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Bispectrum Features and Multilayer 

Seizure Prediction
Bou Assi , Laura Gagliano , Sandy , Dang K. Nguyen Sawan

<

Epilepsy is a chronic condition characterized by recurrent ‘unpredictable’ seizures. While the first line of treat-
ment consists of long-term drug therapy, more than a third of patients are pharmacoresistant1. The availability of 
several new antiepileptic drugs over the last two decades helped in reducing the risk of adverse events but their 
impact on the rate of seizure control is only modest2. In addition, recourse to epilepsy surgery remains low in part 
due variable success rates depending on the complexity of the case at hand, accessibility, and persisting negative 
attitudes towards it and fear of complications3,4.

Predicting the possible occurrence of seizures is an unmet medical need and such capability can lead to novel 
therapeutic avenues to treat patients with refractory epilepsy. Unlike seizure detection, seizure prediction can 
foresee the possibility of future occurrence of seizure in advance, thus allowing medical intervention to poten-
tially prevent the seizures or reduce their magnitude and/or frequency. However, the ability to accurately identify 
the pre-seizure state remains elusive. Despite several attempts to identify a specific and unique feature that can 
be used to predict seizures, no single characteristic has been established as a potential and universal precursor of 
epileptic seizure activity5–7.

The commonly used feature in seizure prediction, the spectral band power, is derived from the frequency 
domain characteristics of electroencephalography (EEG) signals8. It quantifies amplitude modulations across 
time, within the defined frequency bands. While the spectral band power displays phase changes, it cannot iden-
tify interactions among frequency components of the signal. However, information regarding multi-frequency 
behaviors can be captured by more complex metrics, related to the concept of cross-frequency coupling (CFC)9. 
Recently, Alvarado-Rojas et al. (2014) introduced a new measure of brain excitability based on phase-amplitude 
coupling (PAC), consisting of a slow (delta, theta) modulation of high (gamma) frequency intracranial EEG 
(iEEG) signal’s components10. They reported promising prospective results suggesting that preictal PAC modu-
lations may be significant for the whole group of patients (p < 0.05). We later showed the existence of significant 
difference in mean PAC distribution between the preictal and interictal states on bilateral canine iEEG record-
ings11. Furthermore, Bandarabadi et al. (2015) reported promising results with a new bivariate feature (although 
not termed as CFC) quantifying the cross-power information between two different frequency bands (assessed 
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in terms of power spectral density) and two different channels12. Overall, these findings suggest that seizure pre-
diction may be possible using cross-frequency coupling. In contrast to the previously discussed measures, higher 
order spectral measures based on CFC have been proposed to be the carrier mechanism for the relationship 
between global and local neuronal processes9.

The bispectrum is an advanced signal processing technique based on higher order statistics which considers 
both the amplitude and the degree of phase coupling of a signal. In contrast to traditional power spectrum, which 
quantifies the power of a time series over frequency, higher order spectral (HOS) analysis employs the Fourier 
transform of higher order correlation functions to explore the existence of quadratic (and cubic) non-linear cou-
pling information. Although the bispectrum has shown promising results within the context of seizure detection 
and EEG signals classification13, it has not yet been used for seizure prediction. In this work, we investigated the 
suitability of the bispectrum in quantifying changes between the interictal and preictal states. Adequate statistical 
tests were employed to assess if there are significant differences among the quantified changes. A seizure predic-
tion algorithm employing a multilayer perceptron (MLP) neural network was used, showing good performances 
in classifying preictal and interictal samples. The seizure prediction algorithm was designed and tested to perform 
an automatic classification of preictal and interictal samples. Such algorithm could eventually be embedded in 
an advisory/intervention closed-loop system, resulting in a life-changing solution for patients with refractory 
epilepsy.

All methods were carried out in accordance with relevant regulations and guidelines. The procedure for data 
acquisition and distribution had prior approval of the University of Minnesota Institutional Animal Care and Use 
Committee where the animals are maintained14.

