [SANICLAY Bounding surface model (Seidalinov and Taiebat, 2014) and 

SANICLAY Bounding surface with a Hybrid flow rule (Shi, 2016)].  

4.2 Gauss-Newton Optimization (GNO) 

4.2.1 Formulation of the GNO 

Liu et al. (2016) used an optimization algorithm to find the set of input parameters for the Dafalias 

and Manzari (2004) model that best fit a combination of laboratory tests and high-fidelity discrete 

element simulations of laboratory tests. This calibration process is formulated so that the input 

parameters are modified iteratively to diminish the discrepancies between model simulations and 

target data. The simulations and target data can be compared in terms of different soil response 

quantities such as axial or shear strains, stress ratio, void ratio, mean effective stress, excess pore 

pressure, etc. The following summarizes the relevant equations presented in Liu et al. (2016). 
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This optimization problem is solved using a Gauss-Newton algorithm (Conn et al., 2000), in which 

the set of parameters to be optimized are updated at every iteration as follows: 

𝜽𝑖 = 𝜽𝑖−1 − (𝑱𝑖−1
𝑇 ∙ 𝑾 ∙ 𝑱𝑖−1 + 𝜆 ∙ 𝑰𝜃)−1𝑱𝑖−1

𝑇 ∙ 𝑾 ∙ 𝒓(𝜽𝑖−1) (4.1)  

Where 𝑖 is the iteration number index,  𝜽 ∈ 𝑅 
𝑁×1 is a vector consisting of the constitutive model 

parameters to be calibrated, 𝒓(𝜽 ) ∈ 𝑅 
𝑆×1 is the residual vector, 𝑾 ∈ 𝑅 

𝑆×𝑆 is the diagonal weight 

matrix, and 𝑰𝜃 ∈ 𝑅 
𝑁×𝑁 is an identity matrix. 𝑁 and 𝑆 are the total numbers of model parameters 

and data points, respectively. 𝜆 is the Levenberg-Marquardt (Marquardt, 1963) damping 

parameter, which defines the alternate between the Gauss-Newton and the gradient descent method 

(Aster et al., 2012). 𝒓(𝜽 ) and 𝑾 are mathematically defined as: 

𝒓(𝜽) = (𝒚(𝜽) − 𝒚𝑒𝑥𝑝) (4.2) 

𝑾 =
𝒘′

𝒚𝒆𝒙𝒑
𝑇𝒚𝒆𝒙𝒑

𝑰𝑊 
(4.3) 

Where 𝒘′ ∈ 𝑅 
𝑆×1 is a vector containing the weight of each data point and 𝒚𝒆𝒙𝒑 ∈ 𝑅 

𝑆×1 and 𝒚(𝜽) ∈

𝑅 
𝑆×1 are vectors containing the target data to be matched (a set of laboratory tests in the present 

case) and the predictions (calculated from a constitutive model), respectively. These two vectors 

can be chosen to include only one or a combination of several response quantities, such as shear 

strain (𝛾) or pore pressure (𝑢). 𝑰𝑊 ∈ 𝑅 
𝑆×𝑆 is an identity matrix with different dimensions than 𝑰𝜃. 

 𝑱 ∈ 𝑅 
𝑆×𝑆 is the Jacobian matrix of 𝒓(𝜽), composed of all first-order partial derivatives of 𝒓(𝜽). 

Liu et al. (2016) used a central difference method to compute the components of the Jacobian 

matrix. According to this method, every column of the Jacobian matrix (𝑗 = 1, 2, …𝑁) is 

approximated as follows (Wilmott et al., 1995): 

𝐽𝒋 = 
𝒓(𝜃1, … , 𝜃𝑗 + 𝛿𝜃𝑗 , … 𝜃𝑁) − 𝒓(𝜃1, … , 𝜃𝑗 − 𝛿𝜃𝑗 , … 𝜃𝑁)

2𝛿𝜃𝑗
 (4.4) 

Where 𝜹(𝜽) ∈ 𝑅 
𝑁×1 is a small increment of 𝜽 ∈ 𝑅 

𝑁×1.  
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Note that the central difference method used by Liu et al. (2006) requires the residual vector to be 

calculated twice for each input parameter, once for 𝜃𝑗 + 𝛿𝜃𝑗  and once for 𝜃𝑗 − 𝛿𝜃𝑗 . In the present 

study, a forward difference method is adopted since it only requires one computation of the residual 

vector, which reduces the computational time required to calculate the Jacobian matrix. The 

forward difference is expressed as follows: 

𝐽𝒋 = 
𝒓(𝜃1, … , 𝜃𝑗 + 𝛿𝜃𝑗 , … 𝜃𝑁) − 𝒓(𝜃1, … , 𝜃𝑗 , … 𝜃𝑁)

𝛿𝜃𝑗
 (4.5) 

Liu et al. (2016) focused on the calibration of the Dafalias and Manzari model against monotonic 

loading tests. However, they showed that for cyclic loading, their calibration algorithm is not 

satisfactory. The calibration process is adjusted in the present study to adapt it for cyclic 

applications. In this section, the main components of the Gauss-Newton algorithm are explained, 

and alternative options for Jacobian and weight matrices are provided to improve the algorithm 

performance for cyclic loading application in terms of time-efficiency and accuracy.  

The increment 𝜹𝜽 used to compute the Jacobian matrix at every time step is set to be a small 

fraction of 𝜽, to ensure smooth changes of the model parameters toward the optimal set through 

the calibration process. The parameter 𝜽 is then updated at every iteration based on the Levenberg-

Marquardt parameter, 𝜆. Different methods have been proposed to compute 𝜆 such as Moré (1978) 

and Yamashita and Fukushima (2001). A variation of the simplified approach of Aster et al. (2012) 

is adopted in this study to update 𝜆𝑖, as it proved efficient: (1) a large initial value for 𝜆0 is selected, 

(2) this value is increased by a constant factor (taken as 2 in the present study) following every 

unsuccessful step, and conversely decreased by that constant factor in every successful one. A 

successful step is defined as when the square sum of residuals of the current step becomes less 

than the one of the previous step (i.e ∑(𝒚(𝜽𝑖) − 𝒚𝒆𝒙𝒑)
2
< ∑(𝒚(𝜽𝑖−1) − 𝒚𝒆𝒙𝒑)

2
. Note that selecting 

a large value for 𝜆0 improves the convergence of the algorithm because the initial guess of the 

parameters can be far from the final solution.  

The computation, as well as inversion of the Jacobian matrix Eq.(4.6) at every iteration, are 

computationally expensive and control the computational speed of the algorithm. In order to 

decrease the calculation time, Broyden's method (Broyden, 1965) was applied in the present study. 
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In this method, the Jacobian matrix is only fully calculated at the first iteration and then updated 

at every subsequent iteration using rank-one updates. Hence the Jacobian matrix at every iteration 

𝐽𝑗 will be estimated using the Jacobian matrix 𝐽𝑗−1 from the previous iteration: 

𝐽𝒋 = 𝐽𝒋−𝟏 +
(𝒓(𝜽𝟏) − 𝒓(𝜽) − 𝑱 ∙ ∆𝜃𝑗)∆𝜃𝑗

𝑻 

√∑|∆𝜃𝑗
2|

 
(4.6) 

Where | | denotes the 𝐿2 norm of a vector. Using Broyden’s method significantly reduces the 

calculation time of the calibration process because it only computes the full Jacobian matrix (Eq. 

(4.5) when convergence has not occurred. Otherwise, the previous Jacobian matrix is used to 

approximate the Jacobian matrix for the next iteration (Equation(4.6). The flowchart of the GNO 

algorithm is shown in Figure 4.1.  

 

Figure 4.1: Flowchart of the GNO algorithm 

The efficiency of the algorithm can be further improved by excluding parameters that have little 

influence on the performance of the constitutive model, i.e., parameters that do not substantially 

reduce the residual upon calibration. Each column of the Jacobian matrix corresponds to the 

change of the function based on one variable and computes the difference between 𝒚(𝜽) and 

𝒚(𝜽) + 𝜹𝜽, in which the corresponding component of 𝜽 is increased by a small increment while 
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other components are unchanged. As this difference is calculated for all the data points, the sum 

of the values in each column is an indication of the sensitivity of the function toward the 

corresponding variable, with low values indicating low influence.  

Besides computational efficiency improvement, the accuracy of the calibration algorithm is 

increased by assigning different weights to all the data points. The weight of each observation is 

chosen to be proportional to the inverse of its variance (𝑾 = 𝑑𝑖𝑎𝑔(
1

𝜎1
2 ,

1

𝜎2
2 , … ,

1

𝜎𝑠
2). This approach 

ensures that all the constant strain or stress amplitude cyclic tests have the same impact on the 

calibration while using equal weights (such as in Liu et al., 2016) would induce a bias toward high 

strain level cyclic tests. Assigning weights in such a manner has proven to improve the 

performance of the regression analysis (Calvello and Finno, 2004; Finno and Calvello, 2005).     

4.2.2 Cyclic Applications of the GNO 

In this part, the accuracy of the Gauss-Newton algorithm is illustrated through the calibration of 

bounding surface plasticity models formulated for cyclic loading applications, in three separate 

examples; 1- the SANICLAY-B model by Seidalinov and Taiebat (2014) for Georgia Kaolin clay, 

2- the Dafalias and Mazari (2004) model for Ottawa 65 sand, and 3- the SANICLAY-H model for 

Young San Francisco Bay Mud. 

4.2.2.1 Calibration of the SANICLAY-B based on the Simulated Data for Georgia Kaolin 

Clay 

The SANICLAY-B model has 11 input parameters: , , , Mc, Me, N, h0, ad, C, x, and ki. Seidalinov 

and Taiebat (2014) calibrated , , , Mc, Me, and N based on oedometer and undrained monotonic 

triaxial tests on Georgia Kaolin clay. The rest of the input parameters were calibrated by trial and 

error using an undrained cyclic triaxial test with a constant shear stress amplitude of qcy = 140.7 

kPa. Their simulations using the calibrated input parameters and using the SANICLAY-B model 

showed a good match with undrained cyclic triaxial tests for the Georgia Kaolin Clay. 

Validation of the Gauss-Newton calibration algorithm is illustrated through a simple example, 

where the algorithm is used to back-calculate the input parameters of the SANICLAY bounding 

surface model (SANICLAY-B), developed by Seidalinov and Taiebat (2014). Seidalinov and 
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Taiebat (2014) calibrated their model for Georgia Kaolin clay against a large set of experimental 

data by trial and error. In the present study, the calibrated model by Seidalinov and Taiebat (2014) 

is used to generate a fictitious dataset composed of four undrained cyclic triaxial tests with cyclic 

deviatoric stress amplitudes of qcy = 121.4, 136, 140.7, and 165.5 kPa. Then, the Gauss-Newton 

calibration algorithm is used to calibrate the model against the created data. To verify the 

performance of the algorithm in retrieving the exact values of the input parameters, the initial guess 

was selected significantly different than the exact values. In the calibration, the well-known 

physically meaningful input parameters, i.e., , , , Mc, Me, and N, are left unchanged and picked 

directly from the work of Seidalinov and Taiebat (2014) since in practice, they should be evaluated 

accurately from the laboratory data. The remaining 3 input parameters h0, ad, and C, as well as the 

initial value for the initial isotropic structuration factor Si, are calibrated to match the shear strain 

time series of the target data, using the Gauss-Newton algorithm. The two other input parameters, 

x and ki, have a narrow range, and therefore, are set to their default and excluded from the 

calibration process. As a result, the vector of input parameters in the Gauss-Newton algorithm is 

composed of θ = {h0, ad, C, Si}
T. 

Table 4.1 compares the input parameters of the SANICLAY-B for initial guesses after 30, 60, and 

90 iterations. The last column of this table includes the values reported by Seidalinov and Taiebat 

(2014). After 60 iterations, 2 of the 4 input parameters get close to their final value, while the 

values from Seidalinov and Taiebat are essentially retrieved after 90 iterations. No change in the 

values of the input parameters was found after further iterations. 

Figure 4.2 shows the simulation results of the SANICLAY-B model at different iterations for 

various parameters; deviatoric stress (q), mean effective stress (p′), excess pore pressure ratio (ru), 

and deviatoric strain (𝜀𝑞). The target data (i.e., the simulations with the reported input parameters) 

are also provided in each of these plots. The predictions are initially far from the target data in both 

stress-strain loops and stress path before slowly getting close to the target data after only 30 

iterations and matching almost perfectly after 60 iterations. Before 90 iterations, simulation results 

are perfectly aligned with the target data, and therefore, are not presented.    
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Table 4.1: SANICLAY-B input parameters used in numerical simulations. 

Input 

Parameters 

Initial 

Guess 

After 30 

Iterations 

After 60 

Iterations 

After 90 

Iterations 

Reported 

Values* 

ℎ0 75 71.827 60.899 49.899 50 

𝑎𝑑 2 9.799 8.939 7.01 7 

𝐶 9 8.149 2.942 2.975 3 

𝑆𝑖 11 1.393 0.948 1.006 1 

*Reported Values by Seidalinov and Taiebat (2014) 

 

 

Figure 4.2: Comparison of the performance of the calibration of the SANICLAY-B model against 

Georgia Kaolin clay test data for the initial guess calibration (a, b, c, d), the calibration after 30 

iterations (e, f, g, h), and after 60 iterations (i, j, k, l). 

4.2.2.2 Calibration of the DM04 for Ottawa F65 Sand, based on Laboratory Tests 

The Liquefaction Experiment and Analysis Project (LEAP) is an international research 

collaboration with the objective of evaluating the capabilities of existing numerical methods in 
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predicting soil liquefaction and lateral spreading of mildly sloping grounds, tested in different 

centrifuge facilities across the world (Kutter et al. 2014, Manzari et al. 2014, Tobita et al. 2014, 

Manzari et al. 2018). As part of the project, high-quality experimental data was provided to 

calibrate and validate the numerical models predicting liquefaction. The dataset includes a series 

of stress and strain-controlled monotonic and cyclic undrained triaxial tests as well as standard soil 

characterization tests (particle size distribution analysis, specific gravity, minimum and maximum 

densities, hydraulic conductivity) on Ottawa F65 sand. In this example, the Dafalias and Manzari 

(2004) model is calibrated based on the cyclic triaxial tests provided by LEAP (Vasko et al., 2018) 

and compared to the calibration of the Dafalias and Manzari (2004) model performed by trial and 

error by Ghofrani and Arduino (2018) based on the same dataset, to assess the performance of the 

calibration algorithm. 

In the current study, cyclic strain-controlled triaxial tests are used to calibrate the DM04 model 

against the deviatoric stress, q. All the tests, performed by Vesko et al. (2018), were done on 

specimens with an initial void ratio e0 = 0.604 and initial confining stress of p0 = 200 kPa. The soil 

samples were tested at the following cyclic strain amplitudes a = 0.058, 0.085, 0.11, 0.21, 0.32, 

and 0.42%. Table 4.2 includes the input parameters published by Ghofrani and Arduino (2018) as 

well as those calibrated using the Gauss-Newton algorithm. 

Note that only input parameters without physical meaning, such as h0, ch, n
b, A0, n

d, Zmax, and Cz 

were calibrated by the algorithm, while the parameters physically meaningful, such as G0, , M, 

c, e0, and  along with the parameters c and m, were chosen from the work of Ghofrani and 

Arduino (2018). Figure 4.3 and Figure 4.4 compare simulation results of the two sets of 

calibrations of the DM04 model (the current study, and those by Ghofrani and Arduino, 2018) and 

the results of laboratory cyclic triaxial tests at axial cyclic strain amplitudes of a = 0.21, 0.32, and 

0.42% on Ottawa sand with a relative density of about 55%. The Gauss-Newton calibration 

algorithm improves the simulations from various viewpoints; the cyclic degradation associated 

with the deviatoric behavior is better captured, along with the stress path, meaning that the 

volumetric response of the model is more accurate. Also, the calibrated model in this study shows 

an improved pore pressure response, as shown in Figure 4.3, especially in the dilative behavior of 

the model. The simulations provided by the calibration of Ghofrani and Arduino lack the dilative 
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behavior in which the stiffness increases temporarily as a consequence of an increase in mean 

effective stress, while the simulations provided in this study can reproduce part of the expected 

behavior. Further, Figure 4.4 demonstrates that both pore pressure and deviatoric stress as a 

function of the number of uniform loading cycles are better matched by the model calibrated by 

the current study's calibration algorithm. The cyclic axial strain versus the number of cycles to 

reach a zero mean effective stress from experimental data, as well as both studies, are plotted in 

Figure 4.5. As can be seen from this figure, the curve obtained using the DM04 calibration in the 

current study is closer to the experimental curve. The results presented in Figure 4.5 also shows 

that the number of cycles to reach liquefaction, i.e., ru = 1, are fairly matched with experimental 

results, while the simulations using input parameters provided by Ghofrani and Arduino (2018) 

cause the model to overestimate the number of cycles required to reach ru = 1. 

Table 4.2 The DM04 model parameters used in numerical simulations. 

Category Parameter Current 

Study 

Ghofrani and 

Arduino (2018) 

Elasticity 𝐺0 82.35 82.35 

𝜈 0.01 0.01 

Critical state 𝑀 1.46 1.46 

𝑐 0.47 0.47 

𝜆𝑐 0.055 0.055 

𝑒0 0.80 0.80 

𝜉 0.50 0.50 

Yield surface 𝑚 0.02 0.02 

Bounding 

surface 

ℎ0* 15.18 15.114 

𝑐ℎ* 0.207 0.996 

𝑛𝑏* 0.438 0.64 

Dilatancy 𝐴0* 1.299 0.45 

𝑛𝑑* 0.616 0.50 

Fabric tensor 𝑧𝑚𝑎𝑥* 14.605 14.60 

𝑐𝑧* 2000 2000 

*Parameters included in the calibration process. 
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Figure 4.3: Stress-strain and stress-path responses for Ottawa F65 sand at varying cyclic strain 

amplitudes: (a, b) a = 0.21% (c, d) a = 0.32%, and (e, f) a = 0.42%. 
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Figure 4.4: Deviatoric stress and excess pore pressure ratio versus number of uniform loading 

cycles for Ottawa F65 sand at various cyclic strain amplitudes: (a, b) a = 0.21% (c, d) a = 

0.32%, and (e, f) a = 0.42%. 
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Figure 4.5: Cyclic axial strain versus the number of uniform loading cycles for Ottawa F65 sand. 

