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Contraction of the ITCPN state space

H. Boucheneb 1

Department of Computer Engineering
École Polytechnique de Montréal

P.O. Box 6079, Station Centre-ville, Montréal, Québec

G. Berthelot 2

Institut d’Informatique d’entreprise
Conservatoire National des Arts et Métiers

18, Allée J. Rostand, 91025 Evry Cedex, France

Abstract

We show here how to contract the ITCPN state space. We distinguish three levels
of contraction that translate the ITCPN state space into one well timed and co-
herent timed automaton. We consider here only equivalence based on delays. To
achieve more contractions, the equivalence based on delays can be completed with
equivalence based on colours as shown in [4].

1 Introduction

Behaviours of almost systems depend not only on order in which events occur
but also on times at which events occur. To perform, on the same model, both
correctness and performance analysis, non-timed models have been extended
with time. Several timed models have been developed such timed automata
[1] and various timed Petri nets (Ramchandani [13], Sifakis [14], Merlin [12],
André [2], van der Aalst [15] and Diaz [8]).

Integrating time parameter in models increases their modelling power but
it complicates their analysis. Effectively, because of time density, states of
timed models are infinite and then their state space are infinite too. Several
analysis approaches, based on state space contractions, have been developed
for timed automata ([7,9,10]) and for some timed Petri nets ([3,4,5,6,15]).
Nevertheless, these approaches are either complex, or their basic models are
not enough expressive.
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We consider here the van der Aalst’s model (INCPN) that completes the
coloured Petri net by associating time intervals with outgoing arcs. This model
allows to describe large and complex real-time since its underlying model is a
coloured Petri net. To analyse this model, van der Aalst has proposed, in [15],
an approach that generates a state graph which is ”sound”, but not ”complete”
i.e: the obtained state graph is not necessarily equivalent to the state space
of the model. Moreover, for nets allowing infinite occurrence sequences, it
would lead to infinite state graphs. We have proposed, in [4], an approach that
generates a reduced state space which have not these drawbacks. This paper is
devoted to simplify and improve this approach to generate a more contracted
state space. We propose here one bisimulation relation that realizes more
contractions and simplifies the building of the contracted state space. The
contracted state space is one timed automaton whose summits are the ITCPN
reachable markings. This translation releases an attractive contraction of the
state space and allows taking advantage of methods and tools well developed
for timed automata (Hytech [9], KRONOS [7], SGM [10]). Moreover, the
obtained timed automaton is well timed and coherent (i.e.: all summits are
reachable and it is always possible to leave any non final summit). These
characteristics allow proving some none timed properties using its underlying
automaton. We consider here only equivalence based on delays. To achieve
more contractions, the equivalence based on delays can be completed with
equivalence based on colours as shown in [4]. So, the ITCPN models allow to
generate condensed timed automata.

Firstly, we give, in sections 2 and 3, some definitions related to the ITCPN
model and its behaviour. We show afterwards how to contract the ITCPN
state space. We will distinguish three levels of contraction. Sections 4, 5 and
6 are devoted to these levels of contraction. Finally, we end with a simple
example.

2 Interval Timed Coloured Petri Nets

We will introduce here only necessary definitions and notations. For further
details, we refer to [11] for coloured Petri nets and to [15] for Interval timed
coloured Petri nets.

Definition 2.1 [time domain and multi-sets]

• The time domain is the set of all non-negative real numbers, i.e.: R
+.

• Let A be a set. A multi-set over the set A is a function N which associates
with each element of set A, an integer number. It is represented by the
following formal sum:

∑
a∈AN(a) • a.

We denote by AMS the set of all multi-sets over set A.

An Interval Timed Coloured Petri Net ( ITCPN ) is a Coloured Petri Net
completed with time intervals attached to output arcs. From the semantic
point of view, each created token has a time stamp which can be any value
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Fig. 1. An ITCPN model

inside the interval associated with its creating arc. The time stamp of a token
indicates the delay required for the token to become available (i.e.: useful).

Definition 2.2 [an ITCPN model] An ITCPN is a five tuple (�, P, T, C, F )
where

• � is a finite set of types, called colour sets.

• P is a finite set of places.

• T is a finite set of transitions.

• C ∈ P → �. C(p) is a finite set which specifies the set of allowed values
(or colours) for any token of place p.