HOS analysis features were extracted from interictal and preictal iEEG recordings of 3 mixed 
hounds implanted with the NeuroVista ambulatory monitoring device. These recordings were downloaded from 
the NIH-sponsored international electrophysiology portal (https://www.ieeg.org/). The NeuroVista ambulatory 
monitoring device consists of an implantable lead assembled in line with a telemetry unit and a personal advisory 
device. Data were acquired at 400 Hz using 16 channels (4 × 4 contact electrode strips) implanted bilaterally 
according to a standardized canine implantation protocol14. Preictal and interictal segments were extracted from 
the iEEG recordings of dogs with naturally occurring focal epilepsy. In line with previous investigations11,15,16 and 
the American Epilepsy Society seizure prediction challenge consensus, preictal segments consisted of recordings 
of 1 hour prior to seizure onset with a 5 min intervention time. Interictal segments were randomly chosen from 
the entire recording with a restriction of 4 hours before or after a seizure.

Higher order spectral analysis is an advanced signal processing method that allows 
exploring the existence of quadratic (and cubic) non-linearities. In contrast to traditional power spectrum, which 
quantifies the power of a time series over frequency, HOS analysis employs the Fourier transform of higher order 
correlation functions investigating non-linear coupling information. The bispectrum splits the skewness (third 
order moment) of a signal over its frequencies, quantifying the coupling between a signal’s oscillatory compo-
nents. The bispectrum, quantifying oscillatory relationships between basic frequencies f1, f2, and their harmonic 
component “f1 + f2”, is computed from the Fourier transform of the third-order correlation (1).
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where X(f) is the Fourier transform of a time series x(t), (*) is the complex conjugate, and E denotes the arithmetic 
average estimator.

In order to characterize and compare time series, quantitative features 
must be extracted from the bispectral density array. Bispectrum analysis yields a 2D mapping of the level of inter-
action between all frequency pairs in the signal. In order to characterize and compare time series, quantitative 
features must be extracted. In this work, three features were computed from the non-redundant region (shown 
in Fig. 1): the mean magnitude (Mave) of the bispectrum, the normalized bispectral entropy (P1) and the nor-
malized squared bispectral entropy (P2). The mathematical equations of extracted features are briefly explained:

The first feature, bispectrum’s mean of magnitude (Mave) (2), has been used commonly to extract quantitative 
information from the bispectrum13,17.
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where L = total number of sample points in the bispectral density array, and Ω refers to the non-redundant region 
defined in Fig. 1. In an attempt to extract regularity from bispectrum plots, normalized bispectral entropy (P1) 
and normalized bispectral squared entropy (P2) have been proposed recently13 and were used in this work:
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where n = 0, 1, … n − 1 and n is the number of bins.
A 30-sec non-overlapping moving window was used to compute the bispectrum and its subsequent features 

from epileptic canine iEEG recordings.
Zero-phase notch (cut-off frequency = 60 Hz) and band pass filtering in the frequency range [0.5–180] Hz 

were performed to keep signals’ phase intact. The higher order spectral analysis (HOSA) Matlab© toolbox was 
used to extract the bispectrum. Following equation (1), the bispectrum matrix was estimated for all possible fre-
quency pairs (f1, f2) in the range [0.5–180] Hz based on the direct fast Fourier transform approach.

Statistical analysis. To assess bispectrum related features’ capability in distinguishing between interictal 
and preictal iEEG recordings, a statistical analysis was performed to measure the level of statistically significant 
differences between the three features extracted from 30-sec non-overlapping windows.

Firstly, the general level of interaction between the type of recordings (interictal vs. preictal) and the values 
of each feature were evaluated for each dog, using one-way ANOVA. This analysis indicates whether there is a 
statistically significant difference between preictal and interictal recordings for each of the three features.

