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Abstract

Recent hurricane seasons have demonstrated the need for more effective methods of coping with

flooding of roadways. A key complaint of logistics managers is the lack of knowledge when

developing routes for vehicles attempting to navigate through areas which may be flooded. In

particular, it can be difficult to re-route large vehicles upon encountering a flooded roadway. We

utilize the Canadian Traveller’s Problem (CTP) to construct an online framework for utilizing

multiple vehicles to discover low-cost paths through networks with failed edges unknown to one

or more agents a priori. This thesis demonstrates the following results: first, we develop the

`-CTP framework to extend a theoretically validated set of path planning policies for a single

agent in combination with the iterative penalty method, which incentivizes a group of ` > 1

agents to explore dissimilar paths on a graph between a common origin and destination. Second,

we carry out simulations on random graphs to determine the impact of the addition of agents on

the path cost found. Through statistical analysis of graphs of multiple sizes, we validate our

technique against prior work and demonstrate that path cost can be modeled as an exponential

decay function on the number of agents. Finally, we demonstrate that our approach can scale to

large graphs, and the results found on random graphs hold for a simulation of the Houston metro

area during hurricane Harvey.
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1 Introduction

Since the 1980’s, the United States has seen a drastic increase in billion-dollar

(inflation-adjusted) disasters, from an overall average of 6.5 per year to 13.8 per year in the most

recent decade (2010-2019) [32]. While flooding and tropical cyclones contribute to only 29.5%

of the frequency of billion dollar disasters, they contribute to 62.2% of the total monetary costs

and 53.3% of the deaths [32]. The trends in the warming of the Earth indicate that the potential

exists for further increases in the severity of cyclones and similar events [20]. Smaller, nuisance

flood events have increased in frequency for coastal cities from once every five years to once

every three months in the last 50 years of coastal flood tracking [33]. In order to adapt to the

changing climate and increase our capabilities to respond to disasters in the future, we must

utilize our finite capability to respond in the most efficient and efficacious manner possible.

In disasters, infrastructure of varying types can be disrupted. These disruptions lead to

deprivation of critical resources such as electricity or water [25]. Certain vulnerable populations

are more sensitive to these types of disruptions, including patients in hospitals and displaced

populations in shelters. Without access to electricity, patients that are critically ill and sustained

by equipment rely upon backup generators [35]. Water infrastructure is particularly vulnerable to

disasters due to effects such as loss of power or contamination of water sources. As such,

sheltered populations in areas that experience disruption in water utilities require water to be

brought in from outside the disaster impact area. In both the described cases, ensuring affected

populations have access to fuel and water via truckload is critically important to preventing

long-term injury or death due to deprivation.

Flooding and water-related disasters are major disruptors of road networks and directly inhibit

the ability for ground-based operations in impacted areas [12, 17]. Unlike earthquakes and

damage due to wind which require extensive debris removal operations to return roads to a

passable state, the depth of water on a road is typically based upon an accumulation of water

which will recede given a net outflow of water from an area. There exists an extensive body of
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work into the modeling of flood events. Computational tools are available which can predict the

scope and depth of flood events based on predicted rainfall amounts and topology, among other

things [19, 34]. Typically, direct flood level measurement devices are located on rivers to measure

fluvial flooding; this neglects the ability to measure surface (pluvial) flooding on roadways due to

heavy rain events in urban areas. Flood models can provide estimates which span entire metro

areas, which provides more information than could possibly be directly observed in a

cost-effective manner.

The motivating question of this thesis is as follows: given a set of predictions (and no initial

direct observations) about the level of flooding for all edges in a road network, how can we

incorporate this data in combination with real-time observations of disrupted links, discovered

while traversing the network, to utilize limited logistics resources more effectively? The answer

to this question may enable government agencies and commercial entities to more efficiently and

effectively carry out logistics operations in the aftermath of disasters. Route planning and graph

search have been key areas of focus for many research communities, with results in fields as

varied as transportation, robotics, and artificial intelligence. Algorithms which find shortest paths

with full knowledge of graph status are abundant and computationally efficient, such as

Dijkstra’s, Floyd-Warshall and A*[1]. Developing solutions based upon partial information

requires building upon this foundation. However, these plans assume perfect information about

the network at hand; an unrealistic assumption at best and deadly at worst during disasters.

Moving away from deterministic frameworks requires that solutions incorporate a state space of

scenarios, increasing the complexity of computing solutions. One of the first investigations of

shortest paths in networks with edge failures is in Andretta et al. [4], which investigates the

Stochastic Shortest Path with Recourse (SSPR) on a directed network. SSPR takes into account

that initial plans may include arcs which fail, and generates secondary (recourse) plans upon

updating their knowledge of the true state of the network. A problem formulation which builds

upon SSPR is the Canadian Traveler’s Problem (CTP). In this formulation as initially presented
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by Papadimitriou and Yannakakis [26], an initial road map is known, but certain roads (unknown

to the agent before embarking on their journey) may be inaccessible to an agent. Due to the

robust theoretical and experimental body of literature developed in the last 30 years, we adapt

CTP to answer our motivating question.

When attempting to find an optimal route through a disrupted network using predictions of edge

status, the best possible plan is that with the lowest expected cost across all potential

configurations of failed edges [7]. Because the state space of CTP is exponential in the size of a

graph, this is a computationally difficult task. There exist a number of heuristic policies which

perform well when estimating the expected costs, but regardless of the expectation decision

makers must deal with the actual trafficability of roads. A strategy widely utilized is managing

exploration and exploitation. A single agent utilizing an optimal policy could be considered close

to a depth-first search; they explore only as much as the adjacent arcs they see, but travel directly

along what we anticipate to be the path with the lowest cost. Utilizing multiple agents increases

the rate of learning the true configuration of the network, at the cost of consuming more

resources. When considering the multi-agent CTP, a number of papers have been written on its

theoretic properties which support the thought that exploration is beneficial to the overall

solution, but the results are represented in worst-case competitive ratios that would lead to

unacceptable travel times in most real-world applications. The author knows of only one

experimental result which exists in the multi-agent CTP literature from Shiri and Salman [29],

but the evidence provided points to more realistic performance.

This thesis seeks to rigorously experimentally validate the theoretical work to date on the CTP

with multiple agents, which we denote as `-CTP to align with the usage of the letter ‘L’ as a

variable for number of agents in theoretical results [38, 6]. First, we expand upon prior

experiments in the the literature and develop a formulation of `-CTP. We implement this

formulation and adapt existing heuristic policies to enable agents to utilize the information

learned by other agents and collaborate to plan dissimilar routes. We show that our adapted
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heuristic policies `-CTP generate shorter paths than multi-agent CTP algorithms currently in the

literature through statistical analysis of simulations. Second, we quantify the benefits of adding

agents by carrying out instances of `-CTP across a variety of randomly-generated Delaunay

graphs. As a side effect of testing multiple routing strategies, we provide evidence and intuition

for heuristic policy `-CTP variants which lead to low costs. Finally, we implement an instance of

`-CTP on a case study generated from flooding prediction of Hurricane Harvey’s impact on the

city of Houston, Texas in 2017 to demonstrate the potential real-world benefits of this framework.

As part of this analysis, we find that the model which describes the results on randomly generated

graphs holds for the graph of the city of Houston.

The remainder of this thesis is organized as follows. Section 2 provides a problem framework for

`-CTP . Section 3 is a literature review of similar works in single agent CTP and multi-agent

CTP. Section 4 describes in detail the algorithms and heuristics utilized in experiments. Section 5

provides an overview of the experiments using random graphs, the experiments which provide

policy-specific penalties and a real-world case study on using `-CTP to model response logistics

on disrupted Houston road networks during Hurricane Harvey. Section 6 provides results and

Section 7 summarizes critical findings from these results, limitations of this study, and areas for

future investigation.

2 Problem Formulation

The Canadian Traveler’s Problem (CTP) comes from the following general idea: a driver has a

map of a city and is attempting to make their way to some destination, but the weather conditions

are such that the only way to know if a road is clear is to observe it in person [26]. Our work

builds upon results from Eyerich et al. [15], as it provides one of the most compelling sets of

experimental results for single agent CTP with a framework which can be relatively easily

expanded to multiple agents.

An instance of `-CTP is a 7-tuple: (V, E, p, c, vo, vd, L), defined as follows.
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• (V,E) are the set of vertices and edges, respectively, that define a graph. E are undirected

edges.

• 0 < pe ≤ 1, ∀e ∈ E is the probability that edge e ∈ E is available for travel. As such, our

value of p defines the Bernoulli distribution of that specific edge, where a success (1)

indicates the edge is available, and a failure (0) indicates the edge is not available.

• ce ∈ R+
∗ , ∀e ∈ E are the costs for an agent to travel along edge e ∈ E.

• vo ∈V, vd ∈V \ vo are our origin and destination vertices, respectively.

• L is the set of agents which are instantiated at the beginning of a problem. While |L|= 1 is

valid in our problem definition, we focus on |L| ≥ 2.

For each instance of `-CTP, a set of failed arcs initially unknown to agents are generated. We

define a weather, W ⊆ E, as a set of traversable edges in a CTP instance. W is generated by

carrying out a Bernoulli trial on edge e, denoted as B(e). Our weather can be defined as

W = {e ∈ E |B(e) = 1}. If the weather W contains a path from vo to vd , we define the weather as

good, otherwise if no path exists the weather is defined as bad. We make two assumptions with

respect to W :

• W remains constant throughout the CTP instance - edges do not change their availability

before or after they are observed by an agent. This assumption holds in real-world

applications when the rate of change in the road network is slower than the travel times of

our agents.

• Every W admitted to a CTP instance is good - in our experiments, we do not generate

useful data by testing over instances with no feasible path from our origin to our

destination.

Given a weather, the goal is for one or more of the agents at vo to travel to vd incurring the lowest

cost possible. The cost incurred by an agent is denoted z`. We judge the performance of a set of
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agents as the minimum cost path identified across all agents:

min
`∈L

z`. (1)

For the comparison of our results with those found by Shiri and Salman, we define competitive

ratio. We divide the lowest cost path found by an agent, as defined in eq. (1), to the offline

shortest path cost z∗ with full knowledge of W :

min
`∈L

z`
z∗
. (2)

We focus on optimizing the shortest agent path, with the goal of finding an available path with as

little cost incurred as possible. The thought is that we are scouting a guaranteed path using

smaller, lower cost vehicles (e.g., pickup trucks) before sending a larger vehicle filled with

supplies (e.g., tractor trailer) along the guaranteed path. An instance of `-CTP starts with all

agents initially located at vo. As agents explore vertices chosen for their expected low cost, edges

adjacent to the vertices are observed and compared to the initial graph provided, (V,E). At each

vertex, the agent is able to reveal if adjacent edges are present in W . Edges which are found to be

available are placed in a set EA, whereas edges which are found to be not available (failed) are

placed in a set EF . With full communication, these two sets are fully known by all agents and the

communication between all agents is assumed to be instantaneous. This information is included

in the choices made by the agents through updates to the expected costs of vertices. Once any

agent reaches vd , the remaining agents utilize the edges in EA to plan a route to vd .

3 Literature Review

The literature on CTP has received attention in both theoretical and experimental realms since

being introduced by Papadimitrou and Yannakakis in 1991 [26]. This section is split into two

parts to focus on the contributions made to the single-agent CTP and the multi-agent CTP.

Single-agent CTP has a robust set of literature exploring both theoretical and experimental
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aspects of CTP. Multi-agent CTP has a number of theoretical results since being introduced by

Zhang et al. in 2013 [38], however the experimental literature is lacking compared to

single-agent CTP.

3.1 Single Agent CTP

Papadimitrou and Yannakakis are the authors who coined the terminology Canadian Traveler’s

Problem. There are a number of related works which cover similar topics in the same timeframe;

Blei and Kaelbling introduce a similar problem called the Bridge Problem, with an additional

variant called the Dynamic Bridge Problem [9]. Bertsekas and Tsitsiklis carried out an extensive,

general analysis of Stochastic Shortest Path Problems [7]. As noted in the introduction, Andreatta

and Romeo developed the SSPR which focuses on directed networks. A key commonality

between these initial results is recognition that these problems can be converted into Markov

Decision Processes (MDP), specifically Partially Observable Markov Decision Processes

(POMDP). Similarly, both Papadimitrou and Yannakakis and Blei and Kaelbling recognized the

exponential growth of the number of states [26, 9]. The exponential growth of the state space in

MDP is driven by the potential edge status: unknown, known failed, known available, leading to

3|E|. Exact solutions can be computed in polynomial time for specific cases. On directed acyclic

graphs, Nikolova and Karger proved that the optimal policy (minimizing the expected cost) can

be solved in O(|E|) [24].

In the absence of deterministic algorithms to generate optimal paths in polynomial time, a

number of results have utilized the idea of competitive ratios as introduced by Sleator and Tarjan

[31] to generate strategies guaranteed to meet bounds as determined by competitive ratio

analysis. The Backtrack algorithm introduced by Westphal [36] provides the best guaranteed

competitive ratio for a single agent as 2k+1, where k is the number of failed edges. The key idea

behind Backtrack is that an agent travels until a failed edge is encountered, whereupon the agent

then travels back to vo and attempts a new path. Bnaya et al. combine this result with disjoint

shortest paths to guarantee that the optimal travel policy is to utilize Backtrack with shortest
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paths in ascending cost [10]. While Backtrack strategy has the best competitive ratio, having a

vehicle backtrack to a start point and restart a shortest path may be an unrealistic strategy in

practice. A greedy strategy proposed by Xu et al. [37] has a competitive ratio of 2k+1−1,

however in grid networks of m rows and n columns of vertices, if the number of failures (k) is

roughly equivalent to both the number of rows and columns (i.e., k ≈ m≈ n), the competitive

ratio nears 3 [37]. As such the greedy policy can outperform the Backtrack strategy in nearly

every such grid instance; in the case of a single failure, k = 1, the Backtrack strategy will

generate a competitive ratio of 2k+1 = 2∗1+1 = 3. The experiments carried out in this thesis

draw upon these theoretical results to craft strategies which enable agents to travel paths with low

average-case, versus worst-case, competitive ratios. Additionally, random strategies have been

proposed for single agent CTP by Bender and Westphal, and Demaine et al. [5, 14].

One notable contribution from Blei and Kaelbling is their work into utilizing reinforcement

learning as a substitute for solving an MDP to determine the expected costs of paths [9]. Eyerich

et al. [15] provide compelling evidence of the capabilities of utilizing probabilistic heuristics in

CTP. The agents utilize a heuristic, which the authors call a policy, that provides an expectation

of the cost for an agent to travel from any given vertex to vd given the current set of edges which

have been discovered [15]. They tested 5 policies, proved the theoretical potential of the policies,

and carried out 3000 experiments on randomly generated graphs of 3 sizes to determine the best

performing policies. We will further investigate some of the policies, as they are utilized in the

experimental results of this thesis. Aksakalli et al. introduce the CAO* algorithm, which utilizes

AO* search trees with caching to prune the potential state space and find the expected best path

[3].