• Let CT be the set of all possible coloured tokens, i.e.: CT = {(p, c)|p ∈
P ∧ c ∈ C(p)} and INT the set of all intervals such that their bounds are
rational numbers, i.e.: INT = {[y, z] ∈ Q+ ×Q+ | y ≤ z}.
F is the transition function over the set T: F (t) ∈ CTMS −→ (CT×INT )MS

F (t) specifies which tokens are consumed and produced by firing transition
t and also the interval in which their time stamps must be chosen.
Each transition is supposed to produce a finite set of tokens.

3 ITCPN behaviour

We will first explain the behaviour of an ITCPN, using an example given in
[15] and reported here in Figure 1.

Figure 1 is the graphic representation of an ITCPN model, which is com-
posed of three places pin, pbusy, pfree, two transitions t1, t2 and three colour
sets:
M = {M1,M2, ...,Ms} attached to the place pfree,
J = {J1, J2, .., Jr} attached to the place pin, and
M × J attached to the place pbusy.

3
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It represents a jobshop, where jobs of place pin are executed repeatedly. The
jobshop is composed of a number of machines. Each machine is represented
by a token, which is either in place pfree or in place pbusy.

Tokens consumed and produced by firing transitions t1 and t2 are specified
by functions F (t1) and F (t2):

• ∀j ∈ J,∀m ∈M ,
F (t1)((pin, j) + (pfree,m)) = ((pbusy, (m, j)), [1, 3]).
Which means that transition t1 consumes two tokens one from place pin

and one from place pfree and produces one token for place pbusy. When
transition t1 occurs, the time stamp of the created token is one value inside
interval [1, 3].

• F (t2)(pbusy, (m, j)) = ((pfree,m), [2, 2]) + ((pin, j), [1, 1]).
This means that transition t2 consumes one token from place pbusy and pro-
duces two tokens one for place pin and one for place pfree. When transition
t2 occurs, the time stamp of the token created in place pfree is inside interval
[2, 2] while this of the token created in place pin is inside interval [1, 1].

3.1 States of an ITCPN

To characterise the model state, we associate with each token one variable,
called delay, which is initialized, at its creation, with its time stamp. After-
wards, the delay decreases synchronously with time until its associated token
is consumed. The state can be defined by a multi-set of timed tokens (i.e.:
tokens completed with values of their delays).

Definition 3.1 [timed token and timed marking]

• A timed token is a 3-uple ((p, c), d) where p is its place, c is its colour and
d is the value of its delay.

• A timed marking TM is a multi-set of timed tokens. A state of an ITCPN
is a timed marking.

Consider the previous model (Figure 1). Its initial timed marking, named
TM0, can be written as follows:

((pfree,M1), 2) + ((pin, J1), 1) + ((pin, J2), 2).

At the starting time, there are three tokens which are not yet available. The
first and the third one will become available after two time units while the
second one will become available exactly after one time unit.

3.2 State evolution

Initially, the model is in its initial timed marking. Afterwards, its state evolves
either by time progressions (delays decrease with time) or by occurrences.

Definition 3.2 events enabled for a timed marking

• An event is a pair composed with one transition and all tokens required for

4
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its occurrence.

• Let e be an event. We denote by Jin(e) and Jout(e) multi-sets of tokens
used and produced by event e.

• Let TM be a timed marking. An event e is enabled for the timed marking
TM if and only if, all required tokens are present (created but not necessary
available) in TM , i.e.: Jin(e) ≤ TM .

In this model, an event should occur as soon as possible (i.e.: when all
required tokens become available). Its occurrence takes no time but it leads
to a new marking: consumed tokens disappear and eventually new tokens are
created.

Definition 3.3 [time progression and event occurrence] Let TM be a reach-
able state of an ITCPN model, ES(TM) the set of events enabled for the
timed marking TM , e∗ an event and dh a non negative real number.

• The occurrence delay (i.e.: the firing delay) of event e∗, denoted by FD(e∗),
is the delay required for all tokens of Jin(e∗) to become available, i.e.:
FD(e∗) = maxj∈Jin(e∗)(dj).

• A time progression of dh units can occur, from state TM , before any event
occurrence, if and only if, dh is less or equal to the occurrence delays of all
events of ES(TM), i.e.: dh ≤ mine∈ES(TM)(FD(e)).

