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ABSTRACT 

  Expansion of plasma cells within the bone marrow constitutes the onset of multiple 

myeloma (MM). This disease manifests clinically primarily through the formation of osteolytic 

bone lesions that can lead to osteoporosis. The reason for the development of such lesions is the 

disruption of the equilibrium between bone resorption and bone formation as a result of 

proliferation of osteoclasts and reduction in the number of osteoblasts in the process of 

differentiation of mesenchymal stem cells (MSCs). The maintenance of bone architecture is 

critically dependent on osteoblasts and osteoclasts, the activity of which is underpinned by a 

range of soluble factors. The present study sought to reduce cellular genotoxicity by using t-

BHQ to target the major antioxidant gene heme-oxygenase 1 (HMOX1). 

  This study provides a detailed investigation of the function of osteoclasts, osteoblasts 

MSCs and reactive oxygen species ROS in MM, especially with regards to disease progression. 

Since MM is associated with downregulation of HMOX1 expression, this study postulates that t-

BHQ could be used to pharmacologically upregulate the expression of HMOX1. This 

pharmacological agent t-BHQ can trigger apoptosis in MM, confer cell protection against 

oxidative damage by upregulating HEME OXYGENASE 1, prevent osteoclasts from forming 

and ultimately avoid bone deterioration.  

                   Student’s two-tailed t-test was conducted to determine how the different types of 

cells (MM cell lines, MSCs, osteoblasts and osteoclasts) responded to t-BHQ. The P-value was 

less than 0.05, signifying that the results were of statistical significance. 
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CHAPTER 1. BACKGROUND 

1.1. Multiple Myeloma 

The MM cells increase rapidly in terms of their proliferation rate because they contain 

cancer stem cells which downregulate many important genes (Yaccoby & Epstein, 1999). The 

microenvironments of MM patients are often heavily loaded with viruses that  infiltrate the layer 

of endothelial cells, increasing the effects of angiogenesis and causing hole marks around 

myeloma cells (Yaccoby, Barlogie, & Epstein, 1998). 

It is important to control the impact of the microenvironment in MM patients to prevent 

interaction with tumor cells that could progress the disease; this can be done by prohibiting 

osteoclast activity in the microenvironment (Yaccoby, Wezeman, Henderson et al., 2004). 

HMOX1 is downregulated in MM bones, and HMOX1 is required for osteoblasts and inhibiting 

osteoclast which will enhance the microenvironment of MM (Li, Ling, Khan, & Yaccoby, 2012). 

In MM patients, where osteoblast activity increases, there is generally a decrease in 

cancerous myeloma cells (Yaccoby, Wezeman, Zangari, et al., 2006). Bone deterioration and 

lesion formation occur when monoclonal paraprotein is excessively expressed as a result of 

plasma cell hyperproliferation within the bone marrow. These phenomena characterize the B-cell 

malignancy known as multiple myeloma (MM). More specifically, bone deterioration is caused 

by osteoclasts developing and expanding abnormally coupled with suppression of osteogenesis 

(Gerecke et al., 2016). Evidence has been brought forth that the undetermined monoclonal 

gammopathy may be the cause of MM and therefore MM onset may be preceded by this pre-

malignant event (Jewell et al., 2015). According to plasma cell cytogenic analysis, a range of 

MM types can be distinguished. Trisomies occur in around 40% of MM cases, whilst other cases 

exhibit translocations in the heavy chain of immunoglobulin situated on chromosome 14q23, and 
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there is also a small proportion of cases with both trisomies and translocations (Singhal & Mehta, 

2006).   

MM pathogenesis is believed to commence with trisomy and translocation of the 

immunoglobulin chain because these events are considered to occur at the start of the disease 

(Kumar et al., 2012). Additional molecular events accompany subsequent MM stages, including 

chromosome 1q gains, RAS mutations, chromosomes 1p, 13 and 17p deletions, and MYC 

oncogene translocations. Rajan and Rajkumar (2015) reported that a proportion of 15% of MM 

cases displayed T(11; 14) (q13; q32) in relation to the cyclin D1 (CCND1) gene, and Multiple 

myeloma SET domain( MMSET), whilst the MAF bZIP transcription factor B( MAFB) gene has 

also been associated with extra genomic aberrations. Prognosis and treatment response are 

particularly favorable in cases displaying only trisomies or t(11; 14) (q13) and t(6; 14). By 

contrast, MM is more likely to progress and life expectancy does not exceed two years in cases 

displaying t(6; 14), t(14; 16) and del(17p) (Binder et al., 2016). 

Gaining insight into the abnormal molecular pathways that may critically underpin MM 

tumorigenesis is imperative, as this disease is mostly untreatable. Chng et al. (2007) suggested 

that impaired regulation of CCND and retinoblastoma (Rb) pathway may contribute to MM 

tumorigenesis. This observation is supported by the findings of Krämer et al. (2002), who 

reported that a minimum of 17% of MM cases displayed the CCND1 gene, while around 28% of 

cases exhibited Rb deletions at chromosome 13q14; furthermore, MM unfavorable prognosis and 

recurrence were associated with p16INK4A hypermethylation alongside CCND1 translocations 

(Krämer et al., 2002). 

It has been argued that mesenchymal stem cells (MSCs) in the bone marrow are 

stimulated to produce interleukin 6 (IL-6) when the histone H3 is present, being associated with 
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heightened MM tumorigenesis prevalence (McNee et al., 2017). Intracellular factors like basic 

fibroblast growth factor (bFGF) play an important role in the mediation in osteoclast stimulation 

by IL-6 in the context of MM tumorigenesis (Bisping et al., 2003). Furthermore, MM tumors are 

resistant to cytotoxic agents because IL-6 contributes to inhibit apoptosis and foster MM 

proliferation (van de Donk et al., 2005). IL-6 activates the phosphatidylinositol-3 kinase (PI-3K) 

and Janus Kinases/signal transducer and activator of transcription proteins3 JAK/STAT3 

pathways, thus conferring apoptosis resistance, whilst IL-6 activation of the Ras-MAPK, 

JAK/STAT3 and PI-3K pathways is the basis for MM cell proliferation and expansion (Brocke-

Heidrich et al., 2004). 

MM cell lines and samples derived from patients have been found to contain the nuclear 

factor kappa-light-chain enhancer of activated B cells NF-κB protein, suggesting that the NF-κB 

signaling pathway plays a significant part in MM tumorigenesis. Keats et al. (2007) claimed that 

production and inactivation of cellular inhibitor of Apoptosis protein cIAP, cluster of 

differentiation CD40 and tumor necrosis factor receptor associated factor TRAF, which underpin 

NF-κB signaling activation in MM, are enhanced by excessive activation of the NF-κB signaling 

pathway. Meanwhile, Annunziata et al. (2007) reported that, in MM patient samples, the 

expression of genes regulated by NF-κB was closely correlated with intensified nuclear p65 

expression, alongside the occurrence of IL-6, a proliferation-inducing ligand APRIL or B- cell 

activating factor BAFF within the microenvironment of the bone marrow. 

Currently, MM can be treated with a number of pharmacological agents. For instance, 

MM relapse can be managed and survival outcomes enhanced through separate or combined 

administration of bortezomib, lenalidomide, dexamethasone, cyclophosphamide, melphalan, 

carfilzomib, and daratumumab (Ludwig & Delforge, 2017). Thalidomide, lenalidomide and 
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pomalidomide contribute to the activation of cereblon E3 ubiquitin ligase and therefore play a 

role in the regulation of immunity. Cereblon E3 ubiquitin ligase serves as catalyst of 

ubiquitylation and breakdown of Ikaros zinc finger family IKZF1 and IKZF3, which are B cell 

proteins (Holstein & McCarthy, 2017). Besides having properties that can be damaging to DNA, 

these proteins have anti-angiogenic and immunomodulatory action, so they may exhibit 

cytotoxicity to MM cells, and they can also activate MM cell apoptosis by suppressing TNF 

(Bruno et al., 2005). 

Relapsed MM can be managed with the proteasome-suppressing bortezomib, which can 

promote the activity of osteoblasts while downplaying the activity of osteoclasts. Furthermore, 

bortezomib makes MM cells more sensitive to other drugs, with cases administered combination 

therapy exhibiting a total response rate of over 50% (Field-Smith et al., 2006). MM cannot be 

completely cured at present, yet eradication might be possible in the future owing to the research 

progress that has been made with regard to targeting oncogenic signaling pathways and abnormal 

genomic events of critical importance. 

 

1.2. MSC Microenvironment in Multiple Myeloma 

Located in the bone marrow, MSCs are distinguished by the fact that they can 

differentiate into a range of types of cells, including osteoblasts (Uccelli et al., 2008), and they 

express numerous cell markers related to particular antigens (e.g. smooth muscle actin, cytokine 

and growth factor receptors and epidermal growth factor receptor EGFR, adhesion molecules, 

endoglin, L-selectin) (Lv et al., 2014). The molecular markers bone/liver/kidney alkaline 

phosphatase, osteopontin, osteocalcin, collagen type I and II and proteoglycans are associated 

with MSC terminal differentiation into osteoblasts (Minguell et al., 2001). 
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Owing to their ability to regenerate themselves, MSCs have received ample research 

attention in the field of regenerative medicine, as well as being considered in engraftment 

clinical applications. Their immunosuppressive properties have also legitimized the use of these 

cells as therapeutic agents in graft versus host disease and suggest that MSCs could be effective 

in preventing tumors from spreading (Granero-Molto et al., 2008). On the downside, as warned 

by Xu et al. (2018), by migrating to distal metastatic locations, MSCs could foster the formation 

of MM and other malignant neoplasms, while their differentiation into osteoclasts could be 

conducive to MM development. 