3.2 Multi-Agent CTP

The first paper which extensively models the multi-agent CTP is Zhang et al. [38]. In this paper,

the overall theme is to investigate the same goals as the single agent CTP - to incur as little cost

as possible by an agent in the attempt to reach a destination node, vd , where all agents begin at
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the same origin, vo [38]. Zhang et al. focuses on the individual cost incurred by any agent in

particular, not the total cost incurred by all agents. The key benefit of adding multiple agents is

their ability to simultaneously explore the network, determine available edges and share that

information with the rest of the agents. In order to share information, there is an expected

capability for agents that explore edge availability to communicate this information with the rest

of the group. In a real-world application, this is analogous to technologies such as two-way

radios and cellular phones [38]. Zhang et al. investigates two types of communication - complete

and limited [38]. Complete communication assumes all agents have the ability to both send

network information they discover and receive information, whereas limited communication has

R-type agents which can only receive information and R&S type agents which are able to send

their information to all agents and receive information as well [38]. For a network with k failed

edges and L agents with full communication utilizing the Backtrack strategy, the best

competitive ratio of any agent is proven to be 2b k
Lc+1 [38]. In this thesis, we will focus on the

experimental benefits of full communication agents.

Shiri and Salman continue this analysis of the impact of multiple agents with limited

communication [30]. The two communication levels from Zhang et al. are utilized, however an

additional level of communication is presented, called IL3, such that some agents of type R&S

can plan the actions of type R agents [30]. Shiri and Salman prove that with agents of type IL3,

the optimal bound for the competitive ratio of 2b k
Lc+1 found by Zhang et al. for full

communication agents holds [30]. Bergé et al. follow the results of Shiri & Salman [29]

investigating a number of limited communication scenarios. A communication type called Pinitial

is introduced, where agents are unable to communicate after leaving vo, however can collaborate

and initially plan disjoint paths [6]. The competitive ratio of this policy depends upon the number

of agents in comparison to the number of failed edges; given k+1≤ L, a competitive ratio of

k+1 is proven for the first agent to reach vd , and given k+1 > L the competitive ratio is proven

to be 2(k+1)−L [6]. This indicates that even with a sufficiently large number of agents with no

ability to communicate after the initial plan development, you are able to quickly find vd .
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To date, the author knows of only one usage of multi-agent CTP as defined similarly to the

literature described above in the experimental realm. This study was carried out by Shiri and

Salman [29] in the context of search and rescue operations. Their experiments covered both

abstract networks and real road networks. As demonstrated by the theoretical results, agents with

full communication have the best potential competitive ratios and were utilized. A second aspect

of utilizing multiple agents is forcing agents to take separate routes. This is accomplished by

utilizing the iterative penalty method introduced by Akgün et al. [2]. The iterative penalty

method for multiple agents generates paths by adding a penalty to a node or edge after being

included in a prior agent’s path. Shiri and Salman incorporate the iterative penalty method into

their routing strategy by doubling an edge’s visible weight after an agent utilizes that edge in

their route. Agents plan their routes by assuming all edges are available and generating the

shortest path after the iterative penalty method is applied for prior agents. If an agent finds a

failed edge, all agents with that edge on their path generate a new plan and continue their

traversal of the network. With this framework on a randomly generated network with 500 nodes,

1500 total edges, 600 edges randomly blocked, and only 7 agents, in 100 trials the average case

ratio between actual path length and optimal path length was found to be slightly less than 1.5

[29]; the best competitive ratio guaranteed by Zhang et al. utilzing Backtrack would be

2∗b600
7 c+1 = 171. This study by Shiri & Salman [29] provides excellent evidence that

well-designed strategies even with basic path planning can efficiently navigate disrupted

networks.

4 Methodology

Given the results in Shiri and Salman [29], we seek to advance the experimental multi-agent CTP

literature by incorporating probabilistic policies to enable a small number of agents to provide

similar levels of performance (or greater) as more sophisticated path generating techniques. We

utilize much of the framework from Eyerich et al. [15] when developing the expected costs of a

node, and combine this with the iterative penalty method as proposed by Shiri & Salman [29]. In
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order to merge these two approaches, this section outlines a novel methodology which utilizes the

A* graph search algorithm to incorporate the iterative penalty method with path cost estimation at

vertices to solve an instance of `-CTP.

4.1 `-CTP instance

The state space of an instance I of single agent CTP is of size V 3E . This increases to V L3E in

`-CTP with full communication, as we must keep track of agent locations. Due to full

communication the knowledge of edge status is shared by all agents, and thus edge status does

not change its contribution to the state space size. We define the set of all states in the potential

combination of edge statuses and agent locations as Q.

Given an `-CTP formulation, we define agents as making their own movement choices. We

choose to not incorporate a central planner which prescribes the exact path to be taken by agents.

As such, there must be a mechanism to encourage diversity of paths; this is discussed in detail in

§4.4.

The pseudocode which describes the actions carried out to solve an instance of `-CTP is

described in Run `-CTP. This pseudocode was generated directly from the implementation of

`-CTP in the Python programming language. We utilize a base Agent class as a template for

generating a set of initially identical agents as defined in the following section. These procedures

are a simplification of the state transitions in a Markov Decision Process.

4.1.1 Policy comparisons

In order to analyze the performance of our approach across multiple instances of `-CTP, we

define nomenclature to aggregate sets of simulations. While weathers are randomly generated

from graphs, in our simulations we are able to re-use those weathers and compare performance of

the different policies directly. Similarly, policies will perform identically across a number of

agents given specific ordering algorithms as defined in §4.4.2. Whenever performance of a policy
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Pseudocode Run `-CTP(V, E, p, c, vo, vd, L)
Generate W ;
Create empty set of all failed edges EF ;
Create empty set of all known available edges EA ;
Create empty list of agents Agent List ;
for i = 1 to L do

Append instance of Agent class to Agent List ;

Generate initial paths for all agents in Agent List;
while | Agent List | != 0 do

Select agent in Agent List with lowest cost, ties broken by smallest agent.number ;
Update EA,EF with edges visible to current agent ;
if next node in agent path not available then

agent.generate path(EF ,EA);

Set agent.current node = next node in agent.path ;
Add cost of arc to agent.cost ;
Pop prior node from agent.path ;
if agent.current node = vd then

remove agent from Agent List;

is discussed, we must include the ordering utilized. As such, when discussing performance of a

policy we denote the the vertex cost estimation (XXX) and the agent ordering (YY) in the format

XXX-YY. For example, for the optimist policy (OMT) which generates agent ordering in order of

lowest expected future (EF) cost, we denote it OMT-EF. We compare performance across sets of

graphs, weathers, and numbers of agents.

4.2 Agents

We define agents as rational entities which utilize a policy, π , to decide upon their course of

action. The agent has a set of variables which are unique to that specific agent:

• Agent number assigned based upon order in which agent instantiation occurred

• Vertex where the agent is currently located

• Remaining path to arrive at vd

• List of vertices visited, in order visited
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• Cost incurred to reach current vertex

While we keep track of all the above variables, three independent variables are the most

important: current location of the agent, the list of vertices visited and the remaining path as

planned. All other variables can be derived from the above.

For a Markov Decision Process being solved online, at every state an agent seeks to maximize

expected reward (or minimize expected cost, as in our case). There are two actions which change

the current state in CTP - sensing the edges adjacent to the current vertex, and moving from one

vertex to another. The sensing action in `-CTP is free, however both Eyerich et al. [15] and

Bnaya et al. [10, 15] investigate remotely sensing edges not adjacent to the current agent’s vertex

for a cost. In `-CTP , we are in essence paying the premium of having additional agents to both

sense more edges and exploit expected low cost paths which are discovered. An agent moving

from one vertex to an adjacent vertex incurs a cost equal to that of the edge which connects the

two vertices. Moving forward, we no longer discuss the sensing action in the context of moving

between potential states in Q.

We present the greedy methodology which describes the method utilized by Eyerich et al. [15],

however in solving an instance of `-CTP we utilize A* to develop routes, as described in §4.4.1.

In order for an agent to minimize its expected cost to reach vd , it must make a series of choices at

individual states q ∈ Q to move to an adjacent state with minimal expected cost increase, q′,

which brings it closer to a state where the agent is located at vd . Each decision takes into account

the expected cost to reach vd from the state in question. Since an agent does not have visibility to

all edges, it must utilize an estimation of the cost to reach vd from any vertex v ∈V given the

information it knows in its current state, q. This cost expectation for all q ∈ Q is denoted Cπ(q),

where π is defined as a policy, of which we investigate in further depth in §4.3. For the decision

in question, we only utilize states reachable from our current state. We define a set of reachable

states from q, QFS, as states which can be accessed form q by known available edges. The choice

of a state is by an agent is greedy; the agent selects its movement to a state with the smallest sum

13



of expected cost of that state and the known path cost to reach it. This is shown in eq. (3); in this

formulation we utilize cq,qFS to denote the shortest path cost between the current state and

reachable state in question using edges known to be available:

q′ = argmin
qFS∈QFS

cq,qFS +Cπ(qFS). (3)

4.3 Policies

The policies mentioned in this section are the method by which agents estimate the cost which it

takes to travel from any node v ∈V to vd . A cost generated by a policy, π , is denoted Cπ . This

estimate can be accomplished in two main ways - determinism or probabilism. We define

deterministic policies as the process of assigning expected cost directly from the known attributes

of the graph, in a repeatable manner. We define probabilistic policies as the process of assigning

expected cost based off of a sampling of weathers generated. While both deterministic and

probabilistic policies are repeatable, the outcome for a probabilistic policy is based upon the

sampled weather; if a probabilistic policy is given two identical sets of weathers, it will generate

the same expectation for both sets.

For probabilistic policies, the term rollout is used to describe the weathers generated for the

purpose of creating cost estimates of nodes. As with weathers admitted to an `-CTP instance,

rollouts are also guaranteed to have a path from vo to vd . The key difference of a rollout is that it

utilizes the information learned by agents. For a single rollout, r, we generate a weather (W ),

ensure available edges (EA) are included, and exclude any known failed edges (EF ). The set of

available edges can be represented as follows: r = (W \EF)∪EA. If no path exists from vo to vd

given this updated information, we throw out the rollout and generate a new one using the same

process. The set operations carried out on r guarantee that arcs we know have failed are

excluded, and arcs that have been guaranteed available are included; this reflects the conditional

probability of a weather being updated by our prior learned information. A set of rollouts is
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defined as R.

4.3.1 Optimist (OMT)

The optimist policy, denoted as OMT, is a deterministic policy such that the agent estimates the

expected cost from every node to vd by assuming every non-visible edge is available. OMT

provides the lowest possible bound for an expected cost, and is also an admissible heuristic for

A*; that is, it never overestimates the cost to reach vd from any node. To generate a cost estimate

for every node, we simply carry out Dijkstra’s on (V,E \EF) where our start node is vd , and EF is

the set of arcs known to be failed by an agent. COMT is determined from the vertex labels

generated by Dijkstra’s algorithm.

OMT is investigated for a number of reasons. First, it is simple and computationally efficient.

Dijkstra’s algorithm is well studied with efficient implementations that are polynomial in their

computational complexity [1]. Secondly, in robot literature the ‘freespace assumption’ - any

action possible is assumed to be valid until observed otherwise - is commonly utilized [22].

4.3.2 Hindsight Optimist (HOP)

Hindsight optimist policy, denoted as HOP, is a probabilistic policy that averages the best

possible costs from any given node to the destination node across a set of rollouts. As the term

hindsight implies, the policy develops these costs with full knowledge of the edges removed in

each rollout. For a set of rollouts, R, first apply Dijkstra’s algorithm on (V,r)∀r ∈ R utilizing vd

as the start node. We calculate CHOP by averaging the vertex labels for all vertices across all

rollouts.

We include HOP in our investigation as it remains polynomial in its computational complexity; it

is equivalent to Dijkstra’s with an additional factor R to denote the number of rollouts. This

policy is also called ‘averaging over clairvoyance’ [28]. Based upon the results of Eyerich et al.

[15], for a single agent the HOP policy performs 7.8% better on average than OMT with minimal
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additional computational overhead.

4.4 Path Generation

A key benefit of multiple agents is the potential to explore multiple paths simultaneously and

communicate the information gained between all agents [38, 6, 30]. The theoretical literature

compares multiple different options for routing agents, but as noted these strategies are typically

analyzed in competitive ratios that would be impractical in the real world. This sections describes

how the paths are generated by both single agents, and how multiple agents generate disjoint

paths to increase their exploration of edges.

4.4.1 Generating Paths Using Policies and A*

We take a differing approach from Eyerich et al. [15] and align closer to Shiri & Salman [29]

with our routing strategies for multiple agents. Instead of each agent selecting only the next state

(vertex) to visit based upon expected low cost, agents generate a path from their current location

to vd . In our path generation framework, agents first generate cost estimates for all nodes in the

network utilizing their policy. Second, agents generate a path utilizing A*. The A* algorithm

labels vertices starting with the origin, and ending only when the destination vertex is labeled. It

begins at vo and checks the nodes which are reachable from vo. The reachable vertex v from vo

which minimizes the function f (v) = g(v)+h(v) is labeled, where h(v) is the heuristic function

(some measure of closeness to the destination - for example, straight-line distance) and g(v) is the

total path cost incurred to reach the vertex [18]. The labeling process continues until the

destination vertex is labeled, and a path is found from vo to vd [18]. In determining shortest paths,

the heuristic typically serves to reduce the number of nodes expanded by selecting vertices which

are both low cost and minimize the heuristic function. Heuristic functions themselves have

properties, and we consider the property of admissibility. Admissibility is defined as an heuristic

which never overestimates the cost to travel from the current vertex to vd [18]. Admissibility

leads to a guarantee of finding the shortest path [18]. However, a key premise of `-CTP is that the
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shortest path in normal conditions is not necessarily the shortest path in the current weather. In

fact, we seek to find paths which are higher cost than the shorter path, if they provide us with a

low expected cost given the information known regarding edge availability and edge cost. The

only policy which is guaranteed to be admissible is OMT, which aligns with its generation of

expected costs based upon shortest path distances.

When utilizing an admissible heuristic, A* exactly replicates the paths generated by eq. (3) using

that same admissible heuristic. We can think of A* as having our single agent exploring the entire

graph using our current belief state, and then generating the resulting best path as a plan for that

agent to follow. The A* algorithm using Cπ as heuristic functions will expand vertices which

minimize the sum of the actual cost incurred to reach a vertex and the expected cost to reach the

destination from that vertex. The main case for using A* is to incorporate the use of iterative

penalties to generate disjoint paths between agents, as described in §4.4.2. Another benefit of

using A* to generate paths is that agents can look further ahead, take into account high expected

cost vertices, and exploit lower cost vertices. We utilize an example directly from Eyerich et al.