One-Way ANOVA was preferred over Student’s t-test, since the data were randomly and independently 
selected from the entire record and multiple features were compared.

Then, to assess the spatial localization of the change in bispectral features during the preictal period, the dis-
tribution of each feature for each hour of the preictal recordings (120 samples) was compared to the features for 
one hour of the interictal recordings, selected from the same electrode, with the restriction of 4 hours prior to 
the preictal time, by the Mann-Whitney U-Test. A p-value < 0.05 from this test indicates statistically significant 
difference.

Finally, for each feature, a color map of the brain was created to visualize the percentage of the seizures at each 
electrode for which the difference measured by the Mann-Whitney U-Test is significant at a confidence level of at 
least 95%. This representation allows a visualization and identification of the brain regions where the changes in 
bispectral features are most prominent during preictal periods.

Network Architecture. To assess the feasibility of seizure prediction based 
on bispectral features, a 5-layer MLP neural network classifier was trained to differentiate preictal and interictal 
recordings. Different classifier configurations were trained for each feature. The input layer consisted of 16 nodes 
(16 channels). The first, second and third hidden layers, respectively, consisted of 30, 60, and 30 nodes (ReLu 

Figure 1. 2D Bispectrum color map highlighting the non-redundant region used in feature extraction; 
FFT = Fast Fourier Transforms. Axes coordinates display relative/normalized frequencies where 0.5 represents 
the maximum frequency (180 Hz). Color indicates degree of coupling (Bispectral value) between f1 and f2.
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activation function). The output layer contains 2 nodes for a binary decision function (Preictal vs Interictal). A 
stochastic gradient decent optimizer was used during backpropagation. The fitness function was the classification 
cross entropy. Training iterated through 10,000 epochs with a learning rate of 0.001 and a training and validation 
batch size of 200 samples. Figure 2 shows the architecture of the implemented neural network. All algorithmic 
development steps were performed on PyTorch, an open source Python-based machine learning library.

Data Splitting and training strategy. Held-out validation and test were performed. A total of 45 seizures were 
included in the analysis. A subject-specific algorithm was implemented. Features were extracted using a 30-sec 
non-overlapping moving window (total of 10’800 classification samples). Training, validation, and testing data 
were respectively in the following proportions: 40%, 30%, and 30%. To avoid any contamination, time correlation 
or leakage, the data (train, validation, and test) were split on a seizure per seizure basis.

More specifically, the whole preictal period (1 hour segmented using a 30-sec non-overlapping window) of a 
considered seizure was used for either training, validation, or testing. Splitting samples from the same preictal 
period (although not identical) into training, validation, and testing may prompt the classifier to learn tempo-
ral correlations rather than class information. This, in turn, would result in overoptimistic classification perfor-
mances. The proposed strategy ensured that preictal samples originating from seizures used in training were 
neither assessed during validation nor testing.

Results
Statistical analysis. ANOVA – Global assessment of significance. One-way ANOVA tests were conducted 
for each dog to compare HOS features extracted from preictal and interictal iEEG recordings. Results from these 
variance tests are shown in Table 1 and in the box-and-whisker plots in Fig. 3. For the bispectral magnitude 
(Mave), the distributions from two of the three dogs show a slight decrease in magnitude during the preictal 
phase, while the ANOVA tests for all three dogs indicate that preictal and interictal Mave distributions are sta-
tistically different at a confidence of at least 95% (Dog 2: F1,4078 = 6.07, p < 0.05; Dog 3: F1,4078 = 167, p < 0.001; 
Dog 4: F1,2638 = 18.5, p < 0.001). As for the normalized bispectral entropy (P1), distributions from all three dogs 
show a general decrease in P1 values during the preictal phase and the ANOVA tests confirm that the difference 
in P1 distributions between preictal and interictal recordings is statistically significant in all three dogs (Dog 2: 
F1,4078 = 2480, p < 0.001; Dog 3: F1,4078 = 98.3, p < 0.001; Dog 4: F1,2638 = 2340, p < 0.001). Finally, the normalized 
squared bispectral entropy (P2) values generally decrease while variances of the distributions increase during 
transition to seizure. The differences between the two P2 distributions are statistically significant for all three dogs 
(Dog 2: F1,4078 = 2800, p < 0.001; Dog 3: F1,4078 = 346, p < 0.001; Dog 4: F1,2638 = 1360, p < 0.001). These strong 
significant differences imply that interictal and preictal recordings are statistically distinguishable based on the 
three HOS features tested.

