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Abstract 

Fibroblast growth factors (FGFs) are involved in various cellular processes such as cell growth, 

proliferation, differentiation, migration, angiogenesis, wound healing and embryonic 

development. Human acidic fibroblast growth factor (hFGF1) binds non-selectively to all the 

four FGF-receptors and is therefore considered as a powerful mitogen with broadest specificity. 

However, pharmacological applications of hFGF1 are restricted due to the low thermal stability 

of the growth factor. hFGF1 has low thermodynamic stability under physiological temperatures 

which leads to impairment of cellular signaling process thereby preventing its potential 

mitogenic properties. hFGF1 has a heparin binding pocket at the C-terminus which comprises of 

positively charges residues. The interaction between the positively charged amino acids lead to 

electrostatic repulsions, thereby rendering instability. To overcome this instability, hFGF1 binds 

to the glycosaminoglycan, heparin which decreases the repulsion (s) between the positively 

charged residues. However, binding of heparin poses a challenge for the use of hFGF1 in wound 

healing. Thrombin converts fibrinogen to fibrin and works as first line of defense by blocking the 

loss of blood. Intriguingly, thrombin also binds to heparin. Studies on wtFGF1 have 

demonstrated the presence of secondary thrombin cleavage site in hFGF1. Thus, thrombin is 

known to cleave hFGF1 at Arg 136 and render it biologically inactive. Usually, it is considered 

that dependency of hFGF1 to heparin increases the plausibility of thrombin-induced degradation 

of the growth factor. To tackle these downfalls, I have designed and constructed several point 

mutations in hFGF1 to improve the thermal stability and cell proliferation ability and to subside 

the heparin binding affinity of the growth factor. 

In this dissertation, I studied single, double, triple, quadruple, and penta variants of Q54P, 

S61L, H107S, K126N, and R136E and examined the thermal stability, bioactivity, and heparin 



 

dependency of the protein. These studies indicate that site - directed mutagenesis in hFGF1 can 

impact the inherent stability of the growth factor and role of heparin in hFGF1-FGFR receptor 

interaction and activation. 
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CHAPTER I 

 

INTRODUCTION 

 

Growth factors 

Growth factors play a substantial role in intercommunication between cells via 

ligand/receptor cell signaling. Cell signaling can be mediated by several different types of 

ligands/effector molecules, including proteins. With protein ligands, cell signaling occurs in 

three clear modes in succession - reception of the signal, transduction through relay molecules, 

and cellular response by the target cell. Between cells, intercommunication begins with an 

extracellular ligand binding to a specific receptor in an extracellular compartment of the target 

cell. This reception is detected by a ligand that triggers the transduction signal, a chemical input 

that acts inside the cell. Once the chemical signal has reached its target intracellularly, cell 

undergoes the ligand-specific response. Growth factors, a family of proteins that are pertinent to 

cell signaling influence growth and replication of new cells, cell repair, cell differentiation, and 

cell survival in higher animals via the process of cell signaling. 

In coordination with the process of cell signaling, four modes of signaling can occur (Table 

1). One mode is autocrine secretion in which a cell signals itself by releasing a hormone that 

binds to autocrine receptors on the same cell. Another mode of secretion is the paracrine 

secretion wherein neighboring cells release factors onto each other’s extracellular receptors. 

Third mode of secretion is intracrine secretion wherein the cell stimulates itself by a cellular 

product that acts inside the cell. Endocrine signaling is in contrast to other modes of signaling as 

the signal(s) is transported to cells via the bloodstream [1,2]. 
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Classification of the fibroblast growth factor family 

According to sequence homology and phylogeny, the mammalian fibroblast growth factor 

(FGF) family can be subdivided into 7 subfamilies (Table 1, Fig. 1) which are in contrast to gene 

location analysis; wherein the FGF family is classified into 6 subfamilies (Table 2) [1-3]. Except 

for the FGF11 subfamily which acts in an intracrine manner and FGF19 subfamily which are 

endocrine FGFs, most of the FGF subfamilies act in the paracrine manner (FGF1, FGF4, FGF7, 

FGF8, and FGF9 subfamilies). Only the members of paracrine subfamily bind to the heparan 

sulfate [2]. 

 

Fig. 1: Phylogenetic tree of the Human FGF family. Sequence homology and phylogenetic 

analysis reveals that FGFs can be arranged into 7 subfamilies. The branch length of each FGF 

member is directly proportional to the evolutionary distance between each gene. FGF19, FGF21, 

and FGF23 act as endocrine secretions [1]. 

 

Table 1: Phylogenetic analysis of the human FGF family. The human FGF gene family can 

be subdivided into 7 subfamilies. 

 

FGF subfamily Members of the subfamily Mode of action 

FGF1 FGF1, FGF2 Paracrine [1] 

FGF4 FGF4, FGF5, FGF6 Paracrine [2] 

FGF7 FGF3, FGF7, FGF10, FGF22 Paracrine [1] 

FGF8 FGF8, FGF17, FGF18 Paracrine [2] 

FGF9 FGF9, FGF16, FGF20 Paracrine [1] 

FGF11 FGF11, FGF12, FGF13, FGF14 Intracrine [1] 

FGF19 FGF19, FGF21, FGF23 Endocrine [1] 
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Table 2: Gene location analysis of the human FGF family. 

FGF subfamily Members of the subfamily Gene location 

FGF1 FGF1 

FGF2 

FGF5 

5q31.3 [3] 

4q27 [3] 

4q21.21 [3] 

FGF4 FGF3 

FGF4 

FGF6 

FGF19 

FGF21 

FGF23 

11q13.3 [3] 

11q13.3 [3] 

12p13.32 [3] 

11q13.3 [3] 

19q13.32[3] 

12p13.32[3] 

FGF7 FGF7 

FGF10 

FGF22 

15q21.2[3] 

5p12 [3] 

19p13.3 [3] 

FGF8 FGF8 

FGF17 

FGF18 

10q24.32 [3] 

8p21.3[3] 

5q35.1[3] 

FGF9 FGF9 

FGF16 

FGF20 

13q12.11 [3] 

Xq21.1[3] 

8p22[3] 

FGF11 FGF11 

FGF12 

FGF13 

FGF14 

17p13.1[3] 

3q28[3] 

Xq26.3[3] 

13q33.1[3] 

 

FGF is a prototype member of the family consisting of 23 related proteins with a 

molecular weight ranging from 17 to 34 kDa [5]. They are largely responsible for growth and 

development and strongly influence mitogenic events in endothelial and epithelial cells, 

angiogenesis, wound healing, and regulation of cell growth and differentiation [6]. FGF induces 

the metabolic processes by binding and activating specific tyrosine kinase fibroblast growth 

factor receptors (FGFRs). This FGF-FGFR complex, in turn, induces downstream signaling 

through common pathways such as the retrovirus-associated DNA sequences (RAS)/mitogen-

activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K) / Protein kinase B (AKT), 

and phospholipase-Cγ (PLCγ) pathways [5]. However, the structural bases for the specificity of 

events triggered by individual members of the FGF family is still not known. Most FGFs are 
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homologous to each other in their amino acid composition [6]. The FGF family consists of 

structurally related polypeptide growth factors that share high affinity for heparin, interact with 

FGFRs, and carry out distinct functions.  

FGFs predominantly have a β-trefoil structure consisting of 12 antiparallel β-strands [7]. 

This globular β-trefoil core domain is flanked by N- and C-terminal regions that are highly 

divergent in both length and sequence amongst different members of the FGF family. FGFs and 

their target cells are widely distributed and expressed in several types of tissues. Biosynthesis 

and activity of FGFs is complex and regulated at all levels of processing, including activation of 

transcription, post-transcriptional modifications (capping, splicing, polyadenylation, and mRNA 

stability), translation initiation, post-translational modifications (O-linked glycosylation, N-

linked glycosylation, phosphorylation, acetylation, methylation, and ribosylation), intracellular 

trafficking, secretion, bioavailability, and ligand-receptor interactions [8]. 

Structure and function of the FGF family 

FGF1 subfamily  

The FGF1 subfamily is also known as the prototypical or archetypal family. FGF1, also 

known as an acidic fibroblast growth factor and FGF2, also known as a basic fibroblast growth 

factor, were the first FGFs to be isolated and identified. The prototypical Fgf genes comprise of 3 

coding exons, out of which exon 1 contains the initiating codon- methionine. Even though this 

subfamily is considered as paracrine FGFs, it behaves in an intracrine manner. None of the FGFs 

from this group are secreted by the cell nor do they have the N-terminal hydrophobic sequence 

instead, they are directly translocated to the nucleus [9-12]. The mRNA structure of this 

subfamily is unique when compared to other FGFs because it does not include a signal peptide 

sequence that targets FGFs for secretion through the classic ER-Golgi complex secretory 
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pathway. FGFs employ a non-classical pathway to be secreted [11]. Also, the open reading frame 

in FGF1 is edged by the termination codons, whereas FGF2 contains 5’ transcribed sequence that 

initiates from upstream CUG codons for translation [12]. 

FGF1 and FGF2 differ significantly in both size and sequence, but both contain a core 

region of homology encompassing 120–130 residues; which suggests that they are originated 

from a common ancestral gene. Both the structurally related proteins have 53% protein sequence 

homology. Both bind tightly to heparin and share many biochemical and biological properties 

[13]. Thus, in the FGF1 subfamily, both FGF1 and FGF2 have a similar preference for N-sulfate 

and 2-Osulfate, but FGF1 differs in that it also binds saccharide structures with 6-O-sulfated 

heparin. This subfamily possesses three Heparin Binding Sites (HBS), the primary HBS1 and the 

secondary binding sites HBS2 and HBS3 [14]. 

FGF1 is a single chain positively charged polypeptide with a molecular weight of about 

15,967 Da and a pI of 7.73 [5]. FGF1 was originally purified from the brain using standard 

chromatographic techniques such as ion-exchange chromatography, gel filtration, isoelectric 

focusing, and reverse-phase HPLC. FGF-1 has a strong affinity for heparin and its purification is 

greatly facilitated by heparin sepharose chromatography. Initially, FGF1 was recognized as a 

polypeptide containing 140 amino acids. However, subsequent sequence analysis showed that 

FGF1 was a 154 amino acids polypeptide. The shorter form represents a truncated version, where 

14 amino acids are chopped off the N-terminus. FGF1 is fairly well conserved among species, 

with 11 amino acids differing between human and bovine FGF1. FGF1 also has 19-25% 

sequence homologies with interleukin-l-alpha and interleukin-l-beta but there is no evidence of 

these homologies being biologically significant. However, it is of interest that these interleukins, 

like FGF1 and FGF2, are not secreted proteins. FGF1 contains characteristic β-trefoil structure 
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which is made up of 12 antiparallel β strands [5,6]. Human FGF1 contains three cysteine 

residues (Cys 30, Cys 97, C131), unlike FGF2 which has four. Two of these, Cys 30 and Cys 97 

are conserved in all FGF family members. Key residues responsible for interaction between 

FGF1 and heparin or its receptor are characterized by the crystal structure [6]. FGF1 is unique 

among FGFs because of its ability to bind and activate all known FGFRs, FGF-1 is considered to 

be the universal FGFR ligand [15]. 

FGF2 has a molecular weight of 18 kDa and is well conserved among the other species. 

Human FGF2 contains four cysteine residues (Cys 33, Cys 77, Cys 95, and Cys 100). As 

mentioned in hFGF1, two of these cysteine residues (Cys 33 and cys 100) are conserved in all 

FGF family members. Several studies have shown that none of the cysteine residues form 

disulfide bonds. Site directed mutagenesis studies report that substitution of Cys 77, 95, and 100 

to serine did not alter the cell proliferation activity of FGF2. On the other hand, substitution of 

Cys 33 to serine led to 60% reduction in the biological activity of hFGF2. Baird and colleagues 

showed that cell surface receptor-binding and heparin-binding domains of FGF2 are the same. 

FGF1 and FGF2 are prototype members of the FGF family. They control a broad range of 

biological functions from developmental processes during embryogenesis to various 

physiological roles in the adult state, including the regulation of angiogenesis, wound healing, 

organ development (eye, skin, brain, lung, limb, muscle, bone, blood, and heart), and 

metabolism. FGF1 and FGF2 also possess broad mitogenic and cell survival activities, such as 

cell growth, cell differentiation, tissue repair, tumor growth, and invasion. FGF1 and FGF2 are 

known to play an important role in neurogenesis. FGF2 knock-out mice shows impaired brain 

development, wound repair, and deformed bone formation [16]. FGF1 and FGF2 has been used 

more widely for wound healing than FGF7 and FGF10. Also, recombinant human FGF1 (rh-
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FGF1) and recombinant human FGF2 (rh-FGF2) showed effective healing effects for the 

treatment of ulcers and diabetic foot ulcers compared to FGF7 and FGF10. rh-FGF1 and rh-

FGF2 has a positive influence in curing ulcers, diabetic foot abscess, and second-degree burns 

[17]. 

FGF4 subfamily 

The FGF4 subfamily involves FGF4, FGF5 and FGF6. Human FGF4 is located in 

extracellular space and nucleus. It has been reported that FGF4 and FGF6 are more stable than 

FGF3 and FGF17 in absence of heparin [14]. Examination of crystal structure of FGF4 identified 

2 heparin binding sites (HBS). The first heparin binding site spans the area between β6 and β7, 

β9 and β10, and β10 and β12 strands which involve Lys 142, 144, 147, 183, 186, 188, and 189, 

respectively. The second heparin binding site consists of three lysine residues (Lys 65, 81, and 

158). Similarly, FGF6 also has two heparin binding sites. HBS1 spans the region between β10 

and β12 strand and involves Lys 144, 185, and 194. HBS2 includes Lys 83 (found near the N-

terminal of β1 strand) and Lys 158 on the β8 strand.  

FGF5 is composed of a highly conserved core region which comprises of 12 β strands and a 

signal peptide at the N terminus [18]. Human FGF4 plays an important role in the regulation of 

embryonic development, cell proliferation, and cell differentiation. It is required for normal limb 

and cardiac valve development during embryogenesis [19]. Human FGF5 plays an important role 

in the regulation of cell proliferation and differentiation and is required for normal regulation of 

the hair growth cycle. FGF5 functions as an inhibitor of hair elongation by promoting 

progression from anagen, the growth phase of the hair follicle, into catagen the apoptosis-

induced regression phase [20]. Human FGF6 plays an important role in the regulation of cell 
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proliferation, cell differentiation, angiogenesis and myogenesis, and is required for normal 

muscle regeneration and differentiation [21]. 

FGF7 subfamily 

The FGF7 subfamily involves FGF3, FGF7, FGF10 and FGF22. The FGF7 subfamily is 

unique among FGFs because its members are expressed exclusively by mesenchymal cells and 

interact specifically with the b splice variant of FGFR2 (FGFR2b) resident in overlying 

epithelium [22]. Members of the FGF7 subfamily are essential for organogenesis and tissue 

patterning in the embryo, and mediate wound healing and tissue homeostasis in adult mammals 

[23]. The varied functional roles of this subfamily is responsible for causing numerous diseases 

such as congenital deafness (LAMM syndrome), lacrimo-auriculo-dento-digital (LADD) 

syndrome, inflammatory bowel disease, Apert syndrome (AS), and prostate cancer [24]. 

FGF7 is also known as Keratinocyte Growth Factor (KGF). It has 10 well-defined beta 

strands, which form five double stranded anti-parallel beta sheets. There is a single beta-sheet 

hydrogen bond (which is also called as the 6th Beta sheet) between residues 137 and 141. This 

poorly defined sixth beta- sheet has a helix-like nature in high resolution FGF-2 NMR structure 

[25]. Apart from these little dissimilarities, the structures of KGF, FGF-1, and FGF-2 are very 

similar with a Root Mean Square Deviation (RMSD) of about 0.89 Å based on the C-alpha 

atoms [26]. Overlay of the heparin bound KGF structure on the heparin bound FGF-2 structure 

shows that only Gln-152 of KGF superimposes very well with Gln-135 of FGF1 and FGF2, 

whereas other residues in KGF differ from FGF1 and FGF2. Talking about the non-heparin 

binding region, the nonpolar residue Val-143 of KGF superimposes with the high-affinity 

residue Lys-126 of bFGF [25]. However, when the structures are superimposed, residue Thr-154 

of KGF appears to be pointing toward the heparin-binding pocket, and thus may contribute to the 
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binding energy lost by the valine. FGF7 plays an important role in the regulation of embryonic 

development, cell proliferation and cell differentiation and is required for normal branching 

morphogenesis [27]. 

FGF10 controls the epithelial-mesenchymal interactions that are important for lung 

development [28]. FGF10 is 20 kDa heparin-binding protein essentially expressed by 

mesenchymal cells and it binds strongly to FGFR2-IIIb while binds weakly to FGFR1-IIIb [29]. 

FGF10 can prevent lung-specific inflammation induced by traumatic or infectious lung injury. 

The effect of FGF10 on lung-resident mesenchymal stem cells (LR-MSCs) was studied by 

delivering FGF10 into the lungs of rats and it was found that FGF10 led to an increase of LR-

MSCs in treated lungs [30]. 

Terauchi et al., have reported that the hippocampus region of the mouse brain uses FGF22 

as a target-derived presynaptic organizer [31]. The Cornu Ammonis, subfield 3 pyramidal neuron 

is located within the hippocampus of the brain’s temporal lobe. This pyramidal neuron releases 

FGF22 which stimulates the differentiation of the excitatory presynaptic terminals. FGF22-

dependent presynaptic differentiation requires two FGF receptors (FGFRs), FGFR2b and 

FGFR1b, in dentate granule cells (DGCs), the major presynaptic neurons for CA3 pyramidal 

neurons, and the downstream signaling molecules FGFR substrate 2 (FRS2) and PI-3 kinase 

[31]. Signals mediated by FRS2 and PI-3 kinase are known to regulate gene expression.  

There are significant differences in the heparin binding affinity of the FGF7 subfamily, with 

minimum or no binding observed in FGF3 and FGF22. This difference conferred distinct 

biological properties and functions to this subfamily [22]. According to the amino acid sequence 

alignment, FGF3 was similarly stabilized by unmodified heparin and any of the singly desulfated 

heparins [22]. In the case of FGF10, there was no obvious difference in the stabilizing effect of 
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heparin and the singly desulfated heparins. Thus, the binding preferences of FGF10 are similar 

but not equal to those of FGF3. 

FGF8 subfamily 

It includes FGF8, FGF17, and FGF18. Unlike other FGFs, an alternative splicing event 

occurs at the N termini of FGF8 and FGF17 resulting in four FGF8 isoforms (FGF8a, FGF8b, 

FGF8e, and FGF8f) and 2 FGF17 isoforms (FGF17a and FGF17b) [32]. FGF8a, the smallest 

FGF8 isoform, represents the common core region of FGF8b, FGF8e, and FGF8f and the 

remaining isoforms differ by the presence of additional N-terminal amino acid sequences of 

variable length and sequence [33]. FGF17a and FGF17b resemble FGF8a and FGF8b, 

respectively. On the other hand, FGF18 is not subjected to alternative splicing [34]. 

Members of FGF8 subfamily adopt a different conformation than the rest of the FGF family 

members. They exhibit a well conserved N-terminus and a one-residue insertion (S95) in the β4– 

β5 loop [35]. FGF8 plays a key role in the regulation of embryonic limb development, 

embryonic brain development, and development of the gonadotropin-releasing hormone (GnRH) 

neuronal system [36]. It is also required for cell proliferation, cell differentiation and cell 

migration. FGF17 is also essential for embryonic eye, ear, and limb development, and as 

signaling molecule in the induction and patterning of the embryonic brain [37]. FGF18 is 

reported to play a crucial role in osteogenesis, cartilage formation, cell proliferation, cell 

differentiation, and cell migration [38]. 

FGF9 subfamily  

The FGF9 subfamily includes FGF9, FGF16, and FGF20. FGF9 is a potent mitogen 

which is primarily produced by neurons [39]. FGF9 is broadly expressed in high levels 

throughout the brain and kidney. FGF16 is highly expressed in olfactory bulb and heart, where it 
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is required for cardiac cell proliferation [40]. FGF20 is a neurotrophic factor expressed in the 

substantia nigra pars compacta and is associated with Parkinson’s disease [41]. FGF20 is 

expressed at low levels in a limited set of tissues including adrenal tissues. 

 The FGF9 subfamily is the only subfamily which undergoes reversible homodimerization 

[42]. This family shares approximately 62–73% amino acid sequence similarity and exhibit high 

sequence homology between human and mouse. The FGF9 subfamily is important for epithelial-

mesenchymal interactions. This subfamily also controls the morphogenesis of lungs, small 

intestine, inner ear, and cecum [43]. 

FGF11 subfamily 

The FGF11 subfamily consists of FGF11, FGF12, FFG13, and FGF14. This subfamily is an 

exclusion from the other FGF sub-families but shares high structural and sequence homology. 

Members of the FGF11 subfamily are also known as FGF homologous factors (FHFs) and is 

functionally different from the other FGF families. They share between 58-71% sequence 

identity with each other and less than 30% sequence identity with other members of the FGF 

family. These members regulate channel gating and intracellular signal trafficking by interacting 

with the cytoplasmic C-terminal tails of voltage-gated sodium channels [13]. 

FGF19 subfamily 

FGF19 subfamily consists of FGF19, FGF21, and FGF23. Unlike usual FGFs, FGF19 

subfamily members lack a classic heparin-binding domain. This characteristic protects them 

from the capture by local cells; therefore, they are secreted into the bloodstream and function as 

hormones. Thus, this subfamily acts in an endocrine manner. However, the FGF19 subfamily has 

a low affinity for heparin sulfate, and another co-receptor named Klotho is required to allow the 

FGF19 subfamily to exert their biological functions. Relative to the five paracrine-acting FGF 
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subfamilies, the FGF 19 subfamily displays the least sequence identity amongst its members. 

The pairwise sequence identity between the core regions of members of FGF19 subfamily ranges 

between 33% for FGF21 and FGF23 and 38% for FGF19 and FGF21. When compared, the 

identity between the core regions of members of paracrine FGF subfamilies is significantly 

higher and ranges between 88% for FGF9 and FGF16 to 54% for FGF7 and FGF10. Most of the 

sequence divergence between FGF19 subfamily members shoots from the heparin binding 

regions, specifically the β1-β2 loop and the segment between the β10 and β12 strands of the 

paracrine ligands. Elimination of the heparin binding region from the sequence alignment data 

increases the identity between FGF19 subfamily members and other FGF subfamilies to more 

than 40%. Members of the FGF19 subfamily have varied functions such as regulating the 

enterohepatic circulation of bile acid, regulating glucose and lipid metabolism, and maintaining 

phosphate/vitamin D homeostasis [13]. 

FGF21 is a hormone secreted by the liver (hepatokine) but the bioactivity of FGF21 and 

the actual mode of action still remains elusive [44]. FGF21 is an important inducer of glucose 

uptake in adipocytes. When overexpressed in transgenic mice, it was found to reduce the diet-

induced obesity, blood glucose, and the triglyceride (TG) levels [45]. FGF21 has appeared as an 

essential metabolic hormone contributing towards managing glucose, lipid, and energy 

homeostasis. Recombinant FGF21 have impressive effect in normalizing plasma glucose levels, 

increasing insulin sensitivity, and reducing plasma TG and cholesterol levels in different diabetic 

animal models including rhesus monkeys. Recombinant FGF21 serves as a potential unique 

treatment to cure metabolic disorders [46]. FGF21 improves insulin-independent glucose uptake 

into cultured 3T3-L1 mouse adipocytes and human adipocytes by the upregulation of glucose 

transporter 1 (GLUT1) expression. Studies indicate that FGF21 controls adipocyte lipolysis and 
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enhances adiponectin expression and secretion [47]. Reconstitution of adipose tissue by 

transplanting white adipose tissue (WAT) from wild-type mice to lipoatrophic mice restores 

FGF21 responsiveness. FGF21 controls the gene expression of uncoupling protein 1 (UCP1) in 

brown adipose tissue (BAT) and WAT and significantly increases the presence of “brown-like” 

adipocytes in subcutaneous WAT [48]. These outcomes may result in the thermogenic activities 

of FGF21 and controlled weight-loss under high fat conditions. In mice, FGF21 expression is 

upregulated in response to cold exposure and β-adrenergic stimulation [48]. In rats, exposure to 

cold climate activate a distinct release of FGF21 from BAT, suggesting an endocrine role of 

BAT as a source of FGF21 that can be related to thermogenic activation. In humans, changes in 

the serum FGF21 concentrations correlate positively with thermogenesis and circulating FGF21 

levels correspond to BAT activity during severe cold exposure in male individuals which 

suggests that FGF21 maintains normothermia [49]. FGF21 agonist aids in the treatment of type 2 

diabetes and obesity [50]. FGF21 plays an essential role in the regulation of glucose and lipid 

metabolism in obese rodents and primates. FGF21, a hepatokine growth factor, has a satisfactory 

role in glucose and lipid metabolism in mice. The first clinical trials of FGF21 analogs in type 2 

diabetic patients exhibited lowered glucose efficacy [51]. Immunostaining of the pancreatic islets 

revealed that the number of islets and insulin amount were elevated in FGF21 injected db/db 

mice [52]. FGF21 is significantly expressed in pancreas and exerts its inflammatory role in 

experimental pancreatitis [53,54]. 

FGF23 is secreted mainly by osteocytes and it acts as a phosphaturic factor that inhibits 

1,25 dihydroxy vitamin D (1,25(OH)2D) and parathyroid hormone. FGF23 regulates the 

concentration of phosphate that is important in cellular signaling, regulating plasma pH, bone 

mineralization, and bone development. Increased serum FGF23 concentration has been 
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associated with the progression of chronic kidney disease. To study the effects of FGF23 on 

chronic kidney disease-mineral and bone disorder (CKD-MBD) and secondary 

hyperparathyroidism (HPT), scientists conducted a study where they used FGF23 antibodies to 

neutralize the effect of FGF23 using rat model. CKD-MBD rat models were fed on a high-

phosphorus diet and were treated with either a high dose or a low dose of monoclonal FGF23 

antibody. The results showed that treatment with the monoclonal FGF23 antibody inhibited the 

occurrence of HPT which decreased parathyroid hormone levels, increased vitamin D and 

calcium levels, and restored bone markers back to normal level [55]. Tumor-induced 

osteomalacia (TIO) is a type of a paraneoplastic condition recognized by hypophosphatemia 

resulting from renal phosphate wasting. Overexpression of FGF23 leads to TIO while mutations 

in the FGF23 gene cause autosomal dominant hypophoshatemic rickets [56]. FGF23 is a 

dynamic player of vitamin D and phosphate metabolism [57]. FGF23 stops the expression of 

Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1) that encodes a protein which 

controls the production of 1,25(OH)2D. FGF23 also induces Cytochrome P450 Family 24 

Subfamily A Member 1 (CYP24A1) expression that encodes an enzyme that acts to reduce 

1,25(OH)2D level [58]. A segment of FGF23 protein is divided into inactive N-terminal and C-

terminal parts before or during the secretion process of FGF23. 

hFGF1 structure 

hFGF1 is the prototype member of fibroblast growth factor (FGF) family, a superfamily 

that promotes cell signaling. Human acidic fibroblast growth factor (hFGF1) is a 16 kDa, single-

chain globular protein with characteristic β-trefoil fold consisting of six β-strand pairs, three of 

which form a six-stranded β-barrel structure [59]. Proteins that share the β-trefoil structure with 
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FGFs are the Kunitz soybean trypsin inhibitors, the ricin-like plant and bacterial toxins, 

interleukins, and various carbohydrate-binding proteins such as xylanase [60]. 

Sweet and coworkers were the first group to observe β -trefoil fold in the soybean trypsin 

inhibitor. β -trefoil structural architecture was then characterized by Chothia and group [61]. 

hFGF1 comprises of 12 β -strands that form 6 β -hairpins (Fig. 2). Overall β- trefoil structure of 

hFGF1 can be divided into a 6-stranded β-barrel, (top half, consisting of β-strands 1, 4, 5, 8, 9, 

and 12) and a β -hairpin triplet (bottom part, comprising of β-strands 2, 3, 6, 7, 10, and 11).  

 

 

Fig. 2: Secondary structure of hFGF1. Twelve β-strands are folded into β-trefoil structure [59]. 

 

A central axis of 3-fold symmetry separates the barrel into three trefoil subdomains of 

approximately 40 amino acids each. hFGF1 structure is functionally divided into two parts - 

heparin binding and receptor binding [62]. The heparin binding region (β-strands 6-12) are more 

rigid and compact whereas the receptor binding part (β-strands 1-5). 

Heparan Sulfate Glycosaminoglycan (HSGAG) binding and hFGF1-heparin interaction 

FGFs are known for their potential biological functions such as cell proliferation and cell 

differentiation, but FGFs have a short half-life in vivo and are readily degradable. They bind to 

heparin present on the surface of cells. FGF signaling has been suggested to require heparin or 

heparin sulfate (HS) [5,6]. HS is a highly sulfated linear polymer of alternating glucuronate 

(GlcA) and N-acetylglucosamine (GlcNAc) monosaccharide units that undergo heterogenous 
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deacetylation (N-sulfation on GlcNAc and O-sulfation on both GlcA and GlcNAc). HS regulates 

FGF-FGFR signal transduction by stabilizing the FGF-FGFR binding, regulating FGF protein 

level in extracellular matrix (ECM), and also conferring protection to FGFs against thermal 

denaturation and proteolytic degradation [63]. In addition to facilitating the FGF-FGFR binding, 

HS also acts as a storage reservoir for ligand and determines the radius of ligand diffusion by 

controlling the gradients of paracrine FGFs in ECM. Amongst all the paracrine FGF subfamilies, 

FGF22 is the only FGF that does not bind to HS. All the other paracrine FGFs interact with HS 

with different affinities with FGF1, FGF2 and FGF7 having the highest binding affinity. The 

positively charged residues in the heparin binding pocket of hFGF1 interacts with the negatively 

charged heparin molecule. Heparin-binding site (HBS) in all FGFs is located within the core 

region and spans residues in the ß1- ß2 loop and ß9 to ß12 strands [13, 59]. SDM studies infer 

that charge reversal mutations of the lysine residues (K132, K127, K114, and K115) at the C-

terminal of FGFs leads to loss of heparin binding affinity. Crystallographic and NMR studies 

confirm that residues 126-142 (present at the C-terminal) of hFGF1 is responsible for heparin 

binding. Interestingly the crystal structure contains no protein-protein interactions and each 

monomer binds the heparin sulfate groups on opposing sides of the polysaccharide [59]. 

Crystal structure data on the FGF-FGFR-HS ternary complex revealed that heparin 

promotes FGF signaling through the formation of a 2:2:2 and 2:2:1 (FGF: FGFR: HS) complex. 

Schlessinger et al., reported a putative 2:2:2 complex formed between FGF2, FGFR1c, and deca-

saccharide heparin (dp10) [64]. The positively charged residues in hFGF1 facilitating the heparin 

binding are K126, K127, N128, K132, R133, R136, and K142. 
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Fig. 3: The FGF2-FGFR1-heparin ternary complex. FGFR1 domains 2 (D2) and 3 (D3) are 

purple and magenta, respectively, and FGF1 is green and orange. The heparin molecule is in 

Corey-Pauling-Koltun (CPK) representation [12]. 

 

One half of this structure (1:1:1 complex) consists of a heparin chain bound to both FGF2 

and FGFR1c, enhancing the ligand-receptor interaction (Fig. 3) [64]. The two 1:1:1 complex 

were then held together through direct receptor (FGFR1c) contacts, together with the secondary 

ligand-receptor (FGF2- FGFR1c) and heparin-receptor interactions. Contrary to this, Pellegrini et 

al., pointed out a potential 2:2:1 FGF1-FGFR2c- deca-saccharide heparin (dp10) ternary 

complex structure in which a single heparin chain bridged the gap between two FGF1-FGFR2c 

complexes, making additional contacts with one of the receptor subunits [65]. 

