
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Understanding the Impact of Poor Coding Practices on the Quality of Deep
Learning Systems

HADHEMI JEBNOUN
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Décembre 2020

© Hadhemi Jebnoun, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Understanding the Impact of Poor Coding Practices on the Quality of Deep
Learning Systems

présenté par Hadhemi JEBNOUN
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Michel DESMARAIS, président
Foutse KHOMH, membre et directeur de recherche
Heng LI, membre

iii

DEDICATION

To my family who always supported me ...

iv

ACKNOWLEDGEMENTS

This thesis could not be realized without the assistance of several individuals that I would
like to thank.

First, I would first like to express my gratitude to my adviser, Dr. Foutse Khomh, for every-
thing he has done for me throughout my master’s studies.

Secondly, I also like to thank Masud Rahman and Md Saidur Rahman who help me with
writing the conference and journal papers in this thesis.

Special thanks to Houssem Ben Braiek for his help and suggestions during my master’s
studies. We, also, have been co-authoring the first paper integrated into this thesis.

I would like to thank all of my friends and members of the computer engineering and software
engineering department (GIGL).

I express my gratefulness to my family members and relatives for their support and inspira-
tion.

Finally, I would like to thank my committee members, Dr. Michel C. Desmarais, Dr. Heng
Li, and Dr. Foutse Khomh for evaluating my master’s thesis.

v

RÉSUMÉ

Les applications basées sur l’apprentissage profond, en anglais Deep Learning (DL), sont
de plus en plus utilisées pour résoudre diverses tâches de notre quotidien grâce aux ré-
centes prouesses des modèles d’apprentissage profond qui surpassent déjà les compétences
humaines dans un large éventail de tâches, de la classification des images à la reconnaissance
de la parole et au traitement du langage naturel. Ces progrès tendent à élargir l’application
de l’apprentissage profond dans des domaines aussi critiques en termes de sécurité comme
les voitures autonomes et la santé. Les spécialistes de l’apprentissage profond partagent les
mêmes préoccupations que les ingénieurs logiciels d’ autres domaines en ce qui concerne l’ef-
ficacité, la complexité et la maintenabilité des systèmes logiciels. En revanche, le processus
de développement continu des systèmes d’apprentissage profond, caractérisé par un rythme
rapide et une complexité accrue, pourrait conduire à de mauvais choix de conception par le
développeur. De plus, en raison de l’utilisation prédominante de Frameworks similaires et du
codage répétitif de tâches similaires, les développeurs de systèmes d’apprentissage profond
ont donc tendance à recourir à la pratique du copier-coller, générant ainsi des clones dans le
code d’apprentissage profond.

La plupart des travaux de recherche sur l’apprentissage profond se sont axés plus particu-
lièrement sur l’amélioration de la précision du modèle, mais à notre connaissance, il n’existe
pas de travaux de recherche qui étudient les odeurs de code et en particulier les pratiques
de duplication de code dans le cadre du développement de l’apprentissage profond. Compte
tenu de l’impact négatif des odeurs de code et des clones de code sur la qualité des logiciels,
tel que signalé dans de nombreuses études réalisées sur les systèmes traditionnels, et de la
complexité inhérente à la maintenance des systèmes d’apprentissage profond, comme le test
et la correction des bugs, il est indispensable de mener des études sur les odeurs de code
dans les systèmes d’apprentissage profond. Dans ce mémoire, nous étudions les odeurs de
code et les clones de code, qui sont également une sorte d’odeur de code dans les applications
d’apprentissage profond.

Premièrement, nous menons une étude empirique pour investiguer la distribution, l’évolution
et la propension aux bugs des odeurs de code dans les applications d’apprentissage profond.
À cette fin, nous effectuons une analyse comparative entre les applications d’apprentissage
profond et les applications open-source traditionnelles collectées à partir de GitHub. Deuxiè-
mement, nous analysons la fréquence, la distribution et l’impact des clones de code et des
pratiques de duplication de code dans les systèmes d’apprentissage profond. Pour ce faire,

vi

nous utilisons l’outil de détection de clones NiCad pour détecter les clones de 59 systèmes
d’apprentissage profond et de 59 systèmes logiciels traditionnels. Nous analysons ensuite la
fréquence et la distribution des clones de code dans les systèmes d’apprentissage profond
en les comparant à ceux des systèmes traditionnels. De plus, nous étudions la distribution
des clones de code détectés en appliquant une taxonomie basée sur la localisation. En outre,
nous étudions la corrélation entre les bugs et les clones de code pour évaluer le risque poten-
tiel que pose ces clones. Enfin, nous introduisons une taxonomie des clones de code liée au
code d’apprentissage profond et nous découvrons les phases les plus risquées du développe-
ment des systèmes d’apprentissage profond. Nous avons établi plusieurs résultats intéressants.
Premièrement, les odeurs de code longue expression lambda, longue expression conditionnelle
ternaire, et compréhension complexe des conteneurs sont fréquemment observées dans les
projets d’apprentissage profond. Autrement dit, le code d’apprentissage profond contient
des expressions plus complexes ou plus longues que le code traditionnel. Deuxièmement, le
nombre d’odeurs de code augmente au cours du temps dans les applications d’apprentissage
profond. Troisièmement, nous avons constaté une coexistence entre les odeurs de code et les
bugs logiciels dans le code d’apprentissage profond examiné, ce qui confirme notre hypothèse
sur la dégradation de la qualité du code des applications d’apprentissage profond. En ce qui
concerne l’étude des clones de code, nos résultats montrent que la duplication de code est
une pratique fréquente dans les systèmes d’apprentissage profond et que les développeurs de
systèmes logiciels utilisant l’apprentissage profond ont l’habitude de dupliquer le code dans
des endroits plus éloignés (exemple, dans des dossiers différents).

Nous présentons également une taxonomie des clones de code d’apprentissage profond afin de
mieux comprendre quand un code d’apprentissage profond est dupliqué. Enfin, nous montrons
que la définition des hyperparamètres du modèle d’apprentissage profond est la tâche la plus
risquée lors de la construction du modèle, car conduisant fréquemment à des erreurs.

vii

ABSTRACT

Deep Learning (DL) based applications are increasingly being used in our society to solve a
variety of tasks, thanks to the recent progress of deep learning models, which are now outper-
forming humans on a wide range of tasks, from image classification to speech recognition and
natural language processing. This progress is being made towards the widespread application
of DL in safety-critical applications such as autonomous cars and healthcare.

Deep learning practitioners share similar concerns as software engineers in other domains
with regards to efficiency, complexity, and maintainability. On the other hand, the conti-
nuous development of deep learning systems which takes place at a rapid pace as well as
their increasing complexity could lead to bad design choices on the part of the developers.
Furthermore, due to the prevalent use of similar frameworks and repeated coding of similar
tasks, deep learning developers, therefore, tend to use copy-paste practice, creating clones in
deep learning code. The majority of research in deep learning has focused on improving the
accuracy of the model, and to the best of our knowledge, there hardly exists any research
that studies code smells and in particular code cloning practices in deep learning develop-
ment. Given the negative impacts of code smells as well as code clones on software quality
reported in the studies on traditional systems and the inherent complexity of maintaining
deep learning systems (testing and fixing bugs is challenging), it is very important to study
code smells in deep learning systems.

In this thesis, we study code smells and code clones (which is also a kind of code smell)
in deep learning applications. Firstly, we conduct an empirical study to understand the
distribution, evolution, and bug-proneness of code smells in deep learning applications. To
this end, we perform a comparative analysis between deep learning and traditional open-
source applications collected from GitHub. Secondly, we analyze the frequency, distribution,
and impacts of code clones and the code cloning practices in deep learning systems. We achieve
this by using the NiCad clone detection tool to detect code clones in 59 deep learning and
59 traditional software systems. We then analyze the comparative frequency and distribution
of code clones in deep learning systems and the traditional ones. Further, we study the
distribution of the detected code clones by applying a location-based taxonomy. Besides, we
study the correlation between bugs and code clones to assess the risk of code cloning. Lastly,
we introduce a code clone taxonomy related to deep learning code and identify the most risky
phases in the development process of deep learning systems.

We have several major findings in this thesis. First, long lambda expression, long ternary

viii

conditional expression, and complex container comprehension smells are frequently found
in deep learning software systems. That is, the deep learning code involves more complex
or longer expressions than the traditional code does. Second, the number of code smells
increases across the releases of deep learning applications. Third, we found that there is a
co-existence between code smells and software bugs in the studied deep learning applications,
which confirms our conjecture on the degraded code quality of deep learning applications.
In terms of code clones, our results show that code cloning is a frequent practice in deep
learning systems and that deep learning developers often clone code from files contained in
distant repositories in the system. We further present a taxonomy of clones in deep learning
code, to provide a deeper understanding of when deep learning code is cloned. Finally, we
show that setting hyperparameters of the deep learning model is the riskiest task during the
model construction phase, since it often leads to faults.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ACRONYMS AND ABBREVIATIONS . xv

LIST OF APPENDICES . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Deep Learning based Software . 1
1.2 Code smells and Clones in DL systems . 2
1.3 Thesis Statement . 3
1.4 Thesis Overview . 3
1.5 Thesis Contribution . 4
1.6 Organization of the Thesis . 5

CHAPTER 2 BACKGROUND . 6
2.1 Deep Learning . 6
2.2 Code Smells . 9
2.3 Code Clones . 10

2.3.1 Code clones terminologies . 11
2.3.2 Clone Taxonomies . 11
2.3.3 Bug-proneness of Code Clones . 13

2.4 Chapter Summary . 14

CHAPTER 3 A COMPREHENSIVE REVIEWOF SOFTWARE ENGINEERING STU-

x

DIES ON DEEP LEARNING SYSTEMS . 15
3.1 Software Engineering for AI/ML/DL systems 16
3.2 Impact of Code Smells on Software Quality 18

3.2.1 Impact of Code Smells . 19
3.2.2 Impact of Code Clones . 19

3.3 Discussion . 21
3.3.1 Code Smells in Deep Learning Code 21
3.3.2 Code Clones in Deep Learning Code 22
3.3.3 Why Deep Learning Systems ? . 22

3.4 Chapter Summary . 22

CHAPTER 4 THE SCENT OF DEEP LEARNING CODE : AN EMPIRICAL STUDY 24
4.1 Introduction . 24
4.2 Study Design . 25

4.2.1 Subject System Collection & Filtration 26
4.2.2 Code Smell Detection . 28
4.2.3 Experimental Data Analysis . 29

4.3 Study Findings and Discussions . 30
4.3.1 RQ1 : Does Deep Learning Code smell like the Traditional Software

Code ? . 30
4.3.2 RQ2 : What is the global trend of code smells in deep learning projects

over multiple releases ? . 35
4.3.3 RQ3 : Is there a co-existence between code smells and software bugs in

deep learning applications ? . 36
4.4 Research implications . 39
4.5 Threats to validity . 40
4.6 Chapter Summary . 41

CHAPTER 5 CLONES IN DEEP LEARNING CODE : WHAT, WHERE, ANDWHY? 42
5.1 Introduction . 42
5.2 Study Design . 43

5.2.1 Study Objectives . 44
5.2.2 Study Overview . 45

5.3 Study Findings and Discussions . 53
5.3.1 RQ1 : Do code clones occur more frequently in deep learning code than

traditional source code ? . 53

xi

5.3.2 RQ2 : How are code clones distributed in deep learning code in com-
parison to traditional source code ? 57

5.3.3 RQ3 : Do cloned and non-cloned code suffer similarly from bug-proneness
in deep learning projects ? . 66

5.3.4 RQ4 : Why do deep learning developers clone code ? 70
5.3.5 RQ5 : Where in the deep learning code is cloning the most risky ? . . 75

5.4 Research Implications . 77
5.5 Threats to validity . 79
5.6 Chapter Summary . 80

CHAPTER 6 CONCLUSION . 81
6.1 Summary . 81
6.2 Limitations of the proposed approaches . 82
6.3 Future work . 82

REFEFENCES . 84

APPENDICES . 93

xii

LIST OF TABLES

Table 2.1 Type 1 Clones . 12
Table 2.2 Type 2 Clones . 12
Table 2.3 Type 3 Clones . 13
Table 2.4 Type 4 Clones . 13
Table 4.1 Experience-based thresholds and strategies used by smell type via Chen

et al. [1] study . 29
Table 4.2 Number of small, medium and large DL-based projects across 10 releases 30
Table 4.3 Mann-Whitney test and Cliff’s Delta results between DL and Traditio-

nal Projects for each Smell Type in Total without splitting projects by
size and for each size of projects. 34

Table 4.4 The Overlap Ratio Percentage between Buggy Files and Smelly Files
by Code Smell Type . 37

Table 5.1 NiCad Settings . 48
Table 5.2 Categorization of Clone codes examples 52
Table 5.3 Mann-Whitney test and Cliff’s Delta Results between DL and Traditio-

nal Projects . 55
Table 5.4 Mann-Whitney test and Cliff’s Delta results regarding the distributions

of clones in DL and Traditional (Trad) Projects. 59
Table 5.5 Clone codes example where the location is in the same file (the diffe-

rences are highlighted in gray) . 65
Table 5.6 Percentages of Occurrence of Code Clones in DL Phases 71
Table 5.7 Example of Model Training (Compute Loss) Type 3 Clone 73
Table 5.8 Example of Model Evaluation (Compute Metrics) Type 3 Clone . . . 74
Table 5.9 Example of Bug Fix Commit Code Change 77
Table 5.10 Percentage of DL-related Cloned Functions with Bugs 77

xiii

LIST OF FIGURES

Figure 2.1 Deep Learning Workflow . 7
Figure 4.1 Schematic diagram of the empirical study -(a) Subject system collec-

tion and filtration, (b) Code smell detection, and (c) Code smell-bug
co-existence analysis . 26

Figure 4.2 (a) Distribution of SLOC, and (b) Commits in the selected DL-based
subject systems . 26

Figure 4.3 Smell occurrences in DL and traditional projects 31
Figure 4.4 Smell occurrences by project type and project size (small, medium and

large) . 32
Figure 4.5 Smell Occurrences by Smell Type and by Project Type 33
Figure 4.6 Trend of code smells in DL projects over time 36
Figure 4.7 Smell Occurrences in Buggy Commits 37
Figure 4.8 Number of Bugs Correction per Buggy File and per State of File

(Smelly or not) . 38
Figure 4.9 Time to Fix Bugs Distribution by Buggy Commit when it is Smelly

and when Not . 39
Figure 5.1 Study Overview A- Detecting code clones Deep Learning and Tradi-

tional repositories, B- Applying Code Clone Location Taxonomy, C-
Studying the relationship between bug-proneness and code clones, D-
Classifying code clones manually based on DL-related functionalities,
E-Exploring riskier DL-related code clones 47

Figure 5.2 Code clones occurrences in DL and traditional projects for both code
clones granularities : (a) Function, (b) Block. LOCC : Lines Of Code
Clones, SLOC : Source Lines Of Code 54

Figure 5.3 Code Clones Occurrences by Project Type and by Clone Type and by
Granularity LOCC : Lines Of Code Clones 56

Figure 5.4 Code Clones Distribution by Location in DL and Traditional code re-
garding percentage of lines of code clones (LOCC). i.e, (LOCC/total
LOCC)x 100 . 58

Figure 5.5 Percentages of Lines of Code Clones by Location of Clones in both
Deep Learning and Traditional Systems 59

Figure 5.6 Clone type by clone location in DL and Traditional Code 61

xiv

Figure 5.7 Distribution of percentage of number of fragments of code clones classes
per clone location. 62

Figure 5.8 Distribution of percentage of number of fragments of code clones classes
per clone location. 63

Figure 5.9 Percentages of average number of fragments of Code Clones by Loca-
tion of Clones in both Deep Learning and Traditional Systems 64

Figure 5.10 Buggy code clones occurrences by clone type 68
Figure 5.11 Percentages of buggy code fragments by clone type 69
Figure 5.12 Comparative bug-fix times for cloned and non-cloned code in DL systems. 70
Figure 5.13 Percentage of Bug-fix occurred with cloned functions with respect to

deep learning phases . 76

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
DNN Deep Neural Network
FNN Feedforward Neural Network
CNN Convolutional Neural Network
Trad Traditional
SE Software Engineering
SQA Software Quality Assurance
LPL Long Parameter List
LM Long Method
LSC Long Scope Chaining
LC Large Class
LMC Long Message Chain
LBCL Long Base Class List
LLF Long Lambda Function
LTCE Long Ternary Conditional Expression
CCC Complex Container Comprehension
MNC Multiply-Nested Container
SF Same File
SD Same Directory
DD Different Directories
STD Standard Deviation

xvi

LIST OF APPENDICES

Appendix A ACHIEVEMENTS . 93

1

CHAPTER 1 INTRODUCTION

In recent years, the development of Deep Learning (DL) systems has shown great progress.
This success is mainly due to the availability of vast amounts of training data as well as to
the advances in hardware and software for computation. However, since DL systems have
significant differences from traditional software systems, it is necessary to take into consi-
deration their distinctive characteristics when developing them. For instance, DL systems
rely heavily on DL libraries/frameworks and code reuse (due to common development logic)
for the majority of tasks. Dedicated software quality approaches and benchmarking efforts
should be devoted to DL systems, considering their specificities of use, the constraints of the
resources that they consume, and the capabilities that they enable. Furthermore, because
of the popularity of deep learning applications, practitioners are often pressured to rapidly
develop, maintain, and improve these applications. Software quality concerns are unfortuna-
tely not prioritized by today’s DL practitioners. Rather, they focus on addressing a given
problem and mostly on improving the accuracy of the model. As a result, DL developers
may adopt poor design and implementation practices, known as code smells. The presence of
code smells may negatively influence the evolution of DL systems and degrade their software
quality. This thesis examines the code quality of deep learning systems in-depth, by detecting
code smells and code clones and investigating the distribution, evolution, and bug-proneness
of code smells and the distribution (in terms of occurrences) and locations of code clones in
DL code. We also examine the reasons behind code duplicating and identify the risk of bug
introduction in duplicated code through out the different development phases. The main goal
of this thesis is to improve our understanding of coding practices in deep learning systems
and their impact on quality.

1.1 Deep Learning based Software

Deep learning (DL) is a subset of machine learning (ML), which in turn is a subset of ar-
tificial intelligence (AI), the science of mimicking human capabilities by machines. Deep
learning is part of a broader family of machine learning methods inspired by the mecha-
nism and structure of the human brain, a network of billions of neurons. This structure is
simulated by networks of artificial neurons known as artificial neural networks (ANN). Deep
learning networks are artificial neural networks with more than three layers. Deep learning
enables computers to build concepts from data based on simpler concepts [2]. The field of
Deep Learning is currently revolutionizing almost every industry in countless ways and is
having a gigantic impact on domains like healthcare, communication, transport, finance, etc.

2

DL models have high learning capacity that allows them to capture increasingly complex
patterns directly from data without the need of handcrafted feature engineering [3]. Tradi-
tionally, software systems are constructed deductively by writing down the rules that govern
the behavior of the system as program code. However, with deep learning, these rules are
inferred from training data and they are generated inductively. This consequently reduces the
considerable manual work required to craft hand-made features that are required for classical
machine learning approaches. DL models also feature more sophisticated architecture than
other models, capturing long-range dependencies and modeling them with data.

1.2 Code smells and Clones in DL systems

The main purpose of deep learning is to construct models with high performance that is
able to learn knowledge from the input data in order to make predictions for new data. Pro-
ducing quickly powerful deep learning models may lead to undermining the quality of the
system. Based on the experience of Google, Sculley et al [4] highlighted the technical debt of
developing quickly machine learning systems which consequently leads to difficult and expen-
sive maintenance. Actually, ML-based systems hold the maintenance concerns of traditional
systems as well as those specific to ML. Sculley et al [4] also mentioned that building such
incredible deep learning algorithms requires sound software engineering practices.

To find the optimal model, deep learning practitioners usually implement multiple prototypes
quickly, by experimenting with different configurations. They then compare the performance
of the different models to identify the best configuration leading to the most efficient model.
And as DL developers may have to follow the same or similar steps to build models without
or with some modifications, they often end up writing poor code and duplicated functions
or blocks known as clones. The difference between the cloned fragments derives from the
dissimilarity between models’ architectures and also from model (hyper)parameters settings
or initialization. Code clones also stem from code reuse. Indeed, reusing code with or without
modification by copying and pasting fragments from one location to another is a common
practice during software development and maintenance activities, including for deep learning
code [5].

The existence of code smells [6] in deep learning systems may hamper their maintenance
and the evolution. Code smells are violations of fundamental design principles. In traditional
systems, they negatively impact software quality [7] and tend to increase technical debts, and
consequently incur additional development and maintenance costs. They may also increase
the consumption of certain resources (processor, memory, etc.) [8, 9] and, consequently, hinder
the deployment of efficient and sustainable solutions.

3

Earlier studies on traditional software systems show that about 7%-23% of code in the soft-
ware repositories are cloned code [10]. The intuitive benefit of clones is the productivity gain
by code reuse. Some earlier studies reported positive impacts of clones [11] and showed that
clones are not harmful [12, 13]. However, there are substantial empirical evidences showing
that clones can negatively impact software quality by affecting the stability of the code [? ?
?] and making it bug-prone [14, 15, 16, 17, 18, 19, 20], and consequently adding complexities
and costs to software maintenance. To leverage the benefits of code reuse while consciously
avoiding possible issues, developers should be aware of clones and manage clones properly to
ensure their consistent evolution [21].

1.3 Thesis Statement

Although code smells and code cloning practices, as well as their impacts, have been widely
investigated for traditional software systems, we know little about the coding practices in
machine learning based systems despite the recent upsurge in the development of machine
learning ; in particular deep learning based systems. No study to date has examined the code
quality of DL software systems by studying the distribution and impacts of code smells, and
by investigating the risks associated with their existence in the DL systems. We aim to fill
in this gap by empirically investigating code smells and cloning practices in deep learning
systems.

It is important to understand the extent to which DL practitioners are following good coding
practices (avoiding code smells) and the impact that poor coding practices has on the quality
of DL systems. To the best of our knowledge, this thesis presents the first empirical study on
DL code smells.

1.4 Thesis Overview

In this thesis, we provide two empirical studies. We, first, investigate the prevalence, evolution,
and bug-proneness of code smells in deep learning systems. Second, we study the distribution
(in terms of occurrences), location, and bug-proneness of code clones. In addition, we propose
a DL-related taxonomy of code clones and identify the phase in the development process of
DL code in which cloning is the most risky. In the following, we present the details of each
study :

1. An empirical study of the scent of deep learning code. We conduct an empirical study on
the quality of deep learning code using 118 open-source software systems. By collecting
a total of 59 deep learning systems and 59 traditional software systems from GitHub.
First, we determine the distribution of 10 code smells in the deep learning systems,

4

and then compare them with the smells from the traditional systems. Second, we
investigate the trend of code smells found in the deep learning projects over time. We
detect the code smells from each of their releases and then analyse the changes in
smell instances across the releases. Third, we analyse the commits of deep learning
projects to determine the co-existence between code smells and software bugs within
DL code. We first separate the bug-fixing commits using their labels and extract the
files that were changed to fix the bugs. Then we determine whether these changed
files contain code smells in our deep learning applications. We also analysed the time
spent for fixing the buggy code in DL systems.

2. Clones in deep learning code : what, Where, and Why ? We introduce the first empirical
study on DL code clones, where we perform a comparative study of the distribution and
bug-proneness of clones in deep learning and traditional systems. We analyze clones
in 59 deep learning systems and 59 traditional systems and compare the distribution
of clones from the perspectives of clone types and their locations. To gain further
insights into the reasons behind developers’ code cloning practices in the studied deep
learning systems, we randomly select six deep learning project and perform a manual
analysis of their code clones. We build a deep learning code clones taxonomy in which
we assign each detected code clones to the corresponding deep learning phase. We
further study the relation between bug-proneness and code cloning in the context of
deep learning systems. Finally, we identify the riskier activities in the development
process of deep learning systems, by analyzing the distribution of DL-related buggy
clones across the development phases.