Studies have addressed how MM-derived MSCs differ from normal MSCs in terms of 

molecular features. In this regard, Garderet et al. (2007) reported that MM-derived MSCs 

proliferated at a slower rate than normal MSCs, causing downregulation of the platelet-derived 

growth factor (PDGF) α and β, insulin-like growth factor-1 (IGF1), epidermal growth factor and 

basic fibroblast growth factor (bFGF). Furthermore, Zdzisińska et al. (2008) indicated that a 

correlation existed between the rate at which MM-derived MSCs proliferated and the MM stage; 

thus, MM-derived MSCs from patients at early disease stage developed and proliferated faster 

than those from patients at an advanced disease stage and displaying bone lesions. Moreover, 

MM-derived MSCs were found to have increased levels of interleukin6 IL-6 and a proliferation-

inducing ligand (APRIL) protein, which were proven to have a damaging action and promoted 

MM progression (Matthes et al., 2016). 

Increased levels of IL-3 and tumor necrosis factor TNF-α have been associated with MM-

derived MSCs as well (Arnulf et al., 2007). The marker for poor MM prognosis, namely, growth 

differentiation factor 15 (GDF15), has also been found to occur in heightened levels in MM-

derived MSCs (Corre et al., 2007). Growth/differentiation factor 15 GDF15 makes MM cells 
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more resistant to chemotherapy, therefore aiding MM to progress (Corre et al., 2012). Similarly, 

André et al. (2013) reported that β-galactosidase, a marker for senescence and relapse, was 

excessively expressed in MM-derived MSCs. Moreover, in a microarray analysis of MM-derived 

and normal MSCs, the former was observed to have higher levels of angiogenic factors and 

markers for bone marrow differentiation, as well as notable upregulation of peptidyl arginine 

deiminase 2 (PAD2). The latter presents the functionality of triggering histone H3 enzymatic 

deamination at arginine 26, increasing the protein levels of a major promoter of MM progression, 

namely, IL-6 (McNee et al., 2017).   

A connection has been established between the IL-6 expression of MM-derived MSCs 

and diminished suppression of T cell dissemination and of modulation from T helper cells to T 

regulatory cell phenotype. MM-derived MSCs are involved in remote metastasis because they 

can upregulate the expression of factors regulating the immune response and angiogenesis, as 

well as because they can accelerate bone matrix disintegration (Giallongo et al., 2016). 

Furthermore, as suggested by Harmer et al. (2019), MM-derived MSCs can promote disease 

progression by interacting with the microenvironment of the tumor, synthesizing IL-6 and 

stimulating MM cells, thus helping the tumor to develop. MM cells encourage the production of 

Dickkopf-1 (DKK1), which prevents bone-derived MSCs from differentiating into osteoblasts, 

leading to a rise in the levels of IL-6 critical for supporting MM cells to proliferate (Zhou et al., 

2013). 

By interacting with MSCs from bone marrow, MM cells proliferate and become more 

resistant to the proteasome inhibitor bortezomib, which contributes to relapse in MM cases 

subjected to treatment with bortezomib due to chemokine receptor type 4 CXCR4 

hyperexpression (Reagan & Ghobrial, 2012). Furthermore, MM growth and tumorigenesis have 
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been suggested to depend significantly on miRNA. In particular, MM pathogenesis seems to rely 

to a great extent on miR146a, which intensifies the MSC production of cytokines, thus helping 

MM to proliferate and metastasize (De Veirman et al., 2016). 

The research cited above suggested that MM tumorigenesis was supported by MSCs. 

However, there is also research maintaining that MSCs inhibit MM tumorigenesis (Lee et al., 

2019). There is some evidence that both placenta-derived and adipose tissue-derived MSCs 

prevent MM cells from growing. Li et al. (2011) postulated that the discrepancies related to the 

impact on the growth of MM cells were due to the fact that the MSCs from placenta and adipose 

tissue had dissimilar molecular and genomic profiles compared to MM-derived MSCs. 

 

1.3. HMOX 1 

The heme protein catabolic pathway is regulated by various heme-oxygenase protein 

isoforms that are encoded by the (HMOX1) (Dunn et al., 2014). The isoforms catabolize the 

breakdown of heme into iron, carbon monoxide and biliverdin in order to achieve regulation of 

the heme protein catabolic pathway (Maines, 1997). Normal function of HMOX1 inside cell 

(FIGURE1) (Otero Regino, Velasco & Sandoval, 2009). 
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Figure 1. The function played by HMOX1 in the body. 

 

The spleen, liver and bone marrow are among the tissues with expression of HMOX1 

(Ryter et al., 2006). Within the bone marrow, HMOX1 is a key contributor to hemoglobin 

processing in macrophages. HMOX1 expression is modulated according to cellular response to 

stress, since it constitutes the sole isoform of the heme-oxygenase protein that is associated with 

a range of biological and cellular processes, including reactive oxygen species (ROS) and 

oxidative stress (Lin et al., 2007). 

Evidence for HMOX1 displaying properties conducive to tumor development in a 

number of neoplasms may hint at the wide range of cellular functions fulfilled by this gene 

(Podkalicka et al., 2018). As reported by Chau (2015), the protein may be capable of inhibiting 

tumor growth, since the products of hemoglobin disintegration by HMOX1, namely, biliverdin 

and carbon monoxide, are known to have effects against inflammation and oxidants. 
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HMOX1 is abnormally activated by a number of genomic events, especially the 

occurrence of a short GT repeat polymorphism within the proximal area of the gene promoter 

(Kikuchi et al., 2005). Such repeat sequences have been associated with poor survival outcomes 

and heightened risk in gastric adenocarcinoma, as well as with greater probability of additional 

tumor growth in other cancer types (Sawa et al., 2008). Furthermore, hyperexpression of 

HMOX1 is related to poor prognosis in prostate, lung, thyroid and gastric cancers, and the 

protein can be found primarily in the cancer cell nuclear compartment, particularly in the 

macrophages within that compartment, and in the stromal microenvironment (Noh et al., 2013). 

As cancer progresses, cancer cell turnover occurs at a high rate. This increases the levels 

of oxidative stress in the tumor microenvironment, which in turn intensifies the expression of 

HMOX1 through a number of cells signaling pathways, including nuclear factor kappa B NF-κB 

and nuclear factor erythroid 2 NrF2 signaling pathways. Additionally, HMOX1 expression is 

also actively modulated by the hypoxia pathway (Quail & Joyce, 2013). Since it occurs at a 

subcellular level, HMOX1/Nrf2 may help disease to progress, while a direct correlation has been 

established between protein presence in the nucleus and disease progression (Bekeschus et al., 

2018). The signal peptide peptidase protein (SPP) can cleave and process HMOX1, generating a 

soluble HMOX1 that can permeate the nucleus and stimulate tumor development separately from 

its catabolic activities (Boname et al., 2014). Tibullo et al. (2013) reported that nuclear HMOX1 

exhibited a cytoprotective effect in malignant neoplasms, since it reduced the susceptibility of 

chronic myeloid leukemia to imatinib. Meanwhile, downregulation of HMOX1 is significant for 

bone morphogenesis as it enhances the levels of the receptor activator of nuclear factor-kB 

ligand (RANKL), which is capable of stimulating osteoclastogenesis and bone loss (Ke et al., 
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2015). Therefore, HMOX1 is critical for bone morphogenesis as it may contribute to bone 

resorption. 

Florczyk-Soluch et al. (2018) sought to shed more light on the involvement of HMOX1 

in early-stage osteoclastogenesis in terms of the expression of RANKL by macrophages from 

bone marrow. Mouse models with HMOX1 knockout revealed that HMOX1 played a central 

role in osteoclast proliferation, thereby encouraging bone formation, as suggested by the 

heightened bone resorption of osteoclasts reflecting the terminal differentiation of osteoclast 

precursors. Meanwhile, Wu et al. (2016) noted that, in MM cases, cluster of differentiation 

CD138-positive bone marrow cells displayed marked hyperexpression of HMOX1. Moreover, 

the janus kinases2/signal transducer and activator of transcription proteins 3 JAK2/STAT3 

pathway activation was found to contribute to reduced susceptibility to lenalidomide. The 

authors concluded that HMOX1 was a marker for the progression of MM and resistance to 

cytotoxic therapy (Wu et al., 2016).   

There is also evidence that HMOX1 diminishes susceptibility to the proteasome inhibitor 

bortezomib, which is the main pharmaceutical agent used to treat MM. Tibullo et al. (2016) 

claimed that HMOX1 protein expression was intensified when MM cells were exposed to 

bortezomib, while MM cells became less resistant to bortezomib as a result of nuclear HMOX1, 

thus proving that it was the nuclear situation of HMOX1 rather than its catabolic activities that 

determined bortezomib resistance. Furthermore, MM was metabolically profiled by Maiso et al. 

(2015) in an effort to produce a drug resistance signature for this disease. According to the 

findings, by contrast to normoxic tumors, hypoxic MM tumors had a higher expression of 

hypoxia inducible factor 1 (HIF1), which was considered to be mediated by the occurrence of 

molecules and free radicals known to trigger HMOX1 expression, namely, ROS. 
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1.4. Osteoblasts, Bone Formation and Implications for Multiple Myeloma 

Bone structure is maintained through the processes of renewal of old bone matrix and 

new bone formation, which are respectively performed by the osteoclasts and osteoblasts 

(Rosenberg et al., 2012). In vertebrate organisms, bone is formed either through 

intramembranous ossification, as is the case with the bones of the face and skull, and 

endochondral ossification, as is the case with most of the skeletal elements (Shahi et al., 2017). 

MSCs serve as mediators of endochondral ossification. They undergo differentiation into 

chondrocytes, which quickly proliferate, expand and die, and afterwards they are substituted by 

osteoblasts in the middle of the bone matrix, where ossification occurs (Ortega et al., 2004). In 

the case of intramembranous ossification, MSCs undergo differentiation directly into osteoblasts, 

which then initiate bone formation. In general, osteoblasts are found on the edges of the bone 

matrix and they regulate bone matrix mineralization, which usually takes place in matrix vesicles 

(Zhang et al., 2018). 