4.2.2.3 Calibration of the SANICLAY-H using Two Calibration Approaches 

This example summarizes the efforts for calibrating the SANICLAY Bounding surface model with 

a hybrid flow rule (by Shi, 2016), referred to hereafter as SANICLAY-H, against experimental test 

results on San Francisco Young Bay Mud (YBM). Two various approaches are implemented to 

calibrate the model using the Gauss-Newton algorithm. In the first approach, the model is 

calibrated by trying to minimize the discrepancies in shear strains between the predictions and the 

data. In the second approach, the calibration is performed to minimize the distance between the 

cyclic strength ratio (CSR) versus the number of loading cycles to reach large deformations curves 

derived from the experiment and the model. The following sections summarize the laboratory 

testing results, the SANICLAY-H model, and present results of calibrations using the two 

approaches, as well as simulation results. 

4.2.2.3.1 First Approach: Based on Shear Strain 

The Gauss-Newton algorithm is used to calibrate the SANICLAY-H model against 3 cyclic direct, 

simple shear tests on normally consolidated San Francisco Bay Mud with CSRs ranging between 
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0.21 to 0.25. The SANICLAY-H model has 18 parameters, 5 of which reflect physical soil 

properties and are obtained from monotonic simple shear tests (i.e., θ = {Mc, Me, , , }T). Seven 

input parameters are calibrated using the Gauss-Newton algorithm: θ = {hc, he, Nc, Ne, cd, C, x}T, 

and four of the input parameters are set to their default values to capture small nonlinearities better 

(i.e., θ = {eg, Ag, ng, 0.7}
T, and are not expected to control the large strain behavior that is the focus 

of the current study. The same reasoning is applied to the destructuration parameter,  ki, which also 

retains its default value of 1. Finally, the last parameter, , that controls the pore pressure 

accumulation, was set to 2, as this value proved to capture the butterfly loops of the experimental 

data. More information on the model parameters can be found in Seidalinov and Taiebat (2014) 

and Shi et al. (2018). The calibrated model parameters based on shear strains are presented in Table 

4.3 

Figure 4.6 shows the simulation results of the SANICLAY-H model for one of the cyclic direct 

shear tests after being calibrated using the Gauss-Newton algorithm. As can be seen, the calibrated 

SANICLAY-H model shows a fair response in terms of shear strain versus the number of cycles but 

is unable to capture the shape of the hysteresis loops and the volumetric response as illustrated by 

the stress-strain curve and the stress path. Moreover, the rate of pore pressure generation with 

respect to the number of loading cycles is much faster than observed in the laboratory tests, and as 

a result, the stress path is inaccurate.  
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Table 4.3 SANICLAY-H parameters used in numerical simulations. 

Category Parameter Calibration No. 1** Calibration No 2*** 

Elasticity         

(small strain) 

𝑒𝑔 2.64 2.64 

𝐴𝑔 160 160 

𝑛𝑔 0.635 0.635 

𝛾0.7 0.00016 0.00016 

Elasticity          

(large strain) 

𝜅 0.022 0.022 

𝜈 0.24 0.24 

Critical state 𝜆 0.271 0.271 

𝑀𝑐 1.2 1.2 

𝑀𝑒 0.86 0.86 

Bounding 

surface  

𝑁𝑐 1.2 1.2 

𝑁𝑒 0.86 0.86 

ℎ𝑐* 98 104.76 

ℎ𝑒* 100 100.02 

𝑐𝑑* 4.72 8.08 

𝜔 2 2 

Rotational 

Hardening 

𝐶* 0.06 3.47 

𝑥* 9.6 4.45 

Destructuration 𝑘𝑖 1 1 

*Parameters included in the calibration process. 

**Calibration based on the shear strains. 

***Calibration based on CSR versus N. 
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Figure 4.6: Measured and predicted response of Young Bay Mud for Cyclic DSS loading and 

SANICLAY-B simulation when calibrated based on shear strain.
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4.2.2.3.2 Second Approach: Based on the CSR vs. N curve 

In the second calibration approach, the algorithm aims to optimize the input parameters of the 

model to reduce the distance between the experimental CSR vs. N curve and the curve derived from 

simulations with the calibrated SANICLAY-H model. Therefore, in the alternative approach, the 

Gauss-Newton algorithm is used to minimize the difference between predicted and measured 

number of cycles to reach 3% shear strain for a given CSR. The target data consists of pairs of CSR 

vs. N points for CSR values ranging from 0.21 to 0.25, taken from the curve fitted to the laboratory 

test results (Figure 4.7) with the following relationship: 

𝐶𝑆𝑅 = 𝑎 ∙ 𝑁−𝑏 4.7 

The last column of Table 4.3 presents the input parameters calibrated using this second approach, 

while Figure 4.7 presents CSR versus N curves for experimental data and both modified calibration 

approaches, along with regressed relationships of the form of equation 4.7. As can be seen from 

this figure, the modified calibration approach based on the CSR-N curve results in better capturing 

of the CSR versus the N curve compared to the calibration based on shear strain. Stress-strain 

curves, not presented here, showed a fair match, but without presenting an accumulation of shear 

strains observed in the previous calibration and the laboratory test. This can be explained by the 

fact that this second calibration approach does not consider the soil’s response beyond 3% shear 

strain.  

Moreover, it should be highlighted that the alternative calibration approach not only decreases the 

distance between the predicted and the observed CSR vs. N curves but also decreases the 

computational time significantly. The calibration using the CSR-N approach is done by using 17 

data points defined from the CSR versus the number of cycles curve, while in the first calibration, 

approximately 200 data points of shear strain versus the number of cycles are used for the 

calibration. By reducing the number of data points, the size of the Jacobian matrix, and 

consequently, the time of calculation, are significantly reduced. 
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Figure 4.7: CSR versus the number of loading cycles for San Francisco Young Bay Mud from 

laboratory tests and simulations of the SANICLAY-H with varying modified calibration 

approaches. 

4.3 Particle Swarm Optimization (PSO) 

The particle swarm optimization (PSO) is another robust optimization technique to find a global 

optimum in a multi-dimensional searching space (Ramdya et al., 2017; Qi et al., 2018). The desired 

search space is initially defined by setting upper and lower bounds. Then, a swarm of particles is 

randomly generated within the desired search space. In each iteration, the best position of each 

particle is updated by comparing the current value of the objective function (the function that is 

subjected to optimization) with that of the previous one. Then, the best position of the swarm is 

updated to the newly best-found position of all the particles.  

Swarms of particles proceed within the search space progressively toward the optimum position 

until either reaching the number of maximum iteration or the objective function criteria. The 
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algorithm of the PSO is shown in Figure 4.8. The position of particles is updated in each iteration 

according to the following formula (Bai, 2010):  

𝑉⃗ 𝑖
𝑡+1 = 𝑤 ∙ 𝑉⃗ 𝑖

𝑡 + 𝑐1 ∙ 𝑟1(𝑃⃗ 𝑖
𝑡 − 𝑋 𝑖

𝑡) + 𝑐2 ∙ 𝑟2(𝐺  𝑡 − 𝑋 𝑖
𝑡) 4.8) 

𝑋 𝑖
𝑡+1 = 𝑋 𝑖

𝑡 + 𝑉⃗ 𝑖
𝑡+1 4.9) 

where 𝑉⃗ 𝑖
𝑡+1and 𝑉⃗ 𝑖

𝑡 are the velocities of 𝑖 
𝑡ℎ particle at iterations 𝑡 and 𝑡 + 1, respectively while 𝑋 𝑖

𝑡+1 

and 𝑋 𝑖
𝑡 are the 𝑖 

𝑡ℎ particle’s position at iterations 𝑡 and 𝑡 + 1, respectively. 𝑤 , 𝑐1 and 𝑐2 represent 

respectively the inertia parameter, the cognitive influence parameter, and the social influence 

parameter, which are selected as recommended by Vesterstrom and Thomsen (2004) and Karaboga 

and Akay (2009); 𝑟1 and 𝑟2 are random values between 0 and 1; 𝑃⃗ 𝑖
𝑡 and 𝐺  

𝑡 are the best position of 

the 𝑖 
𝑡ℎ particle and the swarm best position, respectively. In the case of a soil constitutive model, 

𝑋 𝑖
𝑡, 𝑃⃗ 𝑖

𝑡 , and 𝐺  
𝑡 are the vectors of input parameters being searched by the ith particle, the best input 

parameters found by the ith parameter, and the best input parameters found by the whole swarm, 

respectively. In each iteration, every particle’s position, which is the vector of newly found/reached 

input parameters, is evaluated by the objective function, and the best input parameters found by 

each particle is stored to 𝑃⃗ 𝑖
𝑡. Once this procedure is repeated for all the particles, the best input 

parameters found by the whole swarm is stored to 𝐺  
𝑡, 

  

Figure 4.8 Flowchart of the PSO algorithm 
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4.3.1 Cyclic Applications of PSO to Calibrate Three Models Against the Low Plasticity Silt 

Mixtures 

In this section, the monotonic and cyclic testing program of low plasticity silt mixtures performed 

by Eslami (2017) is first presented. Then, as there is no constitutive model for such low plasticity 

silts, two clay models, the SANICLAY-B model by Seidalinov and Taiebat (2014) and the 

SANICLAY-H model by Shi et al. (2018), as well as a sand model, the Dafalias and Manzari (2004), 

are used and calibrated by PSO to investigate the accuracy of PSO while evaluating how well these 

models could predict the cyclic loading behavior of these mixtures.  

4.3.1.1 Monotonic and cyclic experiments of low plasticity silt mixtures 

Commercially available non-plastic silt and bentonite clay minerals were mixed with deionized 

water and prepared to achieve Plasticity Index, 𝑃𝐼 = 9. Properties of the mixture, subsequently 

referred to as 𝑆𝐵𝐹𝑊 (Silt Bentonite Fresh Water), as well as its constituent minerals, are 

summarized in Table 4.4. Atterberg limits were developed based on 𝐴𝑆𝑇𝑀 4318, and the mixture 

classifies as a low-plasticity clay (𝐶𝐿) per the Unified Soil Classification System (𝑈𝑆𝐶𝑆). 

The laboratory testing program consisted of oedometer consolidation testing and constant-height 

monotonic and cyclic Direct Simple Shear (DSS) experiments. Compression properties of the 

mixture are listed in Table 4.4, where 𝐶𝐶, 𝐶𝑟, and 𝐶𝛼 are the virgin compression, recompression, 

and secondary compression indices, respectively.  

Table 4.4: Properties of the mixture tested in the laboratory (Eslami, 2017) 

𝑰𝑫 % silta % Bentoniteb 𝐆𝐬 𝑳𝑳 PL 𝑷𝑰 
USCS 

Classification 
𝑪𝑪 𝑪𝒓 𝑪𝜶 

SBFW 95 5 2.64 31.2 22.6 8.6 CL 0.14 0.014 0.011 

a Sil-co-sil #45 ground silica, Non-plastic 

b LL = 455.3, PL = 39.6, PI = 415.7 

Mixtures were first made as a slurry at water contents higher than their liquid limit, then transferred 

to acrylic tubes with a diameter of 72.4 mm, slightly larger than the simple shear specimens. The 

slurries were consolidated inside the acrylic tubes to vertical consolidation stress of about 35 kPa 

and were subsequently extruded from the acrylic tubes and trimmed to a diameter of 66 mm and 
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height of 28 mm for cyclic or monotonic shearing. The specimens were then placed inside a wire-

reinforced latex membrane and mounted in the simple shear device. They were then further 

consolidated to the desired vertical pressure and overconsolidation ratio before being sheared. 

The UCLA Bi-directional Broadband Simple Shear (BB-SS) apparatus (Shafiee et al., 2017) was 

used for constant-height direct simple shear testing. The device is configured for both stress-

controlled and strain-controlled constant height loading over a wide frequency range. Further 

details on the testing procedures can be found in Eslami (2017).  

Constant-height undrained direct simple shear tests were performed on the SBFW mixture on 

normally consolidated (OCR = 1) specimens at an initial vertical effective stress of 50 kPa. Uniform 

sinusoidal cyclic stress loading with a frequency of 0.1Hz was applied to the specimens. The 

mixture produces relatively wide hysteresis loops that are typical of clay-like soil behavior (Figure 

4.9). Also typical of such behavior is that the stress paths do not reach the origin, representing 𝑟𝑢 =

1.0, or zero vertical effective stress at large applied strains. However, the material response 

indicates reaching high excess pore pressure ratios of about 0.85 at large shear strains, as well as 

developing large shear strains upon a low number of loading cycles, which is similar to sand-like 

soil behavior. 

To evaluate the performance of PSO, DM04, SANICLAY-B, and SANICLAY-H are calibrated using 

this optimization technique. The input parameters of the three models calibrated using PSO is 

summarized in Table 4.5. To calibrate the models, the parameters with physical meaning are 

calibrated using lab tests data and conventional geotechnical relations (for example, 𝜆 and 𝜅 are 

obtained using the slopes of the loading, 𝑐𝑐, and reloading, 𝑐𝑟, lines in an isotropic consolidation 

test, respectively). Then, the rest of the input parameters, for which geotechnical relations do not 

exist or that cannot be directly obtained from lab data are calibrated using PSO.  

The cyclic response of the three models in terms of the hysteresis loops, effective stress path, and 

excess pore water pressure and shear strains versus the equivalent number of cycles is plotted 

against the experimental data in Figure 4.10 and Figure 4.11. In figures correspond to two 

undrained cyclic direct shear tests with the same initial confining pressure of 50 kPa and cyclic 

stress ratios (CSR) of 0.120 and 0.178, respectively (the simulation results for all tests are provided 

in APPENDIX A). These tests are called hereafter CSR_0.120 and CSR_0.178, respectively, and 
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selected so that the models' predicting ability to simulate the cyclic response of test data at two 

different CSR values be illustrated.  

 

Figure 4.9 Results of a DSS laboratory cyclic shearing on SBFW (Eslami, 2017). 

The comparison of the hysteresis loops of the clay models with those of laboratory tests shows that 

the formulation of models as well as the adoption of the bounding surface plasticity enables the 

models to develop plastic deformations as soon as the cyclic loading is applied. This allows the 

models to predict the shear strain accumulation of the test data fairly. However, despite a fair 

prediction of the shear strains, the shape of the hysteresis loops of the simulations are different than 

that of lab tests. In fact, the experimental data shows thin hysteresis loops regardless of the applied 

CSR while both clay models, as well as the sand model, tend to simulate broader hysteresis loops, 
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typical of clay materials, inducing a higher simulated hysteretic damping than that measured in 

experiments.   

Comparing the stress path of the models with the experimental data, the stress path lock-up occurs 

in the SANICLAY-B. In fact, initially, the mean effective stress reduces due to the increase of the 

pore water pressure ratio and then remains unchanged after a few cycles. However, the stress path 

lock-up does not affect shear strain accumulations. This stress path lock-up and the consequent 

constant mean effective stress are attributed to the model's flow rule, where the plastic potential is 

defined according to the image stress point. This formulation causes the image stress to reach the 

critical state line, i.e. 𝜂̅ = 𝑀, far earlier than the current stress does. Consequently, the flow rule of 

the model, which is based on the image stress, does not accumulate further volumetric plastic strain, 

and as a result, the mean effective stress reduction no longer continues, recall that in an undrained 

test 𝑝̇ = −𝐾𝜀𝑣
𝑝̇
. Other than the pore water pressure ratio's underprediction, another limitation of 

the SANICLAY-B is the sharp increase in the pore water pressure generation, where the model 

reaches its final value within a few cycles. 

One of the main improvements of the SANICLAY-H over SANICLAY-B is that the stress path lock-

up does not occur in the stress path of the former model. This improvement is due to the use of a 

mixed flow rule in which the gradients of plastic potential surfaces at both the image and current 

stress are coupled to calculate the plastic deformations. With this modification, when the image 

stress reaches the critical state line, 𝜂̅ = 𝑀, although the gradient of the plastic potential at the 

image stress becomes zero, the model still produces volumetric strain as the gradient of the current 

stress has not reached the critical state line yet, since 𝜂 ≠ 𝑀. This improvement of the SANICLAY-

H results in the mean effective stress path of the model to decrease further with the number of 

cycles until finally reaching the critical state line. In addition, using the hybrid flow rule enables 

the model to capture the butterfly loops in the effective stress path response as soon as the mean 

effective stress has reached the critical state line. 

Another improvement of the SANICLAY-H is the ability of the model to predict a high pore water 

pressure generation in an undrained cyclic test. In this study, the model could predict up to more 

than 80% of the pore water pressure ratio while the stress path lock-up in SANICLAY-B causes the 

model to underpredict the pore water pressure severely; This underprediction of the pore water 
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pressure ratio in SANICLAY-B can be seen in Figure 4.10 and Figure 4.11 where the model could 

not predict more than 30% of this ratio. However, it should be mentioned that despite the improved 

performance in the effective stress path of the SANICLAY-H, the ability of the model to simulate a 

higher pore water pressure ratio is not realistic and has resulted in an overprediction of that feature 

compare to the experimental data. In addition, similar to SANICLAY-B, SANICLAY-H also shows 

an unrealistic sharp increase in generating the pore water pressure with the number of cycles.  

Contrary to the clay models, DM04 shows a realistic gradual increase in the pore water pressure 

ratio at both low and high CSR, resulting in a gradual decrease of the mean effective stress with the 

number of cycles. This is attributed to the dependency of the dilatancy and bounding lines to the 

state parameter via the critical state void ratio. In other words, the magnitude of the plastic 

deformations is set to be proportional to the distance of these lines to the critical state line. The 

gradual movements of these lines toward the CSL during plastic deformations ensures a gradual 

increase or decrease in the dilatancy parameter, 𝑑 and the plastic modulus, 𝐻, and consequently, a 

gradual decrease in the mean effective stress. Therefore, these lines allow the model to reach the 

critical state line gradually as the soil state reaches the critical state, and thus, a realistic, effective 

stress path and pore water pressure be achieved.  