Role of heparin in hFGF1-FGFR signaling 

Heparin’s role in hFGF1-FGFR interaction and subsequent activation is an ongoing topic 

of research. It is assumed that in addition to stabilizing hFGF1, heparin is also necessary for 

receptor binding and activation [66]. From the crystal structures obtained previously, it is evident 

that heparin plays a pivotal role in various biological processes, including hFGFR dimerization 

and FGFR activation [67, 68]. For hFGF1 dimerization and FGFR activation, binding of heparin 

Heparin Heparin

FGFR1

FGFR1

FGF2
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is crucial. In order to understand the biological activity of hFGF1, sucrose octasulfate (SOS), a 

mimic of heparin was used [69]. This study showed that the monomeric form maintained by 

hFGF1 retains its mitogenic activity to significant amounts, thereby inferring that oligomeric 

form of hFGF1 is not important for its biological functioning [69].  

Angulo et al., reported that length and sulfation patterns of glycosaminoglycans (such as 

heparin) has a considerable impact on the bioactivity of hFGF1 [70]. They also showed that 

dimerization of two hFGF1 monomers is not a mandatory step in hFGF1 activation. Their study 

uses two synthetic hexasaccharides with different sulfation patterns [71]. These hexasaccharaides 

bind to hFGF1 in its monomeric form. Numerous studies have reported that heparin is not an 

absolute requirement for the cell proliferation activity of hFGF1 [72]. Heparin is only known to 

stabilize the inherently unstable hFGF1 molecule. hFGF1 is known to have a short half-life in 

vivo. Culajay et al., found that hFGF1 mutants, C30S, C97S, and C131S, increases the half-life 

of hFGF1, yet these mutants were found to decrease the thermal stability of the growth factor 

[73]. 

Apart from aiding in receptor activation, heparin also helps in stabilizing hFGF1 from 

thermal degradation. In order to validate this concept, site directed mutagenesis were performed 

on the growth factor. Out of all the variants generated on hFGF1, L58F exhibited considerable 

increase in the thermal stability of hFGF1 [62]. In a varied approach, three other individual 

substitutions (H35Y, H116Y, and F122Y) were tried and finally a quadruple mutant with L58F 

was generated. H35Y/H116Y/F122Y/L58F displayed 7.8°C increase in the thermal stability and 

also maintained the same mitogenic activity as wtFGF1 in spite of heparin independency [74]. 

Zakrzewska et al., combined three other mutations to the quadruple mutant to form a septa 

mutant (H35Y/Q54P/S61I/L58F/H107G/H116Y/F122Y) to investigate if the inherent thermal 
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and proteolytic stability of hFGF1 can be further enhanced [75]. As a result of this study, it was 

found that the thermal stability of the septa mutant was 27°C higher than wtFGF1. Wong et al., 

showed that substitution of lysine to glutamine at position 132 in the heparin binding site 

displays reduced heparin binding affinity, but still activates FGFR and induces early intermediate 

gene transcription [76]. Interestingly, in the absence of heparin a quadruple mutant with the 

K132E mutation plus the triple mutant Q54P/S61I/H107G was found to have mitogenic activity 

equivalent to heparin-bound wildtype hFGF1 [77]. These studies conclude that heparin is not 

mandatory for the biological activity of hFGF1.  

One interesting study analyzing the intramolecular bonds of hFGF1 found that inclusion 

of disulfide bonds at the N and C terminal could yield better stabilization of the growth factor 

which led to the generation of K26C and P148C mutants [78]. These mutants were thought to 

form a disulfide bond and lead to increase in the inherent stability of the growth factor. 

Conversely, the mutants did exhibit increased thermal stability and mitogenic activity, in spite of 

no disulfide bond formation. In conclusion, numerous efforts have been taken to improve the 

thermal stability, proteolytic stability, and cell proliferation activity of the growth factor in a 

heparin independent manner, yet a substantial understanding still remains elusive. 

Interestingly, several other mutations in hFGF1 such as K132E, cysteine mutations 

(C97S, C30S, C131S), H107G, and L58F have shown higher thermal stability, lack of heparin 

dependent FGF-FGFR activation. Except for K132E mutation, all the other hFGF1 variants 

exhibited higher mitogenic activity than wtFGF1 [79,80]. Studies have shown that hFGF1 can 

lead to endocrinization, which demonstrates that mitogenic activity of hFGF1 can be 

differentiated from the metabolic activity [81,82]. Xia et al., and Huang et al., have reported that 

phosphorylation of S116R and combination of K126D, K127Q, and K132E mutations lead to 
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decreased mitogenic activity but increased glucose-lowering activity. These variants of hFGF1 

may be a potential therapeutic for type 2 diabetes [81,82]. 

Fibroblast Growth Factor Receptors (FGFRs) 

There are only 18 FGFR ligands for the FGF family. FGF homologous factors (FHFs), 

FGF11, FGF12, FGF13, and FGF14, do not bind with the FGF receptors [7]. FGF ligands carry 

out their diverse functions by binding and activating the FGFR family of tyrosine kinase 

receptors in an HSGAG-dependent manner. FGFs exert their physiological roles through binding 

to FGFR and regulate developmental pathways, controlling events such as mesoderm patterning 

in the early embryo till the development of multiple organ systems. There are four FGFR 

(FGFR1–FGFR4) that encode receptors consisting of three extracellular immunoglobulin 

domains (D1–D3), a single-pass transmembrane domain and a split cytoplasmic tyrosine kinase 

domain [83]. FGFRs are expressed on many different cell types and regulate key cell behaviors, 

such as proliferation, differentiation, and survival, which make FGF signaling susceptible to 

subversion by cancer cells [84]. 

FGFRs consist of an acid box that includes an acidic, serine-rich sequence in the linker 

between the D1 and D2 domain. D1 domain of FGFR is responsible for receptor autoinhibition. 

The base of D2 domain helps in the binding of each FGF (ligand) to FGF receptors on the cell 

surface. Each FGF molecule interacts with the D2 domain of a second receptor through a 

secondary receptor binding site, and mutation of ligand residues within this site reduces receptor 

dimerization and signaling without affecting ligand-receptor binding [13]. The D2-D3 fragment 

is important for ligand binding and specificity. An exon-skipping mechanism removes the D1 

domain or acid box leading to various isoforms of the receptor (FGFR1-FGFR3) whereas an 

alternative splicing process in the second half of D3 domain of FGFR1–3 yields b (FGFR1b–3b) 
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and c (FGFR1c–3c) isoforms that have distinct FGF binding specificities and are primarily 

epithelial and mesenchymal, respectively. Except for FGF1, all the other FGFs bind to epithelial 

or mesenchymal FGFRs and activate both the spliced isoforms. Now, HSGAGs come into play 

and bind to the ligand (FGFs), FGFRs dimerize, which enables the cytoplasmic kinase domains, 

in turn, trans phosphorylating and activating the A-loop tyrosines (Fig. 4). A-loop 

phosphorylation is followed by phosphorylation of tyrosines in the C tail, kinase insert and 

juxtamembrane regions [64]. The two main intracellular substrates of FGFR are PLCγ substrate 1 

(also known as FRS1) and FGFR substrate 2 (also known as FRS2). Phosphorylation of an 

FGFR-variant tyrosine (Y766 in FGFR1) at the C tail of FGFR creates a binding site for the SH2 

domain of PLCγ and is required for PLCγ phosphorylation, and activation, whereas FRS2 

associates constitutively with the juxtamembrane region of the FGFR [85]. Phosphorylation of 

FRS2 is essential for activation of the Ras-MAPK and PI3K-AKT signaling pathways. 

FGFR-FGF binding interface 

hFGF-FGFR binding interface studies report that hFGF1 makes contacts with Ig 

domains, D2 and D3, along with the D2-D3 linker [9]. D1 and the serine rich linker between D1 

and D2 inhibits FGF binding to the receptor. Additional reports suggest that mutant receptor 

proteins lacking D1 have a higher binding affinity for the ligands. Of all the other FGFs, studies 

related to hFGF1 will be discussed here to stay relevant to the aims of this project. Detailed study 

on FGFR-FGF interaction reveals that hFGF1 residues interacting with D2 are more conserved 

than the residues binding with the D3 domain of FGFR. Out of 140 residues, 39 residues of 

hFGF1 are involved in receptor binding. None of these 39 residues are located in the heparin 

binding site [86]. Crystallographic studies have demonstrated that mostly hydrophobic residues 

of hFGF1 interact with the D2 domain of the receptor. This includes residues Y29, G34, F36, 
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Y108, L147, and L149 of hFGF1 binding to K164, L166, A168, V169, and P170 of the D2 

domain. Apart from hydrophobic interactions, electrostatic interactions also take place between 

residues R49 and R51 of FGF1 and E163 and D247 of the D2 domain, respectively [65]. 

Moreover, interactions occurring in the D2-D3 linker region is a hydrogen bond interaction 

between N109 of FGF1 and R251 of the linker region. Interactions between hFGF1 and D3 

domain of the receptor involves both electrostatic and hydrophobic interactions. An electrostatic 

interaction occurs between E101 of hFGF1 and R255 of the D3 domain, whereas hydrophobic 

interactions happens between I257 of D3 domain and L103 and H107 of hFGF1 [65].  

Study of the 2:2 FGF1:FGFR2 complex (PDB 1DJS) in the absence of heparin reveals 

that the D2 and D3 domain of the FGFR make contacts with both the ipsilateral and contralateral 

FGF1 ligand yet no ligand-ligand contacts are reported. Heparin bound FGF-FGFR dimer 

structural complex can be symmetrical and asymmetrical. Study of the decasaccharide heparin 

bound FGF1:FGFR complex (PDB 1E0O) shows that heparin binds to hFGF1 (residues 126-

142) through the heparin-binding region with further contacts between residues V175, H167, 

K164, T174, K176, R178, and K161 of the D2 domain of FGFR and heparin [86]. 

FGF-FGFR regulation and signaling pathway 

HSGAG dependent FGF-FGFR binding leads to receptor dimerization and trans-

autophosphorylation of the tyrosine receptor. During the receptor activation of the tyrosine 

kinase domain of FGFR1, the six tyrosine residues (Y653, Y583, Y463, Y766, Y585, and Y654) 

are phosphorylated [83]. As tyrosine’s are phosphorylated, the receptor activity increases by 

many folds. The phosphorylation of Y653 increases activity by 50-100 folds. Followed by the 

phosphorylation of Y653. Other tyrosine residues (Y583, Y463, Y766, Y585, and Y654) are 

phosphorylated, resulting in an overall 500-1000 fold increase in the receptor kinase activity. 
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Phosphorylation of above six tyrosine residues accounts for the tyrosine kinase activity but not 

for the STAT3 and PLCγ binding. Therefore, phosphorylation of the two additional tyrosine 

residues - Y677 and Y766 are needed [85]. Activated FGFR initiates the major downstream 

intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, PLCγ, and Signal Transducer 

and Activator of Transcription (STAT) [1]. Of these signaling pathways, activation of RAS-

MAPK and PI3K-AKT pathways are mediated by phosphorylation of FGF receptor substrate 2α 

(FRS2α). Phosphorylation of Y463 and the presence of CRK Like Proto-Oncogene, Adaptor 

Protein (CRKL) facilitates the phosphorylation of FRS2α. Phosphorylated FRS2α also binds to 

the membrane-anchored adaptor protein, growth factor receptor-bound 2 (GRB2), and the SH2 

domain-containing protein tyrosine phosphatase-2 (SHP2) [87]. This finally leads to activation of 

the RAS-MAPK and PI3K-AKT signaling pathway. RAS-MAPK signaling pathway stimulates 

expression of several genes through phosphorylation of E26 transformation-specific (ETS) 

transcription factors, which regulates the DNA interaction and gene expression [88] (Fig. 3). On 

the other side, PI3K-AKT pathway inhibits the function of forkhead box class transcription 

factor (FOXO1) and cytosolic tuberous sclerosis complex 2 (TSC2) [89]. PLCγ pathway, when 

activated by the FGFRs, leads to the hydrolysis of phosphatidylinositol 4,5-bisphosphate which 

produces inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 subsequently regulates 

the subcellular calcium ion levels and DAG transduces the signal to the protein kinase C (PKC). 

FGF-FGFR interaction also phosphorylates STAT1, STAT3, and STAT5, to regulate the STAT 

pathway target gene expression (Fig. 4). 
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Fig. 4: (A) A cartoon representation of the FGFR structure. The splicing of the third Ig domain in 

FGFR1, FGFR2, and FGFR3 gives rise to Ig IIIb and Ig IIIc isoforms. (B) A schematic depiction 

of FGF-FGFR signaling cascade. Upon binding of HSGAGs to FGF, FGFRs are activated. 

Heparin promotes FGF signaling through the formation of a 2:2:2 and 2:2:1 (FGF: FGFR: HS) 

complex. This leads to receptor autophosphorylation and activation of downstream signaling 

pathways [88]. 

 

FGFR2 consists of three extracellular immunoglobulin (Ig)-like domains, a single 

transmembrane domain, and two tyrosine kinase domains in the cytoplasmic region. In 

particular, the formation of FGF2-FGFR2 complex involves two Ig-like ligand-binding domains 

(D2 and D3 domains) of FGFR2. Similar to FGFR1, autophosphorylation of receptor tyrosine 

residues in cytoplasmic domains contribute to the docking of the signaling molecules which 

include, Src homology2 (SH2) domain proteins. The binding of SH2 domain-containing proteins 

have been demonstrated in activation of MAPK pathways. Seven phosphorylation sites in the 

cytoplasmic domain including Y463, Y583, Y585, Y653, Y654, Y730, and Y766 have been 

identified in FGFR1 which are also well-conserved in FGFR2. Phosphorylation of FGFR2 



   25 

occurs on serine 779 (S779) in response to FGF2 [90]. S779 is situated adjacent to the 

phospholipase Cγ binding Site, at Y766, and contributes to a putative binding site for the 14-3-3 

phosphoserine-binding proteins. S779 is found to be essential for the potential activation of PI3K 

and Ras/MAPK pathways. Furthermore, it has been demonstrated that S779 signaling is also 

important for proliferation in both Ba/F3 (interleukin (IL)-3 dependent, hematopoietic) and 

BALB/c 3T3 fibroblast cells. GRB2 directs the regulation of receptor tyrosine kinase (RTK) 

FGFR2 and SHP2. A recent study by Ahmed et al., suggested that FGFR2 cycles between its 

partially phosphorylated and its SHP2- dephosphorylated state(s) [91]. To determine the 

significance of the six conserved tyrosine molecules in intracellular domain of FGFR3 for 

signaling, activated mutant K650E-FGFR3 was constructed. It was found that K650E mutation 

renders constitutive kinase activation and regulates activation of various FGFR3 signaling 

cascades. Function of Y724 is also important for its role in phosphatidylinositol 3-kinase 

activation, and phosphorylation of SHP2, MAPK, STAT1, and STAT3 [92]. In addition, tyrosine 

phosphorylation of SH2-Bβ was observed when co-expressed with one weakly activated 

(N540K-FGFR3) and a strongly activated (K650E-FGR3) mutants. Two phosphorylation sites of 

FGFR3 are identified, Y724 and Y760, which are necessary for the binding of the SH2 

domain(s) of SH2-Bβ. In this context, phosphorylation and nuclear translocation of STAT5, and 

activated FGFR3 promotes elevated expression of SH2-Bβ [93]. 

Aberrations of FGFR Signaling 

Binding specificity of FGF-FGFR depends on the variability in the primary sequence of 

18 FGFs and the 4 FGFRs. The different isoforms formed due to splicing display tissue 

specificity. For example, isoforms b and c are expressed usually in the epithelial tissue and 

mesenchymal tissue, respectively and the corresponding ligands trigger the receptors on the other 
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tissues. An exception to this is FGF1, which binds to both b and c isoforms of certain FGFRs. 

Anomalies in the binding specificity can lead to pathological or diseased conditions such as, 

cancer. Analyses of structural characteristics of FGF1, FGF2, FGF8, and FGF10 with their 

cognate FGFRs display variation at the β1 strand length of the N-terminal region and the 

alternatively spliced regions in D3 dictate their binding specificities [13]. Several evidences 

suggest that FGFR activating mutation, overexpression, and aberrant activation of the RTK 

signaling system can lead to excessive cell proliferation, angiogenesis, cancer, and other 

pathophysiological changes. 

Factors Influencing Specific Aberrations in FGFR Signaling  

Fusion of FGFR Genes 

Fusion genes are formed by the rearrangement of two independent genes and can occur as 

a result of chromosomal translocation and inversion. FGFR gene fusions play an important role 

in lung squamous cell cancer, oral cancer, thyroid cancer, gall bladder cancer and glioblastoma 

with intact kinase domains. The FGF signaling is involved in cancer, resulting from 

hematological malignancies. N terminus of a transcription factor of FGFR chromosomal 

translocations in a fusion protein is fused to an FGFR kinase domain, leading to a kinase 

activation. Most of the FGFR1 fusion proteins are identified in patients with the 

myeloproliferative disorder stem cell leukemia/lymphoma syndrome (SCLL/8p11 

myeloproliferative syndrome) [94]. Studies have shown that 3′ gene fusions of FGFR1 and 

FGFR3 are related to myeloproliferative disorder and peripheral T-cell lymphoma, respectively. 

8p11 myeloproliferative syndrome (EMS), a hematopoietic stem cell disorder is related to 

chromosomal translocations of fusion genes, namely zinc finger 198-FGFR1. It has been 

demonstrated that zinc finger 198-FGFR1 induces EMS-like disease in mice, with 
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myeloproliferation and T lymphoma [95]. Recently, several fusion genes of FGFR1-3 along with 

transforming acidic coiled coil containing protein 1 (TACC1), Transforming acidic coiled coil 

containing protein 3 (TACC3), BAR/IMD Domain Containing Adaptor Protein 2 Like 1 

(BAIAP2L1), BicC Family RNA Binding Protein 1 (BICC1), and adenosylhomocysteinase like 1 

(AHCYL1) have been identified in multiple malignancies including glioblastoma, urothelial 

bladder and cholangiocarcinoma [96]. Singh et al., reported that FGFR1 and FGFR3 gene 

fusions with TACC1 and TACC3 have been identified in approximately 3% of the tumor 

glioblastoma multiforme (GBM) [97]. It has been demonstrated that the abnormal localization of 

fusion protein to mitotic spindle poles induces mitotic and chromosomal segregation defects. 

FGFR3-TACC3 fusion gene was identified in a subset of bladder carcinomas [98]. 

Overexpression and Amplification of FGFR 

Overexpression of FGFRs may lead to ligand independent FGFR signaling and is mainly 

caused by focal amplifications. Overexpression of FGFRs are associated with the development 

of several cancers such as lung cancer, brain cancer, prostate cancer, liver cancer, and MM along 

with angiogenesis around the tumor. Overexpression of FGFR may either be due to 

dysregulation of transcription or chromosomal amplification. Underlying mechanism of FGFRs 

overexpression in the development of cancer still remains elusive. FGFR1 is found to be 

amplified in approximately 18% of osteosarcoma, 7% to 20% of squamous non-small cell lung 

carcinoma, 6% of small cell lung carcinoma, and 14% of breast cancer in the chromosomal 

region 8p11-12 [99]. It has also been suggested that activation of FGFR1 in the non-transformed 

human mammary cell line resulted in cellular transformation which is evidenced by epidermal 

growth factor-independent cell growth, cell proliferation, loss of cell polarity, and epithelial-to-

mesenchymal transition [100]. In the case of breast cancers, amplification of FGFR1and/or 
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11q12-14 has been identified in the chromosomal region containing cyclin D1 (CCND1) and 

amplification of several FGFs (FGF3, FGF4 and FGF19) have been found in 23% of hormone 

receptor-positive (HR+) breast cancer, 27% of human epidermal growth factor receptor 2 

(HER2) breast cancer, and 7% of triple-negative breast cancer [101]. Triple negative breast 

cancer (TNBC) might carry amplification of FGFR2 in 6 out of 165 (3.6%) cases. This type of 

breast cancer is very aggressive and respond poorly to the conventional therapeutic measures. 

[102]. In addition, FGFR2 gene amplification and protein overexpression has been detected in 

2/51 breast cell lines, out of which MFM223 and SUM52PE are the TNBCs. This amplification 

of FGFR2 exerts effect on the activation of PI3K-AKT downstream signaling pathway, resulting 

in inhibition of apoptosis. The FGFR2 amplification is hypersensitive to FGFR-targeted therapy 

and is detected in 3% to 25% of gastric cancers [103]. Many reports have demonstrated that 

overexpression of FGFR4 is associated in the development of several cancers including colon, 

liver and prostate. According to a study on the conditional knockout mouse, prostrate 

organogenesis and androgenic dependency and homeostasis depends largely on the presence of 

FGFR2. Studies have also shown that in early stages of prostate cancer, in particular when the 

prostatic intraepithelial neoplasia carcinoma is in situ of the prostate, there is an evidence of non-

regulated FGF/FGFR signaling. Defective FGF/FGFR signaling has been implicated as a 

mechanism for the occurrence of epithelial carcinoma and prostate cancer. The growth and 

progression of gastric cancer requires the activation of the FGFR2 pathway with FGFR2 gene 

amplification reported both in vitro and in vivo. FGFR2 gene has two different isoforms; 

FGFR2b and FGFR2c. The gene undergoes alternative splicing in the third immunoglobulin 

domain resulting in those two isoforms with different FGF ligand binding. FGFR2b isoform has 

been specifically found to be overexpressed in FGFR2 induced gastric cancer. About 8% of 



   29 

gastroesophageal cancers display amplification of FGFR2 gene. FGFR1 gene is over-amplified 

in lung cancer and estrogen receptor-positive breast cancer. The FGFR gene is also involved in 

different translocations in hematological malignancies like myeloid and lymphoid cancer 

wherein the immature cells never mature, consequently preventing proliferation. FGFR gene 

expression also induces sarcoma tumors such as Ewing’s sarcoma, alveolar rhabdomyosarcoma, 

and angiosarcoma, and FGFR-3 causes multiple myeloma and T-cell lymphoma. Amplification 

in FGFR4 gene has been detected in approximately 7-8% of rhabdomyosarcoma patients [104]. 

Both FGF19 and FGFR4 are found to be overexpressed in the patients with hepatocellular 

carcinoma (HCC) and therapeutically potential inhibitor of FGF19/FGFR4 are considered to be 

effective for the patients suffering from HCC [105]. 

FGFR-activating Mutations 

A number of FGFR activating point mutations are connected with various types of 

cancers such as: liver cancer, bladder cancer, renal cell carcinoma, prostate cancer, lung cancer, 

and breast cancer [106]. Specific aberrations in FGFR signaling have been identified which are 

summarized as below:  

• Overexpression of FGFR due to gene amplification or post-transcriptional activation  

•  FGFR mutated form induce dimerization and thus produce receptors which are either 

constitutively active or exhibit an independent ligand binding for activation  

• Chromosomal translocations resulting in expression of FGFR-fusion proteins with 

constitutive FGFR kinase activity 

• Alternative splicing of FGFR and isoform switching changes the binding affinity with 

FGF ligands and as a consequence, it triggers the tumor growth of FGFs 
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•  Elevated levels of FGF in cancer cells and substantial release of FGFs from the 

extracellular matrix, resulting in paracrine/autocrine activation 

Studies reported on FGFR-activating mutations and the related diseases are summarized 

below: 

FGFR1: According to the catalog of somatic mutations in cancer (COSMIC) data, five FGFR1 

mutations are most commonly identified [107]. However, functions of only two mutations 

(N546K and K656E) are known. In addition, a proline to arginine mutation in IgII-IgIIIa linker is 

associated with mild Pfeiffer syndrome in FGFR1. The most notable FGFR1 mutated forms are 

Y99C and C277Y which have been detected in Kallmann syndrome [108]. Also, a constitutively 

active mutant of FGFR1 expression has been implicated in the development of prostate 

carcinoma lesion. The FGFR1 mutations are highly applicable in the drug-targeted development. 

Various other mutations of FGFRs have been detected in solid tumors related cancer cells. 

FGFR2: FGFR2 mutations have been detected in 12 to 14% of endometrial cancer. According to 

the COSMIC data, 12 mutations have been identified. Among these mutations, 7 activating 

mutations are reported including P253R, N549K and S252W [109]. There are two particularly 

notable mutation sites in FGFR2. First, a cysteine to glycine mutation in IgIII domain causing 

apert and crouzon syndrome in FGFR2. Second, a conserved proline residue in the linker 

between the IgII and IgIII extracellular domain of FGFR2 frequently mutating to arginine and 

causing apert syndrome [110]. 

FGFR3: The first reported mutation of FGFR3 was Gly→Arg missense mutation (G380R) in its 

transmembrane domain, resulting in achondroplasia [111]. Naski et al., reported that the mutated 

form (R248C) of FGFR3 in the extracellular domain or introduction of K650E substitution in the 

tyrosine kinase (TK) domain causes the autosomal dominant human skeletal disorders, 
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hypochondroplasia, achondroplasia and thanatophoric dysplasia. It has been demonstrated 

through the ligand-independent receptor tyrosine kinase phosphorylation and cell proliferation 

studies that R248C and K650E mutations activate the FGFR3 receptor [112]. Ser→Cys (S365C), 

a FGFR3-activating variant has been found to cause dwarfism. It has been observed that S365C 

mutation could lead to downregulation of expression of the Indian hedgehog and parathyroid 

hormone-related protein receptor genes, which ultimately reduces bone growth [113]. FGFR3 

activating mutations have been identified in thanatophoric dysplasia. Among three FGFR3 

mutations (G370C, S371C, and Y373C), the two common mutations are G370C and S371C. It 

has been observed that G370C and S371C induce receptor dimerization and activation [114]. 

FGFR3 activating mutations have also been identified in various urothelial cell carcinomas 

(UCC). The expression of K652E FGFR3 in normal urothelial cell results in constitutive 

phosphorylation. The role of K652E FGFR3 in the kinase domain is still unclear. Martino et al., 

described that K652E mutation was not connected with the receptor dimerization as compared to 

the other two mutants. It might be essential for the physical interaction with some downstream 

signaling effector or for trans-phosphorylation of some tyrosine residues, such as Y762 [115]. A 

study by Ahmad et al., suggests that K644E FGFR3 variant is not related to UCC [116]. The 

mutations in the kinase domain including N540S, K650E, K650M, K650N, K650Q, and K650T 

are rarer. FGFR3 gene mutations are also spotted in bladder cancer [117].  

FGFR4: Different FGFR4 activating mutations in the kinase domain have been reported in 7-8% 

of rhabdomyosarcomas, associated with advanced stage cancer and poor survival. Two of them 

(N535K and V550E) occur at the auto-phosphorylation site, and thus induce constitutive 

activation of the receptor. FGFR4 gene mutations are spotted in sarcomas.  
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FGFRs mutations have been linked to various types of cancers. Correcting these 

mutations, plausibly through gene therapy, can be expected to be a reliable treatment for cancers 

ascribed to the FGFR mutations. 

Therapeutic applications of FGF 

Dysregulation of FGF signaling can lead to a variety of human conditions, such as 

cancer, ineffective wound healing, metabolic syndrome, chronic kidney disease, and 

cardiovascular diseases [118]. Tissue injury involves a complicated repairing process by which 

some organisms can lead to complete regeneration of tissues. In the case of mammals, injury to 

most tissues leads to scar formation [119]. Reparations and regeneration are demonstrated by a 

large number of cytokines and growth factors. FGFs are the most effective growth factors that 

control organogenesis and tissue homeostasis [120]. Since early 1980s, the US Wound Healing 

Society and European Wound Management Association recommended FGFs for the treatment of 

refractory ulcers. Some pharmaceutical companies such as Amgen, Merck, and Lilly have 

significantly invested in the development of FGF-based drugs. Amongst the FGF family, FGF1, 

FGF2, FGF7 (or keratinocyte growth factor 1 (KGF1)), and FGF10 (or keratinocyte growth 

factor 2 (KGF2)) are integral to cutaneous wound healing [2]. 

There is a wide range of developing clinical applications for many different FGFs; however, 

to stay relevant to the aims of this project, only those pertaining to hFGF1 will be examined. 

FGF1 serves as a mitogen for different cell types [84]. However, FGF1/FGF2 double-knockout 

mice do not exhibit any of the observable aberrations. These results suggest that the 

developmental and physiological roles of FGF1 are highly restricted [121]. 

Immunohistochemical methods showed that expression of the FGF1 protein was undetectable in 

intact skin, but it was mainly localized in higher amounts near the wound area and lesser at the 
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edges. Moreover, in skin wounds, healing proteins were found in vast quantities around the 

injury site and were produced by damaged inflammatory cells such as macrophages and non-

inflammatory cells such as endothelial cells. However, it has been shown that addition of growth 

factors, including FGF1, to chronic wounds, can speed up the wound healing process and 

enhance wound closure [122]. FGF1 has been effectively used as a possible therapy in many 

cases that are characterized by damaged or diseased cells that require tissue regeneration such as 

skin, nerves, blood vessels, and bone tissue. FGF1 promotes the migration of fibroblast and 

keratinocyte cells to the wound area and accelerates the rate of angiogenesis, granulation, and 

epithelialization processes [123]. Improvement in the deep burn wound along with an 

acceleration in the healing time has been reported after applying recombinant human FGF1 (rh-

FGF1) at the injured site [124]. In China, rh-FGF1 was marketed specifically to cure the deep 

second-degree burn wounds and chronic ulcers such as flat residual traumatic wounds, diabetic 

ulcers, vascular ulcers, and bedsores [125]. The efficacy of the topical rh-FGF1 for treatment of 

deep partial-thickness burn or skin graft donor sites was investigated by a randomized, 

multicenter, double-blind, and placebo-controlled clinical trial [125]. Results showed that the 

healing of burn wounds and skin graft donor sites treated by rh-FGF1 was significantly higher 

than that observed in the placebo. Also, the mean healing time of burn wounds and skin graft 

donor sites in the rh-FGF1 group was significantly shorter than that observed in the placebo 

group. FGF1 has been used as a potential therapeutic to treat spinal cord injury and to assist 

healing of deep burns or skin graft donor sites [125]. Several pharmacological and in vitro 

studies have suggested that FGF1 maintains the integrity/function of the myocardium by acting 

on the cardiomyocytes. Several pre-clinical studies have demonstrated that FGF1 is a promising 

therapeutic strategy to improve myocardial survival and cardiac function, but there are several 
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issues that complicate the clinical application of FGFs for acute myocardial infarction. One of 

the issues is its interaction with heparin; exogenous heparin treatment, either with unfractionated 

or low molecular weight (enoxaparin), is standard medical practice for patients with acute 

myocardial infarction (MI). Thus, findings by Huang et al., demonstrate that FGF1 mutant with 

reduced heparin binding affinity may be a promising strategy for acute treatment of MI; yet, 

future studies are needed to address its long-term effects, post-MI [126]. FGF1 is also known to 

act as an anti-diabetic agent. High-calorie diet might lead to an increase in insulin resistance, and 

cause metabolic syndrome, obesity, type 2 diabetes mellitus (DM), and hypertension. However, 

aggravating metabolic conditions reduce the neurogenic potential of hypothalamic neuro 

progenitor cells, which contribute to a decreased central glucose sensing and peripheral glucose 

clearance. Potentially, FGF1 remedies the debilitated hypothalamic state in DM by restoring the 

number of glucose-sensing neurons, inducing neurogenesis, suppressing reactive astrocytes and 

restoring synaptic functionality, which ultimately leads to the observed restoration of 

normoglycemia. FGF1 with low mitogenic variants came up as an important candidate in 

restoring euglycemia and did not lead to any side effects. The peripheral administration of FGF1 

need hours to reach the normal glucose levels without facing hypoglycemic risk [127].  

FGFs are modified either by adsorption or encapsulation within materials to ensure elevated 

biological activity in a well-regulated manner. Several materials have been formulated to carry 

the FGF drug and reduce their therapeutic ability and bioavailability, still, there is an immense 

need to develop a more sustained and targeted drug delivery system. 