After this time progression, the delay of each token of TM decreases of
dh time units. We denote by �TM�−dh the obtained timed marking.

• Event e∗ can occur from TM , before other events, if and only if, it is enabled
and its occurrence delay is not greater than those of other enabled events,
i.e.: (Jin(e∗) ≤ TM) ∧ (FD(e∗) ≤ mine∈ES(TM)(FD(e))).

• If event e∗ can occur from state TM , it occurs instantaneously exactly after
FD(e∗) time units. The obtained state TM ′ is:

�TM − Jin(e∗)�−FD(e∗) + Jout(e∗)

. Where Jout(e∗) is obtained from F (t)(Jin(e∗)) by replacing each interval
with one value chosen inside it.

Consider the model given in Figure 1 and its initial state TM0:
((pfree,M1), 2) + ((pin, J1), 1) + ((pin, J2), 2).
For the initial state TM0, we have two enabled events:

e0 = (t1, ((pfree,M1), 2) + ((pin, J1), 1))

and

e1 = (t1, ((pfree,M1), 2) + ((pin, J2), 2)).

Their firing delays are: FD(e0) = max(2, 1) and FD(e1) = max(2, 2).

Both events can occur from the initial state after two time units. For
example, if event e0 occurs, its occurrence leads to the state TM1 such that:

TM1 = ((pin, J2), 0) + ((pbusy, (M1, J1)), d)

5
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with d ∈ [1, 3].

It appears that, because of time density, generally, the ITCPN model has
infinite reachable states and each state has infinite successors (i.e.: infinite
state space). After we have defined the operational semantic of the ITCPN
model, we will, in the following, show how to contract its infinite state space.

4 States reached by the same sequence

To contract the ITCPN state space, we first agglomerate, into one state group,
all states reached by the same sequence of occurrences independently of the
occurrence dates.

Definition 4.1 state group

• A state group is the set E of states reached by the occurrence of the same
event sequence independently of instants at which events have occurred. It
can be characterised by a pair (SM,FT ) where:
· SM is obtained from any timed marking of E by replacing values of delays

by variables representing delays.
· FT is a logical formula which indicates all valuations of delays associated

with tokens.

• Let E be a state group and e∗ an event. Event e∗ can occur from state
group E if and only if, there is a state TM of group E such that event
e∗ can occur from it. This possibility of event occurrence is denoted by
E[[e∗ �.

If event e∗ can occur from group E, its occurrence leads to the state group
E ′ which consists of all states reached by the occurrence of event e∗ from
any state of group E. This occurrence is denoted by E[[e∗ � E ′.

The initial state group of the model of Figure 1 is E0 = (SM0, FT0) where:

• SM0 = ((pfree,M1), d1) + ((pin, J1), d2) + ((pin, J2), d3).

• FT0 = (d1 = 2 ∧ d2 = 1 ∧ d3 = 2).

The enabled event e0 = (t1, ((pfree,M1), d1) + ((pin, J1), d2)) can occur from
state group E0 if and only if, the following formula is consistent:

FT0 ∧ (max(d1, d2) ≤ min(max(d1, d2),max(d1, d3))).

The reached group by the occurrence of event e0 from the group E0 is
E1 = (SM1, FT1) where:

• SM1 = ((pin, J2), d3) + ((pbusy, (M1, J1)), d4) and

• FT1 = (d3 = 0 ∧ 1 ≤ d4 ≤ 3).
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Fig. 2. Evolution of an ITCPN

5 Agglomeration of state groups

This first contraction is not enough since the set of reachable groups can be
infinite even if the model has a finite number of reachable non timed markings.
This occurs, for example, if there is a token that is never used (its delay
decreases infinitely). To contract more the state space and to simplify the
building of the contracted state space, we have worked to define a simple
bisimulation relation over the set of reachable state groups. Our relation is
based on the following theorem shown in [4].

Consider the group E reached from the initial state group by firing an
event sequence of length (n− 1) with n > 0 (see Figure 2).

∀(k, l) ∈ [0, n− 1]2, we denote by TEE(l, k) the maximal distance between
dates of the lth and the kth firings, i.e.: TEE(l, k) = maxTM∈E(τk − τl).

Let j be one created token. We denote by fj the number of the firing that
has created the token j, and by [aj, bj] the interval associated with its creating
arc.