1.5 Thesis Contribution

In this thesis, we conduct an empirical investigation of the coding practices of DL developers,
with the aim of understanding to what extent deep learning practitioners use best practices
while implementing their solutions. Our analysis led to the following observations :

— We found no statistically significant difference between the code smell occurrences in
deep learning projects and that in the traditional ones. When types of smells were
considered, we found that Long Lambda Function, Long Ternary Conditional Expres-
sion and Complex Container Comprehension are more frequent within the deep lear-
ning code than within the traditional source code.

— Our analysis suggests that the number of code smells increases across the releases in
the deep learning applications.

— We found that 62.84% of the changed files in DL systems overlap with the smelly
code. Furthermore, frequent smells (e.g., Long Ternary Conditional Expression, Long

5

Parameter List) co-exist with software bugs more often than the others. We found
that the buggy code from the DL applications needs more time to fix when it is smelly
than when it is not smelly.

— Cloning is frequent in deep learning code, we found that code clones occurrences in
deep learning code is higher than in traditional code. All three clone types (Type 1,
Type 2, and Type 3) are more prevalent in deep learning systems than in traditional
systems.

— Fragments of code clones in deep learning systems are found dispersed. We found that
the majority of code clones in deep learning code are located in different files (in the
same directory or in different directories).

— Code clones in deep learning systems are likely to be more bug-prone compared to
non-cloned code and Type 3 clones are at higher risk of bugs compared to other clone
types.

— We classify code clones by deep learning phases and found that three main deep
learning phases are more prone to code cloning : model construction (36.08%), model
training (18.56%), and data preprocessing (18.56%).

— The following six deep learning phases contain the majority of buggy clones : model
construction (50%), model training (20%), data collection (13.3%), data preprocessing
(10%), data post-processing (3.3%), and hyper parameter tuning (3.3%). This makes
these deep learning phases riskier from a code cloning point of view.

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows :
— Chapter 2 introduces the fundamental concepts and methods, that help to understand

our research work, and which are related to deep learning development, code smells,
and code clones.

— Chapter 3 outlines a comprehensive review of software quality assurance in deep lear-
ning systems, and of the impact of code clones and code smells on software quality.

— Chapter 4 presents our first empirical study, in which we investigate the distribution,
evolution, and bug-proneness of code smells in deep learning systems.

— Chapter 5 presents our second empirical study on code clones in deep learning systems.
— Chapter 6 provides a summary and conclusion of the thesis and discusses future work.

6

CHAPTER 2 BACKGROUND

In this chapter, we introduce the necessary background knowledge on deep learning develop-
ment, code smells, and code clones. This will be useful to follow the rest of this thesis.

Chapter Overview : Section 2.1 introduces the concepts and the development workflow
of Deep learning systems. Section 2.2 describes the 10 code smells analyzed in this thesis.
Section 2.3 defines the terminologies of code clones. Finally, Section 2.4 concludes the chapter.

2.1 Deep Learning

In this section, we define deep learning and discuss the different phases of DL systems deve-
lopment life cycle.

Deep Learning (DL) is a sub-domain of Machine Learning (ML) involving multiple layers of
neural networks to provide a powerful model with the ability to learn from data. Machine
learning techniques other than deep learning relied heavily on feature engineering. Whereas
deep learning is capable to learn representation from raw data which makes deep learning
a powerful ML technique. Thanks to the increase in the amount of data available and the
advancement in computer infrastructure both hardware and software, deep learning has ear-
ned growing popularity these days and has dealt with complex applications with increasing
accuracy over time [2]. Deep learning has been applied in various fields and in several activi-
ties and services in daily life including transportation, health, and finance. Deep learning has
contributed to several other domains such as computer vision, speech recognition, machine
translation, software engineering, etc.

There is an abundant literature on the software quality assurance of traditional software sys-
tems [22, 23, 24, 25, 26]. However, very few studies have investigated quality issues in deep
learning software systems. Yet, deep learning software development faces all the development
and maintenance challenges of traditional software systems, in addition to specific challenges
related to their dependence to data, their inductive nature, and the difficulty to understand
their behavior. To help developers create reliable deep learning systems efficiently, it is im-
portant to understand their design and implementation practices and how these practices
impact the quality of DL software systems. In this thesis, we examine the prevalence and
impacts of code smells as well as code clones in deep learning code. In the following, we
describe the steps followed to construct a deep learning model. We adopted this development
phases from the workflow described by Han et al. [27]. This workflow was inferred from an
analysis of various deep learning frameworks (e.g, Tensorflow, Pytorch, and Theano).

7

We add the data post-processing and the data collection phases to this workflow to get a
more accurate classification of code clones regarding development activities. We provide our
conjectures of why deep learning practitioners may duplicate code to perform each step of
this workflow. Regarding other code smells, we assume that they may exist in every step
of the deep learning workflow, since they correspond to poor coding practices on lines and
functions or classes, regarding their complexity and length.

Figure 2.1 shows the steps of this workflow that we detail in the following. We present 9
steps represented in a linear diagram, however, deep learning workflows are non-linear and
may contain several feedback loops [28].

Figure 2.1 Deep Learning Workflow

Preliminary preparation : It is the phase in which developers prepare the environment,
resolve installation issues, frameworks/libraries versions, configuring hardware requirements
(CPU, GPU management), etc. This initial step may be prone to code clones since if deep
learning developers use different models, each model requires a specific configuration. These
configurations are likely to be same or similar for closely similar models. Consequently, we
may find exact duplication and near-miss clones in the code used to perform this task. In
addition, to parallelize data preparation, setting the number of cores, and the number of
threads per core, developers may duplicate code with different values. Hence, the spread of
code duplication.

Data collection : Deep learning practitioners start by gathering data required to meet the
business problem. The collection could be from available datasets whether open source or
internal. This step could be done by reading file(s) from the disk, or by calling a rest API, or
by using data collector functionalities provided by the deep learning frameworks. Whenever
deep learning practitioners need to collect data, they will use the same or similar call or logic
by modifying only the source paths when it comes to different data locations. They may end
up duplicating code to get the data.

Data preprocessing : Once the dataset is selected and collected, data should be prepared
as input to the chosen architecture of the models. Each model requires an input of specific

8

characteristics regarding size, shape, format, and data type. This phase is done before model
training and it depends on the required input for each model. It is common for each model
and the developers may opt for code reuse by copy-paste to implement common functions
leading to duplicate code. Even if those are not exact clones, those will be near-miss clones
as they have the same or closely similar algorithmic logic. After preprocessing the data to be
suitable to model learning, the dataset is split into three different subsets as follows : training
data, validation data, and test data. As for splitting data, it is a common practice used by
DL practitioners. The majority of deep learning frameworks provide ready to use functions
to perform those tasks. Calling those functions to collect data with or without modifications
for each specific need is likely to introduce clones in deep learning code.

Model Construction : In this step, deep learning developers construct and configure the
DL model with the chosen architecture. Then comes the hyperparameters set up and the
selection of activation functions, loss functions, and model optimizers. Another option is
to use pretrained models that are available from online sources or load them from disk
storage. This practice is used to speed up model construction and training steps. This phase
is considered as the most crucial phase in deep learning development since it is dedicated
to the issues related to the model itself : the choice of the model [27]. The setup of deep
learning models has common steps. These steps are blocks of code that are common between
models, and each performs a sequence of calls to DL routines. And due to the use of the same
frameworks and libraries, the DL code can have duplicated blocks of code between functions
or cloned functions.

Model training : Once the model implementation and data preparation are complete,
the model is ready to be trained. The training process updates the parameters iteratively
to minimize the loss, i.e., the prediction error. At the end of the training, the model is
generated with better accuracy and performance [27]. Since most of DL models may share the
same algorithmic logic and share some computational functions (e.g., loss function, activation
function), the deep learning code may have duplicated code fragments that are either exact
or near-miss clones.

Model evaluation : At this level, we have a trained model that is ready to be evaluated on its
performance. Thus, deep learning practitioners need the validation data set, that was hidden
from the model during training, for evaluation. The evaluation of the model is frequently
done by visualizing the performance metrics of the trained model ; assessing the changes to
the loss function, model accuracy, etc [27]. Koenzen et al. [29] have shown that code snippets
related to visualization tend to have a duplication rate of up to 21% in Jupyter notebook.
Evaluating deep learning models is an integral part of the DL development process. It allows

9

developers to find the best model. This step gives a better idea of how well the model may
perform on unseen data. This is an essential phase in the model construction process, hence
one can find the code for model evaluation in each deep learning project. Their logic is similar
if not exact. Hence, deep learning code may contain duplicated functions or blocks of code
used to perform models evaluations.

Model tuning : To optimize the performance of the model, hyper-parameters are tuned.
Using an unsuitable loss function, initializing wrongly the weights, or choosing an inappro-
priate learning rate will negatively affect the model’s performance. This step is empirical, it
is usually done through a trial and error process that aims to compute the optimum values
of models hyper-parameters (e.g, Grid Search technique [30]). Hyper-parameter tuning is an
essential phase to improve the model’s performance. The implementation of this technique
is either developed by deep learning practitioners or by invoking ready to use optimization
functions from a framework. Because these functions have the same logic, calling the same
or similar set of framework routines to perform this task will likely result in duplicated code
blocks or functions in the deep leaning code.

Data postprocessing : After an inductive process of learning from raw data, the output
of the model may not be well-suited to represent the prediction results in an application
specific and user-interpretable from. Hence, prediction results should be post-processed to
be more meaningful and informative to end-users. This phase is frequently used in object
detection, where the code interprets output by assigning the class with a higher probability
to each object or by drawing the resulted bounding boxes on an image. If models have a
common objective, such as detecting objects, they may induce code duplication, during data
post-processing.

Model prediction : After training the model or using a pretrained model, the model is ready
to make a prediction for new given data. The model prediction is implemented frequently
as a function named predict and a call to this function. When using the same logic, steps of
implementation, and renaming strategy, the deep learning model prediction code may have
duplicated code blocks or functions.

2.2 Code Smells

In software engineering, the term code smell was first coined by Kent Beck [31], to describe
symptoms in the source code of an application that indicate poor design or implementation
choices [32]. These smells do not prevent the program from working. However, they are a
violation of the best practices that may increase the risk of software bugs or failures in the
future.

10

Our study is based on an existing Python-based tool named Pysmell [33]. We consider 10
code smells for our study, as were considered by Chen et al. [1]. To determine thresholds for
code smells, we use an experience-based strategy where the thresholds are defined by 101
experienced developers with 4-10 years of experience. They are also active contributors on
popular Python projects from GitHub. We select five code smells that are related to object-
oriented programming and another five code smells that were defined by Chen et al. [1] from
their analysis of bad coding patterns in real world python systems. Below is the list of the
10 selected code smells.

Long Parameter List (LPL) [34] : A method or a function that has a large number of
parameters.

Long Method (LM) [34] : A method or a function that is extremely long.

Long Scope Chaining (LSC) [34] : A method or a function that has a deep nested closure.

Large Class (LC) [34] : A class that has a large number of source code lines.

Long Message Chain (LMC) [35] : An expression for accessing an object using the dot
operators through a long sequence of attributes or method calls.

Long Base Class List (LBCL) [1] : When a class extends too many base classes due to
the multiple inheritances that Python language supports, it makes code hard to understand.

Long Lambda Function (LLF) [1] : An anonymous function that is extremely long and
complex in terms of conditions and parameters.

Long Ternary Conditional Expression (LTCE) [1] : A ternary conditional expression
that is extremely long.

Complex Container Comprehension (CCC) [1] : One-line comprehension list, set or
dictionary that contains a large number of clauses and filter expressions.

Multiply-Nested Container (MNC) [1] a container (including set, list, tuple, dict) that
is deeply nested.

2.3 Code Clones

In this section, we briefly discuss the concepts and terminology of code clones. Next, we give
an overview of the taxonomy of code clones, common causes behind code cloning, and the
impacts of clones on software systems based on existing literature.

11

2.3.1 Code clones terminologies

Code clones are exact or similar copies of code fragments usually created by copying and
pasting code fragments for code reuse. It can be similar code fragments, with renamed or
added lines. The code fragment is identified by its file name, start line number, and end line
number. Code clones could be detected by pair or by class.

Clone pair : Clone detection result is represented by pairs of fragments. Two fragments that
are clones to each other form a clone pair.

Clone class : Code clones are detected by classes. Each class contains a set of fragments
that are clones to each other.

In our study, we detect code clones by class.

2.3.2 Clone Taxonomies

In our study, we are interested in exploring two kinds of clone taxonomies, similarity-based
clone taxonomy and location-based clone taxonomy. An explanation of both of them will be
provided in the next two subsections.

2.3.2.1 Similarity-based Clone Taxonomy

Basically, there are two kinds of similarities between the two code fragments : functional
(semantic) and textual (syntactic).

Textual similarity is when a copied fragment is used with or without minor modification.
There are three types of syntactically similar clones :

— Type 1 : identical code clones except for differences in white-spaces, layouts and
comments. It is known as exact clones. Table 2.1 presents an example of two fragments
of code clones where the difference between them is the comment highlighted in grey.
The pair of code fragments are exact copies of each other. Hence, they are clones of
Type 1.

— Type 2 : syntactically identical code clones except for differences in identifiers name,
data types, whitespace, layouts, and comments are Type 2 clones. As shown in Table
2.2, we ignore the renaming differences (function name, name of input variable). These
two code fragments are Type 2 clones of each other.

— Type 3 : Code clones with some modification, addition or deletion of lines in addition
to a difference in identifiers, data types, whitespaces, and comments. An example of
two code fragments that are Type 3 clones of each other is displayed in Table 2.3.
These two code fragments are different in the function name and the addition of 2
lines for another condition in the second code fragment.

12

Table 2.1 Type 1 Clones

def forward_activation(self, X):
#compute post activation value of X
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-X))
elif self.activation_function == "tanh":

return np.tanh(X)
elif self.activation_function == "relu":

return np.maximum(0,X)
elif self.activation_function == "leaky_relu":

return np.maximum(self.leaky_slope*X,X)

def forward_activation(self, X):
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-X))
elif self.activation_function == "tanh":

return np.tanh(X)
elif self.activation_function == "relu":

return np.maximum(0,X)
elif self.activation_function == "leaky_relu":

return np.maximum(self.leaky_slope*X,X)

Table 2.2 Type 2 Clones

def forward_activation_fct(self, X):
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-X))
elif self.activation_function == "tanh":

return np.tanh(X)
elif self.activation_function == "relu":

return np.maximum(0,X)

def forward_activation(self, input):
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-input))
elif self.activation_function == "tanh":

return np.tanh(input)
elif self.activation_function == "relu":

return np.maximum(0,input)

Functional similarity is when two pieces of code are similar in functionality without being
written in a textually identical/similar way. This kind of similarity is called semantic clones
and referred to as Type 4 . Table 2.4 shows an example of Type 4 clone. The two functions
differ syntactically, but they achieve the same result, which is to compute the post-activation
of X with respect to the activation function.

In our study, we are interested in detecting both exact (Type 1) and near-miss clones (Type
2 and Type 3). Thus, we use the most recent version of Nicad (NiCad-5.2), at the date of
launching clone detection on our subject systems. We use NiCad because it was found to
achieve higher precision and recall in near-miss clone detection [36].

2.3.2.2 Location-based Clone Taxonomy

Clone taxonomies are categorized based on three attributes : similarities, location, and re-
factoring opportunities as introduced in the survey by Roy and Cordy [37]. In this thesis,
we follow the location-based taxonomy proposed by Kapser and Godfrey [38]. Kapser and
Godfrey [38] introduced a categorization scheme for code clones, and applied their taxonomy
in a case study performed on the file system of the Linux operating system. They provide a
hierarchical classification of clones using attributes such as locations and functionality. Their
taxonomy mainly consists of three partitions of the physical locations of clones in the source
code as follows :

— Same file when clones reside in different locations of the same file.
— Same directory when clones belong to different files but within the same directory.

13

Table 2.3 Type 3 Clones

def forward_activation_fct(self, X):
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-X))
elif self.activation_function == "tanh":

return np.tanh(X)
elif self.activation_function == "relu":

return np.maximum(0,X)

def forward_activation(self, x):
if self.activation_function == "sigmoid":

return 1.0/(1.0 + np.exp(-x))
elif self.activation_function == "tanh":

return np.tanh(x)
elif self.activation_function == "relu":

return np.maximum(0,x)
elif self.activation_function == "leaky_relu":

return np.maximum(self.leaky_slope*X,X)

Table 2.4 Type 4 Clones

def forward_activation(self, X):
if self.activation_fct == "sigmoid":

return 1.0/(1.0 + np.exp(-X))
elif self.activation_fct == "tanh":

return np.tanh(X)

def forward_activation(self, x):
vals = { "sigmoid" : 1.0/(1.0+np.exp(-x)),

"tanh" : np.tanh(x) }
return vals[self.activation_fct]

— Different directories when clones are detected in different files and different direc-
tories.

They further sub-classify the clones by the type of the region in which they are located
(i.e., function, loop, function ending, etc). In our study, we apply the same location-based
classification and propose a sub-classification of clones based on the functionalities related
to deep learning. We perform this classification by manual analysis of the clones and the
resulted location based classification. We use the different steps of the deep learning workflow
presented above (Figure 2.1) to label the detected clones.

2.3.3 Bug-proneness of Code Clones

Code cloning facilitates code reuse and thus intuitively increases productivity. However, this
productivity gain may be outweighed by the negative impacts of clones on software main-
tenance as suggested by empirical evidences from different studies [? ? ?]. For example,
code-duplication increases both size (code bloating) and complexity of the software system.
Because of these confounding factors, software maintainability may become increasingly com-
plicated. One of the key challenges posed by code clones is ensuring the consistent evolution of
clones during software maintenance ; meaning that all cloned copies should be updated with
necessary changes. This is because inconsistent changes to clones or missing change propa-
gation are likely to introduce bugs [69, 88? ?]. As consistent changes to clones is important,
missing changes, once identified, should also be propagated (late propagation) accordingly.
However, late propagation of changes to clones have also been found to be prone to bugs
introduction [14, 39?]. Again, as the cloned copies of code fragments are expected to evolve
consistently, cloned code are likely to experience frequent changes, and thus negatively affect

14

the stability of the software systems [69, 72? ? ?]. The instability of clones, in turn, has also
been found to be related to bugs [?]. The bug-proneness of clones may also vary based on
the types of clones [40]. Several other prior research works have also investigated the bug-
proneness of code clones [17, 41?]. These multiple studies on the impacts of clones, from
different perspectives, show that the bug-proneness of clones is an important concern. Given
the complexity and lack of explainability or the ’black-box’ nature of the deep learning mo-
dels, testing deep learning based systems and thus fixing bugs are quite challenging [42, 43].
Thus, it will be of interest to study the relationship between software bug-proneness and
code clones in the deep learning applications context. Since, duplicating code is a common
practice in the deep learning development process, as reported by deep learning practitioners
in a previous survey [5]. In this thesis, we aim to empirically analyze deep learning systems to
understand the extent and impacts of clones. We aim to raise the awareness of deep learning
developers on the impact of code cloning, since it is likely to add more complexity and cost
to the development and maintenance of deep learning systems.

2.4 Chapter Summary

In this chapter, we provided an overview of the key concepts and methodologies that are
related to deep learning software systems development. We also introduced the concepts
of code smells and code clones. This background information is offered to provide a clear
understanding of the different techniques used in this thesis.

The following chapter provides a review of the literature on the software quality assurance
of deep learning software systems.

15

CHAPTER 3 A COMPREHENSIVE REVIEW OF SOFTWARE
ENGINEERING STUDIES ON DEEP LEARNING SYSTEMS

Deep learning is one of the most significant areas of contemporary AI research. It has been
shown to be very beneficial in finding complex structures in high-dimensional data and it, the-
refore, impacts a wide, diverse variety of application areas [44]. Work done by deep learning
in the recent years has also shown promising results within natural language understanding
and related fields, notably in the areas of sentiment analysis and question answering, while
demonstrating excellent record in speech and image recognition. Deep Learning is currently
playing a vital role in virtually all kinds of information processing systems. Therefore, the
quality assurance of deep learning software systems is becoming a compelling issue. Several
studies have found that it is relatively fast and cheap to develop and deploy deep learning
systems. It therefore often happens that the quality of their software is affected. This intro-
duces risks for code smells. The prevalence of frameworks and standardized approaches for
building deep learning models makes it likely to see developers opting for copy-paste when
writing some redundant parts of deep learning code, which is likely to lead to code clones,
which is a type of code smell. Since code smells have been shown to negatively impact the
quality of traditional systems, and since deep learning systems are especially complex, it is
crucial that a serious study be executed for deep learning code smells. While there exist se-
veral studies around solving software engineering problems for traditional systems, there are
fewer studies that tackle software engineering challenges in AI/ML/DL-based applications.

The purpose of this chapter is to review existing software engineering techniques that can
be used to build better deep learning systems. First, we identify and explain the challenges
that should be addressed when developing DL programs, as well as the DL software quality
assurance techniques found in the literature. Next, we report about the impact of code smells
and code clones on the software quality of traditional systems. At the end, we discuss the
gaps in the literature regarding the quality assurance of deep learning systems, which we aim
to address in this thesis.

Chapter Overview : Section 3.1 reviews existing studies that tackle the challenges faced by
developers when building AI/ML/DL systems. We also review previous studies that examine
the quality assurance of deep learning systems. Section 3.2 examines the impact of code
smells and code clones on traditional systems quality. Section 3.3 provides an overview of the
gaps in the literature that our research work aims to fill. The conclusion of this chapter can
be found in Section 3.4.

16

3.1 Software Engineering for AI/ML/DL systems

Thanks to the democratization of powerful open-source AI/ML/DL libraries/frameworks,
complex prediction systems are built quickly. Due to this rapid release of this type of sys-
tem, the software quality is often sacrificed. Thus, it becomes challenging and expensive to
maintain them over time because of technical debt. Sculley et al. [45] discuss the challenges
in designing ML systems and explain how poor engineering choices can be very expensive.
The challenges discussed include : hidden feedback loops, data dependencies, configuration
debt, common ML code smells, etc. Amershi et al [28] reported the best practices used by Mi-
crosoft software engineers while developing projects that are related to Artificial Intelligence
and Machine learning. They mainly focused on the differences between ML-based software
projects and traditional projects, and the challenges of adapting Agile principles to ML-based
systems. Their study was conducted via interviews with selected Microsoft developers and a
large-scale survey within the company. They report that maintaining and versioning data is
a crucial task for ML-based systems. They also remark that data is harder to version than
code. And that in addition to being a software engineer, ML skills are needed to build ML-
based systems. Furthermore, it is more challenging to handle distant modules in ML-based
systems.

Testing and Monitoring : One of the important strategies to reduce technical debt and
lower long-term maintenance costs is testing and monitoring. ML-based systems are more
difficult to test than traditional software systems [43]. This is a consequence of the heavy
dependence of ML on data and models. Breck et al. [46] have outlined specific testing and
monitoring needs based on practical experience at Google. They provide 28 actionable tests
that can be used to measure the production readiness of a ML-based system and reduce
technical debt. Breck et al.’s study, as most existing studies from the literature, focuses more
on model quality rather than the infrastructure quality of machine learning systems. Zhang
et al. [47] provide a comprehensive survey of ML testing covering 138 papers. The study of
Zhang et al. [47] presents definitions and research status of many testing properties such as
correctness, robustness, and fairness. In addition, they discuss the need to test the different
components involved in the ML model building (data, learning program, and framework).
Since ML testing remains at an early stage in its development, they present many challenges.
Among these challenges, they found challenges in test input generation, challenges on test
assessment criteria, challenges relating to the oracle problem, and challenges in testing cost
reduction. Furthermore, Zhang et al. [47] analyze some research directions to benefit ML
developers and the research community. They suggest testing more application scenarios
since most of previous studies focus on image classification. It will be worth investigating

17

testing many other areas such as speech recognition or natural language processing. They
also mentioned uncovered testing opportunities like testing unsupervised and reinforcement
learning systems.