Additionally, DM04 is formulated to capture more realistically the dilative response of soils 

exhibiting sand-like behavior. For this purpose, as soon as the stress ratio passes the dilatancy line, 

the dilatancy variable, 𝑑, take negative values, as it is set to be a function of (𝑀𝑑 − 𝜂). Therefore, 

by studying the rate of change of the mean effective stress in an undrained test, 𝑝̇ = −𝑑 |
𝜂̇

𝐻
| 𝐾, 

obtained by setting 𝜀𝑣
 ̇ = 𝜀𝑣

𝑝̇ + 𝜀𝑣
𝑒̇ = 0, it can be understood that the negative values of 𝑑 produces 

positive mean effective stress (dilation) in an undrained test. This dilative response predictability 

of the model evolves during the dilative phase of loading, i.e., when 𝜀𝑣
𝑝̇

< 0, and increases with the 

number of cycles. Contrary to DM04, both clay models lack such a dilative behavior that can be 

seen in experimental data. In fact, although the hybrid flow rule of the SANICLAY-H model induces 

butterfly-shaped loops that result from a dilative behavior, this feature is activated only when the 

model reaches the critical state line; Before reaching the critical state line, the model mostly shows 

contractive behavior.    
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In order to evaluate the performance of the PSO as well as the models’ predictive ability to predict 

the number of cycles to reach a given shear strain, the CSR-N curves to reach shear strain values 

of 1% and 5% are compared for all models with those of the experimental data and shown in Figure 

4.12 and Figure 4.13, respectively. According to these figures, the curve obtained for the Dafalias 

and Manzari model overpredict the number of cycles corresponding to the shear strain of 1% at 

higher CSR values and underpredict it for lower ones. Contrary to the sand model, the same curve 

obtained for clay models tend to be always underpredictive.  

Table 4.5: Model parameters calibrated by PSO 

 SANICLAY-B SANICLAY-H DM04 

Category Parameter  SBFW Parameter  SBFW Parameter SBFW  

Elasticity 𝜅 6.08 × 10−3 𝜅 6.08 × 10−3 𝐺0 35 

𝜈 0.2 𝜈 0.2 𝜈 0.2 

Critical state 𝜆 0.06 𝜆 0.06 𝑀 1.22 

𝑀𝑐 1.22 𝑀𝑐 1.22 𝑐* 1.683 

𝑀𝑒 1.22 𝑀𝑒 1.22 𝜆𝑐 2.593 

    𝑒0 3.391 

    𝜉 0.016 

Yield surface NA - NA - 𝑚 0.01 

Bounding surface 

and plastic 

modulus 

𝑁 1.22 𝑁𝑐  (𝑁𝑒) 1.22 (1.22) ℎ0* 2.417 

ℎ0* 100 ℎ𝑐  (ℎ𝑒)* 453.9 (37.6) 𝑐ℎ* 0.096 

𝑎𝑑* 14 𝑐𝑑* 32.244 𝑛𝑏* 1.168 

Rotational 

Hardening 

𝐶* 5.912 𝐶* 0.09 NA - 

𝑥* 3.38 𝑥* 1.088 NA - 

Destructuration 𝑘𝑖* 0 𝑘𝑖* 2.083 NA - 

Dilatancy NA - NA - 𝐴0* 0.015 

    𝑛𝑑* 7.948 

Fabric-dilatancy 

tensor 

NA - NA - 𝑧𝑚𝑎𝑥* 2.572 

    𝑐𝑧* 1100 

Hybrid flow rule NA - 𝜔* 5.396 NA - 

      

  *Parameters included in the calibration process. 



94 

 

         

The CSR-N plotted for models and experiments at the shear strain of 5% shows that all models 

have a closer fit with experimental results indicating that the models’ behavior is closer to that of 

the soil at higher shear strains. Among all models, the sand model and SANICLAY-B show the 

closer and the worst fit with experiments, respectively, while the performance of the SANICLAY-

H may be considered to be intermediate of the other two models.   

The closer fit, observed in all models, of the CSR-N curves corresponding to shear strain of 5%, 

compared at that of 3%, may be justifiable by the fact that higher shear strains could have more 

impact on the model’s calibrations as all the models are calibrated based on the shear strain. As a 

result, the models might not be able to capture the cyclic behavior of soils at both low and high 

shear strains correctly. Therefore, the user must be aware that a calibration error bias might occur 

while using such kind of optimization algorithms for automatic calibrations.    
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Figure 4.10 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing (CSR_0.120). 
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Figure 4.11 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing (CSR_0.178). 
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Figure 4.12 Comparison of CSR vs. N curves (N@=1%) from experimental results and model 

simulations calibrated using PSO 

 

Figure 4.13 Comparison of CSR vs. N curves (N@=5%) from experimental results and model 

simulations calibrated using PSO 

4.4 Comparing PSO and GNO 

In this section, the performance of PSO and GNO are compared by applying both algorithms to a 

sand model, DM04, and a clay model, SANICLAY-B. For a fair comparison, the same model input 
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parameters are used in both calibrations using GNO and PSO. The input parameters of DM04 and 

SANICLAY-B calibrated using PSO are summarized in Table 4.5, while those calibrated using GNO 

are provided in Table 4.6.  

Table 4.6: Model parameters calibrated by GNO 

 SANICLAY-B DM04 

Category Parameter  SBFW 

Mixture 

Parameter SBFW 

Mixture 

Elasticity 𝜅 6.08 × 10−3 𝐺0 35 

𝜈 0.2 𝜈 0.2 

Critical state 𝜆 0.06 𝑀 1.22 

𝑀𝑐 1.22 𝑐* 0.237 

𝑀𝑒 1.22 𝜆𝑐 2.593 

  𝑒0 3.391 

  𝜉 0.016 

Yield surface   𝑚 0.01 

Bounding surface and 

plastic modulus 

𝑁 1.22 ℎ0* 6.56 

ℎ0* 104 𝑐ℎ* 1.069 

𝑎𝑑* 21 𝑛𝑏* 2.81 

Rotational Hardening 𝐶* 1.8 NA  

𝑥* 0.9   

Destructuration 𝑘𝑖* 0 NA  

Dilatancy NA  𝐴0* 0.035 

  𝑛𝑑* 2.994 

Fabric-dilatancy tensor NA  𝑧𝑚𝑎𝑥 ∗ 0 

  𝑐𝑧* 600 

*Parameters included in the calibration process.  
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In Figure 4.14, the cyclic response of DM04 calibrated with both optimization techniques is 

compared with that of the experimental data for a test with the cyclic stress ratio of 0.157 

(CSR_0.157) in terms of stress-strain curves, strain vs. time, the effective stress path, and the ratio 

of pore water pressure built-up (other simulations with both DM04 and SANILCAY-B at different 

CSRs are provided in APPENDIX A). As can be seen in this figure, the calibration using PSO has 

resulted in better capturing the cyclic response of the soil compared to the GNO calibration. In fact, 

calibration using GNO has caused the model to predict less shear strain accumulations with the 

number of cycles compared to the experimental data, while the calibration using PSO has resulted 

in a very close prediction of the shear strain accumulations. Additionally, the model simulations 

using the calibration with the GNO have shown a reduction of the mean effective stress with the 

number of cycles far less than that observed by the lab test. It should be mentioned that the same 

trends were observed when the model’s simulations were compared with the lab tests at other CSR 

values.    

In another comparison, the CSR-N curves for both DM04 and SANICLAY-B models, calibrated with 

both algorithms, are shown in Figure 4.15. According to this figure, the model simulations 

calibrated using PSO have shown a closer fit with the experimental data. The difference is more 

pronounced for the SANICLAY-B. The reason for the better performance of the PSO over GNO can 

be explained by different search strategies each algorithm employs to find the optimum of the 

objective function. In the GNO, once the initial guess for input parameters are provided, the 

algorithm searches the vicinity of the provided input parameters to find the best set by which the 

objective function is optimum. In other words, the algorithm is dependent on the initial set of input 

parameters and could converge to the local minimum if the initial set of input parameters are far 

from the global minimum (Antoniou and Lu, 2007).  

Contrary to GNO, the PSO search strategy is independent of the initial guess since it sets upper and 

lower bounds to ensure that the search space is fairly investigated. However, this optimization 

algorithm is dependent on the number of particles within the search space. Employing a low 

number of particles may not cover the search space completely and consequently could result in a 

poor calibration, while using a large number of particles requires more function evaluations per 

iteration and slows down the computation (Trelea, 2003). Trelea (2003) reported that using a 

medium number of particles (i.e., 30) yields the best results in performance and computation time. 
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However, it should be highlighted that the finding of Trelea (2003) is not a general recommendation 

of this study.   

 

Figure 4.14 Comparison between DM04 simulations and results of DSS laboratory cyclic 

shearing (CSR_0.157). 
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Figure 4.15 Comparison of CSR vs. N curves (N@=3%) from experimental results and model 

simulations (a) SANICLAY-B (b) DM04 
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4.5 Summary and Conclusions 

In this chapter, two advanced optimization algorithms, namely the Gauss-Newton (GNO) 

optimization as well as the Particle Swarm Optimization (PSO) algorithms, were used to calibrate 

three advanced cyclic constitutive models for sands (Dafalias and Manzari, 2004) and clays 

[SANICLAY Bounding surface model (Seidalinov and Taiebat 2014) and SANICLAY Bounding 

surface with a Hybrid flow rule (Shi 2016)].  

The GNO was adjusted to calibrate constitutive models developed for cyclic loading applications. 

The modifications applied to the GNO may be summarized as follows: 1- Applying a rank-one 

estimation of the Jacobian matrix using the Broyden's method (Broyden, 1965) instead of the full 

calculation at every iteration to reduce the computation time. 2- Employing the simplified approach 

of Aster et al. (2012) to find the Levenberg-Marquardt parameter, 𝜆, to reduce the complications 

associated with finding this parameter. 3- Assigning weights proportional to the inverse of the 

variance of data points to ensure that all data have the same effect on the calibration results and 

reduce a bias that is induced at high strain levels. 4- Employing the forward difference method 

instead of the central difference method to reduce the number of calculations by half at each 

iteration and double the calibration speed. 5- Introducing a new approach to calibrate constitutive 

models developed for cyclic loading applications based on the CSR-N curves.  

The application of the GNO to the SANICLAY-B model showed that it could retrieve the input 

parameters that were used to generate the target data. In addition, this algorithm was efficient in 

calibrating the Dafalias and Manzari (2004) model against laboratory test data provided within the 

LEAP project, and simulations using the model calibrated with the algorithm showed closer results 

to experimental data, compared to the model calibrated by trial and error by previous researchers. 

Furthermore, the application of the calibration algorithm to the SANICLAY-H model for San 

Francisco Young Bay Mud showed that calibrating in terms of the CSR versus the number of cycles 

to reach a given shear strain level is an efficient approach, compared to calibrating against shear 

strains, which in turn results in faster convergence of the calibration process, as well as the better 

agreement with the laboratory results.   
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Similar to GNO, the application of the PSO to calibrate three bounding surface constitutive models 

against the low plasticity silt mixtures showed that it could be a valuable substitute for the current 

trial and error calibration procedure to ease the challenges associated with calibrating advanced 

models. Among the two techniques, calibrations using the PSO yielded a closer fit for the CSR-N 

curve of the model’s simulations compared with experimental data. The higher efficiency of this 

algorithm over the GNO was discussed to be attributed to its search strategy, faster convergence, 

and easier implementation due to its simplicity. 
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CHAPTER 5 FORMULATION OF A VISCOPLASTIC CONSTITUTIVE 

MODEL FOR CLAY CYCLIC BEHAVIOR 

The information presented in this chapter is included in several publications:   

Zarrabi, M., Shi, Z., Yniesta, S., and Buscarnera, G. "A Viscoplastic Bounding Surface Model for 

Cyclic Softening." (to be submitted to International Journal for Numerical and Analytical 

Methods in Geomechanics). 

Zarrabi, M., Shi, Z., Yniesta, S., and Buscarnera, G. (2020). "Simulation of the Cyclic Response 

of Anisotropic Clay through Bounding Surface Viscoplasticity" GeoVirtual, Canada. 

Zarrabi, M., and Yniesta, S. (2019). "Recent Advanced Constitutive Models for Liquefaction and 

Cyclic Softening Analysis" Geo-St.John’s, Newfoundland, Canada.  

5.1 Introduction 

As was discussed in the 3rd chapter, two bounding surface plasticity models for cyclic loading 

applications have developed by Seidalinov and Taiebat (2014) and Shi et al. (2018) upon the 

framework of the SANICLAY family model (Dafalias et al. 2006; Taiebat et al. 2010). Although 

these constitutive laws are valuable tools to investigate the potential of failure of a system under 

cyclic loading, neither considers the effect of loading rate and/or soil viscosity in their formulation. 

To include rate and time effects into bounding surface plasticity, an elasto-viscoplastic framework 

was proposed by Shi et al. (2019) by combining Perzyna’s overstress theory with the bounding 

surface plasticity framework. Although the new framework has shown promising results in 

capturing rate effects in clay behavior under both monotonic and cyclic loading, it was applied to 

the modified Cam-Clay (Roscoe and Burland, 1968). Therefore, some features of clay behavior, 

mainly under the cyclic loading, cannot be realistically simulated using this model. For example, 

some limitations of the model could be highlighted as: 

1- The model could not consider soil anisotropy due to the lack of a rotational hardening rule.  

2- The model shows a big elastic response during cyclic loading. 

3- The model could not predict realistic hysteresis loops under cyclic loading. 
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4- The model experiences a stress path lock-off after a few cycles of loading. 

5- A realistic butterfly or 8-shaped loops in the stress path could not be captured in this model. 

In this dissertation, the bounding surface elasto-viscoplasticity framework (BS-EVP) is used in the 

context of the SANICLAY model (Dafalias et al. 2006), thus using a rotational hardening rule, a 

procedure for the relocation of the projection center, and a hybrid flow rule. The model is able to 

capture the anisotropic properties and the cyclic loading response of clays, including pore water 

pressure built-up, hysteresis loops, and effective stress path at different loading rates and/or 

frequencies.  

5.2 Model Formulation in Triaxial Space 

This section describes the key components of the constitutive model with reference to the triaxial 

space, while the model generalization in multiaxial space will be discussed in the next section. 

5.2.1 Stress-Strain Definition in Triaxial Space 

This section describes the key components of the constitutive model with reference to the triaxial 

space. As a result, the model functions are given in terms of the mean effective stress 𝑝, deviatoric 

stress, 𝑞, volumetric strain, 𝜀𝑣, and deviatoric strain, 𝜀𝑞, defined as: 

𝑝 =
𝜎𝑎 + 2𝜎𝑟

3
 (5.1) 

𝑞 = 𝜎𝑎 − 𝜎𝑟 (5.2) 

𝜀𝑣 = 𝜀𝑎 + 2𝜀𝑟 (5.3) 

𝜀𝑞 =
2

3
(𝜀𝑎 − 𝜀𝑟) (5.4) 

Where 𝜎𝑎 and 𝜎𝑟 are axial and radial stresses, respectively and 𝜀𝑎 and 𝜀𝑟 are axial and radial strains, 

respectively.  



106 

 

         

5.2.2 Elastic Response 

According to Perzyna’s theory of viscoplasticity, the total strain rate is additively decomposed into 

an elastic part and a viscoplastic part: 

𝜀 ̇ = 𝜀 ̇
𝑒 + 𝜀 ̇

𝑣𝑝 (5.5) 

Where the superposed dot denotes a rate and superscripts 𝑒 and 𝑣𝑝 stand for elastic and 

viscoplastic, respectively. The components of the elastic strain rate are commonly expressed based 

on an isotropic hypoplastic law:   

𝜀𝑣̇
𝑒 =

𝑝̇

𝐾
 (5.6) 

𝜀𝑞̇
𝑒 =

𝑞̇

3𝐺
 

(5.7) 

Where 𝐾 and 𝐺 are the elastic bulk and shear moduli, respectively, which are expressed as:  

𝐾 =
(1 + 𝑒)𝑝

𝜅
 

(5.8) 

𝐺 =
3(1 − 2𝑣)

2(1 + 𝑣)
𝐾 

(5.9) 

Where 𝑣 and 𝑒 are the Poisson’s and void ratios, respectively, and 𝜅 is the slope of the isotropic 

unloading/recompression line in the e-ln(p) plot.   

5.2.3 Bounding and Viscoplastic Potential Surfaces 

To account for soil anisotropy, the SANICLAY model proposed by Dafalias et al. (2006) uses a 

distorted and rotated ellipse as a yield surface. In this study, this particular yield surface shape is 

used as a bounding surface, as previously done by Seidalinov and Taiebat (2014), Shi et al. (2018), 

etc. This bounding surface is schematically shown in Figure 5.1 and expressed as: 

𝐹 = (𝑞̅ − 𝑝̅ ∙ 𝛼)2 − (𝑁2 − 𝛼2)𝑝̅(𝑝0 − 𝑝̅) = 0 (5.10) 



107 

 

         

Where (𝑝̅, 𝑞̅) is the image stress point obtained by mapping the current stress (𝑝, 𝑞) on the bounding 

surface from a projection center 𝑃𝐶 (𝑝𝑐, 𝑞𝑐) through a mapping rule, which will be detailed in the 

following sections. 𝛼 and 𝑝0 are rotational and isotropic hardening variables representing 

anisotropic states and soil consolidation, respectively, and 𝑁 is a parameter controlling the 

distortion of the bounding surface which depends on the mode of shearing (i.e., 𝑁 = 𝑁𝑐 for triaxial 

compression and 𝑁 = 𝑁𝑒 for triaxial extension):. 

𝑁 = {
𝑁𝑐                 𝑖𝑓    𝑞̅ ≥ 𝑝̅𝛼
𝑁𝑒                 𝑖𝑓    𝑞̅ < 𝑝̅𝛼

 (5.11) 

 

 

Figure 5.1 Schematic of bounding, dynamic, and static loading surfaces of the BS-EVP model. 