Made up of osteoclasts, osteoblasts, blood vessels and connective tissue, the basic 

multicellular units (BMUs) are the structures were bone is resorbed and formed anew (Siddiqui 

& Partridge, 2016). Osteoblasts are the products of MSC terminal differentiation and their 

precursors are modulated primarily by hormones, cytokines and growth factors in the circulatory 

system (Cizkova et al., 2014). Soluble factors and growth factors produced by the bone matrix as 

bone matures underpin the development of the osteoblast precursors (Rathinavelu et al., 2018). 

Meanwhile, a range of signaling pathways modulating osteoblast apoptosis can facilitate the 

remolding of osteoblast levels. For example, B-cell lymphoma 2 BCL2 is responsible for 

osteoblast maintenance and protects these cells against apoptosis, whilst the development of 

osteoblasts from corresponding precursors is suppressed by retinoblastoma protein Rb (Arias et 
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al., 2018). Among the determinants of osteoblast maturation from precursors in the BMU are 

precursor terminal differentiation into osteoblasts, the rate at which they proliferate and 

differentiate into osteocytes, hormones (e.g. parathyroid hormone), and apoptosis-related 

breakdown (Dempster et al., 1993). 

Fibroblast growth factor FGF, insulin like growth factor IGF, osteotropic hormones and 

calcitonin are among the growth factors known to hinder osteoblast apoptosis (Gronowicz et al., 

2004; Hill et al., 1997). On the other hand, osteoblast apoptosis is promoted by other factors, 

including tumor necrosis factor TNF, transforming growth factor beta TGF-B and IL-6 (Jilka et 

al., 1998). The wingless Wnt signaling pathway has been identified as the mediator of 

modulation of osteoblast maturation from MSCs (Houschyar et al., 2019). Proteins belonging to 

the Wnt family conduct their activities mainly by interacting with Frizzled and Lrp5/6, which 

constitutes the basis for the canonical Wnt pathway. The activation of this pathway occurs when 

the osteoblast structural integrity is modified by extrinsic factors, like events heightening the 

concentration of calcium ions in the cells (Day & Yang, 2008). Moreover, osteoblast modulation 

can be provided by the interaction between MSCs and osteocytes through excessive expression 

of the canonical Wnt pathway, which causes precursors to differentiate into osteoblasts to a 

greater extent and intensifies ossification via the sclerostin protein (Galli et al., 2010). 

The maturation of osteoblasts is activated by the Hedgehog signaling pathway via the 

interplay between soluble factors Sonic hedgehog (Shh) in condensation MSCs and the 

membrane receptors T-box transcription facto2 (Tbx2) and protein patched-like protein1( Ptc1) 

(Zhu et al., 2008). Furthermore, in the process of endochondral ossification, the number of 

osteoblasts is diminished by Ihh activity suppression, as this synergistically activates alkaline 
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phosphatase (ALP), which in turn encourages the osteoblasts to differentiate from MSCs (St-

Jacques et al., 1999). 

The number of osteoblasts is reduced in MM, with suppression of osteoblast 

differentiation from MSCs and promotion of osteoclast proliferation being the hallmarks of MM 

tumorigenesis (Drake, 2014). Disease progression is measured based on the extent of osteolysis, 

which occurs when osteoblasts have diminished activity, while osteoclasts have intensified 

activity (Kingsley et al., 2007). Kovacic et al. (2014) reported that early-onset MM was 

associated with exponential increase in bone formation and osteoclast proliferation, followed by 

reduction in the number of osteoblasts as the diseased advanced. 

According to a number of preclinical studies, MM and other hematopoietic malignancies 

were associated with diminished burden of osteoblasts and anti-neoplastic characteristics were 

exhibited by those cells (Taube et al., 1992). Meanwhile, Krevvata et al. (2014) observed that the 

tumor burden was alleviated and survival was improved when duodenal serotonin, a hormone 

decreasing the count of osteoblasts, was suppressed, leading to proliferation in osteoblasts within 

the bone marrow. In spite of such evidence, the role played by osteoblasts in the progression of 

MM has not been extensively empirically investigated. Ng et al. (2011) reported that osteoblasts 

were indeed involved in MM progression, as intensified osteolysis, diminished count of 

osteoblasts and high frequency of fractures were documented in cases of monoclonal 

gammopathy of undetermined significance (MGUS). 

 

1.5. The Role Played by Osteoclasts in Bone Formation and Multiple Myeloma 

With a composition dominated by proteins and minerals (e.g. calcium, potassium), bone 

tissue possesses the property of continual renewal, which is vital to maintain bone density and 
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thus minimize the rate of fracture occurrence (Granero-Molto et al., 2008). Bone renewal 

depends on the balance of the activities undertaken by osteoblasts and osteoclasts in the BMU 

structure (Rosenberg et al., 2012). 

The sizable cells known as osteoclasts are the product of MSC terminal differentiation 

and comprise multiple nuclei (Ishii et al., 2010). Cytokine macrophage (MCSF) and RANKL 

mediate the transformation of MSCs into osteoclasts. MSCs generate the osteoprotegerin 

receptor RANKL to suppress the differentiation of osteoclasts and thus preserve the equilibrium 

between osteoblasts and osteoclasts during bone remodeling (Lacey et al., 2012). The osteoclasts 

fulfill a functional part in bone regeneration as they produce proteolytic enzymes (e.g. cathepsin 

K) that disintegrate the soluble organic and inorganic constituents of bone tissue (Ikeda & 

Takeshita, 2015). 

Consisting of numerous osteoclasts developed at the edge of the osteoclast apical 

membrane, resorption lacunae are the usual site of bone regeneration (Boyce, 2013). After bone 

is resorbed, MSCs are mobilized at the resorption lacunae to differentiate into osteoblasts, which 

synthesize osteoid, the organic element of bone, which becomes mineralized when 

hydroxyapatite is added (Raggatt & Partridge, 2010). The osteoblast-osteoclast cross-talk is 

achieved by a number of signaling pathways, including the Wnt and Hedgehog pathways, as well 

as cellular factors during bone resorption. Such cross-talk facilitates the mobilization of 

osteoblast and osteoclast precursors in the resorption lacunae to initiate bone regeneration (Kim 

et al., 2013). 

There is evidence that a range of osteoclast subtypes exist, since osteoclasts located in the 

trabecular, cortical and intramembranous areas of the BMU differ slightly in the genes that they 

express (Boyce et al., 2009). MSCs are mobilized to bone surfaces during bone resorption under 
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the control of the osteoclast-produced transforming growth factor beta1 (TGF-β1). At the bone 

surfaces, MSCs undergo terminal differentiation into precursor cells (Tang et al., 2009). 

Bone regeneration occurs with the involvement of the cytokines collagen triple helix 

repeat containing1 (CTHCR1), sphingosine-1-phosphate 1 (SIP1) and C3a. When bone 

resorption begins, the MSCs and osteoclasts start producing CTHCR1 under stimulation from 

bone morphogentic protein 2(BMP2). Later stages of bone resorption are associated with 

heightened levels of Ca, while the transformation of osteogenic precursors into osteoclasts is 

underpinned by SIP1 (Ishii et al., 2010; Kimura et al., 2008). 

Several cell surface receptors (e.g. ephrin 1 and 2 and associated cognate ligands) serve 

as mediators for the osteoclast-osteoblast cross-talk (Matsuo & Otaki, 2012). Osteogenic 

precursors differentiate into osteoclasts but development of osteoblasts is suppressed when the 

osteoclast ephrin A2 ligand attaches to the osteoblast EphA2 receptor. On the other hand, the 

development of osteoblasts is promoted when the osteoclast ephrin B2 attaches to the osteoblast 

EphB4 receptor, which prevents osteogenic precursors from terminally differentiating into 

osteoclasts (Zhao et al., 2006).   

There are a number of subtypes of bone metastasis, including osteolytic, osteosclerotic 

and combination bone phenotypes (Vinayachandran & Sankarapandian, 2013). Osteolytic bone 

metastasis leads to full ablation of the bone structure and its substitution with tumorigenic cells. 

When osteoclasts are activated to excess and osteogenic precursors differentiate into osteoclasts 

to an overwhelming degree, extreme bone resorption can occur, which results in osteolytic 

lesions. A particularly noteworthy characteristic of MM is that the formation of osteolytic lesions 

can be stimulated by the interaction between osteoclasts, stromal cells, osteoblasts and MM-

related fibroblasts (Terpos et al., 2018). 
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The mechanisms of osteolytic lesion formation in MM have not been studied extensively. 

In spite of this, however, evidence has been provided regarding osteoclast participation in the 

formation of such lesions because osteoblast resorption in the BMU is diminished (Hameed et 

al., 2014). Furthermore, the effectors of osteogenic precursor differentiation into osteoclasts, 

namely, RANKL and Dickkopf-related protein 1 DKK1, have been observed to occur in lower 

levels in the serum of MM patients with favorable response to bortezomib therapy, whereas the 

levels of bone formation markers (e.g. osteocalcin, alkaline phosphatase) were higher. This 

confirmed that osteogenic bone disease in MM could be effectively managed with bortezomib 

(Terpos et al., 2006).   
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CHAPTER 2. MOTIVATIONS 

2.1. Issues on MM 

To gain insight into the implications that mesenchymal stem cells MSCs can have for the 

management of Multiple Myeloma MM and other chronic illnesses, it is necessary to have good 

comprehension of their basic functions. MM is a pernicious condition that currently has no cure. 