Software Engineering Practices and Challenges : Amershi et al. [28] performed a sur-
vey of Software Engineering practices for ML-based systems at Microsoft. They interviewed
Microsoft developers to understand their development practices and the benefits of these
practices. Another study related to software engineering practices for DL applications was
conduced by Zhang et al. [48]. Zhang et al. also surveyed DL practitioners about their software
engineering practices. They formulate recommendations to improve the development process
of DL applications. Wan et al.[49] studied the features and impacts of machine learning on
software development. They compare various aspects of software engineering and work cha-
racteristics in both the machine learning systems and non-machine learning software systems.
A recent study by Chen et al. [50] examined challenges in deploying DL software by analy-
zing Stack Overflow posts and posts from other popular Q&A website for developers. They
proposed a taxonomy of the challenges faced by developers when deploying DL software.

Bugs in Deep Learning Code : Islam et al. [51] analyzed stack overflow posts, as well
as, bug-fix commits from popular deep learning frameworks to understand the characteristics
of DL systems’ bugs (their types, root causes, and effects). Zhang et al. [52] studied deep
learning applications built on top of TensorFlow [53] by collecting their program bugs from
GitHub and Stack Overflow. They identified the root causes and symptoms of the collected
bugs. They also studied the detection and localization challenges of these bugs.

Code Smells in Deep Learning Applications : Jiakun Liu et al [5] investigated techni-
cal debt in deep learning frameworks by mining the self-admitted technical debt comments
provided by developers. Among the types of design debt, Jiakun Liu et al [5] report that
DL developers consider code duplication to be a contributing factor to technical debt and
increased maintenance costs.

Computational Notebooks : Nowadays, we are witnessing a proliferation of computational
notebooks in data science studies, thanks to their strengths in presenting data stories and
their flexibility. However, using these notebooks in a real project may induce technical debt,
because of their lack of abstraction, modularisation, and automated tests. Recently, a fair
amount of research works has been conducted on computational notebooks, mostly focusing
on the challenges that they pose to data scientists and the poor software engineering practices
observed in these notebooks.

One common bad practice that is frequently observed in computational notebooks is the
copying and pasting of code, by data scientists in order to save time and effort. Kery et al.

18

[54] conducted two case studies where they interviewed 21 data scientists and surveyed 45
data scientists to understand the use of literate programming tools. They studied Jupyter
Notebook as it is the most popular literate tool [55]. They [54] identified the good and bad
practices employed by data scientists. One practical limit of Jupyter Notebook is its size
and performance. The limited size often leads data scientists to copy-paste code into a new
Notebook when the maximum size is reached. In addition, they copy-paste code to ensure that
the code dependencies are properly located next to the new code, instead of extracting the
code to a function. Pimentel et al. [56] conducted an empirical study of 1.4 million notebooks
from GitHub ; examining reproducibility issues, and challenges related to the implementation
of projects within Jupyter notebook.

They also provide a set of best practices to improve reproducibility. Additionally, they identi-
fied and reported good and bad practices followed by developers of computational notebooks.
One best practice that is reported is the use of markdown and visualization, which are two
key features of literate notebooks. The use of a convenient and comprehensive filename is
also reported to be a frequent good practice in computational notebooks. The bad practices
identified include the lack of testing code, as well as poor programming practices that make
reasoning and reproducing results more difficult, such as non-executed code cells and hidden
states. Psallidas et al. [57] also examined the quality of notebooks (through an analysis of
6 million python notebooks from GitHub and 2 million enterprise DS pipelines developed
within COMPANYX). They also performed an analysis of 12 popular deep learning libraries
over 900 releases. They report that the majority of notebooks use only a few libraries and
that commonly used tools are mature and popular.

Koenzen et al. [29] examined how code is cloned in Jupyter notebooks and found that 7.6%
of code clones are self-duplication. They also performed an observational lab study and found
that frequently reuse code is copied from web tutorial sites, API documentation, and Stack
Overflow.

3.2 Impact of Code Smells on Software Quality

Since we investigate code smells in the deep learning code, we are interested in reviewing
the existing literature on the impact of code smells in traditional software systems. In the
following subsection, we discuss the impact of code smells and code clones (which is a type
of code smell) separately since the literature has mostly treated them separately.

19

3.2.1 Impact of Code Smells

Code smells frequently arise from several factors. The major causes are quick bug fixes, inex-
perienced developers, non-awareness of the best practices and of the peril of code smells on
code quality and the evolutivity of software. Given the rapid pace of development and release
of deep learning applications, we expect code smells to be prevalent in these systems. Code
smells are violation of best practices that make software hard to understand and maintain.
Numerous studies have provided evidences of the negative impact of code smells on software
quality.

Yamashita [58] examined the capability of twelve code smells to explain maintenance pro-
blems through qualitative and quantitative analyses. The results of their work provide em-
pirical evidences of the impact of design aspects on maintenance problems. Soh et al. [59]
investigate the effects of code smells on development and maintenance activities. They found
that code smells impact code editing and navigating activities and that file sizes impact the
reading and searching efforts. Hence, code smells and file sizes hinder maintenance activi-
ties. Perpletchikov and Ryan [60] investigate the impact of design level coupling on software
maintainability. Their findings provide empirical evidences of the negative impact of highly-
coupled elements on the analyzability and changeability of software.

MacCormack et al. [61] evaluate the impact of architectural design choices on maintenance
costs and refactoring efforts. They examine the nature of dependencies of each component
in a system, i.e, direct, and indirect, and their effects on maintenance costs. Their results
suggest that architectural debt can be assessed by understanding patterns of coupling among
components in a system.

Khomh et al. [62] investigate the effect of antipatterns on classes in object-oriented systems
with respect to change and fault-proneness. They show that classes with the presence of
antipatterns are more prone to change and faults in almost all releases. In addition, structural
changes affect more classes with antipatterns than others. They also highlight the importance
of detecting antipatterns to improve quality and testing activities.

3.2.2 Impact of Code Clones

Roy and Cordy [10] report that code clones represents between 7%-23% of the code of tra-
ditional software systems. Multiple studies from the literature have examined the impacts
of clones on traditional software systems from different software quality perspectives, e.g.,
change-proneness, bug-proneness, challenges in consistent update, and overall maintenance
efforts and costs. Sajnani et al. [63] showed that, contrary to intuition, the cloned code
contains less problematic patterns than non-cloned code. Along the same line, Rahman et al.

20

[64] reports no correlation between bug-proneness and code clones. However, these conclu-
sions about the lack of harmfulness of clones are contradicted by Islam et al. [65] who found
that code cloning activities contribute to replicating bugs. Islam et al. suggest to prioritize
refactoring and tracking for clone fragments containing method calls and/or if-conditions, to
prevent bugs being replicated. Another study by Islam et al. [66] examined bugs that were
reported during the evolution of a software system for two different programming languages
(Java and C) and found that clone code tends to be more bug-prone than non-clone code.

Aversano et al. [39] investigated how clones are maintained considering the inconsistency
that may induce code clones when fixing a bug in just one fragment or when evolving code
fragments. They found that the majority of clone classes are always maintained consistently.
Similar work was also performed by Göde et al. [67], confirming the findings of Aversano et
al. Göde et al. also found cloned code to be even more stable than non cloned code. They also
report that near-miss clones (Type 2 and Type 3) are more stable than exact clones (Type
1). Krinke [13] conducted a comparative study (in terms of the average age) between cloned
code and non-cloned code. They observed that cloned code is usually older than non-cloned
code and that cloned code in a file is usually older than the non-cloned code in the same
file. This confirms previous observations that code clones are more stable than non-cloned
code. Therefore, maintaining code clones is not necessarily more expensive than maintaining
a non-cloned code.

Jiang et al. [68] examined the bug-proneness of cloned code and confirmed that code cloning
can be error-prone and directly related to inconsistencies in the code. They proposed an
algorithm able to locate clone related bugs by detecting such inconsistencies. When a code
fragment contains bugs and is reused by duplicating it with some adjustments w.r.t to the
need, it may increase the spread of bugs in the system. Several other previous studies from
the literature [14, 15, 16, 17, 18, 19, 20] report a similar conclusion about code clones, i.e.,
that they make the code bug-prone and increase maintenance costs. Juergens et al. [16]
examined the root cause of faults in cloned code and report that one of the major sources of
faults is inconsistent code clones. They provided an open-source algorithm for the detection
of inconsistent clones. Göde and Koschke. [69] provide empirical evidences showing that
unintentional inconsistencies of code clones leads to faults. Barbour et al. [14] examined
late propagation evolutionary patterns of clones and identified 8 types of late propagation.
They further examined the risk of faults in these evolutionary patterns and found that late
propagation in which a clone is modified and then re-synchronized without any modification
to the other clone in the clone pair is the most risky pattern.

Researchers have also examined the maintenance efforts that result from duplicating code.

21

Hotta et al. [12] conducted an empirical study on 15 open-source systems, comparing the mo-
dification frequency of code clones and non-clones code. They concluded that the existence of
clones does not impact software evolution negatively. Kapser and Godfrey [11] performed an
empirical study of code cloning patterns, reporting the reasons behind the different patterns.
They also report that the majority of clones have a positive impact on software maintaina-
bility. However, their claim is contradicted by Kim et al. [70] who suggest that refactoring
techniques cannot tackle consistently changing code clones. Li et al [71] advise that maintai-
ning duplicate code would be very beneficial for developers, as this would avoid introducing
hard to detect bugs. Lozano and Wermelinger [72] have also shown the negative impacts of
code clones in terms of maintenance cost and system stability. They found that code clones
have a higher density of changes than non-cloned code. Lozano and Wermelinger [?] also
show that the existence of code clones may increase the change effort. A recent study by
Mondal et al. [73] shows that cloned code are more unstable than non-cloned code in general.
However according to Selim et al. [74], the bug-proneness of code clones might be system
dependent. Mondal et al. empirical study [75] shows that cloned code tends to require more
effort in maintenance than non-cloned code and that Type 2 and Type 3 clones often need a
special attention when making management decisions since they require more effort.

While previous works examined the prevalence and impacts of code clones in traditional
software systems, we investigate the distribution and impacts (bug-proneness) of code clones
in the deep learning code. We manually investigate clones in deep learning systems with the
aim to derive insights on ’what’ functions deep learning practitioners clone and ’why’ they
clone.

3.3 Discussion

Here we detail the identified gaps in the literature as our motivation for conducting this
analysis of deep learning systems. In addition, we discuss why we focus on DL systems
instead of broader AI/ML systems.

3.3.1 Code Smells in Deep Learning Code

The majority of work on deep learning systems has the main objective to provide a model
with better performance. While there exist several works tackling the problem of software
engineering practices and challenges for AI-based systems, the research on code inspection in
this area remains limited. To fill this literature gap, this thesis studies the distribution of code
smells in deep learning systems and compares them to traditional ones. We also discuss these
distributions from different perspectives, varying from high-level to low-level insights (e.g.,

22

the entire dataset first, later per smell, or by groups (size of projects), etc.). Furthermore,
we study the trend of the evolution of code smells over time and the relation between smelly
files and bug-fixes.

3.3.2 Code Clones in Deep Learning Code

Previous studies on duplicated codes in data scientists’ projects have almost exclusively fo-
cused on analyzing computational notebooks. A number of studies’ results have shown that
copying and pasting of cells within the same notebook is a widespread practice. There are
some works discussing the common code duplication practices of deep learning practitio-
ners. However, these works were limited to interviews with practitioners and focuses only
on computational notebooks. In this thesis, we examine the distribution of code clones deep
learning systems, in terms of occurrences and location, and propose a taxonomy of code
clones in deep learning systems. We also study the relationship between code clones and bug
fixes, and examine the model construction phases in which cloning is the most risky.

3.3.3 Why Deep Learning Systems ?

The choice of Deep learning was based on the two following facts : First, the popularity of
DL technology as a high capacity model that enables the creation of software 2.0, and that
learns from the data to perform a human task. However, machine learning was widely applied
to build explanatory and statistical models with lower capacity but higher explainability to
understand relationships between variables. Second, the DL is the same algorithm (backpro-
pagation) and different architectures using common components. Thus, we have open-source
frameworks (Tensorflow, PyTorch, Mxnet) that give similar features and there is now a rela-
tively common way to construct the DL code. This motivates us, as DL users too, to detect
the python code smells and code clones in this emergent type of projects and communicate
the reasons behind, which allows DL practitioners to avoid them in the future. However, the
ML solutions have different algorithms and multiple possible implementations, which makes
it difficult to infer conclusions about coding practices in these projects that are different from
any python code project.

3.4 Chapter Summary

Recently, researchers have started to investigate the code quality of deep learning systems to
understand the main challenges of deep learning systems development. In this chapter, we
explained the need for code quality assurance in deep learning systems. Next, we reviewed
previous studies on the quality assurance of AI/ML/DL systems. We also reviewed existing
studies on traditional software with respect to the impact of code smells and clones. We finally

23

highlighted some gaps in the literature related to the code smell detection in DL programs.
In the following chapters, we attempt to fill the identified gaps in the literature by studying
code smells and code clones in deep learning applications, to help DL practitioners write code
with good quality and increase their awareness about the peril of poor coding practices.

24

CHAPTER 4 THE SCENT OF DEEP LEARNING CODE : AN
EMPIRICAL STUDY

4.1 Introduction

The rise of open source DL frameworks has contributed to the democratization of deep
learning technology. Thanks to scripting-based libraries such as Tensorflow and Pytorch, DL
practitioners are now capable of developing functional prototypes quickly and experimenting
with them. However, such prototypes mostly consist of glue code that patches together the
program identifiers, external libraries, data processing functions and training algorithms [4].
That is, due to heterogeneous components and dependencies, the correctness of deep learning
code might often be traded with its code quality. Such a choice might turn the deep learning
code into complex software applications that are hard to comprehend, debug or even to
enhance in the long run.

ML-based systems encounter all the maintenance issues of traditional software systems. Ho-
wever, they suffer from an additional set of issues that arise from their statistical and data-
driven nature [4]. There have been a few earlier works that examined software bugs in deep
learning frameworks [51] and analysed the software engineering practices followed by DL
practitioners [28]. They suggest that poor coding practices and quick solutions often result
in low-quality code containing various code smells. The presence of code smells within the
software systems might incidentally degrade their quality and performance, and thus hinder
their maintenance and evolution. While there have been a number of studies on the code qua-
lity of traditional software systems and a few on ML-based systems, to date, no investigation
has been performed on the code quality of DL-based software systems.

In this chapter, we introduce our empirical study on the quality of deep learning code using
118 open-source software systems. We first determine the prevalence and trends of code smells
in the DL code, and then contrast them with the code smells from traditional software code.
We also show that the amount of code smells increases in the DL applications across releases,
and that code smells and software bugs often co-exist within the deep learning code. To the
best of our knowledge, this is the first study that investigates the code quality of DL-based
software systems. Our study answers three research questions as follows.

RQ1 : Does deep learning code smell like the traditional software code ?

We collect a total of 59 deep learning systems and 59 traditional software systems from
GitHub. We determine the distribution of 10 code smells in the deep learning systems, and

25

then compare them with the smells from the traditional systems. We found no statistically
significant difference between the code smell occurrences in deep learning projects and that
in the traditional ones. When types of smells were considered, we found that Long Lambda
Function, Long Ternary Conditional Expression and Complex Container Comprehension are
more frequent within the deep learning code than within the traditional source code.

RQ2 : What is the global trend of code smells in deep learning projects over
multiple releases ?

We investigate the trend of code smells found in the deep learning projects over time. We
detect the code smells from each of their releases and then analyse the changes in smell
instances across the releases. Our analysis suggests that the number of code smells increases
across the releases in the deep learning applications.

RQ3 : Is there a co-existence between code smells and software bugs in deep
learning applications ? We analyse 37,951 commits from 59 deep learning projects to
determine the co-existence between code smells and software bugs within DL code. We first
separate the bug-fixing commits using their labels and extract the files that were changed to
fix the bugs. Then we determine whether these changed files contain code smells in our deep
learning applications. We found that 62.84% of the changed files overlap with the smelly code.
Furthermore, frequent smells (e.g., Long Ternary Conditional Expression, Long Parameter
List) co-exist with the software bugs more often than the others. We also analysed the time
spent for fixing the buggy code. We found that the buggy code from the DL applications
needs more time to fix when it is smelly than when it is odorless.

Chapter Overview Section 4.2 presents an overview of the design of our empirical study.
Section 4.3 reports our findings and discussions with respect to the three research questions.
Section 4.4 discusses research implications. Section 4.5 addresses the threats to validity of our
empirical study on code smells in DL code. Finally, we conclude the chapter in Section 4.6.

4.2 Study Design

Fig. 4.1 shows the schematic diagram of our empirical study. It has three major steps. First,
deep learning-based and traditional software systems are carefully selected from GitHub for
the study (Fig. 4.1-(a)). Each of the software systems (a.k.a., repositories) is pre-processed
and prepared for code smell detection. Second, we detect code smells using PySmell tool from
each of the releases of DL-based and traditional systems (Fig. 4.1-(b)). Third, we collect
bug-fixing commits and their changed source files to determine the co-existence between
code smells and software bugs (Fig. 4.1-(c)). The following subsections discuss these steps in
details.

26

Figure 4.1 Schematic diagram of the empirical study -(a) Subject system collection and
filtration, (b) Code smell detection, and (c) Code smell-bug co-existence analysis

Figure 4.2 (a) Distribution of SLOC, and (b) Commits in the selected DL-based subject
systems

4.2.1 Subject System Collection & Filtration

System Collection : We attempt to contrast between DL-based and traditional software
systems in terms of their code quality (e.g., presence of code smells). Thus, we need to collect
both types of systems for our study. In order to collect deep learning systems, we perform

27

keyword search with GitHub Search API [76]. In particular, we choose a set of popular
keywords related to various deep learning technology and frameworks as follows. {Deep-
learning, deep-neural-network, neural-network, CNN, RNN, convolutional neural network,
recurrent neural network, Caffe, Keras, Tensorflow, Theano, tflearn, Paddle incubator-mxnet
and Torch}

We also limit our search to Python-based systems since Python is the most widely used
programming language in the DL-based applications to date [77]. The search retrieves a total
of 285 DL-based repositories with at least 57 commits each. In order to select the traditional
software systems, we reuse the benchmark of Chen et al. [1]. The benchmark provides a total
of 106 popular repositories with at least 1000 stars each.

System Filtration : The previous step provides a total of 391 (285 DL-based + 106 traditio-
nal) software systems. However, all of them might not be appropriate for our study. We thus
manually check each of these systems and discard the inappropriate ones such as tutorials
and non-popular projects. Out of 285 repositories, 139 repositories were tutorials, which left
us with 146 real deep learning repositories. We also carefully select popular and mature DL
projects from them by employing maturity and popularity metrics (e.g., issue count, commit
count, contributor count, fork count, stars). We retain only such repositories that have at
least four releases each, and discard the rest. Thus, we ended up with a total of 59 DL-based
software systems. Out of 106 traditional software systems, we found that 25 systems do not
exist any more, which leaves us with 81 traditional systems. However, we randomly choose
59 of them for the study, which ensures a parity in size with our DL-based systems. Thus,
we ended up with a total of 118 DL-based and traditional software systems for our empirical
study.

System Clustering : While 118 subject systems were selected above, we attempt to better
understand them by analysing their SLOC (Source Line of Code) and number of commits.
We first calculate the SLOC of each system using Radon [78], a Python-based tool, where
only Python files are considered. Then we categorize the subject systems into three clus-
ters – small, medium and large – using KBinsDiscretizer [79] from Scikit-Learn library [80].
KBinsDiscretizer accepts number of clusters as a parameter and provides balanced clusters
using quantile strategy. According to Brown [81], a project is considered small if it has
SLOC<= 10K, medium if it has SLOC<= 100K and large if it has SLOC> 10M . However,
since our DL-based systems were not big enough, we adapt these thresholds for our study.
In particular, we consider a system small when SLOC<= 4K, medium when SLOC<= 15K

and large when SLOC> 15K. Fig. 4.2 shows the (a) distribution of SLOC and (b) number of
commits/system in 59 DL-based subject systems. We see that DL-based systems are mostly

28

small or medium. The largest DL-based system has a total SLOC of ≈90K. These clusters
are later used for answering RQ1 (Section 4.3.1).

We also analyze the releases of our deep learning subject systems. We found that the median
number of release is 10, i.e., 50% of the DL-based systems have more than 10 releases. For the
sake of our analysis, we thus divide the release history of each project into 10 major releases,
which involves the merging of actual releases. The systems having less than 10 releases are
kept as is. Table 4.2 shows the number of deep learning systems from three different clusters
across 10 releases.

4.2.2 Code Smell Detection

Our smell detection strategy is based on PySmell [33] as discussed in section 2. To perform
our study, we adapted the PySmell code available on GitHub to meet the needs of our
project. The code takes as input a folder that contains all the projects under study, and then
detects different types of smells from each of the source files. PySmell is a metric-based tool
that detects code smells using rules and thresholds. It marks an entity (e.g., class, function)
smelly whenever the entity activates any of the predefined rules designed for the smell types.
Finally, we capture the code smell occurrences for each smell type against different granularity
of program entities – class, function, line. We employ several code level metrics [1] for smell
detection as follows :

— PAR : number of parameters ;
— MLOC : method/function lines of code ;
— DOC : depth of closure ;
— CLOC : class lines of code ;
— LMC : length of message chain ;
— NBC : number of base classes ;
— NOO : number of operators and operands ;
— NOC : number of characters ;
— NOL : number of lines ;
— NOFF : number of for clauses and filter expressions ;
— LEC : length of element chain ;
— DNC : depth of nested container ;
— NCT : number of container types.

Since PySmell’s rules are configurable, we use appropriate thresholds to configure these rules
that are derived from the work experience of expert Python developers [1]. Such a strategy
has been adopted by earlier studies for smell detection [82].

Table 4.1 presents the strategies and the metrics’ thresholds that were used to detect the

29

code smells. All metrics and thresholds used in our empirical study were taken from an earlier
work [1].

Table 4.1 Experience-based thresholds and strategies used by smell type via Chen et al. [1]
study

Code Smell Metric Thresh. Strategy
LPL PAR 5 (PAR, HigherThan)
LM MLOC 38 (MLOC, HigherThan)
LSC DOC 3 (DOC, HigherThan)
LC CLOC 29 (CLOC, HigherThan)
LMC LMC 5 (LMC, HigherThan)
LBCL NBC 3 (NBC, HigherThan)

LLF
NOC
PAR
NOO

48
3
7

(NOC, HigherThan)
and ((PAR, HigherThan)
or (NOO, HigherThan))

LTCE NOC
NOL

54
3

(NOC, HigherThan)
or (NOL, HigherThan)

CCC
NOC
NOFF
NOO

62
3
8

((NOC, HigherThan)
and (NOO, HigherThan))
or (NOFF, HigherThan)

MNC
LEC
DNC
NCT

3
3
2

(LEC, HigherThan)
or ((DNC, HigherThan)
and (NCT, HigherThan))

As shown in Fig. 4.1-(b), there are three steps in our smell detection process. First, we
clone the repositories of both traditional and DL projects’ GitHub repositories. Then, we
run the Pysmell tool on them to detect the code smells that occurred in the files of the
cloned software projects. This allows us to compare the distribution of Python code smells
between traditional and DL projects. In a second step, we restore all the versions of each of
the projects collected in the previous step (4.1-(b)). Then, we run the Pysmell tool on each
release version of each project to analyse the trend of code smells over releases. In the third
step, we restore the code to its status before applying a bug fixing commit. Then, we execute
the Pysmell tool on each file that has been changed by an identified bug fixing commit in
order to study the relationship between bugs and code smells in DL-based software projects.