In the rate-independent bounding surface plasticity, the image stress lies on the bounding surface, 

whereas the current stress lies on the implicitly defined loading surface. Extending Perzyna’s 

theory of viscoplasticity (Perzyna, 1963) to a bounding surface framework requires the use of two 

distinct functional surfaces to compute the evolution of a modified overstress. Hereafter, such 

surfaces are defined as static and dynamic loading surfaces, which replace the role of the loading 

surface of rate-independent bounding surface models (Shi et al., 2019). As shown in Figure 5.1, 
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the static and dynamic loading surfaces always pass through the static (𝑝𝑠, 𝑞𝑠) and current stress 

(𝑝 , 𝑞 ), respectively. The use of the Perzyna’s overstress concept implies that the state of stress can 

lay inside, on, or outside the static loading surface. However, the stress state inside the static 

loading surface can only cause elastic deformations, while states of stress outside of it cause 

viscoplastic strain with a magnitude dependent on the degree of violation of the static loading 

surface (here referred to as overstress).  

 The model uses a non-associated flow rule, therefore requiring the definition of a flow potential 

surface (shown in Figure 5.2 as the viscoplastic potential surface) different than the bounding 

surface to calculate the viscoplastic strain:  

𝑔 = (𝑞̅ − 𝑝̅ ∙ 𝛼)2 − (𝑀2 − 𝛼2)𝑝̅(𝑝𝛼 − 𝑝̅) = 0 (5.12) 

Where 𝑝𝛼 is the value of 𝑝̅ at 𝑞̅ = 𝛼𝑝̅  to adjust the viscoplastic potential for a given pair of the 

image stress on the bounding surface and M is the slope of the critical state line in the 𝑝 − 𝑞 space:  

𝑀 = {
𝑀𝑐                 𝑖𝑓    𝑞̅ ≥ 𝑝̅𝛼
𝑀𝑒                 𝑖𝑓    𝑞̅ < 𝑝̅𝛼

 (5.13) 

Where 𝑀𝑐 and 𝑀𝑒 are the slope of the critical state line in triaxial compression and extension, 

respectively. 
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Figure 5.2 Schematic of the viscoplastic surface of the BS-EVP model. 

5.2.4 Image Stress and Projection Center 

In bounding surface plasticity, the current stress state is related to corresponding image stress on 

the bounding surface through a mapping rule. A usual choice is a radial mapping rule, which, 

similar to earlier propositions by Dafalias and Herrmann (1986), and can be expressed as: 

𝑝̅ = 𝑝𝑐 + 𝑏𝑑(𝑝 − 𝑝𝑐) (5.14) 

𝑞̅ = 𝑞𝑐 + 𝑏𝑑(𝑞 − 𝑞𝑐) (5.15) 

Where 1 ≤ 𝑏𝑑 ≤ ∞ indicates the similarity ratio between the dynamic loading surface and the 

bounding surface, respectively, and the two extremes correspond to current stress coinciding with 

the image stress (𝑏𝑑 = 1) or the projection center (𝑏𝑑 = ∞). The exact value of 𝑏𝑑 could be 

obtained by inserting the image stress, Eq.(5.14) and Eq.(5.15), into the bounding surface, Eq. 

(5.10), and solving the resulting quadratic equation for the positive root (Seidalinov, 2012; 

Seidalinov and Taiebat, 2014). Given the relationship between the static and current stress to the 

same image stress, it is possible to define a similarity ratio 𝑏𝑠 for the static loading surface as well. 
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Knowledge of both 𝑏𝑠 and 𝑏𝑑, allows the static stress to be expressed as a function of the current 

stress, as follows:   

𝑝𝑠 = 𝑝𝑐 +
𝑏𝑑

𝑏𝑠

(𝑝 − 𝑝𝑐) 
(5.16) 

𝑞𝑠 = 𝑞𝑐 +
𝑏𝑑

𝑏𝑠

(𝑞 − 𝑞𝑐) 
(5.17) 

Contrary to the dynamic loading surface, the static loading surface moves according to its own 

evolution law, encapsulated in the rate of 𝑏𝑠. Such a viscoplastic hardening rule will be discussed 

in the next section.     

In order to have unique image stress, the projection center should always be located inside the 

bounding surface. Seidalinov (2012) and Seidalinov and Taiebat (2014) suggested that updating 

the projection center at any stress reversal improves the predictive capability of the model for the 

cyclic response of clays. It can be shown that the stress reversal occurs whenever the loading index 

𝐿 ≤ 0, where 𝐿 can be obtained by satisfying the consistency condition, 𝐹̇ = 0: 

𝐿 =

𝜕𝑔
𝜕𝑝̅

∙ 𝑝̇ +
𝜕𝑔
𝜕𝑞̅

∙ 𝑞̇

𝐾𝑝
 

(5.18) 

Where 𝐾𝑝 is the plastic modulus, to be defined later. If the projection center is unchanged till the 

next stress reversal, it might be located outside the bounding surface as the latter shrinks, expands, 

and/or rotates. Therefore, Seidalinov (2012) and Seidalinov and Taiebat (2014) proposed using a 

moving projection center to ensure that it always remains inside the bounding surface. In the current 

study, the evolution rule for the projection center proposed by Shi et al. (2018) is used in which the 

simultaneous changes of 𝑝0 and 𝛼 are considered:  

𝑝𝑐̇ =
𝑝𝑐

𝑝0
∙ 𝑝0̇ (5.19) 
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𝑞𝑐̇ =
𝑞𝑐

𝑝0
∙ 𝑝0̇ +

𝑁 
2 ∙ 𝑝𝑐 − 𝛼 ∙ 𝑞𝑐

𝑁 
2 − 𝛼2

∙ 𝛼̇ 
(5.20) 

5.2.5 Viscoplastic Hybrid Flow Rule 

In Perzyna’s theory of Viscoplasticity, the viscoplastic strain rates are given as: 

𝜀𝑣̇
𝑝 = 𝜇〈𝜙(𝑦)〉𝑅𝑣 (5.21) 

𝜀𝑑̇
𝑝 = 𝜇〈𝜙(𝑦)〉𝑅𝑑 (5.22) 

Where 𝜇 is the fluidity parameter, 𝑅𝑣 and 𝑅𝑑 are the volumetric and deviatoric gradients of the 

plastic flow potential function, 𝑔, respectively, and 𝜙(𝑦) is the overstress function. The latter is a 

normalized measure of the distance between the dynamic loading surface and the static loading 

surface. The use of Macauley brackets ensures that for stress states inside the elastic nucleus, 𝑦, 

the overstress function, 𝜙(𝑦), yields zero, resulting in no viscoplastic strain development:    

〈𝜙(𝑦)〉 = {
𝜙(𝑦)     𝑖𝑓    𝑦 > 0
0            𝑖𝑓    𝑦 ≤ 0

 
(5.23) 

Numerous overstress functions have been proposed in the literature (Kaliakin and Dafalias (1990); 

Martindale et al. (2013); Yin and Hicher (2008)). Here, an exponential form is adopted:  

𝜙 = 𝜇1 ∙ 𝑒
𝜇2(〈

𝑏𝑠
𝑏𝑑

−1〉)
 

(5.24) 

In the following, it will be shown that the use of two distinct viscous parameters 𝜇1 and 𝜇2 in the 

overstress function leads to a more versatile viscoplastic formulation and an improved performance 

in capturing rate effects.   

To find 𝑅𝑣 and 𝑅𝑑, Seidalinov and Taiebat (2014) used the volumetric and deviatoric gradients of 

the plastic potential surface at the image stress as the flow rule of the rate-independent bounding 

surface model (i.e. 𝑅𝑣 = 𝑅𝑣
𝑖  and 𝑅𝑑 = 𝑅𝑑

𝑖 ). The main limitation of that flow rule, hereafter referred 

to as the image stress flow rule, was the occurrence of a lock-up in the effective stress path after a 

few cycles of loading in an undrained cyclic loading test. Shi et al. (2018) have shown that 
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employing a hybrid flow rule, i.e., using the gradients of the plastic potential at both image and 

current stress, may improve such stress path lock-up and add a so-called butterfly-shaped loop to 

the stress path of the model. In this work, the hybrid flow rule proposed by Shi et al. (2018), 

schematically shown in Figure 5.3, is applied for 𝑅𝑣 while 𝑅𝑑 is solely determined by the image 

stress flow rule: 

𝑅𝑣 = 𝑅𝑣
𝑖 ∙ 𝑔𝑖 + 𝑅𝑣

𝑐(|𝑚𝑔| − 𝑔𝑖)     (5.25) 

𝑅𝑑 = 𝑅𝑑
𝑖  (5.26) 

Where 𝑚𝑔 is a hybrid flow rule input parameter and 𝑔𝑖 is the distribution variable. 𝑅𝑣
𝑖  and 𝑅𝑣

𝑐 are 

volumetric gradients of the viscoplastic potential surface at the image and current stress, 

respectively, and 𝑅𝑑
𝑖  is the deviatoric gradient of it at the image stress (refer to Figure 5.3). 𝑔𝑖 is 

assumed to have the following expression:  

𝑔𝑖 = (
1

𝑏𝑠
)
𝜔

 
(5.27) 

Where 𝜔 is a material constant that along with 𝑚𝑔 controls the contribution of 𝑅𝑣
𝑐 and 𝑅𝑣

𝑐 to the 

flow rule. It should be noted that the special case of 𝜔 = 0 and 𝑚𝑔 = 1 will result in an imaging 

stress flow rule. Consequently, 𝑅𝑣
𝑖 , 𝑅𝑣

𝑐, and 𝑅𝑑
𝑖  are given as: 

𝑅𝑣
𝑖 =

𝜕𝑔

𝜕𝑝̅
= 𝑝̅(𝑀2 − 𝜂̅2) (5.28) 

𝑅𝑑
𝑖 =

𝜕𝑔

𝜕𝑞̅
= 2 ∙ 𝑝̅(𝜂̅ − 𝛼) (5.29) 

𝑅𝑣
𝑐 = 𝑝(𝑀2 − 𝑠𝑙 ∙ 𝜂2) (5.30) 

Where 𝜂 and 𝜂̅ are the current (𝜂 =
𝑞

p
) and  image stress ratio (𝜂̅ =

𝑞̅

𝑝̅
), respectively, and 𝑠𝑙 is a 

variable that alternates between 1 and -1 depending on the loading direction and the stress ratio: 
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𝑠𝑙 = {
1            𝑖𝑓    (𝜂̅ − 𝛼)𝜂 ≥ 0
−1        𝑖𝑓    (𝜂̅ − 𝛼)𝜂 < 0

 (5.31) 

 

Figure 5.3 Schematic of the hybrid flow rule applied to the BS-EVP model. 

5.2.6 Relocation of the Static Loading Surface 

As mentioned previously, in Perzyna’s viscoplasticity, any stress state inside the static loading 

surface will result in an elastic response. Therefore, under monotonic loading, once the stress state 

exits the static loading surface, the viscoplastic deformations start and continue to develop until the 

end of the loading path. However, under cyclic loading, a stress reversal brings the stress state back 

inside the static loading surface, and viscoplastic deformations stop until the stress state is such 

that the overstress is positive again. Since such abrupt changes of response after stress reversal do 

not occur in rate-independent bounding surface models, Shi et al. (2019) proposed to eliminate this 

inconvenience by relocating the static loading surface once two conditions occur simultaneously: 

(1) the current stress is inside the static loading surface and (2) the loading index attains a positive 

value. These conditions can be expressed as:    
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𝑏𝑠 = 𝑏𝑑    𝑖𝑓 (𝐿 > 0  𝑎𝑛𝑑 
𝑏𝑠

𝑏𝑑
< 1 ) (5.32) 

This relocation procedure mitigates the lack of visco-plastic effects upon stress reversal, in that it 

promotes the overstress growth as a result of a positive incremental loading index.  

5.2.7 Hardening Variables 

To complete all parts of the viscoplastic model, it is necessary to express the evolution laws for the 

hardening variables 𝑝0, 𝛼, and 𝑏𝑠. As suggested by Seidalinov and Taiebat (2014), among the two 

distinct isotropic and frictional destructuration mechanisms that were suggested by Taiebat et al. 

(2010), only classical isotropic destructuration to capture the shear strength degradation is adopted 

in this model for the sake of simplicity. Therefore, 𝑝0 is set to 𝑝0𝑑 ∙ 𝑆𝑖 where 𝑆𝑖 ≥ 0 is the isotropic 

structuration factor and 𝑝0𝑑 is the restructure value of  𝑝0 (the value of  𝑝0 when  𝑆i = 1). Therefore, 

the evolution law of 𝑝0 may be expressed as follows:  

𝑝0̇ = 〈𝜙(𝑦)〉𝑝̅0 (5.33) 

𝑝̅0 = 𝑆𝑖 ∙ 𝑝̅0𝑑 + 𝑝0𝑑 ∙ 𝑆𝑖̅ (5.34) 

𝑝̅0𝑑 = (
1 + 𝑒

𝜆 − 𝜅
)𝑝0𝑑(𝑅𝑣) (5.35) 

𝑆𝑖̅ = 𝑘𝑖 (
1 + 𝑒

𝜆 − 𝜅
) ( 𝑆𝑖 − 1)(𝜀𝑑̅

𝑝) (5.36) 

Where 𝜆 and 𝜅 are the slopes of the isotropic loading and reloading curves in the 𝑝 − ln (𝑒) space, 

respectively, and 𝑘𝑖 a material constant governing the rate of destructuration. It should be noted 

that the destructuration mechanism is active as long as 𝑘𝑖 > 0. Therefore, setting 𝑘𝑖 = 0 will switch 

off the destructuration mechanism. Also, 𝜀𝑑̅
𝑝
, the destructuration plastic strain rate, is an auxiliary 

internal variable which adjusts the degradation of 𝑆𝑖̅: 

𝜀𝑑̅
𝑝 = √(1 − 𝐴)(𝑅𝑣)2 + (𝐴)(𝑅𝑑)2 (5.37) 
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Where 𝐴 is a material constant that distributes the effects of the gradients of the volumetric and 

deviatoric plastic flows to 𝜀𝑑̅
𝑝.  A default value of 0.5 is set for this parameter.  

For 𝛼, the rotational hardening rule proposed by Dafalias et al. (2006) is used: 

𝛼̇ = 〈𝜙(𝑦)〉𝛼̅ (5.38) 

𝛼̅ = 〈𝜙(𝑦)〉 (
1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝̅

𝑝0
)
2

|𝑅𝑣||𝜂̅ − 𝑥 ∙ 𝛼|(𝛼𝑏 − 𝛼) (5.39) 

𝐶 and 𝑥 are input parameters governing the rotational rate of change of the bounding surface and 

the upper bound of 𝛼 in a constant stress ratio loading, respectively. Also, 𝛼𝑏 is the bounding value 

for 𝛼, determined as: 

𝛼𝑏  = {
min (𝑀,𝑁)                   𝑖𝑓    (𝜂̅)/𝑥 ≥ 0
max (−𝑀,−𝑁)           𝑖𝑓    (𝜂̅)/𝑥 < 0

 (5.40) 

As mentioned previously, the static loading surface has its own evolution law: 

𝑏𝑠̇ = 〈𝜙(𝑦)〉𝑏̅𝑠 (5.41) 

As suggested by Shi et al. (2019), 𝑏𝑠̇ can be inferred from the consistency condition of the 

underlying rate-independent model used to construct the viscoplastic formulation: 

𝑏̅𝑠 =
(−𝑏𝑠 ∙ 𝐾𝑝 + 𝐾̅𝑝 − (1 − 𝑏𝑠)(𝑅𝑣 ∙ 𝑝̅𝑐 + 𝑅𝑑 ∙ 𝑞̅𝑐))

(𝑝 − 𝑝̅𝑐)(𝑅𝑣) + (𝑞 − 𝑞̅𝑐)(𝑅𝑑)
 (5.42) 

Where 𝐾𝑝  and 𝐾̅𝑝 are the plastic modulus at the current and image stresses, respectively. 

5.2.8 Plastic Modulus and Damage Variable 

The core feature of the bounding surface framework is that the plastic modulus at the current stress, 

𝐾𝑝, is associated with the plastic modulus, 𝐾̅𝑝, at the image stress allowing the permanent strain to 

occur even if the stress state does not lie on the bounding surface. In this work, the expression of 

𝐾𝑝 proposed by Shi et al. (2018) is adopted: 
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𝐾𝑝 = 𝐾̅𝑝 + (𝑏𝑠 − 1)(1 + 𝑒) ∙ 𝑚s ∙ 𝑝0
3 (5.43) 

Where 𝑚s is a shape hardening variable that controls the shape of the plastic modulus. Here, a 

decaying expression for 𝑚s is used, in agreement with earlier propositions by Seidalinov and 

Taiebat (2014), who showed that to prevent hysteresis loop lock-up 𝑚s should not be constant. As 

a result, the following expression is adopted:   

𝑚s =
 ℎ 

1 + 𝑑
 (5.44) 

Where ℎ is a variable which adjusts the plastic modulus magnitude and similar to 𝑀 and 𝑁 is 

dependent on the mode of shearing) (i.e., 𝑁 = 𝑁𝑐 for triaxial compression and 𝑁 = 𝑁𝑒 for triaxial 

extension) as suggested by Shi et al. (2018).  