Focus of this project 

hFGF1 uniquely binds to all the four types of FGFRs and therefore it is often referred to 

as a universal ligand. hFGF1 enhances proliferation of fibroblasts and embryonic cells, thereby 
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regulating wound healing and angiogenesis. However, one of the disadvantages in using hFGF1 

as a therapeutic agent is its low thermodynamic stability and short half-life in vivo. It is known 

that specific binding to negatively charged heparin sulfate proteoglycans (HSPGs) increases the 

stability of hFGF1. Nevertheless, the role of heparin in stabilization of hFGF1 and activation of 

FGF-FGFR induced cell signaling has been a subject of debate. There have been reports which 

show that heparin is essential for the cell proliferation activity of hFGF1 [26-29]. In marked 

contrast, there are studies which show that the role of heparin is only restricted to conferring 

stability to the growth factor. In this context, this project is divided into four distinct aims: 1) 

overexpression, purification and characterization of the hFGF1 variants leading to the design of a 

hyperstable and bioactive acidic fibroblast growth factor 2) design of a heparin independent 

human acidic fibroblast growth factor variant 3) characterization of the structural forces 

governing the reversibility of the unfolding of the human acidic fibroblast growth factor 4) 

stability of sFGF1 with respect to the fluctuating pH conditions, aliphatic alcohols, and cell 

culture media. 

The first and second studies aim to enhance the inherent thermal stability, resistance to 

proteases, and mitogenic activity of wtFGF1 using site directed mutagenesis. These mutations 

were made on wtFGF1 as single, double, triple, quadruple, and penta mutants at positions 136, 

126, 54, 61, and 107 (R136E, K126N, Q54P, S61L, and H107S). Two of these mutations 

(R136E and K126N) belong to the heparin binding pocket so it was predicted that introduction of 

negative charges in the heparin binding pocket would reduce the electrostatic interaction between 

the dense cluster of positive charges and lead us to better understand of the role of heparin in 

hFGF1 activation and cell signaling. Isothermal titration calorimetry and bioactivity assay results 

have concluded that heparin binding is not mandatory for hFGF1 to perform its biological 
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function. Heparin only aids in stabilization of the growth factor. These two studies lead to 

generation of a hyper stable and heparin independent hFGF1 variant (sFGF1). sFGF1 is 

anticipated to be more effective in treating variety of biomedical conditions, including wound 

healing. 

The third study aims at comprehending the effects of single, double and triple variants 

(R136E, K126N, Q54P) on the conformational stability and reversible unfolding of hFGF1. 

Equilibrium unfolding process of hFGF1 is irreversible and is known to exist in partially 

unfolded state(s) close to physiological pH and temperature. This specific aim involves the use 

of biophysical techniques like circular dichroism and fluorescence spectroscopy, nuclear 

magnetic resonance, and molecular dynamics simulations to characterize the structural 

determinants involved in refolding of the triple variant of hFGF1. The results obtained from 

these studies could provide valuable clues in designing drugs against large number of amyloid 

diseases. 

The last chapter focusses on studying sFGF1’s ability to sustain conformational 

fluctuations at varied pH conditions, resistance to proteases in DMEM cell culture media, and 

stability in different aliphatic alcohols (ethanol, 2,2,2- trifluoroethanol (TFE), and acetonitrile). 

Results of these studies might be useful for many biomedical applications, including drug 

delivery and tissue engineering. 
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CHAPTER II 

Overexpression, Purification and Characterization of the hFGF1 Variants Leading to the 

Design of a Hyperstable and Bioactive Acidic Fibroblast Growth Factor (sFGF1) 

Abstract 

Human acidic fibroblast growth factor (hFGF1) regulates key cellular processes such as 

cell proliferation, cell differentiation, angiogenesis, and tumor growth. hFGF1 is known to have 

low in vivo half-life and low melting temperature in the physiological range (Tm -37˚C). Binding 

of heparin to hFGF1 increases the stability of the growth factor. Moreover, it is believed that 

heparin is mandatory for the activation of FGF-FGFR complex formation and signaling. Thus, 

the main objective of this study is to build a hFGF1 variant which is entirely heparin independent 

yet possess elevated biological activity. In this context, successful expression, production, and 

purification of single, double, triple, and quadruple variants leading to the highly stable variant, 

superFGF1 (sFGF1) is achieved by introduction of mutations in wtFGF1. After obtaining the 

pure protein(s), all the variants are characterized using biophysical methods to monitor the 

overall structure, conformational stability, and backbone flexibility. The bioactivities of the 

designed variants are monitored using cell proliferation assay. The results of this study show that 

no major structural changes are caused due to the mutations leading to sFGF1. Additionally, 

limited enzymatic digestion and ANS binding experiments reveal that the mutations leading to 

sFGF1 render the growth factor more resistance to proteolytic enzymes and also results in 

decreasing the flexibility than the wtFGF1 molecule. Isothermal titration calorimetry data 

suggest that the heparin binding affinity is significantly decreased due to the introduction of 

R136E/K126N mutation. Thermal equilibrium unfolding data demonstrate that all mutations 

exhibit higher Tm in comparison to wtFGF1. Overall, the results of this study indicate that 
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introduction of specific mutations of R136E, K126N, S61L, H107S and Q54P into wtFGF1 

causes hFGF1 variants (R136E/K126N, R136E/K126N/Q54P, R136E/K126N/S61L, 

R136E/K126N/H107S, R136E/K126N/Q54P/S61L, and R136E/K126N/Q54P/H107S) to lose its 

heparin binding affinity, enhance its thermal, chemical, and proteolytic stability, and gain 

mitogenic activity. 

Introduction 

Growth factors are a large class of biomolecules that promote cell growth, development, 

and differentiation. Fibroblast growth factors (FGFs) are a family of twenty-two related proteins 

that are involved in mitogenic and cell-survival activities. All members of the FGF family show 

strong mitogenic properties that are essential for proper growth and development [1-3]. FGFs 

play a vital role in many biological processes, including cell proliferation and angiogenesis [4]. 

One member of this family is the protein known as acidic fibroblast growth factor (FGF1). The 

human FGF1 (hFGF1) is a ~16kDa, positively charged, heparin-binding monomeric protein. The 

wild-type hFGF1 has a relatively short half-life of 5 minutes and low thermal stability in the 

body, with a melting temperature (Tm - 41°C) close to the physiological range [5].  

The stability of hFGF1 increases as a consequence of binding to heparin, which also 

protects the protein against proteolytic digestion and denaturation via heat. Heparin is a 

negatively charged glycosaminoglycan of repeating disaccharide chains of L-iduronic acid and 

D-glucosamine, which binds to the cluster of positively charged amino acids on hFGF1, known 

as the heparin binding region [6]. It has been long debated whether heparin is essential for 

hFGF1 to bind to fibroblast growth factor receptors (FGFRs) since it plays an important role in 

stabilizing the protein. This added stability allows hFGF1 to have more time to interact with 

FGFRs, a family of receptor tyrosine kinases (RTKs), on the surface of cell membranes, 
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stimulating intracellular signaling pathways that lead to processes such as cell proliferation, cell 

differentiation, and cell migration. hFGF1’s inherent instability stems from the repulsive 

electrostatic forces of positively charged amino acid residues in the heparin-binding region 

making hFGF1 to be more susceptible to proteolytic cleavage and degradation. The three-

dimensional solution structure of hFGF1, determined using multidimensional nuclear magnetic 

resonance (NMR) technique demonstrates that hFGF1 consists of twelve β-strands arranged in an 

antiparallel fashion into a β-barrel structure [7-10]. 

One of the wild-type hFGF1 (wtFGF1) variant called R136E has been found to gain 

stability and enhanced bioactivity, which appears to be beneficial for potential pharmaceutical 

use in wound healing medications [11-15].  

Most of these hFGF1 variants have been constructed based on the introduction of point 

mutations into the receptor binding site and heparin binding pocket of hFGF1; thus, increasing 

its stability. Prior work conducted in our lab demonstrated that mutations in the heparin binding 

pocket can modulate the stability and mitogenic activity, which is the basis of this project [16-

19]. This chapter is focused on generating double, triple, and quadruple variant(s) of hFGF1 with 

four more mutations on R136E-FGF1 using site directed mutagenesis. The four mutations made 

on R136E are K126N, S61L, Q54P, and H107S (Fig. 1). 
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Fig. 1: Amino acid sequence of wtFGF1. The residues highlighted in green represent the amino 

acids that are mutated to construct sFGF1. Correspondingly, the residues in red represent the 

mutated residues in wtFGF1 (R136E, K126N, Q54P, S61L, and H107S). 

R136E and K126N mutations were chosen because they are both located in hFGF1’s 

heparin-binding region (Fig. 2). The R136E mutation replaced a polar positively charged amino 

acid with a polar negatively charged one [20]. The K126N mutation replaced a polar positively 

charged amino acid with a polar neutral amino acid. Replacement of the lysine residue with 

another negatively charged residue can potentially cause repulsion between the two negatively 

charged residues; therefore, we replaced lysine with a neutral amino acid (Asn). Since, trypsin 

cleaves at the C-terminal of arginine and lysine residues, mutating an Arg to Glu and a Lys to 

Asn will increase the variant hFGF1’s resistance to trypsin digestion. Moreover, R136 is the 

secondary thrombin cleavage site in hFGF1. Mutating R136 to Glu will significantly reduce the 

chances of hFGF1 being cleaved by thrombin. There will also be less repulsion between the 

positively charged amino acid residues in the heparin-binding region, which can plausibly lead to 

increase the inherent stability of the hFGF1. Histidine at position 107 plays an important role in 

receptor binding and interacts with R251 and R255 of D2 and D3 domain of the FGFR. Both the 

positively charged amino acids (Arg and His) might repel at the receptor binding site; therefore, 

wtFGF1:

MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR

GPRTHYGQKA ILFLPLPVSS D

sFGF1:

MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD PHIQLQLLAE SVGEVYIKST

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENSYNTYIS KKHAEKNWFV GLNKNGSCKR

GPETHYGQKA ILFLPLPVSS D
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we have substituted histidine with serine. S61 lies close to the hydrophobic pocket in the 

structure of hFGF1. So, the mutation of Ser, a polar amino acid to Leu, a non-polar amino acid is 

expected to increase the stability of hFGF1 by rendering it more compact [21-23]. Lastly, it has 

already been known that Pro rearranges the β-turn geometry and forms a short 310- helix [13]. 

This 310- helix is expected to form two continuous overlapping type I β-turns. Thus, substitution 

of Gln to Pro might provide more stability to hFGF1 by increasing the β-strand interactions. 

 
Fig. 2: Ribbon representation of hFGF-1 structure (PDB ID: 1RG8) showing the location of  

mutated residues. 

 

The objective of this chapter is to shed light on the structural forces that contribute to 

high stability of these mutations. As altering the primary amino acid sequence can potentially 

alter the secondary and tertiary structure of the protein, measures were taken to ensure that the 

three-dimensional structure of the variants is not significantly altered. Structural analyses were 

conducted to study the role of the amino acid mutations on hFGF1 variants contributing to its 

higher stability and enhanced biological function. In summary, all the single, double, triple and 

quadruple variants have been found to have a higher inherent stability and a reduced affinity for 

heparin as compared to wtFGF1.  
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Results and discussion 

Human acidic fibroblast growth factor (hFGF1) is a 155-amino acid, an all 𝛽-sheet 

protein. The heparin binding pocket (HBP) on hFGF1 constitutes the region between residues 

124 and 140 (Fig. 2). The heparin binding site carries net positive charge attributed by the six 

polar, basic amino acids at physiological pH [24]. Previous studies on hFGF1 have shown that 

due to the repulsion between these positive residues in HBP, hFGF1 is unstable and it is unlikely 

that hFGF1 will complex with the FGF receptor. Therefore, binding of hFGF1 to the negatively 

charged heparin provides stability to the growth factor [25]. 

Construction and purification of pure wtFGF1 and its variants 

The single (R136E), double (R136E/K126N), (R136E/S61L), (R136E/H107S), 

(R136E/Q54P), triple (R136E/K126N/S61L), (R136E/K126N/Q54P), (R136E/K126N/H107S), 

and quadruple (R136E/K126N/Q54P/S61L), (R136E/K126N/Q54P/H107S) variants were 

designed and transformed into the multiple cloning site of pET-20b vector. wtFGF1 and the 

variants were overexpressed in BL21-plysS cells in lysogeny broth (LB) media. As hFGF1 is a 

heparin binding protein, wtFGF1 and the designed variants were purified by heparin sepharose 

affinity column chromatography. The proteins were eluted using a stepwise salt (sodium 

chloride) gradient. Pure wtFGF1 was eluted with 1.5M sodium chloride concentration, whereas, 

R136E single variant and double variants (R136E/Q54P, R136E/S61L, and R136E/H107S) were 

eluted with 0.8M sodium chloride. However, R136E/K126N variant, and the triple and quadruple 

variants were eluted from the column using 10 mM phosphate buffer with 0 mM NaCl, 

suggesting no heparin binding affinity for hFGF1 (Fig. 3). Correspondingly, the binding affinity 

of the R136E/K126N variant, and the triple and quadruple variants is weaker than that of the 

non-heparin binding E. coli proteins, which non-specifically bind to the heparin beads. 



   54 

 

 

Fig. 3: SDS-PAGE analysis of proteins (A - wtFGF1 and B - R136E/K126N) eluted upon 

heparin sepharose chromatography at different concentrations of NaCl. Panel-A: Pure wtFGF1 

(Lane-1); Supernatant (Lane-2);  10 mM PB + 0 mM NaCl (Lane-3);  10 mM PB + 100mM 

NaCl (Lane-4); 10 mM PB + 300 mM NaCl (Lane-5); 10 mM PB + 500 mM NaCl (Lane-6); 10 

mM PB + 800 mM NaCl (Lane-7); 10 mM PB + 1500 mM NaCl (Lane-8). Panel-B: Supernatant 

(Lane-1); 10 mM PB + 0 mM NaCl (Lanes 2-5); 10 mM PB + 300 mM NaCl (Lane-6); 10 mM 

PB + 800 mM NaCl (Lane-7); Marker-pure wtFGF1 (Lane-8). 

 

To remove minor bacterial impurities, R136E/K126N variant, the triple variants and 

quadruple variants were further subjected to S-75 size-exclusion column chromatography. The 

revealed three peaks – the first major peak comprised of high molecular weight E.coli 

contaminants followed by a middle peak corresponding to the molecular weight of hFGF1 

variant, and a third peak corresponding to low molecular weight E.coli contaminants (Figs. 4 and 

5).  
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Fig. 4: Elution profile of the R136E/K126N variant (M.W- 15.9 kDa) from a S-75 size-exclusion 

column. 

 

The yields of purified wtFGF1 and the variants were in the range of 25-30 mg/L of the 

bacterial culture (Table 1). The results of purification suggest a positive co-relation between the 

salt concentration at which hFGF1 elutes out of the heparin sepharose column and heparin 

binding affinity of hFGF1. 

 

Fig. 5: Analysis of size-exclusion chromatographic profile by SDS-PAGE. wtFGF1 (Lane-1); 

sFGF1 (Lane-2); R136E (Lane-3); R136E/K126N (Lane-4); R136E/Q54P (Lane-5); 

R136E/S61L (Lane-6); R136E/H107S (Lane-7); R136E/K126N/Q54P (Lane-8); 

R136E/K126N/S61L (Lane-9); R136E/K126N/H107S (Lane-10); R136E/K126N/Q54P/S61L 

(Lane-11); 136E/K126N/Q54P/H107S (Lane-12). 
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Table 1: Protein yield of wtFGF1 and the variants. 

hFGF1 variants Protein yield (mg/L) 

wtFGF1 29 ± 0.408 

R136E 29.2 ± 0.510 

R136E/K126N 27.14 ± 0.914 

R136E/H107S 26.8 ± 1.54 

R136E/S61L 27.6 ± 1.60 

R136E/Q54P 27.93 ± 1.36 

R136E/K126N/Q54P 25.8 ± 0.618 

R136E/K126N/S61L 28.2 ± 0.338 

R136E/K126N/H107S 27.7 ± 0.74 

R136E/K126N/Q54P/S61L 26.81 ± 0.702 

R136E/K126N/Q54P/H107S 27.92 ± 0.654 

 

Mutations in hFGF1 does not cause significant structural change 

wtFGF1 is known to contain one tryptophan (W121) and eight tyrosine residues. The 

fluorescence spectrum is analyzed by examining the presence or absence of peaks at 305 nm and 

350 nm. hFGF-1’s lone tryptophan residue is typically quenched by adjacent proline and lysine 

resides in the native state. Therefore, wtFGF1 shows an emission maximum at 305 nm 

corresponding to the eight tyrosine residues in the native protein. These quenching effects are 

completely relieved in the denatured state(s) of the protein, resulting in a significant increase in 

the fluorescence at 350 nm characteristic for tryptophan residues. Fig. 6 displays the overlay of 

intrinsic fluorescence spectra of wtFGF1 and its variants. The presence of tyrosine peak at 305 

nm and absence of tryptophan peak at 350 nm indicates that the mutations did not alter the 

tertiary structure of wtFGF1. The broadening of peak at 340 nm corresponds to the emission of 

the previously quenched tryptophan residues. 
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Fig. 6: Overlay of the Fluorescence spectra showing the similarity in the tertiary structure of 

wtFGF1 and the designed variants. wtFGF1 (pink), R136E (orange), K126N-DM (gray), Q54P-

DM (yellow), S61L-DM (purple), H107S-DM (green), Q54P-TM (blue), S61L-TM (red), 

H107S-TM (dark green), H107S-QM (teal), and S61L-QM (brown). 

 

Far-UV CD spectra is a valuable technique for examining the secondary structure of 

proteins in solution. The overlay of far-UV CD spectra of wtFGF1 and the variants shows no 

apparent changes in the overall secondary structure of the variant protein (Fig. 7). The negative 

peak at 210 nm (class II β‐protein structure) and the positive peak at 228 nm (β‐turns, loops and 

aromatic side chains) show that the characteristic secondary (β -trefoil) structure of wtFGF1 is 

preserved in all the variants. 
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Fig. 7: Overlay of the Circular dichroism (CD) spectra of wtFGF1 and its variants. wtFGF1 

(pink), R136E (orange), K126N-DM (gray), Q54P-DM (yellow), S61L-DM (purple), H107S-

DM (green), Q54P-TM (blue), S61L-TM (red), H107S-TM (dark green), H107S-QM (teal), and 

S61L-QM (brown). 

 

Introduction of the R136E mutation renders the hFGF1 molecule more compact 

8-anilino-1-nathalenesulfonate (ANS) is a non-polar fluorescent dye that is widely used 

to determine the presence of solvent-exposed hydrophobic surfaces in proteins [26]. The data in 

Fig. 8 (Panel - A and B) depicts the binding of ANS to wtFGF1. The relative fluorescent 

intensity is directly proportional to the number of ANS molecules bound to the protein. 

Normally, hydrophobic residues are buried inside the protein core. Therefore, increase in the 

ANS fluorescence suggests exposure of these hydrophobic residues towards the surface of the 

protein. The plot from the ANS binding assay (Fig. 8) indicates that the solvent-exposure of non-

polar surfaces in the structures of wtFGF1 and the variants do not vary significantly from each 

other. Also, this data indicates that the maximum solvent exposure of hydrophobic surface(s) is 

seen in wildtype in the absence of heparin. This suggests that wtFGF1, when not bound to 

heparin, is more flexible. On the other hand, R136E, R136E/S61L, R136E/Q54P, and 

R136E/H107S variants exhibit decreased flexibility and increased compactness compared to 

R136E/K126N, the triple variants and quadruple variants. The ANS fluorescence decreases for 
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R136E, R136E/S61L, R136E/Q54P, and R136E/H107S when exposed to heparin whereas, 

R136E/K126N, the triple variants and the quadruple variants do not show any difference in the 

ANS fluorescence when bound to heparin which infers that R136E, R136E/S61L, R136E/Q54P, 

and R136E/H107S variants are more stable upon binding to heparin. Overall, the results of ANS 

binding experiments suggest that R136E/K126N variant, the triple variants and quadruple 

variants possess fewer solvent-accessible non-polar surfaces as compared to wtFGF1.  

 

 

 

Fig. 8: ANS binding curves of wtFGF1 and the variants in the, absence (Panel-A) and presence 

of heparin (Panel-B). The presence of solvent-exposed hydrophobic regions in the proteins were 

monitored by changes in relative fluorescence intensity at 510 nm. wtFGF1 (blue), R136E 

(orange), K126N-DM (gray), Q54P-DM (yellow), S61L-DM (purple), H107S-DM (green), 

Q54P-TM (pink), S61L-TM (red), H107S-TM (dark green), H107S-QM (teal), and S61L-QM 

(brown). 

 

A 

B 
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Introduction of the R136E mutation makes the hFGF1 molecule resistant to the proteolytic 

action 

Trypsin, a serine protease, specifically cleaves polypeptides at the carboxyl end of 

positively charged amino acids - lysine and arginine [27]. wtFGF1 contains three arginine and 

nine lysine residues. Therefore, limited trypsin cleavage is performed to understand if the 

conformational flexibility of the arginine and lysine residues are altered due to introduction of 

the mutations in wtFGF1; thereby, monitoring the conformational flexibility of the protein. It can 

be inferred from Fig. 9 that wtFGF1 (Panel-A) is susceptible to trypsin digestion and gets 

completely degraded in the first 20 minutes, whereas the R136E/K126N variant is resistant to the 

action of trypsin (Panel-B).  

 

Fig. 9: SDS-PAGE analysis of limited trypsin digestion of wtFGF1 (Panel – A) and 

R136E/K126N (Panel-B) variant. 0.5 mg/mL of proteins (Lane-1); 4 minutes (Lane-2); 6 

minutes (Lane-3); 10 minutes (Lane-4); 15 minutes (Lane-5); 30 minutes (Lane-6); 45 minutes 

(Lane-7); 60 minutes (Lane-8); 5 mg/mL of trypsin (Lane-9). 

 

The densitometric analysis results suggest that all the variants (R136E, R136E/S61L, 

R136E/Q54P, R136E/H107S, R136E/K126N, R136E/K126N/S61L, R136E/K126N/Q54P, 

R136E/K126N/H107S, R136E/K126N/Q54P/S61L, and R136E/K126N/Q54P/H107S) showed 

complete resistance against trypsin whereas wtFGF1 was digested by 80% in the first 20 minutes 

A B
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(Fig. 10). These results clearly indicate that the variants resulting from the manipulation of 

wtFGF1 decrease the backbone flexibility and consequently increase the resistance of protein to 

proteolytic digestion. This result corroborates the inference drawn from the ANS binding 

experiment. 

 

 

Fig. 10: Densitometric analysis of limited trypsin digestion of wtFGF1 and the designed variants 

as monitored by SDS-PAGE in the absence of heparin (Panel-A) and presence of heparin (Panel-

B). wtFGF1 (blue), R136E (orange), K126N-DM (gray), Q54P-DM (yellow), S61L-DM 

(purple), H107S-DM (green), Q54P-TM (pink), S61L-TM (red), H107S-TM (dark green), 

H107S-QM (teal), and S61L-QM (brown). 

 

Besides being present at the wound site to help in blood clot formation, thrombin is also 

known to cleave hFGF1 at R136 and make it biologically inactive. In this regard, resistance of 

hFGF1 to thrombin is imperative [28]. Limited thrombin experiment was performed to examine 

subtle changes in the flexibility of the protein backbone caused by the introduction of mutations 

B 

A 
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in wtFGF1. The data in Fig. 11 depicts the undigested proteins (wtFGF1 and the hFGF1 variants) 

after 72 hours of thrombin exposure. The densitometric analysis results elucidate that all the 

variants- R136E, R136E/S61L, R136E/Q54P, R136E/H107S, R136E/K126N, 

R136E/K126N/S61L, R136E/K126N/Q54P, R136E/K126N/H107S, R136E/K126N/Q54P/S61L, 

and R136E/K126N/Q54P/H107S show complete resistance against thrombin whereas wtFGF1 is 

completely degraded within the first 24 hours. 

 

 

 

Fig. 11: Densitometric analysis of the limited thrombin digestion of R136E and the double 

variants (Panel - A), the triple and quadruple variants (Panel – B) over 72 hours at protein 

concentrations of 33 µM and 165 µM of thrombin. Panel – A: wtFGF1 (blue), R136E (brown), 

K126N-DM (red), Q54P-DM (teal), S61L-DM (green), H107S-DM (golden). Panel – B: 

wtFGF1 (blue), Q54P-TM (yellow), S61L-TM (red), H107S-TM (green), H107S-QM (teal), and 

S61L-QM (gray). 
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ANS binding and limited enzymatic digestion experiments lead us to an understanding 

that the designed variants of hFGF1 render decreased flexibility to the growth factor. The 

reversal of charge at position 136 (R136E) produces a counter-ion effect and aids in the partial 

nullification of the repulsions experienced by closely placed positive charges in the heparin 

binding pocket. The counterion effect introduced in the heparin binding pocket due to the 

introduction of R136E mutation not only decreases the flexibility of the heparin binding pocket, 

but also renders the FGF1 molecule more compact [12]. This aspect appears to make the 

potential trypsin cleavage sites in hFGF1 less accessible to the enzyme. Another reason for the 

increased resistance of the designed hFGF1 mutations might be due to the substitution of one of 

the three arginine residues to glutamic acid (arginine is one of the trypsin cleavage site).  

However, it is highly unlikely that substitution of just one Arg to Glu could decrease the 

susceptibility of the protein to trypsin so predominantly in hFGF1 variant than wtFGF1. So, it 

appears that the substitution of Arg to Glu changes the conformation flexibility by rendering the 

molecule more compact due to the plausible introduction of a new electrostatic interaction 

between E136 with a neighboring positively charged amino acid in the heparin binding pocket. 

On the other hand, reduced susceptibility of the R136E variant to the action of thrombin could be 

primarily because of the removal of secondary thrombin cleavage site (R136) caused by the 

replacement of arginine to glutamic acid. Therefore, out of the other four mutations (K126N, 

Q54P, S61L, H107S), R136E was chosen as the basis of the project. K126N mutation also lies in 

the heparin binding pocket. It appears that substitution of Lys with Asn at position 126 led to 

introduction of two new hydrogen bonds (N126-S130 and G129-N126). Thus, introduction of 

new interactions happens to make the potential trypsin cleavage site in hFGF1 less accessible to 

trypsin [29]. 
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Introduction of R136E/K126N/Q54P/S61L mutation increases the thermal stability of 

hFGF1 

The unfolding of the proteins under increasing temperature were monitored by the change 

in intrinsic fluorescence intensity at 305 nm/350 nm. The intrinsic fluorescence spectrum of 

properly folded wtFGF1 shows an emission maximum at around 305 nm, characteristic for the 

eight tyrosine residues. The signal from the single tryptophan residue (Trp121) is completely 

quenched by the surrounding lysine and proline residues. Upon unfolding, the tertiary structure 

becomes more relaxed and the quenching effect is weakened (the nearby proline and lysine 

residues move away from the indole ring or Trp), resulting in a significant increase in the 

fluorescence at 350 nm, characteristic for tryptophan residues. 

 

Fig. 12: Thermal stability analysis of the R136E (Panel – A) and double variants (Panel – B) in 

the presence and absence of heparin. Panel – A: wtFGF1 with hep (orange), wtFGF1 without hep 

(gray), R136E with hep (green), and R136E without hep (blue). Panel – B: wtFGF1 with hep 

(red), wtFGF1 without hep (gray), H107S-DM with hep (dark green), H107S-DM without hep 

(blue), S61L-DM with hep (orange), S61L-DM without hep (graphite), Q54P-DM with hep 

(teal), Q54P-DM without hep (yellow), K126N-DM without hep (aqua), and K126N-DM with 

hep (light green). 
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The thermal stability data reveal that the R136E/K126N/Q54P/S61L mutation is the most 

stable design of all the hFGF1 variants, with the Tm being 62 ± 0.23˚C in the absence of heparin 

and 63 ± 0.36˚C in the presence of heparin (Fig. 13D).  

 

Fig. 13: Thermal stability analysis of the triple variants (Panel -A) and quadruple variants (Panel 

– B) in the presence and absence of heparin. Panel – A: wtFGF1 without hep (red), wtFGF1 with 

hep (blue), Q54P-TM with hep (teal), Q54P-TM without hep (green), H107S-TM with hep 

(aqua), H107S-TM without hep (orange), S61L-TM with hep (gray), and S61L-TM without hep 

(yellow). Panel – B: S61L-QM with hep (blue), S61L-QM without hep (orange), H107S-QM 

with hep (gray), and H107S-QM without hep (yellow). 

 

It has also been shown in Table 2 that unlike the other variants tested, the thermal 

stability of R136E/K126N (ΔTm - 2 ± 0.16˚C), the triple [R136E/K126N/S61L (ΔTm - 1 ± 

0.02˚C), R136E/K126N/Q54P (ΔTm - 1 ± 0.15˚C), and R136E/K126N/H107S (ΔTm - 1 ± 

0.05˚C)] and the quadruple variants [R136E/K126N/Q54P/S61L (ΔTm - 1 ± 0.13˚C), 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

25 30 35 40 45 50 55 60 65 70 75 80 85 90

Fr
a

ct
io

n
 u

n
fo

ld

Temperature (°C)

S61L-QM -w ith hep

S61L-QM -w ithout hep

H107S-QM -w ith hep

H107S-QM -w ithout hep

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

25 30 35 40 45 50 55 60 65 70 75 80 85 90

F
ra

c
t
io

n
 u

n
fo

ld

Temperature (°C )

wtFGF1 with heparin

wtFGF1 w/o heparin

Q54 P-TM w ith heparin

Q54 P-TM w /o heparin

H10 7S-TM w ith heparin

H10 7S-TM w /o heparin

S61L-TM  with heparin

S61L-TM  w/o heparin

A 

B 



   66 

R136E/K126N/Q54P/H107S (ΔTm - 2 ± 0.04˚C)], is independent of heparin whereas the thermal 

stability of the other double variants [R136E/S61L (ΔTm - 17 ± 0.05 ˚C), R136E/H107S (ΔTm - 

12 ± 0.23 ˚C),  and R136E/Q54P (ΔTm - 10 ± 0.11 ˚C)] and the R136E variant (ΔTm - 9 ± 0.18 

˚C) still depends on heparin, in fact, it increases in the presence of heparin (Figs. 12 and 13). 

Tm is the denaturation temperature at which 50% of the protein population exists in the 

denatured state(s). ΔTm (Tm with heparin - Tm without heparin) analysis of wtFGF1 shows that 

heparin protects wtFGF1 from degrading at higher temperatures. Higher ΔTm value indicates 

higher dependency of the growth factor on heparin. Of the four double variants (R136E/S61L, 

R136E/H107S, R136E/Q54P, and R136E/K126N), R136E/K126N is the only variant, wherein 

the ΔTm value was observed to drop by ~ 2˚C. This implies that the R136E/K126N variant of 

hFGF1 has a higher inherent stability than the wtFGF1 alone. As R136E/K126N double variant 

was the basis for the triple and the quadruple variant, it is reasonable to expect that these variants 

do not exhibit heparin binding affinity. 

Table 2: Comparison of the thermal stability of the wtFGF1 and the designed variants. 

hFGF1 variants Tm without 

heparin (Celsius) 

Tm with 

heparin 

(Celsius) 

Δ Tm (Celsius) 

wtFGF1 42 ± 0.05 63 ± 0.08 21 ± 0.03 

R136E 52 ± 0.60 61 ± 0.42 9 ± 0.18 

R136E/K126N 49 ± 0.25 51 ± 0.41 2 ± 0.16 

R136E/H107S 46 ± 0.59 58 ± 0.82 12 ± 0.23 

R136E/S61L 43 ± 0.04 60 ± 0.09 17 ± 0.05 

R136E/Q54P 52.5 ± 0.12 62.5 ± 0.23 10 ± 0.11 

R136E/K126N/Q54P 58.5 ± 0.17 59.5 ± 0.32 1 ± 0.15 

R136E/K126N/S61L 63 ± 0.6 64 ± 0.62 1 ± 0.02 

R136E/K126N/H107S 55 ± 0.26 56 ± 0.31 1 ± 0.05 

R136E/K126N/Q54P/S61L 62 ± 0.23 63 ± 0.36 1 ± 0.13 

R136E/K126N/Q54P/H107S 58 ± 0.17 60 ± 0.21 2 ± 0.04 
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Overall, the thermal equilibrium unfolding data indicate that substituting Arg with Glu at 

position 136, Lys by Asn at position 126, Gln by Pro at position 54, Ser by Leu at position 61, 

and His by Ser at position 107 helped in stabilizing the growth factor. Out of all the variant 

combinations, the highest thermal stability is exhibited by the quadruple variant 

(R136E/K126N/Q54P/S61L) where the Tm without heparin is 62˚C, which is nearly 67% more 

when compared to wtFGF1 in the absence of heparin (Tm - 42˚C). The thermal stability has a 

positive relation with the half-life of a protein. It appears that K126N eliminates the heparin 

binding affinity and S61L mutation confers higher thermal stability because replacement of 

serine, a polar amino acid with leucine, a non-polar amino acid appears make the hFGF1 

structure more compact. This compactness might strengthen the interactions (H-bond and salt 

bridges) inside the protein core and stabilize the protein against thermal and enzymatic 

degradation. These conclusions are consistent with the conclusions drawn from the limited 

proteolytic digestion data. 