4.2.3 Experimental Data Analysis

In this section, we describe how to analyze the detected code smells with respect to bugs’
existence in the system and the time needed to fix them.

Detecting Bug-Fixing and Bug-Inducing Commits : Since we attempt to determine
the potential correlation between code smells and software bugs, we need to detect the bug-

30

fixing and bug-inducing commits from version control history. In order to detect the bug-fixing
commits, we employ a keyword search-based approach. In particular, we use a list of keywords
for the search – {bug, fix, wrong, error, fail, problem, patch}, as were used by Rosen et al. [83].
If a commit log contains one of these keywords, we consider it as a bug-fixing commit. Once
a bug-fixing commit is detected, we use the SZZ algorithm [84] to identify the bug-inducing
commits from the version history that introduced the bug.

Co-existence between Code Smells and Bugs : We determine the co-existence between
code smells and software bugs by investigating how the bug-inducing code overlaps with
the smelly code. First, we identify the files that were changed later to fix the bugs (i.e.,
bug-inducing files) and that also contain one or more code smells. Second, we calculate the
percentage of occurrences for each smell type in these smelly, bug-inducing files. Our goal
was to identify the most frequent code smells that co-exist with the bugs in the deep learning
applications. Third, we analyze the distribution of the number of bug fixing commits with
respect to smelly files and smell-free files.

Time spent to fix a bug that co-exists with code smells : To evaluate the cost of code
smells in productivity, we compare the time taken to fix bugs when the files contain code
smells and when they do not. We compute bug-fix time by measuring the time interval bet-
ween the bug-introducing changes and their corresponding fixes [85]. We use Mann-Whitney
Wilcoxon test to compare bug-fix time and examine the negative impact of the code smells
on bug-fixing and developer productivity.

Table 4.2 Number of small, medium and large DL-based projects across 10 releases

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
Small Projects 18 18 18 18 18 14 12 11 11 9
Medium Projects 19 19 19 19 19 17 16 15 14 14
Large Projects 22 22 22 22 22 18 16 14 12 11

4.3 Study Findings and Discussions

In this section, we present the results of our study in details, and answer three research
questions as follows.

4.3.1 RQ1 : Does Deep Learning Code smell like the Traditional Software Code ?

In this section, we determine the distribution of code smells in both deep learning and
traditional software systems, and compare their distributions. We calculate the occurrences

31

of code smells across different dimensions (e.g., project type, smell type) and then compare
the DL-based systems with the traditional systems.

Smell Occurrences by Project Type : We compare DL-based systems with traditional
systems in terms of their code smell density. First, we calculate the number of code smells
in each project, and then divide them with their number of source code lines (a.k.a., SLOC).
Fig. 4.3 shows the comparison between DL-based and traditional systems using box plots
where normalized smell occurrences per source code line are considered. We perform non-
parametric Mann-Whitney Wilcoxon tests, and found that there is no significant difference
(i.e., p-value 0.117 > 0.05) between DL-based code and traditional code in terms of their
code smell density.

Figure 4.3 Smell occurrences in DL and traditional projects

Finding 1 : There is no statistically significant difference between deep learning code and
traditional code in terms of their code smell occurrences.

Smell Occurrences by Project Size : Although the above analysis shows no difference
between DL-based and traditional systems in code smell density, we further extend our
comparative analysis by considering both type and size of the systems. We calculate the
occurrence of code smells in each of the projects from small, medium and large clusters, and
compare the smells/project between DL-based and traditional projects. Fig. 4.4 shows our
comparative analysis across three sizes (or clusters). We see that the number of code smells
per project increases when the size of the project increases for both DL-based and traditional
projects. Such a trend is consistent with the earlier findings with traditional systems [86].
However, we found two noticeable differences in the density of code smells between deep

32

learning and traditional software projects when we consider the size. First, the number of
code smells in the small DL projects is significantly higher than that of small traditional
projects. Second, the number of code smells in the large DL projects is significantly lower
than that of the large traditional systems. We perform Mann-Whitney Wilcoxon tests in
both cases, and found p-values 0.0002 and 1.19e-05 respectively that are less than 0.05 and
thus indicate the statistical significance.

Finding 2 : The number of code smells per project increases with the increase in project
size for both deep learning and traditional software projects. However, small DL-based
projects contain more code smells than that of small traditional projects. On the contrary,
large DL-projects contain comparatively less smells than that of large traditional software
projects.

Complementary Manual Analysis : We manually analyse the source code of 30 deep
learning projects and 30 traditional projects, and derive several meaningful insights. First,
the core deep learning code that involves data pre-processing and model training tends to
be smelly. Once the code is built, DL systems tend to get larger and mature by including
more features for various application domains. In other words, the large DL projects tend
to have a mix of core deep learning code and traditional source code. Such a mixture of
heterogeneous code is often encapsulated and its functionality is exposed through a simple
endpoint. Such a workaround might explain the comparatively less number of code smells in
the large DL-based software systems (Fig. 4.4).

Figure 4.4 Smell occurrences by project type and project size (small, medium and large)

Smell Occurrences by Smell Type : While our above analyses show interesting findings,

33

we further contrast the code smell distributions between DL-based and traditional subject
systems in terms of code smell types. In particular, we perform statistical significance tests
on these distributions across 10 different code smell types, and then collect the p-values from
Mann-Whitney Wilcoxon tests. Table 4.3 shows the p-values from our tests across project
size and code smell type.

Given the comparison and p-values from the Table 4.3, we also divide the code smells into
three groups as follows – Group-I : smells that occur both in DL-based and in traditional
software systems with no statistically significant difference, Group-II : smells that occur
more in the DL-based systems than in the traditional systems, and Group-III : smells
that occur more in the traditional systems than in the DL-based systems. Then we further
investigate the prevalence and distribution of code smells across these groups.

Group-I : Large Class, Long Method and Long Scope Chaining : Based on a significance
threshold of 0.05, we found three python code smells – Large Class (LC), Long Method (LM)
and Long Scope Chaining (LSC) – from Table 4.3 for which DL systems and traditional
systems have no statistically significant difference in their smell densities. From Fig. 4.5-(a),
we see that these code smells have similar variances across both project types. These smells
are often a result of poor coding practices by the developers. Thus, they might be invariant
of the type of the subject systems.

Group-II : Complex Container Comprehension, Long Ternary Conditional Expression, and
Long Lambda Function : From Table 4.3, we found three other code smells that occur more
frequently within the DL code than in the traditional code. From Fig. 4.5-(b), we also see
that their code smell distributions are significantly different in terms of median and variance.
We thus manually analyse these three code smells for further insights as follows.

Complex Container Comprehension (CCC) : Container comprehension is a quick solu-

Figure 4.5 Smell Occurrences by Smell Type and by Project Type

34

Table 4.3 Mann-Whitney test and Cliff’s Delta results between DL and Traditional Projects
for each Smell Type in Total without splitting projects by size and for each size of projects.

LC LM LSC MNC LTCE LPL LMC LLF LBCL CCC
p-value (Total) 0.06 0.43 0.36 5.44e-05 2.94e-12 1.22e-20 0.002 0.04 8.42e-08 0.02
p-value (Small) 0.26 0.05 0.02 0.33 1.73e-05 0.3 0.0005 0.005 0.425 0.035
p-value (Medium) 0.403 0.18 0.22 0.004 1.22e-06 0.01 6.4e-08 0.37 0.006 0.006
p-value (Large) 0.001 0.06 0.21 7.75e-06 5.40e-08 0.0001 9.29e-09 0.026 4.01e-07 0.02
Cliff’s Delta (Total) 0.17 0.02 0.04 0.41 0.73 0.31 0.82 0.18 0.45 0.23
Cliff’s Delta (Small) 0.08 0.32 0.27 0.07 0.76 0.1 0.47 0.43 0.02 0.34
Cliff’s Delta (Medium) 0.048 0.17 0.13 0.49 0.88 0.44 0.94 0.06 0.38 0.47
Cliff’s Delta (Large) 0.54 0.28 0.14 0.8 0.98 0.66 0.99 0.35 0.84 0.36

tion for constructing one-line Python objects (e.g., list, set, dict). One-line statements often
become complex and hard to comprehend when more and more clauses and filter expressions
are added. DL developers often choose a one-line statement to build a sequence of arguments,
which results in a long-expression. They use the hard-coded sequences to initialize a list of
possible hyper-parameters since these values are often found in the DL white papers and
books. Besides, comprehensions are constructs that allow the containers to be built from
other containers. Thus, the developer often use CC to reformat the data structure of a set of
values, which makes it suitable as arguments for configuring other DL routines. Hence, the
longer the comprehension, the higher the risk of turning into CCC smell.

Long Ternary Conditional Expression (LTCE) : Ternary conditional expression is a
conditional variable assignment in one line that makes the code compact. It allows conditio-
nal flows into the code and replaces multiple if-else blocks with a single line of code. However,
excessive use of this expression could hurt the readability of code. Besides, combination of
multiple terms and expressions (e.g., lambda expression) could make this conditional expres-
sion unnecessarily complex. DL developers often use ternary conditional operators either to
execute a particular routine or to conditionally assign a particular value to a configuration
setting. This helps them switch between DNN design and hyper-parameter tuning and de-
termine the impact of their different choices. Our study also reports the high occurrences of
LTCE in the DL projects.

Long Lambda Function (LLF) : Lambda function is a single-line function. While it
is easy to define or use, the function could be hard to manage and maintain when many
complex operations are involved. DL developers often choose lambda functions to carry out
data processing by creating anonymous function at run-time and then by sending them to
appropriate DL routines as parameters. However, the function becomes long and complex
when multiple data elements are handled simultaneously by these routines.

Group-III : Long Base Class List, Long Message Chain, Long Parameter List and Multiply

35

Nested Container : Using a significance threshold of 0.05, we found four code smells from
Table 4.3 that occur more frequently in the traditional code than in the DL code. From
Fig. 4.5-(c), we see that their distribution is comparatively lower for the DL-based code.
We thus analyse these four types of code smells, and attempt to explain the findings as
follows. First, two smells – Long Base Class List (LBCL) and Long Message Chain (LMC)
– are mostly related to object-oriented programming (OOP), which might explain their low
occurrences in the Python-based deep learning code. Due to the scripting nature of Python-
code, DL practitioners might not be interested to use the OOP paradigm of Python language.
Second, we also observe low occurrences of Long Parameter List (LPL) and Multiply Nested
Container (MNC) smells in the deep learning code. These smells arise from the complexity of
the code that involves long parameter list and nested logic. Since DL practitioners implement
their applications using a data-driven training process with ready-to-use routines from the
libraries, the odds of long parameter list and deep nested logic occuring is lower.

4.3.2 RQ2 : What is the global trend of code smells in deep learning projects
over multiple releases ?

Although we have studied the distribution of code smells in DL applications and compared
it with such distribution in the traditional applications, we also want to further analyse their
prevalence over time. We thus investigate the global trend of code smells exhibited by deep
learning projects over time. To perform this analysis, we compute the density of code smells
per version for each of the DL projects. Then, we categorize each project into our pre-defined
size-based categories (i.e., small, medium and large). Then we plot the smell occurrences
over versions for each size-based category. Fig. 4.6 shows the global trends of code smell
occurrence in our subject systems.

From Fig. 4.6, we see that the smell occurrences have an increasing trend. This can be
explained intuitively by the increase in source code size (SLOC) and complexity over the life
cycle of the DL projects. Our result is also consistent with previous findings on the traditional
projects [87]. However, most of the DL projects are new projects that are yet to mature. Thus,
the comparison with traditional systems in terms of evolution of code smells could be more
effective and more fair when these DL projects would reach similar level of maturity. However,
the increasing trend of DL code smells suggest that DL practitioners might not have paid
enough attention to the quality of their code even after releasing several versions. Thus, our
findings confirm the need for early refactoring of code smells by deep learning practitioners
to avoid a costly maintenance in the later releases.

36

Figure 4.6 Trend of code smells in DL projects over time

Finding 4 : The amount of code smells contained in deep learning applications increases
gradually over the subsequent releases of the applications.

4.3.3 RQ3 : Is there a co-existence between code smells and software bugs in
deep learning applications ?

We consider that code smells and software bugs co-exist if the bug-fixing code overlaps with
the code containing smells. In particular, we detect the files that were changed to fix the bugs
and that also contain one or more code smells at the same time. We present our analysis
using several dimensions (e.g., overlap ratio, smell type) as follows.

Table 4.4 shows the likelihood of co-existence with software bugs for different types of code
smells. Based on our analysis, we found that, in DL-based software projects, 62.48% of the
buggy files (i.e. changed by a bug-fixing commit) contain at least one occurrence of code
smell.

Finding 5 : About 62.48% of the bug-fixing files overlap with the smelly code. Thus, code
smells and software bugs are likely to co-exist in the deep learning applications.

We also present the overlap ratio in more granular level by computing the percentage of the
smelly, buggy files per type of smell (Table 4.4). We provide the percentage of smelly, buggy
files containing at least one occurrence of a particular smell. We found that at least 40% of
the smelly, buggy files contain LTCE, CCC , LM, or LPL smells. On the other hand, the
remaining smells (e.g., MNC, LLF, LSC and LC) could be found in less than 10% of smelly
and buggy files.

37

Table 4.4 The Overlap Ratio Percentage between Buggy Files and Smelly Files by Code Smell
Type

Code Smell LM LTCE LLF LSC LPL CCC MNC LC LMC LBCL
Overlap Ratio % 47.57 48.85 7.546 3.5144 47.5 43.14 6.25 7.27 0.094 0.23

Figure 4.7 Smell Occurrences in Buggy Commits

Moreover, we present Figure 4.7 that shows the number of code smell occurrences for each
of the eight smell types that partially overlap with the bug-fixing code within the deep
learning systems. These substantial differences of total number of instances between smell
types reinforce our previous finding and confirm that four code smells (LTCE, LM, LPL,
CCC) frequently overlap with the bug-fixing code, whereas the other code smells (LLF,
LSC) do not overlap much with the bug-fixing code.

Given our findings and analysis above, Long Ternary Conditional Expression (LTCE), Com-
plex Container Comprehension (CCC), and Long Parameter List (LPL) are the types of code
smells that could more likely lead to software bugs or failures. In particular, two Python-based
smells –LTCE and CCC – bear more risks than other Python-related code smells given our
findings in the Fig. 4.4. Deep learning developers often rely on advanced functionalities and
the grammatical flexibility of Python language for rapid development. Unfortunately, such
development practices turn the deep learning code into complex structures (e.g., LTCE),
which ultimately can lead to software bugs and failures.

Our results heavily rely on the density distribution of various code smells (e.g., Fig. 4.4)
found in our subject systems. Thus, they also reinforce the fact that the presence of code
smells within the systems might increase the chance of software bugs.

38

Finding 6 : Long Ternary Conditional Expression, Complex Container Comprehension
and Long Parameter List are more associated with the software bugs than the other smells
in deep learning applications.

We also compare the number of bugs corrections that are performed to either smelly and
smell-free source code files. We analyze the distribution of the number of bug fixing commits
with respect to smelly files and not-smelly ones (Figure 4.8). We found that files containing
at least one code smell have significantly higher number of bug corrections throughout the
project than the files that do not contain any code smell. The Mann-Whitney Wilcoxon test
yields a significant p-value of 3.6e − 150 < 0.05 with a medium Cliff’s Delta effect size (i.e.,
0.28).

Finding 7 : Smelly files tend to have more related bug fixing commits than non-smelly
files, which indicates that they might be more prone to faults. It might also be the sign
that bugs occurring on smelly files require multiple fixes. In our future work, we plan to
investigate this hypothesis in more details.

Figure 4.8 Number of Bugs Correction per Buggy File and per State of File (Smelly or not)

To gain further insights on the effort needed to fix the bugs in both smelly and smell-free
code, we compare the time spent to fix buggy code containing code smells with the time spent
to fix buggy code without code smells. We found that fixing the code with code smells takes
significantly longer time than fixing the code without any code smells. We perform Mann-

39

Whitney Wilcoxon test and obtained a significant p-value of 2.02e − 10 < 0.05. Furthermore,
Fig. 4.9 shows the distribution of time spent for fixing the buggy code. We see that median
bug-fix time for smelly code is significantly higher than that of smell-free code. Based on the
above analysis, we find significant evidence that code smells might have a significant impact
on bug-fixing time in deep learning based systems.

Finding 8 : The presence of code smells has a significant impact on the bug-fixing time of
deep learning applications. Time to fix the bugs within smelly code is significantly higher
than the bug-fixing time of smell-free deep learning code.

Figure 4.9 Time to Fix Bugs Distribution by Buggy Commit when it is Smelly and when Not

4.4 Research implications

In this section, we discuss several implications of our findings.

Smelly one-line long and complex statements : In the deep learning code, decision
logics are learned statistically from the data rather than from complex control flows, nested
loops and branches. The DL practitioners might abuse the feature of one-line statements in-
cluding container comprehensions, ternary conditional operators, and lambda functions with
the intention of compacting the code. Our analysis on the prevalence of code smells in the
DL projects shows that these one-line statements tend to be longer and involve both com-
plex conditions and sophisticated operations. These two code smells are the most frequent in
the DL code. To improve their code quality, DL practitioners should avoid these quick solu-

40

tions and refactor these one-line statements by decomposing them into manageable separate
functions. Besides, the hard-coded long containers like lists or sets are also considered to be
CCC code smells since they hinder the code readability and comprehension. Thus, the DL
practitioners should also consider the separation of concerns in their application by cutting
off the initial configuration options from the code and adopt maintainable structured files
like JSON or XML that can be easily loaded as Python objects.

An increasing trend of code smells over versions : The increasing trend of code smells
in DL applications call for the development of techniques and tools that can help DL prac-
titioners refactor their code and improve the code quality.

Co-existence between software bugs and code smells To boost productivity, deep lear-
ning developers should become aware of the costs of poor coding practices. It is important to
be more conscious about code smells and their peril rather than reaching an non-manageable
code state, where the only solution is to write the code again from the scratch.

4.5 Threats to validity

We now describe the threats to the validity of our study.
Construct Validity threats concern the relation between theory and observation. In our
study, threats to the construct validity are mainly due to measurement errors. We use the
PySmell tool to detect smells in both types of project (e.g., traditional and DL software
project). Relying on the outcome of PySmell tool may pose a threat to validity. To mitigate
the risk, we use the experience-based strategy that relies on the thresholds pre-defined by
active, experienced python developers. Thus, our thresholds are possibly more appropriate
than the thresholds that are defined statistically by analysing the traditional python projects.
We are aware that our results can be affected by the presence of false positives and false
negatives. However, Chen et al.[1] reported a precision above 82% and a recall of 98% for the
experience-based strategy, which are acceptable performance, especially for the recall.
Internal Validity threats concern our selection of projects which could have influenced the
results. In our investigation, the searching requests based on GitHub topics and keywords
may pose an internal threats to validity. However, we filter the projects using maturity and
popularity metrics such as issues count, commits count, contributors count, forks count and
stargazers count in order to eliminate all the tutorials and the shared code snippets, and keep
only real engineered DL projects.
External Validity threats concern the possibility to generalize our results. In our work, we
focused only on python projects, which may reduce the generalizability to all types of DL
projects. However, it is important to mention that Python is the most popular and most

41

used programming language [77] in the DL community ; so our empirical study on the code
quality of DL software projects written in python can spawn useful insights on the software
quality of existing DL software systems.

4.6 Chapter Summary

In this chapter, we focus on inspecting DL code by performing a comparison of smells oc-
currences between traditional and deep learning applications. We analyze a total of 118
repositories (59 deep learning + 59 traditional). We make the following observations :
1) No significant difference : There is no statistically significant difference in the code smell
occurrences between deep learning and traditional software systems.
2) Prevalence of code smells in deep learning projects : The most frequent smell types found
are Long Ternary Conditional Expression, Complex Container Comprehension, and Long
Lambda Function.
3) Violations of the best practices : DL practitioners might not be aware of the code smells
in their code, which possibly explains the increasing trend of smell occurrences across the
software releases.
4) Code smells lead to bugs : Our findings confirm that the presence of code smells may
increase the chances of bugs occurrence.
Ours is the first work that extensively investigates the code quality of 59 open-source, deep
learning applications. It can help the researchers better understand the code quality and
maintainability of the deep learning applications that are likely to grow in the coming years.
Similarly, it can help the practitioners to calibrate their development practices by detecting
and refactoring their code smells that are also likely to grow. Our replication package 1 can
also be used for replication and third-party reuse.

1. https://github.com/Hadhemii/DLCodeSmells

https://github.com/Hadhemii/DLCodeSmells

42

CHAPTER 5 CLONES IN DEEP LEARNING CODE : WHAT, WHERE,
AND WHY?

5.1 Introduction

The main purpose of deep learning is to construct models with high performance that are able
to learn knowledge from the input data in order to make predictions for new data. To find the
optimal model, deep learning developers experiment with multiple prototypes using different
configurations. They then compare the performance of the different models to identify the best
configuration leading to the most efficient model. And as DL developers may have to follow
the same or similar steps to build models without or with some modifications, they often end
up writing poor code ; duplicating functions or blocks of code. Therefore, creating clones.
Code clones are often also created through code reuse. Indeed, reusing code with or without
modification by copying and pasting fragments from one location to another is a common
practice during software development and maintenance activities, including for deep learning
code [5]. For example, deep learning developers can clone models’ architectures and model
(hyper)parameters settings or initialization. Given the known negative impacts of code clones
on traditional software systems and the complexity of deep learning systems, it is reasonable
to assume that code duplication (whether within the same project or between projects) is
likely to pose challenges to the maintenance of deep learning projects. Code clones constitutes
technical debt and Sculley et al. [4] observed that technical debt can cripple machine learning
systems when developers fail to follow good software development practices.

In fact, ML-based systems hold the maintenance concerns of traditional systems as well as
those specific to ML.

Although the impact of code cloning practices on the quality of traditional software systems
is relatively well understood, since it has been the subject of multiple investigations (e.g.,
[14, 15, 16, 17, 18, 19, 20]), we still know little about the impact of code cloning practices in
machine learning based systems, despite the recent upsurge in the development of machine
learning or in particular deep learning based systems. To date, no study has examined the
code quality of DL software systems with respect to code cloning. We currently don’t know
the potential risks associated with the practice of duplicating code in deep learning systems.
In this chapter, We aim to fill this gap by empirically investigating clones in deep learning
systems. We perform a comparative study of the distribution and bug-proneness of clones in
deep learning and traditional systems. We analyze clones in 59 deep learning systems and 59
traditional systems and compare their distribution from the perspectives of clone types and

43

their locations. To gain further insights into the reasons behind code cloning and developers’
code cloning practices in deep learning systems, we randomly select six deep learning projects
and perform a manual analysis. We build a deep learning code clones taxonomy, where clones
are associated to their corresponding deep learning phase. We further study the relation
between bug-proneness and code clones in the context of deep learning systems. Finally, we
identify the phases of the development process of deep learning systems in which code cloning
is the most risky.

Our empirical study resulted in the following key findings :
— Cloning is frequent in deep learning code, we found that code clones occurrences in

deep learning code is higher than in traditional code. All three clone types (Type 1,
Type 2, and Type 3) are more prevalent in deep learning code than in traditional
systems.