ℎ = {
ℎ𝑐                  𝑖𝑓     𝑞̅ ≥ 𝑝̅𝛼
ℎ𝑒                 𝑖𝑓     𝑞̅ < 𝑝̅𝛼

 (5.45) 

𝑑 is the damage state variable, the rate of change of which is assumed to be linearly proportional 

to the deviatoric plastic strain increment: 

𝑑̇ = 𝑎𝑑 ∙ |𝜀𝑑̇
𝑝| (5.46) 

Finally, 𝐾̅𝑝 is obtained by satisfying the consistency condition, 𝐹̇ = 0: 

𝐾̅𝑝 = −(
𝜕𝐹

𝜕𝑝0
∙ 𝑝̅0 +

𝜕𝐹

𝜕𝛼
∙ 𝛼̅) (5.47) 

where 
𝜕𝐹

𝜕𝑝0
 and are 

𝜕𝐹

𝜕𝛼
 defined as: 

𝜕𝐹

𝜕𝑝0
= −𝑝̅ ∙ (𝑁2 − 𝛼2) (5.48) 

𝜕𝐹

𝜕𝛼
= −2 ∙ 𝑝̅ ∙ (𝑞̅ − 𝑝0 ∙ 𝛼) (5.49) 
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5.3 Model Generalization in Multiaxial Space 

This section generalizes to a multiaxial space formulation all aspects of the viscoplastic model 

presented in the previous section, including the bounding surface, viscoplastic potential surface, 

viscoplastic flow rule, hardening rules of the internal variables, image stress, projection center 

evolution, and plastic modulus. The model generalization in this section is based on the approach 

proposed by Dafalias et al. (2006) for the original SANICALY model and the formulation provided 

by Seidalinov (2012) for the SANICLAY bounding surface and Shi (2016) for the SANICLAY with 

the hybrid flow rule.  

In multiaxial space, with knowledge of the stress tensor, 𝝈 , the deviatoric stress tensor, 𝒔, and the 

hydrostatic pressure, p, may be expressed as: 

𝒔 = 𝝈 − 𝑝 ∙ 𝑰 (5.50) 

𝑝 =
1

3
𝑡𝑟(𝝈 ) (5.51) 

Where I is the identity tensor, and tr indicates the trace of a tensor.  

The deviatoric stress commonly used in triaxial space can be computed from the deviatoric stress 

tensor as: 

𝑞 = [(3/2)𝒔: 𝒔]
1

2⁄  (5.52) 

Where “:” symbolizes the inner product of two tensors. This equation indicates that s is the 

multiaxial counterpart of q. Similarly, the multiaxial counterpart of the triaxial 𝛼 can be expressed 

in terms of the stress-ratio tensor 𝜶: 

𝛼 = [(3/2)𝜶:𝜶]
1

2⁄  (5.53) 
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5.3.1 Elastic Response 

Similar to the triaxial conditions, the tensor of the elastic strain increments, 𝜺̇ 
𝑒, may be expressed 

in terms of the volumetric strain increments, 𝜀𝑣̇
𝑒, and the tensor of  the deviatoric strain increments, 

𝜺̇𝑑
𝑒 :   

𝜺̇ 
𝑒 = 𝜺̇𝑑

𝑒 + 𝜀𝑣̇
𝑒𝑰 (5.54) 

Where the multiaxial generalization of the hypoelastic relations is expressed as: 

𝜺̇ 
𝑒
 
 
=

𝒔̇

2𝐺
+

𝑝̇

3𝐾
𝑰 (5.55) 

Where 𝐾 and 𝐺 are the elastic bulk and shear moduli, respectively, which were defined previously.  

5.3.2 Bounding and Viscoplastic Potential Surfaces 

According to Eq.(5.52) and Eq.(5.53), the bounding and viscoplastic potential surfaces may be 

generalized to multiaxial space, respectively, as:  

𝐹 =
3

2
(𝒔̅ − 𝑝̅ ∙ 𝜶): (𝒔̅ − 𝑝̅ ∙ 𝜶) − (𝑁2 −

3

2
𝜶:𝜶) 𝑝̅(𝑝0 − 𝑝̅) = 0 

(5.56) 

𝑔 =
3

2
(𝒔̅ − 𝑝̅ ∙ 𝜶): (𝒔̅ − 𝑝̅ ∙ 𝜶) − (𝑀2 −

3

2
𝜶:𝜶)𝑝̅(𝑝𝛼 − 𝑝̅) = 0 

(5.57) 

Where 𝒔̅ and 𝑝̅ are the deviatoric and hydrostatic components of the image stress, respectively. As 

was discussed previously, the slope of the critical state line, 𝑀, and the bounding line, 𝑁, varies in 

the triaxial stress space according to the sign of the 𝛼 − 𝜂. In the multiaxial stress space, M is 

interpolated between its values 𝑀𝑐 and 𝑀𝑒 using the Lode angle, 𝜃, and an interpolation function 

as suggested by Argyris et al. (1974):  

𝑀 = 𝜃(𝜃̅, 𝑐𝑀)𝑀𝑐 =
2𝑐𝑀

(1 + 𝑐𝑀) − (1 − 𝑐𝑀) ∙ 𝑐𝑜𝑠3𝜃̅
∙ 𝑀𝑐 

(5.58) 

𝑐𝑜𝑠3𝜃̅ = √6 ∙ 𝑡𝑟𝑛̅3 (5.59) 
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𝑛̅ =
𝑠̅ − 𝑝̅ ∙ 𝜶

‖𝑠̅ − 𝑝̅ ∙ 𝜶‖
 

(5.60) 

Where ‖𝐴‖ denotes the Eulerian norm of a tensor, i.e.,  ‖𝐴‖ = √𝐴: 𝐴 and 𝑐𝑀 equals to 𝑀𝑐/𝑀𝑒. 

Similar to 𝑀, 𝑁 may be interpolated using its values 𝑁𝑐 and 𝑁𝑒:  

𝑁 = 𝜃(𝜃̅, 𝑐𝑁) ∙ 𝑁𝑐 =
2 ∙ 𝑐𝑁

(1 + 𝑐𝑁) − (1 − 𝑐𝑁)𝑐𝑜𝑠3𝜃̅
∙ 𝑁𝑐 

(5.61) 

Where 𝑐𝑁 equals to 𝑁𝑐/𝑁𝑒. 

5.3.3 Image Stress and Projection Center 

In the multiaxial stress space, the radial mapping rule to project the current stress on the bounding 

surface using the dynamic stress ratio, 𝑏𝑑, may be generalized to:  

𝑝̅ = 𝑝𝑐 + 𝑏𝑑(𝑝 − 𝑝𝑐) (5.62) 

𝒔̅ = 𝒔𝑐 + 𝑏𝑑(𝒔 − 𝒔𝑐) (5.63) 

Where 𝒔𝑐 and 𝑝𝑐 are the deviatoric and hydrostatic components of the projection center (𝝈𝑐), 

respectively. Similar to the triaxial space, knowing both 𝑏𝑠 and 𝑏𝑑 allows calculating the static 

stress (𝝈𝑠) in terms of the current stress: 

𝑝𝑠 = 𝑝𝑐 +
𝑏𝑑

𝑏𝑠

(𝑝 − 𝑝𝑐) 
(5.64) 

𝒔𝑠 = 𝒔𝑐 +
𝑏𝑑

𝑏𝑠

(𝒔 − 𝒔𝑐) 
(5.65) 

Where 𝒔𝑠 and 𝑝𝑠 are the deviatoric and hydrostatic components of the projection center (𝝈𝑠), 

respectively. It should be reminded that 𝑏𝑠 is the hardening variable in the model, the variation of 

which will be discussed in sequence.  

In agreement with the triaxial condition, to have unique image stress, the projection center should 

be updated to the current stress at any stress reversal so that it always remains inside the bounding 
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surface. As mentioned previously, the stress reversal occurs whenever the loading index 𝐿 ≤ 0, 

where 𝐿 in the multiaxial space may be obtained by satisfying the consistency condition on the 

bounding surface, 𝐹̇ = 0: 

𝐿 =
1

𝐾𝑝

𝜕𝐹

𝜕𝝈̅
: 𝝈̇ 

(5.66) 

𝜕𝐹

𝜕𝝈̅
, called as 𝑫 in this section, is the loading direction in the multiaxial stress space, which is defined 

as:  

𝜕𝐹

𝜕𝝈̅
= 𝑫 = 𝑫𝑑 + 1/3 𝐷𝑣 ∙ 𝑰 

(5.67) 

Where 𝐿𝑣 and 𝑳𝑑 are the volumetric and deviatoric components of the loading direction in 

multiaxial space, respectively, which are given as: 

𝐷𝑣 = 𝑡𝑟 (
𝜕𝐹 

𝜕𝝈̅
) = 𝑝̅ (𝑁2 −

3

2
𝒓̅: 𝒓̅) + 3 (

𝜕𝐹 

𝜕𝜃̅
)

𝑡𝑟(𝒏̅2𝜶) − 𝑡𝑟𝒏̅3𝑡𝑟(𝒏̅𝜶)

‖𝒔̅ − 𝑝̅𝜶‖√(3/2)(1 − 6𝑡𝑟2𝒏̅3)
 (5.68) 

𝑫𝑑 = 3(𝒔̅ − 𝑝̅ 𝜶) + √6(
𝜕𝐹 

𝜕𝜃̅
)

(𝑡𝑟𝒏̅3)𝒏̅ − 𝒏̅2

‖𝒔̅ − 𝑝̅𝜶‖√(1 − 6𝑡𝑟2𝒏̅3)
 (5.69) 

Where the term 
𝜕𝑔

𝜕𝜃̅
 may be expressed in the multiaxial stress space as: 

𝜕𝐹 

𝜕𝜃̅
= 6𝑁2 ∙ 𝑝̅ ∙ (𝑝0 − 𝑝̅)(

1 − 𝑐𝑁

2 ∙ 𝑐𝑁
)𝜃(𝜃̅, 𝑐𝑁)𝑠𝑖𝑛3𝜃̅ (5.70) 

To guarantee that the projection center is always inside the bounding surface, the generalization of 

the evolution rule of the moving projection center which considers the simultaneous changes of 𝑝0 

and 𝛼 is expressed as:  

𝑝𝑐̇ =
𝑝𝑐

𝑝0
∙ 𝑝0̇ (5.71) 
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𝒔𝑐̇ =
𝒔𝑐

𝑝0
∙ 𝑝0̇ + [

𝑝𝑐 ∙ 𝑁𝑐 
2 − [(3/2)𝜶: 𝜶]

1
2⁄ ∙ [(3/2)𝒔𝑐: 𝒔𝑐]

1
2⁄

𝑁𝑐 
2 − [(3/2)𝜶: 𝜶]

1
2⁄

] ∙ 𝛼̇ 
(5.72) 

5.3.4 The Viscoplastic Hybrid Flow Rule 

In Perzyna’s theory of Viscoplasticity, the viscoplastic strain rates in the multiaxial space may be 

generalized to: 

𝜺̇ 
𝑝 = 𝜇〈𝜙(𝑦)〉 ∙ 𝑹  (5.73) 

Where 𝑹 is the gradient of the flow potential function, 𝑔, which is expressed in terms of the 

deviatoric, 𝑹𝑑, and volumetric, 𝑹𝑣, components as:  

𝑹 = 𝑹𝑑 + 1/3 𝑅𝑣 ∙ 𝑰     (5.74) 

As discussed before, the hybrid flow rule is only applied to 𝑅𝑣 while 𝑹𝑑 is solely determined by 

the image stress flow rule (i.e., 𝑹𝑑 = 𝑹𝑑
𝑖 ). In multiaxial stress space, 𝑹𝑑

𝑖  is generalized to:  

𝑹𝑑
𝑖 =

𝜕𝑔

𝜕𝝈̅
−

1

3
𝑡𝑟 (

𝜕𝑔

𝜕𝝈̅
) 𝑰 = 3(𝒔̅ − 𝑝̅ ∙ 𝜶) + √6(

𝜕𝑔

𝜕𝜃̅
)

(𝑡𝑟𝒏3)𝒏̅ − 𝒏̅2

‖𝒔̅ − 𝑝̅ ∙ 𝜶‖√1 − 6𝑡𝑟2 ∙ 𝒏̅3
 (5.75) 

𝜕𝑔

𝜕𝜃̅
= 6𝑀2 ∙ 𝑝̅(𝑝𝛼 − 𝑝̅)(

1 − 𝑐𝑀

2𝑐𝑀
)𝜃(𝜃̅, 𝑐𝑀)𝑠𝑖𝑛3𝜃̅ (5.76) 

As mentioned earlier, applying a hybrid flow rule to the volumetric component of the plastic flow, 

𝑅𝑣
 , indicates that it consists of those at the image stress, 𝑅𝑣

𝑖 , and the current stress, 𝑅𝑣
𝑐.    

𝑅𝑣 = 𝑅𝑣
𝑖 ∙ 𝑔𝑖 + 𝑅𝑣

𝑐(𝑚𝑔 − 𝑔𝑖)     (5.77) 

Where the generalized form of the 𝑅𝑣
𝑖  and 𝑅𝑣

𝑐 in the multiaxial space may be shown as:  

𝑅𝑣
𝑖 = 𝑡𝑟 (

𝜕𝑔

𝜕𝝈̅
) = 𝑝̅ (𝑀2 −

3

2
𝒓̅: 𝒓̅) + 3 (

𝜕𝑔

𝜕𝜃̅
)

𝑡𝑟(𝒏̅2𝜶) − 𝑡𝑟𝒏̅3𝑡𝑟(𝒏̅𝜶)

‖𝒔̅ − 𝑝̅𝜶‖√(3/2)(1 − 6𝑡𝑟2𝒏̅3)
 (5.78) 
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𝑅𝑣
𝑐 = 𝑡𝑟 (

𝜕𝑔

𝜕𝝈
) = 𝑝 (𝑀2 −

3

2
𝑠𝑙𝒓: 𝒓) + 3𝑏 (

𝜕𝑔

𝜕𝜃
)

𝑡𝑟(𝒏̅2𝜶) − 𝑡𝑟𝒏̅3𝑡𝑟(𝒏̅𝜶)

‖𝒔̅ − 𝑝̅𝜶‖√(3/2)(1 − 6𝑡𝑟2𝒏̅3)
 (5.79) 

Where the term 
𝜕𝑔

𝜕𝜃̅
 may be expressed in the multiaxial stress space as: 

𝜕𝑔

𝜕𝜃
= 6𝑀2 ∙ 𝑝(𝑝𝛼 − 𝑝)(

1 − 𝑐𝑀

2𝑐𝑀
)𝜃(𝜃̅, 𝑐𝑀)𝑠𝑖𝑛3𝜃̅ (5.80) 

Where in the multiaxial stress space, 𝑠𝑙 may be found according to the following rule: 

𝑠𝑙 = {
1            𝑖𝑓    𝒏̅𝒏 ≥ 0
−1        𝑖𝑓    𝒏̅𝒏 < 0

 (5.81) 

Where 𝒏 and 𝒏̅ are unit tensors that point from the origin of the deviatoric plane to the current and 

image stress point, respectively, that are expressed as: 

𝒏 =
𝒔 − 𝑝 ∙ 𝜶

‖𝒔 − 𝑝 ∙ 𝜶‖
 

(5.82) 

𝒏̅ =
𝒔̅ − 𝑝 ∙ 𝜶̅

‖𝒔̅ − 𝑝 ∙ 𝜶̅‖
 

 

 

(5.83) 

5.3.5 Hardening Variables 

In the following, the generalization of the hardening variables 𝑝0, 𝛼, 𝑆𝑏 and 𝑏𝑠 in the multiaxial 

stress space is discussed separately. The evolution rule for the isotropic hardening variable, 𝑝0, 

may be generalized as: 

𝑝0̇ = 〈𝜙(𝑦)〉𝑝̅0 = 〈𝜙(𝑦)〉 (
1 + 𝑒

𝜆 − 𝜅
) 𝑝̅0(𝑅𝑣) (5.84) 

For 𝜶, the generalized rotational hardening rule proposed by Dafalias et al. (2006) is adopted: 
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𝜶̇ = 〈𝜙(𝑦)〉𝜶̅ = √3/2 (
1 + 𝑒

𝜆 − 𝜅
)𝐶 (

𝑝̅

𝑝0
)
2

|𝑅𝑣|‖𝒓̅ − 𝑥 ∙ 𝜶‖(𝜶𝑏 − 𝜶) (5.85) 

Where: 

𝜶𝑏  = √3/2 𝑀 ∙ 𝒏̅𝑥 (5.86) 

𝑛̅𝑥 =
(𝒓̅ − 𝑥 ∙ 𝜶)

‖𝒓̅ − 𝑥 ∙ 𝜶‖
 (5.87) 

The generalization of the destructuration law for the internal variable 𝑆𝑏 may be expressed as: 

𝑆𝑏̇ = 〈𝜙(𝑦)〉𝑆𝑏̅ = −(𝑘𝑖𝑆𝑏)√(1 − 𝐴)(𝑅𝑣)2 + (𝐴)(
3

2
𝑹𝑑: 𝑹𝑑) (5.88) 

Finally, the multiaxial generalization of the evolution of the static similarity ratio, 𝑏𝑠, is expressed 

as:  

𝑏𝑠̇ = 〈𝜙(𝑦)〉𝑏̅𝑠 (5.89) 

Where 𝑏𝑠̇ is generalized in the multiaxial stress space as: 

𝑏̅𝑠 =

(−𝑏𝑠 ∙ 𝐾𝑝 + 𝐾̅𝑝 − (1 − 𝑏𝑠) (
𝜕𝐹
𝜕𝑝̅

∙ 𝑝̅𝑐 +
𝜕𝐹
𝜕𝒔̅

: 𝒔̅𝑐))

(𝑝 − 𝑝̅𝑐) (
𝜕𝐹
𝜕𝑝̅

) + (𝒔 − 𝒔̅𝑐): (
𝜕𝐹
𝜕𝒔̅

)
 (5.90) 

Where 𝐾𝑝 and 𝐾̅𝑝 are the plastic modulus at the current and image stresses, respectively, to be 

discussed in the following. 