Theorem 5.1 Let e∗ be an event enabled for the state group E = (SM,FT ).

• Event e∗ can occur from state group E if and only if:
∀i ∈ Jin(e∗),∀e ∈ ES(SM),∃j ∈ Jin(e),
ai ≤ max(bj + TEE(fi, fj), TEE(fi, n− 1))

• Suppose that e∗ can occur from the state group E and its occurrence leads
to the state group E ′. Distances between previous firings in state group E ′

can be computed using those of state group E as follows:
∀(l, k) ∈ [0, n− 1]2

TEE′(l, n) = mine∈ES(M)(maxj∈Jin(e)(max(bj +TEE(l, fj), TEE(l, n− 1))))
TEE′(n, l) = min(TEE(n− 1, l),mini∈Jin(e∗)(TEE(fi, l) − ai))
TEE′(l, k) = min(TEE(l, k), TEE′(l, n) + TEE′(n, k))

5.1 Simplification of the firing rule

We will define here a simple firing rule which avoids solving systems of in-
equalities or using constraint graphs.

Definition 5.2 Let EE be the set of all reachable state groups of an ITCPN
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model. Let A,B and D be functions which associate with each state group
E = (SM,FT ) of EE, functions AE, BE and DE defined as follows:

• AE : SM → Q, ∀i ∈ SM,AE(i) = min(0, TEE(fi, n− 1) − ai).

• BE : SM → Q,∀j ∈ SM , BE(j) = max(0, bj + TEE(n− 1, fj)).

• DE : SM2 → Q, ∀(i, j) ∈ SM2,
DE(i, j) = max(AE(i),min(BE(j), bj + TEE(fi, fj) − ai))

For the initial state group E0, the associated functions AE0, BE0 and DE0

are defined as follows: ∀(i, j) ∈ SM2
0 ,

AE0(i) = −ai; BE0(j) = bj and DE0(i, j) = bj − ai.

The value of DE(i, j) is intuitively the maximal distance, in group E,
between delays of tokens i and j. The values of −AE(i) and BE(i) are the
minimal and maximal delays of token i, in state group E.

Proposition 5.3 Let E = (SM,FT ) be a state group of EE, e∗ an event,
and ES(SM) the set of events enabled for SM . Event e∗ can occur from state
group E if and only if:
e∗ ∈ ES(SM) ∧
∀i ∈ Jin(e∗),∀e ∈ ES(SM),∃j ∈ Jin(e), DE(i, j) ≥ 0.

Proof. Suppose that:
(1) ∃i ∈ Jin(e∗),∃e ∈ ES(SM),∀j ∈ Jin(e), DE(i, j) < 0.
From expression of DE(i, j), DE(i, j) < 0 if and only if:

bj + TEE(fi, fj) − ai < 0 ∧ TEE(fi, n− 1) − ai < 0.

Relation (1) is equivalent to: ∃i ∈ Jin(e∗),∃e ∈ ES(SM),∀j ∈ Jin(e),
ai > max(bj + TEE(fi, fj), TEE(fi, n− 1))
Using theorem 5.1, we deduce That: event e∗ can occur from E, if and only
if,

∀i ∈ Jin(e∗),∀e ∈ ES(SM),∃j ∈ Jin(e), DE(i, j) ≥ 0

. ✷

The following proposition shows how to compute, using function DE, the
function DE′ of any successor group E ′.

Proposition 5.4 Let E = (SM,FT ) be one group of set EE and e∗ an event
which can occur from E. Let E′ = (SM ′, FT ′) be the state group reached by
firing event e∗ from state group E. The functions AE′ , BE′ and DE′ of the
state group E ′ = (SM ′, FT ′) can be computed using function DE as follows:
∀i ∈ SM ′,

• if i is not created by event e∗:
AE′(i) = mine∈ES(SM)(maxj′∈Jin(e)(min(0, DE(i, j′))))
BE′(i) = maxi∗∈Jin(e∗)(max(0, DE(i∗, i)))

• if i is created by event e∗: AE′(i) = −ai and BE′(i) = bi.