[15] to demonstrate intuition as why we see better performance from A*. We examine the case of

utilizing HOP where CHOP have been calculated for all vertices, as demonstrated in fig. 1. Using

the greedy policy, Eyerich et al. [15] showed that an agent using HOP will travel sub-optimally

along path 0-1-0-5-7. With A*, we generate the optimal path 0-5-7. Initially, the A* expands 1, as

CHOP(1)+ c0,1 ' 85, compared to the other two adjacent vertices 5 and 7 such that

CHOP(5)+ c0,5 ' 90 and CHOP(7)+ c0,7 = 100. We expand again, this time calculating the values

for vertices 2, 3 and 4 - CHOP(2)+ c0,1 + c1,2 ' 135, and both vertices 3 and 4 take the same

value. Given these labels, A* expands vertex 5. A* finally expands to vertex 7, with an expected

path cost of 90. We can see that using A* with the HOP policy tests potential paths similar to the

HOP policy using the greedy pathfinding methodology, but it does so before actually moving to

prevent obvious sub-optimal choices. This results in a final path which minimizes the expected

cost.
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A notable downside is the computational impact of estimating expected costs for all nodes; for

OMT this is trivial, but for the probabilistic policies this may require carrying out rollouts for all

nodes when planning. For HOP this requires a small additional overhead, as Dijkstra’s algorithm

automatically calculates all node labels in the course of its computations. A second downside is

that we plan an entire path using only the information at hand. Since agents develop a path and

travel along this path until they reach vd or encounter a failed edge which they expect to be

available, this could potentially lead to choices which cause higher costs by excluding some

learned information in the course of traversing the graph. We address these concerns in

experiments carried out in §5.4. A final note is that when any agent reaches vd , we can guarantee

that a path exists using only known edges for all agents from their current location to vd . Once an

agent reaches the final node, all other agents immediately generate a shortest path from their

current node to vd using only available edges. In the worst case, this will be similar to the

backtrack algorithm proposed by Westphal [36].

4.4.2 Using Iterative Penalty Method to Generate Disjoint Paths

As shown in both theoretical and experimental results, the act of information sharing and path

planning is key to the performance of multi-agent CTP [29, 6]; as such, central to the `-CTP

formulation is the development of low cost, disjoint paths. We utilize the iterative penalty method

from Akgün et al. on nodes [2]. This is different than Shiri & Salman [29], who utilize iterative

penalty method on the edges. We choose to weight the nodes based on the way that we generate

expectations; the motivating principle is that we artificially increase the expectation of every node

visited. The process for generating a path is as defined in generate path, and this function is a

method of an agent; thus it has access to its own information by the keyword ‘self’. We define a

weighting variable, wπ , which is a constant tuned for each specific policy based off of

experiments described in §5.4. Note that in Run `-CTP plans are generated as the agents are

instantiated - this allows for the first agent to choose the expected lowest cost path. As agents are

added, the agent list is increased and further agents must incorporate the plans generated of prior
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agents.

Given our agents initially at v0, using the iterative penalty method is straightforward. As agents

progress through the network they will likely encounter failed edges along their path and must

then generate new plans. Naı̈vely, we could simply replan only the current agent’s path. Using

this heuristic we would then have to incorporate the plans generated by the other agents, and the

iterative penalty method would penalize vertices currently planned to be visited by other agents.

However, if our current agent has traveled a low cost path and must generate a new plan, that new

plan may be restricted by the existing plans made by other agents. Given this thought, we test the

following methodologies for replanning all agents online:

• NP - Replan only the agent which encountered a failed edge

• OO - Replan all agents, by original order of instantiation (i.e., 1, 2, . . . , L)

• EF - Replan all agents, by lowest expected future cost (i.e., by order of Cπ(i), where i is the

vertex an agent is currently at)

• EC - Replan all agents, by lowest total expected path cost (current path cost incurred +

Cπ(i), where i is the vertex the an agent is currently at)

Pseudocode generate path(V, E,EA,EF , p, c, vo, vd,π,wπ , Agent List)
Generate list of zeros visits of length |V | ;
for v ∈V do

Generate Cπ(v) ;

Generate initial paths for all agents in Agent List;
for a ∈ Agent List \ sel f do

for i ∈ a.path do
visits[i]+=1 ;

for v ∈V do
Cπ(v) =Cπ(v)+visits[v]×wπ ;

Generate path using A∗ with Cπ as heuristic ;
return path
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5 Computational Study

We utilize the methodology defined in the prior section to generate a set of experiments to test

our motivating question: can we combine multiple agents who communicate with pathfinding

strategies that take into account information on the probability of edge availability? We address

this in two sets of experiments - on randomly generated graphs, and utilizing real-world road

networks impacted by catastrophic levels of flooding.

5.1 Trials on Random Delaunay Graphs

The first set of experimentation is developed to test the performance of our approach on instances

of `-CTP. We vary the numbers of agents which utilize policies defined in §4.3 and §4.4.2 on

random graphs. We use random graphs to ensure the robustness of the policies in a network

where the best paths are not obvious by inspection.

5.1.1 Design of Experiments

For our experiments, we align our study closely with Eyerich et al. [15]. We test our instances

using the same graph sizes; 20, 50 and 100 nodes. Within each graph size we use 10 graphs. The

author is grateful for the generosity of the authors of Eyerich et al. [15], as they provided the

exact graphs on which they generated their data. These graphs are generated in the method laid

out in §5.1.2. In each graph, vo = 1, vd = |V | as utilized by Eyerich et al. [15]. For each graph,

we will test 1-5 agents and the policies OMT and HOP on 1000 weathers. The penalties applied

for generating disjoint paths are determined from §5.4. Additionally, we test the impact of

different replanning policies - 4 versions for OMT, and 3 versions for HOP. This leads to

10×1000×5×3× (3+4) = 1,050,000 trials.
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Figure 2: Delaunany triangulation using 100 randomly placed vertices [13]

5.1.2 Random Delaunay Graph Generation

To experimentally validate the performance of multiple agents on `-CTP instances, we carry out

trials on Delaunay graphs which serve as close approximations to real world networks [10].

These graphs are generated by assigning a desired number of vertices a tuple of (x,y) coordinates

on 2-axis grid, where x and y are individual identically distributed (iid) uniform random variables

on the range [0,1]. The vertices are numbered in the order they are created in the set 1, 2, . . . , |V |.

These vertices are connected with edges using Delaunay triangulation methods - a typical

resulting graph from this method using 100 vertices can be seen in figure 2. Each edge cost is an

iid uniform random variable, ce ∈ [1,50], and an iid uniform random variable describes

probability of availability pe ∈ (0,1].

5.2 Trials on Random Euclidean Graphs

The trials on random Euclidean graphs are a direct comparison between our algorithms using

OMT policy with A* planning and the results from Shiri & Salman [29] to compare the merits of

using IPM on nodes to utilizing IPM with edges. The authors of [29] made their experimental
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code available, and using that we recreated their results and generated `-CTP instances given the

same weathers and number of agents for each graph. The set of graphs and tests are as follows:

• Graphs of 100, 200, 300, 400, 500 nodes are generated by randomly connecting 3 vertices

to another, and assigning a cost to those edges (thus containing 300, 600, 900, 1200, and

1500 edges)

• Edge failures (i.e., weathers) of 10%, 20%, 30%, and 40% are generated by randomly

selecting a subset of edges equal to the percentage; for example, an edge failure of 20% on

a graph of order 200 and size 600 will remove 120 edges at random

• 100 weathers are tested for each percentage listed above

Three different set of agents are tested on each weather, leading to 5×4×3×100 = 6000 trials.

5.3 Case Study for Hurricane Harvey

Hurricane Harvey was unique in its level of impact to the Houston metro area; the highest rainfall

in the United States ever recorded for a tropical cyclone rainfall event was reported at 60.58

inches at a weather gauge near Nederland, Texas [8]. Large portions of the Houston metro area

were inundated [8].

Given the immense flooding that occurred, Hurricane Harvey led to populations which required

emergency aid to be delivered from federal agencies [27]. We seek to address the question of how

to improve routing in disrupted networks. Having established the problem formulation of `-CTP,

we can reduce the problem of finding the shortest path between two points in the Houston metro

area during Hurricane Harvey as `-CTP given a set of edges which have associated costs (ce) and

probabilities of availability (pe).

For this case study, we utilize the road network of Harris County, downloaded from Open

StreetMap utilizing the python package OSMnx [11]. We include only major arterial roads, and

exclude residential roads; the resulting network can be seen in fig. 3. This is done to model the
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availability of larger roads which can be traversed by emergency vehicles and large commercial

trucks. Costs are relatively straightforward - in our analysis, we will utilize edge lengths as costs.

To develop probabilities of availability, we must know in some manner which roads may be

flooded, and how often they may be flooded.

The availability of the road network is determined from flooding data generated by Pacific

Northwest National Lab’s Rapid Infrastructure Flood Tool (RIFT) [16]. RIFT utilizes

sophisticated hydrodynamic models and Quantitative Predictive Forecasts (QPF) to estimate the

velocity and depth of floodwaters at hourly intervals. Given velocity and inundation information,

we assign a criterion to determine if an edge is traversable. Kramer et al. [23] experimentally

found that that using a derivation of the Bernoulli equation in eq. (4), emergency vehicles are able

to traverse a road up to he = 0.6m safely, where h is the water depth, v is the velocity of the water,

and g is the gravitational acceleration constant:

hE = h+
v2

2g
. (4)

Given this criteria and the RIFT dataset, we are able to assign a True/False value to each road

segment, where True indicates a road is available and False indicates a road is not available.

Since meteorological forecasts have inherent uncertainty, we account for this uncertainty as the

timing of flooding in severe events such as Hurricane Harvey. We look at a five hour time

window, starting at the expected start time with a snapshot of he. We then look on the hour, at the

two hours prior and the two hours following our expected travel time. Using these five datapoints,

we sum the times that an edge is found to be available and divide by 5; thus each edge will be

assigned an availability in the set {0.0,0.2,0.4,0.6,0.8,1.0}. Due to variability of the forecast,

we do not want to assign a probability of availability of 0.0; thus we allow at least a probability

of availability for all edges of 0.05. As such, pe ∈ {0.05,0.2,0.4,0.6,0.8,1.0}∀e ∈ E. We test an

origin/destination pair using 100 weathers, over 1, 2 and 3 agents, and we utilize HOP-EC and

OMT-EF policies. This results in 100×3×2 = 600 trials.
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Figure 3: Harris County road network from Open Streetmap

5.4 Parameter Tuning

In order to generate routes of similar length with different paths, the iterative penalty method as

described by Akgün et al. [2] weighted edges across multiple paths, varying from 1% penalty to

100%. The penalty is applied when a route uses that edge. As discovered in [2], dispersion

increased dramatically from a 1% penalty to about 10%, leveling off in penalties from 10% up to

100%. Given these results, we carry out similar experiments to determine the average cost ratio

of our solution to `-CTP as a function of magnitude of the penalty factor applied.

We set up an experiment to determine the value of the weighting parameter applied to vertices in

generate path, wπ , for each policy, π , which minimizes the lowest cost ratio defined in equation

2. For this experiment we utilize a randomly generated Delaunay graph with 100 vertices as our

network as described in §5.1.2. In these experiments, we carry out 100 instances of `-CTP using

3 agents for each level of penalty and policy. The weathers in the 100 instances are copied from

the initial weathers and repeated for each of the penalty and policy combinations. We

additionally compare pathfinding using A* as described in §4.4.1 and fully online. The fully
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online pathfinding is a direct implementation of equation 2. While iterating over each agent until

they reach the destination node in Run `-CTP, instead of using a plan they recalculate the

expected cost for unvisited but reachable vertices using known available edges to select the next

vertex to visit. In essence, they only generate a plan for the next vetex to utilize. This is a direct

comparison to how Eyerich et al. [15] carry out experiments.

We derive four key observations from the results as seen in figure 4. First, multiple agents alone

do not inherently add value. With no penalty, multiple agents will take the same route as one

another and not provide benefit. Secondly, the generation of disjoint routes with 3 agents via

iterative penalty method provides more efficient routing than a single agent. Using A* with OMT

and iterative penalties decreases average run cost from being 80% greater than the optimal to

only 28% greater than optimal. HOP similarly drops from 37% to 19%. Third, different policies

benefit from different penalties. The performance of HOP peaks at a penalty of approximately

20%, whereas the performance of OMT peaks at approximately 50%. At a penalty of 50%, HOP

would see worse performance, similar to OMT at 20% penalty. Finally, utilizing A* provides no

worse performance than the online pathfinding. In our test instances we see better performance

from A* in both test instances; A* with OMT is nearly 10 percentage points better than online at

50% penalty, and A* with HOP is 4 percentage points better than online at its best performance.

From the results, we set wOMT = 0.5, wHOP = 0.2.

6 Results

In this section, the results of the computational studies are organized as follows. §6.1 contains the

results from the trials on Delaunay graphs, §6.2 covers results from the trials on Euclidean

graphs, and §6.3 describes the solutions to `-CTP instances generated from the real-world

Houston road network.
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6.1 Trials on Random Delaunay Graphs

The results of our simulation trials are developed from the experimental framework developed in

§5.1.2. As described, we compare the average cost of `-CTP instances over 1000 weathers on

graphs with 20, 50, and 100 vertices. The result tables are formatted as seen in table 1 for a

specific policy and replanning variant (XXX-YY; OMT-EF in this case). The bolded cells in the

columns under ‘`-CTP, number of agents’ indicate the number of agents at which our solution

method performs better (i.e., has a lower cost) than the UCTO policy from with a single agent

[15] on that same graph. We make this comparison to UCTO for two purposes. UCTO stands for

upper confidence bounds applied to trees, and is a sophisticated tree search algorithm which finds

near-optimal solutions to Markov decision processes [21] - in CTP, this applies to cost estimates

of vertices. First, we seek to determine for what number of agents a naı̈ve policy, like OMT,

reaches the level of performance of the most sophisticated and best performing single agent

algorithm in the Eyerich et al. [15] results, UCTO. This would indicate that performance levels

of advanced policies can be replicated by simple strategies with more agents. This is an important

observation, as the simpler a strategy is, the more likely it can be successfully implemented in

practice. Secondly, we want to test if a slightly more advanced policy, HOP, can further advance

the performance improvement made possible with the use of multiple agents following policy

OMT. If a set of agents can find lower cost paths than UCTO, we want to compare the magnitude

of that difference, and also the relative benefit to adding an agent for HOP as compared to OMT.