5.3.6 Plastic Modulus and Damage Variable 

In multiaxial stress space, the plastic modulus shares the same expression with that of the triaxial 

space:  
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𝐾𝑝 = 𝐾̅𝑝 + (𝑏𝑠 − 1)(1 + 𝑒) ∙ 𝑚𝑠 ∙ 𝑝0
3 (5.91) 

Where 𝐾̅𝑝 is obtained by satisfying the consistency condition on the bounding surface, 𝐹̇ = 0: 

𝐾̅𝑝 = −(
𝜕𝐹

𝜕𝑝0
𝑝̅0 +

𝜕𝐹

𝜕𝜶
: 𝜶̅) (5.92) 

Where: 

𝜕𝐹

𝜕𝜶
= −3𝑝̅(𝒔̅ − 𝑝0 ∙ 𝜶) (5.93) 

𝜕𝐹

𝜕𝑝0
= −𝑝̅(𝑁2 −

3

2
𝜶:𝜶) (5.94) 

Similar to the plastic modulus, in multiaxial space, the shape hardening variable, 𝑚𝑠, that controls 

the shape of the plastic modulus, shares the same expression with that of the triaxial space:   

𝑚𝑠 =
ℎ 

1 + 𝑑
 (5.95) 

Where similarly to 𝑀 and 𝑁, ℎ may be interpolated using the Lode angle between its values ℎ𝑐 and 

ℎ𝑒 :  

ℎ = 𝜃(𝜃̅, 𝑐ℎ 
)ℎ𝑐 =

2𝑐ℎ 

(1 + 𝑐ℎ 
) − (1 − 𝑐ℎ 

)𝑐𝑜𝑠3𝜃̅
ℎ𝑐 

(5.96) 

Where 𝑐ℎ equals to ℎ𝑐/ℎ𝑒. 

Finally, the damage state variable, 𝑑, which is assumed to be linearly proportional to the deviatoric 

plastic strain increment, is generalized to the multiaxial stress space as: 

𝑑̇ = 𝑎𝑑|(2/3)𝜺̇𝑑
𝑝: 𝜺̇𝑑

𝑝|
1/2

 (5.97) 
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5.4 Summary and Conclusions 

In this chapter, the formulation of a rate-dependent SANICLAY model for simulations of clay 

behavior under monotonic and cyclic loading has been presented. Such formulations were based 

on isotropic and rotational hardening rules, a proper projection center update, a hybrid flow rule, 

and Pyerzyna’s theory of viscoplasticity. Also, the model generalization in the multiaxial space 

was presented so that it could be implemented into numerical platforms for both two- and three-

dimensional simulations under various types of loading (triaxial, torsional, shear, etc.). In the next 

chapter, the calibration of the model’s input parameters, along with its performance and validation, 

is discussed.  
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CHAPTER 6 MODEL CALIBRATION AND VALIDATION 

The information presented in this chapter is included in several publications:   

Zarrabi, M., Shi, Z., Yniesta, S., and Buscarnera, G. "A Viscoplastic Bounding Surface Model for 

Cyclic Softening." (to be submitted to International Journal for Numerical and Analytical 

Methods in Geomechanics). 

Zarrabi, M., Shi, Z., Yniesta, S., and Buscarnera, G. (2020). "Simulation of the Cyclic Response 

of Anisotropic Clay through Bounding Surface Viscoplasticity" GeoVirtual, Canada. 

6.1 Introduction 

The calibration efforts discussed in chapter 4 were mainly focused on automatic calibrations using 

two optimization algorithms so that some alternates for trial and error calibrations be covered. 

However, in this section, the calibration of input parameters of the developed model is discussed 

by explaining, in more detail, the physical meaning of parameters and reviewing the existing 

conventional geotechnical tests or relations for their calibrations offered by various researchers 

(Dafalias et al., 2006; Seidalinov, 2012; Shi, 2016). In the second part of the chapter, the model 

performance is illustrated by a series of monotonic and cyclic simulations performed at different 

loading rates. Then, its validation is investigated using experimental studies.    

6.2 Calibration of Model Parameters 

The developed model in its current form has 16 input parameters (𝜅, 𝜈, 𝜆, 𝑀c, 𝑀e, 𝑁c, 𝑁e, ℎc, ℎe, 

𝑐𝑑, 𝐶, 𝑥, 𝜔, 𝑚𝑔, 𝜇1, 𝜇2). Although one may criticize that having a large number of input parameters 

may be challenging to calibrate, it should be noted that the current model is developed and 

formulated upon the framework of previous existing models for clays (e.g., MCC, SANICLAY, 

SANICLAY-B, SANICLAY-H, etc.) and uses several well-established features and concepts (such 

as isotropic and rotational hardening rules, bounding surface plasticity, hybrid flow rule, Perzina’s 

theory of viscoplasticity, etc.). Therefore, most of these parameters are not newly introduced input 

parameters; hence a fair amount of work could be found related to their discussions and 

calibrations.  
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6.2.1 Elasticity Parameters 𝜿 and 𝝂 

The parameter 𝜅 may be defined as the slope of the recompression (reloading or rebound) line in 

the 𝑒 − 𝑙𝑛𝑝  space and may be found either by a 1D compression test or an isotropic compression 

test (Dafalias et al., 2006). If such tests exist, 𝜅 may be estimated using the recompression index 

𝐶𝑟: 

𝜅 = 𝐶𝑟/ ln(10) (6.1) 

However, Dafalias et al. (2006) stated that the estimation of 𝜅 using this method could be less 

reliable as 𝐾0 could vary during a 1D unloading.  

6.2.2 Critical State Parameters 𝝀, 𝑴𝒄, and 𝑴𝒆 

The parameter 𝜆 is the slope of the virgin (normal) compression line, and similar to 𝜅, may be 

estimated using the compression index 𝐶𝑐, obtained from a 1D compression test or an isotropic 

compression test (Dafalias et al., 2006): 

𝜆 = 𝐶𝑐/𝑙𝑛(10)  (6.2) 

Two input parameters 𝑀𝑐 and 𝑀𝑒 represent the slope of the critical state lines in triaxial 

compression and extension, respectively. 𝑀𝑐 and 𝑀𝑒 could be found using the effective stress path 

plotted from the 𝐶𝐾0𝑇𝑋𝐶 and 𝑇𝑋𝐸 tests, respectively (Dafalias et al. 2006). 

However, Dafalias et al. (2006) stated that in case one or both of the above tests are not available, 

for example, it is very common that an extension test is not performed, these slopes may be 

estimated using the expression between the critical state (or steady-state) friction angle, 𝜙𝑐𝑠:  

𝑀𝑐 =
6𝑠𝑖𝑛(𝜙𝑐𝑠)

3 − 𝑠𝑖𝑛(𝜙𝑐𝑠)
  (6.3) 

𝑀𝑒 =
6𝑠𝑖𝑛(𝜙𝑐𝑠)

3 + 𝑠𝑖𝑛(𝜙𝑐𝑠)
  (6.4) 
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𝜙𝑐𝑠 = arcsin (
3𝑀𝑐 

6 + 𝑀𝑐
) (6.5) 

6.2.3 Bounding Surface Parameters 𝑵𝒄 and 𝑵𝒆 

Two parameters 𝑁𝑐 and 𝑁𝑒 adjust the shape of the yield surface or/and the bounding surface 

(Dafalias et al., 2006). For the calibration of these parameters, three alternatives may be found in 

the literature. First, Dafalias et al. (2006) expressed an analytical solution in terms of the mean 

effective stress at the critical state, 𝑝𝑓, and that at the end of a 𝐾0 consolidation, 𝑝𝑘0, obtained from 

a 𝐶𝐾0𝑈𝑇𝑋𝐶 test on an NC clay (note that Dafalias et al. (2006) used a single N in their work, i.e., 

𝑁𝑐 and 𝑁𝑒 were assumed to be the same):  

𝑝𝑓

𝑝𝑘0
= (

𝑁2 − 𝜂𝑘0
2

 

𝑁2 − 2𝜂𝑘0
 𝑀𝑐 + 𝑀𝑐

2
)

1−(
𝜅
𝜆
) 

 (6.6) 

Where 𝜂𝑘0 represents the stress ratio at the end of a 𝐾0 consolidation test and may be expressed 

using the earth coefficient at rest, 𝐾0
 , 𝑁𝐶,: 

𝜂𝑘0
 = 3(1 − 𝐾0

 , 𝑁𝐶)/(1 + 2𝐾0
 , 𝑁𝐶)  (6.7) 

Besides to above expression, Taiebat et al. (2010) suggested that 𝑁𝑐 (and 𝑁𝑒) may be directly found 

by matching the bounding (or yield) surface of the model to the 𝐶𝐾0𝑈𝑇𝑋𝐶 effective stress path on 

NC clay as the stress path of the soil in this test is similar to the shape of the yield (bounding 

surface). Finally, Shi (2016) suggested that in cases where neither of 𝐶𝐾0𝑇𝑋𝐶 (to find 𝑁𝑐) or TXE 

(to find 𝑁𝑒) tests have been conducted, 𝑁𝐶 and 𝑁𝑒 be initially set equal to 𝑀𝑐 and 𝑀𝑒, respectively, 

and be adjusted to match the compressive and extensive post-cyclic undrained shear strength. 

6.2.4 Rotational Hardening Parameters 𝛘 and 𝑪 

According to Dafalias et al. (2006), the parameter χ is governing the anisotropy limit under stress 

paths in which 𝜂 
 is constant (the characteristic of such a path is that the yield (or bounding) and 

plastic potential surfaces keep expanding while they are no longer distorting or rotating). In other 
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words, χ sets an upper limit for the internal variable 𝛼 during a constant stress ratio loading. 

Dafalias et al. (2006) proposed the following analytical solution to find this parameter: 

χ =
2𝜂𝑘𝜀(1 − 𝜅/𝜆) 

𝐵𝜀𝜂𝑘
3 + 𝜂𝑘

2 + 2[(1 − 𝜅/𝜆) − 𝐵𝑀𝑐
2]𝜀𝜂𝑘

 − 𝑀𝑐
2
 (6.8) 

Where 𝜀 = 𝜀𝑣̇/𝜀𝑞̇ is the ratio of the total strain rates  (i.e., the ratio of volumetric strain rate over 

the deviatoric strain rate), 𝜂𝑘 a constant correspond to 𝜀, and B expresses as: 

𝐵 = −
2(1 + 𝜈)𝜅 

9(1 − 2𝜈)𝜆
 (6.9) 

Dafalias et al. (2006) stated that a 𝐾0-loading path is among the most frequent paths in which 𝜂𝑘 is 

constant. In such a test 𝜀 = 3/2 and 𝜂𝑘 = 𝜂𝑘0 (that may be found using Eq.(6.7) in which 𝐾0
   may 

be found using experiments or estimated as 𝐾0
 = 1 − 𝑠𝑖𝑛∅ for normally consolidated clays). 

Finally, χ may be calculated once 𝐾0
  and other parameters in Eq. (6.8) and Eq. (6.9)  (i.e., 𝜅, 𝜆, 

𝑀𝑐
 , and 𝜈) are known. However, in the absence of the aforementioned tests or data, a value between 

1.75 t o 1.98 may be set for χ since a narrow range has been reported for this parameter for different 

types of clays (Shi, 2016; Seidalinov, 2012). 

The parameter C governs the rate by which the bounding (or yield) and the plastic potential surfaces 

rotates and/or distorts (Dafalias et al. (2006); Taiebat et al. (2010)). Dafalias et al. (2006) suggested 

that tests in which the bounding (or yield) and the plastic potential surfaces rotates significantly (so 

that the stress ratio at the end of the loading, 𝜂𝑓
 , becomes far from the initial stress ratio, 𝜂𝑖𝑛

 ) are 

the most suitable for calibrating this parameter. An example of such test is 𝐶𝐾0𝑈 𝑇𝑋𝐸 on NC clay 

in which 𝜂𝑓
  and 𝜂𝑖𝑛

  are far different than the other due to the considerable surface rotation. In 

addition to the mentioned approach, Dafalias et al. (2006) stated that C falls in the range of 3 to 20 

for different types of clays. Therefore, in the case of an absence of such data, a value from this 

range could be selected for C.   
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6.2.5 Plastic Modulus Parameters 𝒉𝒄 and 𝒉𝒆 and 𝒄𝒅 

In the bounding surface plasticity proposed by Dafalias (Dafalias and Hermann, 1986), the plastic 

modulus, 𝐾𝑝, is related to the distance between the stress point and the image stress point (stress 

on the bounding surface) and a hardening variable, h. In this model, the plastic modulus parameters 

ℎ𝑐 and ℎ𝑒 are the initial values, in compression and extension, respectively, of the hardening 

variable, h, that adjust the plastic modulus, 𝐾𝑝, and hence, the soil stiffness at the very initiation of 

the loading (Seidalinov, 2012; Seidalinov and Taiebat, 2014). Therefore, in both monotonic and 

cyclic loading cases, higher values for these parameters will result in higher stiffness (less 

plasticity). In a monotonic loading, assigning high values for these parameters will cause the stress 

path to have a large elastic response. Similarly, in a cyclic event, high values of plastic modulus 

parameters make the initial cycles of hysteresis loops very stiff, as shown in Figure 6.1.  

The damage parameter, 𝑐𝑑, is another parameter that affects the plastic modulus in cyclic loading. 

In fact, 𝑐𝑑 governs the rate by which the hardening variable, h, and consequently plastic modulus, 

decays in cyclic loading. In other words, the damage parameter, the effects of which shown in 

Figure 6.2, governs the plastic strain developments during cyclic loading (as the decrease of the 

plastic modulus reduces the soil stiffness and increases the plasticity). Therefore, it should be 

highlighted that this parameter does not influence the monotonic behavior of the soil significantly.   

To calibrate ℎ𝑐, ℎ𝑒, and 𝑐𝑑, Seidalinov (2012) proposed that ℎ𝑐 and ℎ𝑒 be calibrated against the 

first few hysteresis loops in a cyclic loading (where the soil is not softened yet) while the damage 

parameter is deactivated (i.e. 𝑐𝑑=0). Once ℎ𝑐 and ℎ𝑒 have been calibrated, 𝑐𝑑 maybe found by 

matching the hysteresis loops at larger shear strains to capture the cyclic softening. For better 

performance and to avoid time-consuming trial-and-error efforts, the calibration of these 

parameters could be performed using optimization techniques, similar to calibrations performed 

and presented in chapter 4.  
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Figure 6.1 Effects of ℎ𝑐 and ℎ𝑒 on the initial stiffness of the hysteresis loops 

 

Figure 6.2 Model response at different 𝑐𝑑 values 

6.2.6 Hybrid Flow Rule Parameters 𝝎 and 𝒎𝒈 

The parameter 𝜔 that is related to the hybrid flow rule proposed by Shi (2016) and Shi et al. (2018) 

governs the relative contribution of the viscoplastic gradient at the current stress and the image (on 

the bounding surface) stress points. It should be reminded that activating the hybrid flow rule (i.e., 

assigning a value other than 0 for 𝜔) addresses the stress path lock-up, that occurs after a few cycles 

in cases where an image stress flow rule (i.e., 𝜔 = 0) is activated, by simulating the so-called 

butterfly or eight-shaped loops which is typical of soil response under cyclic loading. The influence 
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of this parameter on model’s respone is shown in Figure 6.3. Shi (2016) reported a range of 1 to 5 

for different types of clays for this parameter.   

The input parameter 𝑚𝑔 governs the amount by which the pore water pressure builds-up or the 

mean effective stress decreases in an undrained cyclic loading test. The default value for this 

parameter is set to 1. Assigning a value lower than 1 avoids the sharp increase of the excess pore 

water pressure in a cyclic event, and consequently, ensures a gradual decrease of the mean effective 

stress.  

 

Figure 6.3 Influence of 𝜔 on the stress path and the excess pore water pressure generation 

6.2.7 Viscos Parameters 𝝁𝟏 and 𝝁𝟐 

Two viscous parameters 𝜇1 and 𝜇2 that governs the effects of time or loading rates could be 

calibrated independently (separately from rate-independent input parameters). To calibrate these 

parameters, a series of monotonic and/or cyclic loading tests with different loading rates or 

frequencies is needed. Once such tests are available, these parameters could be found by matching 

the stress path, hysteresis loops, load-displacement, etc., of the simulations to those of experiments. 

However, in the case where such data is not available, it is suggested that these parameters be set 

in a way that the model response matches with the experiments at conventional slow loading rates 

and produces a logical pattern at other loading rates/frequencies.      
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6.3 Model’s Performance, Calibration, and Validation 

In this section, the model's performance in simulating soil response under different loading 

conditions is presented. The model is first calibrated against the experimental studies of Bonin et 

al. (2019), on Glacio-Lacustrine clay, and Sheahan et al. (1996), on the effects of loading rate and 

consolidation state on the undrained shear strength of the Boston Blue Clay. Then, the model 

validation is discussed by applying the model to simulate further studies: 1- the Grande-Baleine 

clay behavior reported by Lefebvre and LeBoeuf (1987) at different loading rates, 2- the effects of 

strain rates on the modulus reduction and damping ratio curves studied by Shibuya et al. (1995), 

and 3- the combined effects of cyclic loading and loading rates on the Saint-Adelphe clay behavior 

reported by Abdellaziz et al. (2017). 

6.3.1 Model’s monotonic and Cyclic performance 

Several simulations are performed to evaluate the model’s performance in simulating soil response 

under monotonic and cyclic loading. The initial values for the model state variables for the example 

problems are summarized in Table 6.1, while the model’s 16 input parameters are summarized in  

Table 6.2. The performance of the model in simulating an undrained monotonic triaxial loading at 

four different OCR values of 1, 2, 4, 8, and two axial loading rates of 1%/h and 10%/h is shown in 

Figure 6.4. This figure shows that applying the SANICLAY bounding surface allows the model to 

consider the effect of consolidation history on the undrained monotonic loading. Also, as expected, 

as the axial loading strain rate increases, so does the monotonic strength. It should be mentioned 

that for these simulations, the use of an exponential-type overstress function and assigning low 

values for viscosity parameters (𝜇1 and 𝜇2) have caused the increase of the soil strength with the 

loading rate to be modest. However, modifications of the overstress function or of the viscous 

parameters could result in a greater observed effect.  
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Table 6.1. Initial conditions 

Category Parameter Value 

Initial void ratio 𝑒 0.7 

Initial size of the bounding surface (kPa) 𝑝0 200 

Initial orientation of the bounding surface  𝛼 0 

Initial value of the static similarity ratio 𝑏𝑠 1 

 

Table 6.2. Model input parameters 

Category Input Parameter Value 

Elasticity 𝜅 0.03 

 𝜈 0.2 

Critical state 𝜆 0.15 

 𝑀c 1 

 𝑀e 1 

Bounding surface  𝑁c 1 

 𝑁e 1 

Plastic modulus ℎc 100 

 ℎe 100 

 𝑐𝑑 100 

Rotational hardening 𝐶 5 

 𝑥 1.7 

Hybrid flow rule 𝜔 5 

 𝑚𝑔 0.3 

Viscosity 𝜇1 1e-8 

 𝜇2 50 
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Figure 6.4 Undrained monotonic triaxial compression tests simulated by the BS-EVP model at 

different OCRs and loading rates. 
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Figure 6.5 and Figure 6.6 show the results of simulated undrained cyclic triaxial tests under stress- 

and strain-controlled conditions, respectively. The simulations are performed at two loading 

frequencies (i.e., 0.1 and 1 Hz). For the stress-controlled loading, a cyclic stress amplitude of 

𝑞𝑐𝑦𝑐 = 70 kPa is used, while for the strain-controlled tests, the applied cyclic strain amplitude 

is 𝜀𝑐𝑦𝑐= 0.02. As can be seen in these figures, due to the use of the bounding surface concept with 

a proper relocation of the projection center, a large elastic response, which is typical of the MCC, 

does not occur in the mean effective stress path, indicating that the plastic response occurs at the 

very initiation of the cyclic loading. 