8
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∀(i, j) ∈ SM ′2,

• if i and j are not created by event e∗:
DE′(i, j) = max(AE′(i),min(DE(i, j), AE′(i) +BE′(j)))

• if i or j is created by event e∗: AE′(i) +BE′(j)

Proof. Recall definitions of AE′ , BE′ and DE′ :
∀i ∈ SM ′, AE′(i) = min(0, TEE′(fi, n) − ai)
∀j ∈ SM ′, BE′(j) = max(0, bj + TEE′(n, fj)).
∀(i, j) ∈ SM ′2,
DE′(i, j) = max(AE′(i),min(BE′(j), bj + TEE′(fi, fj) − ai)).
We consider here only the complex case, i.e.: tokens i and j are not new
(fi < n and fj < n). The other cases are more simple and can be shown
similarly. It suffices to show and use progressively the following relations:
(1) max(X,min(Y, Z)) = min(max(X,Y ),max(X,Z))
(2) min(X,max(Y, Z)) = max(min(X,Y ),min(X,Z))
(3) AE(i) ≤ 0,
(4) BE(j) ≥ 0
(5) min(0, DE(i, j)) = min(0,max(TEE(fi, n− 1), bj + TEE(fi, fj)) − ai)
(6) max(0, DE(i, j)) = max(0, bj +min(TEE(n− 1, fj), TEE(fi, fj) − ai))
(7) TEE′(fi, fj) = min(TEE(fi, fj), TEE′(fi, n) + TEE′(n, fj))
(8) BE′(j) = min(BE′(j), BE(j))
(9) AE′(i) = max(AE′(i), AE(i))
(10) AE′(i) = mine∈ES(SM)(maxj′∈Jin(e)(min(0, DE(i, j′))))
(11) BE′(j) = maxi∗∈Jin(e)(max(0, DE(i∗, j)))
Using relations (7), (8), (9) and (1) we show that:
(12) DE′(i, j) = min(AE′(i) +BE′(j),max(AE′(i), DE(i, j)))
Finally, by applying relations (2) and (4), we deduce that:
DE′(i, j) = max(AE′(i),min(AE′(i) +BE′(j), DE(i, j))) ✷

5.2 Bisimulation relation over the set of state groups

We have rewritten the occurrence rule by using only the marking and the
function D. Consequently, all state groups that share the same marking and
the same function D are bisimilar and then can be agglomerated into one
summit.

Definition 5.5 Let EE be the set of state groups and B ⊆ EE2 one binary
relation over EE defined as follows:

∀E1 ∈ EE,∀E2 ∈ EE,
(let SM1 and SM2 be symbolic markings of state groups E1 and E2)
(E1, E2) ∈ B if and only if, it is possible to rename delays in SM2 so as to
obtain: SM1 = SM2 and DE1 = DE2.

Theorem 5.6 Relation B is a bisimulation.

Proof.
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To show that relation B is a bisimulation, it suffices to prove the following:
∀(E1, E2) ∈ B,∀e∗,
(i) E1[[e∗ � E2[[e∗ �
(ii) (E1[[e∗ � E1′ ∧ E2[[e∗ � E2′) ⇒ (E1′ , E2′) ∈ B
Since, it is possible to rename delays in SM2 so as to obtain: SM1 = SM2

and DE1 = DE2,
relations (i) and (ii) are deduced from propositions 5.4 and 5.5 ✷

5.3 Graph of reachable state classes

All bisimilar state groups are agglomerated into one state class. The state
classes of the model are the equivalence classes of relation B.

Definition 5.7 [state class] Let E = (SM,FT ) be a state group of EE. The
state class of group E is the pair (SM,DE).

The building of the state class graph is obtained by applying the firing rule
given in Propositions 5.4 and 5.5, to the initial state class and to each new
state class. The following theorem establishes one necessary and sufficient
condition to have a finite class graph. The proof of this theorem uses the
following proposition shown in [3].

Proposition 5.8 Let Y be a finite linear combination i.e.: Y = n1 × y1 +
n2 × y2 + ...+ nr × yr where n1, n2, ..., nr are integer numbers and y1, y2, ..., yr

are rational constants. If Y is bounded by rational constants (i.e.: a ≤ Y ≤ b)
then the number of different linear combinations is finite. In other words, the
value domain of Y is finite.

Theorem 5.9 An ITCPN has a finite state class graph if and only if, it is
bounded.

Proof. ⇒) is obvious.