As an example of this data, table 1 indicates that for graph 20-7, two agents using OMT-EF incur

an average cost of 137.1, which is better than the single-agent UCTO average cost of 148.2 in

Eyerich et al. [15]. Across all graphs of size 20, two agents using OMT-EF incur a lower cost on

average than single-agent UCTO, with an average cost of 154.1 compared with 154.2. This is

seen by comparing the bolded cell in the `= 2 column of the Average row with the value of the

cell in the UCTO column in the same row. The remainder of these tables are found in the

appendix in tables 12, 14, 16, 18, 20 and 22
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Table 1: OMT-EF average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP, number of agents

Graph OMT UCTO 1 2 3 4 5

20-1 205.9 169.0 200.7 170.7 156.4 150.5 146.6
20-2 187.0 148.9 187.3 164.5 152.7 148.1 145.8
20-3 139.5 132.5 142.9 125.9 122.0 119.9 118.9
20-4 266.2 235.2 244.7 204.2 193.0 186.5 182.1
20-5 163.1 111.3 166.5 123.1 114.5 106.2 103.2
20-6 180.2 133.1 182.0 135.7 124.4 120.1 116.5
20-7 172.2 148.2 170.5 137.1 131.8 128.1 126.5
20-8 150.1 134.5 152.4 140.8 134.0 128.3 125.6
20-9 222.0 173.9 222.2 182.4 172.4 167.4 162.3
20-10 178.2 167.0 175.7 157.0 150.3 144.5 140.9

Average 186.5 154.2 184.5 154.1 145.2 140.0 136.9

50-1 255.5 186.1 254.5 170.5 157.6 144.4 142.5
50-2 467.1 365.5 463.6 365.7 346.1 334.1 324.0
50-3 281.5 255.6 289.2 235.8 217.8 210.3 207.5
50-4 289.8 230.5 287.6 233.8 211.2 202.9 197.4
50-5 285.5 225.4 285.7 214.0 198.7 189.1 186.5
50-6 251.3 236.3 243.0 224.9 214.0 208.5 204.4
50-7 242.2 206.3 235.9 205.3 187.5 178.3 174.4
50-8 355.1 277.6 363.6 285.0 259.4 248.9 243.0
50-9 327.4 222.5 331.0 242.0 215.2 203.7 198.8
50-10 281.6 240.8 292.5 220.2 202.9 196.5 190.8

Average 303.7 244.7 304.7 239.7 221.0 211.7 206.9

100-1 370.9 286.8 354.7 283.7 256.6 241.1 233.3
100-2 160.6 151.5 169.0 155.9 153.1 151.0 149.9
100-3 550.2 412.2 550.1 408.1 371.0 345.6 334.3
100-4 420.1 314.3 431.2 328.3 312.9 298.8 296.0
100-5 397.0 348.3 411.4 340.3 319.6 305.0 295.6
100-6 455.0 396.2 478.7 398.2 372.2 356.9 351.4
100-7 431.4 358.2 435.8 332.2 306.1 293.3 285.4
100-8 335.6 293.3 328.0 259.6 234.0 222.4 215.2
100-9 327.5 262.0 329.9 268.2 240.2 231.9 223.3
100-10 381.5 342.3 395.8 311.1 279.6 267.3 259.0

Average 383.0 316.5 388.4 308.6 284.5 271.3 264.3
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We carried out a second level of analysis on the performance of multiple agents on these

weathers, due to the results of OMT-NP on graph size 100-4 in table 12, found in the appendix.

In this case, average path cost increased from 303.1 to 306.0 when adding a fifth agent. This

result is particularly surprising, as we predicted that in the worst case adding agents would cause

no performance gains. This data point provides evidence to the contrary - adding an agent has the

possibility of increasing the cost of paths found. To investigate this peculiar finding, the data

were analyzed for instances when adding agents in specific weathers caused worse performance,

i.e. higher cost. This is accomplished by subtracting the best cost path using ` agents from the

performance of the best cost path using `−1 agents. The results generated from carrying out this

analysis on the graphs and weathers summarized in table 1 are tabulated in table 2. The number

of weathers where agents generated worse paths with the addition of an agent are listed in the

column labeled #, and the average percent increase in costs of those paths are in the column

labeled %. Continuing our analysis of graph 20-7, 10 out of the 1,000 weathers had worse plans

created when adding a second agent, where those plans, on average, were 8.0% more expensive.

Across graphs of size 20 for 2 agents, 81 out of the 10,000 total weathers had worse performance,

and on average those instances led to cost increases of 15.2%. While this indicates that the choice

of adding agents is not without risk of incurring higher cost, in 99.19% of weathers, adding a

second agent with OMT-EF leads to a lower cost path. The remainder of these data tables are

located in the appendix in tables 13, 15, 17, 19, 21 and 23.

6.1.1 Equivalence between weathers

While we did not have access to identical weathers to Eyerich et al. [15], we did have identical

graphs, and we can show equivalence of weathers with the experiments carried out using our

solution methodology to `-CTP by examining the results of 1 agent using the OMT policy. As

noted, the OMT policy provides an admissible heuristic to A* and will generate the shortest path,

which is the same as OMT using the greedy policy as in Eyerich et al. [15]. Given that we are

utilizing identical graphs and the same origin/destination node pairs, we expect the mean of the
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Table 2: OMT-EF analysis of performance decrease across number of agents

Number of agent

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 6 7.7 19 29.4 37 17.3 34 11.0
20-2 —– —– 16 4.6 13 6.0 21 6.5 16 7.5
20-3 —– —– 6 9.6 1 36.8 6 10.1 3 7.7
20-4 —– —– 5 14.7 2 10.6 13 13.4 9 22.6
20-5 —– —– 6 49.9 8 8.5 4 4.3 6 11.3
20-6 —– —– 12 15.7 16 11.5 11 6.0 18 8.6
20-7 —– —– 10 8.0 12 9.5 8 6.9 6 9.5
20-8 —– —– 0 —– 7 7.5 8 7.2 18 27.3
20-9 —– —– 11 9.2 39 16.3 33 16.3 50 9.5
20-10 —– —– 9 17.0 10 7.9 23 12.7 18 9.7

Average —– —– —– 15.2 —– 14.4 —– 10.1 —– 12.5
Total —– —– 81 —– 127 —– 164 —– 178 —–

50-1 —– —– 12 7.8 14 7.8 43 12.6 23 12.0
50-2 —– —– 25 8.2 83 10.3 99 8.7 109 7.6
50-3 —– —– 71 7.1 95 7.6 93 8.1 144 9.8
50-4 —– —– 38 5.4 84 11.9 97 9.7 101 9.1
50-5 —– —– 14 28.6 36 15.7 57 12.5 64 12.3
50-6 —– —– 19 12.3 27 9.7 33 4.9 39 6.6
50-7 —– —– 20 8.9 25 12.8 27 6.4 55 8.7
50-8 —– —– 58 11.1 67 9.2 88 7.1 122 8.1
50-9 —– —– 26 20.5 46 12.9 38 11.3 74 10.9
50-10 —– —– 62 17.5 56 13.2 88 12.7 164 11.4

Average —– —– —– 12.7 —– 11.1 —– 9.4 —– 9.7
Total —– —– 345 —– 533 —– 663 —– 895 —–

100-1 —– —– 34 13.0 61 12.8 60 11.3 105 11.1
100-2 —– —– 7 10.4 36 10.4 21 4.2 34 7.9
100-3 —– —– 36 15.1 71 10.7 118 9.5 154 12.3
100-4 —– —– 59 13.7 136 10.3 179 10.2 328 10.3
100-5 —– —– 43 12.9 96 8.3 119 6.6 113 7.2
100-6 —– —– 68 10.5 79 8.7 114 6.0 178 8.7
100-7 —– —– 37 10.0 80 8.5 107 8.9 115 8.1
100-8 —– —– 23 9.2 45 7.2 74 5.2 68 8.2
100-9 —– —– 18 14.0 22 10.5 61 5.6 53 5.4
100-10 —– —– 75 11.8 69 9.0 93 9.2 113 9.5

Average —– —– —– 12.1 —– 9.6 —– 7.7 —– 8.9
Total —– —– 400 —– 695 —– 946 —– 1261 —–
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costs to converge in probability. The mean costs with 1 agent are within 1.1%, 0.33% and 1.4%

of the Eyerich et al. [15] results for graphs of size 20, 50, and 100 vertices, respectively. We

carry out two-sample Z-tests comparing the sample means generated by both Eyerich et al. [15]

and our results, shown in table 3. Each row lists the statistics which define the agent costs found

by Eyerich et al. [15] and our results on a single graph across 1000 weathers, where µ is the

sample mean, and σ is the standard deviation. For results generated as solutions to `-CTP

instances, we directly calculated µ and σ from the raw data. The values of µ and 95% CI for

Eyerich et al. [15] are directly taken from their results in their table 1. While the sample standard

deviations are not provided in [15], the 95 percent confidence intervals are included. We calculate

σ for Eyerich et al. [15] from the confidence intervals in order to calculate the test statistic Z0.

Our null and alternative hypotheses are as follows:

H0 : µEyerich,OMT = µ1−CT P,OMT , H1 : µEyerich,OMT 6= µ1−CT P,OMT . We reject the null hypothesis

in favor of the alternative when Z0 > Zα/2 or Z0 <−Zα/2, where Zα/2 = 1.96. Across the 30

graphs, we fail to reject the null hypothesis in 27/30 graphs, concluding there is not enough

evidence in the samples to indicate the two solution approaches are not equivalent. The

remaining three graphs, 20-4, 100-1 and 100-6, fall in the critical region, indicating a statistically

significant difference between the single-agent OMT results in our paper and in Eyerich et al.

[15]. A potential factor which leads to rejecting H0 is that the confidence intervals provided have

only one significant figure; this is a source of error in our calculations of Z0 as rounding could

cause a variation in the confidence interval of up to 1 unit. Additionally, 2/3 graphs with a test

statistic in the critical region are of size 100; as the number of edges in the graph grows, the state

space of weathers grows exponentially. However, this result indicates that in 27/30 graphs there is

no statistically significant difference in the OMT path costs with a confidence level of 95%,

providing evidence that our weathers, on average, approximate those found by Eyerich et al. [15].
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Table 3: Two-sample Z-test between Eyerich et al. [15] and single agent OMT results.

Eyerich et al. [15], OMT `-CTP, OMT

Graph µ 95% CI σ µ σ Z0

20-1 205.9 7 112.9 200.7 107.7 1.05
20-2 187.0 5 80.7 187.3 82.8 -0.08
20-3 139.5 6 96.8 142.9 103.2 -0.76
20-4 266.2 8 129.0 244.7 118.7 3.88∗

20-5 163.1 7 112.9 166.5 117.0 -0.66
20-6 180.2 6 96.8 182.0 89.7 -0.43
20-7 172.2 5 80.7 170.5 78.0 0.48
20-8 150.1 6 96.8 152.4 97.2 -0.53
20-9 222.0 5 80.7 222.2 74.9 -0.05
20-10 178.2 6 96.8 175.7 96.3 0.57

50-1 255.5 10 161.3 254.5 165.8 0.13
50-2 467.1 11 177.5 463.6 173.2 0.44
50-3 281.5 9 145.2 289.2 160.5 -1.12
50-4 289.8 9 145.2 287.6 142.1 0.34
50-5 285.5 10 161.3 285.7 152.3 -0.03
50-6 251.3 10 161.3 243.0 147.1 1.20
50-7 242.2 9 145.2 235.9 133.7 1.00
50-8 355.1 11 177.5 363.6 168.3 -1.10
50-9 327.4 13 209.7 331.0 200.0 -0.39
50-10 281.6 8 129.0 292.5 140.2 -1.81

100-1 370.9 11 177.5 354.7 173.0 2.07∗

100-2 160.6 8 129.0 169.0 132.0 -1.43
100-3 550.2 18 290.4 550.1 290.2 0.00
100-4 420.1 10 161.3 431.2 173.8 -1.48
100-5 397.0 16 258.1 411.4 260.0 -1.24
100-6 455.0 12 193.6 478.7 218.5 -2.57∗

100-7 431.4 15 242.0 435.8 245.6 -0.40
100-8 335.6 12 193.6 328.0 188.1 0.89
100-9 327.5 14 225.9 329.9 240.7 -0.23
100-10 381.5 11 177.5 396.3 181.8 -1.84

∗ indicates results with statistically significant differences between means

33



6.1.2 Impact of A* planning on single agent using HOP

As described in the prior section, OMT performance with 1 agent is not affected by using A*

instead of a greedy approach as OMT utilizes a consistent heuristic for A*. However, the path

cost of a single agent using HOP decreased by 3.9% from Eyerich et al. [15]. This aligns with

our intuition developed in §4.4.1. In table 20, we can see on graphs 20-6, 20-7, 50-4, and 100-1

that a single agent utilizing HOP in our approach performs better than a single agent using the

UCTO policy in Eyerich et al. [15]. We analyze the difference between the average shortest paths

costs between the Eyerich et al. [15] implementation of HOP and our own, both for a single

agent, utilizing a two-sample Z-test, seen in table 4. Our hypothesis follows:

H0 : µEyerich,HOP = µ1−CT P,HOP, H1 : µEyerich,HOP > µ1−CT P,HOP. We reject the null hypothesis in

favor of the alternative when Z0 > Zα , where Zα = 1.64. Across the 30 graphs, we reject the null

hypothesis in 19 of those graphs. This indicates that A* usually, but not always, improves the

performance of a single agent using HOP. Additionally, we note that A* performs worse in graphs

20-5, 20-8, 50-8, 100-2, and 100-4. While it would not be unexpected that in some instances

worse paths could be generated, we look at the performance of the OMT policy on these

weathers. The paths generated by agents utilizing OMT in these `-CTP instances have higher

costs than the Eyerich et al. [15] results, indicating that the weathers sampled for those graphs,

on average, are worse than those sampled by Eyerich et al. [15]. Given this information, we

attribute some portion of the difference in performance to the weathers. However, in 8/10 graphs

of size 100 and 8/10 graphs of size 50, agents utilizing HOP perform better using A*, versus 3/10

in the smallest graph. We intuit that in graphs of 20 vertices there exist fewer choices which leads

to minimal benefit to generating a full path versus using a greedy heuristic. This is supported by

the fact that the average number of vertices which separate the origin and destination in graphs of

size 20, 50, and 100 are 2.3, 3.5, and 4.6, respectively.
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Table 4: Two-sample Z-test between Eyerich et al. [15] and `-CTP single agent HOP results

Eyerich et al. [15], HOP `-CTP, HOP

Graph µ 95% CI σ µ σ Z0

20-1 171.6 6 96.8 169.4 89.6 0.52
20-2 155.8 3 48.4 154.7 58.9 0.45
20-3 138.7 6 96.8 138.3 96.5 0.09
20-4 286.8 8 129.0 241.4 114.4 8.32
20-5 113.3 5 80.6 124.3 106.2 -2.60
20-6 142.0 4 64.5 132.5 57.5 3.47
20-7 150.2 4 64.5 147.9 68.4 0.77
20-8 133.6 5 80.6 137.5 81.9 -1.07
20-9 177.1 4 64.5 174.4 66.7 0.91
20-10 188.1 6 96.8 171.7 91.4 3.89