Mann Whitney – Inter seizure assessment of significance. The second statistical test aimed to evaluate the poten-
tial patient-specific seizure prediction capability of the three HOS parameters by analyzing the spatial distribution 
of the iEEG channels, for which the bispectral changes are most prominent. The HOS parameters extracted from 
30-sec non-overlapping windows for a total of 45 preictal hours were compared to 45 interictal hours channel per 
channel. The Mann-Whitney U test was used to compare specific bispectral feature distributions for each seizure 
and each channel. The results of the specific statistical comparison tests are presented in Fig. 4. The colormaps 
represent the percent of predictable seizures, occurring in each dog, for which each specific feature distribution 
is statistically different (p < 0.05) during the preictal hour at that channel. For dog 2, the P1 and P2 distributions 
change significantly during the preictal periods for 100% of the seizures (n = 17) at several contacts located in 
both hemispheres (Fig. 4, top).

Furthermore, these specific regions of consistent bispectral change coincide with the regions of most prom-
inent cross-frequency phase-amplitude coupling (PAC) change, which we identified in an earlier study11. These 
regions include channels 2 and 5 in the left hemisphere and channels 10 and 14 in the right hemisphere. For dog 
3, mean magnitude (Mave) and normalized bispectral entropy (P1) show significant distribution changes during 
preictal periods for 100% of the seizures (n = 17). As shown in Fig. 4 (middle), these distribution changes are 
most prominent at channels 1, 5 and 6 in the left hemisphere and channels 10 and 13 in the right hemisphere.

Figure 2. Artificial neural network architecture. The input layer consists of 16 nodes. The first, second, and 
third hidden layers respectively consists of 30, 60, and 30 nodes. The output layer features 2 nodes for a binary 
classification.
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This spatial distribution of preictal bispectral feature change, again, coincides with the spatial distribution of 
preictal PAC change for this dog identified in our previous study11. Finally, for dog 4, the mean bispectral mag-
nitude and normalized bispectral entropy showed most consistent seizure prediction potential. Once again, as 
shown in Fig. 4 (bottom), there was a statistically significant change in Mave and P1 during progression to seizure 
for 100% of the seizures (n = 11) in bilateral regions, which coincide with those we identified as PAC change 
regions in Gagliano et al.11. These channels include 3, 4, 6, 7 and 8 in the left hemisphere and channel 13 in the 
right hemisphere.

As previously mentioned, a 5-layer MLP was trained to classify interictal 
and preictal samples. As shown in Table 2, average test accuracies of 78.11%, 72.64%, and 73.26% were achieved 

Dog 
ID

Nb. 
Seizures

Mave P1 P2
Pre Inter F, p Pre Inter F, p Pre Inter F, p

0002 17 (4,080) 3.31e3 ± 3.30e3 3.49e3 ± 2.57e3 F = 6.07,
p = 0.0138 4.79 ± 0.30 4.94 ± 0.21 F = 2480,

p = 0* 3.45 ± 0.53 3.71 ± 0.45 F = 2800,
p = 0*

0003 17 (4,080) 1.79e3 ± 1.04e3 2.02e3 ± 1.24e3 F = 167,
p = 4.113e-38 4.49 ± 0.24 4.75 ± 0.28 F = 98.3,