The R136E/K126N variant causes complete loss of heparin binding affinity  

Isothermal titration calorimetry (ITC) was used to directly determine the heparin binding 

affinity of wtFGF1 and its variants. The binding affinities, reported as Kd values, are derived 

from the ITC data (Fig. 14). A small Kd value indicates a high binding affinity, while a large Kd 

value indicates a low binding affinity. Fig 14 depicts that the heparin binding affinity of R136E 

(Kd - 4.2 µM), R136E/S61L (Kd - 4.5 µM), R136E/H107S (Kd - 4.6 µM), R136E/Q54P (Kd - 3.1 

µM) is lower than that of wtFGF-1 (Kd - 1.6 µM). This infers that the hFGF1 variants exhibit 

weaker heparin binding affinity than wtFGF1. Contrastingly, the R136E/K126N (Kd - could not 

be determined) variant lacks the ability to bind to heparin suggesting that R136 and K126 are 

critical for the heparin binding of hFGF1. The unusual heat changes in the isothermograms are 
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due to the electrostatic interactions between the charged heparin molecules and some of the 

charged components present in the buffer. Furthermore, as R136E/K126N was the basis for the 

third mutation, all the triple and quadruple variants lacked heparin binding affinity as shown in 

Table 3. This data clearly suggests that the charge reversal at position 136 (R136E) and charge 

neutralization at position 126 (K126N) are important residues for the heparin interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14: Isothermograms representing titration of wtFGF1 and all the designed variants with 

heparin. 
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Table 3: Heparin binding affinity of wtFGF1 and its variants. 

 

 

 

 

 

 

 

 

 

 

 

 

The complete loss of heparin binding affinity observed for the R136E/K126N variant but 

not for R136E variant is probably due to the knockout of two positively charges residues in the 

heparin binding region (Table 3). Examination of the X-ray crystal structure of acidic hFGF 

shows that the region from residues 105-128 contains eight basic amino acids, making it 

conducive for heparin binding. Perhaps, most significantly, the crystal structure of hFGF1 

suggests that heparin interacts with K132, K126, and R136 [31]. Therefore, R136E variant 

appears to decrease the heparin binding affinity by 2.5 times but could not knock down the 

ability of hFGF1 to bind to heparin completely. On the other hand, substitution of two of the 

three residues (K126N and R136E) located in the core heparin binding triad (K132, K126, and 

R136) might lead to the complete knock down of hFGF1’s ability to bind to heparin. This is 

expected because introduction of a negative charge and a neutral amino acid in the heparin 

hFGF1 variants Kd (µM) 

wtFGF1 1.6 

R136E 4.2 

R136E/K126N No binding 

R136E/H107S 4.6 

R136E/S61L 3.1 

R136E/Q54P 4.5 

R136E/K126N/Q54P No binding 

R136E/K126N/S61L No binding 

R136E/K126N/H107S No binding 

R136E/K126N/Q54P/

S61L 

No binding 

R136E/K126N/Q54P/

H107S 

No binding 
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binding pocket of hFGF1 could plausibly reduce the repulsion between the positively charged 

amino acids. The reduction in the charge-charge repulsion in the heparin binding region might 

have led to a heparin independent hFGF1 variant (R136E/K126N). The distance between the Cα 

atoms of R136 from Cα atom of R133 (located in the middle of the heparin binding pocket) in 

the absence of heparin is 7.15 Å and the distance between the Cα atoms of K126 from Cα atom 

of R133 is 13.24 Å. In the presence of heparin, R136 and K126 shift moderately closer to R133 

(~5.15 Å and 9.57 Å, respectively). Surprisingly, the distance of residues E136 and N126, 

irrespective of the presence of heparin, is quite similar to the wtFGF1 in the presence of heparin 

(E136 - 9.68 Å and N126 - 5.16 Å). This indicates that introduction of these two mutations 

(R136E and K126N) bring conformational changes in the heparin binding region making the 

hFGF1 molecule more compact and heparin independent. 

Introduction of R136E variant enhances the bioactivity of hFGF1 

hFGF1 is a heparin binding protein capable of stimulating mitogenic and angiogenic 

responses in a variety of cell types. There have been several studies which suggest that heparin is 

mandatory for the activation of the FGF receptor. In this context, decrease in heparin binding 

affinity of hFGF1 variants to heparin can be expected to decrease the ability of the growth factor 

variants to promote cell proliferation activity. However, comparison of the cell proliferation 

activity of wtFGF1 with those observed for the different variants clearly show that lack of 

heparin binding affinity of hFGF1 does not significantly affect their cell proliferation activity.  

Out of all, only R136E, R136E/H107S, R136E/S61L, and R136E/Q54P are the hFGF1 variants 

which exhibit reduced heparin binding affinity. The other variants (R136E/K126N, 

R136E/K126N/Q54P, R136E/K126N/S61L, R136E/K126N/H107S, R136E/K126N/Q54P/S61L, 

and R136E/K126N/Q54P/H107S) do not bind to heparin. Fig. 15A indicates that at all the 
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concentrations of hFGF1, R136E exhibits higher cell proliferation activity than wtFGF1 

although, the heparin binding affinity is lower than that of wtFGF1. Figs. 15 and 16 shows that 

all the hFGF1 variants display higher mitogenic activity than wtFGF1 irrespective of their 

heparin binding affinity.  

 

 

Fig. 15: Cell proliferation activity of NIH 3T3 cells treated with wtFGF1 and R136E (Panel – A) 

and wtFGF1 and double variants (Panel – B). 50 ng/mL (blue), 10 ng/mL (red), 2 ng/mL (green), 

0.4 ng/mL (purple), and 0 ng/mL (aqua). 

 

A 
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Overall, this data suggests that there is no positive correlation between the heparin 

binding affinity and the cell proliferation activity. There have been several reports which suggest 

that heparin dependent hFGF1 activity is necessary for the receptor activation. Contrastingly, 

there are other groups which demonstrate that the former is not true. Moscatelli et al., have 

reported in their study that human FGF2 interacts with its receptor even when hFGF2 is not 

bound to heparin [32]. Several site-directed mutagenesis reports on hFGF1 are working on 

improving the proteolytic and enzymatic stability. A study by Ortega et al., where they substitute 

the cysteine residues by serine (C30S, C131S, C97S) led to decreased heparin binding affinity, 

yet the variants exhibited longer physiological half-life and increased mitogenic activity [14]. 

Similar observation was made by other groups, which showed that heparin binding is not 

essential for the FGFR activation and inducing downstream signaling pathways [15, 33]. The 

K132E mutation was observed to exhibit significantly lower heparin dependency as compared to 

that of wthFGF1 [18, 33]. Additionally, Brych et al., reported that higher stability is directly 

related to the higher bioactivity irrespective of heparin binding [15]. 

 

Fig. 16: Cell proliferation activity of NIH 3T3 cells treated with wtFGF1, triple and quadruple 

variants. 50 ng/mL (blue), 10 ng/mL (red), 2 ng/mL (green), 0.4 ng/mL (purple), and 0 ng/mL 

(aqua). 
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Zakrzewska et al., examined the biological and biophysical properties of 17 variants of 

hFGF1 which include single mutation of lysine residues (at positions 126 and 132),  double 

mutations of the same lysine residues and a few multiple variants where in along with lysine 

mutation they included different combinations of Q54P, S61I, and H107G [13, 29]. It was 

observed that the single mutation (K126N and K132E) exhibit reduced heparin affinity but yet 

displayed higher mitogenic activity than wtFGF1. In case of the double substitution 

(K132E/K126N), the variant exhibits strongly reduced affinity for heparin but did not show any 

difference in the mitogenic activity in the presence or absence of heparin. However, 

K126N/Q54P/S61I/H107G, a quadruple variant exhibited reduced heparin binding ability and 

showed two-folds higher mitogenic activity than wtFGF1 in absence of heparin [16, 29]. In 

conclusion, almost all the mutations exhibited reduced heparin binding affinity and prolonged 

mitogenic activity in comparison to wtFGF1 [16, 17]. Most of the mutations were known to 

increase the Tm up to 64°C. Thus, our results are in good agreement with many hFGF1 and 

hFGF2 studies, which states that the FGF-FGFR complex can still be formed in the absence of 

heparin and can lead to activation of the signaling complex. 

Conclusions 

The hFGF1-heparin complex is the most extensively studied protein-glycosaminoglycan 

complex. There have been two opposing arguments regarding the role of heparin in the 

biological function of hFGF1. X-ray crystal structure studies have established the fact that 

heparin plays a critical role in the receptor activation of hFGF1. On the contrary, there have been 

reports that demonstrate that heparin only improves the stability of hFGF1 through electrostatic 

interactions. The results of the current study show that heparin appears to influence the stability 

of the growth factor but has very little effect on the cell proliferation activity of the protein. 
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Isothermal titration calorimetric results from this study show that the R136 and K126 positions 

are critical for the heparin binding ability of hFGF1. The cell proliferation assay results were one 

of the most important outcomes for the future application of this research, which concluded that 

all the heparin-independent variants of hFGF1 show higher mitogenic activity than wtFGF1. 

Overall, the results obtained in the current chapter suggest that introduction of specific mutations 

of R136E, K126N, S61L, H107S and Q54P into wtFGF1 causes hFGF1 to lose its heparin 

binding affinity, gain cell proliferation activity and enhance its thermal, chemical, and 

proteolytic stability when compared to wtFGF1. 

Materials and methods 

 

Materials 

 

Agilent was the producer for the site directed mutagenesis kit and the competent cells (XL-gold, 

BL 21 plysS, BL 21 star). The plasmid isolation kit was obtained from Qiagen Inc., USA. 

Lysogeny broth was purchased from IBI Scientific, USA. Heparin sepharose resin was obtained 

from GE Healthcare, USA. VWR Scientific., USA supplied the buffer components (Na2HPO4, 

NaH2PO4, NaCl). Low molecular weight (~3000 Da) heparin sodium salt was obtained from 

Sigma and MP Biomedicals LLC. NIH 3T3 cells were obtained from ATCC and all the cell 

culture reagents including, DMEM media, fetal bovine serum (FBS) and penicillin streptomycin 

were purchased from Thermo Fisher Scientific (Waltham, MA). All other chemicals and 

materials were of high-quality analytical grade. Due to the polydisperse nature of high molecular 

weight of heparin, we have used low molecular weight heparin (M.wt ~ 3000 Da) for this study. 

Unless otherwise stated, samples were made in 10 mM phosphate buffer saline (pH 7.2) and 

incubated at 37 ºC. 
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Construction and Purification of hFGF1 and the variants 

Site-directed mutagenesis was employed to construct the mutations (R136E, K126N, Q54P, 

S61L, and H107S) (Fig. 17, Table 4). For expression of hFGF1, BL-21star cells were grown to 

an Optical Density of 0.6–8.0 at Abs of 600 and incubated with 1 mM isopropyl β-D-

thiogalactoside for 2.5 hours. Cells were harvested and resuspended in 10 mM phosphate buffer 

(PB). Cells were sonicated for 30 cycles with 20 second on/off pulses. Supernatant was separated 

from the cell debris using centrifugation at 19,000 rpm for 30 minutes and subsequently passed 

over heparin Sepharose affinity column that was then washed extensively with equilibration 

buffer (10 mM phosphate buffer). The proteins were purified using step-wise sodium chloride 

gradient. Certain variants were further purified using gel filtration chromatography. The hFGF1 

variants were loaded onto a Superdex 75(S-75) column (GE Healthcare, Pittsburgh, PA) 

equilibrated in 10 mM phosphate buffer and 100 mM NaCl, pH 7.2 on an AKTA FPLC and ran 

at a flow rate of 1 milliliter per minute. The elution volume was monitored by absorbance at 280 

nm. Fractions were collected and the purity of proteins were verified using 15% Sodium Dodecyl 

Sulfate Poly Acrylamide Gel Electrophoresis (SDS-PAGE) followed by staining with Coomasie 

brilliant blue. The concentration of the protein was quantified using the Bradford method 

[24,25]. 

 

Fig. 17: pET20 expression vector with recombinant wtFGF1 gene and ampicillin resistant gene. 
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Table 4: Codon changes in E.coli corresponding to the mutations. 

Amino acid change Codon present in wtFGF1 Codon present in sFGF1 

Arg to Glu CGG GAG 

Lys to Asn AAG AAC 

Ser to Leu AGT CTT 

Gln to Pro CAG CCG 

His to Ser CAT AGT 

 

Circular Dichroism and fluorescence spectroscopy 

Using a combo circular dichroism / fluorescence Jasco J-1500 Spectrophotometer dual 

results of the CD and fluorescence spectra were obtained to determine the secondary and tertiary 

structural changes of wtFGF1 and hFGF1 in the presence and absence of heparin. Circular 

dichroism is used to determine the secondary structural changes in the protein. For analysis, 

13µM of protein was added to 10 mM PB + 100 mM NaCl and loaded into a 0.1 cm path length 

quartz cell. The wavelength of the spectrophotometer was set in a range of 190 - 250nm at 25ºC, 

and the scanning speed was 20 nm/min. The data of CD was collected as an average of three 

scans. The resultant CD data was expressed in terms of molar ellipticity.  

 Intrinsic fluorescence spectroscopy was used to examine any alternation in the tertiary 

structure and folding of protein by combining 13 µM protein with 10 mM phosphate buffer (PB). 

The excitation wavelength for the fluorescence measurements was 280 nm and the emission 

were recorded from 300 – 450 nm. Intrinsic fluorescence was done at these wavelengths to study 

if there were any changes among tyrosine and tryptophan residues, which fluoresce at 308 and 

340 nm, respectively. A buffer subtraction was made to correct any background noise.  
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8-Anilino-1-napthalenesulfonic acid (ANS) binding assay 

ANS binding assay measurements were made using a Fluorescence Spectrophotometer F-2500 

(Hitachi) with a slit width set to 2.5nm. Protein concentrations of 33 µM in phosphate buffer 

containing 100 mM NaCl, pH 7.2 were placed in a quartz cuvette. Titrations using an ANS stock 

were made by addition of 10 µM increments of ANS followed with mixing and incubation for 2 

minutes preceding each reading at 25⁰C.  Fluorescence intensity was determined with an 

excitation at 380nm and emission intensity was recorded at 510nm. 

Limited Trypsin and thrombin digestion 

Limited trypsin digestion of hFGF1 and the variants was performed in phosphate buffer 

containing 100 mM NaCl, pH 7.2. The initial reaction tube contained 50 µM of protein and 0.5 

µg of enzyme. The trypsin and thrombin containing samples were incubated at room temperature 

(25 °C) and 37 °C respectively. Digested samples were removed at specific intervals as noted in 

the results section and then the reaction was stopped by the addition of 10% trichloroacetic acid 

and the samples were resolved on a 15% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS− PAGE) gel and subsequently stained using Coomassie brilliant blue. The 

percentage of enzymatic digestion was identified from the band intensity, on the SDS PAGE gel, 

using UN-ScanIT densiometric software (Silk Scientific Inc.). hFGF1 samples which were not 

subjected to the enzymatic digestion was considered as the control representing 100% undigested 

hFGF1. 

Equilibrium unfolding 

Intrinsic fluorescence using the Jasco J-1500 Spectrophotometer was used to monitor the 

unfolding nature of hFGF1 and the variants at increasing thermal intervals. The protein 

concentration used was 50 µM in 10 mM phosphate buffer and 100 mM NaCl (pH 7.2).  A 
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temperature probe was inserted into the sample cell to heat the sample. Fraction of protein 

unfolded was calculated from the ratio of the wavelength of emission maxima (305/350 nm) 

observed during chemical denaturant titration. Thermal denaturation as probed by fluorescence 

was carried by heating of samples at 5-degree increments for 5 minutes.  

Isothermal titration calorimetry 

The binding affinity of hFGF1 and the variants with heparin were measured using a Microcal 

VP-ITC Micro Calorimeter. The wtFGF1 and the designed variants were prepared at a 

concentration of 100 mM. Heparin in the syringe was at a concentration of 1000 mM (to 

maintain a 1:10 protein: ligand ratio). All samples were degassed before loading. The volume of 

heparin injections was 6 mL and a total of 49 titrations were performed at 25 °C. The data was 

analyzed using Origin scientific plotting software. 

Bioactivity Assay 

3T3 fibroblast cells obtained from ATCC (Manassas, VA) were cultured in media consisting of 

DMEM supplemented with 10% bovine calf serum. Cells were grown and were incubated 

overnight at 37 C. The bioactivity of FGF1 was determined by quantifying the cell number 

increase after the cells were incubated with hFGF1. Starved 3T3 fibroblasts were collected and 

seeded in a well plate at a seeding density of 10,000 cells/well. The bioactivity assays were 

performed five times under the same condition. 3T3 cell proliferation was assessed by the Cell 

Titer-Glo (Promega, Madison, WI) cell proliferation assay after 24 hours. 
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CHAPTER III 

Design of a Human Acidic Fibroblast Growth Factor (hFGF1) Variant that has no Heparin 

Binding Affinity 

Abstract 

 

Human acidic fibroblast growth factor (hFGF1) is a member of a family of polypeptides 

that are involved in cell proliferation, cell differentiation, angiogenesis and wound healing. 

hFGF1 is known to exhibit low half-life in vivo and has poor thermal and proteolytic stability 

(Tm -37˚C). Binding of heparan sulfate, a glycosaminoglycan, stabilizes the protein and aids in 

activation of the biological response. However, heparin binding affinity of hFGF1 can be a 

significant disadvantage in healing topical wounds. In general, it is believed that high binding 

affinity of both hFGF1 and thrombin to heparin potentially increases the probability of thrombin 

to gain access to hFGF1 and render it inactive. In this context, generation of a bioactive hFGF1 

variant that exhibits poor heparin binding may significantly decrease its susceptibility to 

thrombin cleavage. Surprisingly, results of the current study show that super FGF1 (sFGF1) 

exhibits enhanced cell proliferation activity, lacks heparin binding affinity, and shows an 

increased activation of Erk and Akt pathways when compared to wtFGF1. Limited enzymatic 

digestion and ANS binding experiments show that in comparison to wtFGF1, sFGF1 render less 

flexibility and less susceptibility of hFGF1 to the action of trypsin and thrombin. Thermal and 

urea equilibrium unfolding data suggest that sFGF1 exhibits significantly higher Tm (68˚C) and 

Cm (3.6 M) when compared to wtFGF1 (Tm -37˚C and Cm -1.2 M). Isothermal titration 

calorimetry data reveal that sFGF1 is the only known mutation till date which completely lacks 

heparin binding affinity. Overall, the results for hyperthermal stability, resistance to the action of 
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proteases, and enhanced heparin-independent bioactivity infer that sFGF1 can be used as a viable 

target for wound healing. 

Introduction 

 

Human acidic fibroblast growth factor (hFGF1) is a 16kDa mitogen that is characterized 

by its high affinity for heparin. It is one of the twenty-three different types of FGFs, all of which 

are involved in crucial cell-survival activities [1-3]. FGFs are vital for embryonic and fetal 

development, wound healing, bone fracture healing, neuroprotection, and tumor development 

and progression [4,5]. Fibroblast growth factor (FGF) signals cellular processes by activating the 

specific tyrosine kinase fibroblast growth factor receptors (FGFRs). Activated FGFRs in-turn 

induce downstream signaling through some common pathways such as: mitogen activated 

protein kinase (MAPK), phosphoinositide-3-kinase/AKT, and phospholipase-C pathways [6]. 

hFGF1 uniquely binds to all the four types of FGFRs; therefore, it is often referred to as a 

universal ligand [7]. 

hFGF1 has an intrinsically low thermodynamic stability, and almost half of the wild type 

hFGF1 population is unfolded at physiological pH and temperature [8-10]. FGFs have high 

affinity for cell-surface proteoglycans, such as heparin sulfate (HSPGs) HSPGs are essential for 

the protein regulation especially in signal transmission and chemical recruitment [11]. Heparin-

hFGF1 interaction mediates specific binding to the cell surface tyrosine kinase receptors, 

fibroblast growth factor receptors (FGFRs) and as a result mediates FGFs’ biological response 

[12]. Heparin is a highly sulfated glycosaminoglycan made up of 2-O-sulfated iduronic acid and 

6-O-sulfated, N-sulfated glucosamine, IdoA(2S)-GlcNS(6S), linked by α‐(1→4) glycosidic 

linkages. Binding of heparin to hFGF1 ensures stability and confers better interaction of hFGF1 

to its receptor [13-15]. X-ray crystal and solution NMR structures of heparin-hFGF1 complex 
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shows that the negatively charged heparin binds to the positively charged heparin binding region 

located at the C-terminal of hFGF1 [20]. Heparin-binding site (HBS) in hFGF1 spans residues 

between ß strands 1/2 and extends from the loop between β strands 9/10 to the loop between β 

strands 11/12 [21]. Crystal structure data on FGF-FGFR-HS ternary complex revealed that 

heparin promotes FGF signaling through the formation of a 2:2:2 or 2:2:1 (FGF: FGFR: HS) 

complexes [22]. The cluster of positively charged amino acids in the heparin binding region is 

accountable for the thermal and proteolytic instability of hFGF1 [9, 23, 24]. Therefore, it is 

believed that the binding of heparin to hFGF1 increases the stability of the protein [25]. 

However, there is significant debate whether or not heparin is mandatory for effective 

functioning of hFGF1. There have been reports which show that heparin is essential for the cell 

proliferation activity of hFGF1 [26-29]. In marked contrast, there are also studies which show 

that the role of heparin is only restricted to conferring stability to the growth factor [4, 8, 9-11, 

30]. Interestingly, K132E mutation, in the heparin binding region has been shown to diminish the 

heparin binding affinity of hFGF1 and exhibit significant loss of cell proliferation activity [39]. 

hFGF1 has also been shown to be susceptible to thrombin cleavage [16,1]. Although 

hFGF1 lacks the primary thrombin cleavage site (-LVPRGS-), the enzyme has been known to 

specifically cleave hFGF1 at position R136 and render it biologically inactive. In this context, 

there have been several attempts to design hFGF1 variants that exhibit increased resistance to the 

action of thrombin [17]. Thus, all the three molecules, (hFGF1 (for its cell proliferation activity), 

thrombin (aid in blood clot formation), and heparin (to stabilize hFGF1 and act as an 

anticoagulant) are present at wound site. Studies have shown that the relationship of heparin with 

thrombin and hFGF1 at the wound site is competitive. Therefore, design of a heparin 
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independent hFGF1 variant might decrease the competition and consequently increase the wound 

healing potential of hFGF1 [1, 18]. 

Kerr et al., has designed an hFGF1 variant, R136E, which has higher thermal stability, is 

more resistant to proteolytic degradation, and enhanced cell proliferation activity when compared 

to wtFGF1. However, R136E variant exhibits heparin binding affinity. In this context, the main 

objective of this chapter is to introduce mutations on R136E variant to further enhance its 

stability and cell proliferation activity in a heparin independent manner. This study also aims to 

understand the structural basis for the extraordinary properties introduced due to four additional 

mutations (K126N, S61L, H107S, and Q54P) on R136E (Fig. 1) [19]. In this context, due to its 

extraordinary stability and cell proliferation activity, we believe that it would be apt to name the 

penta mutant of hFGF1 as super-hFGF1 (sFGF1). 

 

 

 

 

 

 

 

 

 

Fig. 1: Amino acid sequence of wtFGF1. The residues highlighted in red represent the mutated 

residues in wtFGF1 (R136E, K126N, Q54P, S61L, and H107S). 

 

In order to accomplish this, mutational studies as well as various biophysical techniques 

and molecular dynamic simulations have been performed. Results of this study indicate that in 

wtFGF1:

MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD QHIQLQLSAE SVGEVYIKST

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENHYNTYIS KKHAEKNWFV GLKKNGSCKR

GPRTHYGQKA ILFLPLPVSS D

sFGF1:

MFNLPPGNYK KPKLLYCSNG GHFLRILPDG TVDGTRDRSD PHIQLQLLAE SVGEVYIKST

ETGQYLAMDT DGLLYGSQTP NEECLFLERL EENSYNTYIS KKHAEKNWFV GLNKNGSCKR

GPETHYGQKA ILFLPLPVSS D
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spite of significant differences in the stability, resistance to proteases, and enhanced cell 

proliferation activity, overall structure of hFGF1 was not found to be substantially perturbed due 

to introduction of the mutations. Amongst all other hFGF1 variants known so far, 

R136E/K126N/Q54P/S61L/H107S variant demonstrates zero heparin binding affinity. Results of 

the current study also indicate that introduction of five mutations led to formation of new 

electrostatic interactions and hydrogen bonds that are plausibly responsible for higher stability 

and enhanced cell proliferation activity of hFGF1. 

Results and discussion 

Spatial proximity of the penta mutations (Q54P, S61L, H107S, K126N, and R136E) in the 

structure of hFGF1 

The crystal structure analysis of heparin-hFGF1 binary complex reveals that heparin is 

sandwiched between two FGF1 monomers. Heparin binding pocket (HBP) spans from residue 

N120 to H138 towards the C-terminal domain of hFGF1 [20,33]. Basic and polar amino acids of 

HBP (N32, K126, K127, N128, K132, Q141, K142) bind to the negatively charged heparin 

decasaccharide through electrostatic interactions [1]. These positively charged residues are 

primarily located in the flexible loops between beta strands X, XI, and XII. K127, K132, G134, 

and R136 are well conserved among different isoforms of FGF. Interestingly, alignment of 

amino acid sequences of FGF1 isolated from different species shows that residues in the heparin-

binding pocket, including residues 132 to 137, are highly conserved. The well-conserved R136 

and K126 residues are located in the heparin binding region. As mentioned above, HBP consists 

of positively charged residues, therefore, mutating a polar positively charged amino acid with a 

polar negatively charged residue (R136E) and substituting a polar positively charged amino acid 

with a polar neutral residue (K126N) can potentially decrease the repulsion between the closely 
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packed positively charged residues [1, 19]. Additionally, thrombin cleaves hFGF1 at R136, 

hence mutating Arg to Glu at position 136 will reduce the probability of thrombin induced FGF1 

degradation [1]. Q54 is located within a turn between β-strands III and IV. Studies have shown 

that presence of proline in a β-turn rearranges the β-turn geometry and forms a short 310- helix. 

Therefore, Gln was mutated to Pro [19, 24]. H107 is located in the turn spanning β8/ β9 and is 

also involved in receptor binding. At the receptor binding site, His interacts with Arg at positions 

251 and 255 of the D2 and D3 domain of the receptor [24]. To prevent the repulsion between 

His107 and Arg251 and 255, His was replaced with Ser. S61 is located in the middle of β-strand 

IV, which is close to the hydrophobic pocket in the hFGF1 structure. Thus, mutation of Ser to 

Leu (S61L) is predicted to increase the stability of the growth factor by rendering it more 

compact (Fig. 2) [1, 30]. 

 
Fig. 2: Ribbon representation of wtFGF1 illustrating mutation sites and electrostatic potential 

map showing that the heparin binding region in wtFGF1 is flexible and extends outwards (Top 

panel). Ribbon representation and electrostatic potential map of sFGF1 showing that the heparin 

binding region is less flexible upon introduction of mutations (Bottom panel). 
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Construction and purification of pure wtFGF1 and super FGF1 (sFGF1) 

wtFGF1 and sFGF1 were overexpressed in BL21-PlysS cells in LB medium. They were 

purified to homogeneity on a heparin sepharose matrix using affinity column chromatography. 

The proteins were eluted using a stepwise sodium chloride gradient. wtFGF1 exhibited strong 

heparin binding affinity and was eluted in 1.5 M sodium chloride concentration. In contrast, 

sFGF1 eluted from the column, along with some bacterial contaminants, in 10mM phosphate 

buffer with 0 mM NaCl. These results suggest that sFGF1, unlike wtFGF1, has no or very 

insignificant heparin binding affinity. sFGF1 was re-purified using gel filtration chromatography 

to obtain the pure protein (approximately 98% pure). The yields of purified wtFGF1 and sFGF1 

were in the range of 35-40 mg/L of the bacterial culture. SDS-PAGE gels were analyzed using 

pure wtFGF1, purified and characterized previously, as a protein marker. Analysis of the results 

of SDS PAGE data shows that wtFGF1 elutes out in the 1500 mM NaCl fraction whereas sFGF1 

elutes in the buffer wash (Fig. 3 A and B). 

  

Fig. 3: SDS-PAGE analysis of protein fractions (A- wtFGF1 and B- sFGF1) eluted upon heparin 

sepharose chromatography at different concentrations of NaCl. Panel -A: Supernatant (Lane-1);  

10 mM PB + 0 mM NaCl (Lane-2);  10 mM PB + 100mM NaCl (Lane-3); 10 mM PB + 300 mM 

NaCl (Lane-4); 10 mM PB + 500 mM NaCl (Lane-5); 10 mM PB + 1500 mM NaCl (Lane-6); 

and Pure wtFGF1 as a marker (Lane - 8). Panel-B: Supernatant (Lane-1); 10 mM PB + 0 mM 

NaCl (Lanes 2-5); 10 mM PB + 100 mM NaCl (Lanes 6 and 7); Pure wtFGF1 as a marker (Lane-

8). 
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The sFGF1 fraction obtained from heparin sepharose chromatography was subjected to 

S-75 column, size-exclusion chromatography.  The size-exclusion chromatography profile 

showed 4 peaks (Fig. 4A). The first peak corresponds to high molecular weight E. coli 

contaminants, the middle peak represents a fraction that contains pure sFGF1 protein (Fig. 4B), 

and the third and fourth peaks comprise of low molecular weight E. coli contaminants. 

 

Fig. 4: Elution profile of sFGF1 (M.W- 15.9 kDa) from a S-75 size-exclusion column (Panel-A). 

Analysis of size-exclusion chromatographic profile by SDS-PAGE. wtFGF1 (Lane-1); sFGF1 

(Lane-2) (Panel-B). 

 

Mutations in sFGF1 does not cause substantial structural change 

wtFGF1 contains eight tyrosine residues and a lone tryptophan at position 121 (Trp121) 

[1]. Intrinsic fluorescence spectrum of native wtFGF1 shows only tyrosine fluorescence at 308 

nm. In the native state, fluorescence of the tryptophan residue is completely quenched by the 

amine/imine groups of lysine and proline residues, which are located in close spatial proximity to 

Trp121. However, when exposed to a denaturant, such as chemical or temperature, position of 

indole ring of tryptophan is shifted away from the lysine and proline residues, exposing 

tryptophan to the polar environment. This is manifested by the fluorescence spectrum which has 

an emission maximum at 350 nm. Intrinsic fluorescence spectra of wtFGF1 and sFGF1 

completely overlap with the emission maxima at 308 nm (Fig. 5). These results suggest that 
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incorporated mutations, in sFGF1, did not significantly perturb the tertiary structure of the 

protein. 

 

Fig. 5: Overlay of the Fluorescence spectra of wtFGF1 (blue) and sFGF1 (orange). 

Far-UV circular dichroism (CD) spectra (190 nm – 250 nm) is an excellent technique to 

determine alterations in the secondary structures of proteins. Far UV-CD spectrum of wtFGF1 

overlays well with that of sFGF1, suggesting no major secondary structural changes occur due to 

the mutations in sFGF1 (Fig. 6). These spectral features (characteristic positive ellipticity band in 

the wavelength ranging from 220-230 nm and a negative band in the region of 210 ~ 200 nm) 

indicate that the protein still maintains its native β-trefoil conformation upon introduction of five 

mutations. 

 
 

Fig. 6: Overlay of far-UV Circular dichroism (CD) spectra of wtFGF1 (gray) and sFGF1 

(orange). 
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To investigate the interactions that stabilized the structure of hFGF1, we also performed 

molecular dynamic (MD) simulation analyses on wtFGF1 and sFGF1. Molecular dynamics 

simulations were performed on wtFGF1 and sFGF1 to supplement the experimental data. 