50-1 250.6 9 145.2 230.4 138.6 3.17
50-2 375.4 7 112.9 370.9 118.3 0.86
50-3 294.5 7 112.9 274.5 135.7 3.57
50-4 263.9 7 112.9 228.5 105.5 7.24
50-5 239.5 8 129.0 226.7 106.5 2.41
50-6 253.2 9 145.2 238.5 141.3 2.27
50-7 221.9 7 112.9 207.2 106.5 2.99
50-8 302.2 9 145.2 305.3 144.3 -0.48
50-9 281.8 11 177.4 243.9 159.5 5.01
50-10 271.2 7 112.9 261.0 118.2 1.96

100-1 319.3 9 145.2 281.3 120.4 6.36
100-2 154.5 7 112.9 158.2 109.5 -0.74
100-3 488.1 15 242.0 446.5 247.2 3.80
100-4 329.8 7 112.9 333.8 131.3 -0.73
100-5 452.4 18 290.4 385.0 233.5 5.71
100-6 487.9 11 177.4 421.5 179.3 8.32
100-7 403.9 14 225.8 380.0 221.1 2.39
100-8 322.0 12 193.6 295.0 171.3 3.30
100-9 366.1 15 242.0 273.4 192.0 9.48
100-10 388.4 11 177.4 354.9 152.7 4.52
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Table 5: Paired Student’s t-test on OMT replanning variants across all graphs

j

OMT-EC OMT-EF OMT-NP OMT-OO

i # agents t p t p t p t p

OMT-EC 2 —– —– -12.49 0.0 3.23 0.001 3.01 0.003
3 —– —– -13.09 0.0 3.36 0.001 -1.17 0.241
4 —– —– -13.20 0.0 4.39 0.000 1.59 0.111
5 —– —– -9.26 0.0 6.83 0.000 0.64 0.521

OMT-EF 2 —– —– —– —– 10.01 0.000 13.18 0.000
3 —– —– —– —– 11.63 0.000 9.94 0.000
4 —– —– —– —– 12.99 0.000 13.23 0.000
5 —– —– —– —– 13.25 0.000 8.70 0.000

OMT-NP 2 —– —– —– —– —– —– -1.41 0.159
3 —– —– —– —– —– —– -4.26 0.000
4 —– —– —– —– —– —– -3.23 0.001
5 —– —– —– —– —– —– -6.42 0.000

6.1.3 Impact of Replanning Order

As discussed in §4.4.2, we posited that the order in which agents generate paths after

encountering failed edges may impact the cost of the paths which they generate. This is rooted in

tension between exploration and exploitation of a graph where the failed edges are not known a

priori. We first investigate the results from table 12 (found in the appendix) which cover the case

of only the agent which encounters a failed edge replans (NP). Given the use of IPM, we

supposed in §4.4.2 that NP may lead to the generation of artificially higher cost paths as vertices

are already utilized by other agents when the lone agent creates a new plan. This prediction is

correct, and as mentioned in §6.1 the addition of a fifth agent in graph 100-4 leads to worse

outcomes across 1000 weathers on average, going from 303.1 to 306.0 as seen in table 12.

Results in table 13 provide additional detail, as 36.2% of all weathers for graph 100-4 saw a

performance decrease of, on average, 17.3%.

To determine the best-performing replanning policy for OMT, we carry out paired Student’s

t-tests across all graphs, comparing minimum agent costs on identical weathers based upon the
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replanning policy utilized by the agents. The hypothesis that we use for these tests are as follows

for two replanning policies i and j. We compare the change from policy i to j. We first define

µD = µOMTi−µOMTj . We use the null hypothesis H0 : µD = 0. We vary the alternative hypothesis

based upon the value of the test statistic. For t < 0, H1 : µD < 0. For t > 0, H1 : µD > 0.We reject

the null hypothesis in favor of the alternative when p < α = 0.05. When the statistic t > 0, this

indicates we see a decrease in path cost from i to j; if t < 0, this indicates we an increase in the

best path cost from i to j. The results of these tests are reported in table 5.

The results in table 5 support our prior intuition developed from table 12. We see a decrease in

agent cost between `-CTP trials for OMT on similar weathers from only replanning with one

agent (OMT-NP) to replanning with all agents (OMT-EC, OMT-EF, OMT-OO) - additionally, as

the number of agents increases in the trials, we see the costs incurred decrease further between

OMT-NP and all other policies. This indicates that relative to the other policies, higher cost paths

are generated as agents are added to `-CTP instances utilizing NP. We also seek to answer which

replanning policy performs the best. When carrying out the paired Student’s t-tests, we see

increases in path cost from all policies to the best policy. In table 12, this is OMT-EF. The

statistic for all t-tests is negative, and all have p < 0.05. This indicates that switching from all

other policies to this policy leads to a cost decrease. Given this data, an ordering of the policies

from lowest agent costs to highest agent costs can be made as following: EF < OO ≤ EC < NP.

Since replanning using NP was shown to incur significantly greater costs across all replanning

policies, when carrying out simulations using HOP we include only HOP-EC, HOP-EF, and

HOP-OO in table 6. Similarly to OMT, a single policy dominates. Agents utilizing HOP-EF

incur significantly lower costs than HOP-OO, with p < 0.05. HOP-OO is the worst, as agent

costs increase from both HOP-EF and HOP-EC. HOP-EC is in between, as it is significantly less

than HOP-OO, but greater than HOP-EF, but with significance levels much greater than 0.05.

Given this data, an ordering of the policies from lowest agent costs to highest agent costs can be

made as following: EF ≤ EC < OO.
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Table 6: Paired Student’s t-test on HOP replanning variants across all graphs

j

HOP-EC HOP-EF HOP-OO

i # agents t p t p t p

HOP-EC 2 —– —– -0.73 0.23 0.95 0.17
3 —– —– -0.40 0.34 1.96 0.03
4 —– —– -0.20 0.42 2.49 0.01
5 —– —– -0.19 0.42 2.81 0.00

HOP-EF 2 —– —– —– —– 1.65 0.05
3 —– —– —– —– 2.32 0.01
4 —– —– —– —– 2.64 0.00
5 —– —– —– —– 2.95 0.00

Overall, we propose that EF is the best order to re-plan agents for HOP and OMT based upon our

findings. This result is surprising as it indicates that both OMT and HOP generate low-cost paths

with multiple agents when only considering their current vertex’s expected cost, not any prior

information in the form of the original order of planning or the cost incurred to reach the current

vertex.

6.1.4 Impact of number of Agents

One of the key items this thesis seeks to address is to quantify the relative performance gains

achieved by adding agents. To accomplish this, we plot the cost of the agents versus the number

of agents. We first investigate OMT using the total expected cost replanning policy across the set

of Delaunay graphs with 20, 50, 100, 250, 500, 750, 1000, 1500, and 2000 vertices. These results

were generated before the analysis of best replanning policy was complete, hence why OMT-EF

was not used. These results are plotted in fig. 8. Given that there exists a known lower bound of

possible costs defined by the weathers, we expect a relationship to have a horizontal asymptote at

or above that theoretical lower limit (i.e., when the competitive ratio equals 1). Across all graph

sizes, the line of best fit follows an exponential decay function of the form:

y = A · exp(−B(`−1))+C, (5)
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Figure 5: Decay parameter of OMT-EC

where ` is the number of agents on a graph, C is the y-value of the asymptote, A is the magnitude

of the cost of a single agent above the asymptote, and B is the rate at which the the cost decreases

when adding an agent. The corresponding parameters for figs. 7 and 8 are located in table 7. A

number of key findings result from these data. First, we initially expected that the value of C

would be equivalent to the best possible cost. However, that is not the case. We see an offset from

the best possible costs, indicating that even with an infinite number of agents, neither OMT nor

HOP would not reach the best possible cost. While this is not directly predicted, we can draw

comparisons with some of the theoretical work completed in [15], in which contains a proof that

both OMT and HOP will underestimate the optimal policy. Secondly, if the exponential decay

rate, B, is known, we can estimate the benefit provided by each additional agent. Given our

optimist policy (OMT) on random Delaunay graphs, the relationship between the size of the

graph and best fit for the decay rate of OMT is near constant as shown in fig. 5. The linear best fit

for the decay rates for HOP has a positive slope as seen in fig. 6, however is also nearly constant.

Both lines of best fit for HOP and OMT have R2 values of 0.29, indicating that in both cases the

residual sum of squares of the best fit line is similar in magnitude to that of the mean.

Across all graphs tested, on average we see that it takes only 1-2 additional agents to outperform

the UCTO policy in the trials by Eyerich et al. [15] for OMT, and only 1 additional agent for
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Figure 6: Decay parameter of HOP-EC

Table 7: Equations of fit lines, OMT-EC & HOP-EC

Planning Policy Vertices A B C Best cost R2

OMT-EC 20 47.4 0.950 136.8 124.0 0.997
50 94.0 0.936 210.3 176.3 0.998
100 124.3 0.972 263.8 216.7 0.998
250 112.9 0.862 262.8 214.8 0.998
500 186.3 0.905 390.4 301.5 0.999
750 181.6 0.883 378.2 285.4 0.999
1000 202.1 0.895 472.1 348.2 0.998
1500 186.5 0.800 517.1 380.4 0.998
2000 246.0 0.910 675.6 473.2 0.997

HOP-EC 20 28.3 0.639 130.8 124.0 0.999
50 63.5 0.849 195.0 176.3 0.999
100 83.2 0.869 249.5 216.7 0.999
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Figure 7: Impact of agents on shortest path costs, HOP-EC policy

HOP (and in some cases, even no additional agent using A* with HOP outperforms UCTO).

Given that UCTO will very closely estimate the actual expectation of the cost to reach any given

destination, how can a small number of additional agents using the methodologies described in

this text achieve this level of performance? While these experiments are unable to directly

identify the mechanism of this gain, we estimate that benefits are derived from exposing failed

edges. Even highly improbable events can occur in any given weather, and quickly learning the

true structure of the graph by using multiple agents allows agents to exploit the graph structure

for the specific weather.

6.2 Trials on Random Euclidean Graphs

We compare the results of the online algorithm utilized by Shiri & Salman [29] to results

generated by our solution method of `-CTP. This comparison is made to validate that the

methodology developed to solve instances of `-CTP, including the usage of vertex-disjoint

iterative penalty method and A* path generation, improve upon the best-known results in the

literature. These data are found in tables 10 and 11 in the appendix; we index the results by the

number of vertices, then number of agents, and finally percentage of edges blocked. The columns

labeled ‘`-CTP’ and ‘Shiri-Salman’ are the average of the competitive ratios found by the best

agent in the 100 weathers for the respective algorithm. The final column, p, is generated from
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Figure 8: Impact of agents on shortest path costs, OMT-EC policy
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Figure 9: Comparison of performance of trials on Euclidean graphs

carrying out paired Student’s t-tests between the competitive ratios of ‘`-CTP’ and

‘Shiri-Salman’ in individual trials - these values are discussed at the end of this section. Overall,

we find that the average competitive ratio of paths found by our implementation of `-CTP was

1.039, compared to 1.115 for the online algorithm. This represents a 6.8% improvement from the

Shiri & Salman [29] results. However, the instances with 10% and 20% of failed edges will lead

to relatively similar performance due to the small portion of failed edges. When filtering on the

trials with edge failures of 10% and 20%, the competitive ratios for instances of `-CTP and

Shiri-Salman were 1.012 and 1.016, respectively. Comparing the tests which look at 30% and

40% failed edges is more illustrative of the differences between the policies - the performance

gap jumps to 1.066 and 1.214, a 12.2% improvement. We recreated a figure visualizing data from

the Euclidean random graph with 500 vertices and 1500 edges from [29], shown in fig. 9. The

solid lines are the results from the original trials, and the dashed lines indicate the data generated

when solving the `-CTP instances reduced from Euclidean graphs with the same weathers.

These results are attributable to two differences between our methodology and the online

algorithm from [29]. First, the penalty factors used in our approach are tuned for OMT to a value

of 0.5, whereas the online algorithm has a penalty factor of 1.0 and was not mentioned to have

been tuned. As shown in fig. 4, path costs increased for OMT after the penalty factor was raised

43



past 0.6, indicating routes were too divergent. Secondly, the online algorithm only utilizes IPM

for the initial path generation process. Upon encountering a failed edge, the edge is removed

from the visible set and any agent utilizing the edge generates a new shortest path from their

current node to vd without incorporating the path of other agents. With no penalizing factor, there

is no incentive for agents to explore the graph further, potentially reducing the exploration by the

agents. The algorithm we developed maintains exploration of the graph using IPM with

replanning methodologies described in §4.4.2 until a guaranteed path from vo to vd exists.

We additionally carry out statistical analysis of these results to determine their significance using

Student’s t-test. We first define µD = µShiri−Salman−µOMT−EF . The hypotheses we test are as

follows: H0 : µD = 0, H1 : µD > 0. We reject the null hypothesis in favor of the alternative when

p < α = 0.05. We first carry out Student’s t-test over all graphs, number of agents, and

percentage of edge failures. Across all tests, we find that p = 1.01×10−7. As such, with all

examples grouped together we reject the null hypothesis. We carry out the tests at a more

granular level, testing at each of the unique combinations of graphs, agents, and edge failures.

The remaining results are reported in tables 10 and 11. We reject H0 in favor of H1 in all cases

with 30% and 40% of edges failed. We fail to reject H0 in all instances with 10% of edges failed,

and in 20% of edges failed we reject H0 on graphs of size 100, 200, 300, and 400. With low

percentages of edges failed, we cannot determine conclusively the benefit of our solution

methodology. This does not necessarily reflect any failures of our approach, rather the

competitive ratios found by both algorithms indicate routes are very nearly optimal; the average

of the competitive ratios found in graphs with 10% of edges failed is less that 1% away from

optimal in all cases. As such, there is little room for improvement between our methodology and

the online algorithm. On the other hand, with larger percentages of edges failed, we conclude that

our solution approach produces a significant improvement in performance, compared with the

prior results in the literature.
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Table 8: Results of 100 weathers on HOU graph

Path length by # of agents (m)
Policy Best path length (m) 1 2 3

HOP-EC 35910 77177 64207 56712
OMT-EF 35910 106102 89237 78590

Table 9: Equations of best fit lines on HOU

Policy A B C R2

HOP-EC 30726 0.548 46451 1.000
OMT-EF 45740 0.460 60362 1.000

6.3 Case Study for Hurricane Harvey

In the case study for Hurricane Harvey, we test the performance of OMT-EF and HOP-EC in 100

weathers on a representation of the Houston road network, travelling from an origin south of

downtown Houston to a hospital to the northwest. These results were generated before the

analysis of best replanning policy was complete, hence why HOP-EF was not used. The results

generated are found in table 8. We list the best possible path length, along with the path lengths

found (in units of meters) for the given number of agents. The results are plotted in fig. 10, with

the exponential decay best fit line included. We first note that the exponential fit function found in

§6.1.4 carries over to the results on this complex graph, which is initially shown in fig. 3. Given

the 3 parameters, we are able to fit the curve using only 3 datapoints - 1, 2, and 3 agents. The

parameters of the fit lines are tabulated in table 9. The parameters predict the best possible path

length for agents using OMT-EF on average is 60,362 m. Given that the average shortest possible

path length is 35,910 m, using OMT-EF we are restricted to a best path more than 68% longer

than the best possible path. We see that HOP-EC generates lower costs paths than OMT-EF, as its

best possible length is predicted as 45,740 m. Additionally, values of the B parameter indicate

that HOP-EC path lengths decrease more per agent added than OMT-EF, with BHOP = 0.548 and

BOMT = 0.460.