Also, the use of a hybrid flow rule improves the mean effective stress path response by enabling 

the simulation of the so-called butterfly or eight-shaped loops. Finally, as the loading frequency 

increases, the accumulated deviatoric strain and the pore water pressure reduces. Such rate-

dependent behavior is consistent with what has been reported in different studies (Li et al., 2011; 

Ni et al., 2014). In addition, the sharp increase in the excess pore water pressure of previous models 

(i.e., SANICLAY-B and SANICLAY-H) is not observed in this model, so that it shows a realistic 

gradual increase in the pore water pressure. This improvement is due to the adoption of the new 

input parameter, 𝑚𝑔, to the hybrid flow rule that renders a smooth transition of the initial soil state 

to the critical state in the course of cyclic loadings. 
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Figure 6.5 Effective stress path and the hysteresis loops of stress-controlled undrained cyclic 

triaxial tests simulated by the BSVP model. 
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Figure 6.6  Effective stress path and the hysteresis loops of strain-controlled undrained cyclic 

triaxial tests simulated by the BSVP model. 
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6.3.2 Simulation of the Glacio-Lacustrine Clay Cyclic Behavior 

Bonin et al. (2019) conducted a high-quality sampling program followed by comprehensive 

laboratory investigations on Glacio-Lacustrine varved clay deposits from a gold mine site in 

Abitibi, in the province of Quebec, to study the response of the clay under various loading 

conditions and consolidation states. The testing program of the study included one-dimensional 

compression tests, undrained triaxial compression and extension tests, and monotonic and cyclic 

direct simple shear tests.  

The Atterberg limit tests conducted on varved samples showed that they consisted of clays and silts 

with different degrees of plasticity, from low to high plasticity clays (CL, CI, CH) to clayey silt 

and low plasticity silts (CL-ML and ML). The liquid limit (LL), plasticity limit (PL), plasticity index 

(PI), and water content (Wn) of the samples were measured to be in the range of (21% to 46)%, (17 

to 24)%, (4 to 41)%, and (28 to 68)%, respectively, for the top 2 meters of the soil profile.   

The compression tests are shown in Figure 6.7 (a) based on which the initial void ratio and the 

overconsolidation ratios of the samples were reported to fall in the range of 1.46 to 1.88 and 2.38 

and 4.89, respectively, while the index of compression (Cc) and recompression (Cr) fell into the 

range of 0.026 to 0.08 and 0.83 to 1.77, respectively. According to the undrained triaxial test 

results, shown in Figure 6.7 (b), the sample’s stress path could reach two different failure lines (i.e., 

two different critical stress ratios could be reached). The authors of the paper stated that this could 

be associated with the varved nature of the clay samples.   

The cyclic loading test program consisted of constant-volume cyclic direct simple shear tests 

(CDSS) and conducted with a loading frequency of 0.1 on normally and moderately 

overconsolidated samples. In this study, the experimental results of three overconsolidated samples 

with OCR ratios of 3.46, 2.95, and 2.98 are compared with simulations performed with the 

developed model. The cyclic stress ratios (𝐶𝑆𝑅 = 𝜏𝑐𝑦𝑐/𝜎′𝑣𝑐) of these simulated experiments are 

0.19, 0.26, and 0.33, respectively, whereas their corresponding confining pressures (𝜎′𝑣𝑐) reported 

as 45.6, 56.6, and 53 kPa, respectively.   

Model input parameters calibrated for Glacio-Lacustrine clay are summarized in Table 6.3. In 

calibrating this model, the slope of the critical state lines in compression  (𝑀𝑐 = 𝑀𝑒) is obtained 



140 

 

         

from the stress path (based on the two reported failure lines) as 0.62. 𝜆 and 𝜅 are obtained using 

the reported values for 𝐶𝑐 and 𝐶𝑟, respectively. ℎ𝑐 and ℎ𝑒 are calibrated based on the initial loading 

cycles and 𝑐𝑑 is selected to achieve the closest CSR-N fit. The calibrations of other input parameters 

are done either using the closed-form solutions or the optimization techniques, PSO/GNO, 

discussed in Chapter 4.   

  

Figure 6.7 (a) One-dimensional compression test results and (b) effective stress path from 

undrained triaxial tests on Glacio-Lacustrine Clay (Bonin et al., 2019).  

Simulation results for two of the tests, with cyclic stress ratios of 0.33 and 0.25, are plotted against 

the experimental data in Figure 6.8 and Figure 6.9, respectively, whereas the CSR-N curves from 

model simulations and experimental data are compared in Figure 6.10. It can be seen that the model 

shows a fair performance in capturing the cyclic behavior of the varved clay. Based on the CSR-N 

curves, it could be observed that the curve predicted by the model is closer to that of the varved 

clay at the medium level CSRs (around 0.25). Consequently, the model predictions are closer to 

the experimental data for the second test (CSR=0.26) that has a CSR closer to 0.25. However, it 

should be highlighted that either a constant stress or a constant strain loading is applied in numerical 

simulations. Therefore, the experimental testing condition of the varved clay in which the applied 

CSR is decreasing with the number of cycles could not be simulated.  

 

(a) (b) 
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Table 6.3 Model input parameters for Glacio-Lacustrine Clay 

Category Input Parameter Value 

Elasticity 𝜅 0.013 

 𝜈 0.2 

Critical state 𝜆 0.365 

 𝑀𝑐 0.62 

 𝑀𝑒 0.62 

Bounding surface  𝑁𝑐 0.5 

 𝑁𝑒 0.5 

Plastic modulus ℎ𝑐 500 

 ℎ𝑒 500 

 𝑎𝑑 150 

Rotational hardening 𝐶 5 

 𝑥 1.7 

Hybrid flow rule 𝜔 10 

 𝑚𝑔 1 

Viscosity 𝜇1 1e-10 

 𝜇2 75 
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Figure 6.8 Simulation and experimental results of the Glacio-Lacustrine clay, CSR=0.33, 

(experimental data from Bonin et al. (2019)).  
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Figure 6.9 Simulation and experimental results of the Glacio-Lacustrine clay, CSR=0.26, 

(experimental data from Bonin et al. (2019)).  
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Figure 6.10 CSR-N cures from simulations and experiments for the Glacio-Lacustrine clay 

(experimental data from Bonin et al. (2019)).  
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6.3.3 Simulation of Rate-Dependent Undrained Shear Behavior of 

Saturated Boston Blue Clay 

In this section, the developed viscoplastic model is used to simulate the laboratory tests, conducted 

by Sheahan et al. (1996), to simulate the effects of loading rates and consolidation history on the 

undrained shear strength of a saturated clay. As discussed in the literature review, Sheahan et al. 

(1996) performed a series of experiments consisting of twenty-five constant strain rate 𝐶𝐾0𝑈𝐶 (𝐾0-

consolidated undrained triaxial compression) tests to study the combined effects of soil stress 

history (OCR) and loading rates on the undrained strength of the resedimented Boston Blue Clay. 

In their study, they conducted the experiments at four different axial strain rates (𝜀𝑎̇ =

0.05, 0.5, 5, 𝑎𝑛𝑑 50 %/ℎ) on specimens which were consolidated under four different over 

consolidation ratios (OCR= 1, 2, 4, and 8). The summary of 𝐶𝐾0𝑈𝐶 tests on normally and 

overconsolidated program on BBC may be found in Table 6.4 and Table 6.5, respectively.  

Table 6.4: Summary of 𝐶𝐾0𝑈𝐶 tests on normally consolidated BBC (Sheahan et al., 1996) 
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Table 6.5 Summary of 𝐶𝐾0𝑈𝐶 tests on over-consolidated BBC (Sheahan et al., 1996) 

 

 

The results of this study show that all specimens, including normally consolidated and 

overconsolidated, have experienced an average increase in the normalized undrained strength when 

subjected to fast axial strain rate (i.e., 𝜀𝑎̇=50%/h). For other axial loading rates, the specimens were 

shown to be either rate-independent or slightly to moderately rate dependent, depending on the 

level of consolidation history. 

To evaluate the performance of the developed viscoplastic model on capturing the loading rate 

effects, the model is used to simulate the experiments conducted by Sheahan et al. (1996). Table 

6.6 summarizes the input parameters for the simulations. To calibrate the input parameters, the 

critical stress ratio in compression, 𝑀𝑐, and tension, 𝑀𝑒 are set to the maximum ratio of deviatoric 

stress over the mean effective stress (i.e., q/p) that are provided in Table 6.5 and Table 6.6. Due to 

the lack of experiments to track the shape of the bounding surface, 𝑁𝑐 and 𝑁𝑒 are set initially to 𝑀𝑐 
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and 𝑀𝑒 respectively, then altered slightly to obtain the best match. Three input parameters 𝜅, 𝜈, 

and 𝜆, which are among the common geotechnical soil properties, are adopted from the 

experimental data for Boston Blue Clay reported by Papadimitriou et al. (2005). 

Table 6.6 Model input parameters for BBC  

Category Input Parameter Value 

Elasticity 𝜅 0.03 

 𝜈 0.2 

Critical state 𝜆 0.15 

 𝑀𝑐 0.52 

 𝑀𝑒 0.52 

Bounding surface  𝑁𝑐 0.4 

 𝑁𝑒 0.4 

Plastic modulus ℎ𝑐 varies 

 ℎ𝑒 varies 

 𝑎𝑑 50 

Rotational hardening 𝐶 20 

 𝑥 1.7 

Hybrid flow rule 𝜔 0 

 𝑚𝑔 1 

Viscosity 𝜇1 1e-10 

 𝜇2 varies 

 

Three input parameters ℎ𝑐, ℎ𝑒, and 𝜇2 have been selected according to the soil consolidation history 

(OCR); For clays with OCRs of 1, 2, 4, and 8, values of 50, 25, 12.5, and 7 has been selected for 

ℎ𝑐 (ℎ𝑒 = ℎ𝑐). Similarly, for viscous parameter 𝜇2, values of 25, 50, 75, and 100 have been obtained 

for the OCR values of 1, 2, 4, and 8, respectively. Finally, the input parameters that could not be 

calibrated because of the lack of lab/field test or geotechnical relations were set to default values 

reported in other studies (e.g., Shi (2018), Shi et al. (2019), and Seidalinov and Taiebat (2014)), 
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such as 𝑥, or found using optimization algorithms (PSO or GNO) such as  

𝑎𝑑 and 𝐶.   

Figure 6.11 compares the performance of the model in simulating the undrained shear strength 

versus the axial strains with that of the experiments. Also, the model’s simulations and 

experimental data of the BBC are compared in terms of the stress path at four different stain rates 

and various states of consolidation history and presented in Figure 6.12.  In these simulations, the 

vertical consolidation stress, 𝜎𝑣𝑐, is 280, 300, 150, and 75 for specimens with OCR values of 1, 2, 

4, and 8, respectively. It should be mentioned that the accuracy of the calibration is dependent on 

whether the peak or the residual strength is targeted; As Sheahan et al. (1996) compared the test 

results using the peak shear strength, this strength was the calibrations' target in the current study. 

In general, the model could capture fairly the final shear strength of the BBC at different loading 

rates, but the shape of the stress-strain curves and stress path could not be perfectly simulated. 

Especially, the post weak softening response, which is observed in specimens with OCR>1 could 

not be captured. This shortcoming is due to the fact that the frictional destructuration, introduced 

by Taiebat et al. (2010), is not applied to the model for simplicity purposes.  

The model's performance with experimental data in terms of the normalized pore water pressure 

versus the axial strain is plotted in Figure 6.13. Compared to previous quantities, it appears that the 

performance of the model in capturing the pore water pressure build-up is less satisfactory, at 

various loading rates and OCR values, in a way that the cap values of the normalized pore water 

pressure simulated by the model are different than that measured in the experiments.  



149 

 

         

 

Figure 6.11 Simulations and experimental results in terms of normalized shear stress versus Axial 

strain for 𝐶𝐾0𝑈𝐶 tests on resedimented BBC. 
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Figure 6.12 Simulation and experimental results in terms of normalized effective stress paths of 

𝐶𝐾0𝑈𝐶 tests on resedimented BBC. 
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Figure 6.13 Simulation and experimental results in terms of normalized pore water pressure 

versus axial strain for 𝐶𝐾0𝑈𝐶 tests on resedimented BBC. 
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A comparison between the model simulations and experimental results on the normalized 

undrained shear strength, 
𝑆𝑢

𝜎𝑣
, versus the strain rates are provided in Figure 6.14. It should be 

highlighted that the normalized stress used in Figure 6.14 is different than 𝜎𝑣𝑐 used in Figure 6.11 

to Figure 6.13. In Figure 6.14, the stress used to normalize the results is the maximum vertical 

stress, 𝜎𝑣, which is 290 for normally consolidated and 585 for overconsolidated specimens. The 

curves' trend shows that the model can properly capture the loading rate effects at various OCR 

levels. However, the experiments show a very sharp increase at high strain rates (i.e., 50%/hr), 

especially for the normally consolidated soil specimens, that the model could not capture. Such a 

trend indicates that the undrained shear strength of the soil may be underestimated by the model at 

high strain rates for normally consolidated soils (i.e., greater than 100 %/hr).   

 

Figure 6.14 Normalized shear strength versus the deviatoric shear strain at different strain rates 

for 𝐶𝐾0𝑈𝐶 tests on resedimented BBC 
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6.3.4 Simulation of Rate Effects on Undrained Shear Strength of Sensitive 

Grande-Baleine Clay (Lefebvre and LeBoeuf, 1987) 

Lefebvre and LeBoeuf (1987) performed a series of monotonic tests to investigate the effect of 

strain rate on the undrained shear strength of sensitive clays found in Eastern Canada. This study's 

undisturbed soil samples were collected from four sites in Northwestern Quebec and were 

composed of soft and sensitive clays, including the highly sensitive (sensitivity greater than 300), 

Grande-Baleine clay with a marine origin.   

Some part of the experimental program in this study was composed of undrained strain-controlled 

monotonic triaxial compression tests at strain rates ranging from 0.05 to 132.0 %/hr. To consider 

the influence of the consolidation state on the studied clays, the tests were conducted at 

consolidation stresses lower than the in-situ pre-consolidation stress, 𝜎′𝑝 = 112 kPa, as well as at 

those higher than 𝜎′𝑝. The clay samples corresponding to these pre-consolidation pressures were 

referred to as structured (overconsolidated) and destructured (normally consolidated), respectively. 

The vertical consolidation pressure, 𝜎′𝑣𝑐, applied to Grande-Baleine clay was set to be equal to the 

in-situ vertical effective stress, 𝜎′𝑣𝑜, for structured samples, and to 2 ∙ 𝜎′𝑝 for the destructured 

samples.  

The developed visco-plastic model was first calibrated using the procedure previously discussed 

(refer to Table 6.7 for the summary of input parameters), and then used to simulate the undrained 

monotonic triaxial tests on structured, 𝜎′𝑣𝑐 = 𝜎′𝑣𝑜 = 45 kPa, and destructured, 𝜎′𝑣𝑐 = 2 ∙ 𝜎′𝑝 =

224 kPa, samples at five different strain rates of 1, 3.6, 12.7, 42.2, and 132 %/hr. The comparison 

between simulations and experimental results of Lefebvre and LeBoeuf (1987) for structured and 

destructured samples are shown in Figure 6.15.  

The simulated stress-deformation curves of the destructured samples show that the developed 

model could fairly capture the increase of the undrained strength with the increase of the loading 

strain rates. For structured samples, the increasing trend of the residual undrained strength with the 

loading rates could be captured, but as discussed before, the post-peak softening observed in 

experiments could not be simulated. In terms of the stress path, the model could fairly predict the 
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final values of the undrained strength, especially for destructured samples, but it could not simulate 

the initial dilative response observed in experiments, especially at higher loading rates.  

To better evaluate the predictive ability of the model in capturing loading rate effects on undrained 

strength of Grande-Baleine clay, the peak values of the undrained strength, 𝑐𝑢 =
𝑞

2
=

𝜎1−𝜎3

2
, 

obtained from simulations are compared with the results of the experiment presented by Lefebvre 

and LeBoeuf (1987) and plotted in Figure 6.16. In this figure, 𝑐𝑢 is normalized by 𝜎′𝑣𝑐 = 224 kPa 

for destructurated specimens and by 𝜎′𝑝 = 112 kPa for structured samples. Model simulations 

show that the loading rate effects simulated by the model are very close to the experiments for 

destructured samples. For structured samples, however, the model is not as precise as the 

destructured samples. The difference between simulations and experiments is mainly due to the 

model's inability to capture the peak and post-peak softening behavior.  