Simulations were run on the crystal structure of protein in the absence (1RG8) and presence of 

heparin. Hexasaccharide heparin from a dimeric hFGF1 crystal structure (2AXM) was added to 

monomeric hFGF1 to build the heparin-bound systems. Root mean square fluctuations (RMSF) 

of the Cα atoms and root mean square deviations (RMSD), in the presence and absence of 

heparin, of sFGF1 were compared to wtFGF1. 

In the absence of heparin, wtFGF1 remains stable upto 2µs with a RMSD value of 1Å. 

However, after 2µs (Fig. 7) the RMSD abruptly changes to and remains around 3Å for the rest of 

the simulation, indicating that a conformational transition has occurred. In the contrary, heparin-

free and heparin-bound sFGF1 show significant fluctuations in the RMSD value when compared 

to wtFGF1. Both the forms of sFGF1 stay stable throughout the 4.8 µs time period. Unlike 

wtFGF1, sFGF1 does not undergo any conformational transition. These results suggest that 

heparin-free wtFGF1 is more flexible than the heparin-bound wtFGF1. The heparin-bound 

wtFGF1 curve overlays well with the curves of both the forms of sFGF1 (heparin-free and 

heparin-bound). 
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Fig. 7: Overlay of root mean square deviation curves of wtFGF1 and sFGF1 in absence and 

presence of heparin. 

 

Heparin stabilizes the structure of hFGF1 by decreasing repulsion(s) between the 

positively charged residues located in the heparin binding pocket. The fact that heparin bound 

wtFGF1 overlays well with heparin-free and heparin-bound sFGF1 provides insight the 

extraordinary stability of sFGF1. This means that introduction of mutations, especially the ones 

involved in the heparin binding (R136E and K126N), might have increased electrostatic 

interaction in the residues; which in turn, increased the inherent stability of hFGF1. Similar trend 

in the fluctuation of the RMSD values were observed for the heparin binding region (Fig. 8). 

Heparin-free wtFGF1 showed higher flexibility than heparin bound wtFGF1 and both the forms 

of sFGF1. 
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Fig. 8: Overlay of root mean square deviation curves of the heparin binding region (residues 127 

– 143) of wtFGF1 and sFGF1 in absence and presence of heparin. 

 

RMSD results are further supported by the RMSF results. Heparin bound and heparin 

free forms of wtFGF1 and sFGF1 showed similar trends in their fluctuations in the entire protein 

except for the heparin binding region (Fig. 9). The heparin binding region of the heparin-free 

wtFGF1 is more flexible than in the other systems. The heparin binding region spans residues 

126-142 in hFGF1. This data along with the RMSD measurements support the conclusions 

drawn from structural flexibility experiments that sFGF1 renders more compactness to hFGF1. 

 

Fig. 9: Overlay of root mean square fluctuation curves of wtFGF1 and sFGF1 in absence and 

presence of heparin. 
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Introductions of mutations leads to electrostatic interactions in the structure of hFGF1 

Analysis of the salt bridge interactions revealed two additional salt bridges which are not 

found in wtFGF1. One salt bridge that is observed is between the carboxylic acid group of E136 

and epsilon amino group of K132 (Fig. 10). This interaction occurs within the heparin binding 

region and stays stable at around 6Å (weak salt bridge) for 4.8µs. Another salt bridge occurs 

between the carboxylate group of E136 and guanidinium head group of R133 (Fig. 11). This 

interaction is also present in the heparin binding region. Both salt bridges are observed in the 

sFGF1 in the presence and absence of heparin but not in wtFGF1. Thus, extra stability of sFGF1 

over wtFGF1 appears to be due to these additional salt bridges. The introduction of the mutations 

plausibly promotes these new salt bridges in the heparin binding region (R136E and K126N). 

These mutations also could have lowered the repulsion between closely packed basic amino 

acids in the heparin binding region. The salt bridges present exclusively in wtFGF1 in the 

absence of heparin have been described in Chapter-IV. 

 

Fig. 10: Time series of the E136-K132 donor-acceptor salt bridge distance in the sFGF1 

structure. 
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Fig. 11: Time series of the E136-R133 donor-acceptor salt bridge distance in the sFGF1 structure 

 

 The number of transient H-bond interactions (including those that do not satisfy the 

occupancy criteria; mentioned in the methods section) over the course of the simulation is nearly 

same for wtFGF1 and sFGF1. In heparin-free wtFGF1, only 1 out of 65 H-bonds (that satisfy the 

occupancy criteria) involves the heparin binding region (L145-K142 which is a backbone-

backbone H-bond). All the 65 interactions observed in wtFGF1 also occur in sFGF1 with similar 

occupancies. 7 stable hydrogen bonds were identified in the heparin binding region of 

sFGF1(Table 1) that do not qualify as hydrogen bonds in heparin-free wtFGF1 (Table 1) based 

on the occupancy criteria defined in the methods section. Five of these interactions involved 

variant residues (N126 and E136) and are unique to sFGF1 (Table 1). It should be noted that 

equivalent interactions in both sFGF1 models and heparin-bound wtFGF1 have similar 

occupancies (Table 1), thus recapitulating the results of the RMSD and RMSF analyses. 
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Table 1: Comparison of electrostatic interactions involved in the heparin-binding region of 

wtFGF1 and sFGF1. 

 

 

Introduction of the mutations did not significantly perturb the hFGF1 structure 

Changes in the structure of wtFGF1 and sFGF1 were determined using 1H 15N HSQC 

multidimensional NMR spectroscopy. NMR structure of wtFGF1 has been solved earlier and a 

complete set of assigned resonances is available. 1H 15N chemical shift perturbations were 

monitored based on chemical shifts assignments published by our group and others [17, 38]. The 

1H 15N chemical shift perturbation of individual residues were calculated using the formula, (√ 

[(2ΔδNH)2 + (ΔδN)2]). Our results are in good agreement with the published assignments. 

Superimposition of 1H 15N HSQC spectra of wtFGF1 and sFGF1 reveals modest chemical shift 

perturbations. The calculated 1H 15N chemical shift perturbations indicate that there were 

significant perturbations in the position of amino acids which are in proximity to the mutation 

sites (E136, G134, K132, and S107). E136, G134, and K132 are located in the heparin binding 

region. Spatially, S107 is positioned very close to the heparin binding pocket. E136 and S107 are 

the mutated residues. G134 is located very close to E136, and R133 and is involved in an 

Donor Acceptor wtFGF1 w/o 

hep 

wtFGF1 with 

hep 

sFGF1 with 

hep 

sFGF1 w/o 

hep 

K126 (B) S130 (B) 44 97 N/A N/A 

Q141 (S) R136 (B) 31 80 N/A N/A 

G129 (B) K126 (B) 33 79 N/A N/A 

R136 (B) R133 (B) 37 76 N/A N/A 

T137 (S) G134 (B) 35 70 67 67 

H138 (B) Q141 (S) 22 54 55 51 

G129 (B) N126 (B) N/A N/A 74 72 

N126 (B) S130 (B) N/A N/A 98 97 

Q141 (S) E136 (B) N/A N/A 62 57 

E136 (B) R133 (B) N/A N/A 68 64 

R133 (S) E136 (S) N/A N/A 150 158 
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electrostatic interaction with the hydroxyl side chain of Thr at position 137 in wtFGF1 as well as 

sFGF1. 

 
Fig. 13: Overlay of the 1H 15N HSQC of the wtFGF1 (yellow) and sFGF1 (red). The blue circles 

represent the amino acids in the wtFGF1 (R136, K126, Q54, S61, and H107). The green circles 

are predicted location of the amino acid after the mutation. 

 

 Introductions of mutations renders hFGF1 to be more compact, thus increasing the 

thermal, chemical and proteolytic stability of hFGF1. It also leads to complete loss of heparin 

binding affinity of hFGF1. Overall, results of the 1H 15N HSQC data suggest that engineered 

mutations, generating sFGF1, did not significantly alter the gross three-dimensional structure of 

the protein (Fig. 13). 

Introduction of the mutations renders the hFGF1 molecule more compact 

8-anilinonaphthalene-1-sulfonate (ANS) is a non-polar dye that is widely used to detect 

the presence of solvent-exposed hydrophobic region(s) in proteins. Results of ANS binding 

experiments shed light on the structural flexibility of the proteins. As hydrophobic residues are 
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typically buried in the interior of the protein core, an increase in ANS fluorescence suggests 

greater exposure of solvent-accessible hydrophobic region(s) [2]. Hydrophobic properties of 

proteins can be crucial as a driving force towards proper folding as well as protein-protein 

interactions. ANS binding curve for sFGF1 is quite similar to that of wtFGF1 (Fig. 14), 

indicating that the mutations did not lead to any significant tertiary structural changes. wtFGF1 

without heparin exhibits maximum relative fluorescence intensity which indicates that wtFGF1 

is structurally more flexible than sFGF1 with/without heparin and wtFGF1 with heparin. Unlike 

wtFGF1, sFGF1 does not show any difference in the ANS fluorescence in presence of heparin 

which indicates that heparin does not significantly affect the tertiary structure of sFGF1. On the 

other hand, the structure of wtFGF1 becomes more compact upon binding to heparin.  

 

Fig. 14: ANS binding curves of wtFGF1 and sFGF1 in the presence and absence of heparin. 

wtFGF1 without heparin (gray), wtFGF1 with heparin (orange), sFGF1 without heparin (blue), 

and sFGF1 with heparin (yellow). 

 

sFGF1 mutations is more resistant to the action of proteolytic enzymes 

Trypsin, a serine protease, specifically cleaves proteins at the C-terminal end of lysine 

and arginine residues. hFGF1 contains three arginine and nine lysine residues. We performed 

limited trypsin digestion (LTD) assay on wtFGF1 and sFGF1, to determine effects of the 

mutations on the conformational flexibility of hFGF1. The percentage of hFGF1 digested after 
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different time periods of incubation with trypsin was measured by densitometric analysis based 

on the change(s) in intensity of the ~16 kDa hFGF1 band on Coomassie blue stained SDS-PAGE 

gels (Fig. 15). 

 

Fig. 15: SDS-PAGE analysis of limited trypsin digestion of wtFGF1 (Panel – A) and sFGF1 

(Panel-B). 0.5 mg/mL of proteins (Lane-1); 4 minutes (Lane-2); 6 minutes (Lane-3); 10 minutes 

(Lane-4); 15 minutes (Lane-5); 30 minutes (Lane-6); 45 minutes (Lane-7); 60 minutes (Lane-8); 

5 mg/mL of trypsin (Lane-9). 

 

Densitometric analysis of SDS PAGE gels reveal the rate of digestion of wtFGF1 and 

sFGF1 by trypsin. Fig. 16 showed that after 20 minutes of incubation with the enzyme, 

approximately 80% of wtFGF1 was digested. Contrastingly, sFGF1, after 20 minutes of 

incubation with trypsin, remains almost completely undigested. In fact, sFGF1 remains stable for 

24 hours when treated with trypsin (Fig. 16 B). These results indicate that sFGF1 is a highly 

compact molecule with significantly diminished backbone flexibility. In addition, results of the 

LTD experiments corroborate well with ANS binding data. 

 

 

 

 

A B 
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Fig. 16: Densitometric analysis of limited trypsin digestion of wtFGF1 and sFGF1 as monitored 

by SDS-PAGE (Panel-A). SDS-PAGE analysis of limited trypsin digestion of sFGF1 (Panel-B). 

0.5 mg/mL of proteins (Lane-1); 1 hour (Lane-2); 4 hours (Lane-3); 8 hours (Lane-4); 16 hours 

(Lane-5); 24 hours (Lane-6). 

 

Thrombin is another serine protease which is mainly present at the wound site and 

converts fibrinogen to fibrin. This conversion creates a matrix which includes cytokines (growth 

factor) and heparin. The primary thrombin cleavage site is -LVPRGS-. Slowly, the matrix is 

dissolved, and growth factors including hFGF1 are released at the site of wound. hFGF1 has a 

secondary thrombin cleavage site between R136 and T137. It has been reported earlier that 

thrombin degrades wtFGF1 at the wound site and renders it biologically inactive [40, 41]. In this 

context, limited thrombin experiments were performed to examine if substitution of secondary 

cleavage site (Arg at position 136 by Glu) in the structure of hFGF1 can enable thrombin 

resistant hFGF1 variant. Densitometric analysis of the rate of digestion of wtFGF1 and sFGF1 by 

thrombin shows that intensity of the 16 kDa band does not change for sFGF1 after 48 hours. On 

the contrary, the 16 kDa band intensity is completely lost/faded for wtFGF1 in about 24 hours 

1      2     3      4       5      6
A B 
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(Figs. 17 and 18). Thus, it can be inferred that sFGF1 is resistant to the action of thrombin for 48 

hours whereas wtFGF1 is completely degraded within the first 24 hours (Fig. 17). 

 

 

 

 

 

 

 

 

Fig. 17: SDS-PAGE analysis of limited thrombin digestion of wtFGF1 (Panel-A) and sFGF1 

(Panel-B). 33 µM of proteins (Lane-1); 12 hours (Lane-2); 24 hours (Lane-3); 36 hours (Lane-4); 

48 hours (Lane-5); 60 hours (Lane-6); 165 µM of thrombin (Lane-7). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Densitometric analysis of limited thrombin digestion of wtFGF1 and sFGF1 as 

monitored by SDS-PAGE. 

 

Introduction of the mutations increases the stability of hFGF1 

The thermal stability of wtFGF1 and sFGF1 were examined by monitoring the changes in 

the intrinsic fluorescence intensity ratio at 308 nm and 350 nm. The data in Fig. 19 depicts 
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unfolding curves of wtFGF1 and sFGF1 when exposed to increasing temperature, with and 

without heparin in solution. 

 

Fig. 19: Thermal stability analysis of wtFGF1 and sFGF1 in the presence and absence of heparin. 

 

Table 2. Comparison of the thermal stability of wtFGF1 and sFGF1. 

 

Tm Values (°C) sFGF1 wtFGF1 

With Heparin 68 ± 0.012 62 ± 0.012 

Without Heparin 67 ± 0.023 41 ± 0.047 

∆Tm 1 ± 0.026 21 ± 0.049 

 

Analysis of the denaturation temperature, Tm (the temperature at which 50% of the 

protein population exists in unfolded state(s)), revealed that presence of heparin significantly 

increases ability of wtFGF1 to resist the denaturation by increase in temperature. The presence of 

heparin accounts for 21°C of thermal resistance by wtFGF1. Also, heparin independent nature of 

sFGF1 is evident from the data, Tm remains 67.5˚C for sFGF1 with and without heparin, thus 

showing that addition of heparin doesn’t significantly affect the thermal stability of sFGF1 

(Table 2). 
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Unfolding of the proteins under increasing urea concentration was also monitored by the 

change in intrinsic fluorescence intensity at 305 nm/350 nm. Urea-induced unfolding curves of 

wtFGF1 and sFGF1 shows that both the forms of sFGF1 (with and without heparin), is more 

stable at higher urea concentrations than wtFGF1 without heparin, as shown in Fig 20. wtFGF1 

has Cm value (the concentration value where 50% of the protein population remains in unfolded 

state (s)) of 3.8 ± 0.051 M and 1.2 ± 0.02 M with and without heparin, respectively. 

Contrastingly, sFGF1 exhibits Cm values of 3.65 ± 0.12 M with heparin and 3.66 ± 0.054 M 

without heparin. Cm values displayed by sFGF1 are approximately three times higher than that 

exhibited by wtFGF1 without heparin. Thus, data from the urea denaturation experiment suggest 

that sFGF1 has a higher inherent stability than wtFGF1.  

 

Fig. 20: Urea stability analysis of wtFGF1 and sFGF1 in the presence and absence of heparin. 

 

Table 3. Comparison of urea stability of wtFGF1 and sFGF1. 

 

Cm Values (M) sFGF1 wtFGF1 

With Heparin 3.65 ± 0.12 3.8 ± 0.02 

Without Heparin 3.66 ± 0.054 1.2 ± 0.051 

∆Cm 0.01 ± 0.087 2.6 ± 0.0355 
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Overall, the thermal and urea equilibrium unfolding data indicate that introduction of 

mutations aid in stabilizing the growth factor. Stability against temperature and urea can be 

directly related to half-life of the protein, hence molecules exhibiting higher Tm and Cm values 

are expected to exhibit higher biological activity at physiological temperature for an extended 

period of time. sFGF1 exhibited much higher thermal stability (Tm~ 68°C) in comparison to 

wtFGF1, both in absence and presence of heparin. A similar trend was observed even in case of 

urea-induced denaturation. This may be due to the reduction of charge-charge repulsion in the 

heparin binding pocket caused because of the substitution of Lys by Asn and Arg by Glu at 

positions 126 and 136, respectively. Furthermore, Q54P and S61L mutations might have led to 

increase in β-sheet propensity and decrease in entropy, consequently enhancing the stability of 

sFGF1. Additionally, introduction of H107S mutation appears to significantly increase the 

hydrogen bonding network (G129-N126, N126-S130, Q141-E136, and E136-R133) in the 

vicinity of heparin binding site. These conclusions are in good agreement with the conclusions 

drawn from the structural flexibility data. 

Introduction of a negative and a neutral charge in the heparin binding pocket leads to 

complete loss of heparin binding affinity 

Isothermal titration calorimetry (ITC) is a valuable technique to determine the 

thermodynamic binding parameters of interactions in solution. The dissociation constant, Kd, has 

an inverse relationship with the binding affinity. Thus, more the Kd, less is the binding affinity of 

the protein to the ligand. Comparison of the Kd values between wtFGF1 (Kd = 1.6M) and 

sFGF1 (Kd value can’t be determined) reveals that wtFGF1 exhibits significantly more heparin 

binding affinity than sFGF1. The unusual heat changes in the isothermograms are due to the 

electrostatic interactions between the charged heparin molecules and some of the charged 
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components present in the buffer. From Fig. 21 and table 4, it can be concluded that sFGF1 

clearly exhibits zero heparin binding affinity indicating that integrity of the heparin binding 

pocket is reliant on the presence of the positively charges residues. 

 

 

 

 

 

 

 

 

 

Fig. 21: Isothermograms representing titration of wtFGF1 (Panel - A) and sFGF1 (Panel - B) 

with heparin. 

 

Table 4: Heparin binding affinity of wtFGF1 and sFGF1. 

 

 

  

 

 

 X-ray crystal structure of hFGF1 indicates that R136, K132, and K126 form a triad 

and facilitate binding of hFGF1 to heparin. Mutating two of these three residues might lead to 

significant reduction in the repulsion between positively charged amino acids in the heparin 

binding pocket. Using the crystal structures of hFGF1 in presence (PDB 2ERM) and absence of 

heparin (PDB 1RG8), distance of all the mutated residues were measured with respect to R133 

hFGF1 variants Kd (µM) 

wtFGF1 1.6 

sFGF1 No binding 

A B 

Kd = 1.6M No binding 
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(which lies in the middle of the heparin binding pocket) [20, 33]. The distance between the two 

residues was calculated using a combination of the following commands in VMD – measure 

center, vecsub, and veclength. In absence of heparin, the residues in wtFGF1 (R136, K126, Q54, 

S61, and H107) are located ~7.15 Å, ~13.24 Å, ~27.75 Å, ~26.32 Å, and ~25.6 Å, respectively, 

away from the critical heparin binding residue R133 (PDB 1RG8) whereas in the presence of 

hexasaccharide heparin (PDB 2ERM), R136 is shifted significantly closer to R133 (~9.57 Å) 

whereas K126, Q54, S61, and H107 are moderately positioned ~9.57 Å, ~24.41 Å, ~24.17 Å, 

and ~24.8 Å near R133. On the contrary, the distance between the mutated residues and R133 in 

sFGF1 (E136, N126, P54, L61, and S107) remains nearly the same, irrespective of the presence 

of heparin (Table 5). Thus, modification of Arg with Glu at position 136, Lys with Asn at 

position 126, Gln with Pro at position 54, Ser with Leu at position 61, and His with Ser at 

position 107 seems to compact the overall hFGF1 structure including the heparin binding pocket 

(HBP). Although out of all the five substitutions, R136E and K126N appears to bring drastic 

conformational changes in the heparin binding region making sFGF1 heparin independent. 

Table 5: Distance of residues in wtFGF1 and sFGF1 from the middle of the heparin 

binding pocket (R133). 

 

 Distance between (Å) 

Proteins K/N126 - 

R133 

R/E136 - 

R133 

S/L61 – 

R133 

Q/P54 - 

R133 

H/S107 - 

R133 

wtFGF1 w/o 

heparin 

13.24 7.15 26.32 27.75 25.6 

wtFGF1 with 

heparin 

9.57 5.15 24.17 24.41 24.8 

sFGF1 w/o 

heparin 

9.7 5.16 23.46 23.97 23.9 

sFGF1 with 

heparin 

9.68 5.18 23 25 23.78 

 

 



   107 

 

Introduction of the mutations enhances the mitogenic activity of hFGF1 

 The final step in analysis of viability of sFGF1 in a clinical setting is the 

understanding of its proliferative activity. Heparin is considered to be a crucial player in the 

hFGF1-FGFR interaction and activation. On that basis, decrease in the heparin binding affinity 

of the growth factor would lead to decrease in the mitogenic activity. In this context, cell 

proliferation assay was conducted using different concentrations of wtFGF1 and sFGF1. Fig. 22 

displays that sFGF1 enhances the cell proliferation activity of the FGF1 protein as compared to 

wtFGF1. This result is nearly 70% more effective than wtFGF1 at the highest concentration (Fig. 

22). Increased mitogenic activity is possibly due to the increased structural stability as measured 

by the equilibrium unfolding experiments. Isothermal titration calorimetric results suggest that 

sFGF1 is a heparin independent protein. Since sFGF1 is shown to demonstrate high cell 

proliferative ability despite having no heparin binding affinity, the data here shows that heparin 

binding is not mandatory to initiate cell proliferation. 

 

Fig. 22: Cell proliferation activity of NIH 3T3 cells treated with wtFGF1 and sFGF1 
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The notion that heparin is not mandatory for hFGF1 activation of cell surface receptors 

has been previously reported [4,8,10,11]. Culajay et al., reported that substitution of the three 

cysteine residues (C30S, C131S, C97S) with serine decreased the heparin binding affinity of 

hFGF1 but increased the physiological half-life of hFGF1 and also enhanced the mitogenic 

activity of hFGF1 [9]. Additionally, combination of mutations L58F, H35Y, H116Y, and F122Y 

demonstrated an increase in the thermal stability, even in the absence of heparin, without causing 

significant loss in the bio activity of hFGF1 [9]. Further introduction of mutations at multiple 

sites on the quadruple mutant (L58F/H35Y/H116Y/F122Y) led to generation of a septuplet 

mutant (H35Y/Q54P/L58F/S61I/H107G/H116Y/F122Y). Surprisingly, this septuplet mutant was 

found to exhibit six-fold higher cell proliferation activity than wtFGF1 in the absence of heparin 

[24]. In this context, results of this study clearly show that heparin is not a pre-requisite for the 

cell proliferation activity of hFGF1. Heparin, present on the cell surface, possibly regulates the 

FGF protein level in the extracellular matrix (ECM), and also confers protection to FGFs against 

thermal denaturation and proteolytic degradation. In addition to facilitating the FGF-FGFR 

binding, HS also acts as a storage reservoir for ligand and determines the radius of ligand 

diffusion by controlling the gradients of paracrine FGFs in ECM [38]. 

Introduction of mutations enhances the ability of sFGF1 to activate ERK and Akt 

pathways 

FGF ligands carry out their diverse functions by binding and activating the FGFR family 

of tyrosine kinase receptors in an HSGAG-dependent manner. FGFs exert their physiological 

roles through binding to the FGFR and regulate downstream signaling pathways such as, 

RAS/MAPK, PI3K/AKT, and PLCγ pathways. In this context, receptor activation assay was 

conducted to study the effects of wtFGF1 and sFGF1 on Valve interstitial cells (VICs). We used 
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western blotting to detect the expression of phosphorylated Erk1/2 and Akt in cultured valve 

interstitial cells treated with different doses of wtFGF1 and sFGF1. Results in Fig. 23 indicate 

that sFGF1 significant increases the activation of both these pathways (Erk1/2 and Akt) 

specifically, that of Erk1/2 pathway when compared to wtFGF1. 

 

Fig. 23: Receptor activation assay of serum starved valve interstitial cells (VICs) treated with 

different concentrations of wtFGF1 and sFGF1. Cell lysates were resolved on SDS-PAGE 

followed with western blotting to detect ability of wtFGF1 and sFGF1 to activate ERK and Akt 

signaling pathways. 

In spite of many years of research, the role of heparin in hFGF1-induced cell signalling is 

still controversial. Several studies have demonstrated that presence of heparin on the cell surface 

is mandatory for the receptor dimerization and augments the mitogenic response stimulated by 

hFGF1. In contrast, there have been reports indicating that heparin is not mandatory for the 

activation of FGF-FGFR cell signaling. In this context, results of this study show that sFGF1 can 

interact with the FGFR and trigger phosphorylation of Erk and Akt pathways even in the absence 
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of heparin. This is an important finding since activation of the Erk 1/2 pathway is known to be 

involved in wound healing mechanism [42]. 

Conclusions 

Amino acid sequence of the FGFs, including hFGF1, folds into a β-trefoil conformation. 

This group of cytokines exhibits a wide array of activities such as, mitogenic activity, angiogenic 

activity, wound healing, and bone growth. There has been a long-standing debate on the role of 

heparin in determining the biological function of hFGF1. Initially there existed a general belief 

within literature that heparin is critical for binding of hFGF1 to its receptors. In contrast, there 

have been studies which demonstrated that heparin is not mandatory for the cell proliferation 

activity of hFGF1. In this study, we were able to demonstrate that heparin only stabilizes the 

structure of hFGF1 by decreasing the repulsion(s) between the positively charged residues 

located in the heparin binding pocket. Limited enzymatic digestion data suggest that sFGF1 

substantially increases the resistance of hFGF1 to trypsin and thrombin. Thermal and urea 

induced unfolding results demonstrate that sFGF1 is significantly more stable than wtFGF1 with 

a Tm of around 68 °C and Cm of approximately 3.6 M. Isothermal titration calorimetry data 

indicate that the positively charged residues (K126 and R136) are significant in determining 

affinity of hFGF1 to heparin. Molecular dynamic (MD) simulation analyses suggest the 

introduced mutations in sFGF1 lowers the flexibility to the heparin binding region and 

consequently increases the stability of the growth factor by forming stable electrostatic 

interactions (salt bridges and hydrogen bonds). 1H-15N HSQC NMR experiment show that 

sFGF1 does not significantly affect the three-dimensional structure of the growth factor. Cell 

proliferation experiments indicate that sFGF1 exhibits a heparin-independent cell proliferation 

activity which is higher than that exhibited by wtFGF1. Receptor activation assay demonstrates 
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that sFGF1 exhibits substantial increase in activation of Erk and Akt pathways, which is known 

to be crucial for the wound healing. In conclusion, the hyperstability, resistance to the action of 

proteases, and enhanced heparin-independent bioactivity and activation of FGFR qualifies 

sFGF1 as a promising biotherapeutic to promote wound healing. 

Materials and methods 

 

Materials 

 

The Quikchange lightning multi-site directed mutagenesis kit was from Agilent and the DNA 

plasmid isolation kit was from Qiagen Inc., USA. XL-Gold, PlysS, and BL-21(DE3) competent 

cells were obtained from Agilent and Novagen Inc., USA respectively. Lysogeny broth was 

purchased from IBI Scientific, USA. Heparin sepharose resin was from GE Healthcare, USA. 

Buffer components (Na2HPO4, NaH2PO4, NaCl) were supplied from VWR Scientific., USA. 

Low molecular weight (~3000 Da) heparin sodium salt was obtained from Sigma and MP 

Biomedicals LLC. NIH 3T3 cells were obtained from ATCC and all the cell culture reagents 

including, DMEM media, fetal bovine serum (FBS) and penicillin streptomycin were purchased 

from Thermo Fisher Scientific (Waltham, MA). All other chemicals and materials were of high-

quality analytical grade. Unless otherwise stated, samples were made in 10 mM phosphate buffer 

saline (pH 7.2) and incubated at 37 ºC. 

In this study, we have used low molecular weight heparin (M.wt~ 3000 Da) because the 

high molecular weight heparin is a polydispersed glycosaminoglycan. The high polydispersity 

imposes a serious challenge to accurately determine the binding affinity of the ligand to the 

growth factor [32]. Furthermore, the low molecular weight (M.wt~ 3000 Da) heparin used has 

been estimated to be 8 to 12 units long and multiple studies have shown that heparin with a chain 
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length of 8-units has been shown to be sufficient to facilitate optimal FGF-1 induced cell 

signaling [33, 34]. 

 

Construction and purification of pure wtFGF1 and sFGF1 

For all the experiments, a truncated version of hFGF1 (residue number, 15-154) was 

inserted into a pET20b expression vector. Primers were designed using an online agilent primer 

design program and were ordered from IDT DNA Inc., USA. Site-directed mutagenesis (SDM) 

was performed using a QuickChange lightning kit followed by polymerase chain reaction (PCR) 

as per the protocol provided by the manufacturer. This project specifically utilizes Escherichia 

coli cells (BL21 E. coli). The plasmid was then transformed into XL-gold competent cells and 

sequencing of the plasmid was performed at the University of Arkansas Medical Science 

(UAMS) – DNA core sequencing facility. After verification of the plasmid sequence, sFGF1 was 

overexpressed in BL-21(pLysS) Escherichia coli cells cultured in lysogeny broth (LB) and then 

placed in New Brunswick Science Innova 4330 Refrigerated Incubator Shaker at 37 °C with 

agitation speed of 250 rpm. All transfers and inoculations were done in a Labconco Purifier 

Class II Biosafety Cabinet rinsed with 70% ethanol prior to work. After the overexpression, 

bacterial cells were lysed via ultra-sonication using a Branson Sonifier 150 at a 32% amplitude 

and the released proteins were separated from the cell debris by centrifugation for 20 minutes at 

19,000 rpm. wtFGF1 and sFGF1 were then purified on a pre-equilibrated heparin-sepharose 

column with increasing sodium chloride gradient in 10 mM PB at speed of approximately 1.5 

mL/min. SDS-PAGE was then used to determine the purity of the protein. The protein bands 

were visualized by staining the gels with Coomassie brilliant blue and the protein concentrations 

were determined by Bradford assay using a Hitachi F-2500 fluorimeter. 
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Fluorescence and Circular Dichroism Spectroscopy 

Circular dichroism and intrinsic fluorescence data were acquired using a Jasco J-1500 

Spectrophotometer. 33 µM protein was added to 10 mM PB + 100 mM NaCl and loaded into a 

0.1 cm path length quartz cuvette. CD machine was kept at a constant temperature at 25⁰C. The 

wavelength of the spectrophotometer was set over the range of 190-250 nm and the spectrum 

were scanned at 20nm/min speed. To obtain the intrinsic fluorescence spectrum, the excitation 

wavelength was set to 280 nm and the emission spectra was set for a range of 300 to 450 nm. 

The fluorescence data sheds light on the tertiary folding of the protein based on the naturally 

fluorescent tryptophan and tyrosine residues, which have an emission wavelength of 

approximately at around 350 nm and 305 nm, respectively. 

1H 15N HSQC multidimensional NMR spectroscopy 

1H-15N HSQC experiments were conducted on a Bruker Avance DMX-700 MHz 

spectrometer equipped with a 5 mm inverse cryoprobe at 25°C. wtFGF1 and the sFGF1 were 

grown in M9 medium with 15NH4Cl used as the sole nitrogen source. 15N labeled protein samples 

(1 mM) were prepared in 90% H2O + 10% D2O solution containing 10 mM phosphate buffer 

containing 100 mM NaCl and 25 mM (NH4)2SO4 (pH 6.5). Data were analyzed using 

XWINNMR 3.5 software supplied by Bruker.  