We look at a representative simulation to develop intuition as to why the best possible path length
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Figure 10: Results of `-CTP instances on Houston road network

for OMT is inflated compared to HOP. For this, we have plotted the path of a representative

`-CTP run with 3 agents, as seen in fig. 11b. The red, blue and green paths are those generated by

agent number 1, 2 and 3, respectively. To get a better sense of the impact the weather has on the

graph, we plot the shortest paths with no blockages (green path) and shortest path with blockages

from the current weather (magenta) in fig. 11a. The results in fig. 11a indicate the increase in

shortest path length is in part due to major north/south paths restricted by flooding, such that the

shortest path in our sampled weather requires detouring around the west side of the graph.

Contrasting the paths generated by HOP-EC (fig. 11c) and OMT-EF (fig. 11b), we first notice that

OMT explores more of the possible north/south main roads, whereas HOP-EC is more ‘cautious’

and all three agents travel along many of the same edges, making excursions to explore

non-penalized routes of similar length. This is at least in part due to the weighting factor of IPM.

Given that wHOP = 0.2, wOMT = 0.5, HOP is penalized less than OMT for traveling the same

path.

While OMT was shown outperform UCTO on random graphs with the addition of only 1-2
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(a) Comparison of best path in normal conditions
(green) to best path in example weather (magenta)

(b) Performance of OMT-EF on Houston road net-
work in weather

(c) Performance of HOP-EC on Houston road net-
work in weather

Figure 11: Performance of OMT-EC on Houston road network

agents, these results on the Houston road network indicate that OMT with a large number of

agents can only achieve performance roughly equivalent to that of 2 agents with HOP. We have

provided a scenario which is difficult for agents using OMT to deal with, as the optimistic

assumption of all roads being open is invalid in the weathers generated. The cost estimates by

HOP are better able to determine that many of the north-south roads are unavailable through

sampling of possible weathers. This indicates that while the performance differential between

HOP and OMT on random graphs is less pronounced, knowledge of the likelihood of edge

availability can enable HOP to find low-cost routes in graphs where OMT cannot.
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7 Conclusions

This thesis has demonstrated a robust framework for `-CTP, illustrating the various benefits of

adding agents to aid in the online discovery of the shortest paths in a network with failed edges.

Our methodology for solving instances of `-CTP utilizes multiple path generation methods found

in the literature for single agent CTP, and combines these with heuristics to incentivize

exploration among various agents. We first developed a formulation of `-CTP, beginning by

developing intuition around the performance of agents when using A* to generate paths across

networks for both policies HOP and OMT. We carried out parameter tuning for the iterative

penalty method with 3 agents using both OMT and HOP policies, which led to agents taking

routes with lengths within 20% of the optimal path length.

We carried out a wide set of simulations on graphs utilized by Eyerich et al. [15], and analyzed

these results with statistical methods to demonstrate the equivalence between the simulated

weathers on which our approach was tested and the results from Eyerich et al. [15]. These results

demonstrated statistically significant benefits of utilizing A* to generate routes versus utilizing a

greedy, vertex-by-vertex approach for the HOP policy. We also investigated a variety of

techniques for generating new agent plans when agents discover failed edges which impede their

movement. We show that the order in which a group of agents develop new plans can affect the

length of the best path found. The best method by which agents develop new plans does not

depend upon the policy those agents are utilizing; for both HOP and OMT, having agents

generate plans in their order of expected future cost is best. Finally, we analyzed the impact of

multiple agents. The length of the best path found (y) as a function of the number of agents (`) is

modeled by an exponential decay curve of the form y = A · exp(−B(`−1))+C. This holds true

for all the random graphs tested, and for agents which utilize HOP and OMT. The parameters of

this equation provide insight into the performance, and limits, of a large number of agents.

Generally, exponential decay indicates that most of the benefit of multiple agents (using

appropriate planning methodologies) is derived from the first 2-5 agents. After the first few
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agents, each additional agent provides a decreasing benefit defined by B. The asymptote, C,

defines the best possible cost achievable by agents using a specific planning policy.

We compare our solution approach to `-CTP to the results of Shiri & Salman [29], who carried

out the only simulation of multi-agent CTP in the literature prior to the experiments outlined in

this text as known to the author. Through statistical analysis, we demonstrate that our solution

approach to `-CTP using the OMT-EF policy outperforms the online algorithm developed by

Shiri & Salman [29] on random Euclidean graphs with variable edge failures. The exact reason

for this performance is not certain, however two key factors are attributed: the tuning of the

penalty factor, and maintaining diverse paths between all agents throughout the implementation

of `-CTP.

The final experiment is the application of `-CTP to the Houston road network, with edge

probabilities derived from flooding simulations of hurricane Harvey in 2017. Our solution

approach still exhibited exponential decay of path cost as a function of the number of agents,

however for OMT-EF the asymptote, C, was 68% greater than best possible path lengths,

compared to HOP-EC which was only 28% greater. This indicates that for large and complex

graphs, OMT-EF is limited in its best possible performance on graphs where the shortest path

takes a significantly different route as compared to the shortest path on a graph with no failed

edges. This indicates that while OMT may be able to generate low-cost paths on random graphs,

the ability to estimate likely path costs allow HOP to significantly outperform OMT when edge

costs and probabilities are not randomly distributed.

The results in this thesis are promising for application to real-world scenarios, however a number

of questions arise. First, while OMT allows for a simple implementation on any graph, serious

limitations in the generation of paths can occur when its freespace assumption is not valid. There

may be ways to incorporate information into our cost estimates without using HOP, which, while

relatively straightforward, does require a rigorous implementation. Second, while we have

modeled the best path cost as an exponential decay function, the mechanisms for this decrease are
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not well understood. Intuitively we understand the trade-off between exploration and

exploitation, where adding more agents incurs the cost of their usage to learn more information

about the graph. We propose that this benefit is derived from the ability to sample edges and

exploit differences between the expectation of path cost with the weather agents are operating in.

A surprising result in the data is that the agent which incurs the lowest path cost in the vast

majority of simulations (95%+) is the first agent - the agent which began traversing the graph

with the best expected path for that policy. This implies that in most cases, the other agents are

revealing information about the graph which the first agent exploits to generate a better path.

Determining which information leads to better path generation could lead to improved online

pathfinding algorithms.

There exist a number of paths to extend this work. The application of multiple agents all traveling

from a single source to a single destination is a limited use case. We can very easily expand this

`-CTP framework to answer more interesting questions. In a scenario where multiple agents have

separate origin and destination nodes, can we see similar performance benefits from sharing

information? This scenario arises during normal operations of a fleet of vehicles, such as delivery

vehicles or emergency responders with separate tasks operating in the same geographical area.

We make a number of simplifying assumptions with regards to the weathers and the probabilities

that any particular edge may be available. First, we assume that weathers remain constant. When

we know that the estimated time to traverse a graph is lower than the expected rate of change in a

weather, this is a valid assumption. When edge availability may shift midway through an agent

traversing a network, how does an agent (or set of agents) develop paths? Secondly, we assume

independence of edge availability. Let us take the example of flooding, where an agent discovers

a road is flooded. That agent could rightly update the likelihood that nearby roads of lower

elevation have a lower probability of being available. Incorporating Bayesian models with prior

distributions into route planning requires even more complex algorithms than the methodologies

proposed in this thesis as solutions to instances of `-CTP, but could allow for better usage of
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information gathered when generating routes.
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9 Appendix

Table 10: Comparison of Competitive Ratio between instances of `-CTP and Shiri-Salman

Vertices L % Blocked `-CTP Shiri-Salman p

100 3 10.0 1.011220 1.011721 0.476
20.0 1.038938 1.045371 0.109
30.0 1.048932 1.230993 0.000
40.0 1.107447 1.448394 0.000

6 10.0 1.001256 1.004940 0.222
20.0 1.012129 1.013292 0.415
30.0 1.029870 1.093416 0.008
40.0 1.061844 1.244553 0.001

9 10.0 1.000717 1.001200 0.347
20.0 1.008962 1.012479 0.249
30.0 1.023036 1.046323 0.043
40.0 1.042821 1.191101 0.002

200 4 10.0 1.003795 1.001753 0.246
20.0 1.032042 1.044586 0.190
30.0 1.104478 1.171653 0.033
40.0 1.186860 1.362152 0.002

8 10.0 1.000125 1.000125 0.160
20.0 1.019616 1.017891 0.417
30.0 1.047884 1.091345 0.033
40.0 1.061113 1.178562 0.000

12 10.0 1.000000 1.000125 0.160
20.0 1.007458 1.014544 0.092
30.0 1.021046 1.073407 0.006
40.0 1.029788 1.131317 0.000
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Table 11: Comparison of Competitive Ratio between instances of `-CTP and Shiri-Salman,
cont’d

Vertices L % Blocked `-CTP Shiri-Salman p

300 5 10.0 1.001687 1.002747 0.069
20.0 1.058652 1.072134 0.235
30.0 1.117621 1.217402 0.001
40.0 1.172621 1.497565 0.000

10 10.0 1.000313 1.001089 0.120
20.0 1.026305 1.029282 0.366
30.0 1.040526 1.095952 0.005
40.0 1.083595 1.249595 0.001

15 10.0 1.000313 1.000958 0.160
20.0 1.014909 1.019424 0.249
30.0 1.033369 1.081265 0.014
40.0 1.037882 1.246371 0.000

400 6 10.0 1.013903 1.006048 0.138
20.0 1.029013 1.031149 0.445
30.0 1.074763 1.209254 0.001
40.0 1.144261 1.512231 0.000

12 10.0 1.006566 1.005671 0.439
20.0 1.009146 1.018592 0.141
30.0 1.033589 1.102355 0.000
40.0 1.078010 1.238647 0.001

18 10.0 1.005845 1.005671 0.488
20.0 1.005931 1.018160 0.104
30.0 1.026931 1.062473 0.009
40.0 1.042935 1.225611 0.000

500 7 10.0 1.004057 1.003641 0.379
20.0 1.018585 1.048129 0.011
30.0 1.047475 1.152036 0.001
40.0 1.114214 1.451561 0.000

14 10.0 1.002596 1.002639 0.483
20.0 1.011188 1.029395 0.039
30.0 1.029724 1.118340 0.002
40.0 1.071229 1.321016 0.000

21 10.0 1.001537 1.002431 0.129
20.0 1.005452 1.027566 0.017
30.0 1.016618 1.077370 0.001
40.0 1.050390 1.283681 0.000
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Table 12: OMT-NP average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP , # of agents

Graph OMT UCTO 1 2 3 4 5

20-1 205.9 169.0 200.7 172.1 161.9 156.0 152.3
20-2 187.0 148.9 187.3 165.1 159.8 152.1 150.5
20-3 139.5 132.5 142.9 127.9 122.2 119.8 117.9
20-4 266.2 235.2 244.7 205.8 199.7 192.0 185.7
20-5 163.1 111.3 166.5 126.6 112.5 106.3 104.9
20-6 180.2 133.1 182.0 142.3 122.2 118.3 114.2
20-7 172.2 148.2 170.5 138.3 129.8 128.9 126.7
20-8 150.1 134.5 152.4 140.0 134.1 130.6 125.4
20-9 222.0 173.9 222.2 175.9 166.3 160.9 158.5
20-10 178.2 167.0 175.7 155.3 143.4 139.7 138.0

Average 186.5 154.2 184.5 154.9 145.2 140.4 137.4

50-1 255.5 186.1 254.5 173.8 163.9 146.6 144.6
50-2 467.1 365.5 463.6 367.8 351.1 334.2 326.8
50-3 281.5 255.6 289.2 242.2 223.0 216.1 209.9
50-4 289.8 230.5 287.6 235.3 214.3 203.5 196.4
50-5 285.5 225.4 285.7 214.0 202.8 192.7 189.8
50-6 251.3 236.3 243.0 229.2 221.1 217.8 211.4
50-7 242.2 206.3 235.9 208.7 189.4 178.3 174.6
50-8 355.1 277.6 363.6 284.8 263.2 254.5 246.1
50-9 327.4 222.5 331.0 249.2 223.4 213.9 212.0
50-10 281.6 240.8 292.5 238.6 212.3 194.5 188.6

Average 303.7 244.7 304.7 244.4 226.4 215.2 210.0

100-1 370.9 286.8 354.7 291.9 263.9 254.1 242.0
100-2 160.6 151.5 169.0 158.3 155.4 152.4 152.0
100-3 550.2 412.2 550.1 411.0 376.0 353.4 338.1
100-4 420.1 314.3 431.2 333.0 319.1 303.1 306.0
100-5 397.0 348.3 411.4 346.0 323.0 308.4 303.6
100-6 455.0 396.2 478.7 393.4 365.8 357.6 348.7
100-7 431.4 358.2 435.8 330.6 310.5 300.9 293.3
100-8 335.6 293.3 328.0 276.2 240.5 222.8 216.7
100-9 327.5 262.0 329.9 273.1 240.5 233.7 223.5
100-10 381.5 342.3 396.3 309.6 283.3 271.9 267.2

Average 383.0 316.5 388.5 312.3 287.8 271.8 269.1
Red highlighted box indicates instance where average performance decreases.
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Table 13: OMT-NP analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 113 23.9 70 32.5 39 23.1 38 17.1
20-2 —– —– 68 9.7 57 14.8 60 14.0 47 10.0
20-3 —– —– 16 17.4 21 30.6 13 22.4 11 13.2
20-4 —– —– 80 41.9 31 44.3 41 49.1 33 15.7
20-5 —– —– 25 30.0 51 57.3 17 15.1 13 21.8
20-6 —– —– 74 23.9 37 7.5 76 22.8 52 10.1
20-7 —– —– 35 14.8 19 10.6 42 17.7 13 13.5
20-8 —– —– 28 9.2 23 11.8 173 21.9 28 16.5
20-9 —– —– 86 13.8 113 19.3 97 21.0 104 17.5
20-10 —– —– 17 19.1 32 15.1 22 9.8 29 11.6

Average —– —– —– 20.4 —– 24.4 —– 21.7 —– 14.7
Total —– —– 542 —– 454 —– 580 —– 368 —–