In the US, after non-Hodgkin lymphoma, MM is the hematological tumor with the second 

highest prevalence, accounting for 2% of malignant tumor diagnoses and associated with a rising 

rate of mortality as it is developed mainly by older individuals (Bianchi, 2014). A B cell 

malignancy, MM presents as its main clinical manifestations the aggregation of neoplastic 

plasma cells in the bone marrow and the formation of lytic bone lesions (Lin et al., 2014). The 

condition was first identified by Macintyre in 1850, while the first case demonstration was 

provided by Kahler in 1889. Bone lesions as a diagnostic characteristic of MM were first 

distinguished by radiological investigations at the beginning of the 1900s. Subsequently, during 

the 1940s, bone marrow biopsy helped to shed more light on MM morphology. The detection of 

odd electrophoresis patterns in MM sample analysis determined Kekwick to establish the basic 

principles for the use of electrophoresis (Souter, 1998). 

There are great lacunae in knowledge about MM etiopathology. Environmental factors, 

genetic factors and family history have all been proposed as possible risk factors or causes for 

this disease. According to Bianchi (2014), nuclear radiation and petroleum products constitute 

the only risk factors related to environmental and occupational exposure that are acknowledged; 

however, pesticides have also been highlighted by epidemiologic studies as potential 

environmental risk factors, since MM seems to disproportionately affect individuals working in 

agriculture and wood and leather manufacture. As regards genetic risk factors, genetic mutation, 
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especially oncogene mutation, causes the translocation of plasma cells from the bone marrow 

into tumor cells. The tumor cells developed from plasma cells invade the bone marrow and 

replace the hematopoietic stem cells, leading to the formation of lytic bone lesions, the main 

characteristic of MM (Mehta et al., 2014). 

MM-related morbidity is related primarily to the development of myeloma bone disease. 

By contrast to normal, healthy bone, growth occurs abnormally in myeloma bone disease, with 

reduced bone formation (osteogenesis) and increased bone resorption (osteoclasis). This 

imbalance gives rise to bone pain and leads to a higher rate of bone fractures. The gravity of MM 

stems from the fact that it is not restricted to bone, but it affects other parts of the body as well 

and is usually accompanied by high levels of calcium in blood, anemia, kidney failure, infection, 

and disorders of metabolism and coagulation. Moreover, because it shares some characteristics 

with other diseases (e.g. metastasis carcinoma, rheumatic arthritis), diagnosis of MM is not 

always straightforward.  

 

2.2. ROS 

HMOX1 is downregulated in MM bones (Li, Ling, Khan, & Yaccoby, 2012). The 

products of synthesis by electron transport chain pathway within mitochondria, whereby oxygen 

molecules are converted into a superoxide anion via univalent oxygen reduction reactions (Yang 

et al., 2018), reactive oxygen species (ROS) represent susceptible molecules. Additional 

pathways of ROS synthesis include DNA damage due to ionizing radiation, anaerobic 

respiration, and catabolic reactions performed by nicotinamide adenine dinucleotide phosphate 

oxidase NADPH and redox biology (Schieber & Chandel, 2014). Tejero et al. (2019) argued that 

ROS may be directly involved in modulating normal physiological mechanisms within the 
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human body, including vasculature maintenance and oxygen sensing functions on which cells 

depend to survive. 

When ROS are synthesized with hypoxia mediation, the expression of hypoxia-inducible 

factor1 HIF1 is activated, which in turn activates angiogenesis and enhances the level of cellular 

oxygen, thus contributing to the maintenance of cellular homeostasis (Movafagh et al., 2015). 

The modulation of the innate immune system also relies on ROS. The activity of T cells is 

triggered by hyperproduction of ROS by phagocytes and detects antigenic peptides on pathogen 

surfaces, and consequently, viral and bacterial pathogens can be eliminated from circulation 

(Chen et al., 2018). With regard to the modulation of cellular physiology, Powers et al. (2011) 

indicated that ROS contributed to the physiological state of skeletal muscles by controlling the 

amount of glucose that is assimilated as muscles contract and by preserving redox reaction 

homeostasis during physical activity, which makes cells less susceptible to the harmful effects of 

oxidative stress reactions. 

Evidence has been provided that cellular signaling pathways are regulated with ROS 

participation. This participation takes the form of post-translational covalent alteration of histone 

acetylation and deacetylation states, which modulate the transcription of numerous proteins 

controlling cellular processes like DNA damage and repair and cell apoptosis, autophagy and 

senescence (Zhang et al., 2016). Particular research attention has been focused on the joint 

function of ROS and transcription factor E2F1 in the modulation of the apoptosis-promoting 

function of Sirtuin 1 proteins (Sirt1). 

The Sirt1 protein undergoes deacetylation as a result of oxidative stress, leading to 

deactivation of the deacetylating into an acetylation capable of activating an apoptosis-promoting 

form of the Sirt1 protein, which facilitates cellular apoptosis alongside p53 (Rajendran et al., 
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2011). To deal with the impact of oxidative stress, a range of appropriate mechanisms have been 

evolved by cells, such as the activation of a sequence of cell signaling cascades that ensure that 

cells can survive in media with high levels of oxidation. 

In the context of infection, phagocyte stimulation maximizes ROS production, which in 

turn triggers lymphocytes to mobilize at the infection sites (Brieger et al., 2012). A sequence of 

signaling cascades are subsequently activated and regulated by the lymphocytes, resulting in 

transcriptional activation of redox-responsive factors (e.g. activating protein1 AP-1, nuclear 

factor kappa-light-chain enhancer of activated B cells NF-κB). The latter attach to the promoter 

area of various genes, like thioredoxin (Trx), which work alongside the glutathione system to 

prevent fluctuations in the intracellular redox state, thus conferring cellular protection from the 

oxidizing effects of ROS. HMOX1 and cystine transporter xc2 are also genes with redox 

protective function (Alfadda & Sallam, 2012). 

Investigations have been conducted on ROS regarding their promotion of cancer, diabetes 

and other diseases (Dröge, 2006). The DNA promotion capacity of ROS has attracted attention to 

their function in carcinogenesis, as this capacity can make it more likely for cells to attain 

genomic mutations conducive to cancer development. ROS can trigger genomic mutations in a 

nuclear factor erythroid 2-related factor 2 Nrf2 transcription factor, which experiences 

stimulation within cells during oxidative stress and its activity is based on gene detoxification 

(Aitio, 2006). Nrf2 constitutive activation or suppression of kelch-like ECH-associated protein1 

KEAP-1 attachment to Nrf2 can be the outcome of Nrf2 gene somatic mutations, leading to the 

transcriptional activation of Nrf2-modulated genes involved in the stimulation of tumor growth 

(Tonelli et al., 2017). Pancreatic adenocarcinoma is associated with high Nrf2 levels, while 

excessive Nrf2 expression has been observed to reduce susceptibility to some tumor-targeting 
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therapies. Furthermore, Nrf2 transcriptional activation seems to be enhanced by oncogenic 

mutations like protooncogene KRAS, serine/threonine-protein kinase BRAF and proto-oncogene 

MYC, which suggests that ROS may have an oncogenic function in Nrf2 activation, therefore 

promoting carcinogenesis (DeNicola et al., 2011). 

The serum of MM cases has been shown to contain high levels of ROS and reduced 

levels of antioxidants. For instance, Cieslar et al. (2002) reported that, compared to individuals 

without MM, those with MM had lower levels of antioxidants, vitamin C and vitamin E in the 

serum, but significantly higher levels of oxidative stress markers. Furthermore, Mulligan et al. 

(2006) indicated that oxidative stress had a negative effect on the efficiency of proteasome 

inhibitors (e.g. bortezomib) that are employed as the primary strategy for managing MM. ROS 

are synthesized prior to the activation of the apoptotic signal cascade by bortezomib. 

Additionally, Obeng et al. (2006) claimed that bortezomib may be ineffective in MM patients 

who have antioxidant by-products. 

The Kruppel like factor9 KLF9 transcription factor has been proposed as a new 

mechanism for oxidative stress activation by bortezomib in MM. It has been found that patients 

who responded favorably to bortezomib therapy had higher levels of KLF9 and additionally, 

KLF9 reduced the expression of the Thioredoxin Redutase2 TXNRD2 protein, which fulfills the 

function of decreasing oxidative stress in cells (Zucker et al., 2014). When MM cells were 

exposed to bortezomib, TXNRD2 expression diminished whilst at the same time ROS levels 

increased, reflecting the elevation in oxidative stress. Fink et al. (2016) observed that bortezomib 

was less effective against MM cells when TXNRD2 was expressed in excess, and those cells no 

longer underwent apoptosis. Meanwhile, Raninga et al. (2015) discovered that ROS-dependent 

apoptosis intensified when MM cells were exposed to inhibitors that repressed TXNRD1 
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activity. Hence, MM could potentially be treated through a strategy that integrates ROS-

triggering agents and bortezomib. 

 

2.3. Issues on MSCs 

A.J. Friedensatein was the first to identify MSCs during the 1960s and he also observed 

that these cells were produced mainly by the bone marrow (Rebeca, 2011). MSCs are classified 

as non-hematopoietic stem cells that can be subdivided into mesenchymal and non-mesenchymal 

stem cells. The latter are capable of differentiation into neurons and astrocytes both in vitro and 

in vivo. MSCs present various applications and can contribute to the treatment of a range of 

illnesses, which is why they have attracted ample research attention. These cells are particularly 

important in regenerative medicine, which is concerned with tissue damage rejuvenation, and in 

numerous disease processes that are challenging to treat (Rebeca, 2011). BMC injection was 

originally clinically trialed in 1995, and since then, allogeneic or autologous MSCs have been 

used in over 2000 cases to treat different illnesses, refractory wounds, and bone/cartilage defects, 

as well as for the purposes of organ transplants. In July 2013, the website of the United States 

National Institutes of Health specified that over 200 clinical trials of MSC-based treatment had 

either been finalized or were in the process of being conducted (Ikebe & Suzuki, 2014). Indeed, 

the treatment of bone and skeletal diseases, in particular those associated with undetermined 

genetic defects, relies greatly on MSCs (Bernardo et al., 2012).   