ANS Binding 

ANS (8-anilinonaphthalene-1-sulfonate) binding experiments were performed to provide 

further information regarding the protein’s tertiary structure. ANSs an extrinsic fluorophore that 

fluoresces when it binds to solvent exposed hydrophobic regions of a protein. ANS binding 

experiments were performed by addition of increasing concentrations (10 μM addition) of ANS 

to 33 µM of wtFGF1. Relative fluorescence intensity was determined with an excitation at 380 
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nm and emission intensity was recorded at 510 nm. These experiments were repeated with 

sFGF1 samples in the presence and absence of heparin.  

 

Limited Trypsin Digestion 

Proteolytic trypsin digestion was performed to determine the structural flexibility of the 

wild-type and sFGF1. Trypsin is a proteolytic enzyme that cleaves peptide bonds at the C-

terminal end of lysine and arginine amino acids, except when either are followed by a proline.10 

µL of 330 mM trypsin was added to 10 µL of 33 µM of protein and 90 µL of 10 mM PB + 100 

mM NaCl. The samples were immediately incubated in a hot water bath at 37⁰C for 0, 4, 6, 10, 

15, 30, 45, and 60 minutes. TCA preparation was performed on each sample immediately after 

being removed from the hot water bath to stop the trypsin reaction. The results were assessed 

using SDS-PAGE analysis along with UN-SCAN-IT gel software. The intensity of the bands in 

the gel was compared to control bands containing only wtFGF1. This study was repeated with 

sFGF1 samples.  

Limited Thrombin Digestion 

Proteolytic thrombin digestion was performed to determine the structural flexibility of the 

wild-type and the mutant protein. Thrombin recognizes the specific amino acid sequence 

LVPRGS and cleaves between the arginine (R) and glycine (G) residues. In hFGF1, thrombin 

cleaves between the Arg at position 136 and Thr at position 137. Thrombin cleavage was 

performed using 33 µM of wtFGF1 and sFGF1 protein, 165 µM of bovine thrombin, and 10 mM 

PB + 100 mM NaCl. The samples were incubated at 37⁰ C in a rotator and collected at 3, 6, 18, 

24, 36, and 48 hours. TCA preparation was performed on each sample immediately after being 

removed from the rotator to stop the thrombin reaction. The results were assessed using SDS 
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PAGE analysis along with UN-SCAN-IT gel software. The intensity of the bands in the gel was 

compared to control bands containing only protein. 

 

Equilibrium unfolding experiments 

Thermal denaturation studies were performed on the JASCO-1500 spectrofluorometer 

using intrinsic fluorescence emission scans to reveal how temperature affects the stability of 

wtFGF1 and sFGF1 with and without heparin. 33 µM protein in 10 mM PB + 100 mM NaCl 

were added to a cuvette and a temperature probe was inserted to monitor the temperature. Data 

on the samples were collected at 5⁰ C intervals over a temperature range of 25 ⁰C – 90 ⁰C. The 

fraction of the unfolded protein was calculated using the ratio of tyrosine to tryptophan emission 

fluorescence measurements at 305 nm and 340 nm, respectively.  

For the chemical denaturation studies, 8 M urea was used to induce protein denaturation. 

This process was monitored using intrinsic fluorescence emission scans using a JASCO-1500 

spectrophotometer. Data of samples of 33 µM protein in 10 mM PB + 100 mM NaCl (wtFGF1 

and sFGF1) were each collected over a urea concentration of 0-6 M. The fraction of unfolded 

protein was calculated using the ratio of tyrosine to tryptophan emission fluorescence 

measurements at 305 and 340 nm. 

Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) was used to calculate the binding affinity of 

wtFGF1 and sFGF1 to heparin. ITC measures the molar ratio of bound ligand to protein at 

specified aliquots of titrant, which in this case is heparin. Within an adiabatic chamber, a series 

of 30 titrations were performed at 25°C with a stir speed of 750 rpm. Protein samples were 

prepared with 10 mM sodium phosphate buffer containing 100 mM NaCl and 25 mM (NH4)2SO4 
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pH 7.2. A 1:10 ratio of protein to ligand (100 μM protein: 1 mM heparin) was used on a GE 

MicroCal iTC-200 in which heparin was titrated into hFGF1 samples. The detected thermal 

change from the binding of heparin to hFGF1 is then measured by a small sensor and compared 

to a reference cell. The data for wtFGF1 and sFGF1 were best-fit to one set of sites and any 

excess heats of dilution given from heparin were appropriately subtracted out. 

Cell Proliferation Activity 

The cell proliferation assay measures the biological activity of a growth factor.  3T3 

fibroblast cells obtained from ATCC (Manassas, VA) were cultured in complete media 

consisting of DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were 

grown to 80-90% confluency and were incubated overnight at 37°C with 5% CO2 in serum free 

media before further use. The cell proliferation activity of hFGF1 was determined by quantifying 

the increase in cell number after the cells had been incubated with wtFGF1/sFGF1 at varying 

concentrations. Starved 3T3 fibroblasts were collected and seeded in a 96-well plate at a seeding 

density of 10,000 cells/well. Cells were then co-incubated individually with wild type and sFGF1 

at concentrations of 0, 0.4, 2, 10, and 50 ng/mL. After 24 hours of incubation, 3T3 cell 

proliferation was assessed by the CellTiter-Glo (Promega, Madison, WI) cell proliferation assay. 

Receptor activation assay 

Valve interstitial cells (VICs) were isolated from porcine heart and used at passage 2-7. 

VICs were allowed to reach about 80% confluence before they were serum starved for 24 hours 

prior to treatment. 6 different doses of wild-type (WT) and super (S) FGF were used, including 

3ng/ml, 30ng/ml 250ng/ml, 300ng/ml, 450ng/ml and 600ng/ml. 10 minutes after treatment, cells 

were lysed with RIPA lysis buffer (Santa Cruz Biotech). Cell lysate was centrifuged at 10,000 

rpm, 40C and the supernatant was collected and quantified by BCA assay (Thermo Scientific). 
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Control samples had VICs only, no treatment with either wild-type or mutant FGF. For western 

blotting, cell lysate was mixed with 4X Laemmli buffer (Bio-Rad) in the presence of reducing 

condition β-mercaptoethanol (Bio-Rad) and equally loaded to each lane of 4-15% 

polyacrylamide gel (Bio-Rad). Electrophoresis was run for 1 hour at room temperature before the 

protein was transferred to polyvinyldifluoride (PVDF) membrane (Immobilon-FL), blocked in 

Licor blocking buffer  (Li-Cor, Lincoln NE) for 1 hour before probing with  total mouse ERK1/2 

(Cell signaling 1:50) and rabbit p-ERK1/2 (Cell signaling 1:500).  For Akt detection, membranes 

were probed with rabbit p-Akt (Cell signaling 1:100) prior to stripping and reprobing with rabbit 

Akt (Cell signaling, 1:200). The membranes were kept at 40C overnight. The next day, 

appropriate secondary antibodies (Li-Cor, 1:15,000) were added to the membranes and incubated 

for 1 hour before the membranes were washed and scanned using a Licor Odyssey scanner. 

Relative expression of p-ERK1/2 and p-Akt were quantified by comparing the band intensity 

obtained for the phosphorylated proteins and normalizing it with the intensity obtained for the 

corresponding total proteins. 

  



   118 

REFERENCES 

 

[1] Kerr R, Agrawal S, Maity S, Koppolu B, Jayanthi S, Kumar GS, Gundampati RK, 

McNabb DS, Zaharoff DA, Kumar TK. Design of a thrombin resistant human acidic 

fibroblast growth factor (hFGF1) variant that exhibits enhanced cell proliferation 

activity. Biochemical and biophysical research communications. 2019 Oct 

15;518(2):191-6. 

 

[2] Davis JE, Alghanmi A, Gundampati RK, Jayanthi S, Fields E, Armstrong M, 

Weidling V, Shah V, Agrawal S, prasanth Koppolu B, Zaharoff DA. Probing the role 

of proline− 135 on the structure, stability, and cell proliferation activity of human 

acidic fibroblast growth factor. Archives of biochemistry and biophysics. 2018 Sep 

15;654:115-25. 

 

[3] Ornitz DM, Itoh N. Fibroblast growth factors. Genome biology. 2001 Mar;2(3):1-2. 

 

[4] Zakrzewska M, Wiedlocha A, Szlachcic A, Krowarsch D, Otlewski J, Olsnes S. 

Increased protein stability of FGF1 can compensate for its reduced affinity for 

heparin. Journal of Biological Chemistry. 2009 Sep 11;284(37):25388-403. 

 

[5] Ogura K, Nagata K, Hatanaka H, Habuchi H, Kimata K, Tate SI, Ravera MW, Jaye 

M, Schlessinger J, Inagaki F. Solution structure of human acidic fibroblast growth 

factor and interaction with heparin-derived hexasaccharide. Journal of biomolecular 

NMR. 1999 Jan 1;13(1):11-24. 

 

[6] Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast 

growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in 

FGF2 null mice. Molecular and cellular biology. 2000 Mar 15;20(6):2260-8. 

 

[7] Beenken A, Eliseenkova AV, Ibrahimi OA, Olsen SK, Mohammadi M. Plasticity in 

interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors 

underlies promiscuity of FGF1. Journal of Biological Chemistry. 2012 Jan 

27;287(5):3067-78. 

 

[8] Brych SR, Blaber SI, Logan TM, Blaber M. Structure and stability effects of 

mutations designed to increase the primary sequence symmetry within the core region 

of a β‐trefoil. Protein Science. 2001 Dec;10(12):2587-99. 

 

[9] Culajay JF, Blaber SI, Khurana A, Blaber M. Thermodynamic characterization of 

mutants of human fibroblast growth factor 1 with an increased physiological half-life. 

Biochemistry. 2000 Jun 20;39(24):7153-8. 

 

[10] Zakrzewska M, Krowarsch D, Wiedlocha A, Otlewski J. Design of fully active FGF-1 

variants with increased stability. Protein Engineering Design and Selection. 2004 Aug 

1;17(8):603-11. 

 



   119 

[11] Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through 

engineering to potential medical applications. Critical reviews in clinical laboratory 

sciences. 2008 Jan 1;45(1):91-135. 

 

[12] Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. 

Nature reviews Drug discovery. 2009 Mar;8(3):235-53. 

 

[13] Blaber SI, Culajay JF, Khurana A, Blaber M. Reversible thermal denaturation of 

human FGF-1 induced by low concentrations of guanidine hydrochloride. 

Biophysical journal. 1999 Jul 1;77(1):470-7. 

 

[14] Alsenaidy MA, Wang T, Kim JH, Joshi SB, Lee J, Blaber M, Volkin DB, Middaugh 

CR. An empirical phase diagram approach to investigate conformational stability of 

“second‐generation” functional mutants of acidic fibroblast growth factor‐1. Protein 

Science. 2012 Mar;21(3):418-32. 

 

[15] Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors 

and signaling. Endocrine-related cancer. 2000 Sep 1;7(3):165-97. 

 

[16] Erzurum VZ, Bian JF, Husak VA, Ellinger J, Xue L, Burgess WH, Greisler HP. 

R136K fibroblast growth factor-1 mutant induces heparin-independent migration of 

endothelial cells through fibrin glue. Journal of vascular surgery. 2003 May 

1;37(5):1075-81. 

 

[17] Xia X, Babcock JP, Blaber SI, Harper KM, Blaber M. Pharmacokinetic Properties of 

2 nd-Generation Fibroblast Growth Factor-1 Mutants for Therapeutic Application. 

PloS one. 2012 Nov 1;7(11):e48210. 

 

[18] Kumar TK, Zaharoff DA, Jayanthi S, Koppolu B, Kerr R, Balachandran K, McNabb 

DS. Engineered FGF compositions and methods of use thereof. 

 

[19] Thallapuranam SK, Agarwal S, Gindampati RK, Jayanthi S, Wang T, Jones J, Kolenc 

O, Lam N, Niyonshuti I, Balachandran K, Quinn K, inventors. Engineered fgf1 and 

fgf2 compositions and methods of use thereof. United States patent application US 

16/356,872. 2019 Sep 19. 

 

[20] Canales A, Lozano R, López‐Méndez B, Angulo J, Ojeda R, Nieto PM, Martín‐

Lomas M, Giménez‐Gallego G, Jiménez‐Barbero J. Solution NMR structure of a 

human FGF‐1 monomer, activated by a hexasaccharide heparin‐analogue. The FEBS 

journal. 2006 Oct;273(20):4716-27. 

 

[21] Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. 

InEndocrine FGFs and Klothos 2012 (pp. 1-24). Springer, New York, NY. 

 

[22] Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, 

Linhardt RJ, Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin 



   120 

complex reveals a dual role for heparin in FGFR binding and dimerization. Molecular 

cell. 2000 Sep 1;6(3):743-50. 

 

[23] Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M. Spackling the crack: 

stabilizing human fibroblast growth factor-1 by targeting the N and C terminus β-

strand interactions. Journal of molecular biology. 2007 Aug 3;371(1):256-68. 

 

[24] Zakrzewska M, Krowarsch D, Wiedlocha A, Olsnes S, Otlewski J. Highly stable 

mutants of human fibroblast growth factor-1 exhibit prolonged biological action. 

Journal of molecular biology. 2005 Sep 30;352(4):860-75. 

 

[25] Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens 

of structural biology. Nature reviews Molecular cell biology. 2013 Mar;14(3):166-80. 

 

[26] Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of 

fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 

2000 Oct;407(6807):1029-34. 

 

[27] de Paz JL, Angulo J, Lassaletta JM, Nieto PM, Redondo‐Horcajo M, Lozano RM, 

Giménez‐Gallego G, Martín‐Lomas M. The activation of fibroblast growth factors by 

heparin: Synthesis, structure, and biological activity of heparin‐like oligosaccharides. 

ChemBioChem. 2001 Sep 3;2(9):673-85. 

 

[28] Pellegrini L. Role of heparan sulfate in fibroblast growth factor signalling: a 

structural view. Current opinion in structural biology. 2001 Sep 1;11(5):629-34. 

 

[29] Harmer NJ. Insights into the role of heparan sulphate in fibroblast growth factor 

signalling. Biochemical Society Transactions. 2006 Jun 1;34(3):442-5. 

 

[30] Szlachcic A, Zakrzewska M, Krowarsch D, Os V, Helland R, Smalås AO, Otlewski J. 

Structure of a highly stable mutant of human fibroblast growth factor 1. Acta 

Crystallographica Section D: Biological Crystallography. 2009 Jan 1;65(1):67-73. 

 

[31] Kimura H, Okubo N, Chosa N, Kyakumoto S, Kamo M, Miura H, Ishisaki A. EGF 

positively regulates the proliferation and migration, and negatively regulates the 

myofibroblast differentiation of periodontal ligament-derived endothelial progenitor 

cells through MEK/ERK-and JNK-dependent signals. Cellular Physiology and 

Biochemistry. 2013;32(4):899-914. 

 

[32] Arunkumar AI, Srisailam S, Kumar TK, Kathir KM, Chi YH, Wang HM, Chang GG, 

Chiu M, Yu C. Structure and stability of an acidic fibroblast growth factor from 

Notophthalmus viridescens. Journal of Biological Chemistry. 2002 Nov 

29;277(48):46424-32. 

 



   121 

[33] Fu L, Zhang F, Li G, Onishi A, Bhaskar U, Sun P, Linhardt RJ. Structure and activity 

of a new low‐molecular‐weight heparin produced by enzymatic ultrafiltration. Journal 

of pharmaceutical sciences. 2014 May;103(5):1375-83. 

 

[34] Robinson CJ, Harmer NJ, Goodger SJ, Blundell TL, Gallagher JT. Cooperative 

dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide 

may drive the formation of 2: 2: 1 FGF1· FGFR2c· heparin ternary complexes. 

Journal of biological chemistry. 2005 Dec 23;280(51):42274-82. 

 

[35] Kimura S, Kanaya S, Nakamura H. Thermostabilization of Escherichia coli 

ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn. Journal of 

Biological Chemistry. 1992 Nov 5;267(31):22014-7. 

 

[36] Stites WE, Meeker AK, Shortle D. Evidence for strained interactions between side-

chains and the polypeptide backbone. Journal of molecular biology. 1994 Jan 

7;235(1):27-32. 

 

[37] Takano K, Yamagata Y, Yutani K. Role of amino acid residues in left‐handed helical 

conformation for the conformational stability of a protein. Proteins: Structure, 

Function, and Bioinformatics. 2001 Nov 15;45(3):274-80. 

 

[38] Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side 

of development. Nature reviews Molecular cell biology. 2005 Jul;6(7):530-41. 

 

[39] Huang Z, Tan Y, Gu J, Liu Y, Song L, Niu J, Zhao L, Srinivasan L, Lin Q, Deng J, Li 

Y. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF 

receptor dimer stability. Cell reports. 2017 Aug 15;20(7):1717-28. 

 

[40] Shireman PK, Xue L, Maddox E, Burgess WH, Greisler HP. The S130K fibroblast 

growth factor–1 mutant induces heparin-independent proliferation and is resistant to 

thrombin degradation in fibrin glue. Journal of vascular surgery. 2000 Feb 

1;31(2):382-90. 

 

[41] Erzurum VZ, Bian JF, Husak VA, Ellinger J, Xue L, Burgess WH, Greisler HP. 

R136K fibroblast growth factor-1 mutant induces heparin-independent migration of 

endothelial cells through fibrin glue. Journal of vascular surgery. 2003 May 

1;37(5):1075-81. 

 

[42] Hou B, Cai W, Chen T, Zhang Z, Gong H, Yang W, Qiu L. Vaccarin hastens wound 

healing by promoting angiogenesis via activation of MAPK/ERK and PI3K/AKT 

signaling pathways in vivo. Acta Cirurgica Brasileira. 2019;34(12). 

  



   122 

CHAPTER IV 

Characterization of the Structural Forces Governing the Reversibility of the Thermal 

Unfolding of the Human Acidic Fibroblast Growth Factor 

Abstract 

Human acidic fibroblast growth factor (hFGF1) ~16 kDa is an all beta-sheet protein that is 

involved in the regulation of key cellular processes including cell proliferation, cell 

differentiation, angiogenesis, and wound healing. hFGF1 is known to be an unstable protein and 

has been shown to aggregate when subjected to thermal unfolding.  In this study, we investigate 

the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical 

techniques including multidimensional NMR spectroscopy. Systematic analyses of the thermal 

and chemical denaturation data on seven different designed variants (Q54P, K126N, R136E, 

K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) of hFGF1 indicate that 

nullification of charges in the heparin binding pocket can significantly increase the thermal 

stability of the protein.  The triple variant (Q54P/K126N/R136E) was found to be the most stable 

of all the hFGF1 variants studied. Its Tm value is about ~ 20C higher than the wild type protein. 

GdnHCl/urea-induced equilibrium unfolding of wtFGF1 and the other designed variants of 

hFGF1 are reversible.  However, with the exception of the triple variant, the thermal unfolding of 

wtFGF1 and the other designed hFGF1 is irreversible. However, renaturation of the triple variant 

from its thermal denatured state(s) shows hysteresis behavior. Two-dimensional 1H-15N HSQC 

and cell proliferation data clearly show that the triple variant of hFGF1 regains its biologically 

active conformation upon refolding from its thermal denatured state(s). Results from 

microsecond-level molecular dynamics (MD) simulations show that a network of hydrogen 

bonds and salt bridges linked to the Q54P, K126N, and R136E mutations, are responsible for the 
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high thermal stability and reversibility of the thermal unfolding of the triple variant of hFGF1. In 

our opinion, the findings of the study provide valuable clues for the rational design of a stable 

hFGF1 variant that exhibits potent wound healing properties. 

Introduction 

Protein folding is a fascinating puzzle that has attracted the attention of researchers for a 

long time [1]. The mechanism by which a nascent polypeptide chain folds into a unique three-

dimensional structure has largely remained enigmatic. However, useful knowledge about the 

plausible structural events that occur during the folding of proteins from their denatured state(s) 

has been gained [2,3]. Stable intermediate state(s) that populate the equilibrium/kinetic 

folding/unfolding pathways of several proteins have been characterized and their significance in 

directing a protein to fold to its native conformation have been reported [4,5]. It is widely 

believed that the folding polypeptide is partitioned between productive intra-chain interactions 

leading to the formation of the native conformation and non-productive inter-chain interactions 

that result in misfolding and consequently aggregation of the protein [6,7]. Aggregates formed 

can range from amorphous structures without order to highly structured fibrils as observed in 

dilapidating amyloid diseases such as Alzheimer’s disease, Parkinson’s disease, serum amyloid-

A (SAA), dialysis-related amyloidosis, cystic fibrosis, Creutzfeldt-Jakob disease, Huntington 

disease, and type-II diabetes [8-10]. In several cases, the propensity to aggregate is attributed to 

inter-chain interactions between solvent-exposed hydrophobic surfaces present in obligatory and 

non-obligatory partially structured intermediates that populate the kinetic or equilibrium 

folding/unfolding pathways of proteins [11]. In this context, understanding the structural 

determinants governing protein aggregation is critical for the rational design of drugs against the 

multitude of amyloid diseases [12]. 
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The folding/unfolding pathways of single and multidomain proteins have been 

extensively studied [13,14]. However, most of these proteins are predominantly helical [15]. 

Studies examining the kinetics of all helical proteins such as myoglobin and cytochrome-c have 

indicated that -helical proteins refold from their denatured state(s) very rapidly on a millisecond 

timescale [16]. The higher rate of refolding of all-helical single domain proteins is believed to be 

due to the ease of formation of intra-strand backbone hydrogen bonds in helical conformations. 

Interestingly, very little information exists on the kinetics of folding of all beta-sheet proteins. A 

detailed knowledge of the kinetic events in the folding of all-beta-sheet proteins will likely 

provide valuable information on the structural forces that trigger aggregation or fibril formation 

which mostly involves organization of the polypeptide backbone into an array of beta-sheets 

[17,18].  

Human acidic fibroblast growth factor (hFGF1) is a ~16 kDa heparin binding protein. 

hFGF1 is an all beta-sheet protein and its backbone is organized into a beta-trefoil architecture 

[19, 20]. hFGF1 plays crucial role(s) in the regulation of key cellular processes such as cell 

proliferation, cell differentiation, angiogenesis, tumor metastasis, and wound healing [21-23].  

hFGF1 has a low half -life in vivo [24]. Interestingly, a significant population of hFGF1 has been 

shown to exist in partially unfolded states at temperatures which are marginally higher than the 

physiological temperature [25]. Previous studies have demonstrated that the denaturant-induced 

equilibrium unfolding/refolding of hFGF1 does not occur via a two-state mechanism. Samuel et 

al., showed that guanidium hydrochloride (GdnHCl)-induced equilibrium unfolding of hFGF1 

proceeds through the formation of an obligatory intermediate [26]. Similarly, Alsenaidy et al., 

have shown that hFGF1 is highly prone to aggregation when subjected to heat beyond its Tm (< 

40C) value or when subjected to minor changes in pH or ionic strength [27]. Blaber and 
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coworkers elucidated that the thermal unfolding of hFGF1 can only be reversed by the addition 

of low concentrations of GdnHCl [28]. It is believed that addition of low concentrations of the 

denaturant potentially destabilizes the stable obligatory intermediate that accumulates in the 

GdnHCl-induced equilibrium unfolding pathway of hFGF1 [26]. The propensity of hFGF1 to 

heavily aggregate has been a significant impediment in realizing its strong wound healing 

potential. In this context, there has been an increased interest in devising new wound healing 

formulations that could stabilize hFGF1 against heat-induced aggregation. In this context, in this 

study, we have designed a novel triple variant (TM) (Fig.1, Q54P, K126N, R136E) of hFGF1 

that not only exhibits significantly higher thermal stability but also exhibits reversible thermal 

unfolding by resisting the formation of aggregates. We believe that the findings of this study 

provide valuable insights into the interplay of structural forces that confer reversible unfolding 

behavior to the protein and also provide useful clues for the rational design of hFGF1-based 

therapeutics to manage chronic wounds. 

Results and discussion 

Rationale for the designed mutations 

As mentioned previously, hFGF1 is an all beta sheet protein with 12 beta strands 

organized into a β-trefoil structure. The flexible heparin binding pocket contains a high density 

of positively charged residues and is located between β-strands 10 and 12 (Fig. 1). We recently 

demonstrated that a charge reversal mutation (R136E) in the heparin binding pocket marginally 

decreases the heparin binding affinity but enhances both the thermodynamic stability and cell 

proliferation activity of hFGF1 [19]. hFGF1 is known to be inherently unstable molecule at 

temperatures just above the physiological temperature [20]. It is believed that the instability of 

hFGF1 largely stems from the charge repulsions between the closely placed positively charged 
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residues in the heparin binding pocket [19]. In this context, introduction of a negative charge in 

the heparin binding pocket is postulated to provide a counter-ion effect and consequently 

stabilize the growth factor molecule. K126 is located in the periphery of the heparin binding 

pocket and has been shown to contribute significantly to the heparin binding affinity [19]. 

Therefore, we expect that neutralization of the charge via the K126N mutation would not only 

decrease the heparin binding affinity but also increase the stability of hFGF1. Contribution of 

two negative charges in the cationic heparin binding pocket is expected to significantly stabilize 

the structure of hFGF1. Thus, introduction of Glu, Asn, and Pro residues at positions 54, 126, 

and 136, could plausibly induce a stable conformation by improving the interactions (salt 

bridges) in the protein core and stabilize the growth factor against temperature and chemical 

denaturants. Q54 is lodged on the loop connecting beta-strands -3 and 4. This β-turn falls under 

the category of type I or type IV turns. In either of these β-turns, proline is 4.3 times more 

favored than Gln [40]. In this context, substitution of Q54 with proline is expected to make the 

molecule more compact and consequently promote and stabilize additional interactions in the 

protein core. Zakrzewska et al., showed that Q54P mutation significantly increases both the 

stability and cell proliferation activity of hFGF1 [40]. Substitution of glutamine with proline is 

believed to significantly decrease the local backbone flexibility and render the hFGF1 molecule 

more compact [40]. In addition, secondary structural analyses of wtFGF1 also revealed presence 

of short 310-helices. Again, Pro is a favored amino acid in 310-helix type of secondary structure. 

Matthews et al., and Mateos et al., observed that proline mutations decrease the conformational 

entropy of the unfolded state of proteins [41,42]. Thus, introduction of Q54P, K126N, and 

R136E plausibly aids in minimizing the exposure of hydrophobic regions to the surface and 

restricts the conformational fluctuations occurring in the heparin binding region, thereby leading 
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to refolding and higher stability of the growth factor. In this context, seven (Q54P, K126N, 

R136E, Q54P/R136E, Q54P/K126N, K126N/R136E and Q54P/K126N/R136E) different 

variants were designed to specifically delineate their effects on the structure, stability, heparin 

binding affinity, and cell proliferation activity of hFGF1. 

 

Fig. 1: Amino acid sequence of the triple variant of hFGF1. The residues highlighted in red 

represent the mutated residues in wtFGF1 (Q54P, K126N, and R136E) (Panel – A). Cartoon 

representation of hFGF1 structure (PDB ID: 1RG8) showing the mutation sites (Panel – B). 

 

Mutations do not alter the structure of hFGF1 

Human acidic fibroblast growth factor (wtFGF1) and the designed variants (R136E, K126N, 

Q54P, Q54P/R136E, Q54P/K126N, K126N/R136E and Q54P/K126N/R136E) were purified to 

homogeneity using affinity and gel filtration column chromatography (Fig. 2).  

Triple mutant (R136E/K126N/Q54P)

E136

N126
P54

A

B
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Fig. 2: SDS-PAGE analysis of proteins eluted upon heparin sepharose and gel filtration 

chromatography. wtFGF1 (Lane - 1), R136E (Lane – 2), K126N (Lane – 3), Q54P (Lane – 4), 

R136E/K126N (Lane – 5), R136E/Q54P (Lane – 6), and K126N/Q54P (Lane - 7). 

 

It is important to verify if the introduction of mutations in the seven different variants 

significantly perturbed the structure of hFGF1. In this context, we used far-UV circular 

dichroism (CD) spectroscopy and intrinsic fluorescence spectroscopy to monitor the structural 

changes that could potentially occur as a consequence of the introduced mutations. Far-UV CD 

spectrum (190 nm – 250 nm) of the wtFGF1 shows positive and negative ellipticity bands 

centered at around 228 nm and 205 nm, respectively (Fig. 3A). These structural features are 

consistent with the β-trefoil structure of hFGF1. Interestingly, the far-UV CD spectra of the 7 

designed hFGF1 variants superimpose quite well with that of the wild type protein suggesting 

that the secondary structure of the protein is not perturbed due to the designed mutations. 

 

1         2    3 4 5     6  7
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Fig. 3: Overlay of the far-UV CD spectra of wtFGF1 and the designed variants (Panel – A). 

Overlay of the fluorescence spectra showing the similarity in the tertiary structure of wtFGF1 

and the designed variants (Panel – B). The inset figures represent a cartoon representation of the 

intrinsic fluorescence spectra of hFGF1 in its native and denatured state(s). Concentration of 

protein used was 0.5 mg/mL in 10mM phosphate buffer, pH 7.2 containing 100mM NaCl. 

wtFGF1 (pink), R136E (orange), K126N (gray), Q54P (yellow), K126N/R136E (purple), 

Q54P/R136E (green), Q54P/K126N (blue), and Q54P/K126N/R136E (brown). 

 

hFGF1 contains eight tyrosine residues and a lone tryptophan residue (Trp121, Fig. 1A). 

Intrinsic fluorescence of a single tryptophan residue in the properly folded conformation is 

significantly quenched by the surrounding amine groups of lysine and proline residues [19]. As a 

consequence, intrinsic fluorescence spectrum of wtFGF1 in its native state shows an emission 
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maximum at 308 nm corresponding to the tyrosine fluorescence (Fig. 3B). However, the 

quenching effect of tryptophan is completely relieved in the unfolded state(s) and shows a 

characteristic emission maximum at around 350 nm (Fig. 3B, inset). Therefore, monitoring 

changes in the intrinsic fluorescence provides a reliable measure of the tertiary structural changes 

that could plausibly occur in the protein. Overlay of the intrinsic fluorescence spectra of the 

designed variants of hFGF1 revealed little or no significant differences indicating that the tertiary 

structural contacts in the protein mostly remain unperturbed after the introduction of the 

designed mutations in the protein (Fig. 3B). Results of intrinsic fluorescence and far-UV CD data 

analyzed in conjunction conclusively suggest that the designed mutations did not significantly 

perturb the native three-dimensional structure of wtFGF1. 

Effect (s) of mutation on the thermal stability of hFGF1 variants 

As mentioned previously, hFGF1 is an unstable molecule [Tm ~ 41 C, Tm is the 

temperature at which 50% of the protein population exists in denatured state(s)] and is known to 

exist in partially folded state(s) around physiological temperatures (Table-1) [28]. The protein is 

known to aggregate when subjected to thermal unfolding at temperatures above its Tm [43].  In 

addition, thermal unfolding of hFGF1 is known to be irreversible and consequently the 

calculated Tm (apparent) value is only a qualitative measure of the thermal stability of the protein 

[43]. More recently, Blaber and coworkers showed that the thermal unfolding of hFGF1 can be 

reversed in the presence of low concentrations of GdnHCl [28]. The low thermal stability and the 

problems associated with irreversibility of the thermal unfolding have significantly impeded the 

development of hFGF1 based therapeutics for chronic wound care. In this context, we investigate 

the stability of wtFGF1 and its designed 7 variants by monitoring the changes in the intrinsic 

fluorescence intensity ratio at 308 nm and 350 nm (Fig. 4). 
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Table 1: Comparison of the stability of wtFGF1 and the designed variants. 

Proteins Tm value (°C) Cm value (M Urea) Cm value (M GdnHCl) 

wtFGF1 41.5 ± 0.1 1.9 ± 0.4 1.0 ± 0.8 

R136E 52 ± 0.2 2.25 ± 0.1 1.82 ± 0.4 

K126N 54 ± 0.1 2.3 ± 0.3 1.87 ± 0.3 

Q54P 43 ± 0.1 1.52 ± 0.3 1.44 ± 0.5 

Q54P/R136E 53 ± 0.1 1.53 ± 0.2 1.53 ± 0.6 

Q54P/K126N 56 ± 0.5 1.55 ± 0.1 1.43 ± 0.1 

K126N/R136E 49 ± 0.1 1.70 ± 0.1 1.74 ± 0.2 

Q54P/K126N/R136E 60 ± 0.1 3.97 ± 0.1 2.35 ± 0.1 

 

 
 

Fig. 4: Intrinsic fluorescence spectra of thermal unfolding of wtFGF1 (Panel – A) and triple 

variant of hFGF1 (Panel – B). 