— Fragments of code clones in deep learning systems are dispersed. We found that the
majority of code clones in deep learning code are located in different files. i.e, in the
same directory or in different directories.

— Code clones in deep learning code are likely to be more defect-prone compared to
non-cloned code and Type 3 clones are at higher risk of bugs compared to other clone
types.

— We classify code clones by deep learning phases and found that three main deep
learning phases are more prone to code cloning : model construction (36.08%), model
training (18.56%), and data preprocessing (18.56%).

— We found clones from the following phases to be the most risky. We display the
percentage of co-occurrence between bug-fix and code clones with respect to these DL
phases : model construction (50%), model training (20%), data collection (13.3%),
data preprocessing (10%), data post-processing (3.3%), and hyper parameter tuning
(3.3%).

Chapter Overview Section 5.2 presents the design of our empirical study. Section 5.3
describes our findings and discusses the results of each research question. Section 5.4 discusses
the implications of our findings. Threats to validity are presented in Section 5.5. Finally,
Section 5.6 concludes the chapter.

5.2 Study Design

In this section, we first present our research questions by highlighting the motivation and
research objectives. Then, we outline how we answered them by detailing the research me-
thodologies.

44

5.2.1 Study Objectives

In our empirical study, we first examine the distribution of code clones in deep learning code
in terms of clone type and clone location. Then, we compare them to the distribution of code
clones in traditional code. Second, we investigate the relationship between code clones and
bug-proneness in deep learning code. Third, we examine the reasons behind code duplication
in deep learning code and build a taxonomy of code clones occurring in different phases of
the development process of deep learning systems. Finally, we determine the riskiest phases
or activities of deep learning application development by analyzing the bug-proneness of
clones in each phase. To achieve these above-mentioned research objectives, we empirically
investigate the following five research questions :

RQ1 : Do code clones occur more frequently in deep learning code than traditional
source code ?

Code reuse by code cloning is a common practice in software development. Despite the intui-
tive productivity gain that one can expect from reusing code through code cloning, there are
evidences showing that clones can negatively impact software quality ; increasing complexity
and maintenance costs. Although code clones have been widely investigated for traditional
software systems [21], the impact of code cloning in deep learning systems is still unknown.
Moreover, given the widespread use of common open-source libraries and frameworks, the
use of code examples from crowd-source question-answering web sites (e.g., Stack Overflow)
and open-source repositories, and the repetitive use of similar development phases or tasks
(e.g., data preprocessing, model training) during deep learning system development, it is
reasonable to expect that code clones would exist in deep learning systems. Since we know
from the studies on traditional software systems, that the impacts of clones vary based on the
types and frequency of clone occurrences, it is therefore important to examine the frequency
and distribution of clones in deep learning systems. A comparative analysis of code cloning
in traditional and deep learning based systems could help leverage knowledge of clones in
traditional systems to improve the maintenance and management of clones in deep learning
systems.

RQ2 : How are code clones distributed in deep learning code in comparison to
traditional source code ?

Code clones location impacts the refactoring cost. Navigating into distant duplicated code
fragments adds comprehension overhead. Respectively, dispersed code clones can be hard to
manage and may incur an increased cost of maintenance. To understand where deep lear-
ning practitioners duplicate code, we study the distribution of code clones in deep learning
and traditional codes. We employ the taxonomy used by Kapser and Godfrey [38] to catego-

45

rize the detected code clones by their locations (i.e, same file, same directory, and different
directories).

RQ3 : Do cloned and non-cloned code suffer similarly from bug-proneness in deep
learning projects ?
Studies of code clones in traditional software systems suggest that clones can have an adverse
impact on the maintainability of the system ; increasing the risk of fault [14, 15]. However, it is
unclear if cloning in deep learning systems is equally risky. This research question investigates
the relationship between bug-proneness and code clones occurrences in deep learning code.
We examine the effect of different types of clones on the bug-proneness of deep learning code
and assesses the effort required to fix bugs in cloned and non-cloned code (by computing the
time to fix of each bug).

RQ4 : Why do deep learning developers clone code ?
Given the complexity in deep learning code, constructing an efficient DL model can be a
tedious job. DL developers should be experienced in the problem domains and should also
have a sufficient understanding of deep learning tricks. They also need to have coding skills
with deep learning frameworks as well as the ability to manage the computing resources.
When faced with a new task, to mitigate the risk of writing erroneous code, DL developers
often duplicate the code of an existing model with the same or similar logic with or wi-
thout modifications, depending on the requirements of their task. To understand activities
in the development of deep learning applications that are more prone to code duplication,
we conduct a manual analysis of code clone classes. We categorize clones based on the de-
velopment phases in which they occurred. This analysis allows us to identify activities (i.e.,
phases) in the deep learning development process were code cloning occurs frequently.

RQ5 : Where in the deep learning code is cloning the most risky ?
Since previous works on traditional systems [88] have shown that the risk of faults in cloned
code vary depending on the types of code that is cloned, we are interested in investigating
whether clones occurring at certain stages of the development process of deep learning sys-
tems and–or in certain functions of the deep learning code are more bug-prone than others.
Therefore, in this research question, we compare the risk of faults of clones found in the
different functions of the deep learning code.

5.2.2 Study Overview

In this section, we present our study design as shown in Figure 5.1. We can divide our
methodology into five main parts.

Fig 5.1-A We first clone 59 DL and 59 traditional repositories from GitHub, and the

46

detailed methodology is described in the Subsection 5.2.2.1. We then detect code clones
for both DL and traditional open-source projects using the NiCad clone detector
(details are presented in section 5.2.2.3). We finally compare the clone distribution
between both type of systems (i.e., DL and traditional systems) in terms of lines of
code and clone types.

Fig 5.1-B We analyze the distribution of code clone by applying the location taxonomy.
As shown in Fig 5.1-B, we have three locations where there might be code clones
classes : same file, same directory, and different directories (details are presented in
Section 5.2.2.4). An arrow towards a Balance as shown in the figure 5.1-B represents
the comparative analysis of the distribution of code clones between deep learning and
traditional systems in terms of localization.

Fig 5.1-C The third part involves studying the relationship between code clones oc-
currences and bug-proneness. We detect code clones for each commit of a set of six
deep learning repositories (discussed in Section 5.2.2.2). Then, we identify bug-fixing
commits relying on the commit history. Next, we extract bug-inducing commits by
applying the SZZ algorithm. Once we have bug-inducing commits with their corres-
ponding changed lines, we match these buggy lines with lines that are cloned to find
the relationship between bug and clones (details are shown in Section 5.2.2.6).

Fig 5.1-D We manually classify code clones that are DL-related to construct a taxonomy
of code clones in DL code (see Section 5.2.2.5).

Fig 5.1-E Finally, we examine the risk of bugs of code clones occurring in specific func-
tions of the DL code.

5.2.2.1 Subject Systems

We mined 112 open-source projects (59 deep learning + 59 traditional projects) from GitHub.
We used the same projects investigated in our first study (Chapter 4) on detecting code smells
in DL code. Our empirical study is based on this set of projects (Chapter 4) including only
projects where the main language is Python as it is the most widely used language in the
machine learning field [77]. Deep learning projects were selected by first searching repositories
using DL-related keywords (e.g., deep learning, deep neural network, convolutional neural
network) and manually filtering out tutorials and some projects with a low number of releases
(to obtain our 59 DL repositories). To obtain our dataset of traditional systems (i.e., non
deep-learning code), we used a benchmark from an existing study by Chen et al. [1] (similarly
to Chapter 4). This benchmark consists of 106 repositories with at least 1k stars each from
which randomly selected a subset of 59 traditional projects. We use the same set of 59
traditional projects, selected in Chapter 4, for the comparative analysis in this chapter.

47

Figure 5.1 Study Overview A- Detecting code clones Deep Learning and Traditional reposi-
tories, B- Applying Code Clone Location Taxonomy, C- Studying the relationship between
bug-proneness and code clones, D-Classifying code clones manually based on DL-related
functionalities, E-Exploring riskier DL-related code clones

5.2.2.2 Preprocessing of source code repositories

Selection of a Subset of Subject Systems : The majority of our research questions
(RQ1, RQ2, and RQ3) are based on the analysis of 59 traditional and 59 deep learning
systems. However, we randomly select 6 deep learning projects out of the 59 projects to
analyze the distribution and impacts of clones associated with different phases or activities
in deep learning system development by manual investigation (RQ4 and RQ5). We select a
subset of systems to keep the cost and effort of manual analysis in a feasible range. We use
this subset of systems to study the relationship between bug-proneness and code clones in
deep learning code because detection of code clones by NiCad can be very time-consuming
especially for the detection of clones at every commit as we did for RQ4 and RQ5. So, we
use the six selected systems to perform manual analysis for extracting the taxonomy of code
clones in deep learning code regarding development steps. Our selected systems are from
diverse application domains with varying (small to medium) size (SLOC) and lengths (in
number of commits) of evolution history.

48

Computing Source Code Lines : We use the SLOCCount [89] tool to compute the total
source lines of code (SLOC) of python code in each project. SLOCCount is a software metrics
open-source tool developed by David A. Wheeler supporting several programming languages.
It can handle awkward situations in many languages such as the use of string constants as
comments in Python code. Since one project could contain different programming languages,
SLOCCount results list the available languages in the system. In front of each language name,
we have a total SLOC. We select the total source lines of code number shown next to Python.
We execute the SLOCCount tool for both DL and traditional repositories. We also measure
the SLOC for each commit of each DL repository from the selected set of six deep learning
repositories for further analysis. We normalize the detected lines of code clones by the size
of the project (SLOC) to have a more accurate comparison of deep learning and traditional
systems regarding the frequency and distribution of clones. We divide the total lines of cloned
code for each project by the total lines of code of the corresponding project.

5.2.2.3 Code Clone Detection

For detecting code clones, we use the NiCad tool [90]. NiCad [91] can detect both exact
and near-miss clones with high precision and recall [92] with respect to blocks and functions
granularity.

NiCad Settings : Table 5.1 shows the setup for detecting the three types of clones. We
detect code clones with a minimum size of five lines of code. We detect both exact clones
(Type 1) and near-miss (Type 2 and Type 3) clones. We use the blind renaming option for
NiCad for the detection of Type 2 and Type 3 clones. Type 3 clones are detected with a
dissimilarity threshold of 30%.

Table 5.1 NiCad Settings

Clone Type Identifier Renaming Dissimilarity Threshold Size (LOC)
Type 1 none 0% [5-2500]
Type 2 blind 0% [5-2500]
Type 3 blind 30% [5-2500]

Clone Detection : We detect code clones for a particular snapshot and for each commit
of each repository. To perform a comparative analysis of the frequency and distribution of
clones in deep learning and traditional code, we detect three types of code clones (Type 1,
Type 2, and Type 3) in both deep learning and traditional code using the NiCad settings
detailed in Table 5.1. We detect clones on a particular snapshot, which in our case is the last

49

available version of the project on GitHub at the time of cloning the repository. For RQ1, we
use both granularities (function and block) to detect code clones. For the rest of the research
questions (RQ2-RQ5), we analyze code clones at function granularity. To study the relation
between the bug-proneness and code clones, we use the commit history to extract commits
information of each repository from the set of six deep learning repositories and detect code
clones for every commit of the repositories.

Results Cleaning : We exclude matching clone classes between Type 1 and Type 2 from
the outputs of Type 2 clone detection results. As NiCad results for Type 2 contain clone
classes from Type 1 since the set of Type 1 clones is a subset of the set of Type 2 clones.
Hence, we remove matching clone classes based on the clone fragment specifications (file path,
start and end line number, etc). Thus, if the same clone class (i.e., containing the same set of
clone fragments specifications) exists in both Type 1 and Type 2 clone detection results, we
remove such clone classes from Type 2 results as they are Type 1 clones. So, the filtered Type
2 results contain exclusively Type 2 clones without any Type 1 clone fragment in it. Similarly,
we exclude the matching Type 1 and Type 2 classes from Type 3 clone detection results to
have Type 3 clones exclusively. This is because Type 3 clone results by definition contain
Type 1 and Type 2 clone fragments which need to be removed to perform the clone-type
centric analysis correctly.

5.2.2.4 Location taxonomy based labeling of clones

To answer RQ2 that investigates the distribution of code clones in deep learning and tradi-
tional codes in terms of location, we apply the taxonomy used by Kapser and Godfrey [38].
It categorizes the detected clones based on their relative locations in the file system structure
for both types of projects. We label a clone class by ‘Same file’ when all the fragments in
the detected clone class are from the same file. We label a clone class by ‘Same directory’
when all the files associated with the detected clone class belong to the same directory. And
finally, we assign a clone class to the ‘Different directories’ label, when clone fragments
are from different files located in different directories.

We then calculate the proportion (percentage) of clones distributed over the location types
defined by the taxonomy. We perform Mann-Whitney statistical test to compare the dis-
tribution of code clones in DL and traditional systems. We further extend our comparative
analysis by considering individual clone types.

50

5.2.2.5 Labeling clones based on the taxonomy of deep learning tasks

Since there are common functionalities followed to build deep learning models and because
of the use of the same deep learning libraries, deep learning practitioners often copy-paste
ready to use functionalities with or without modification. This aims to gain productivity and
to reduce the risk of writing erroneous new code when tested implementations are available.
We expect code duplication not only in the code related to core functionalities of the deep
learning phases but also in code related to model testing.

Therefore, we categorize different types of cloning practices by DL phases and label them via
a manual inspection of the code clones found in the selected six DL repositories. We found 577
clone fragments in these six deep learning repositories. We manually analyzed each of these
clone fragments. We used a bottom-up approach, where we first assigned each clone fragment
with a label corresponding to the DL tasks or functionality to which it is related. We further
grouped the clone fragments in each subcategory and mapped them to the different phases of
the development process of deep learning models, as discussed in Chapter 2. We ensure that
the relation between a subcategory and a category is : “to perform". For example, initialize
weights to perform a model construction. Here, the sub-category is ‘initializing weights’ and
category is ‘model construction’. We also categorize and label functions that are not related to
deep learning such as logging, test, etc, as ’others’ . The manual classification for generating
this DL taxonomy was done by multiple persons, all with academic and industry backgrounds.
The resulting taxonomy was then cross-validated, and disagreements were resolved by group
discussion.

Table 5.2 presents some real-world examples from the detected clones. In case of exact (Type
1) clones, we show only one code fragment from the clone class since all the fragments are
identical except for formatting differences. For near-miss clones we show both fragments in
a clone pair. In Table 5.2, we present the clone types of the example fragments, and the sub-
category and category of DL-related phases to witch the clone class or fragments belongs.
Our objective is to first assign a sub-category (DL sub-task) for each clone class and then
group them into top-level categories (DL phases).

The first example in Table 5.2 represents a Type 1 clone fragment. Here, the function
iou(box1, box2) computes Intersection Over Union (IOU) between the predicted box and
any ground truth box. It is a metric that computes the accuracy of YOLO (You Only
Look Once) [93], a real-time object detection system based on Convolutional Neural Net-
work (CNN). Therefore, we designate this clone class to the sub-category ‘Measure model
accuracy’. As this computation function is performed to train the model, we label it as the
‘Model training’ category.

51

The second example contains two fragments of Type 3 clones. The purpose of the first function
(read_images_from_file) is to read multiple images from the given file. Whereas the second
function (read_images_from_url) reads input images from a given URL. Thus, the function
of this clone class is to load data. Since load data is performed to collect data, we assign this
clones class to the ‘Data collection’ phase of deep learning.

The last example in Table 5.2 is a Type 1 clone fragment. This code fragment (pro-
cess_inceptionv3_input) prepares a given image for the model input requirements. In this
case, the model is Inception v3 [94], which is a Deep Convolutional Neural Network (CNN)
with 48 layers. We assign this clone class to the ‘Resize image’ sub-category and we label it
as belonging to the ‘Data preprocessing’ category.

5.2.2.6 Code Clone and Bugs

Several studies have been focused on investigating the relationship between clones and bug-
proneness. Some studies based on traditional software systems have shown that code clones
may introduce bugs and negatively impact software maintainability. Therefore, it is important
to study whether and to what extent this relationship holds in the context of deep learning
systems.

Detecting bug fixing commits : We extract all the commits information from each of the
six selected repositories. We leverage a keyword-based approach to classify commits relying
on keywords occurrence such as ‘bug’, ‘fix’, ‘solve’, ‘problem’ in the commit messages. We
use the set of keywords used by Rosen et al. [83]. At least one of the keywords from this set
should be in the commit message to consider this commit as a bug-fixing commit.

Bug Inducing commits : We use PyDriller [95] to extract bug-inducing commits for each
bug-fix commit. PyDriller is a python-based framework that supports mining information
from Git repositories. We used PyDriller to extract information such as commits and diffs
from each of the selected repositories. We mainly use this framework to get bug-inducing
commits given a bug-fix commit. It returns the set of commits that last modified the lines
that are changed in the files included in the bug-fix commit by applying the SZZ algorithm.

Bug Proneness of code clone : We define a bug to be related to code clone if the lines
changed in bug-fix commits intersect with lines in between the start line and end line of the
detected code clones. We further analyze to identify riskier DL-related functionalities that
are likely to introduce bugs. Hence, we similarly match lines changed in bug-fix commits
with the corresponding lines of the cloned DL-related functions. We then extract the most
frequently occurring cloned DL-related functions related to bugs in DL projects. Therefore,

52

Table 5.2 Categorization of Clone codes examples

Code Fragment Clone Type Sub-category Category
def iou(box1, box2):

tb = (min(box1[0] + 0.5 * box1[2],
box2[0] + 0.5 * box2[2]) -
max(box1[0] - 0.5 * box1[2],
box2[0] - 0.5 * box2[2]))
lr = (min(box1[1] + 0.5 * box1[3],
box2[1] + 0.5 * box2[3]) -
max(box1[1] - 0.5 * box1[3],
box2[1] - 0.5 * box2[3]))
if tb < 0 or lr < 0:

intersection = 0
else:

intersection = tb*lr
return intersection / (box1[2]
* box1[3] + box2[2] * box2[3]
- intersection)

Type 1
Measure
model
accuracy

Model training

def read_images_from_file(filename,
rows, cols, num_images, depth=1):

"""Reads multiple images
from a single file."""
...
_check_describes_image_geometry
(rows, cols, depth)
with open(filename, 'rb')
as bytestream:

return images_from_bytestream
(bytestream, rows, cols,
num_images, depth)

Type 3 Load data Data collection

def read_images_from_url(url,
rows, cols, num_images, depth=1):

"""Reads multiple images
from a single URL."""
...
_check_describes_image_geometry
(rows,cols, depth)
with urllib.request.urlopen(url)
as bytestream:

return images_from_bytestream
(bytestream, rows, cols,
num_images, depth)

def process_inceptionv3_input(img):
image_size = 299
mean = 128
std = 1.0/128
dx, dy, dz = img.shape
delta = float(abs(dy - dx))
if dx > dy: #crop the x dimension

img = img[int(0.5*delta):dx
-int(0.5*delta), 0:dy]

else:
img = img[0:dx,
int(0.5*delta):dy
-int(0.5*delta)]

img = cv2.resize(img,
(image_size, image_size))
img = cv2.cvtColor(img,
cv2.COLOR_BGR2RGB)
for i in range(3):

img[:, :, i] = (img[:, :, i]
- mean) * std

return img

Type 1 Resize image Data
preprocessing

53

we obtain which functions of DL code are more likely to introduce bugs than others when
cloned.

Time to fix bugs when it is related to code clones : We investigate whether or not
clones have impacts on the time required to fix a bug. The objective is to know whether
clones hinder bug fixing ; making bugs long-lived in the deep learning systems. We thus
study the comparative time it takes to fix bugs when it is related and not related to clones
respectively. Thus, we compute the difference in time between bug fixing commit and their
related bug inducing commit as introduced by Kim and Whitehead [85]. Therefore, we extract
from the commit history the time of each bug-introducing commit as well as the time of their
corresponding bug-fix commit. We calculate the bug-fix time by taking the difference between
bug-fix commit and bug inducing commit. Once we have the time difference (in seconds) we
carry out a non-parametric Man-Whitney test to compare if there is any significant difference
in the time required to fix bugs related and not related to clones.

5.3 Study Findings and Discussions

In this section, we present the results of our study in details, and answer our five research
questions as follows.

5.3.1 RQ1 : Do code clones occur more frequently in deep learning code than
traditional source code ?

Due to the complexity, the lack of explainability of deep learning code, and the excessive use
of ready to use routines from popular deep learning frameworks and libraries, deep learning
code is likely to have duplicated code fragments i.e., code clones. Although many studies
investigated the distribution, evolution, and impacts of clones regarding traditional software,
none of the existing studies, has investigated the code cloning practices in deep learning code.
Thus, in this research question, we study the distribution of different types of code clones
in both deep learning and traditional systems, to understand and compare the prevalence
of clones in these two types of software systems (i.e., deep learning and traditional software
software systems).

To answer this research question, we detect code clones in 59 deep learning systems and 59
traditional software systems. We calculate the number of occurrences of code clones across
different dimensions (e.g., project type, clone type, clone granularity). Then we compare
the density of clones in DL-based systems with that of the traditional systems. First, we
calculate the total number of lines of code clones in each project and then divide that by
the total number of source code lines (i.e., SLOC) for normalized representation of the clone

54

density. We count SLOC using the tool SLOCCount as discussed in section 5.2.2.2. We then
perform the Mann-Whitney Wilcoxon (MWW) test [96] to compare the distribution of clones
in deep learning and traditional systems by testing if there exists any statistically significant
differences in clone densities in these two types of systems. To have deeper insights, we also
compare the clone densities with respect to the three clone types (Type 1, Type 2, and Type
3). However, MWW test only verifies whether the difference between two set of observations is
by chance and does not express the effect or magnitude of the differences. Thus, we calculate
the effect size to determine the magnitude of the differences between each two distributions.
We measure Cliff’s Delta [97], which is a non-parametric estimate of effect size and does not
require data to be normally distributed. When Cliff’s Delta is beyond of 0.2 and below 0.5,
then the effect size is low. When it is beyond 0.5 and below 0.8, the effect size is medium.
Beyond 0.8, the effect size is large. In this research question, we present the findings for both
clone granularities : function and block.

Figure 5.2 Code clones occurrences in DL and traditional projects for both code clones
granularities : (a) Function, (b) Block. LOCC : Lines Of Code Clones, SLOC : Source
Lines Of Code

Clone Occurrences by Project Type : Fig. 5.2 shows the comparison of clone occur-
rences between DL-based and traditional systems considering all clone types and for both
function and block granularity. The box plots represent clone density defined by the nor-
malized lines of code clones per lines of source code for both deep learning and traditional
software systems. This metric computes the density of clones as a ratio of the total lines of
cloned code and the total lines of source code in the corresponding systems. In Fig. 5.2, we
observe that the median of the clone density for deep learning systems is comparatively higher
than that of traditional systems. We observe the similar differences for both function and

55

block granularity. This suggests that deep learning systems tend to have higher proportions
of cloned code compared to traditional systems.

To investigate whether the observed differences that DL systems having higher density of
clones compared to traditional systems are statistically significant i.e, that the difference is not
by chance, we perform Mann-Whitney Wilcoxon (MWW) tests [96] (two-tailed, significance
at < 0.05). We chose the MWW test because it is a non-parametric test and thus does not
assume data to be normally distributed. Also, it can be applied on small sample sizes. We
present our statistical test results in Table 5.3. The column ‘Total’ in Table 5.3 shows the
p-values for MWW test for all clone types. The p-values for function and block granularity
are 1.78e-07 and 3.01e-10 respectively which are < 0.05 indicating that our observation of
DL systems having higher density of clones compared to traditional systems is statistically
significant.