Table 6.7 Model input parameters for Grande-Baleine clay  

Category Input Parameter Value 

Elasticity 𝜅 0.02 

 𝜈 0.2 

Critical state 𝜆 0.34 

 𝑀𝑐 0.54 

 𝑀𝑒 0.54 

Bounding surface  𝑁𝑐 0.52 

 𝑁𝑒 0.52 

Plastic modulus ℎ𝑐 100 

 ℎ𝑒 100 

 𝑎𝑑 150 

Rotational hardening 𝐶 5 

 𝑥 1.7 

Hybrid flow rule 𝜔 0 

 𝑚𝑔 1 

Viscosity 𝜇1 1e-10 

 𝜇2 17 
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Figure 6.15 Stress-deformation curves and Stress path of the Grande-Baleine clay (simulations 

versus experiments) 
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Figure 6.16 Simulation of strain rate effects on destructured and structured specimens of the 

Grande-Baleine 
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6.3.5 Simulation of Rate Effects on Damping and Modulus Reduction of 

Normally Consolidated Kaolin Clay (Shibuya et al., 1995) 

Shibuya et al. (1995) performed a series of undrained strain-controlled cyclic torsion shear tests at 

different loading frequencies to study the effect of loading frequency on the hysteretic damping 

and modulus reduction curves. The Kaolin clay samples used in the experiment had an initial void 

ratio in the range of 1.320 to 1.336, and a plasticity index, 𝑃𝐼, plasticity limit, 𝑃𝐿, and liquid limit, 

𝐿𝐿, of 27, 29, and 56, respectively.      

In experiments, the Kaolin clay samples were isotopically consolidated to an effective 

consolidation pressure, 𝑝′𝑐, of 200 kPa. Then, multistep strain-controlled cyclic loadings were 

applied to the specimens in a way that the single amplitude shear strain, 𝛾𝑆𝐴, was fixed during the 

whole stage and increased in a stepwise manner in the following steps. Figure 6.17 shows the cyclic 

loadings at two different shear strain amplitudes. The cyclic shear tests on the Kaolin clay were 

performed at shear strain amplitudes of 10−6 to 10−3 and loading frequencies of 0.005-0.1 Hz.  

 

Figure 6.17 Hysteresis loops of strain-controlled cyclic loading tests at two different amplitudes 

(Shibuya et al., 1995) 

The result of this cyclic loading program of Shibuya et al. (1995) on the Kaolin clay is shown in 

Figure 6.18 (a) as hysteretic damping, h, and modulus reduction curves. Each point corresponds to 

a cyclic test at a specific shear strain level and loading frequency in this figure. According to this 

figure, the equivalent shear modulus, 𝐺𝑒𝑞, is hardly affected by the loading frequency, and the 
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modulus reduction exhibit a unique trend regardless of the applied frequency. However, the loading 

frequency influences the hysteretic damping so that the increase of loading frequency decreases 

the hysteretic damping.   

To validate the model against the effect of loading frequency on the shear modulus reduction and 

hysteretic damping curves, several undrained cyclic strain-controlled tests at various shear strain 

amplitudes and loading frequencies were simulated (input parameters for these simulations are 

presented in Table 6.8). The modulus reduction and hysteretic damping calculated from the 

simulations are plotted in Figure 6.18 (b). In this plot, the black curves represent general trends of 

the modulus reduction and damping curves presented by Shibuya et al. (1995). 

It should be noted that in all simulations, the developed damping or the shear modulus reduction is 

negligible at shear strain amplitudes lower than 0.015% regardless of the loading frequency. 

Therefore, the model could not be used to compare hysteretic damping or shear modulus curves 

with those of experiments at shear strain lower than 0.015%. However, it should be highlighted 

that, in numerical software such as FLAC, these small strains could be simulated by introducing 

viscous damping. For shear strain amplitudes greater than 0.015%, the model could capture the 

modulus reduction and damping curves' general trend relatively well. In addition, as the loading 

frequency increases, the hysteretic damping decreases, which is in good agreement with Shibuya 

et al. (1995) observations. However, the effect of loading frequency on the modulus reduction 

curves indicates that the modulus reduction curves increase with the increase of the loading 

frequency. Although this effect was not observed by Shibuya et al. (1995), it was reported by Lo 

Presti et al. (1996), Lo Presti et al. (1997), and Isenhower and Stokoe (1981) as discussed in the 

literature review.  
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Table 6.8 Model input parameters for normally consolidated Kaoling clay  

Category Input Parameter Value 

Elasticity 𝜅 0.015 

 𝜈 0.2 

Critical state 𝜆 0.34 

 𝑀𝑐 0.62 

 𝑀𝑒 0.62 

Bounding surface  𝑁𝑐 0.5 

 𝑁𝑒 0.5 

Plastic modulus ℎ𝑐 500 

 ℎ𝑒 500 

 𝑎𝑑 150 

Rotational hardening 𝐶 5 

 𝑥 1.7 

Hybrid flow rule 𝜔 10 

 𝑚𝑔 1 

Viscosity 𝜇1 1e-10 

 𝜇2 75 
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Figure 6.18 Shear modulus and hysteretic damping curves the Kaolin clay: (a) experiments 

Shibuya et al. (1995) (b) simulations  

 

 

 

(a) 

 

(b) 
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6.3.6 Simulation of Cyclic Behavior of Sensitive Saint-Adelphe Clay at 

Different Loading Frequencies (Abdellaziz et al., 2017) 

Abdellaziz et al. (2017) conducted a set of undrained cyclic tests to study the effect of loading 

frequency on the cyclic behavior of Saint-Adelphe clay, a typical post-glacial sensitive marine clay 

found in eastern Canada. According to the geotechnical investigation of Lefebvre et al (1992), the 

Saint-Adelphe clay is of high sensitivity, 𝑆𝑡 measured to be greater than 20 and up to 533, with the 

liquidity limit, plasticity limit, and plasticity index ranging from 20-22%, 30-47%, and 10-25%, 

respectively. The undrained shear strength, 𝑆𝑢, measured using the vane shear tests, and the pre-

consolidation pressure, 𝜎′𝑝, obtained by the oedometer tests, were to be in the range of 20-44 kPa, 

and 86-200 kPa, respectively. In addition, as reported by L’Ecuyer (1998), the ratio of undrained 

shear strength over the pre-consolidation pressure, 
𝑆𝑢

𝜎′𝑝
, falls to a constant value of 0.23. 

A series of cyclic undrained tests performed by Abdellaziz et al. (2017) using the TxSS apparatus, 

developed by Chekired et al. (2015) at Sherbrooke University in collaboration with Hydro-Quebec. 

Abdellaziz et al. (2017) used the TxSS apparatus to conduct undrained strain-controlled cyclic tests 

at three various loading frequencies of 0.1, 1, and 5 Hz. In these tests, specimens were isotopically 

consolidated up to a consolidation pressure of 𝜎3 = 75 to slightly overconsolidated the soil 

(OCR=1.2). Then, undrained strain-controlled loading cycles with a shear strain amplitude of 1.5% 

were applied to the specimens.    

To validate the performance of the developed viscoplastic model, it was first calibrated (model 

parameters are summarized in Table 6.9), then the simulations with loading conditions similar to 

the experiments of Abdellaziz et al. (2017) were performed. The results of these simulations 

compared to those of experiments are plotted in Figure 6.19 in terms of number of cycles, N, versus 

normalized pore water pressure and the peak 
𝜏𝑐𝑦𝑐

𝑆𝑢
 ratio. In terms of the peak (

𝜏𝑐𝑦𝑐

𝑆𝑢
) versus N, the 

model could capture the decrease of the undrained shear strength with the loading cycles well, 

especially for higher loading frequencies, i.e., 1 and 5 Hz. However, regarding the pore water 

pressure response with the number of cycles, the model’s performance is less satisfactory. The 
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model’s performance is more pronounced for higher loading frequency, but it cannot accurately 

capture the excess pore water generation's general trend at lower frequencies. 

Table 6.9 Model input parameters for Saint-Adelphe clay  

Category Input Parameter Value 

Elasticity 𝜅 0.013 

 𝜈 0.2 

Critical state 𝜆 0.365 

 𝑀𝑐 0.7 

 𝑀𝑒 0.7 

Bounding surface  𝑁𝑐 0.7 

 𝑁𝑒 0.7 

Plastic modulus ℎ𝑐 100 

 ℎ𝑒 100 

 𝑎𝑑 0.5 

Rotational hardening 𝐶 5 

 𝑥 1.7 

Hybrid flow rule 𝜔 3 

 𝑚𝑔 1 

Viscosity 𝜇1 1e-10 

 𝜇2 20 
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Figure 6.19 Model simulations and cyclic test results (Abdellaziz et al., 2017) on the Saint-

Adelphe clay: (a) PWP ratio versus N (b) CSR versus N 
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6.4 Summary and Conclusions 

In the first part of this chapter, the calibration of the model’s parameters was presented. It was seen 

that as the model’s parameters are mainly shared with the SANICLAY model family and that they 

are mostly supported by physical concepts, they could be obtained by either experimental tests, 

closed-form solutions, or conventional geotechnical relations. Also, the narrow ranges reported in 

the literature for some of the parameters makes their calibration a less challenging procedure  

In the second part of the chapter, the model’s performance, calibration, and validation were 

discussed. It was shown that the resulting model is characterized by improved capabilities in 

replicating the cyclic response of anisotropic clay at varying loading rates. In particular, it was 

shown that the model could capture changes in undrained strength caused by different monotonic 

loading rates, as well as changes in pore pressure build-up resulting from changes in the cyclic 

loading frequency, thus enabling more robust cyclic behavior simulations. In addition to these 

features, due to the use of an overstress viscoplastic formulation in a bounding surface context, the 

model could simulate rate effects for clays characterized by different degrees of consolidation.  

The third part of this chapter discussed the model calibration against the Glacio-Lacustrine and 

Boston Blue clays using the guideline mentioned in the first part of this chapter and the 

optimization algorithms discussed in chapter 4. The calibrated model showed that it could 

reasonably simulate the cyclic behavior of the Glacio-Lacustrine clay at different stress amplitudes 

and capture well the increase of the undrained shear strength of the Boston Blue clay at different 

loading rates and degrees of consolidation.   

Further simulations showed that the model could capture the effects of loading rates on the 

undrained shear strength accurately for destructured specimens and with less accuracy for 

structured specimens of the Grande-Baleine clay. Besides, the simulations of the modulus 

reduction and damping curves of the normally consolidated Kaolin clay indicated that the model 

could capture the general trend and the increasing effect of loading frequency on these curves. The 

model could also fairly simulate the effects of loading frequencies on the peak normalized cyclic 

strength and, with less accuracy, the excess pore water pressure of the sensitive Saint-Adelphe 

clay's.     
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CHAPTER 7 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

RECOMMENDATIONS 

7.1 Summary and Conclusions 

This dissertation's first goal was to adjust and evaluate optimization techniques as alternations for 

calibrating soil models developed for cyclic loading applications, while the second goal of this 

study was to develop a viscoplastic model for cyclic loading applications. In the present chapter, 

the work presented in this dissertation is summarized and concluded. Then, in the next section, 

recommendations for future works will be presented. 

In the first part of this study, the application of the Gauss-Newton and Particle Swarm optimization 

algorithms was evaluated to calibrate soil constitutive models for cyclic loading application and 

cases in which models are to be calibrated against an extensive dataset. The algorithms were 

applied to calibrate the following three advanced constitutive models for cyclic loading 

applications against various types of clays and a low plasticity silt mixture; 1- the SANICLAY 

Bounding surface model by Seidalinov and Taiebat, 2014, 2- the SANICLAY Bounding surface 

with a Hybrid flow rule model by Shi et al., 2018, and 3- the Dafalias and Manzari, 2004 model.  

In all cases, the optimization algorithms proved to be useful tools for calibrating advanced 

constitutive models under cyclic loading. Such algorithms could improve the speed of calibration, 

provide an efficient alternative tool to the conventional trial and error, and be applied to any 

constitutive model developed for cyclic loading applications. The optimization algorithms were 

also used to calibrate the viscoplastic model developed in this study. It should be underlined that 

in all cases, the optimization algorithms were only used to calibrate input parameters without 

physical meaning that cannot be extracted from laboratory or field test results directly. Users should 

ensure that their final values are in the range recommended by the model’s developers, and when 

available, model’s input parameters should be based on laboratory or field test data.  

In the second part of this study, the formulation of a viscoplastic model for cyclic loading 

applications was discussed in both triaxial and multiaxial space. The new viscoplastic model was 

developed by anchoring and extending the plasticity concepts and theories necessary for simulating 

rate-dependent (and independent) response of clays under monotonic and cyclic loadings. Some 

features and abilities of the developed model could be summarized as: 
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1- It is an extended version of the SANICLAY model family with a distorted and rotated 

bounding surface and isotropic and rotational hardening rules that allow it to simulate the 

monotonic response of clays by considering soil consolidation states and anisotropy.  

2- Employing bounding surface plasticity along with a moving projection center and proper 

relocations upon stress reversals allow it a realistic performance in simulating the soil 

response under cyclic loadings. 

3- The decaying hardening variable applied to the plastic modulus formulation allows it to 

render a realistic plastic deformation response and hysteresis loops.  

4- The application of a hybrid flow rule allows it to produce a realistic stress path response 

during a cyclic event, i.e., the butterfly-shaped loops could be simulated without the 

occurrence of the stress path lock-up.   

5- The applied Perzyna’s theory of viscoplasticity allows the model to consider loading rates 

and time effects under both monotonic and cyclic loadings. 

The developed viscoplastic model in this study has sixteen input parameters, the physical meaning 

of which was discussed in chapter 5. Among these parameters, two are related to elasticity, three 

to a critical state, two to bounding surface plasticity, three to plastic modulus, two to rotational 

hardening rule, and two to the viscoplastic flow rule. As it was discussed, these parameters could 

be obtained by laboratory tests, closed-form solutions, the range suggested in the literature, or the 

PSO/GNO optimization techniques studied in the first part of this dissertation.  

It was shown that the developed viscoplastic model was able to simulate the monotonic response 

of clays by considering consolidations state, anisotropy induced by soil stress history, and time or 

loading rates. Likewise, it was shown that the cyclic response of clays at different loading 

frequencies could be simulated decently in terms of the stress-strain loops and the stress path. Also, 

the application of the viscoplastic model to several experimental studies showed that it could 

simulate fairly the rate-independent cyclic behavior of the Glacio-Lacustrine clay, the loading rate 

effects on the monotonic and cyclic response of the Boston Blue and the Grande-Baleine clay, the 

effects of loading frequency on the modulus reduction and damping curves of the Kaolin clay, and 
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the influence of the loading frequency on the general trend of the peak normalized cyclic strength 

and the excess pore water pressure of the sensitive Saint-Adelphe clay.  

7.2 Recommendations for Future Research 

7.2.1 Model Implementation into FLAC 

The developed viscoplastic model in this study was formulated first in terms of a triaxial stress 

space, then was generalized to a multiaxial stress space using a systematic approach suggested by 

Dafalias et al. (2006). Therefore, the model could be implemented in numerical tools to be used 

for solving real-world geotechnical problems. Among the existing options, FLAC (Fast Lagrangian 

Analysis of Continua) is one the most powerful tools for solving problems in earthquake 

geotechnical engineering applications that allow the users to implement their model as a user-

defined model. Therefore, implementing the developed model into FLAC will give a powerful 

choice to practitioners to apply the viscoplastic model for clays for both cyclic and monotonic 

applications.  

7.2.2 Model Validation Against an Experimental Program 

Although the developed model was applied to experimental studies, it is of great interest and 

importance that the model is validated against further experiments. For this purpose, a 

comprehensive experimental program on clays should be performed consists of monotonic 

(isotopically and anisotropically consolidated tests, drained and undrained triaxial compression and 

extension tests with various loading rates, overconsolidation ratio, confining pressure, void ratios, 

etc.) and cyclic (triaxial and direct shear tests with different void ratios, frequencies, cyclic stress 

ratio, loading types, stress-controlled and/or strain-controlled). Once such a database is compiled, 

the developed model could be extensively validated and further improved. However, up until now, 

although there are a few extensive experimental studies on various soils, such as low plasticity silts, 

such a database has not been compiled for clays. 
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7.2.3 Pre-calibrating the Model 

The viscoplastic model developed in this study has sixteen input parameters, the calibration of 

which, along with their physical meaning, was discussed in chapter 5. However, in some cases, the 

calibration of these parameters might be difficult for practicing engineers as understanding the 

constitution laws behind the internal equations requires advanced knowledge of both soil behavior 

and constitutive modeling. To make a model an easy to use tools for practitioners, it could be 

precalibrated so that it only works with a few well-known parameters in geotechnical practice, such 

as: 

1- Overconsolidation ratio (OCR) 

2- Initial void ratio 

3- Plasticity Index (PI) 

4- Cone penetration test (CPT) 

5- Shear wave velocity (Vs)      

7.2.4 Application of the Model to a Case History 

It is also of great importance that the developed model be used to simulate a case history. The case 

history could be the fourth avenue landslide during the 1964 Alaskan earthquake (Somerville et 

al., 1990; Stark and Contreras, 1998). This case history has been well-studied and well-documented 

thorough laboratory and field testing. One of the limitations of this case history is that there are no 

ground motion recordings from this event. However, the ground motion prediction equation could 

be used to predict the response spectra of the earthquake, and ground motion recordings consistent 

with this event could be selected. Other case studies such as the landslides observed after the 

Saguenay earthquake on 25th November 1988 (Lefebvre et al., 1992) could also be simulated, 

albeit less information is available. 
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APPENDIX A – MODEL CALIBRATIONS AGAINST SBFW MIXTURES 

USING PSO AND GNO 

Appendices A and shows the result of model calibrations discussed in Chapter 4 for all the tests. 

 

Figure A.1 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.178) 
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Figure A.2 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.161) 
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Figure A.3 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.149) 
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Figure A.4 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.137) 
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Figure A.5 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.126) 
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Figure A.6 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.161) 
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Figure A.7 Comparison between models’ simulations calibrated using PSO and results of DSS 

laboratory cyclic shearing on SBFW (CSR_0.186). 

  



187 

         

 

Figure A.8 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.149). 
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Figure A.9 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.161). 
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Figure A.10 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.180). 
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Figure A.11 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.186). 
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Figure A.12 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.126). 

 

 

 



192 

         

 

Figure A.13 Comparison between simulations of DM04 and SANICLAY-B calibrated using GNO 

with results of DSS laboratory cyclic shearing (CSR_0.155). 