 

The thermal unfolding data suggests that wtFGF1 (Tm (apparent) - 41 °C) exhibits the lowest 

thermal stability (Table-1). Replacement of Q54 with proline appears to have a marginal effect 

(Tm (apparent) = ~ 43 C, Fig. 5, Table-1)) on the stability of the protein. Interestingly, single point 

mutations (K126N and R136E) in the heparin binding pocket appear to have a more profound 
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effect (~ 10 C – 12C) on the thermal stability of the protein (Table-1 & Fig. 5). These results 

suggest that the charge repulsions between the closely placed residues in the heparin binding 

pocket are primarily responsible for the inherent instability of hFGF1. The K126N mutation not 

only decreases the repulsions between positively charged residues in the heparin binding pocket 

but also appears to facilitate forging of a backbone to side-chain hydrogen bonding between 

N126 and S130.  It is believed that introduction of a negative charge via the R136E mutation 

induces a counter-ion effect in the heparin binding pocket which consequently partially screens 

the charge repulsions between the cationic residues located in the heparin binding pocket. 

Surprisingly, the double mutation (K126N/R136E) in the heparin binding pocket shows a 

noticeably lower (Tm (apparent) ~ 49 C, Table-1 & Fig. 6) stability than the corresponding 

individual single-point mutations (K126N and R136E). 

 

Fig. 5: Thermal unfolding and refolding curves of wtFGF1 (Panel-A; unfolding- blue, refolding- 

orange), R136E hFGF1 variant (Panel-B; unfolding- blue, refolding- orange), and TM-variant of 

hFGF1 (Panel-C; unfolding- blue, refolding- orange). The thermal unfolding and refolding of 

wtFGF1 and its variants was monitored by changes in the ratio of intrinsic fluorescence 

intensities at 308 nm to 350 nm. Insert figure in Panel-A depicts the intrinsic fluorescence 

spectra of hFGF1 in its native and denatured states. Concentration of protein used was 0.5 

mg/mL in 10mM phosphate buffer, pH 7.2 containing 100mM NaCl. 
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Although it is not clear why simultaneous replacement of both K126 and R136 causes the 

observed decrease in stability, this is interesting considering the fact that these individual 

mutations distinctly stabilize the protein. It appears that the individual stabilizing forces that 

come into play in the heparin binding pocket (due to the incorporation of K126N and R136E 

mutations) mutually weaken each other leading to a net decrease in the stability of the protein. 

On the other hand, the K126N and R136E mutations when individually combined with the Q54P 

mutation, to yield the double variants (Q54P/K126N and Q54P/R136E), confers significant 

stability to the protein (Fig. 6, Table -1). These results once again confirm that maximum effects 

on the stability of the protein are caused by nullification or reversal of charges in the heparin 

binding pocket. Very interestingly, the Q54P mutation appears to compensate for the mutually 

destabilizing effects of the K126N and R136E mutations. This is obvious from the high 

Tm(apparent) value of the triple variant, Q54P/K126N/R136E (Fig. 6, Table-1). Although the Q54P 

site is located remotely from the mutation sites in the heparin binding pocket, the structural kink 

introduced by proline appears to be transmitted through a network of interactions to the heparin 

binding pocket and consequently enables the two mutations (K126N and R136E) to 

synergistically produce a stabilizing effect on the protein. 
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Fig. 6: Thermal unfolding and refolding curves of wtFGF1 (Panel-A; unfolding- blue, refolding- 

orange), K126N hFGF1 variant (Panel-B; unfolding- blue, refolding- orange), Q54P hFGF1 

variant (Panel-C; unfolding- blue, refolding- orange), Q54P/R136E hFGF1 variant (Panel-D; 

unfolding- blue, refolding- orange), K126N/R136E hFGF1 variant (Panel-E; unfolding- blue, 

refolding- orange), and Q54P/K126N hFGF1 variant (Panel-F; unfolding- blue, refolding- 

orange). The thermal unfolding of wtFGF1 and its variants was monitored by changes in the ratio 

of intrinsic fluorescence intensities at 308 nm to 350 nm. 

 

Mutations in the heparin binding pocket also affect stability of hFGF1 to chemical 

denaturants 

Chemical denaturant–induced isothermic equilibrium unfolding of hFGF1 was examined 

to study the effects of the designed mutations on the stability of hFGF1 using intrinsic 

fluorescence spectroscopy (Figs. 7 and 8). Urea-induced equilibrium unfolding of wtFGF1 at pH 

7.2 (Fig. 7) shows that it is a relatively unstable molecule [Cm ~ 1.9 M, Cm is the concentration of 

the denaturant wherein 50% of the protein population exists in the denatured state(s)] (Table-1). 
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Similar to the thermal unfolding data, single point mutations (K126N and R136E) in the heparin 

binding pocket increase the resistance of the protein to the denaturation induced by urea. 

However, unlike the thermal denaturation data, urea-induced unfolding data suggests that Q54P 

does not contribute to the stability of the protein. In fact, the Q54P mutation marginally 

decreases the Cm (Cm ~1.5 M).  Interestingly, the double variants (Q54P/K126N and 

Q54P/R136E) which increased the thermal stability of the protein, did not confer extra stability 

against urea denaturation. In fact, the Cm (Cm ~1.5 M) values of these double variants were in the 

similar range to that of wtFGF1. However, the triple variant (Q54P/K126N/R136E) was most 

resistant to urea-induce equilibrium unfolding. These results clearly indicate that the interplay of 

structural forces during thermal unfolding is subtly different than thin urea-induced unfolding of 

the protein. The results discussed above also suggest that caution needs to be exercised when 

designing proteins based on denaturation data obtained from one-set of conditions. 

  
 

Fig. 7: Urea-induced equilibrium unfolding and refolding curves of wtFGF1 (Panel-A; unfolding 

– blue, refolding - orange), R136E hFGF1 variant (Panel-B; unfolding – orange, refolding- blue), 

and TM-variant of hFGF1 (Panel-C; unfolding – yellow, refolding - orange). The urea-induced 

equilibrium unfolding/refolding of wtFGF1 and its variants was monitored by changes in the 

ratio of intrinsic fluorescence intensities at 308 nm to 350 nm. Concentration of protein used was 

0.5 mg/mL in 10mM phosphate buffer, pH 7.2 containing 100mM NaCl. 
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GdnHCl is an ionic denaturant and is known to efficiently disrupt both hydrogen bonds 

and electrostatic interactions in proteins. We examined the GdnHCl-induced equilibrium 

unfolding of hFGF1 to understand if the trend in the relative stability of the different designed 

variants is similar to that observed in the presence of a neutral denaturant such as urea. GdnHCl-

induced equilibrium unfolding of hFGF1 was studied previously under different buffer 

conditions and a stable obligate intermediate was found to be populated at around 0.96 M 

GdnHCl29. The partially folded obligatory intermediate was shown to have characteristics 

resembling that of a molten-globule-like state. In this study, we find that the Cm of wtFGF1 is 1 

M (Table-1, Fig. 8) and is very close to the one reported earlier [44]. All the seven variants of 

hFGF1 investigated herein showed higher stability than the wild type protein. This trend in the 

Cm values is slightly different from those calculated from the urea-induced unfolding profiles. 

Interestingly, the double mutants (Q54P/K126N, Q54P/R136E and K126N/R136E) seem to 

exhibit slightly lower stability than the single point mutants (Table-2). These results once again 

emphasize that the relative stabilities of hFGF1 appear to vary depending on the nature of the 

denaturant used. However, one aspect that can be consistently inferred from all the denaturation 

experiments is the extremely high stability of the triple (Q54P/K126N/R136E) variant of hFGF1. 
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Fig. 8: GdnHCl-induced equilibrium unfolding and refolding curves of wtFGF1 (Panel-A; 

unfolding- yellow, refolding- gray), R136E hFGF1 variant (Panel-B; unfolding- orange, 

refolding- blue), and TM-variant of hFGF1 (Panel-C; unfolding- orange, refolding- blue). The 

GdnHCl-induced equilibrium unfolding/refolding of wtFGF1 and its variants was monitored by 

changes in the ratio of intrinsic fluorescence intensities at 308 nm to 350 nm. Concentration of 

protein used was 1 mg/mL in 10mM phosphate buffer, pH 7.2 containing 100mM NaCl. 

 

Reversibility of the thermal unfolding of hFGF1 

The thermal unfolding of hFGF1 is not reversible. Heating hFGF1 beyond its Tm causes 

aggregation of the protein. In fact, several reports show that  wtFGF1 aggregates at temperatures 

beyond 50C (Fig. 5) [19]. There has been increased interest in designing novel variants of 

hFGF1 which show increased stability and enhanced cell proliferation activity. In this context, 

we examined the reversibility of the temperature-induced unfolding of hFGF1 and its variants by 

monitoring intrinsic fluorescence changes at 308 nm and 350 nm. wtFGF1 completely unfolds at 

temperatures beyond 50C. Refolding of the protein was attempted by slow cooling from 75C to 

25C and the results clearly show that the protein remained in the unfolded state(s) (Fig. 5). This 

is obvious from the low 308 nm /350 nm intrinsic ratio. Attempts to refold wtFGF1 and its 

variants from a lower temperature (55C to 25C) also did not help the proteins regain their 
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native conformations. hFGF1 variants, which showed significantly higher Tm(apparent) (K126N, 

R136E, Q54P/K126N, and Q54P/R136E) than the wild type protein, also did not refold to their 

native conformations upon cooling from 85C to 25C. Interestingly, heat-induced denaturation 

of the triple variant (Q54P/K126N/R136E) is completely reversible (Fig. 5). The intrinsic 

fluorescence spectrum of the refolded protein at 25C overlaid quite well with the protein that 

was not subjected to thermal denaturation at 75 C (Fig. 9). 

 
 

Fig. 9: Overlay of the intrinsic fluorescence spectrum of the refolded triple variant at 25C 

(orange) and the triple variant during thermal denaturation at 75 C (blue). 

 
1H-15N HSQC spectrum provides atomic level information on the backbone conformation 

of a protein. Each crosspeak in the spectrum represents an amino acid in a particular backbone 

conformation. In this context, 1H-15N HSQC spectra of the triple variant (Q54P/K126N/R136E) 

were acquired before heat treatment and after refolding upon cooling from its heat denatured 

state(s). Superimposition of the 1H-15N HSQC spectra shows that most of the crosspeaks overlap 

quite well suggesting that the triple variant is capable of refolding back to its native 

conformation from the heat denatured state(s) (Fig. 10).  
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Fig. 10: Overlay of the 1H–15N HSQC of Q54P-TM without heat treatment (red) and the Q54P-

TM after heat treatment (blue) (Panel-A). 1H–15N chemical shift perturbation observed due to the 

temperature effect (Panel-B). The horizontal line represents the arbitrary threshold above which 

the 1H–15N chemical shift perturbation(s) was considered as significant. The 1H–15N chemical 

shift perturbation of individual residues were calculated using the formula, (√ [(2ΔδNH)2 + 

(ΔδN)2]). 

 

hFGF1 is a mitogen and exhibits potent cell proliferation activity. Therefore, the effect(s) 

of the untreated and refolded triple variant (Q54P/K126N/R136E) forms on the proliferation of 

NIH3T3 cells, were compared to examine if the refolded protein is biologically active. As 

expected, wtFGF1 promotes proliferation of NIH3T3 cells and the number of cells almost tripled 

compared to the control cells which were not treated with wtFGF1 (Fig. 11). Interestingly, the 

triple variant exhibits higher cell proliferation activity than the wild type which is mostly 
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consistent with its higher structural stability (Fig. 11). The triple variant which was refolded from 

its heat denatured state(s) is also biologically active albeit with a lower potency (Fig. 11). The 

moderately lower activity exhibited by the refolded triple variant protein could be either due to 

lower stability of the refolded protein in the cell culture medium or due to the presence of a  

small population of biologically inactive soluble oligomers. However, it should be mentioned 

that no visible aggregates were detected in the refolded triple variant protein. These results 

suggest that the triple variant can successfully regain its native conformation from its heat-

denatured state(s). To our knowledge, this is the only hFGF1 variant that has been unequivocally 

shown to refold to its unique biologically active conformation from its heat denatured state(s). 

 

 
 

Fig. 11: Cell proliferation activity of the wtFGF1 and the triple variant (with and without heat 

treatment). 50 ng/mL (blue), 10 ng/mL (orange), 2 ng/mL (gray), 0.4 ng/mL (yellow), and 0 

ng/mL (red). 

 

The triple variant of hFGF1 exhibits hysteresis during refolding from its heat denatured 

state(s) 

Thermal unfolding of the triple variant (Q54P/K126N/R136E) of hFGF1 is reversible but 

a closer look at the thermal unfolding and refolding curves shows that they don’t superimpose 
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well (Fig. 12). The Tm values characterizing the unfolding (60 ± 0.07 °C) and refolding (50 ± 

0.09 °C) processes do not match. Typically, if the structural transitions that occur during heat-

induced denaturation and renaturation from the heat denatured state(s) to the native conformation 

are the same, then one would expect the denaturation and renaturation profiles to superimpose 

quite well with nearly similar Tm values. The mismatch in the Tm values, characterizing the 

thermal unfolding and refolding processes, is clearly indicative of  hystersis. The observation of 

hysteresis is rare but not unprecedented [45]. Hysteresis has been observed in multidomain and 

multimeric proteins [45-50]. Hysteresis observed in the multidomain proteins is largely attributed 

to disparities in the folding transition ensembles, which probably stem from the fact that 

unfolding of these proteins is governed by domain transition whereas refolding events occur 

more cooperatively [50]. However, hysteresis in single domain proteins such as collagen is 

believed to be due to mismatch in the structural events that occur in unfolding and refolding of 

the protein. Refolding of collagen is believed to occur via slow structural rearrangement of the 

loop regions whereas unfolding has been shown to be more cooperative requiring the disruption 

of few structural interactions that are important for stability [47]. Another plausible explanation 

for the observed hysteresis in the thermal unfolding and refolding of the triple variant of hFGF1 

may be ascribed to slow cis-trans isomeriztion of the proline introduced at position 54 via the 

Q54P mutation. Verification of this proposal would require in-depth site–directed mutation 

studies which are beyond the scope of this study. In addition, in some cases hysteresis has also 

been attributed to transient association between protein molecules during the process of protein 

folding/unfolding [51]. As protein association is a multimolecular reaction, the hysteresis 

behavior ascribed to protein association should be dependent on the protein concentration. In this 

context, we compared the thermal unfolding of the triple variant at two different protein 
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concentrations (0.5 mg/mL and 0.2 mg/ml). Thermal unfolding and refolding curves obtained at 

these concentrations were nearly identical suggesting that the hysteresis phenomenon observed 

in the triple variant of hFGF1 is not related to protein association events (Figs. 12A and 12C). In 

some cases, hysteresis observed during thermal unfolding-refolding is believed to be due to steep 

temperature gradients used during the renaturation process [49]. To verify this, we examined 

thermal unfolding/refolding of the triple variant of hFGF1 under two temperature gradient 

conditions, 5C and 2C temperature intervals (Figs. 12A and 12B). The results obtained suggest 

that the hysteresis observed during the thermal unfolding-refolding of the hFGF1 triple variant is 

independent of the temperature gradients used in the experiment (Fig. 12). 

 
 

Fig. 12: Thermal unfolding and refolding curves of the triple variant at a concentration of 0.5 

mg/mL and temperature interval of 5°C (Panel – A; unfolding (blue), refolding (orange)), 0.5 

mg/mL and temperature interval of 2°C (Panel – B; unfolding (blue), refolding (orange)), and 0.2 

mg/mL and temperature interval of 5°C (Panel – C; unfolding (blue), refolding (orange)). 

 

Chemical denaturant-induced equilibrium unfolding-refolding of the triple variant of 

hFGF1 was examined to understand if the hysteresis behavior is dependent on the conditions 

used for protein unfolding/refolding. Overlay of the urea- and GdnHCl-induced equilibrium 
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unfolding/refolding profiles separately shows no signs of hysteresis under these conditions. The 

Cm values for the chemical-induced equilibrium unfolding and refolding processes appear to be 

in agreement within the limits of experimental error (Figs. 7C and 8C). Interestingly, these 

results appear to suggest that hysteresis behavior depends significantly on the conditions used for 

protein unfolding/refolding. Hysteresis behavior appears to be discernably controlled by the 

nature of structural intermediates that populate a particular unfolding pathway. In the theoretical 

sense, it appears that the roughness of the protein folding funnel/terrain is denaturant-dependent. 

Structural interactions contribute to the stability and reversible thermal unfolding of the 

triple variant   

The structural interactions that contribute to the enhanced stability and reversible thermal 

unfolding behavior of the triple variant of hFGF1 were investigated using two-dimensional NMR 

spectroscopy and MD simulations. Superimposition of the 1H-15N HSQC spectra of 

Q54P/K126N/R136E on wtFGF1 and analysis of the 1H-15N chemical shift perturbation plot 

(Figs. 13A and B) indicate that introduction of mutations at positions 54, 126, and 136, induces 

only a minor shift of the cross peaks corresponding to residues located in the spatial vicinity of 

the mutation site (R136, G134, and K132). These three residues are located in the heparin-

binding pocket. R136 is one of the mutated sites and K132 and G134 are involved in the 

formation of stronger electrostatic interactions (E136-K132, G134-G85) in the triple variant. 

G134 is in close proximity to R136 and R133 (located in the center of the heparin binding 

pocket). Thus, introduction of Q54P, K126N, and R136E appears to have contributed to 

formation of new electrostatic interactions in the heparin binding pocket. These new interactions 

could plausibly have increased the compactness of the hFGF1 structure and consequently 

decreased the flexibility of the heparin binding loop. 
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Fig. 13: Overlay of the 1H–15N HSQC of wtFGF1(blue) and the Q54P-TM (red) (Panel-A). 1H–
15N chemical shift perturbation observed due to the R136E/K126N/Q54P mutation in hFGF1 

(Panel-B). The horizontal line represents the arbitrary threshold above which the 1H–15N 

chemical shift perturbation(s) was considered as significant. The 1H–15N chemical shift 

perturbation of individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]). 

 

We have also performed microsecond-level equilibrium MD simulations of wtFGF138 

and the triple variant, based on the X-ray crystal structure of the hFGF1 monomer (PDB ID: 

1RG8) [29]. wtFGF1 is fairly stable initially, with RMSD values remaining around 1 Å for 

approximately 2 µs [38]. However, it undergoes a conformational change quite abruptly after 

about 2 µs and reaches an RMSD value of nearly 3 Å [38]. When compared with wtFGF1, the 

triple variant (Q54P/K126N/R136E) does not exhibit any sudden conformational changes and 

remains relatively stable for 4.8 µs with an RMSD of around 2 Å (Figure 14B). The differential 
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behavior of wtFGF1 and the triple variant is more clearly reflected in the RMSD time series of 

the heparin-binding region (residues 126-142), wherein wtFGF1 behaves significantly differently 

from the triple variant (Fig. 14C). The heparin-binding region in wtFGF1 is initially stable below 

1Å but undergoes an abrupt conformational transition (Fig. 14A, 14C) at around 2 µs and stays 

at 3.5Å for the rest of the simulation, whereas the heparin-binding region of the triple variant 

remains stable around 2Å for 4.8 µs [38]. A visual inspection of the simulation trajectories 

clearly reveals that the heparin-binding region of wtFGF1 moves away from the core of the 

protein after the 2 µs timepoint, while no major change is observed for the triple variant (Fig. 

14A) [38]. 

These results are further corroborated by the root-mean-square fluctuation (RMSF) 

analysis for wtFGF1 and the triple variant, wherein both systems show similar trends in their 

fluctuations for different regions with the exception of the heparin-binding region in wtFGF1 

(Fig. 14D) [38]. Experimental results of intrinsic fluorescence and far-UV CD spectroscopy data 

are in good agreement with the MD simulation data suggesting that the designed mutations do 

not significantly perturb the beta-trefoil core structure of wtFGF1. 
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Fig. 14: A) Visual representation of wtFGF1 (red) before and after the conformational change. 

The heparin-binding region (gold) moves away from the beta-trefoil core of the protein. No 

major conformational change occurs in the triple variant (purple). The heparin-binding region 

(gold) maintains the same conformation for 4.8 μs. B) RMSD time series for wtFGF1 (red) and 

the triple variant (purple). C) RMSD time series for the heparin-binding region of wtFGF1 (red) 

and the triple variant (purple). D) Root mean square fluctuation (RMSF) estimations for the 

wtFGF1 (red) and the triple variant (purple). 

 

Based on the criteria defined in the methods section, 65 stable hydrogen bonds were 

identified in wtFGF1. Only one interaction out of 65 involves the heparin-binding region – 

L145-K142 (84%) which is a backbone-backbone hydrogen bond. All 65 interactions observed 

in wtFGF1 also occur in the triple variant with similar occupancies. 6 stable hydrogen bonds 

were observed in the triple variant involving the heparin binding region (Table 2) that do not 

qualify as stable hydrogen bonds in wtFGF1 based on the criteria defined in the methods section 

(Table 2). Two of these six interactions involved variant residues (N126 and E136) (Table 2 in 

bold). 
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Table 2: Electrostatic interactions involved in the heparin binding region in the triple 

variant. 

 

Salt bridge/hydrogen bond 

Interaction 

Occupancy (%) 

triple variant wildtype 

R133 – E136  98 0 

N126 – S130  79 0 

G134 – G85  79 35 

T137 – G134  62 35 

K132 – G124  62 28 

Y139 – E104  54 13 

 

Both interactions involving variant residues have very high occupancies. R133-E136 is a 

strong salt-bridge interaction, indicating that the R136E mutation might play a key role in 

conferring stability to the protein and in reversing the unfolding process of wtFGF1 (Fig. 15A). 

A weaker salt bridge involving E136 (E136-K132) (Fig. 15B) was also identified. Both these 

salt-bridges occur only in the triple variant. 

Two unique salt-bridges were also identified in wtFGF1 – D84-K132 (Fig. 15C) and 

D46-K127 (Fig. 15D) [38]. Electrostatic interactions between positively charged residues in the 

heparin binding region and negatively charged residues in the beta-trefoil core, help stabilize the 

heparin-binding region after the conformational change that occurs in wtFGF1 [38]. D84 of the 

beta-trefoil core interacts with K132 of the heparin binding region, while D46 of the beta-trefoil 

core interacts with K127 of the heparin binding region [38]. The absence of the D84-K132 

interaction in the triple variant (Figure 15C) indicates that K132 interacts more favorably with 

E136 (Figure 15B) than with D84. Therefore, the R136E mutation potentially causes a transition 

from a relatively weak long-range interaction to a stronger short-range interaction, thus 

stabilizing the triple variant.  
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Fig. 15: A, B) Time series of the E136-R133 (A) and E136-K132 (B) donor-acceptor salt bridge 

distance in the triple variant structure. C, D) Time series of the D84-K132 (C) and D46-K127 

(D) donor-acceptor salt bridge distances in wtFGF1 (red) and the triple variant (purple). 

 

Two out of the three mutations (K126N and R136E) in the triple variant structure are 

located in the heparin binding region. RMSD, RMSF and electrostatic interaction analyses 

suggest that these mutations are the driving force behind the relative conformational stability of 

the triple variant. These results are further supported by solvent accessible surface area (SASA) 

calculations for the heparin binding region. SASA of the wildtype heparin-binding region 

increases significantly after 2 µs while there is no significant change during the triple variant 

simulation (Figure 16) [38]. 
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Fig. 16: Comparison of the SASA time series of the heparin-binding region of wtFGF1 and the 

triple variant. 

 

        The MD simulations reveal that although wtFGF1 is relatively stable within 2 microseconds 

(which could be misleading if one uses typical sub-microsecond-level simulations), it undergoes 

a rapid conformational transition after 2 microseconds [38]. Absence of this conformational 

change in the triple variant indicates that the mutations in the heparin binding region have led to 

an increase in stability of the protein. While microsecond-level MD simulations cannot provide a 

complete characterization of the unfolding and folding process, they do give us unique insights 

into the conformational dynamics of wildtype and triple variant hFGF1. The computational data 

is generally in agreement with the experimental data, showing that these mutations contribute to 

the structural forces responsible for the reversibility of unfolding of the triple variant. 

Conclusions 

In the present study, we show that nullification or reversal of charge of amino acids in the 

heparin binding pocket of hFGF1, increases protein stability without significant perturbation of 

the three-dimensional structure of the protein. The triple variant (Q54P/K126N/R136E) exhibits 

~ 20C higher stability than the wild type protein. With the exception of the triple variant, the 

thermal unfolding of wt-hFGF1 and designed variants is irreversible. Two-dimensional NMR 
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and cell proliferation activity data clearly show that the thermally denatured triple variant fully 

regains its biologically active native conformation upon cooling.   The refolding of the triple 

mutant, from its thermally denatured state(s), exhibits a hysteresis behavior with a mismatch in 

the Tm values of the unfolding and refolding process. In addition, comparison of the thermal-, 

urea-, and GdnHCl-induced unfolding data suggest that the relative stabilities of hFGF1 and its 

variants vary depending on the nature of the denaturant used. MD simulation studies reveal that 

the triple variant mutations reduce the flexibility of the heparin binding region and enhance the 

stability of hFGF1 by forming a network of stable electrostatic interactions such as R133-E136 

and N126-S130. These interactions in the triple variant also appear to play a critical role in the 

reversible thermal unfolding of the protein. To the best of our knowledge, this is the first study 

wherein a hFGF1 variant with increased stability and reversible protein folding behavior is 

reported. The findings of this study, in our opinion, can be expected to provide valuable leads for 

the design of an efficient FGF-based therapy for chronic wound care. 

Materials and methods 

Materials 

DNA plasmid isolation kits were purchased from Qiagen, USA and Quikchange II XL 

mutagenesis kits were obtained from Agilent. Competent cells (DH5α and BL-21(DE3)) were 

sourced from Novagen Inc., USA. Lysogeny broth (LB) was obtained from EMD Millipore, 

USA. Heparin sepharose was obtained from GE Healthcare, USA. VWR Scientific Inc, USA 

was the supplier for all buffer components including Na2HPO4, NaH2PO4 and NaCl. NIH 3T3 

cells were obtained from ATCC and all the cell culture reagents including, DMEM media, fetal 

bovine serum (FBS) and penicillin-streptomycin were purchased from Thermo Fisher Scientific 

(Waltham, MA). 
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Construction and availability of pure wtFGF1 and hFGF1 variant (s) 

For all site-directed mutagenesis experiments, a truncated form of the hFGF1 gene (residue 

number, 15-154) was inserted into a pET20b expression vector. Primers were designed using an 

Agilent primer design program and were ordered from IDT DNA Inc., USA. Site-directed 

mutagenesis (SDM) was performed using a QuikChange lightning kit followed by polymerase 

chain reaction (PCR) as per the protocol provided by the vendor (Agilent Technologies). The 

plasmid was then transformed into XL-gold competent cells and plasmid sequencing was carried 

out by the DNA core sequencing facility at the University of Arkansas Medical Science 

(UAMS). Each hFGF1 variant was overexpressed in BL-21(pLysS) Escherichia coli cells 

cultured in lysogeny broth (LB) at 37 °C with agitation at 250 rpm. After overexpression, 

bacterial cells were lysed by ultra-sonication and the released proteins were separated from the 

cell debris by centrifugation for 20 minutes at 19,000 rpm. All the hFGF1 variant proteins were 

then purified on a heparin-sepharose column using a stepwise salt gradient (100 – 1500 mM 

NaCl) in 10 mM sodium phosphate buffer (pH 7.2). SDS-PAGE was used to determine the 

purity of the protein. The protein bands were visualized by staining the gels with Coomassie 

brilliant blue and the protein concentrations were determined by Bradford assay using a Hitachi 

F-2500 fluorimeter. 

Circular dichroism (CD) spectroscopy 

Far-UV circular dichroism (CD) measurements were performed on a JASCO-1500 

spectropolarimeter using a quartz cell of 1 mm path length. Each spectrum was an average of 3 

scans and the wavelength range used was from 190-250 nm. The concentration of the protein 

used was 33 μM in 10 mM sodium phosphate buffer (pH 7.2) containing 100 mM NaCl at 25 °C. 

All the data points were normalized using necessary background corrections and smoothened 
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using the Savitzky-Golay algorithm. The final spectra were obtained after necessary blank 

corrections with 10 mM sodium phosphate buffer (pH 7.2) containing 100 mM NaCl. 

Fluorescence spectroscopy 

All intrinsic fluorescence measurements were performed on a Hitachi F-2500 spectrophotometer 

at 25 °C and a 10 mm quartz cuvette. The excitation and emission slit widths were each set at 2.5 

nm. All the experiments were performed with protein concentration of 33 μM in 10 mM sodium 

phosphate buffer (pH 7.2) containing 100 mM NaCl. wtFGF1 and all the variant proteins were 

excited at a wavelength of 280 nm and the emission spectra were recorded from 300 nm to 400 

nm. 

Equilibrium unfolding 

Thermal, urea and GdnHCl unfolding of wtFGF1 and all the hFGF1 variants were performed on 

a Jasco-1500 spectrophotometer using the fluorescence and circular dichroism spectroscopy. 

Equilibrium unfolding experiments were performed using a protein concentration of 33 μM in 10 

mM sodium phosphate buffer (pH 7.2) containing 100 mM NaCl. Spectra were collected every 5 

degrees from 25 to 90 °C. Each set of data was fit using excel graphing tools. The proteins were 

excited at a wavelength of 280 nm and the emission spectra were recorded from 300 nm to 400 

nm and the fraction unfolded was plotted as a function of temperature. The denaturation 

temperature (Tm) was determined as the temperature at which 50% of the protein population was 

denatured. Urea and GdnHCl-induced equilibrium unfolding experiments were conducted at a 

protein concentration of 33 μM. Urea and GdnHCl was titrated in consistent volumes into the 

sample up to a concentration of 8 M and 6 M, respectively. Protein unfolding was monitored by 

fluorescence and the fraction unfolded was determined using the ratio of the fluorescence 

308/350 nm intrinsic fluorescence. Spectra were collected as an average of 3 scans. 
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Nuclear magnetic spectroscopy 

1H-15N HSQC experiments were conducted on a Bruker Avance DMX-700 MHz spectrometer 

equipped with a 5 mm inverse cryoprobe at 25°C. wtFGF1 and the Q54P/K126N/R136E-TM 

were grown in M9 medium with 15NH4Cl used as the sole nitrogen source. For the heat treated 

Q54P/K126N/R136E-TM NMR sample, the protein was heated to 75°C using the water bath for 

3 minutes and then cooled down at room temperature for 5 minutes. The sample was then 

centrifuged to remove any visible aggregates. 15N labeled protein samples (1 mM) were prepared 

in 90% H2O + 10% D2O solution containing 10 mM sodium phosphate buffer (pH 7.2) 

containing 100 mM NaCl and 25 mM (NH4)2SO4. Spectra were recorded using 48 scans and 256 

data points in XY dimension. Data were analyzed using XWINNMR 3.5 software supplied by 

Bruker. 

Cell proliferation activity 

3T3 fibroblast cells obtained from ATCC (Manassas, VA) were cultured in complete media 

consisting of DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were 

grown to 80–90% confluency and were incubated overnight at 37 °C with 5% CO2 in serum free 

media. Cells were then centrifuged for 2 min at 6000 rpm and then washed twice with hyclone 

buffer to remove any remaining trace of enzyme and were transferred to incomplete media 

(DMEM media without 10% FBS). The cell proliferation activity of hFGF1 was determined by 

quantifying the increase in cell number after the cells had been incubated with hFGF1 at varying 

concentrations. Starved 3T3 fibroblasts were collected and seeded in a 96-well plate at a seeding 

density of 10,000 cells/well. Cells were then co-incubated individually with wild type and 

variant hFGF1 at concentrations of 0, 0.4, 2, 10, and 50 ng/mL. After 24 h of incubation, 3T3 

cell proliferation was assessed by the CellTiter-Glo (Promega, Madison, WI) cell proliferation 

assay. 
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All-atom equilibrium MD simulation 

An all-atom equilibrium MD simulation of the triple variant (Q54P, K126N, R136E) was 

performed based on the X-ray crystal structure of the hFGF1 monomer (PDB ID: 1RG8 – 

Resolution: 1.1 angstroms) [29]. CHARMM-GUI was used to generate the initial simulation 

model [30,31]. Residues 12-137 from the crystal structure correspond to residues 26-151 in the 

experimental sequence. The first 12 residues were not used experimentally because they are part 

of a random coil. The heparin-binding region spans residues 126-142 (in the experimental 

sequence). The initial part of simulation was performed with the NAMD 2.13 simulation 

package and the CHARMM36 all-atom additive force field [32,33]. The input files were 

generated using CHARMM-GUI’s QuickMD Simulator plugin [31]. The model was solvated in a 

rectangular TIP3P water box and 150 mM of NaCl ions were inserted into the system using the 

Monte-Carlo ion placing method [31]. The system consisted of approximately 25,000 atoms. 