Now to observe the magnitude of the differences in clone density of DL and traditional
systems, we analyze Cliff’s delta effect sizes. As shown in Table 5.3, the effect size in column
‘Total’ (which includes all clone types) for function granularity belongs to the large category
as it is equal to 0.8. Thus, we have an 80% chance that deep learning code will have higher
density of function clones than traditional code. Whereas for block granularity, we have an
equal likelihood (0.53 ∼ 0.5) of having higher density of block clones in deep learning code
in comparison to traditional code. So, when we consider all clone types, the observed higher
clone density in deep learning systems in comparison to traditional systems is statistically
significant with medium to large effect size. We therefore concludes that deep learning systems
tend to have higher proportions of cloned code compared to traditional systems. However,
this may depend on confounding factors, i.e, using the same libraries/frameworks, having the
same decision logic across deep learning models construction, as explained by the difference
in effect size for function (high) and block (medium) granularity, despite the differences in
clone density being statistically significant for both granularities.

Table 5.3 Mann-Whitney test and Cliff’s Delta Results between DL and Traditional Projects

Clone Types Type 1 Type 2 Type 3 Total
Granularity Function Block Function Block Function Block Function Block
p-value 3.13e-06 7.61e-08 3.38e-05 4.17e-06 1.77e-03 2.87e-04 1.78e-07 3.01e-10
Cliff’s Delta 0.58 0.62 0.46 0.60 0.32 0.37 0.8 0.53

Code Clone occurrences by Clone Type : In Fig. 5.3, we compare clone densities for
deep learning and traditional systems regarding individual clone types (Type 1, Type 2, and
Type 3) for both function and block granularity. To calculate clone density for individual clone

56

Figure 5.3 Code Clones Occurrences by Project Type and by Clone Type and by Granularity
LOCC : Lines Of Code Clones

types, we divide the total lines of cloned code for a particular clone type by the total number
of source code lines in a given systems. We calculate clone density for both function and
block granularity. We use a log scale for the y-axis to make the results more clear. As shown
in Fig. 5.3, for deep learning systems, the density of Type 3 clones is the highest followed by
Type 2 and Type 1 clones respectively. We observe the same trends in comparative densities
for all types of clones in traditional systems, and for both function and block granularity
in both types of systems. Now, when we compare the clone densities in deep learning and
traditional systems based on the box-plots in Fig. 5.3, we observe that for all types of clones,
deep learning systems have higher median for clone densities compared to that of traditional
systems. The same overall trend holds for both function and block granularity. This suggests
that deep learning systems tend to have higher density of cloned code compared to traditional
systems regarding all three clone types.

To verify whether these differences of deep learning systems having higher densities of clones
compared to traditional systems are statistically significant, we perform MWW tests (two-
tailed, significance at 0.05) on the corresponding clone densities for all individual clone types,
for both function and block granularity. We also compute the Cliff’s delta effect size to
determine the magnitude of the differences in clone densities for DL and traditional systems.
Table 5.3 shows the p-values of the MWW tests along with the values for the corresponding
effect size. We observe that there is a statistically significant difference between deep learning
code and traditional code with respect to Type 1 with p-values of 3.13e-06 and 7.61e-08,
which are < 0.05 for both function and block granularities, respectively. The values of Cliff’s
Delta are 0.58 and 0.62 which belong to the ‘medium’ category. We also found a statistically
significant difference for Type 2 clones (p-values of 3.38e-05, 4.17e-06). The values of effect size

57

for Type 2 for both function and block granularities are medium with values of 0.46 and 0.60.
Similarly, we also obtained a statistically significant difference between deep learning code
and traditional code regarding Type 3 clones. The effect size for Type 3 clones is small with
values of 0.32 for function granularity and 0.37 for the block granularity. Overall, the results
of our clone-type based analysis show that Type 3 clones comprise the highest proportion
of clones in deep learning code. Moreover, for all clone types, deep learning code has higher
density of clones than traditional systems, and these differences are statistically significant.
This indicates an over all trend of deep learning systems having more clones than traditional
systems, although the magnitude of the differences may not always be ‘large’.

These results support our hypothesis about the existence of a higher proportion of code
clones in deep learning code compared to traditional systems. The observed prevalence of
code clones in deep learning systems underscores the importance of investigating the reasons
for such cloning practices and their impacts on the quality of deep learning systems, which
we do in the remaining research questions.

Summary of findings (RQ1) : As shown by our experimental results, the density of
code clones in deep learning systems tend to be higher than that of traditional systems,
and the difference is statistically significant. Regarding clone types, all three clone types
(Type 1, Type 2, and Type 3) are more prevalent in deep learning-based systems than in
traditional software systems.

5.3.2 RQ2 : How are code clones distributed in deep learning code in comparison
to traditional source code ?

As we observed in RQ1, the density of code clones in deep learning code is higher compared
to traditional systems. We aim to further explore the distribution of code clones in terms
of their locations. Since, distant code clones may hinder the maintenance process by adding
navigation and code comprehension overhead, it is of interest to study how the code clones
are distributed in the deep learning system in terms of their locations.

We categorize the detected code clones classes by their location based on the taxonomy
proposed by Kapser and Godfrey [38]. If a clone class contains code fragments that are all
from the same file, we label them as belonging to the ‘Same File’ category. When the clone
fragments are from the same directory but from different files, we assign them to the ‘Same
directory’ category. Else, if the clone fragments of a clone class are from files from different
directories, we categorize them as belonging to the ‘Different directories’ category (further
details about this classification are provided in section 5.2.2.4). We then count the percentage
of lines of code clones of different location categories for deep learning and traditional systems

58

for comparison. We also perform the same analysis for individual types of clones (Type 1,
Type 2, and Type 3) to have insights on their comparative location-based distributions in DL
and traditional systems. The analysis based on the percentages of the lines of code clones,
shows the distribution of clones from a relative volumetric point of view. However, how the
clone fragments in the clone classes are disperse in the system is likely to have impacts on
their maintenance. So, we also analyze the location-based distribution of the percentages of
clone fragments for different types of clones. In addition, we manually investigate samples of
cloned fragments from each location category to gain insights about the characteristics of the
clones and better understand the intents and potential impacts of the proximity of clones (in
the code base) and their relative distribution, on software quality.

Figure 5.4 Code Clones Distribution by Location in DL and Traditional code regarding
percentage of lines of code clones (LOCC). i.e, (LOCC/total LOCC)x 100

Overall location-based distribution of clones : Fig. 5.4 shows the distribution of code
clones (for the function granularity) in DL and traditional source code, regarding the locations
of the clones. Based on the median values of the percentages of cloned lines of code for each
location type in deep learning systems, we observe the following location-based distribution
of clones : the percentages of cloned lines of code in ‘same file’ are higher than that in ‘same
directory’ which in turn are higher than the percentages of cloned lines of code in ‘different
directories’. In traditional systems, we observe a location-based distribution similar to that
of DL systems with the highest percentage of cloned lines being in the ‘same file’ followed
by the ‘same directory’ category and finally the ’different directories’ category. With the
distributions of ‘same directory’ and ‘different directories’ categories overlapping significantly.

59

Table 5.4 Mann-Whitney test and Cliff’s Delta results regarding the distributions of clones
in DL and Traditional (Trad) Projects.
Clone Type ALL Type 1 Type 2 Type 3
Proj Type DL Trad DL Trad DL Trad DL Trad
Location p CD p CD p CD p CD p CD p CD p CD p CD
SF - SD 2.911e-04 0.4 8.34e-13 0.83 1.94e-3 0.41 0.16 0.15 7.64e-09 0.76 3.4e-10 0.86 6.98e-4 0.36 1.42e-12 0.83
SF - DD 2.9e-10 0.7 2.05e-11 0.81 0.018 0.32 0.01 0.42 5.98e-08 0.77 2.82e-10 0.91 3.66e-10 0.7 1.59e-10 0.77
SD - DD 4.79e-05 0.46 0.15 0.13 0.03 0.28 0.02 0.35 0.09 0.21 6.36e-03 0.41 2.57e-05 0.48 0.29 0.07

SF : Same File, SD : Same Directory, DD : Different Directories, P : p-value, CD : Cliff’s Delta

Figure 5.5 Percentages of Lines of Code Clones by Location of Clones in both Deep
Learning and Traditional Systems

Table 5.4 shows the p-values from the Mann-Whitney test and Cliff’s delta values of different
code clones location between the same type of systems (DL and traditional code) with respect
to the relation between code clones locations and clone types. ALL in the Table 5.4 designates
the unfiltered Type 3 (i.e, include all fragments from Type 1, Type 2, and Type 3). We found
a statistically significant difference between the ‘same file’ category and both the ‘same
directory’ and the ‘different directories’ categories in the DL code with p-values equal to
2.91e-04 and 2.9e-10 (which are < 0.05) respectively and with medium effect size of 0.4
and 0.7, respectively. Thus, in DL systems, a significantly higher percentages of the cloned
code resides in ‘same file’ compared to the percentages of cloned code that resides in the
‘same directory’ and in ‘different directories’. Similarly, the percentages of cloned lines in
the ‘same directory’ is significantly higher compared to the percentage of clones contained
in ‘different directories’ with p-value equals to 4.79e-05 (< 0.05) and with a medium effect
size. For traditional code, we observe that a statistically higher percentage of cloned lines of
code is located in the ‘same file’ compared to the percentage of clones that are located in the
‘same directory’ and in ‘different directories’, with p-values < 0.05 (8.34e-13 and 2.05e-11
respectively) and with large effect sizes (0.83 and 0.81 respectively). We found no significant
difference between the percentage of clones contained in the ‘same directory’ category and

60

the ’different directories’ category, for traditional code.

For further insights, we analyzed the average percentages of lines of cloned code by their
locations in deep learning and traditional code. As shown in Figure 5.5, we identify that 45.8%
of the DL-related clones are in the ‘same file’, 33% are in the ‘same directory’ and 21.2%
are in ‘different directories’. Hence, DL clones are more dispersed having fewer percentages
of clones in the same file and more than 54% (33% + 21.2%) in different files and directories.
Code clones in traditional code, on the other hand, are more localized. More than the half
of the code clones in non-DL code (55.22%) are in the same file, 23.54% are in the same
directory and 21.24% are in different directories. Therefore, according to our results, code
clones in deep learning code are more dispersed than code clones in non-DL systems. This
dispersion in the deep learning code may harm the maintenance of duplicated code due to
potential navigation and comprehension overhead.

Location-based distribution of different types of clones : We analyze the location-
based distribution of different types of clones as follows :

Type 1 : As shown in Fig. 5.6-A, the median of the distribution of the percentage of Type 1
cloned lines in ‘same file’ in DL code is the lowest compared to the percentages of cloned lines
in ‘same directory’ and in ‘different directory’. This shows that Type 1 clones in DL code are
dispersed in different files and directories. However, for traditional systems, we observe that
majority of the Type 1 clones are in ‘same file’ compared to ‘same directory’ and ‘different
directories’. This suggests that Type 1 clones in traditional systems reside in closer proximity
unlike the Type 1 clones in DL systems.

To investigate whether the observed differences are statistically significant, we perform MWW
tests (two-tailed, significance at 0.05) and measure Cliff’s delta effect size. In table 5.4, we
highlight in bold the statistically significant differences for the distributions of cloned lines
in different clone locations for both DL and traditional code with respect to clone types
where p-values are < 0.05. Fig. 5.6 represents these differences by showing the distribution of
percentages of lines of code clones for each clone type and for both types of systems. Type 1
clones in deep learning code is less localized with a statistically significant difference between
the same file location category and the others categories and with a small effect size. Whereas
Type 1 clones in non-DL code shows a statistically significant difference only between the
‘different directories’ location and the others locations with lower distribution of lines of code
clones in comparison to the distribution of line of code clones in other locations (Same file
(SF), and Same Directory (SD)).

The analysis of exact clones (Type 1) in the same directory could shed lights on some of the

61

implementation practices of deep learning developers. For example, the occurrence of exact
functions in the same directory may suggest that when DL developers have a working code
that builds a model properly, they are inclined to copy-paste this same code in another file
in the same directory to construct a similar model to try another configuration. Building
models may have the same common functions like computing accuracy or implementing the
activation function. These functions could be exact for each model, which may explain the
high occurrence of Type 1 clones in the same directory in deep learning projects, compared
to traditional projects.

Figure 5.6 Clone type by clone location in DL and Traditional Code

Type 2 : As shown in Figure 5.6-B, the distribution of the percentage of the lines of Type 2
cloned code in ‘same file’ in DL code is higher compared to the distributions of type 2 clones
in ‘same directory’ and ‘different directories’ categories. This implies that Type 2 clones in
DL code reside in closer proximity. For traditional systems, we see a similar distribution of the
percentage of Type 2 cloned lines in different locations category. However, the percentages of
Type 2 clones in ‘different directories’ in DL code tend to be slightly higher compared to the
same distribution (i.e., percentages of Type 2 clones in ‘different directories’) in traditional

62

Figure 5.7 Distribution of percentage of number of fragments of code clones classes per clone
location.

code.

We found a statistically significant difference between the percentages of cloned lines in ‘same
file’ and in both ‘same directory’ and ‘different directories’ categories for Type 2 clones in
DL code with p-values equal to 7.64e-09 and 5.98e-08, respectively (Table 5.4). The values of
effect size of these differences are large between ‘same file’ and ‘same directory’ and ‘same file’
and ‘different directories’ (0.76 and 0.77, respectively). Hence, Type 2 clones are less dispersed
in deep learning code than other types of clones. We notice a similar level of dispersion for
Type 2 clones in non-DL code (as shown in Fig. 5.6-B).

Type 3 : As shown in Fig. 5.6-C, Type 3 clones are less dispersed compared to Type 1 clones
but comparatively more dispersed than Type 2 clones in deep learning code. We present the
results of the MWW tests in Table 5.4 where the values p-values are < 0.05 for deep learning
code. The percentage of Type 3 clones located in the same file is the highest, in comparison to
the percentages of Type 3 clones located in the ‘same directory’ and ‘different directories’. In

63

Figure 5.8 Distribution of percentage of number of fragments of code clones classes per clone
location.

non-DL code, Type 3 clones are also located in the ‘same file’ in high numbers. For traditional
code, we found a higher percentage of lines of code clones located in the ‘same file’ compared
to the ‘same directory’ and ‘different directories’ categories. However, the difference is not
statistically significant between the ‘same directory’ and ‘different directories’ categories, in
traditional code as shown in Table 5.4.

From this analysis of the distribution of clones across the different files and repositories of
the studied projects, we can conclude that clones in deep learning code is more dispersed
compared to clones in traditional code. Type 1 and Type 3 clones have relatively higher trends
of being dispersed while type 2 clones tend to be more localized (in the same file). However,
the percentages of lines of code may not always fully reflect their relative impacts on the
systems. For example, a higher number of small sized cloned fragments scattered in distant
locations may pose higher challenges in change propagation than a small number of larger
cloned fragments located not too far apart. Therefore, we further analyze the distribution of
the number of cloned fragments in different location categories.

Location-based distribution of clone fragments : Figure 5.7 shows the percentages
of number of fragments ((number of clone fragments in a location category/total number of
clone fragments)x100) for each location category. We observe that the proportion of clone
fragments tend to be higher in the ‘same file’ location category. We found a statistically
significant difference between the distribution of the proportion of clone fragments located
in the same file and in both ‘same directory’ and ‘different directories’ with p-values equal to
4.46e-05 and 1.94e-07 respectively with values of effect size of 0.44 (small) and 0.57 (medium),

64

respectively in deep learning code.

As shown in Fig. 5.7, the mean value of the percentages of code fragments that belong to the
same directory category in deep learning code is 32.04% with a standard deviation (STD) of
18.48. The number of fragments influences the degree to which the identified code clones from
the same directory are difficult to maintain, the higher the number of fragments, the more
troublesome their maintenance is likely to be. Hence, DL code may become more problematic
with the spread of many duplicated code fragments that tend to be exact (Fig. 5.8-A) and in
different files, but in the same directory. We observe that the distributions of the percentages
of clone fragments of different clone types in different locations (Fig. 5.8) is similar to the
distributions of the percentages of lines of cloned code (Fig. 5.6).

Figure 5.9 Percentages of average number of fragments of Code Clones by Location of
Clones in both Deep Learning and Traditional Systems

For further insights, we analyze the average percentages of the number of clones fragments
in each clone class by their locations in deep learning and traditional code. As shown in
Figure 5.9, we identify that an average distribution of the number of fragments in each clone
class is of 49.7% when clones are DL-related clones and are in the ‘same file’, 33.1% are in
the ‘same directory’ and 20.2% are in ‘different directories’. Hence, based on the distribution
of clone fragments, DL clones are roughly equally distributed in same file (49.7%) and in
different files and directories (33.1%+20.2%). However, fragments of clones in deep learning
code are relatively more dispersed compared to fragments of clones in traditional system as
traditional systems have higher percentage of clones fragments in ‘same file’ compared to
deep learning code as shown in Fig. 5.9. This dispersion in the deep learning code may have
negative consequences on maintenance.

Qualitative analysis of the clones in different locations category : We manually
examined the clones contains in the different locations categories and observed that :

65

Same file : DL practitioners often duplicate functions in the same file when configuring
different models. We found cloned functions in the same file with names representing the
name of the model with slight modification in initializing (hyper)parameters of each model
as shown in Table 5.5. This type of code clones located in close proximity may be relatively
less problematic. This is mainly due to the ease of navigation between code clones during
maintenance as their locations are not too distant from each other. Consequently, they may
be less prone to inconsistent updates, which is a key reason behind the introduction of faults
in cloned code. Duplicating code in close proximity is widely used to simplify the conception
of the system [38] by renaming functions to facilitate code reuse and to make the cloned
functions’ name more related to its purpose, which improves program comprehension. These
type of cloned functions with structural similarity but with identifier naming and data type
differences are Type 2 clones. The trends of such clones to be in closer proximity is also
reflected in our results from Fig. 5.6-B.

Table 5.5 Clone codes example where the location is in the same file (the differences are
highlighted in gray)

def mobile_imagenet_config():
return tf.contrib.training.HParams(

stem_multiplier=1.0,
dense_dropout_keep_prob=0.5,
num_cells=12,
filter_scaling_rate=2.0,
drop_path_keep_prob=1.0,
num_conv_filters=44,
use_aux_head=1,
num_reduction_layers=2,
data_format='NHWC',
skip_reduction_layer_input=0,
total_training_steps=250000,
use_bounded_activation=False,

)

def large_imagenet_config():
return tf.contrib.training.HParams(

stem_multiplier=3.0,
dense_dropout_keep_prob=0.5,
num_cells=18,
filter_scaling_rate=2.0,
num_conv_filters=168,
drop_path_keep_prob=0.7,
use_aux_head=1,
num_reduction_layers=2,
data_format='NHWC',
skip_reduction_layer_input=1,
total_training_steps=250000,
use_bounded_activation=False,

)

Table 5.5 represents an example of a cloned code where their location is in the same file. We
manually analyzed 40 code clones classes that are in the same file from the deep learning
code, we found 27 of them to be similar functions with a common purpose. These functions
were cloned to perform the same or closely similar tasks (to build the model with some
modifications). The modifications were achieved by renaming functions (giving them names
that are more meaningful and relevant to the task context) and parameterizing the code with
different values that are specific to each model. As shown in Table 5.5, we have two functions
that parameterize two different models. This is performed by calling a library routine capable
of setting the hyperparameters of the model. It is configured as key-value pairs to build the
model. Each function is renamed to be relevant to the model and we see slight differences
between the values of each hyperparameter. An important number of this type of duplication

66

is cloning similar functions with different names and parameter types, leading to Type 2
clones. This type of code duplication may explain the high percentage of Type 2 clones that
are found to reside in the same file (Fig. 5.6-B). Our findings also confirms the results of
previous work [38].

Same directory : Regarding the second category where clones exist in different files but in
the same directory, it is common to find duplicated functions without or with minor changes
[38]. In our case and as shown in Figure 5.6-A, for deep learning code, Type 1 clones are the
type of clones that are frequently located in the same directory but in different files. From
85 code clones classes examined manually, we found in 49 code clones classes (57%) a file
named utility containing useful functions needed to perform the construction of deep learning
models. This suggests that DL developers either refactor their code without deleting the old
functions, or that different developers working on the same project are not conscious about
the existence of such files.

Different directories : Regarding clones located in different directories, we manually ana-
lyzed 102 code clones fragments that were located in different directories and found that 63%
of them are not related to deep learning code. We often detect this type of duplication when
it comes to verifying libraries’ versions to choose the right routine call, deallocate memory,
or getting model metadata (logging).

Summary of findings (RQ2) : According to our results, code clones in deep learning
code are more dispersed than in traditional code. Regarding clone types, Type 1 clones are
more dispersed in DL systems while Type 2 clones tend to be localized in the same file. Type
3 clones are spread in different locations but with a high percentage of lines of code clones
residing in the same file. Regarding the distribution of the number of clone fragments, clones
in deep learning code tend be more dispersed compared to clones in traditional software
systems.

5.3.3 RQ3 : Do cloned and non-cloned code suffer similarly from bug-proneness
in deep learning projects ?

Since deep learning systems are relatively fast to develop and deploy, code quality is often
overlooked and it is frequently the case that the code is re-used and rarely refactored [49].
Several previous studies in traditional code highlighted the negative impacts of code clones
on the maintenance and comprehension of code. Barbour et al. [88] found clones to be related
to a high risk of bugs. Given the complexity of deep learning systems, it is likely that clones
can have a similar averse effect on maintenance and bug-proneness. Hence, in this work, we
analyze the bug-proneness of clones in deep learning code from two perspectives : (1) we

67

examine correlations between clones occurrences in deep learning code and bugs occurrences,
and (2) examine whether clones affect the time required to fix bugs in deep learning systems.
We perform these investigations first on all clones and then for individual clone types (Type
1, Type 2, Type 3). We analyze all the commit history to identify all buggy commits (details
are presented in Section 5.2.2.6). In order to determine the co-existence between bugs and
code clones in deep learning code, we match code changes in bug-fixing commits with code
clones by finding the intersection between the lines changed to fix bugs and the cloned lines
of code.

We consider that a bug fix commit is related to code clones when the buggy lines belong
to any duplicated code, otherwise it is considered as related to non-cloned code. Then we
calculate the percentage of bug-fix commits related to cloned and non-cloned code for each
system. Finally, we compute the average percentage of bug-fix commits related to cloned
and non-cloned code, to comparatively evaluate their bug-proneness in the context of deep
learning code.

Our results show that 75.85% of bug-fix commits in DL systems are related to clones, i.e., in
other words, more than three-quarters of the bugs in deep learning code are related to clones.
We perform MWW tests for the distributions of code clones and non-clone code in the bug-
fix commits. We found a statistically significant difference between the distribution of the
number of commits that fix bugs on cloned lines and the distribution of bug-fix commits on
non-cloned code, with a p-value equals to 0.026 and an effect size of 0.55 (medium). Thus, the
bug-proneness of cloned code in deep learning code is higher compared to that of non-clone
code.

Now, we further investigate the bug-proneness of different types of clones in DL code to
gain deeper insights on the types of clones that are likely to be more risky (in terms of
bug occurrence). This information would help deep learning developers to carefully prioritize
clones for refactoring and tracking. Figure 5.10 shows the percentages of clones from different
types (Type 1, Type 2, and Type 3) that are related to bugs. We find that Type 3 clones
are the most likely to be related to bugs as 74.77% of clone related bugs are Type 3 clones.
In second position we have Type 2 clones with a percentage of 19.48%, and finally Type 1
clones with a percentage of 5.75%. These results obtained on deep learning code are similar
to the findings of previous works comparing the bug-proneness of Type 1, Type 2, and Type
3 clones in traditional software systems [98].