50-1 —– —– 38 30.8 65 43.6 43 18.0 39 13.7
50-2 —– —– 85 12.9 209 13.8 209 13.4 246 12.9
50-3 —– —– 215 16.8 195 13.6 213 14.4 150 12.9
50-4 —– —– 137 10.9 119 12.8 152 13.5 132 11.4
50-5 —– —– 55 31.8 137 23.3 101 13.4 158 13.0
50-6 —– —– 129 8.7 79 9.4 133 11.4 80 9.8
50-7 —– —– 190 49.0 102 22.0 79 10.2 79 12.6
50-8 —– —– 113 18.0 215 9.7 196 11.5 177 11.4
50-9 —– —– 66 21.1 121 14.8 114 11.8 121 18.8
50-10 —– —– 244 21.3 125 19.4 137 13.3 123 14.1

Average —– —– —– 22.1 —– 18.2 —– 13.1 —– 13.1
Total —– —– 1272 —– 1367 —– 1377 —– 1305 —–

100-1 —– —– 89 17.7 89 14.7 114 16.7 96 20.7
100-2 —– —– 86 12.4 120 11.0 65 11.8 69 14.1
100-3 —– —– 90 17.5 127 14.6 170 14.1 231 13.3
100-4 —– —– 128 16.4 243 18.2 249 13.3 362 17.3
100-5 —– —– 92 12.8 162 12.4 158 12.3 198 11.0
100-6 —– —– 138 13.1 173 11.6 263 10.7 231 11.0
100-7 —– —– 117 17.1 194 15.3 223 14.2 227 10.9
100-8 —– —– 143 14.8 101 10.2 95 10.9 98 12.6
100-9 —– —– 86 20.0 51 11.3 89 8.0 69 11.2
100-10 —– —– 146 15.6 178 14.8 234 14.0 270 13.1

Average —– —– —– 15.7 —– 13.4 —– 12.6 —– 13.5
Total —– —– 1115 —– 1438 —– 1660 —– 1851 —–
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Table 14: OMT-OO average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP , # of agents

Graph OMT UCTO 1 2 3 4 5

20-1 205.9 169.0 200.7 169.9 154.0 148.6 147.4
20-2 187.0 148.9 187.3 166.4 153.4 149.2 146.5
20-3 139.5 132.5 142.9 125.6 121.8 119.9 119.1
20-4 266.2 235.2 244.7 205.1 193.6 186.0 181.7
20-5 163.1 111.3 166.5 122.4 114.2 106.5 103.2
20-6 180.2 133.1 182.0 136.5 125.5 121.2 116.7
20-7 172.2 148.2 170.5 137.2 132.1 128.8 127.2
20-8 150.1 134.5 152.4 141.1 133.6 127.6 125.3
20-9 222.0 173.9 222.2 180.5 170.2 164.7 162.7
20-10 178.2 167.0 175.7 156.7 150.6 143.7 141.6

Average 186.5 154.2 184.5 154.1 144.9 139.6 137.2

50-1 255.5 186.1 254.5 170.3 158.9 145.2 143.1
50-2 467.1 365.5 463.6 392.5 352.4 341.9 329.1
50-3 281.5 255.6 289.2 240.0 221.9 212.8 209.1
50-4 289.8 230.5 287.6 238.7 214.6 203.6 197.6
50-5 285.5 225.4 285.7 215.3 202.4 194.1 190.2
50-6 251.3 236.3 243.0 225.9 215.6 210.8 206.3
50-7 242.2 206.3 235.9 205.0 187.7 178.9 173.3
50-8 355.1 277.6 363.6 290.5 261.0 249.5 243.8
50-9 327.4 222.5 331.0 246.5 220.4 207.2 200.8
50-10 281.6 240.8 292.5 223.9 203.7 197.6 191.1

Average 303.7 244.7 304.7 244.9 223.9 214.2 208.4

100-1 370.9 286.8 354.7 289.2 259.8 245.5 237.0
100-2 160.6 151.5 169.0 156.6 154.8 153.0 151.8
100-3 550.2 412.2 550.1 410.8 372.5 353.2 336.5
100-4 420.1 314.3 431.2 333.4 315.4 303.9 298.0
100-5 397.0 348.3 411.4 344.5 323.7 307.3 300.5
100-6 455.0 396.2 478.7 398.7 372.1 358.7 351.2
100-7 431.4 358.2 435.8 333.4 309.0 297.4 288.8
100-8 335.6 293.3 328.0 260.9 236.8 223.6 216.1
100-9 327.5 262.0 329.9 271.3 240.1 234.1 223.3
100-10 381.5 342.3 396.2 312.9 287.9 277.3 265.9

Average 383.0 316.5 388.5 311.2 287.2 275.4 266.9
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Table 15: OMT-OO analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 0 —– 7 7.6 5 10.5 3 12.3
20-2 —– —– 0 —– 2 47.7 4 41.3 2 5.1
20-3 —– —– 6 9.6 1 36.8 2 10.0 0 —–
20-4 —– —– 0 —– 2 27.7 3 7.3 4 14.5
20-5 —– —– 0 —– 1 10.9 2 6.7 1 12.1
20-6 —– —– 4 14.4 5 11.6 2 6.1 2 7.9
20-7 —– —– 1 1.4 0 —– 1 4.2 1 40.4
20-8 —– —– 1 16.9 1 15.7 1 12.6 1 12.4
20-9 —– —– 2 15.7 4 17.9 6 32.2 12 11.1
20-10 —– —– 0 —– 1 30.5 2 8.7 1 12.7

Average —– —– —– 11.6 —– 22.9 —– 14.0 —– 14.3
Total —– —– 14 —– 24 —– 28 —– 27 —–

50-1 —– —– 2 9.4 11 9.2 9 9.5 6 8.5
50-2 —– —– 5 3.7 42 8.5 41 8.3 66 9.7
50-3 —– —– 3 2.7 10 12.7 15 12.5 18 13.8
50-4 —– —– 9 6.5 19 11.3 31 11.3 11 10.3
50-5 —– —– 4 27.7 17 15.9 36 20.9 12 5.0
50-6 —– —– 2 20.2 9 14.7 13 7.0 5 17.1
50-7 —– —– 5 20.5 20 12.9 16 7.5 12 10.4
50-8 —– —– 7 10.5 37 10.7 22 9.1 21 10.7
50-9 —– —– 8 22.7 9 13.2 12 13.1 19 17.8
50-10 —– —– 7 11.8 13 20.1 21 7.9 19 13.7

Average —– —– —– 13.6 —– 12.9 —– 10.7 —– 11.7
Total —– —– 52 —– 187 —– 216 —– 189 —–

100-1 —– —– 5 4.6 10 7.1 26 10.6 27 10.3
100-2 —– —– 2 15.3 6 9.0 5 11.5 3 1.7
100-3 —– —– 18 15.4 29 9.7 42 6.4 56 9.6
100-4 —– —– 23 11.2 22 11.9 44 14.6 31 10.5
100-5 —– —– 3 8.4 38 10.4 41 9.3 52 9.7
100-6 —– —– 13 6.9 36 10.6 50 8.1 63 9.3
100-7 —– —– 10 8.1 23 6.6 31 10.9 38 9.7
100-8 —– —– 8 10.3 23 7.8 19 6.5 26 9.4
100-9 —– —– 2 10.2 13 16.1 12 19.2 44 9.2
100-10 —– —– 7 8.6 40 10.4 59 12.4 56 8.2

Average —– —– —– 9.9 —– 10.0 —– 11.0 —– 8.8
Total —– —– 91 —– 240 —– 329 —– 39.6 —–

61



Table 16: OMT-EC average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP , # of agents

Graph OMT UCTO 1 2 3 4 5

20-1 205.9 169.0 200.7 170.7 156.7 150.9 146.5
20-2 187.0 148.9 187.3 164.9 152.7 148.6 146.1
20-3 139.5 132.5 142.9 125.7 122.0 120.0 119.2
20-4 266.2 235.2 244.7 204.4 192.9 186.1 181.9
20-5 163.1 111.3 166.5 123.0 114.4 106.4 103.6
20-6 180.2 133.1 182.0 135.4 124.4 120.3 116.6
20-7 172.2 148.2 170.5 137.2 131.7 128.2 126.5
20-8 150.1 134.5 152.4 140.7 134.1 128.6 125.4
20-9 222.0 173.9 222.2 182.8 173.8 167.4 163.4
20-10 178.2 167.0 175.7 157.2 150.1 143.8 140.8

Average 186.5 154.2 184.5 154.2 145.3 140.0 137.0

50-1 255.5 186.1 254.5 174.5 159.5 145.8 143.7
50-2 467.1 365.5 463.6 387.8 362.2 350.5 333.2
50-3 281.5 255.6 289.2 241.4 224.3 217.0 212.5
50-4 289.8 230.5 287.6 240.4 224.4 208.7 201.7
50-5 285.5 225.4 285.7 214.7 202.4 192.9 190.1
50-6 251.3 236.3 243.0 225.7 216.4 211.9 208.6
50-7 242.2 206.3 235.9 205.6 190.2 180.4 174.5
50-8 355.1 277.6 363.6 292.0 264.2 252.3 246.0
50-9 327.4 222.5 331.0 248.0 221.9 209.8 202.6
50-10 281.6 240.8 292.5 223.2 205.8 200.2 194.5

Average 303.7 244.7 304.7 245.3 227.1 217.0 210.7

100-1 370.9 286.8 354.7 283.7 256.0 241.2 233.5
100-2 160.6 151.5 169.0 155.7 153.0 151.1 149.7
100-3 550.2 412.2 550.1 409.0 370.1 346.2 336.3
100-4 420.1 314.3 431.2 328.7 310.5 296.0 293.1
100-5 397.0 348.3 411.4 340.5 319.0 304.0 296.1
100-6 455.0 396.2 478.7 398.5 372.7 357.5 350.5
100-7 431.4 358.2 435.8 333.7 305.6 292.9 285.4
100-8 335.6 293.3 328.0 260.3 234.2 223.1 215.6
100-9 327.5 262.0 329.9 267.7 240.6 232.3 224.1
100-10 381.5 342.3 396.2 311.0 281.3 269.4 260.4

Average 383.0 316.5 388.5 311.2 287.2 275.4 266.9
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Table 17: OMT-EC analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 1 12.5 21 28.6 15 11.0 4 4.8
20-2 —– —– 3 10.3 8 15.8 15 8.4 6 9.0
20-3 —– —– 6 9.6 2 15.5 4 14.5 2 7.5
20-4 —– —– 0 —– 0 —– 5 25.2 9 25.2
20-5 —– —– 6 49.1 4 12.0 1 7.7 3 15.7
20-6 —– —– 5 13.2 14 23.6 4 11.4 15 9.5
20-7 —– —– 2 5.2 4 13.5 0 —– 0 —–
20-8 —– —– 0 —– 5 9.5 4 5.2 3 13.0
20-9 —– —– 8 12.2 23 16.3 21 14.6 17 10.4
20-10 —– —– 3 35.3 3 13.7 5 22.7 3 10.1

Average —– —– —– 18.4 —– 16.5 —– 13.4 —– 11.7
Total —– —– 34 —– 84 —– 74 —– 62 —–

50-1 —– —– 8 36.2 82 5.5 37 11.9 45 12.9
50-2 —– —– 55 10.9 121 11.4 178 8.1 153 8.2
50-3 —– —– 68 13.7 124 13.0 158 10.7 135 11.9
50-4 —– —– 59 3.8 86 14.5 117 11.8 170 12.0
50-5 —– —– 5 4.8 30 8.4 69 11.7 92 14.1
50-6 —– —– 22 8.0 42 7.8 48 11.1 63 10.0
50-7 —– —– 26 10.7 41 7.5 55 8.2 87 10.8
50-8 —– —– 26 10.6 121 6.3 120 8.1 171 7.7
50-9 —– —– 12 21.2 51 11.5 46 10.9 76 10.9
50-10 —– —– 40 12.3 55 11.5 88 10.6 68 10.4

Average —– —– —– 13.2 —– 9.7 —– 10.3 —– 10.9
Total —– —– 321 —– 753 —– 916 —– 1060 —–

100-1 —– —– 5 4.6 10 7.1 26 10.6 27 10.3
100-2 —– —– 2 15.3 6 9.0 5 11.5 3 1.7
100-3 —– —– 18 15.4 29 9.7 42 6.4 56 9.6
100-4 —– —– 23 11.2 22 11.9 44 14.6 31 10.5
100-5 —– —– 3 8.4 38 10.4 41 9.3 52 9.7
100-6 —– —– 13 6.9 36 10.6 50 8.1 63 9.3
100-7 —– —– 10 8.1 23 6.6 31 10.9 38 9.7
100-8 —– —– 8 10.3 23 7.8 19 6.5 26 9.4
100-9 —– —– 2 10.2 13 16.1 12 19.2 44 9.2
100-10 —– —– 7 8.6 40 10.4 59 12.4 56 8.2

Average —– —– —– 9.9 —– 10.0 —– 10.9 —– 8.8
Total —– —– 91 —– 240 —– 329 —– 396 —–
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Table 18: HOP-OO average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP , # of agents

Graph HOP UCTO 1 2 3 4 5

20-1 171.6 169.0 169.4 151.7 144.9 141.8 139.4
20-2 155.8 148.9 154.7 143.8 134.9 133.5 131.4
20-3 138.7 132.5 138.3 129.7 120.7 118.5 117.0
20-4 286.8 235.2 241.4 214.4 204.4 195.9 189.4
20-5 113.3 111.3 124.3 107.5 104.7 100.2 99.2
20-6 142.0 133.1 132.5 124.1 118.5 114.9 113.2
20-7 150.2 148.2 147.9 139.1 131.6 128.0 126.5
20-8 133.6 134.5 137.5 128.7 125.4 122.1 121.0
20-9 177.1 173.9 174.4 160.9 155.8 153.1 151.5
20-10 188.1 167.0 171.7 155.6 150.8 147.8 146.2

Average 165.7 154.2 159.2 145.5 139.2 135.6 133.5

50-1 250.6 186.1 230.4 171.9 154.3 148.8 139.6
50-2 375.4 365.5 370.9 335.0 324.0 316.9 312.1
50-3 294.5 255.6 274.5 236.0 216.7 209.4 204.9
50-4 263.9 230.5 228.5 204.7 191.4 187.2 184.0
50-5 239.5 225.4 226.7 200.7 188.3 184.4 181.6
50-6 253.2 236.3 238.5 211.4 204.1 198.2 194.1
50-7 221.9 206.3 207.2 176.7 165.7 160.4 157.8
50-8 302.2 277.6 305.3 262.6 244.8 238.5 233.9
50-9 281.8 222.5 243.9 210.0 197.0 190.4 186.3
50-10 271.2 240.8 261.0 212.6 196.8 190.3 185.7