⇐) If the model is bounded, it has a finite set of reachable markings.
Since the number of different markings is finite, it suffices to prove that for
a given marking, we have a finite number of different classes that share the
same marking. More precisely, we shall show that for any reachable marking
SM the number of possible DE is finite. For each pair(i, j) of SM2, DE(i, j)
is a finite combination of rational constants with integer coefficients (finite
combination because the number of different time intervals in the model is
finite).
DE(i, j) is bounded: −ai ≤ DE(i, j) ≤ bj.
From proposition 5.8, its value domain is finite. ✷

This necessary and sufficient condition to have a finite graph may be diffi-
cult to use since we have not a general procedure to decide whether or not any
ITCPN has a finite number of different markings. However, we have a straight-
forward sufficient condition using the underlying coloured Petri net (CPN ),
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Fig. 3. Bounded ITCPN but unbounded CPN

and we know several methods to decide this property on CPN, namely the in-
variant method: An ITCPN has a finite number of markings (i.e.: bounded), if
its underlying CPN has a finite number of different markings (i.e.: bounded).
The reverse is not true. Consider the ITCPN given in Figure 3 and suppose
that its initial marking is: M0 = (p1, prod) and its transition functions are
defined as follows: F (t1)(p1, prod) = ((p1, prod), [1, 2])+((p2,mess), [0, 1]) and
F (t2)(p2,mess) = 0.

This model has three reachable markings: M0,M1 = (p1, prod)+(p2,mess)
and M2 = (p1, prod) + 2(p2,mess). But its underlying coloured Petri net is
unbounded (place p2 is unbounded).

If the state class graph is finite and its size is not too big, we can build it
and then prove properties of the model by exploring the graph. It would be
interesting to reduce the size of the graph so as to be able to analyse bigger
models. To reduce the size of the class graph, we propose to agglomerate into
one summit, all classes sharing the same marking. This operation reduces
considerably the size of the graph (by half if every marking is shared by two
classes). The obtained graph is translated into one timed automaton. This
translation is needed to preserve equivalency between the ITCPN state space
and its reduced state space.

6 Translating ITCPN into one timed automaton

6.1 The timed automaton model

A timed automaton is an automaton completed with clocks and temporal
formulas associated with nodes and arcs. Clocks evolve synchronously with
time progression but each one can be reset individually to zero.

Each arc is labelled with one event, one formula (named firing condition)
and one list of initialisations which must be performed when the event occurs.
The firing condition characterises the set of clock valuations for which the
event may occur. Formulas associated with nodes (one per node) are named
validate conditions and specify the sojourn time in each node.
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The state of a timed automaton is defined by the current node and values
of clocks. The model can remain in one node as long as values of clocks
satisfy the validate condition of that node. A node must be left before that
the validate condition becomes not consistent. From a node, the event of an
outgoing arc can occur if and only if current values of clocks satisfy, both,
validate condition of the node and firing condition of the arc.

6.2 Timed automaton of an ITCPN model

From its starting instant, an ITCPN model evolves as follows: first, its remains
in its initial marking until at least one of enabled transitions becomes ready
to occur. At this time, one of the ready transitions occurs and then leads to
another marking. The ITCPN model remains in the reached marking until at
least one of enabled transitions becomes ready to occur, and so on. . . . Recall
that in the ITCPN model, transitions occur as soon as possible (i.e.: when
all required tokens become available).

The timed automaton of an ITCPN model is its marking graph completed
by associating one clock and two parameters with each token, one validate
condition with each marking, one firing condition and one list of initialisations
with each arc. For each token j, we denote by hj, aj and bj its clock and its
two parameters. When a token j is created, its clock hj is initialised with
zero and other time parameters are initialised with bounds of time interval
associated with its creating arc. Afterwards, the value of its clock increases
with time until it is consumed but values of other parameters do not change.

6.3 Validate condition of a marking

Let SM be a symbolic marking and ES(SM) the set of events enabled for
the symbolic marking SM . The model remains in symbolic marking SM until
at least one of enabled transitions becomes ready to occur (i.e.: all required
tokens become available). In other words, it remains in symbolic marking SM
as long as for each enabled event there is at least one of its consumed tokens
which is not yet available or, at last, which becomes available:

∀e ∈ ES(SM),∃j ∈ Jin(e), hj ≤ bj
Which is equivalent to: mine∈ES(SM)(maxj∈Jin(e)(bj − hj)) ≥ 0.