p = 3.67822e-23 3.35 ± 0.46 3.26 ± 0.43 F = 346,
p = 5.50e-77

0004 11 (2,640) 7.44e3 ± 1.46e3 5.99e3 ± 4.33e3 F = 18.5,
p = 1.75e-5 4.05 ± 0.38 4.72 ± 0.34 F = 2340,

p = 0* 3.04 ± 0.59 3.28 ± 0.51 F = 1360,
p = 3.26e-292

Table 1. Mean values of HOS features and One-Way ANOVA global statistical analysis results. Mean values 
and standard deviation of HOS features for each dog were computed using recordings from all available 
seizures. Independent Analysis of Variance tests comparing preictal and interictal HOS feature distributions 
were conducted on recordings of each dog. Nb. Seizures: total number of seizures; the numbers in parentheses 
indicate the total number of 30-sec data samples used in the comparison; F: F statistic of one-way ANOVA; p: 
p-value of one-way ANOVA indicating probability that the null hypothesis (HO) is falsely rejected (HO: preictal 
and interictal feature distributions have equal means), *p-value is less than Matlab’s digit precision = 4.9407e–
324.

Figure 3. Box and Whisker plots for all features from all three dogs. The red central mark indicates the median, 
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and the whiskers extend 
to the most extreme data points to a maximum of 1 times the interquartile range. Outliers are points located 
beyond the whiskers and are marked with a red ‘+’. The columns from left to right show plots for Mave, P1 and 
P2, while the rows correspond to the 3 dogs. All available seizures are included in these box plots.
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using features P1, P2, and Mave, respectively. Table 2 reports performance results, in terms of accuracy, during 
training and testing, for all features from the 3 dogs. Training and testing performances were close in the case of 
P1 and P2, whereas it was not in the case with the Mave feature, suggesting that the latter may be less useful for 
seizure prediction. An early stopping strategy was used during training. Training and validation were iterated 
through 10’000 epochs. Checkpointing was performed on a 10 epochs basis (save classifier model). The best 
model was chosen as the latest saved classifier model before validation loss starts increasing. The model was then 
assessed on held-out test data.

Discussion
In this work, we have examined the ability of HOS features in distinguishing preictal from interictal iEEG record-
ings in canines implanted with the NeuroVista ambulatory monitoring device. To our knowledge, this is the first 
investigation of the bispectrum within the context of seizure prediction. Unlike power spectrum (commonly 
used in forecasting studies), the bispectrum preserves phase information, which is useful for displaying quad-
ratic nonlinear coupling between the different frequency components of the signal. Results highlight the feasi-
bility of seizure forecasting, based on higher order spectra. These results compliment previous investigations of 
cross-frequency analysis, namely phase-amplitude coupling for seizure forecasting10,11. In addition, prominent 
performances of EEG-bispectrum features were reported within the context of EEG signal classification13. Chua 
et al. 2009 demonstrated a significant difference between EEG recordings from healthy and epileptic patients, 
using a one-way ANOVA test13.

ANOVA statistical analysis results revealed a general tendency for P1 and P2 features to decrease during the 
preictal state (decrease in mean amplitude for all 3 dogs). As these features display irregularity in the properties of 

Figure 4. Mann-Whitney statistical test results: percentage of predictable seizures using each of the extracted 
features (p < 0.05). From top to bottom: Dog 2, Dog 3, Dog 4. Each cell represents a combination of a HOS 
feature and a contact. Dark red color indicates that 100% of seizures showed a statistically significant change in 
that feature during the preictal period at that specific contact.