Average 275.4 244.7 258.7 222.2 208.3 202.4 198.0

100-1 319.3 286.8 281.3 244.7 231.9 225.7 220.2
100-2 154.5 151.5 158.2 151.1 148.9 148.3 147.8
100-3 488.1 412.2 446.5 362.3 333.4 320.2 310.8
100-4 329.8 314.3 333.8 297.5 286.2 280.0 276.2
100-5 452.4 348.3 385.0 319.3 301.7 290.6 284.0
100-6 487.9 396.2 421.5 377.8 361.9 348.3 341.5
100-7 403.9 358.2 380.0 316.1 299.2 286.6 281.4
100-8 322.0 293.3 295.0 246.0 228.6 215.8 208.6
100-9 366.1 262.0 273.4 238.8 227.5 219.0 214.9
100-10 388.4 342.3 354.9 295.6 274.5 264.7 259.5

Average 371.3 316.5 333.0 284.9 269.4 259.9 254.5

64



Table 19: HOP-OO analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 1 27.6 1 38.4 12 11.9 17 10.1
20-2 —– —– 20 15.0 15 11.8 20 14.6 4 25.5
20-3 —– —– 0 —– 9 23.2 2 17.2 4 18.4
20-4 —– —– 3 35.5 3 11.2 2 1.5 16 11.8
20-5 —– —– 4 41.3 3 20.3 2 37.6 2 13.9
20-6 —– —– 1 10.4 7 15.6 8 12.1 3 2.5
20-7 —– —– 2 13.6 4 8.4 1 2.2 1 1.6
20-8 —– —– 3 3.2 3 10.4 2 6.9 6 5.4
20-9 —– —– 0 —– 6 25.5 0 —– 3 5.7
20-10 —– —– 9 13.8 0 —– 2 23.3 3 13.2

Average —– —– —– 20.1 —– 18.3 —– 14.1 —– 10.8
Total —– —– 43 —– 51 —– 51 —– 59 —–

50-1 —– —– 5 6.9 12 16.2 11 12.9 23 10.2
50-2 —– —– 34 8.2 45 9.0 44 9.5 34 6.4
50-3 —– —– 9 9.0 11 10.9 11 7.8 17 11.7
50-4 —– —– 17 17.8 56 15.8 18 19.2 34 6.9
50-5 —– —– 18 24.9 12 22.7 16 7.0 12 6.9
50-6 —– —– 17 6.1 6 8.6 11 6.2 19 14.8
50-7 —– —– 9 11.6 25 11.1 14 8.6 13 11.4
50-8 —– —– 19 10.7 33 9.6 28 8.5 25 8.2
50-9 —– —– 10 7.7 14 8.4 19 11.9 31 11.4
50-10 —– —– 15 14.4 32 16.5 20 11.1 37 13.0

Average —– —– —– 11.7 —– 12.9 —– 10.3 —– 10.1
Total —– —– 153 —– 246 —– 192 —– 245 —–

100-1 —– —– 9 10.1 25 17.0 23 8.5 28 7.0
100-2 —– —– 4 5.3 3 3.6 6 6.7 4 3.7
100-3 —– —– 42 10.7 69 14.3 72 9.3 70 9.4
100-4 —– —– 7 26.8 46 5.9 46 7.3 40 6.2
100-5 —– —– 31 12.7 42 8.3 60 9.5 58 10.7
100-6 —– —– 30 5.0 59 9.8 65 8.5 47 7.2
100-7 —– —– 20 10.0 40 9.2 54 7.4 47 9.1
100-8 —– —– 9 20.8 31 12.7 26 14.4 35 10.7
100-9 —– —– 9 3.5 21 11.4 31 8.8 25 9.1
100-10 —– —– 19 8.9 53 12.2 55 9.1 85 10.1

Average —– —– —– 11.4 —– 10.4 —– 9.0 —– 8.3
Total —– —– 180 —– 389 —– 438 —– 439 —–
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Table 20: HOP-EC average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP, # of agents

Graph HOP UCTO 1 2 3 4 5

20-1 171.6 169.0 169.4 151.2 144.0 140.7 138.1
20-2 155.8 148.9 154.7 144.0 136.9 133.5 130.4
20-3 138.7 132.5 138.3 129.7 119.8 118.0 116.6
20-4 286.8 235.2 241.4 214.7 204.6 196.4 189.1
20-5 113.3 111.3 124.3 107.2 104.2 99.9 98.6
20-6 142.0 133.1 132.5 123.6 118.2 115.0 113.7
20-7 150.2 148.2 147.9 139.0 131.2 127.5 127.0
20-8 133.6 134.5 137.5 128.7 125.3 120.2 118.7
20-9 177.1 173.9 174.4 160.6 155.1 152.2 150.2
20-10 188.1 167.0 171.7 155.6 151.1 147.6 145.6

Average 165.7 154.2 159.2 145.4 139.0 135.1 132.8

50-1 250.6 186.1 230.5 171.9 154.6 148.9 138.9
50-2 375.4 365.5 370.9 333.1 320.9 313.1 308.9
50-3 294.5 255.6 274.5 234.6 216.8 209.8 203.8
50-4 263.9 230.5 228.5 202.2 187.9 182.1 178.2
50-5 239.5 225.4 226.7 200.9 187.8 183.3 180.4
50-6 253.2 236.3 238.6 212.3 202.8 197.3 193.4
50-7 221.9 206.3 207.2 176.6 164.3 159.2 156.7
50-8 302.2 277.6 305.4 259.4 243.2 236.7 231.2
50-9 281.8 222.5 244.0 210.2 196.7 190.7 186.2
50-10 271.2 240.8 261.0 212.9 198.3 189.2 183.0

Average 275.4 244.7 258.7 221.4 207.3 201.0 196.1

100-1 319.3 286.8 281.3 244.1 230.9 225.2 219.3
100-2 154.5 151.5 158.2 150.8 148.8 147.4 146.7
100-3 488.1 412.2 446.5 359.0 332.0 316.1 308.2
100-4 329.8 314.3 333.8 295.3 281.7 273.7 269.5
100-5 452.4 348.3 385.0 317.7 297.4 286.1 279.2
100-6 487.9 396.2 421.5 374.7 353.2 340.5 334.5
100-7 403.9 358.2 380.0 313.8 295.7 283.3 277.9
100-8 322.0 293.3 295.0 243.5 219.4 211.7 207.5
100-9 366.1 262.0 273.4 237.3 224.1 216.5 212.9
100-10 388.4 342.3 354.9 311.1 279.6 267.3 259.0

Average 371.3 316.5 333.0 241.4 228.8 222.1 218.4
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Table 21: HOP-EC analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 1 27.6 14 10.1 9 13.2 8 6.4
20-2 —– —– 19 11.9 22 11.8 23 18.4 16 12.9
20-3 —– —– 0 —– 4 19.7 2 11.7 4 8.8
20-4 —– —– 2 1.7 13 13.6 8 10.5 14 11.3
20-5 —– —– 4 41.3 3 18.7 4 22.5 0 —–
20-6 —– —– 25 9.0 14 6.5 13 13.4 14 9.5
20-7 —– —– 3 10.6 13 3.3 4 16.0 22 12.3
20-8 —– —– 2 1.2 6 5.8 4 4.2 9 6.6
20-9 —– —– 3 11.3 15 13.9 18 12.5 5 3.1
20-10 —– —– 16 10.3 3 14.5 1 28.9 3 16.1

Average —– —– —– 13.9 —– 11.8 —– 15.1 —– 9.7
Total —– —– 75 —– 107 —– 86 —– 95 —–

50-1 —– —– 9 8.8 24 12.8 20 7.1 10 4.8
50-2 —– —– 29 7.2 48 7.8 73 4.8 45 6.0
50-3 —– —– 11 7.3 46 8.5 53 8.9 61 6.4
50-4 —– —– 10 12.7 56 8.8 28 6.4 40 7.5
50-5 —– —– 21 16.6 38 10.9 25 8.0 30 9.0
50-6 —– —– 10 7.4 18 6.6 50 7.7 27 9.7
50-7 —– —– 13 11.1 18 8.8 28 8.6 20 8.2
50-8 —– —– 38 5.8 69 6.7 56 7.0 51 6.1
50-9 —– —– 10 15.0 23 8.0 60 10.3 34 8.7
50-10 —– —– 8 16.3 76 14.4 45 8.8 81 8.6

Average —– —– —– 10.8 —– 9.3 —– 7.8 —– 7.5
Total —– —– 159 —– 416 —– 438 —– 399 —–

100-1 —– —– 7 11.3 44 10.4 46 9.2 46 7.6
100-2 —– —– 5 6.8 7 4.4 11 4.2 8 3.3
100-3 —– —– 0 —– 0 —– 0 —– 0 —–
100-4 —– —– 21 5.1 80 5.6 61 6.4 93 5.7
100-5 —– —– 22 9.8 107 8.9 93 8.2 121 5.8
100-6 —– —– 26 9.7 56 9.7 77 5.5 81 6.0
100-7 —– —– 22 5.0 65 13.7 75 6.7 92 5.7
100-8 —– —– 3 12.0 35 11.9 34 12.1 77 8.5
100-9 —– —– 18 3.2 31 8.9 30 5.5 37 7.5
100-10 —– —– 1 2.4 17 4.1 0 —– 7 2.7

Average —– —– —– 7.3 —– 8.6 —– 7.2 —– 5.9
Total —– —– 125 —– 442 —– 427 —– 562 —–
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Table 22: HOP-EF average path lengths on random Delaunay graphs

Eyerich et al. [15] `-CTP, # of agents

Graph HOP UCTO 1 2 3 4 5

20-1 171.6 169.0 169.4 150.8 144.0 141.2 138.7
20-2 155.8 148.9 154.7 143.3 134.7 132.4 130.2
20-3 138.7 132.5 138.3 129.6 119.7 117.7 116.3
20-4 286.8 235.2 241.4 214.3 204.1 195.5 188.5
20-5 113.3 111.3 124.3 107.2 104.2 100.0 98.8
20-6 142.0 133.1 132.5 124.1 118.4 114.8 113.4
20-7 150.2 148.2 147.9 138.4 131.3 127.2 126.5
20-8 133.6 134.5 137.5 128.7 125.1 120.9 119.6
20-9 177.1 173.9 174.4 161.2 154.6 152.1 150.1
20-10 188.1 167.0 171.7 155.5 150.7 147.5 145.6

Average 165.7 154.2 159.2 145.3 138.7 134.9 132.8

50-1 250.6 186.1 230.5 171.9 154.7 149.8 138.6
50-2 375.4 365.5 370.9 334.7 322.3 314.6 310.0
50-3 294.5 255.6 274.5 233.4 215.6 208.3 204.0
50-4 263.9 230.5 228.5 202.6 187.8 182.7 179.0
50-5 239.5 225.4 226.7 200.5 188.3 183.3 180.3
50-6 253.2 236.3 238.6 211.8 202.7 197.6 193.8
50-7 221.9 206.3 207.2 174.5 163.4 158.8 156.2
50-8 302.2 277.6 305.4 259.0 243.8 236.2 231.7
50-9 281.8 222.5 244.0 207.5 195.1 187.7 184.3
50-10 271.2 240.8 261.0 212.0 198.3 190.1 183.3

Average 275.4 244.7 258.7 220.8 207.2 200.9 196.1

100-1 319.3 286.8 281.3 242.8 229.3 223.8 217.2
100-2 154.5 151.5 158.2 150.8 148.7 147.8 147.2
100-3 488.1 412.2 446.5 359.0 330.7 317.6 308.3
100-4 329.8 314.3 333.8 295.8 282.1 274.2 270.8
100-5 452.4 348.3 385.0 317.7 297.2 285.7 279.1
100-6 487.9 396.2 421.5 374.0 353.9 340.5 334.7
100-7 403.9 358.2 380.0 315.0 296.6 283.8 278.4
100-8 322.0 293.3 295.0 232.5 217.3 209.6 205.3
100-9 366.1 262.0 273.4 238.1 224.2 216.4 211.0
100-10 388.4 342.3 354.9 293.2 271.7 260.9 254.0

Average 371.3 316.5 333.0 281.9∗ 265.2 256.0∗ 250.6
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Table 23: HOP-EF analysis of performance decrease across number of agents

Number of agents

1 2 3 4 5

Graph # % # % # % # % # %

20-1 —– —– 27 7.3 3 8.0 27 15.7 14 9.8
20-2 —– —– 20 11.3 31 7.0 25 12.1 21 24.4
20-3 —– —– 0 —– 5 16.2 3 12.1 1 10.6
20-4 —– —– 5 8.9 17 11.3 10 5.3 19 10.8
20-5 —– —– 6 28.0 4 18.4 3 26.2 0 —–
20-6 —– —– 25 10.1 21 9.0 16 7.2 8 7.7
20-7 —– —– 3 10.6 7 5.7 10 12.8 4 8.3
20-8 —– —– 7 2.9 4 8.4 5 4.5 10 6.0
20-9 —– —– 12 36.5 11 15.0 15 11.8 18 9.3
20-10 —– —– 14 11.0 3 24.9 6 12.8 6 13.2

Average —– —– —– 14.1 —– 12.4 —– 12.1 —– 11.1
Total —– —– 119 —– 106 —– 120 —– 101 —–

50-1 —– —– 9 8.8 27 12.6 14 7.2 20 10.0
50-2 —– —– 52 6.6 69 6.3 76 5.8 77 5.1
50-3 —– —– 40 5.9 55 8.9 60 6.9 102 7.9
50-4 —– —– 26 11.2 45 6.1 48 6.5 73 6.1
50-5 —– —– 65 10.8 49 9.5 40 7.8 29 7.5
50-6 —– —– 17 8.2 24 5.3 51 6.5 47 6.8
50-7 —– —– 21 7.7 44 5.0 97 6.0 41 6.0
50-8 —– —– 27 9.0 55 9.4 72 8.4 110 6.2
50-9 —– —– 16 10.1 24 5.8 31 8.8 47 7.5
50-10 —– —– 17 9.2 52 12.5 85 11.8 90 10.4

Average —– —– —– 8.8 —– 8.1 —– 7.6 —– 7.4
Total —– —– 290 —– 444 —– 574 —– 636 —–

100-1 —– —– 20 4.9 56 9.9 60 6.9 73 5.3
100-2 —– —– 7 5.1 10 3.6 26 4.4 21 4.6
100-3 —– —– 45 9.8 86 7.8 123 11.3 144 8.2
100-4 —– —– 36 6.0 168 5.2 121 5.8 158 5.1
100-5 —– —– 49 8.9 100 7.0 131 6.8 160 6.4
100-6 —– —– 35 5.5 78 7.4 126 5.5 102 7.0
100-7 —– —– 43 10.2 72 8.9 96 7.5 127 7.0
100-8 —– —– 15 5.9 34 9.3 53 7.4 59 8.6
100-9 —– —– 32 3.8 34 7.1 46 6.3 59 8.2
100-10 —– —– 72 7.4 115 7.4 188 7.5 185 7.1

Average —– —– —– 6.8 —– 7.4 —– 6.9 —– 6.7
Total —– —– 354 —– 753 —– 970 —– 1088 —–
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