As a new therapeutic strategy within the field of medicine, MSCs have received approval 

for use in the management of a wide array of chronic conditions and for tissue regeneration, 

including myocardial infarction and corneal damage. Owing to ethical considerations, MSCs are 

extracted from adult human tissue and they have the property of synthesizing anti-inflammatory 
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proteins such as tumor necrosis factor that is capable of tissue damage repair (Wei et al., 2013). 

There is thus clear evidence that MSCs have the potential to transform regenerative medicine. 

However, as outlined by the International Society of Cellular Therapy, to be used in regenerative 

medicine applications, MSCs of in vitro derivation must satisfy a number of requirements, such 

as adherence to plastic in standard conditions of tissue culture, demonstration of expression of 

particular cell surface markers (e.g. CD37, CD90, CD105) and lack of expression of other 

markers (e.g. CD45, CD34, CD14, CD11b, CD79α, and HLA-DR surface molecules), as well as 

capability for differentiation into osteoblasts, adipocytes and chondroblasts under particular 

conditions (Wang, 2011). 

 

2.4. Issues on Treatments of Multiple Myeloma Using MSCs 

Precipitously the Animal Model for MM have been tested to evaluate using MSCs as a 

cytotherapy for MM. It has been reported that MSCs cytotherapy enhanced recovery of 

osteolytic lesion in MM during active and remission stage (Li et al,2011). This recovery was   

initiate after HMOX1 was upregulated ( Li et al, 2012) (Grochot-przeczek, Kozakowska, 

Starowicz, & Jagodzinska, 2013).  The latest research advances have led to the introduction of 

stem cell therapy as a feasible treatment for MM that can significantly improve disease 

prospects. The usefulness of MSCs for the treatment of MM has been widely espoused. For 

instance, Yu (2013) reported that lytic bone lesions worsened the prevalence of morbidity in MM 

cases and that the Fas/Fas ligand (FasL) pathway underpinned the action of MSCs on MM cells. 

MSCs play a vital role in preventing MM cells from growing and in stimulating tumor 

cell apoptosis. In addition to their tumor inhibiting effect, MSCs also promote bone development 

when the disease is in remission. Consequently, bone formation is initiated anew by osteoblasts, 
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while bone resorption by osteoclasts is slowed down. However, as emphasized by the studies 

under review, despite the great potential displayed by MSCs for use in treating MM, MSC-based 

therapy is not successful in all cases, and therefore additional investigation is necessary. The 

empirical work conducted by Yu (2013) did not provide details regarding the manner in which 

MSCs were injected into bone or regarding the mechanism of suppression of tumor cell growth 

by MSCs. Furthermore, despite the therapeutic benefits afforded by MSCs, it has been proven 

that these cells can also stimulate MM expansion in the absence of FasL. 

Atsuta et al. (2013) also addressed the issue of whether tumor growth was mediated or 

inhibited by MSCs. The authors demonstrated that bone formation was aided by MSCs with 

elevated Fas-L expression, but they did not recognize that the FAS-L mechanism contributed to 

the process of MM repair. Consequently, there remains a lack of clarity about this mechanism. 

Furthermore, the study failed to provide a comprehensive explanation regarding the function of 

MSCs in protecting against MM. The study did not elucidate how normal MSCs differed from 

MM-derived MSCs and neither did it indicate which of these two variants had high FAS-L 

expression in vivo. Since the empirical work was conducted in vitro, additional investigations 

must be conducted on MM patients to determine the type of MSCs most suitable for therapy 

purposes. The results derived from such investigations could be applied to preclinical and 

clinical practice. 

Andre et al. (2013) claimed that, during disease relapse, the renewed growth of tumor 

cells was occasionally stimulated by MSCs. They indicated that MSC aberrations were enhanced 

by the occurrence of senescence-related B-galactosidase in MM-derived MSCs. Nevertheless, 

those aberrations were minimized through treatment integrating different types of pharmaceutical 

agents, although it was not specified whether such treatment eradicated or decreased the 



25 

 

dimensions of MSCs. Information about this aspect is critical because it is indicative of the 

likelihood of post-treatment recurrence or relapse of MM. Moreover, the study also failed to state 

whether treatment helped cells to recover their normal functionality, whether cells suffered 

degeneration or whether they diminished in size. 

As an approach for treating MM bone disease, MSC cryotherapy has attracted a 

significant amount of research attention, particularly in terms of the efficiency of MSC sources 

for improving MM therapy. Given the noted limitations of bone marrow MSCs (e.g. aberrations, 

increased likelihood of disease relapse), other MSC sources were considered, including adipose 

tissue, which seems to be especially promising for the development of a new strategy for treating 

MM bone disease. In the empirical work conducted by Lin et al. (2014), the process of 

osteogenesis was explored to comparatively analyze the effectiveness of MSCs from the adipose 

tissue or bone marrow of MM patients against osteoblasts. According to the findings obtained, 

osteogenesis was significantly influenced by MSCs from adipose tissue owing to broader 

availability of calcium by comparison with MSCs from bone marrow. This work has paved the 

way for future investigation of MSCs from adipose tissue as a potential therapy for MM bone 

disease. On the downside, the work was limited in the diversity of samples gathered and did not 

specify whether lytic bone lesions were healed by calcium-rich MSCs from adipose tissue or 

whether such cells merely enhanced bone strength. 

Considering the results of the previously cited studies, it is clear that a wide range of 

issues must be addressed before MSCs can be employed as a viable treatment for MM. 

Development of a standard MM treatment requires performance of clinical trials on human 

subjects. Within this context, the purpose of the present study is to expose MM cells, MSCs, 

osteoblasts and osteoclasts to the pharmaceutical agent t-BHQ because it triggers the expression 
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of HMOX1 (Yamaguchi et al,2014) and assess the impact of this dug on those different types of 

cells. MM has been associated with reduced expression of HMOX1, and therefore administration 

of t-BHQ to pharmacologically increase HMOX1 expression is deemed to be an antioxidant 

target. The overall aims are to trigger MM cell apoptosis, confer cell protection against oxidative 

damage, prevent the development of osteoclasts, and ultimately hinder bone deterioration.  
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CHAPTER. 3. MATERIALS AND METHODS 

Tert-butylhydroquinone (t-BHQ) was applied in different doses to various MM cell lines 

(i.e. U266, JJN3, H929, 8266, OPM2 and ARP) as well as to MSCs, osteoblasts and osteoclasts. 

 

3.1. Viability, Culturing and Analysis of Cells 

3.1.1. Multiple Myeloma Cell Culture 

U266, JJN3, H929, 826, OPM2 and ARP1 were the six MM cell lines that were 

employed. Cells were numbered under a microscope to determine their viability, which should 

be 90-100%. The culturing of MM cells was performed in RPMI media with a content of L-

glutamine (5 ml), fetal bovine serum (50 ml), and antibiotics (5 ml). The plating of the various 

MM cell lines was performed on plates with 96 wells and t-BHQ in different doses. Following 

the addition of t-BHW, proliferation of cells was assessed via an MTT assay, while HMOX1 

expression was identified via the luciferase assay. MM transfected cells were prepared as 

previously described (Qiang, Shaughnessy, & Yaccoby, 2008). 

 

3.1.2. MTT Assay (Tetrazolium dye Assays) 

An MTT assay was conducted to evaluate cell proliferation after the six MM cell lines 

were incubated in 96-well plates for 14 days. The procedure involved addition of MTT solution 

consisting of 25 μl of 5-mg MTT in 1-ml PBS, followed by two-hour incubation of the MM cells 

at 37°C. Cell lysis was subsequently carried out through addition of 100-μl MTT lysis buffer. 

Measurements at 570 nm were performed a day later. 
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3.1.3. Luciferase Assay 

Following the incubation of the six MM cell lines on 96-well plates, the luciferase assay 

was conducted to determine HMOX1 expression and therefore gain insight into how the 

proliferation of cells was affected by t-BHQ. The procedure involved addition of 200 µl of 50 µl 

5× luciferin solution to every one of the 96 wells with MM cell lines. The measurement of 

luciferase photons was undertaken five minutes later. 

 

3.1.4. Mesenchymal Stem Cells 

DMEM enriched with fetal bovine serum (25 ml) and penicillin (2.5 ml) was used for 

MSC growth. To collect the MSCs from the walls of the culture flasks, the old media was poured 

out and PBS was used to wash the cells before it was disposed of. Removal from the flasks was 

facilitated through addition of trypsin and two-minute incubation at 37°C. A microscope was 

subsequently used to assess the MSCs in terms of their shape, dimensions and mobility. The 

MSCs that were cultured and awaiting use were supplemented with DMEM. In line with the 

recommendation that fresh DMEM or AlphaMEM should be used for twice weekly feeding of 

MSCs, preparation of AlphaMEM was undertaken through addition of fetal bovine serum (10 

ml) and antibiotics (5 ml) in the MSC growth media. The next step was seeding the MSCs on a 

plate with six wells and various drug doses. For RNA extraction and evaluation of HMOX1 

expression, collection was performed at different intervals.   

 

3.1.5. Mesenchymal Stem Cells Differentiation into Osteoblasts 

The counting and seeding of MSCs onto a plate with 48 wells were performed. A 

sufficient amount of time was permitted for cell growth to a minimum of 60% confluence prior 
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to triggering differentiation into osteoblasts. To extract RNA and identify osteoblast markers, it 

is essential to obtain a suitable number of osteoblasts. Therefore, the MSCs were subjected to 

two-day incubation, followed by addition of osteoblast reagents to every one of the 48 wells. 

Ascorbic acid, beta-glycerophosphate and dexamethasone were the growth factors applied to the 

osteoblasts differentiated from MSCs. The osteoblasts were exposed to various doses of drug and 

fed nutrients once weekly. Satisfactory osteoblasts were obtained in two weeks. 