Since Type 3 clones are higher in density (Fig. 5.3) and prevalent according to the distribution
of the percentages of lines of code in different types of clones, they are possibly being asso-
ciated with higher percentages of bugs too. Thus, we investigate further their bug-proneness

68

Figure 5.10 Buggy code clones occurrences by clone type

by studying the percentage of clone fragments in each clone types (Type 1, Type 2, Type 3)
that are related to bugs. As shown in Figure 5.11, we find that 1.71% of clone fragments are
buggy in Type 1 clones, 2.26% of clone fragments are buggy in Type 2 clones and 2.11% of
clone fragments are buggy in Type 3 clones. This shows that a higher percentage of Type
2 clone fragments are related to bugs, followed by Type 3 clones and then Type 1 clones.
However, there are more Type 3 clones in the deep learning code (Fig. 5.3) compared to Type
1 and Type 2 clones. This explains the observation that Type 3 clones contains the highest
fractions of clone related bugs (Fig. 5.10) despite the percentages of buggy clone fragments
in Type 3 not being higher than that of Type 2 clones.

Now, to study how clones in deep learning code affect the time to fix bugs in deep learning
code. We investigate whether the time required to fix bugs when the bug is related to code
clones is more expensive than when it is not related to clones. Thus, we calculated the time
between bug-fixing commit and the corresponding bug-inducing commit. Then, we compare
the average time spent to fix bugs when bugs are related to clones (bug-fix lines intersect
with code clones) and when the bug is not related to a clone.

Figure 5.12 shows the distribution of the average times to fix bugs when the bug is located
in a clone and when it is not. Comparing the median between the two distributions of time,
we can see on Figure 5.12 that the time required to fix bugs when there is cloned code is
slightly higher than the time required to fix a bug when the bug is not related to a code
clone. The mean value of the average time to fix bugs in clones in DL code is 1.16e+07

69

Figure 5.11 Percentages of buggy code fragments by clone type

seconds with a STD of 8.29e+06, and when it comes to non cloned code, the mean time to
fix a bug is 1.06e+07 seconds with a STD of 8.35e+06. Buggy cloned code seems to be taking
comparatively higher time to get fixed in deep learning code. We perform a Man-Whitney test
comparing the distribution of times. However, we found no statistically significant difference
between the time to fix bugs in cloned and non-cloned code (p-value =0.34, effect size 0.2).

We further check what percentages of DL systems have higher bug-fix time for clones and
what percentages of systems have the opposite. Among 6 DL repositories, we observe in four
(4) DL systems that the bug-fix time for clones is higher and for the rest (i.e., 2 systems), the
bug-fix time for clones is lower. Overall, we can conclude that in a majority of cases (66.66%),
bugs related to clones take a longer time to get fixed, suggesting that bugs occurring in cloned
code may be more challenging to fix.

The observation that bugs in cloned code take comparatively longer time to fix means that
the existence of code clones in deep learning code may hinder the maintenance of this type
of system.

Summary of findings (RQ3) : We find that cloned code may be more bug-prone
than non-cloned code in deep learning systems. In addition, Type 3 clones have a relatively
higher odd to be involved in bugs in the deep learning code, followed by Type 2 and Type
1 clones respectively. Also, bugs related to clones in DL code tend to take more time to get
fixed compared to other bugs.

70

Figure 5.12 Comparative bug-fix times for cloned and non-cloned code in DL systems.

5.3.4 RQ4 : Why do deep learning developers clone code ?

In this research question, we examine the reasons behind the practice of code cloning in deep
learning systems. We manually analyzed the detected code clones for a selected subset of
six deep learning projects. We labeled each detected code clone class by the functionality it
serves (task). Then, we assign each labeled clone class to its corresponding DL phase making
sure that the relation between the labeled task and the DL phase is ‘to perform’ (more details
in section 5.2.2.5).

Table 5.6 shows the taxonomy of code clones that resulted from our manual analysis of the
selected six DL projects. We show only the related DL phases that co-occur with the detected
code clones. Therefore, we have neither all the DL phases nor all of its subcategories presented
in Table 5.6. Also, the DL phase subcategories are not exclusive, since functions may be used
in tasks related to different phases.

71

Table 5.6 Percentages of Occurrence of Code Clones in DL Phases

dl_phase category dl_phase subcategory Type 1
%occs

Type 2
% occs

Type 3
% occs

% occs
in sub category

% occs
in total

Preliminary preparation hardware requirements 100 0 0 100.0 1.03

Data collection load data 20 20 40 80.0 5.15load label 20 0 0 20.0

Data postprocessing

compute output shape 0 0 12.5 12.5

8.25object localization 25 0 12.5 37.5
process output 25 0 12.5 37.5
set shape of output data 12.5 0 0 12.5

Data preprocessing

apply data augmentation 5.55 0 0 5.55

18.56

data normalization 0 0 11.11 11.11
get batches of data 0 5.55 0 5.55
get numerical feature columns 5.55 0 5.55 11.11
parse arguments 0 0 5.55 5.55
prepare tensor 11.11 0 0 11.11
process input 0 0 16.66 16.66
resize image 5.55 0 0 5.55
set shape of input data 0 0 11.11 11.11
set type of input data 0 0 5.55 5.55
setting format input data 0 0 5.55 5.55
split data 0 0 5.55 5.55

Model prediction inference 100 0 0 100.0 2.06

Model construction

model component format verif. 2.86 0 0 2.86

36.08

activation function call 0 0 2..86 2.86
build model 2.86 0 0 2.86
build one subnetwork 0 0 2.86 2.86
compute model outputs 0 0 2.86 2.86
init evaluation metrics 0 0 2.86 2.86
initialize model graph 0 0 2.86 2.86
initialize model output 2.86 0 0 2.86
layer construction 0 2.86 2.86 5.71
model architecture instantiation 0 0 5.71 5.71
model (hyper)parameters init 14.29 20 28.75 62.86

Model evaluation performance metric computation 0 22.22 66.66 88.89 9.28test data prediction 0 0 11.11 11.11

Model training

compute loss 27.77 0 0 27.78

18.56

get pooling info 0 0 5.56 5.56
measure model accuracy 5.56 0 0 5.56
model training 5.56 0 11.11 16.67
one model step training 11.11 5.56 11.11 27.78
training procedure 0 0 5.56 5.56
weight normalization 0 0 11.11 11.11

Model tuning Minibatch size 0 0 100 100 1.03

In this research question, we study clones at the granularity of the function. A function
can implement one or more tasks that are involved in a DL phase. In the following, we
discuss the characteristics of clones in deep learning systems that are associated with different
functionalities and development phases of deep learning systems. The following phases are
listed based on the percentage of occurrences with clones from highest to lowest.

72

Model construction :Our manual analysis shows that the most frequent DL-phase category
that co-exists with code clones is the model construction phase with 36.08% of DL-related
code clones. This is an indication that DL practitioners duplicate code frequently when buil-
ding the model and specifically when initializing hyperparameters/parameters with 62.86%
of code clones classes being related to the DL-phase subcategory of the model construc-
tion. Table 5.6 shows that the majority of clones created by developers when initializing
(hyper)parameters during the construction of the model are Type 3 clones (they represent
28.75% overall). The data preprocessing and model training phases contained 18.56% of all
the clones that we manually analyzed.

Model training : Computing loss and training in each step of the model are the most
frequent activities performed during model training. These activities are associated with
27.78% of clones from the model training subcategory. According to our manual analysis,
computing loss functions are often copied/pasted from other functions located in the same
location as the model implementation, or written from scratch. i.e., by calling DL libraries
routines to perform loss computation. Some developers may also reuse the corresponding code
from the online sources. The duplication of code for loss function is illustrated in the example
in the table 5.7. The first line in the table corresponds to calculating the loss of RankingLoss.
The second line corresponds to computing the loss of Softmax. The two functions are Type
3 clones to each other. Ranking and Softmax are two types of loss functions in deep learning.
In fact, the loss computation is often common between deep learning models. Even when
they are different, some of them have similar implementation logic. Hence, the prevalence of
duplicated code that computes loss functions.

Data preprocessing Processing input is related to 16.66% of clones associated with the
‘data preprocessing’ phase of the DL development workflow. Process input includes all the
transformation needed on the input data to perform model training (e.g., process input of
model inception v3 by normalizing each pixel of image input).

Model evaluation : Each DL model is evaluated to improve its performance. Overall, 9.28%
of the DL-related cloned code corresponds to model evaluation of which 89% of clones are
related to performance metric computation and 11.11% to test data prediction. Measurement
metrics used to evaluate the models tend to be duplicated frequently for each model and for
each metric. One example of cloning metric computation code can be seen in Table 5.8 1, where
we have the implementation of two measures : Mean Reciprocal Rank and Mean Average
Precision. The two functions are clones of each other. The clone is of Type 3. The differences
are in the renaming and function calls that corresponds to each metric computation.

1. https://github.com/tensorflow/ranking

https://github.com/tensorflow/ranking

73

Table 5.7 Example of Model Training (Compute Loss) Type 3 Clone

def compute(self, labels, logits, weights, reduction):
"""Computes the reduced loss for tf.estimator (not tf.keras).

Note that this function is not compatible with keras.

Args:
labels: A `Tensor` of the same shape as `logits` representing graded

relevance.
logits: A `Tensor` with shape [batch_size, list_size]. Each value is the

ranking score of the corresponding item.
weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise

weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
weights.

reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to
reduce training loss over batch.

Returns:
Reduced loss for training and eval.

"""
losses, loss_weights = self.compute_unreduced_loss(labels, logits)
weights = tf.multiply(self.normalize_weights(labels, weights), loss_weights)
return tf.compat.v1.losses.compute_weighted_loss(

losses, weights, reduction=reduction)
def compute(self, labels, logits, weights, reduction):

"""See `_RankingLoss`."""
labels, logits = self.precompute(labels, logits, weights)
losses, weights = self.compute_unreduced_loss(labels, logits)
return tf.compat.v1.losses.compute_weighted_loss(

losses, weights, reduction=reduction)

Data post-processing : Data is often post-processed after an inductive process and conver-
ted into a format recommended by the stakeholders of the model. Our findings show that
8.25% of cloned code are related to DL functions used in the data post-processing phase.
There are various techniques to perform this phase. We found that object localization func-
tions are duplicated functions with 37.5% from the total cloned functions to perform data
post-processing phase. Object localization is used to interpret output assigning each object
to a class with a higher probability or by drawing bounding boxes on an image from inference
results. 37.5% of cloned functions are classified as process output. And the rest are found
duplicated for computing output shape and set shape of output data.

Data collection : Data collection operations are frequently cloned. 5.15% of our manually
analyzed clones were related to data collection. Among them, we found 80% of clones to be
related to loading data either from files or from an URL or using a library to get data. The
rest are derived from load label of classes of data functions (20%).

Model prediction : 2.06% of our manual analysis code clones are related to inference. All
of them are Type 1 clones. Subsequently, according to our manual analysis, we can say that
DL developers often duplicate the same code to create an inference process from a trained
model.

74

Table 5.8 Example of Model Evaluation (Compute Metrics) Type 3 Clone

def mean_reciprocal_rank(labels,
predictions,
weights=None,
topn=None,
name=None):

"""Computes mean reciprocal rank (MRR).
Args:

labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.

predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.

weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.

topn: An integer cutoff specifying how many examples to consider for this
metric. If None, the whole list is considered.

name: A string used as the name for this metric.

Returns:
A metric for the weighted mean reciprocal rank of the batch.

"""
metric = metrics_impl.MRRMetric(name, topn)
with tf.compat.v1.name_scope(metric.name, 'mean_reciprocal_rank',

(labels, predictions, weights)):
mrr, per_list_weights = metric.compute(labels, predictions, weights)
return tf.compat.v1.metrics.mean(mrr, per_list_weights)

def mean_average_precision(labels,
predictions,
weights=None,
topn=None,
name=None):

"""Computes mean average precision (MAP).
Args:

labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.

predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.

weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.

topn: A cutoff for how many examples to consider for this metric.
name: A string used as the name for this metric.

Returns:
A metric for the mean average precision.

"""
metric = metrics_impl.MeanAveragePrecisionMetric(name, topn)
with tf.compat.v1.name_scope(metric.name, 'mean_average_precision',

(labels, predictions, weights)):
per_list_map, per_list_weights = metric.compute(labels, predictions,

weights)
return tf.compat.v1.metrics.mean(per_list_map, per_list_weights)

Model tuning : We found clones in the code used to find the best batch size to train the
model. Hyperparameter tuning operations are also often cloned. All the clones found to be
related to this category were type 3 clones. Meaning that DL developers often duplicate the
hyperparameter tuning code of other models and apply some modifications to it (adding few
extra lines), for example to adjust the batch size. Clones in hyperparameter tuning code
represents 1.03% of the analyzed clones.

75

Preliminary preparation : The code used to prepare the environment for model training
appears to also contain clones. To optimise the model training time, developers write code
to manage the hardware, e.g., CPU and GPU management. Among the manually analyzed
clones, 1.03% of them belong to the environment configuration category. All these clones were
Type 1 clones, suggesting that developers often duplicate these configuration codes without
modifications.

Our analysis show that code duplication is a common practice among DL developers. They
duplicate code during almost all the phases of the development process of deep learning
models, in addition to duplicating traditional methods like test and logging. Since duplicating
code may lead to bug propagation and inconsistency in the program. We recommend that
DL developers pay a close attention to these clones during the maintenance and evolution of
their systems.

Summary of findings (RQ4) : According to our findings, code duplication is more
prevalent during the model construction phase of deep learning systems. Code related to
the initialization of model hyperparameters are the most cloned, followed by code related
to model training and data preprocessing.

5.3.5 RQ5 : Where in the deep learning code is cloning the most risky ?

After applying our taxonomy to the selected code clones from the analyzed subset of six
systems, it is of interest to identify deep learning activities during which cloning is the most
risky. By risky here we refer to the risk of bug introduction. Our results of RQ3 show that
code cloning can lead to bug. A better understanding of the circumstances in which bugs
frequently occur on cloned code will help raise the awareness of DL developers about the
potential risks of their cloning actions.

To carry out this investigation, we consider the relation between bugs and code clones and
determine which part of the DL code is more prone to bugs when it is duplicated. We identify
labeled code clones lines (the labels are from RQ4) that intersect with lines that fix bugs in
the system. We computed the percentages of bug related cloned functions for each DL phase.
Our result shows that code cloned during the model construction phase are related to bugs
in higher numbers ; 50% of them are related to bugs as shown in Figure 5.13.

Table 5.10 shows which DL-related cloned functions (tasks) are the most involved with bugs.
The corresponding DL phases are also provided in the Table. We display only DL-related
tasks and phases where clones are involved in bugs (i.e., other phases of the DL workflow were
the phenomenon is not observed are omitted). As mentioned earlier, the model construction
phase contains the highest proportion of buggy clones (i.e., 50% of all buggy clones in our

76

Figure 5.13 Percentage of Bug-fix occurred with cloned functions with respect to deep learning
phases

manually analyzed clone data). The majority of them are related to model (hyper)parameters
initialization (46.66%). Table 5.9 shows an example of bug fix in a buggy clone. The pre-
sented cloned code fragments are from a bug-fix commit with the message ‘Minor optimizer
consistency fixes’ 2. The optimizers in deep learning are capable of reducing the losses by
changing the attributes of the neural network (i.e., learning rate). Those optimizers have
a common implementation of the hyperparameter initialization function. In the example of
commit bug-fix from Table 5.9, to fix the instantiation of the number of iteration by adding a
data type, the deep learning developer had to propagate the same change to several optimi-
zer initializations. In this example, we have seven optimizers, i.e, SGD, RMSProp, Adagrad,
Adadelta, Adam, Adamax, and Nadam that share the same initialization implementation
and the developer needed to propagate the fixing change seven times.

The DL phase with the second highest proportion of buggy clones is ‘Model training’ with
a proportion of 20%. The phase with the third highest proportion of buggy clones is the
data collection phase with 13.3%. 10% of buggy clones are related to data pre-processing ;
the majority of them are in code related to tensor operations (66.66%) and code for setting
the shape of input data. Only a small amount of the analyzed buggy clones were found to
be related to data post-processing (3.3%) and tuning of the hyperparameters of the model
(3.3%). In light of these results, we recommend that DL developers pay particular attention
when duplicating code during the model construction phase. Although it may seems like a

2. https://github.com/keras-team/keras/commit/2d8739d

https://github.com/keras-team/keras/commit/2d8739d

77

Table 5.9 Example of Bug Fix Commit Code Change

def __init__(self, lr=0.01, epsilon=None, decay=0., **kwargs):
super(Adagrad, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):

self.lr = K.variable(lr, name='lr')
self.decay = K.variable(decay, name='decay')
self.iterations = K.variable(0, name='iterations')

if epsilon is None:
epsilon = K.epsilon()

self.epsilon = epsilon
self.initial_decay = decay

def __init__(self, lr=0.01, epsilon=None, decay=0., **kwargs):
super(Adagrad, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):

self.lr = K.variable(lr, name='lr')
self.decay = K.variable(decay, name='decay')
self.iterations = K.variable(0, dtype='int64', name='iterations')

if epsilon is None:
epsilon = K.epsilon()

self.epsilon = epsilon
self.initial_decay = decay

good idea to copy the code of an existing model, to speed up the model construction phase,
there are perils to this practice.

Table 5.10 Percentage of DL-related Cloned Functions with Bugs

Taxonomy Task % occs in DL step % occs from total
Data collection Load data 100 13.3
Data post-processing Set shape of output data 100 3.3

Data pre-processing Prepare tensor 66.66 10Set shape of input data 33.33
Hyperparameter Tuning Hyperparameter tuning 100 3.3

Model Construction

Model component format verification 6.66

50

Initialize model graph 6.66
Initialize model output 6.66
Layer construction 13.33
Model architecture instantiation 20
Model (hyper)parameters initialization 46.66

Model training Model training 33.33 20One model step training 66.66

Summary of findings (RQ5) : Code clones that are related to model construction
are the most bug-prone among deep learning clones followed by the clones related to model
training and data collection.

5.4 Research Implications

In this section, we discuss the implications of our findings with regard to cloning activity in
the DL code.

78

Cloning is frequent in deep learning code : In light of the higher density of code-
clones identified in deep learning code, it appears that DL developers prefer to reuse existing
solutions instead of creating new ones from scratch. As they need to experiment with different
configurations to find the best DL model, duplicating code that works often seem like a good
idea to save time and effort. Our results show that developers often copy-paste exact code
(frequently for loss computation) in the same location as the calling statement. We assume
that this proximity aims to ease the maintenance of the resulting code. However, maintaining
multiple clone copies always increase the risk of failing to propagate changes consistently ;
leading to bugs. Our results show that clones are more prevalent in deep learning code in
comparison to traditional code. We attribute this phenomenon to the fact that a same decision
logic can be used several times in a deep learning model and also across models. For example,
when creating a convolutional neural network [99, 100] model that consists of a set of layers.
Each layer is initialized according to its type and its parameter values needed, and blocks of
codes are stacked to create the architecture. These blocks are exact or similar copies of each
other. Hence, the prevalence of code clones in the code of this model.

Deep learning code clones are dispersed : Considering the code clones being distant
as found in deep learning code, such dispersion of code clones is problematic [101] from
a maintenance point of view. When changing code, it is most likely easier to change the
code in the same file than in different files or folders. Fragments of related code in distant
locations may add navigation and comprehension overhead during code change. Thus, the
maintenance will be difficult to handle. Due to the high percentages of distant code clones
(same directory and different directories), deep learning practitioners should be aware of the
potential negative impacts of such cloning practices.

In addition, our analysis of the percentages of clone fragments in different location categories
show that clones in deep learning code are more dispersed in the code, which is also pro-
blematic. Because of the negative impact of Code clones on maintenance, developers should
consider refactoring them. We noticed some signs of refactoring in some of the studied deep
learning systems. Specifically, we observed the use of files with a name ending with ’_utility’
that contains all the useful functions and functions likely to be used in different parts of the
system.

Code clones in DL code are related to bugs : Our results show that cloned code
may be more bug-prone than non-cloned code in deep learning systems. In addition, Type
3 clones have a relatively higher odd to be involved in bugs in the deep learning code than
Type 2 and Type1 clones. Also, code clones that are related to model construction phase are

79

the most bug-prone. In particular those related to model (hyper)parameters initialization.
Since the main challenge of DL developers is to provide a model with high accuracy, setting
model (hyper)parameters is an important step to implement an efficient model. Therefore
bugs occurring in the code responsible for this critical task is likely to have a severe impact
on the quality of the deep learning system.

Due to the data-driven nature of deep learning, data collection is a crucial task [102] and any
bug occurring in the code responsible for this phase is also likely to significantly impact the
quality of the deep learning system.

Our findings regarding the prevalence and distribution of clones in deep learning code, their
bug-proneness and insights on the characteristics and impacts of the clones related to dif-
ferent DL phases are thus important for deep learning practitioners. These findings can help
researchers to further investigate the characteristics and evolution of clones in deep learning
code and also guide practitioners to adapt the best software development practices to the
maintenance and evolution of the deep learning systems.

5.5 Threats to validity

In this section, we discuss the potential threats to the validity of our research findings.

In terms of Internal validity, we manually labeled each detected code clones class to its
corresponding DL phase. Then, we also manually assigned them to one of the steps of the DL
code process. However, this relies on the subjective judgment of the persons who performed
the manual classification. This is a threat to the internal validity of our experiment. To
mitigate this threat, the manual classification for creating the taxonomy was done by multiple
authors having academic and industry background. The results were then cross-validated,
and disagreements were resolved by group discussion. We believe that this validation process
decreased the chances of incorrect tagging. However, future research may further improve our
approach and provide additional perspectives about our results by surveying deep learning
practitioners.

In terms of construct validity threats, which concern the relationship between theory and
observation. We followed the approach proposed by Rosen et al. [83] to detect bug-fix commits
by employing a set of keywords that are bug fixing related. If the commit message contains
one of the keywords, it will be labeled as a bug-fix commit. To reduce the imprecision in the
bug-detection process, we reviewed a sample of the labeled commits and confirmed that they
corresponded to bug-fixes.

For detecting clones, we used the NiCad clone detector [91]. Since different settings can have

80

different effects, that we call a confounding configuration problem [103], we have carefully
set the parameters of NiCad by employing a standard configuration [104] and with these
settings, NiCad is reported to be very accurate in clone detection [92, 104]. Thus, we believe
that our findings on code clones in deep learning code have relevance significance.

With regard to external validity, we only cover deep learning repositories that are written
in python. As it is the most used programming language in the machine learning field, we
can assume that the small data used brings a lot of knowledge. In addition, we selected only
6 DL repositories to be manually analyzed for the creation of the taxonomy. Therefore, this
may threaten the generalizability of our results. We believe that even a small number of deep
learning repositories will provide a comprehensive overview of how and why deep learning
practitioners had to duplicate code. We assume that, for each deep learning project, we can
have different percentages of code clones occurrences alternating between the different phases
of deep learning workflow. The fact that they exist may challenge the development of this
type of system. Future studies should validate the generalizability of our findings with other
DL systems that are written in other programming languages.

In terms of threats to reliability, we investigate in our study open-source deep learning
and traditional projects that are available on GitHub. And we provide a replication package
that contains needed data and scripts to replicate our study [105].

And with respect to threats to conclusion validity, we use non-parametric statistical tests
to analyze the difference between distributions. Non-parametric tests are adequate because
they make no assumption on the nature of the data distribution.

5.6 Chapter Summary

This chapter presents an empirical study of code clones in deep learning systems. Through
quantitative and qualitative analyses, we have examined the characteristics, distribution, and
impacts of clones in deep learning code. We have shown that code clones are prevalent and
dispersed in deep learning systems (which may add navigation and comprehension overhead).
In addition, our results show a higher association between code clones and bug occurrences.
Furthermore, cloning code responsible for model hyperparameters initialisation appeared to
be a very risky activity, since a large proportion of clones in this part of the code were found
to be buggy. Although duplicating code may lead to short term productivity gains, deep
learning practitioners should be aware of the perils of such practice.