6.4 Firing condition of an enabled event

Let SM be a symbolic marking and e∗ an event enabled for the marking SM .
The firing condition of event e∗ indicates all possible clock valuations at which
the event can occur. For the ITCPN model, an event should occur when all
required tokens become available. The firing condition of event e∗ from the
symbolic marking SM is defined as follows: ∀j ∈ Jin(e∗), aj ≤ hj.
Which is equivalent to: maxj∈Jin(e∗)(aj − hj) ≤ 0.

12
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Fig. 4. A timed automaton

For example, consider the model of Figure 1 and its initial symbolic mark-
ing SM0: ((pfree,M1), h1, [a1, b1])+((pin, J1), h2, [a2, b2])+((pin, J2), h3, [a3, b3])
with [a1, b1] = [2, 2], [a2, b2] = [1, 1] and [a3, b3] = [2, 2].
There are two enabled events for symbolic marking SM0:
e0 = (t1, ((pfree,M1), h1, [a1, b1]) + ((pin, J1), h2, [a2, b2])) and
e1 = (t1, ((pfree,M1), h1, [a1, b1]) + ((pin, J2), h3, [a3, b3])).
The validate condition of the initial marking SM0 is:
min(max(b1 − h1, b2 − h2),max(b1 − h1, b3 − h3)) ≥ 0.
The firing conditions of events e0 and e1 are:
FC(e0) = max(a1 − h1, a2 − h2) ≤ 0 and
FC(e1) = min(a1 − h1, a3 − h3) ≤ 0

An ITCPN and its associated timed automata have the same behaviours,
since the starting points and rules for evolutions are the same in both cases.
The timed automaton of an ITCPN is finite if and only if, the ITCPN model
has a finite set of reachable markings.

7 Application

For example, applying our approach for the ITCPN of Figure 1, produces the
timed automaton shown in Figure 4.

Where:
SM0 = ((pfree,M1), h1) + ((pin, J1), h2) + ((pin, J2), h3)
SM1 = ((pin, J2), h3, [a3, b3]) + ((pbusy, (M1, J1)), h4, [a4, b4])
SM2 = ((pin, J1), h2, [a2, b2]) + ((pbusy, (M1, J2)), h4, [a4, b4]))
CV0 = (min(max(b1 − h1, b2 − h2),max(b1 − h1, b3 − h3)) ≥ 0)
CV1 = (b4 − h4 ≥ 0).
CV2 = (b4 − h4 ≥ 0).
e0 = (t1, ((pfree,M1), h1, [a1, b1]) + ((pin, J1), h2, [a2, b2]))
e1 = (t1, ((pfree,M1), h1, [a1, b1]) + ((pin, J2), h3, [a3, b3]))

13
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e2 = (t2, ((pbusy, (M1, J1)), h4, [a4, b4]))
FC(e0) = (max(a1 − h1, a2 − h2) ≤ 0)
FC(e1) = (max(a1 − h1, a3 − h3) ≤ 0)
FC(e2) = (a4 − h4 ≤ 0)
L0 : h4 = 0; a3 = 2; b3 = 2; a4 = 1; b4 = 3.
L1 : h4 = 0; a2 = 1; b2 = 1; a4 = 1; b4 = 3.
L2 : h1 = 0;h2 = 0; a1 = 2; b1 = 2; a2 = 1; b2 = 1.
L2′ : h1 = 0;h3 = 0; a1 = 2; b1 = 2; a3 = 2; b3 = 2.
Initially, we have: a1 = b1 = 2; a2 = b2 = 1 and a3 = b3 = 2.

8 Conclusion

We have shown how to contract the state space of the ITCPN model. We have
distinguished three levels of contraction. In the first level, we have agglom-
erated, into one group, all states reached by the same occurrence sequence.
Afterwards, we have established an attractive bisimulation relation, over the
set of groups, that allows both agglomerating, into one class, all bisimilar
groups, and simplifying the building of the class graph. Finally, all classes
that share the same marking are agglomerated into one summit. The ob-
tained marking graph is translated into one time automaton which is coherent
and well timed. Moreover, since there is a finite reachable classes that share
the same marking, we think that all these characteristics can be exploited to
simplify the proof of some properties.

Furthermore, the obtained timed automaton can be more contracted with
a colour based equivalence as shown in [4].
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