 

3.1.6. Mesenchymal Stem Cells Differentiation into Osteoclasts 

Osteoclast growth was achieved with peripheral blood stem cells (PBSCs). Culturing was 

performed in AlphaMEM media containing fetal bovine serum (50 ml) and antibiotics (5 ml), 

with addition of the growth factors RANK-L and MCSF at ratios of 1:2000 and 1:4000, 

respectively, to activate osteoclast development. Satisfactory osteoclasts were obtained in 14 

days. 

 

3.2. Examination of Gene Expression 

3.2.1. Extraction and Measurement of RNA 

For assessment of HMOX1 gene expression, RNA was extracted from every cell type, 

namely, the six MM cell lines (U266, JJN3, H929, 8266, OPM2 and ARP1), MSCs, osteoblasts 

and osteoclasts. After removal of the growth media, PBS was used for gentle washing of the 

wells containing the various cell types. To extract RNA, RTL buffer (350 μl) with 

mercaptoethanol:10 µl in 1-ml RLT was added to every well and the guidelines pertaining to the 

RNeasy MinElute Cleanup Kit (QIAGEN) were followed. A Fluorometer Nanodrop device set 

for RNA selection was employed for quantification of the RNA extraction. For every sample, the 
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RNA quantity was no less than 10 ng, as this is the quantity necessary for HMOX1 gene 

expression. For the purpose of fluorometry, water without RNA was used as a blank and 

measurement of the extracted RNA involved cleaning and placing 2-μl sample on the spot. 

 

3.2.2. Synthesis of cDNA 

cDNA synthesis was performed on every RNA sample from every type of cell. A reverse 

transcription kit was employed for amplification of the sequences of cDNA from the isolated 

mRNA for the purposes of HMOX1 gene expression. RNase inhibitor was not used to prepare 

the PCR master mix, which contained buffer, dNTP mix, RT random primers, reverse 

transcriptase and water without nuclease. The next step was pipetting 10-μl PCR master mix on 

10-μl RNA derived from every sample. The total reaction was performed in a DNA ENGINE 

device and lasted for one hour and five minutes, with temperature and time adjustments. 

 

3.2.3. Real-Time PCR 

DNA binding dyes were employed for amplification of the different types of cells 

through real-time PCR. The fluorescent signal issued by the dyes helped to detect HMOX1 gene 

expression. A B-actin primer served as sample endogenous control for the purposes of 

comparison of amplification fold-changes in HMOX1 expression. The entire procedure was 

conducted with the 2Xsyper green qPCR kit. For amplification of HMOX1 gene expression for 

quantitative real-time PCR, a mixture was created by combining Bio tool 10 µl SYPER Green 

Master Mix, 2-µl template, 10-µl primer, and 7-µl water. Furthermore, in line with the 

manufacturer’s guidelines, a total volume of 20 μl was obtained by adding 18-μl PCR master 

mix to 2-μl cDNA from every sample. The plate with 96 wells was then subjected to five-minute 
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centrifugation at 200 rpm. Temperature adjustment was performed on amplification reverse 

transcribed RNA by real-time PCR according to the cycles of denaturation, annealing and 

extension. The longest length of time was 120 minutes. The resulting Cq values reflected how 

much nucleic acid the samples contained. A high level of HMOX1 gene expression was reflected 

by cQ values that were (<29 cycles) lowered 29, while a low level of HMOX1 expression was 

reflected by cQ values that were (>38 cycles) higher 38. 

 

3.3. Histochemistry 

3.3.1. Use of Alkaline Phosphatase for Osteoblast Staining using florescence microscope  

To determine whether the different drug doses induced an increase in HMOX1 

expression, staining of the osteoblasts was performed, with image acquisition to visualize how 

ALP activity was deposited at various drug doses. Elevated drug doses determined significant 

ALP deposition, at which point real-time PCR was conducted to identify the osteoblast marker 

genes runt-related transcription factor 2 (RUNX2), collagen alpha 1 (COL1AI), and bone gamma 

carboxy glutamic acid containing protein (BGLAP). A kit from Sigma-Aldrich was employed to 

conduct the ALP protocol and images were captured to observe how ALP synthesis promoted 

osteogenic differentiation. 

 

3.4. Use of Titrate-Resistant Acid Phosphate for Osteoclast Staining using florescence 

microscope 

To determine whether the different drug doses induced an increase in HMOX1 

expression, staining of the osteoclasts was performed and a microscope was used to count the 

osteoclasts. Identification of osteoclasts with multiple nuclei was based on staining with titrate-
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resistant acid phosphate (TRAP), which was performed using a kit from Sigma-Aldrich and 

following the manufacturer’s guidelines. It was observed that formation of osteoclasts was 

associated with significant ALP production after hemin treatment. During excessive HMOX1 

expression, images were captured at 20× and 40× magnification. 

 

3.5. Statistical Analysis 

  Student’s two-tailed t-test was conducted to determine how the different types of cells 

(MM cell lines, MSCs, osteoblasts and osteoclasts) responded to t-BHQ. The P-value was less 

than 0.05, signifying that the results were of statistical significance. 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

4.1. Mesenchymal stem cells Cytotherapy: Consolidation of MM microenvironment and 

prevention of damage related to tumor expansion through use of t-BHQ to increase 

HMOX1 expression in MSCs 

Various t-BHQ doses were employed for upregulation of HMOX1 expression within 

MSCs for intervals of varying lengths (0, 24 and 48 hours). The aim pursued in upregulating 

HMOX1 with t-BHQ was augmentation of MSC stemness to boost formation of osteoblasts and 

diminish formation of osteoclasts. As previously reported by Funes et al. (2014), upregulation of 

HMOX1 within MSCs hindered those cells from acquiring an oxidant-promoting state induced 

by tumor oncogenes. Figure 2 illustrates the administration of t-BHQ in different doses to 

increase the expression of HMOX1 within MSCs at intervals of 0, 24, and 48 hours. Besides its 

contribution to MSC self-regeneration, t-BHQ also promotes osteogenic development by 

modulating the NRF2/P35-SIRT1 pathway (Yoon, Choi & Lee, 2016). 

Funes et al. (2014) discovered that tumor oncogene increase was promoted by the 

absence of NRF2 from MSCs. As a result, osteoclasts may proliferate and bone damage may be 

intensified. Conversely, osteoblasts proliferate and bone is renewed due to upregulation of 

HMOX1 and NRF2. The results obtained in this study indicated that t-BHQ promoted 

differentiation of osteoblasts and suppressed formation of osteoclasts by enhancing HMOX1 

expression in MSCs and therefore has strong potential for use in MM treatment. 
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Exposure of MSCs to various t-BHQ doses led to upregulation of HMOX1 expression at 

different time points  

 

Drug 

Concentrations 
P-value Mean 

Standard 

Errors 

Control - 1.00 0.2 

2.5uM/0hours 9.9965E-08 7.08 0.069 

50uM/24hours 2.29E-09        13.12 0.041 

10uM/48hours 4E-07 3.56 0.04 

 

Figure 2. Use of t-BHQ in various doses in the context of MSC cytotherapy led to HMOX1 

upregulation across different time points.HMOX1 plays a central role in bone remodeling with 

MSCs in MM patients and improves outcomes regarding the control of tumor development 

microenvironment. It recorded the highest level in 50Um/24hours. Also, their p-value showed 

more highly statistical significance than concentration 2.5Um/24hours. 
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4.2. Suppression of osteoclast formation through upregulation of HMOX1 in MSC by t-

BHQ 

The impact of the antioxidant pathway on osteoclasts was assessed by culturing MSCs in 

osteoclast media with t-BHQ in doses of 5, 10 and 50 μm, while the impact of t-BHQ on the 

count of multinucleated osteoclasts was assessed by TRAP staining immunohistochemistry. 

TRAP staining revealed that use of t-BHQ in growing doses suppressed the differentiation of 

multinucleated osteoclasts (Figure 3). An earlier study by Suda et al. (1993) reported that the 

formation of ROS, which are key contributors to osteoclast development, was diminished by 

HMOX1 activation. The present study also found that formation of osteoclasts owing to 

oxidative stress, was inhibited when t-BHQ was used to activate HMOX1 (Figure 4). 

Yamaguchi et al. (2014) reported that modulation of the pathway based on heme-

oxygenase (HO1)/high mobility group box1 (HMGB1) helped to distinguish the molecular 

mechanism through which t-BHQ acted on osteoclasts. RANK-L, which activates ROS 

production, was reduced by HMOX1 upregulation. This consolidates supports for the use of t-

BHQ to improve bone density and hinder bone deterioration through modulation of the 

microenvironment and tumor development in MM. 
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t-BHQ upregulation of HMOX1 expression in MSC cytotherapy contributed significantly 

to the suppression of osteoclast formation per culture dish 

A  B 

                                  

C        D 

               

Figure 3. Development of osteoclasts was suppressed when t-BHQ was used to upregulate 

HMOX1 during differentiation of osteoclasts. Osteoclasts were observed in tartrate-resistant acid 

phosphatase (TRAP). There was a reduction in the number of multinucleated osteoclasts stained 

with TRAP. (A) The cell count associated with the control was 35. (B) Treatment with 5-μM t-

BHQ reduced the number of osteoclasts to 23. (C) Treatment with 10-μM t-BHQ reduced the 

number of osteoclasts to 11. (D) Treatment with 50-μM t-BHQ reduced the number of 

osteoclasts. 
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Drug 

Concentrations 

with Osteoclasts 

Osteoclasts 

Number 

per Dish 

P-value Mean 
Standard 

Errors 

Control 35 - - - 

5uM  23 4.4029E-06 22.56 0.296 

10uM 11 2.29E-07 11.46 0.240 

50uM  Disappear        1.13E-08          0          0 

 

Figure 4. Increase in t-BHQ concentration led to a reduction in the cell count of osteoclasts that 

was of highly statistical significance (P-value = 1.13E-08). Suppression of osteoclast 

development necessitates high expression of HMOX1. 