81

CHAPTER 6 CONCLUSION

In this chapter, we summarise our findings and conclude the thesis. In addition, we discuss
the limitations of our proposed approaches and outline some directions for future work.

6.1 Summary

With the increasing popularity of deep learning and its rapid development in recent years, it
has become a game changer in many fields. Some of these fields requiring high safety critical
standards. It is therefore necessary to ensure the good quality of deep learning systems. In
this thesis, we explore the code quality and coding practices of deep learning practitioners.
We examine the impact of code smells and clones on the quality of deep learning systems and
formulate recommendations for both researchers and practitioners. In Chapter 3, we review
the existing literature discussing the challenges and code quality assurance of AI/ML/DL sys-
tems, the impact of code smells and code clones on software quality. In Chapter 2, we provide
an overview of the concepts and terminology that are useful to better follow our empirical
studies. In Chapter 4, we perform a comparison of smells occurrences between traditional
and deep learning applications. We analyze a total of 118 repositories (59 deep learning and
59 traditional). We make the following observations : First, we found no statistically signifi-
cant difference in the code smell occurrences between deep learning and traditional software
systems. Second, we found that the most frequent smell types occurring in deep learning code
are : Long Ternary Conditional Expression, Complex Container Comprehension, and Long
Lambda Function. We also observed an increasing trend of smell occurrences across the soft-
ware releases of deep learning systems. And finally, our findings confirm that the presence of
code smells may increase the chances of bugs occurrence in deep learning systems. In Chap-
ter 5, we analyze clones in deep learning code. We use the same dataset used in Chapter 4
(59 deep learning open software systems and 59 traditional open source software systems).
We show that cloning is frequent in deep learning code. We also found that deep learning
systems tend to have higher density of clones. This prevalence of clones in deep learning
code might be due to the complexity and the black-box nature of deep learning systems. In
terms of location, we observed that code clones are dispersed in deep learning code compared
to traditional systems. This dispersion may lead to higher maintenance costs since it may
hinder code comprehension. Furthermore, we found that code clones in deep learning code
are bug-prone even with higher trends of being associated with bugs compared to non-cloned
code. We have also shown that some phases and activities (e.g., model construction) related
to deep learning system development are comparatively more susceptible to buggy clones,

82

warranting caution from deep learning developers when duplicating code. Although code du-
plication may lead to short term productivity gains, deep learning practitioners should be
aware of the perils of such practice.

Ours is the first work that extensively investigates the code quality of 59 open-source, deep
learning applications. It can help the researchers better understand the code quality and
maintainability of the deep learning applications that are likely to grow in the coming years.
We hope that our work will raise the awareness of DL developers on code quality issues and
prompt them to adopt the best software engineering practices.

6.2 Limitations of the proposed approaches

— Our works rely on the results of two tools for detecting code smells and code clones.
However, Pysmell has proved its ability in detecting code smells with 97.7% of ave-
rage precision [106]. Furthermore, NiCad has shown its effectiveness in detecting code
clones. We have also used a common configuration for NiCad making our results more
accurate [92, 104].

— In our thesis, we analyze only 59 deep learning systems and that are written in Python.
Despite the wide use of Python language in the AI field, our findings remain not quite
generalizable.

6.3 Future work

There are many potential future research directions that stem from the contributions made
in this thesis. These possible directions are outlined below :

— We have explored only 10 types of code smells that are python related as well as the
code cloning practices in DL systems written in Python. Therefore, it is a new research
challenge for the researchers to identify code smells specific to deep learning code and
thus providing design patterns and practices to follow to the AI community.

— We may integrate more deep learning systems with different programming languages
to further abstract DL source code so that only meaningful results and trends are
recognized.

— The quantitative and qualitative analysis in the code clones study provide us with a
picture of the characteristics, distribution and impacts of clones in deep learning code.
However, we need further studies on the evolution patterns and the impacts of clones
on different aspects of the quality of deep learning code, to guide the practitioners
to better manage clones in deep learning systems. Thus, we plan our future research
towards the investigation of the clone genealogy in deep learning code, to have deeper

83

insights into how clones in deep learning code evolve, which in turn can help prac-
titioners adopt safer code reuse practices, leverage existing libraries and open-source
resources in the rapidly growing domain of deep learning and other machine learning
based system development.

— As extensive future work, we want to focus on limitations of the approach used in our
code clones study. The first is to address a different level of granularity as opposed
to the function level. Currently, our approach only analyzes code clones with function
granularity. We would like to investigate more in the deep learning code and change the
granularity to the block level. This change in granularity would increase the context for
certain practices of code duplication and should make the approach more meaningful
and insightful to developers.
Our second future work is similar to the first, but we want to focus on learning smaller
duplicates called micro-clones. Since Python is the most used programming language
in ML code and it is less verbose than other programming languages, we assume that
micro-clones will be even more prevalent in the code of DL systems. We want to detect
code clones between 1-4 lines, which would allow us to deeply understand the spread
of code clones in DL code.

84

REFEFENCES

[1] Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, and B. Xu, “Understanding metric-based
detectable smells in python software : A comparative study,” Information and Software
Technology, vol. 94, pp. 14–29, 2018.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[3] ——, Deep Learning. MIT Press, 2016, http://www.deeplearningbook.org.

[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, J.-F. Crespo, and D. Dennison, “Hidden technical debt in machine
learning systems,” in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 2503–2511. [Online]. Available : http:
//papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

[5] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Is using deep learning frame-
works free ? characterizing technical debt in deep learning frameworks,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering : Software
Engineering in Society, 2020, pp. 1–10.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring : Improving
the design of existing code addison-wesley professional,” Berkeley, CA, USA, 1999.

[7] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for software design
smells : managing technical debt. Morgan Kaufmann, 2014.

[8] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter, “Removing energy code smells
with reengineering services,” INFORMATIK 2012, 2012.

[9] A. Vetro, L. Ardito, and M. Morisio, “Definition, implementation and validation of
energy code smells : an exploratory study on an embedded system,” 2013.

[10] C. K. Roy and J. R. Cordy, “Near-miss function clones in open source software : an em-
pirical study,” Journal of Software Maintenance and Evolution : Research and Practice,
vol. 22, no. 3, pp. 165–189, 2010.

[11] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” considered harmful :
patterns of cloning in software,” Empirical Software Engineering, vol. 13, no. 6, p. 645,
2008.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

85

[12] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code more frequently
modified than non-duplicate code in software evolution ? an empirical study on open
source software,” in Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution (IWPSE),
2010, pp. 73–82.

[13] J. Krinke, “Is cloned code older than non-cloned code ?” in Proceedings of the 5th
International Workshop on Software Clones, 2011, pp. 28–33.

[14] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software clones,” in 2011
27th IEEE International Conference on Software Maintenance (ICSM). IEEE, 2011,
pp. 273–282.

[15] ——, “An empirical study of faults in late propagation clone genealogies,” Journal of
Software : Evolution and Process, vol. 25, no. 11, pp. 1139–1165, 2013.

[16] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones matter ?”
in 2009 IEEE 31st International Conference on Software Engineering. IEEE, 2009,
pp. 485–495.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner : Finding copy-paste and related
bugs in large-scale software code,” IEEE TSE, vol. 32, pp. 176–192, 2006.

[18] J. Li and M. D. Ernst, “Cbcd : Cloned buggy code detector,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 310–320.

[19] M. S. Rahman and C. K. Roy, “On the relationships between stability and bug-
proneness of code clones : An empirical study,” in 2017 IEEE 17th International Wor-
king Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2017,
pp. 131–140.

[20] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Paar, “On the relationship of inconsistent
software clones and faults : an empirical study,” in 2016 IEEE 23rd International Confe-
rence on Software Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE,
2016, pp. 79–89.

[21] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone management :
Past, present, and future (keynote paper),” in proc. CSMR-WCRE, 2014, pp. 18–33.

[22] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-oriented code
refactoring on quality attributes : A systematic literature review,” IEEE Transactions
on Software Engineering, vol. 44, no. 1, pp. 44–69, 2017.

[23] F. J. Buckley and R. Poston, “Software quality assurance,” IEEE Transactions on
Software Engineering, no. 1, pp. 36–41, 1984.

86

[24] S. Hamdan and S. Alramouni, “A quality framework for software continuous integra-
tion,” Procedia Manufacturing, vol. 3, pp. 2019–2025, 2015.

[25] D. Kumlander, “Towards a new paradigm of software development : an ambassador dri-
ven process in distributed software companies,” in Advanced Techniques in Computing
Sciences and Software Engineering. Springer, 2010, pp. 487–490.

[26] S. Rochimah, S. Arifiani, and V. F. Insanittaqwa, “Non-source code refactoring : a
systematic literature review,” International Journal of Software Engineering and Its
Applications, vol. 9, no. 6, pp. 197–214, 2015.

[27] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers discuss about
deep learning frameworks,” EMPIRICAL SOFTWARE ENGINEERING, 2020.

[28] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann, “Software engineering for machine learning : A case study,” in
2019 IEEE/ACM 41st International Conference on Software Engineering : Software
Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 291–300.

[29] A. Koenzen, N. Ernst, and M.-A. Storey, “Code duplication and reuse in jupyter note-
books,” arXiv preprint arXiv :2005.13709, 2020.

[30] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” The
Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.

[31] M. Fowler, K. Beck, and W. R. Opdyke, “Refactoring : Improving the design of existing
code,” in 11th European Conference. Jyväskylä, Finland, 1997.

[32] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D. Po-
shyvanyk, “When and why your code starts to smell bad,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
403–414.

[33] C. Zhifei, “Pysmell a tool for detecting code smells in python code,” Nov. 2018.
[Online]. Available : https://github.com/chenzhifei731/Pysmell

[34] M. Fowler, Refactoring : improving the design of existing code. Addison-Wesley Pro-
fessional, 2018.

[35] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns :
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

[36] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,” in 2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE, 2014, pp.
321–330.

https://github.com/chenzhifei731/Pysmell

87

[37] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” Queen’s
School of Computing TR, vol. 541, no. 115, pp. 64–68, 2007.

[38] C. Kapser and M. W. Godfrey, “Toward a taxonomy of clones in source code : A case
study,” Evolution of large scale industrial software architectures, vol. 16, pp. 107–113,
2003.

[39] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained : An empiri-
cal study,” in 11th European Conference on Software Maintenance and Reengineering
(CSMR’07). IEEE, 2007, pp. 81–90.

[40] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study on the bug-
proneness of different types of code clones,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2015, pp. 91–100.

[41] M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider, “Investigating context adaptation
bugs in code clones,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 157–168.

[42] H. B. Braiek and F. Khomh, “Deepevolution : A search-based testing approach for deep
neural networks,” 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 454–458, 2019.

[43] ——, “On testing machine learning programs,” Journal of Systems and Software, vol.
164, p. 110542, 2020.

[44] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[45] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, J.-F. Crespo, and D. Dennison, “Hidden technical debt in machine learning
systems,” in Advances in neural information processing systems, 2015, pp. 2503–2511.

[46] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml test score : A rubric
for ml production readiness and technical debt reduction,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 1123–1132.

[47] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing : Survey,
landscapes and horizons,” IEEE Transactions on Software Engineering, 2020.

[48] X. Zhang, Y. Yang, Y. Feng, and Z. Chen, “Software engineering practice in the deve-
lopment of deep learning applications,” arXiv preprint arXiv :1910.03156, 2019.

[49] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning change software
development practices ?” IEEE Transactions on Software Engineering, 2019.

88

[50] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “Understanding challenges
in deploying deep learning based software : An empirical study,” arXiv preprint
arXiv :2005.00760, 2020.

[51] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study on deep
learning bug characteristics,” arXiv preprint arXiv :1906.01388, 2019.

[52] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical study on
tensorflow program bugs,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2018, pp. 129–140.

[53] L. Rampasek and A. Goldenberg, “Tensorflow : Biology’s gateway to deep learning ?”
Cell systems, vol. 2, no. 1, pp. 12–14, 2016.

[54] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers, “The story in the
notebook : Exploratory data science using a literate programming tool,” in Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–11.

[55] H. Shen, “Interactive notebooks : Sharing the code,” Nature, vol. 515, no. 7525, pp.
151–152, 2014.

[56] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-scale study about qua-
lity and reproducibility of jupyter notebooks,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp. 507–517.

[57] F. Psallidas, Y. Zhu, B. Karlas, M. Interlandi, A. Floratou, K. Karanasos, W. Wu,
C. Zhang, S. Krishnan, C. Curino et al., “Data science through the looking glass and
what we found there,” arXiv preprint arXiv :1912.09536, 2019.

[58] A. Yamashita, “Assessing the capability of code smells to explain maintenance pro-
blems : an empirical study combining quantitative and qualitative data,” Empirical
Software Engineering, vol. 19, no. 4, pp. 1111–1143, 2014.

[59] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, “Do code smells impact the
effort of different maintenance programming activities ?” in 2016 IEEE 23rd Internatio-
nal Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 393–402.

[60] M. Perepletchikov and C. Ryan, “A controlled experiment for evaluating the impact
of coupling on the maintainability of service-oriented software,” IEEE Transactions on
software engineering, vol. 37, no. 4, pp. 449–465, 2010.

[61] A. MacCormack and D. J. Sturtevant, “Technical debt and system architecture : The
impact of coupling on defect-related activity,” Journal of Systems and Software, vol.
120, pp. 170–182, 2016.

89

[62] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study
of the impact of antipatterns on class change-and fault-proneness,” Empirical Software
Engineering, vol. 17, no. 3, pp. 243–275, 2012.

[63] H. Sajnani, V. Saini, and C. V. Lopes, “A comparative study of bug patterns in java
cloned and non-cloned code,” in 2014 IEEE 14th International Working Conference on
Source Code Analysis and Manipulation. IEEE, 2014, pp. 21–30.

[64] F. Rahman, C. Bird, and P. Devanbu, “Clones : What is that smell ?” Empirical Soft-
ware Engineering, vol. 17, no. 4-5, pp. 503–530, 2012.

[65] J. F. Islam, M. Mondal, and C. K. Roy, “Bug replication in code clones : An empirical
study,” in 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 68–78.

[66] J. F. Islam, M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study of
software bugs in clone and non-clone code.” in SEKE, 2017, pp. 436–443.

[67] N. Gode and J. Harder, “Clone stability,” in 2011 15th European Conference on Soft-
ware Maintenance and Reengineering. IEEE, 2011, pp. 65–74.

[68] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related bugs,” in Pro-
ceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, 2007,
pp. 55–64.

[69] N. Göde and R. Koschke, “Frequency and risks of changes to clones,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp. 311–320.

[70] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of code clone
genealogies,” in Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, 2005, pp. 187–196.

[71] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner : Finding copy-paste and related
bugs in large-scale software code,” IEEE Transactions on software Engineering, vol. 32,
no. 3, pp. 176–192, 2006.

[72] A. Lozano and M. Wermelinger, “Tracking clones’ imprint,” in Proceedings of the 4th
International Workshop on Software Clones, 2010, pp. 65–72.

[73] M. Mondal, M. S. Rahman, C. K. Roy, and K. A. Schneider, “Is cloned code really
stable ?” Empirical Softw. Engg., vol. 23, no. 2, p. 693–770, 2018.

[74] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan, and Y. Zou, “Studying
the impact of clones on software defects,” in 2010 17th Working Conference on Reverse
Engineering. IEEE, 2010, pp. 13–21.

90

[75] M. Mondal, C. K. Roy, and K. A. Schneider, “Does cloned code increase maintenance ef-
fort ?” in 2017 IEEE 11th International Workshop on Software Clones (IWSC). IEEE,
2017, pp. 1–7.

[76] G. developers, “Github rest api search topics,” Dec. 2019. [Online]. Available :
https://developer.github.com/v3/search/#search-topics

[77] H. B. Braiek, F. Khomh, and B. Adams, “The open-closed principle of modern machine
learning frameworks,” in 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). IEEE, 2018, pp. 353–363.

[78] P. community, “Radon,” dec 2019. [Online]. Available : https://pypi.org/project/radon/
[79] scikit-learn developers (BSD License), “sklearn.preprocessing.kbinsdiscretizer,” Dec.

2019. [Online]. Available : https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.KBinsDiscretizer.html

[80] ——, “scikit-learn machine learning in python,” Nov. 2019. [Online]. Available :
https://scikit-learn.org/stable/

[81] P. C. Brown, TIBCO Architecture Fundamentals. Addison-Wesley, 2011.
[82] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, “On the evaluation of code

smells and detection tools,” Journal of Software Engineering Research and Develop-
ment, vol. 5, no. 1, p. 7, 2017.

[83] C. Rosen, B. Grawi, and E. Shihab, “Commit guru : analytics and risk prediction of
software commits,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015, pp. 966–969.

[84] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes ?” in ACM
sigsoft software engineering notes, vol. 30, no. 4. ACM, 2005, pp. 1–5.

[85] S. Kim and E. J. Whitehead Jr, “How long did it take to fix bugs ?” in Proceedings of
the 2006 international workshop on Mining software repositories, 2006, pp. 173–174.

[86] A. G. Koru, D. Zhang, and H. Liu, “Modeling the effect of size on defect proneness
for open-source software,” in Third International Workshop on Predictor Models in
Software Engineering (PROMISE’07 : ICSE Workshops 2007). IEEE, 2007, pp. 10–
10.

[87] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad smells in object-
oriented code,” in 2010 Seventh International Conference on the Quality of Information
and Communications Technology. IEEE, 2010, pp. 106–115.

[88] L. Barbour, L. An, F. Khomh, Y. Zou, and S. Wang, “An investigation of the fault-
proneness of clone evolutionary patterns,” Software Quality Journal, vol. 26, no. 4, pp.
1187–1222, 2018.

https://developer.github.com/v3/search/#search-topics
https://pypi.org/project/radon/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/

91

[89] D. A. Wheeler, “SLOCCount,” https://dwheeler.com/sloccount/, 2004, [Online ; acces-
sed 19-May-2020].

[90] J. R. Cordy and C. K. Roy, “NiCad clone detector,” https://www.txl.ca/
txl-nicaddownload.html, 2019, [Online ; accessed 20-February-2020].

[91] ——, “The nicad clone detector,” in 2011 IEEE 19th International Conference on
Program Comprehension. IEEE, 2011, pp. 219–220.

[92] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic framework for
evaluating code clone detection tools,” in 2009 International Conference on Software
Testing, Verification, and Validation Workshops. IEEE, 2009, pp. 157–166.

[93] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once : Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779–788.

[94] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2818–2826.

[95] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller : Python Framework for Mining
Software Repositories, 2018.

[96] M. Neuhäuser, Wilcoxon–Mann–Whitney Test. Berlin, Heidelberg : Springer Berlin
Heidelberg, 2011, pp. 1656–1658. [Online]. Available : https://doi.org/10.1007/
978-3-642-04898-2_615

[97] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta calculator : A non-
parametric effect size program for two groups of observations,” Universitas Psycholo-
gica, vol. 10, no. 2, pp. 545–555, 2011.

[98] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparative study on the bug-
proneness of different types of code clones,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2015, pp. 91–100.

[99] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel, “Handwritten digit recognition with a back-propagation network,” in
Advances in neural information processing systems, 1990, pp. 396–404.

[100] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[101] R. Koschke, “Survey of research on software clones,” in Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

https://dwheeler.com/sloccount/
https://www.txl.ca/txl-nicaddownload.html
https://www.txl.ca/txl-nicaddownload.html
https://doi.org/10.1007/978-3-642-04898-2_615
https://doi.org/10.1007/978-3-642-04898-2_615

92

[102] A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data management
challenges for deep learning,” in 2019 45th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA). IEEE, 2019, pp. 140–147.

[103] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better configurations : a
rigorous approach to clone evaluation,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 455–465.

[104] C. K. Roy and J. R. Cordy, “Nicad : Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization,” in 2008 16th iEEE international
conference on program comprehension. IEEE, 2008, pp. 172–181.

[105] H. Jebnoun, “Clones in deep learning code,” Oct. 2020. [Online]. Available :
https://github.com/Hadhemii/ClonesInDLCode

[106] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in python programs,” in
2016 International Conference on Software Analysis, Testing and Evolution (SATE).
IEEE, 2016, pp. 18–23.

https://github.com/Hadhemii/ClonesInDLCode

93

APPENDIX A ACHIEVEMENTS

Parts of the content presented in this thesis is published or submitted for publication as
follows :

— The scent of Deep Learning Code : An Empirical Study
Hadhemi Jebnoun, Houssem Ben Braiek, M. Masudur Rahman, and Foutse Khomh,
published in the Proceeding of The 17th International Conference on Mining Software
Repositories (MSR), Seoul, South Korea, May, 2020.

— Clones in Deep Learning Code : What, Where, and Why ?
Hadhemi Jebnoun, Md Saidur Rahman, and Foutse Khomh, submitted to the Empi-
rical Software Engineering (EMSE) journal, Novembre, 2020.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Deep Learning based Software
	1.2 Code smells and Clones in DL systems
	1.3 Thesis Statement
	1.4 Thesis Overview
	1.5 Thesis Contribution
	1.6 Organization of the Thesis

	2 BACKGROUND
	2.1 Deep Learning
	2.2 Code Smells
	2.3 Code Clones
	2.3.1 Code clones terminologies
	2.3.2 Clone Taxonomies
	2.3.3 Bug-proneness of Code Clones

	2.4 Chapter Summary

	3 A COMPREHENSIVE REVIEW OF SOFTWARE ENGINEERING STUDIES ON DEEP LEARNING SYSTEMS
	3.1 Software Engineering for AI/ML/DL systems
	3.2 Impact of Code Smells on Software Quality
	3.2.1 Impact of Code Smells
	3.2.2 Impact of Code Clones

	3.3 Discussion
	3.3.1 Code Smells in Deep Learning Code
	3.3.2 Code Clones in Deep Learning Code
	3.3.3 Why Deep Learning Systems?

	3.4 Chapter Summary

	4 THE SCENT OF DEEP LEARNING CODE: AN EMPIRICAL STUDY
	4.1 Introduction
	4.2 Study Design
	4.2.1 Subject System Collection & Filtration
	4.2.2 Code Smell Detection
	4.2.3 Experimental Data Analysis

	4.3 Study Findings and Discussions
	4.3.1 RQ1: Does Deep Learning Code smell like the Traditional Software Code?
	4.3.2 RQ2: What is the global trend of code smells in deep learning projects over multiple releases?
	4.3.3 RQ3: Is there a co-existence between code smells and software bugs in deep learning applications?

	4.4 Research implications
	4.5 Threats to validity
	4.6 Chapter Summary

	5 CLONES IN DEEP LEARNING CODE: WHAT, WHERE, AND WHY?
	5.1 Introduction
	5.2 Study Design
	5.2.1 Study Objectives
	5.2.2 Study Overview

	5.3 Study Findings and Discussions
	5.3.1 RQ1 : Do code clones occur more frequently in deep learning code than traditional source code?
	5.3.2 RQ2: How are code clones distributed in deep learning code in comparison to traditional source code?
	5.3.3 RQ3: Do cloned and non-cloned code suffer similarly from bug-proneness in deep learning projects?
	5.3.4 RQ4: Why do deep learning developers clone code?
	5.3.5 RQ5: Where in the deep learning code is cloning the most risky?

	5.4 Research Implications
	5.5 Threats to validity
	5.6 Chapter Summary

	6 CONCLUSION
	6.1 Summary
	6.2 Limitations of the proposed approaches
	6.3 Future work

	REFEFENCES
	APPENDICES