P1 P2 Mave
Train 
Acc. (%)

Test  
Acc. (%)

Train 
Acc. (%)

Test  
Acc. (%)

Train 
Acc. (%)

Test  
Acc. (%)

Dog A002 84.23 76.71 79.81 77.61 94.23 61.84
Dog A003 71.71 67.23 75.58 61.52 79.26 67.15
Dog A004 90.89 90.40 83.36 78.78 94.58 90.80
Mean 82.8 78.11 79.58 72.64 89.36 73.26

Table 2. Multilayer Perceptron-based classification results.
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iEEG signals, it seems that the iEEG characteristics tend to become more regular during the preictal state. These 
findings are in agreement with previous dimension analysis of EEG studies, which showed that seizures can be 
considered as emergent brain states with reduced complexity as compared to non-seizure activity18,19. As empha-
sized in20, it appears that a loss of complexity is associated with functional impairment of biological systems. In 
addition, Mann-Whitney test results confirmed the observed decrease of irregularity, while displaying a more 
normal distribution of interictal values as compared to preictal ones (Fig. 5).

The use of the NeuroVista database allowed investigating the bilateral nature of HOS changes. Although dogs 
were diagnosed with focal epilepsy11,15, bilateral preictal HOS changes were found in 2 of the 3 dogs. Interestingly, 
these findings correlate with our previous PAC-based preictal changes11. Unfortunately, we were unable to corre-
late these findings with respect to the exact location of the seizure onset zone, as this information is not provided 
within the dataset.

Recent reports have shown that high frequency oscillations can be used as a predecessor of seizure activ-
ity21. Considering the sampling frequency limitation imposed by the NeuroVista ambulatory monitoring device 
(Fs = 400 Hz), we were unable to explore quadratic non-linear coupling at the HFO level.

In this work, we did not explore the interaction among pre-defined frequency bands (standard iEEG fre-
quency bands). The whole available frequency range was included in the analysis. The fact that standard iEEG 
frequency bands are used in power spectrum-based analysis does not necessarily justify their use in bispectrum 
analysis. Although this research avenue is tempting, it goes beyond the focus of this manuscript.

In this manuscript, we have demonstrated the suitability of MLP neural networks for the classification of 
interictal and preictal samples based on bispectrum-extracted features. Considering the image-based nature of 
bispectrum plots, it would be interesting to investigate the use of other types of neural networks’ architectures, 
namely, convolutional neural networks (CNNs). The design of seizure predictors, combining raw bispectrum 
plots and CNNs, is a tempting approach that may improve seizure prediction capabilities.

Each of the aforementioned features was used as an input to a seizure prediction algorithm. To avoid any bias, 
no previous assumption (based on the statistical analysis) was included during the seizure forecasting algorithm 
design. For each feature, all electrodes were used as inputs to a 5-layer MLP neural network. We ensured ade-
quate performance evaluation and employed rigorous methodology to avoid reporting overoptimistic results: (1) 
data were split into training, validation, and testing; (2) Splitting was performed on a seizure per seizure basis 
to avoid leakage, or time correlation; and (3) Held-out validation and testing were performed. As in previous 
seizure forecasting investigations, results highlight that changes are not homogenous across the tested dogs and 
that subject-specific algorithms are required. It is worth mentioning that no post-processing has been performed 
in this work in an attempt to improve forecasting capabilities. Our objective was to test the capability of a neural 
network for individually classifying feature samples extracted from 30-sec iEEG samples as preictal or interic-
tal. Future perspectives include extrapolating this methodology to a continuous seizure prediction framework 
which takes into account time-based modulation of HOS features. Such algorithms could be implemented into 
closed-loop intervention systems for advisory or intervention purposes.

Conclusions
In conclusion, this work can be considered as a proof of principle study on the feasibility of seizure prediction 
based on HOS features. We have demonstrated statistically significant differences between preictal and interictal 
iEEG recordings for all the computed features. In addition, HOS analysis showed promising forecasting perfor-
mances, when used as inputs to a neural network classifier. Additional studies assessing the performance of HOS 
features for seizure forecasting, ideally in a quasi-prospective setting, are necessary to advance the development 
of seizure advisory/intervention devices.

Figure 5. Distribution of P1 values during preictal (left) and interictal (right) periods. Each distribution 
represents values extracted from 1 h of continuous recording from Dog 2.
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