 

 

 

 

 

 

 

  

0

5

10

15

20

25

30

35

40

Control 5 µM 10 µM 50 µM

N
U

M
B

ER
S 

O
F 

O
ST

EO
C

LA
ST

S

DIFFERENT DRUG CONCENTRATIONS 

OSTEOCLASTS NUMBERS per dish



38 

 

4.3. Use of t-BHQ to increase HMOX1 expression in MSCs promotes osteoblast formation 

and related markers 

The present empirical work involved using t-BHQ in various doses and at various time 

intervals to stimulate osteoblast formation. To determine whether the process of osteoblast 

formation was accompanied by the production of ALP, immunohistochemistry staining was 

carried out and osteoblast markers were detected during HMOX1 activity via real-time PCR. 

Furthermore, as confirmed by the analysis of global gene expression profile, HMOX1 was not 

expressed in MM, but the formation of osteoblasts was promoted as a result of increase in HMOX1 

expression by t-BHQ. The initialization of ALP deposition during the differentiation of osteoblasts 

was indicated by the results obtained (Figure 5). A previous study confirmed that t-BHQ triggered 

NRF2 phosphorylation so its use could promote formation of osteoblasts and MSC self-

regeneration (Yoon, Choi & Lee, 2016). 

As anticipated, t-BHQ robustly promoted an increase in the expression of HMOX1, which 

in turn stimulated osteoblast markers to develop. The osteoblast precursor markers RUNX2, 

COLLAGEN and bone gamma-carboxyglutamate protein BGLAP were intensely stimulated to 

confirm the increase in HMOX1 expression in osteoblasts. There was a significant increase in 

Runt- related transcription factor 2RUNX2 expression in the initial seven days, with administration 

of t-BHQ in doses of 1 and 2.5 μm resulting in four-fold modifications, whereas administration of 

t-BHQ in doses of 5 and 10 μm yielded only two-fold modifications. However, as the t-BHQ dose 

was elevated from 10 to 50 μm, four-fold modifications were achieved in a three-week interval 

(Figure 6). It was thus confirmed that upregulation of additional osteoblast differentiation markers 

was promoted by the emergence of RUNX2. For instance, at 1-μm t-BHQ, the levels of osteocalcin 

BGLAP markers increased in three weeks, with five-fold modifications. This corroborated earlier 
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findings by Zou et al. (2015) about the significance of RUNX2 upregulation for the activation of 

osteoblast marker formation (e.g. collagen1 alpha, ALP, osteocalcin BGLAP) in the extracellular 

matrix. Based on such results, it can be concluded that, in MM, osteoblast formation can be 

promoted while osteoclast formation can be diminished by using t-BHQ to increase HMOX1 

expression.  

 

Osteoblast formation was promoted when t-BHQ upregulated HMOX1 expression  

in MSC cytotherapy 

 

                             

Figure 5. Differentiation of osteoblasts from MSCs subjected to t-BHQ treatment and ALP 

staining. (A) Control MSCs with osteoblast media. (B) MSCs with osteoblast media with t-BHQ 

treatment. Upregulation of HMOX1 led to deposition of ALP, which represents a key marker for 

differentiation of osteoblasts. 
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The number of osteoblasts differentiated from MSCs was increased by HMOX1 expression 

upregulation by t-BHQ at different time point  expression upregulation by t-BHQ at different 

time points       

 
                                    

Drug 

Concentrations with 

Osteoblast Markers 

/ One Week 

P-value Mean 
Standard 

Errors 

Control 1 1 - 

1uM, 2.5uM RUNX2 3.81E-07 3.9 0.057 

5uM,10uM RUNX2 9.85E-07 2 0.033 

BGLAP NONE 0.69 0.295 

 

Figure 6-A. Use of t-BHQ for upregulation of HMOX1 in MSCs contributes to bone regeneration 

by promoting differentiation of osteoblasts and associated markers (e.g. RUNX2, BGLAP). 

Normalization was achieved with B-actin. 
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Drug Concentrations 

with Osteoblast Markers/ 

Three Weeks 

P-value Mean 
Standard 

Errors 

Control 1 1 - 

10uM,50uM RUNX2 2.87E-07 43.33 0.333 

1uM BGLAP 2.64E-06 62.33 0.333 

2.5uM BGLAP 1.08E-06 31.33 0.666 

 

Figure 6-B. Use of t-BHQ for upregulation of HMOX1 in MSCs contributes to bone regeneration 

by promoting differentiation of osteoblasts and associated markers (e.g. RUNX2, BGLAP). 

Normalization was achieved with B-actin. 
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4.4. HMOX1 Upregulation via t-BHQ to Diminish Cell Proliferation and Suppress Tumor 

Growth in MM 

The empirical work conducted in the present study involved exposure of four transfected 

MM cell lines (i.e. JJN3/EL, U266/EL, 8266/EL and H929/EL) to various doses of t-BHQ. 

Following drug administration, cell proliferation was assessed via a luciferase assay. 

Furthermore, MM heterogeneity was validated by conducting real-time PCR to measure increase 

in MM-related HMOX1 expression for U266 and H929. Given that the HMOX1 gene is absent 

in MM, the antioxidant drug t-BHQ, which is capable of strongly activating the HMOX1 gene, 

was employed to observe detoxification in MM. 

A large number of key genes and factors (e.g. antioxidant HMOX1, NRF2) may be 

inhibited in MM as a result of progression of ROS and increase in acidity caused by 

accumulation of lactate. As highlighted by Kann et al. (2005), cells experience oxidative stress 

when the levels of glutathione antioxidant genes are low. The present study sought to reduce 

cellular genotoxicity by using t-BHQ to target the major antioxidant gene HMOX1. Owing to the 

heterogeneity exhibited by MM, the different MM cell lines that were investigated were 

impacted by t-BHQ in two distinct ways, as illustrated in Figure 7 (A-D). In MM, numerous key 

CD markers are absent from the surface of plasma cells, and therefore these cells generate a wide 

range of mutated antigens that are challenging to manage (Hajek, Okubote & Svachova, 2013). 

The results obtained in the present study suggested that t-BHQ in concentration of 10 μM had a 

significant impact on the JJN3/EL cell line (P-value = 4.23455E-05) as well as on the U266/EL 

cell line (P-value = 3.28732E-22) (Figure 7 A and B). On the other hand, t-BHQ had no impact 

on the 8266/EL and H929/EL cell lines (P-value = 0.02 and 0.7, respectively) (Figure 7-C). The 

findings indicate that t-BHQ has enormous potential to be used in the treatment of MM. The 



43 

 

MTT assay validated the heterogenicity (Figure 8 A-F). Evidence was produced regarding the 

fact that hypoxia and oxidant burden caused the t-BHQ repair gene to miss up on the level of the 

cell via modulation of key cellular mechanisms such as cell growth and maintenance, modulation 

of cell cycles and control of the genes underpinning DNA repair (Kann et al., 2005).   

The molecular mechanism of the gene targeted by t-BHQ was investigated as well. The 

MM cell lines U266 (Figure 9-A) and H929 (Figure 9-B) were exposed to various doses of t-

BHQ to assess HMOX1 expression at a range of time points. The findings obtained exhibited 

good statistical significance, indicating that the HMOX1 expression was increased in U266 and 

H929 after 12 and 24 hours. In H929, the rate of cell proliferation was unaffected by HMOX1 

expression, but the increase in HMOX1 expression in this MM cell line could nevertheless 

reduce ROS levels owing to oxidative stress associated with aberrant plasma cells. 

The increase in the expression of HMOX1 led to a reduction in MM cell proliferation. In 

this regard, the study is consistent with an earlier work by Shih et al. (2005), which reported that, 

by increasing the levels of NRF2 antioxidant transcription factors, t-BHQ could modulate a 

suppressor of the citric acid cycle in mitochondria, namely, the toxic nitropropionic acid (3-NP). 

Such findings suggest the possibility of HMOX1 reforming within various MM cell lines, 

enhancing the survival chances of individuals with MM (Otero Regino, Velasco & Sandoval, 

2009). The results obtained are positive and support the use of t-BHQ to treat MM, as it can 

target the HMOX1 molecular mechanism and thereby reduce cell proliferation. Overall, we used 

two methods for growth luciferase assay and MTT assay. The results from two methods are 

inconsistent in all cell lines but to U266. Thus, the only U266 responded to the drug based on the 

results while the results with JJN3 Cell need further validation. 
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 The outcomes of the luciferase assay confirmed that t-BHQ had an impact on the MM cell 

lines with control DMSO 

 

Figure 7-A. By comparison to the internal control, DMSO, MM cell proliferation was 

suppressed by systemic upregulation of HMOX1 by t-BHQ. The proliferation of JJN3/EL cells 

diminished as the drug levels were increased. Results were of statistical significance, with drug 

concentrations of 10, 5 and 2.5 μM being associated with P-value of 4.23455E-05, 0.00016 and 

0.001198, respectively.  
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Figure 7-B. By comparison to the internal control, DMSO, MM cell proliferation was 

suppressed by systemic upregulation of HMOX1 by t-BHQ. The proliferation of U266/EL cells 

diminished as the drug levels were increased. Results were of statistical significance, with drug 

concentrations of 10, 5, 2.5, 1 and 0.5 μM being associated with P-value of 3.28732E-22, 5.99E-

15, 5.1E-08, 2.07E-05 and 0.000103, respectively.  
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The outcomes of luciferase assay indicated that MM cell lines exhibited resistance to t-BHQ 

 

Figure 7-C. t-BHQ had no impact on MM 8266/EL cell lines and, by comparison to DMSO, 

heightening of drug levels and H929/EL proliferation showed no correlation of statistical 

significance (P-value = 0.02). Such results corroborate the notion that MM represents a 

heterogeneous disease. 

 

 

0

50

100

150

200

250

300

10 dmso 10drug 5uM 2.5uM 1.25uM 0.5uM

LU
C

IF
ER

A
SE

 R
EA

D
IN

G

DIFFERENT DRUG CONCENTRATIONS 

8266/EL



47 

 

  

Figure 7-D. t-BHQ had no impact on MM H929/EL cell lines and, by comparison to DMSO, 

heightening of drug levels and H929/EL proliferation showed no correlation of statistical 

significance (P-value = 0.7). Such results corroborate the notion that MM represents a 

heterogeneous disease. 
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The outcomes of MTT assay indicated that t-BHQ had an impact on MM cell lines with 

control DMSO 

Figure 8-1 (A-B-C). t-BHQ had an impact on the JJN3, MM144 and U266 MM cell lines. By 

comparison to the internal control, DMSO, MM cell proliferation was suppressed by systemic 

upregulation of HMOX1 by t-BHQ. The proliferation of JJN3 cells diminished as the drug levels 

were increased. Results were of statistical significance, with drug concentration of μM being 

associated with P-value of 4.45E-05, 0.00065 and 0.02 for JJN3, MM144 and U266 cell lines, 

respectively. 
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Figure 8-2 (A-B-C). t-BHQ had an impact on the JJN3, MM144 and U266 MM cell lines. By 

comparison to the internal control, DMSO, MM cell proliferation was suppressed by systemic 

upregulation of HMOX1 by t-BHQ. The proliferation of JJN3 cells diminished as the drug levels 

were increased. Results were of statistical significance, with drug concentration of μM being 

associated with P-value of 4.45E-05, 0.00065 and 0.02 for JJN3, MM144 and U266 cell lines, 

respectively (Cont.). 
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MTT assay results showing that MM cell lines displayed resistance to t-BHQ with control 

DMSO 

 

 

Figure 8-3 (D-E-F). t-BHQ had no impact on MM ARP1, H929 and 8266 cell lines and, by 

comparison to DMSO, heightening of drug levels and cell proliferation showed no correlation of 

statistical significance. Such results corroborate the notion that MM represents a heterogeneous 

disease. 
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Figure 8-4 (D-E-F). t-BHQ had no impact on MM ARP1, H929 and 8266 cell lines and, by 

comparison to DMSO, heightening of drug levels and cell proliferation showed no correlation of 

statistical significance. Such results corroborate the notion that MM represents a heterogeneous 

disease (Cont.). 
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Real-time PCR indicated that t-BHQ had an impact on HMOX1 upregulation in U266 at 

various time points 

 
 

 

U266 Drug 

Concentrations with 

Different Time Points 

P-VALUE Mean 
Standard 

Errors 

B-ACTIN Control 1 1 - 

10uM /12hours 2.8E-09 22 0.577 

2.5uM /24hours 6.27E-12 543.33 21.85 

10uM /24hours 2.77E-16 221.33 0.881 

 

Figure 9-A. In MM U266 cell line, t-BHQ exhibited an antioxidant protective effect by 

promoting HMOX1 upregulation. 
  

0

100

200

300

400

500

600

10uM/24H2.5uM/24H10UM/12HCONTROL

M
EA

N

DIFFERENT DRUG CONCENTRATIONS WITH DIFFERENT TIME POINTS

U266



53 

 

Real-time PCR indicated that t-BHQ did not have an impact on HMOX1 upregulation in 

H929 at various time points 

 
 

U266 Drug 

Concentrations with 

Different Time Points 

P-VALUE Mean 
Standard 

Errors 

B-ACTIN CONTROL 1 1 - 

10uM /12hours 4.75E-10 154 2.081 

2.5uM /24hours 5.03E-09 152 1.527 

5uM /24hours 3.37E-12 335.66 17.94 

 

Figure 9-B. In MM H929 cell line, t-BHQ exhibited an antioxidant protective effect by 

promoting HMOX1 upregulation. 
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CONCLUSION 

The aim pursued in upregulating HMOX1 with t-BHQ was augmentation of MSC stemness 

to boost formation of osteoblasts and diminish formation of osteoclasts. upregulation of HMOX1 

within MSCs hindered those cells from acquiring an oxidant-promoting state induced by tumor 

oncogenes. The results obtained in this study indicated that t-BHQ promoted differentiation of 

osteoblasts and suppressed formation of osteoclasts by enhancing HMOX1 expression in MSCs 

and therefore has strong potential for use in MM treatment.  
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Thiesen, H.-J., Burger, R., Gramatzki, M., & Horn, F. (2004). Interleukin-6–dependent gene 

expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family–independent survival 

pathway closely associated with Stat3 activation. Blood, 103(1), 242–251. doi:10.1182/blood-

2003-04-1048 

Bruno, B., Giaccone, L., Rotta, M., Anderson, K., & Boccadoro, M. (2005). Novel targeted 

drugs for the treatment of multiple myeloma: from bench to bedside. Leukemia, 19(10), 1729–

1738. doi:10.1038/sj.leu.2403905 

Chau, L.-Y. (2015). Heme oxygenase-1: emerging target of cancer therapy. Journal of 

Biomedical Science, 22(1), 22. doi:10.1186/s12929-015-0128-0 

Chen, Y., Zhou, Z., & Min, W. (2018). Mitochondria, Oxidative Stress and Innate Immunity. 

Frontiers in Physiology, 9, 1487. doi:10.3389/fphys.2018.01487 

Chng, W. J., Glebov, O., Bergsagel, P. L., & Kuehl, W. M. (2007). Genetic events in the 

pathogenesis of multiple myeloma. Best Practice & Research Clinical Haematology, 20(4), 571–

596. doi:10.1016/j.beha.2007.08.004 



57 

 

Cieslar, P., Mášová, L., Scheiner, T., Ryšavá, J., Křı́žová, P., Danzigová, Z., Špička, I., & 

Tesař, V. (2002). Oxidative stress and platelet function in multiple myeloma and renal 

insufficiency: Clinical relations of different tests. Thrombosis Research, 105(4), 277–283. 

doi:10.1016/S0049-3848(02)00003-8 

Cizkova, D., Devaux, S., Le Marrec-Croq, F., Franck, J., Slovinska, L., Blasko, J., Rosocha, 

J., Spakova, T., Lefebvre, C., Fournier, I., & Salzet, M. (2014). Modulation properties of factors 

released by bone marrow stromal cells on activated microglia: an in vitro study. Scientific 

Reports, 4(1), 7514. doi:10.1038/srep07514 

Corre, J, Mahtouk, K., Attal, M., Gadelorge, M., Huynh, A., Fleury-Cappellesso, S., Danho, 

C., Laharrague, P., Klein, B., Rème, T., & Bourin, P. (2007). Bone marrow mesenchymal stem 

cells are abnormal in multiple myeloma. Leukemia, 21(5), 1079–1088. 

doi:10.1038/sj.leu.2404621 

Corre, Jill, Labat, E., Espagnolle, N., Hébraud, B., Avet-Loiseau, H., Roussel, M., Huynh, 

A., Gadelorge, M., Cordelier, P., Klein, B., Moreau, P., Facon, T., Fournié, J.-J., Attal, M., & 

Bourin, P. (2012). Bioactivity and Prognostic Significance of Growth Differentiation Factor 

GDF15 Secreted by Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma. Cancer 

Research, 72(6), 1395 LP – 1406. doi:10.1158/0008-5472.CAN-11-0188 

Day, T. F., & Yang, Y. (2008). Wnt and Hedgehog Signaling Pathways in Bone 

Development. The Journal of Bone and Joint Surgery, 90(Supplement_1), 19-24. doi: 

10.2106/JBJS.G.01174 

De Veirman, K., Wang, J., Xu, S., Leleu, X., Himpe, E., Maes, K., De Bruyne, E., Van 

Valckenborgh, E., Vanderkerken, K., Menu, E., & Van Riet, I. (2016). Induction of miR-146a by 

multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. 

Cancer Letters, 377(1), 17–24. doi:10.1016/j.canlet.2016.04.024 

Dempster, D. W., Cosman, F., Parisien, M., Shen, V., & Lindsay, R. (1993). Anabolic 

Actions of Parathyroid Hormone on Bone. Endocrine Reviews, 14(6), 690–709. 

doi:10.1210/edrv-14-6-690 

DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, 

D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-

Donahue, C., Kern, S. E., Blair, I. A., & Tuveson, D. A. (2011). Oncogene-induced Nrf2 

transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354), 106–109. 

doi:10.1038/nature10189 

Drake, M. T. (2014). Unveiling skeletal fragility in patients diagnosed with MGUS: no 

longer a condition of undetermined significance? Journal of Bone and Mineral Research : The 

Official Journal of the American Society for Bone and Mineral Research, 29(12), 2529–2533. 

doi:10.1002/jbmr.2387 



58 

 

Dröge, W. (2006). Redox regulation in anabolic and catabolic processes. Current Opinion in 

Clinical Nutrition & Metabolic Care, 9(3), 190-195 doi:10.1097/01.mco.0000222098.98514.40 

Dunn, L. L., Midwinter, R. G., Ni, J., Hamid, H. A., Parish, C. R., & Stocker, R. (2014). New 

insights into intracellular locations and functions of heme oxygenase-1. Antioxidants & Redox 

Signaling, 20(11), 1723–1742. doi:10.1089/ars.2013.5675 

Field-Smith, A., Morgan, G. J., & Davies, F. E. (2006). Bortezomib (Velcadetrade mark) in 

the Treatment of Multiple Myeloma. Therapeutics and Clinical Risk Management, 2(3), 271–

279. doi:10.2147/tcrm.2006.2.3.271 

Fink, E. E., Mannava, S., Bagati, A., Bianchi-Smiraglia, A., Nair, J. R., Moparthy, K., 

Lipchick, B. C., Drokov, M., Utley, A., Ross, J., Mendeleeva, L. P., Savchenko, V. G., Lee, K. 

P., & Nikiforov, M. A. (2016). Mitochondrial thioredoxin reductase regulates major cytotoxicity 

pathways of proteasome inhibitors in multiple myeloma cells. Leukemia, 30(1), 104–111. 

doi:10.1038/leu.2015.190 
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