Initially, we energy-minimized the system for 10,000 steps using the conjugate gradient 

algorithm [34]. Then, the system was relaxed by releasing the restraints in a stepwise manner 

(for a total of ∼1 ns) using the standard CHARMM-GUI equilibration protocol [30,31]. The 

initial relaxation was performed in an NVT ensemble while the rest of the simulation was 

performed in an NPT ensemble at 300 K using a Langevin integrator with a time step of 2 fs and 

damping coefficient of 0.5 ps−1. The pressure was maintained at 1 atm using the Nosé−Hoover 

Langevin piston method [34,35]. The smoothed cut-off distance for non-bonded interactions was 

set to 10−12 Å, and long-range electrostatic interactions were computed with the particle mesh 

Ewald (PME) method [36]. The initial equilibration run lasted 15 nanoseconds. The production 

run was then extended on the Anton2 supercomputer for 4.8 microseconds, with a timestep of 2.5 

fs. The pressure was maintained at 1 atm semi-isotropically, using the MTK barostat, while the 
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temperature was maintained at 300 K, using the Nosé–Hoover thermostat. The long-range 

electrostatic interactions were computed using the fast Fourier transform (FFT) method [37].  

Conformations were collected every 240 picoseconds. Data from an all-atom equilibrium MD 

simulation of wildtype hFGF1 that we had performed previously using identical conditions, was 

compared with data from the triple variant simulation described above [38]. 

The RMSD trajectory tool of VMD was used to calculate the RMSD and Cα atoms were 

considered for these calculations [39]. For RMSD calculations, we aligned the region of interest 

against its own initial configuration and calculated RMSD with respect to this configuration. 

RMSF of individual residues was calculated using the Cα atoms by aligning the trajectory against 

the crystal structure. The salt bridge plugin of VMD was used to calculate the distance between 

the two salt bridge residues over the course of the simulation, which is the distance between the 

oxygen atom of the participating acidic residue and the nitrogen atom of the basic residue. 

The VMD HBond plugin was used for hydrogen bond analysis [39]. Salt bridges were defined as 

interactions with an oxygen-nitrogen cut-off distance below 4 Angstroms for at least 50% of the 

total simulation time [39]. Hydrogen bonds were defined as interactions between two residues 

with a hydrogen donor and a hydrogen acceptor with an angle cutoff of 35 degrees between the 

donor, hydrogen, and acceptor and a donor-acceptor distance cutoff of 4 angstroms. A stable 

hydrogen bond was defined as a hydrogen bond with an occupancy of 50% or more over the 

course of the simulation. SASA was calculated using the internal SASA measurement method of 

VMD [39]. 
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CHAPTER V 

Stability of sFGF1 with respect to the Fluctuating pH Conditions, Aliphatic Alcohols, and 

Cell Culture Media 

Abstract 

 

Human acidic fibroblast growth factor (hFGF1), a 16 kDa heparin binding protein is ubiquitously 

expressed and is a powerful mitogen which is involved in various crucial cell-survival activities. 

Besides the cell survival activities, this protein is also involved in treatment of disorders such as 

diabetes, myocardial infarction, neuroprotection, bone fracture healing, and wound healing. The 

major disadvantage of using hFGF1 as a wound healing agent is that the apparent melting 

temperature (Tm -37˚C) of the growth factor lies in the physiological range. A negatively charged 

glycosaminoglycan, heparin, when bound to wtFGF1 increases the stability of the growth factor. 

Using a wide range of biophysical techniques, we determine that super FGF1 (sFGF1) 

considerably increases resistance of the growth factor to a broader range of pH range (2.5-11) 

and stabilizes hFGF1 in different aliphatic alcohols, and DMEM cell culture media. Intrinsic 

fluorescence spectroscopy data suggest that sFGF1 can sustain the conformational fluctuations 

over a broader range of pH (2.0 -11), whereas wtFGF1 is only stable from pH 4.0 - 9.5. The 

stability of sFGF1 in all the three aliphatic alcohols (ethanol, TFE and acetonitrile) is more than 

double of that exhibited by wtFGF1. Results of differential scanning calorimetry experiments 

suggest that unlike wtFGF1, sFGF1 is thermally reversible from pH 4.0 - 9.0. Results from SDS-

PAGE show that sFGF1 increases resistance of the growth factor to the action of proteases 

present in DMEM cell culture media. sFGF1 due to its ability to sustain varying pH conditions 

and enhanced stability in cell culture media is believed to help in the efficient growth of different 
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types of mammalian cells. Further, the stability of sFGF1 under diverse conditions may be useful 

to design a more versatile wound healing therapeutic(s).  

Introduction 

 

Fibroblast growth factors (FGFs) constitute a family of heparin binding proteins involved 

in the regulation of cell growth and differentiation, and angiogenesis [1]. Several fibroblast 

growth factors (FGFs) have been found to be vital for embryonic and fetal development, wound 

healing, bone fracture healing, neuroprotection, and tumor development and progression, and 

they also protect against radiation-induced intestinal damage, myocardial infarction, and diabetes 

mellitus [2-9]. Out of all the FGFs, hFGF1 is unique in a way that it can activate all four known 

tyrosine kinase fibroblast growth factor receptors (FGFRs) [10]. FGFs’ activities, therefore, 

could be harnessed to treat disorders that result from these types of insufficiencies - diseases 

characterized by ischemia such as, peripheral arterial disease, coronary ischemia, diabetic ulcers, 

and bed sores. Previously, our group has reported that a mutated form of hFGF1 (sFGF1) 

showed an increased activation of the ERK1/2 pathway, which is known to be critical for wound 

healing [11, 21]. Therefore, sFGF1 may exert the most potent effect on the treatment of wounds.  

 Crystallographic analyses of hFGF1 proteins depict a β trefoil structure containing twelve 

beta sheet strands, organized into a central domain, five of these sheets form a hairpin binding 

structure. The beta-sheets are arranged in an anti-parallel direction and are well conserved 

[14,15]. hFGF1 has an intrinsically low thermal, pH and proteolytic stability, and almost half of 

the wild type hFGF1 population is denatured at physiological temperature (Tm -37˚C). Stability 

of wtFGF1 increases as a consequence of its binding to heparin. As the low stability of hFGF1 

limits its potential for practical use, several studies have been conducted on improving the 

stability of hFGF1 and consequently facilitate its long-term storage [12,13]. 
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 Several hFGF1 variants have been generated to increase its thermodynamic and 

proteolytic stability [12,16]. Among such hFGF1 variants, R133E, R136E, K126N, K132E, 

Q40P, S47I, H93G, and cysteine variants (C131S, C97S, C31S) were identified as strong 

stabilizing substitutions [8,20]. Compared to individual point mutations (K126N, K132E, S61I, 

H107G, and Q54P), combinations of single mutations (K126/K132E), 

(K132E/S61I/Q54P/H107G), (K126/K132E/S61I/Q54P/H107G), and 

(K126N/S61I/Q54P/H107G) were able to enhance the thermal stability of hFGF1. Previously 

reported hFGF1 variant, also known as sFGF1 (R136E/K126N/Q54P/S61L/H107S) has been 

suggested to be the most stable variant of hFGF1 so far [11]. In particular, the denaturation 

temperature (Tm) of sFGF1 increased up to 68˚C when compared with that of wild type hFGF1 

(wtFGF1), Tm - 37˚C. Furthermore, R136E/K126N/Q54P/S61L/H107S exhibited the longest 

half-life and the lowest proteolytic susceptibility among all the other hFGF1 variants reported in 

the literature. sFGF1 is a heparin-independent variant. This has been evidenced by cell 

proliferation experiments which show 70% increased mitogenic activity in sFGF1 than wtFGF1. 

This chapter aims at studying sFGF1’s ability to sustain varying pH conditions, stability 

in different aliphatic alcohols (ethanol, 2,2,2- trifluoroethanol (TFE), and acetonitrile), and 

DMEM cell culture media. The results of this study demonstrate that sFGF1 can sustain the 

conformational fluctuations in both, acidic and basic environments. Being able to resist the 

change in pH is an important finding for many biomedical applications, including drug delivery 

and tissue engineering. Owing to its ability to resist the action of cellular proteases, results of this 

study strongly suggest that sFGF1 can effectively regulate pluripotency and cell differentiation in 

human embryonic stem cells. Lastly, the extraordinary stability by sFGF1 in aliphatic alcohols 
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implies that it can be stored under sterile conditions in alcohols, thereby minimizing potential 

microbial infections. 

Results and discussion 

 

Effect of pH on the stability of wtFGF1 and sFGF1 

Nearly every biological process is pH dependent reflecting the importance of local pH on 

all processes in the cell. Ionizable amino acid residues have been shown to have a large influence 

on protein structure, stability and solubility [37, 38]. The types of interactions the side chains 

have with their environment depend on their protonation state. As a consequence of the change 

in protonation of the ionizable residues, the stability of proteins is pH dependent. Changes in 

intracellular pH have been shown to regulate essential processes such as cell proliferation and 

apoptosis [39, 40]. However, our understanding on the effects of environmental pH on proteins is 

limited. 

 The process of wound healing involves various cellular events, including angiogenesis. 

pH within the wound environment directly and indirectly influences all cellular events [41]. It 

has been shown that the surface pH of any wound plays an important role in wound healing as it 

helps in controlling infection and increasing antibacterial and antifungal activity, oxygen release, 

and protease activity [42]. During the wound healing process, the wound site advances from an 

alkaline state to a neutral state and lastly to an acidic state. Therefore, alterations in pH can affect 

the regular cellular events in wound healing and to work as an efficient wound healing 

therapeutic, FGF with a wider range of pH stability is desired [44].  

In this context, the stability of wtFGF1 and sFGF1 were monitored using fluorescence 

spectroscopy. Fluorescence spectroscopy is an excellent method to determine changes in the 

tertiary structure of the protein. wtFGF1 contains one tryptophan and eight tyrosine residues. In 
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the native state, fluorescence of a tryptophan residue is quenched by the lysine and proline 

residues located in the vicinity of the indole ring. The quenching effect diminishes the expected 

350 nm tryptophan peak and therefore, only 305 nm emission peak from the eight tyrosine 

residues is observed in the native conformation of the protein. The intrinsic fluorescence spectra 

of wtFGF1 and sFGF1 at pH 3.5 and 7.0 are displayed in Fig. 1. The spectra from wtFGF1 and 

sFGF1 at pH 7.0 have an emission maximum at 305 nm, which corresponds to the emission of 

tyrosine residues. Contrastingly, the spectra at pH 3.5 show a major peak at 305 nm for sFGF1, 

but a 350 nm peak for wtFGF1 corresponding to the emission of a Trp residue. This infers that 

sFGF1 is stable even at pH 3.5. Absence of the 350 nm emission peak at pH 3.5 suggests that the 

native tertiary structural interactions in sFGF1 are mostly intact.  

 

Fig. 1: Overlay of the fluorescence spectra of wtFGF1 and sFGF1 at pH 3.5 and 7. 

The ratio of fluorescence intensity at 305 nm and 350 nm (305/350) has been established 

to examine the changes in tertiary structure of hFGF1 as a function of temperature, pH or a 

chemical denaturant. A greater intensity ratio denotes that the protein is in its properly folded 

tertiary structure. On the other hand, a lower value of 305/350 nm indicates perturbed tertiary 

structure. Hence, the intensity ratio has been calculated and plotted as a function of pH to 
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observe the alteration in the tertiary structure of wtFGF1 and sFGF1 (Fig. 2). 305/350 nm 

intensity ratio for wtFGF1 started at ~1 and increased steadily up to ~5. At pH 1.0, 1.5, 2.0, 2.5, 

3.0, and 3.5, the intensity ratio was found to be at ~1, suggesting that the tertiary structure of 

wtFGF1 is altered from pH 1.0 - 3.5. In contrast, 305/350 nm ratio for pH 4.0 and 4.5 was found 

to gradually increase from ~1 to ~5, indicating minor structural perturbations. Fluorescent 

intensity ratio was found to be stable at ~5, from pH 5.0 to 7.5, suggesting that the tertiary 

structure of wtFGF1 is properly folded. 305/350 nm ratio decreases from pH 7.5 to pH 10, 

signifying structural changes in wtFGF1. Intensity ratio stays below 1 from pH 10 to 13, 

implying that the native tertiary structure of wtFGF1 is completely altered. On the other hand, 

fluorescence intensity ratio for sFGF1 initiates at 1 and gradually increases with an increase in 

pH, indicating that the tertiary structure is altered from pH 1.0 to 2.0 and there are some minor 

structural changes from pH 2.5 to 4.5. Fluorescence intensity ratio is found to be maximum (~6) 

from pH 4.5 to 9.5. This indicates that there is no significant alteration in the tertiary structure of 

sFGF1. However, intensity ratio stays below 1 from pH 11.5 to 13, implying that the native 

tertiary structure of sFGF1 is significantly altered. 

It has been observed that both acute and chronic wounds have a lower healing rate with 

an alkaline pH when compared with an acidic pH [43]. Therefore, maintaining the protein 

stability under acidic conditions is critical in the biomedical applications, including wound 

healing [22,23]. There have been several studies that have examined different approaches to 

achieve this stability; including protein engineering and chemical modifications [24,25]. Heparin 

binding pocket comprises of positively charged amino acids. These amino acids repel each other 

and cause instability of wtFGF1. Two of these positively charged residues in heparin binding 

pocket of sFGF1 have been mutated to a negative and neutral amino acid (R136E and K126N). 
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These mutations aid in minimizing the repulsions between closely packed basic amino acids. 

Moreover, serine to leucine substitution at position 61 might help in rearrangement of the 

hydrogen bonds in sFGF1, thereby stabilizing the protein against conformational changes in 

different pH. Results from Chapter IV indicate that the thermal stability of the triple variant 

(R136E/K126N/Q54P) was found to be 18 °C higher than wtFGF1. The reason for enhanced 

stability of the triple variant could be attributed to formation of stable electrostatic interactions 

(R133-E136 and N126-S130) involving the mutated residues. It has also been demonstrated that 

Q54P mutation leads to the formation of a short 310 helix which increases the β-sheet propensity 

of the growth factor [17]. Analyses of main-chain dihedral angles indicates that Ser at position 

61 in wtFGF1 was located much closer to the surface (ψ = 149° and ψ = 143°) whereas Ile in the 

triple variant structure was positioned in a region favorable for β-strand conformation (ψ = -113° 

and ψ = 124°) [17]. H107 residue forms a type I β-turn in wtFGF1. However, glycine is preferred 

over His in type I β-turn. Therefore, substitution of His by Gly reduced the steric strain between 

the backbone and side-chain C-alpha atoms. Thus, it appears that introduction of R136E, K126N, 

Q54P, S61L, and H107S aid in stabilizing hFGF1 against the conformational fluctuations in pH, 

thereby qualifying sFGF1 as a better wound healing agent. 

 

Fig. 2: Effect of pH on the stability of wtFGF1 and sFGF1 
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Effect of pH on the reversibility of thermal unfolding of hFGF1 

Differential Scanning Calorimetry (DSC) is a useful tool for thermal analyses of proteins 

using changes in heat capacity due to exothermic or endothermic reactions. We examined the 

thermal stability and refolding of sFGF1 using DSC (Fig. 3). It can be inferred from the 

thermograms that fluctuations in pH significantly affect the refolding capacity of sFGF1. It 

should be noted that Tm (temperature at which 50% of the protein population exists in denatured 

state(s)) of unfolded and refolded sFGF1 from pH 4.0 - 9.0 is found to be ~68°C, indicating that 

sFGF1 is stable in a pH range of 4.0 -9.0. On the contrary, Tm of refolded sFGF1 at pH 2.0, 3.0, 

and 10 shifts from 68°C to ~50°C (Fig. 4). This signifies that some of the interactions that are 

present in sFGF1 (unfolded/native state) are disrupted during the refolding process at pH’s 2.0, 

3.0, and 10. Moreover, the DSC thermogram at pH 2.0, 3.0 and 10 are broad indicating that the 

protein exists in multiple conformations including a population of conformations which resemble 

the native state. 
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Fig. 3: Effect of pH on the reversibility of the thermal unfolding of sFGF1 

The decrease in Tm of the refolded sFGF1 at pH’s 2.0, 3.0, and 10 could presumably be 

due to the loss of stabilizing interactions (salt bridges (R133 and E136) and H-bonding (G129- 

N126, N126-S130, Q141-E136, and E136-R133)) present in the unfolded (native) sFGF1. It 

might also be plausible that time period for which the protein is cooled during the refolding 

process is not sufficient to form the interactions. Therefore, Tm of unfolded and refolded sFGF1 

does not match at pH’s 2.0, 3.0, and 10. 
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Fig. 4: Tm of the unfolded and refolded sFGF1 at different pH values. 

SDS-PAGE was run on the thermally unfolded wtFGF1 and sFGF1 to examine the 

percentage of active protein in each sample (Figs. 5 and 6). Panel A of Figs. 5 and 6 represents 

DSC profile of unfolding of wtFGF1 and sFGF1. After the unfolding of hFGF1, samples were 

aliquoted for SDS-PAGE (Panel B of Figs. 5 and 6). Densitometric analysis of SDS-PAGE gel 

shows that only 5% of wtFGF1 was found in the supernatant (aggregated molecules settle at the 

bottom after centrifugation) in comparison to 75% of sFGF1 (Panel C of Figs. 5 and 6). The fully 

folded sample before loading into DSC was considered to be 100% unaggregated protein. 

Aggregation of wtFGF1 (70%) was evidently visible after centrifugation whereas sFGF1 did not 

show any visible aggregates (only 10%). Moreover, lower Cp as observed in DSC thermograms 

for the refolding process of sFGF1 could be due to formation of some aggregates (Fig. 3).  

 

 

 

 

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10 11 12

T
m

pH

sFGF1 after unfolding

sFGF1 after refolding



   171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Thermal unfolding of wtFGF1 measured by DSC (Panel - A). SDS-PAGE gel showing 

aggregation of wtFGF1 during thermal unfolding by DSC (Panel - B). Unloaded protein (Lane-

1); Pellet (Lane-2); Supernatant (Lane-3). Densitometric analysis of the SDS PAGE gel showing 

the protein aggregated during the thermal unfolding of wtFGF1 (Panel - C). 

 

Overall, the results of thermal unfolding and refolding by DSC indicate that sFGF1 is not 

only more stable than wtFGF1, but it also refolds back. Introduction of mutations (R136E, 

K126N, Q54P, S61L, and H107S) appear to stabilize sFGF1 by forming new interactions. These 

interactions seem to strengthen hydrogen bonds and increase the β-sheet propensity. According 

to the statistical analysis, proline is the most preferred amino acid in type I β-turn and leucine 

and isoleucine are most preferred amino acids in the formation of β-sheet. Q54 is located within 

a turn between β3 and β4 strands. Therefore, replacing Gln with Pro at position 54 is expected to 

A 

B C 
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enhance the tendency of growth factor to form β-sheets. It was also found that replacing Gln with 

Pro leads to formation of 310 helix (two overlapping β-turns). S61 is located in the middle of β-

strand IV. Szlachcic et al., observed that substitution of serine by isoleucine aids in 

rearrangement of hydrogen bonds [17]. Heparin binding region in hFGF1 (ranging from residues 

119-142) consists of positively charged amino acids. Two of the five mutations in sFGF1, R136E 

and K126N, belong to heparin binding pocket (HBP). Substitution of Arg by Glu and Lys by Asn 

produces a counter-ion and charge neutralization effect which reduces repulsion between the 

closely packed basic amino acids in HBP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Thermal unfolding of sFGF1 by DSC (Panel - A). SDS-PAGE gel showing minimal 

aggregation of sFGF1 during thermal unfolding by DSC (Panel - B). Unloaded protein (Lane-1); 

Pellet (Lane-2); Supernatant (Lane-3). Densitometric analysis of the SDS PAGE gel showing the 

unaggregated protein during the thermal unfolding of sFGF1 (Panel - C). 

 

 

C 

A 

B 



   173 

Stability of wtFGF1 and sFGF1 in Aliphatic Alcohols 

Alcohols have been used as co-solvents to study the hydrophobic effect of solvent on the 

structure and stability of proteins [28-30]. Addition of alcohols weaken nonlocal hydrophobic 

interactions and enhances local polar interactions [29-31]. This results in destabilization of the 

protein’s native hydrophobic core and increased formation of local hydrogen bonds resulting in 

extended secondary structures.  

Effects of alcohols on the tertiary structure of wtFGF1 and sFGF1 were monitored using 

intrinsic fluorescence spectroscopy. It is well known that intrinsic fluorescence of proteins relies 

upon microenvironment of three aromatic amino acids, tryptophan (Trp), tyrosine (Tyr) and 

phenylalanine (Phe). hFGF1 has eight tyrosine and one tryptophan residues. In native wtFGF1, 

intrinsic fluorescence from a tryptophan residue is quenched by adjacent lysine and proline 

residues. Therefore, wtFGF1 shows an emission maximum at 305 nm, resulting from the eight 

tyrosine residues. These quenching effects are completely alleviated in the denatured state of 

wtFGF1, resulting in a significant increase in fluorescence at 350 nm corresponding to the 

tryptophan residues. Here, two fluorescence parameters, emission wavelength maximum (λmax) 

and fluorescence intensity ratio (305/350 nm), were used to obtain information on the tertiary 

structure of hFGF1. 

Fig. 7 displays changes in the fluorescence emission spectrum of wtFGF1 and sFGF1 

with the addition of different concentrations of 2,2,2- trifluorethanol (TFE). Fluorinated alcohols 

such as TFE is extensively used to study conformation of proteins or peptides in monomeric state 

[45]. Aqueous TFE solutions are known to induce helix formation in polypeptides and proteins 

[46]. However, TFE can induce β-sheet conformation under certain conditions [47]. λmax of 

wtFGF1 changes from 308 nm to 350 nm when incrementing the TFE concentration from 0 to 

10% v/v (Fig. 7A). However, λmax again drops down to 308 nm with a small peak at 350 nm at 
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35% v/v TFE concentration. On the contrary, λmax of sFGF1 changes from 308 nm to 350 nm 

when the TFE concentration increases from 0 to 20% v/v. However, sFGF1 behaves in the same 

way as wtFGF1 at 35% v/v TFE concentration. An altered λmax suggests that microenvironment 

of the Trp residue changes upon addition of TFE. Initial increase in TFE concentration led to the 

shift of tryptophan residue from hydrophobic core to hydrophilic surface (solvent exposed). This 

red shift suggests the possibility of conformational changes in the structure of wtFGF1 and 

sFGF1. However, the fluorescence emission results of wtFGF1 and sFGF1, in the presence of 

TFE, indicate that the decrease in λmax might be due to the strong hydrogen bond formation of 

TFE with the proteins. 

 

 

 

 

 

 

 

Fig. 7: Fluorescence emission spectra of wtFGF1 (Panel – A) and sFGF1 (Panel – B) at different 

concentrations of 2,2,2- trifluoroethanol (TFE) (0–85%, v/v). 

 

The fluorescence intensity ratio is high when Trp residue is buried inside the hydrophobic 

core of protein, while the ratio is low when Trp residue is exposed to the hydrophobic 

environment. Fig. 8 displays changes in the fluorescence intensity ratio of wtFGF1 and sFGF1 at 

different TFE concentrations. It can be inferred from the graph that sFGF1 is more stable at 

varying concentrations of TFE than wtFGF1. In case of wtFGF1, 305/350 ratio decreases to 
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almost 0 upon addition of 10% v/v TFE, whereas the intensity ratio remains high for sFGF1 up 

to 20% v/v TFE concentration. This indicates that tryptophan is exposed to hydrophilic surface 

upon addition of 25% v/v TFE concentration or higher in both wtFGF1 and sFGF1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: TFE-induced unfolding of wtFGF1 (blue) and sFGF1 (red) as monitored by the ratio of 

emission intensities at 308 nm to 350 nm. 

 

Similar to TFE, intrinsic fluorescence of wtFGF1 and sFGF1 was measured in presence 

of various concentrations of ethanol. It has been reported that ethanol can affect intermolecular 

electrostatic attractions, hydrogen bonds, and hydrophobic interactions, resulting in alteration of 

protein conformations [48]. Fig. 9 indicates changes in the fluorescence emission spectrum of 

wtFGF1 and sFGF1 as a function of ethanol content. As expected, λmax of wtFGF1 and sFGF1 

shifts from 305 nm to 350 nm (Figs. 9 A and B) accompanied by decrease in fluorescence 

intensity ratio (Fig. 10) when incrementing the ethanol concentration from 5 to 90% v/v. As 

discussed in case of TFE, the red shift in λmax and lower intensity ratio (305/350 nm) indicate 

that polarity of the microenvironment of Trp residue is increased. 
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Fig. 9: Fluorescence emission spectra of wtFGF1 (Panel – A) and sFGF1 (Panel – B) at different 

concentrations of ethanol (0–90%, v/v). 

 

 Fig. 9A displays that λmax of wtFGF1 (305 nm) did not change when the concentration of 

ethanol was increased up to 20% (v/v), but λmax increases to 350 nm upon further addition of 

ethanol up to 90% v/v. On the contrary, λmax of sFGF1 (305 nm) did not change as the 

concentration of ethanol was increased up to 80% (v/v), but λmax increases to 350 nm upon 

further addition of ethanol up to 90% (v/v) (Fig. 9B). These results demonstrate that addition of 

ethanol perturbs the native tertiary structure of wtFGF1 (20% v/v) at a fairly low concentration 

when compared to sFGF1 (80% v/v), indicating that wtFGF1 cannot resist the conformational 

changes induced by ethanol. 

 

Fig. 10: Ethanol-induced unfolding of wtFGF1 (red) and sFGF1 (green) as monitored by the 

ratio of emission intensities at 308 nm to 350 nm. 
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It has been reported that acetonitrile can induce protein denaturation by altering the 

tertiary structure through hydrophobic interactions [50]. In this context, the intrinsic fluorescence 

of wtFGF1 and sFGF1 was measured in the presence of various concentrations of acetonitrile. 

Fig. 11 shows the changes in the fluorescence emission spectra of wtFGF1 and sFGF1 with 

increasing acetonitrile content. When increasing the acetonitrile concentration from 5 to 90 % 

v/v, λmax of wtFGF1 and sFGF1 shifts from 305 nm to 350 nm (Figs. 11 A and B) and is 

associated with decrease in fluorescence intensity ratio (305/350 nm) (Fig. 12). This indicates 

that polarity of the microenvironment of Trp residue is increased. 

 

 

 

 

 

 

 

Fig. 11: Fluorescence emission spectra of wtFGF1 (Panel – A) and sFGF1 (Panel – B) at 

different concentrations of acetonitrile (0–90%, v/v) 

 

Fig. 11B shows that λmax of sFGF1 did not change as the concentration of acetonitrile was 

increased up to 50% v/v, but a decrease in intensity ratio (Fig. 12) was observed. An unaltered 

λmax at 308 nm suggests that the tertiary structure of sFGF1 was not significantly perturbed upon 

addition of 50% v/v acetonitrile concentration. Under these conditions, the Trp residue could be 

buried within the protein core, thereby preventing the exposure of Trp residue to the solvent 

environment. On the other hand, λmax of wtFGF1 was shifted to 350 nm upon addition of 15% 

v/v acetonitrile. The observed red shift suggests that conformational change in wtFGF1 and 

A 
 

B 
 



   178 

sFGF1 causes an increased solvent-exposure of the Trp residue. It should be noted that sFGF1 is 

able to resist the change in conformation even at 50% v/v acetonitrile concentration, whereas 

wtFGF1 is only stable until 15% v/v acetonitrile concentration. 

 

 

 

 

 

 

 

 

Fig. 12: Acetonitrile-induced unfolding of wtFGF1 (blue) and sFGF1 (red) as monitored by the 

ratio of emission intensities at 308 nm to 350 nm. 

 

Overall, intrinsic fluorescence experiment reveals that substituting Arg with Glu at 

position 136, Lys by Asn at position 126, Gln by Pro at position 54, Ser by Leu at position 61, 

and His by Ser at position 107 helped in stabilizing sFGF1. It has been demonstrated that low 

levels of alcohols, in general, are often used in multi-dose protein formulations and drug delivery 

systems to prevent microbial growth [32]. However, these alcohols have been shown to induce 

protein aggregation [33]. Singh et al., reported that the fundamental physical mechanism 

underlying such alcohol-induced protein aggregation is partial unfolding of local protein regions. 

Therefore, stabilizing such local regions through site-specific mutations could help in reducing 

protein aggregation. In hFGF1, one such conformationally unstable region is heparin binding 

pocket which consists of closely placed cluster of positively charged residues. These positively 

charged amino acids repel each other leading to hFGF1’s instability. Two of these positively 
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charged heparin binding residues in wtFGF1 are substituted by a negative and a neutral amino 

acid (R136E and K126N) in sFGF1. R136E and K126N mutations might reduce the repulsion 

between the basic amino acids in the heparin binding region, thus conferring extra stability to 

sFGF1. Structurally, S61L mutation is expected to make the hFGF1 molecule more compact by 

strengthening the hydrogen bonds. Based on molecular dynamic simulation data (Chapter - III), 

four new hydrogen bonds (G129-N126, N126-S130, Q141-E136, and E136-R133) and one stable 

salt bridge (R133-E136) were identified in sFGF1. These new interactions likely stabilize the 

protein against the effect of aliphatic alcohols. 

Stability of wtFGF1 and sFGF1 in the cell culture media 

 

Acidic fibroblast growth factor (FGF1) plays an important role in a variety of biological 

processes, including embryonic development, morphogenesis, tissue repair, endothelial cell 

migration and proliferation. hFGF1 has been shown to be unstable under physiological 

conditions, with a half-life of approximately five hours in standard mammalian cell culture 

conditions (37°C, 5% CO2). hFGF1 is also known to be degraded by proteolytic enzymes 

(metalloproteinase and collagenase) present in the DMEM cell culture medium. At this rate of 

decay, hFGF1 activity levels drop substantially after 48 hours at 37 °C [49]. Susceptibility of 

hFGF1 to enzymatic digestion might pose a significant challenge for the use of hFGF1 in cell 

culture, often requiring higher growth factor concentrations or daily media changes or FGF1 

supplementation. In this context, stability of wtFGF1 and sFGF1 in culture medium was 

examined. Fig. 13 shows that wtFGF1 was found to be completely degraded at 37°C after 24 

hours of incubation in the growth medium. On the other hand, sFGF1 showed insignificant 

degradation. Based on SDS-PAGE gel results, it was found that wtFGF1 band in lane 2 (1 day/ 

24 hours) decreases by almost 80% of its original concentration as compared to the protein 
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(wtFGF1) which was not incubated in the culture medium. These results suggest that wtFGF1 is 

susceptible to the action of proteolytic enzymes present in the culture medium. In marked 

contrast, the concentration of the band corresponding to sFGF1 remains mostly unaltered 

implying that sFGF1 is significantly more stable in the culture medium conditions than wtFGF1. 

 

 

 

 

 

 

Fig. 13: SDS-PAGE analysis of stability of wtFGF1 (Panel – A) and sFGF1 (Panel-B) in cell 

culture medium. 50 ng/mL of proteins (Lane-1); 1 day (Lane-2); 2 days (Lane-3); 3 days (Lane-

4); 4 days (Lane-5); 5 days (Lane-6); 6 days (Lane-7); 7 days (Lane-8); 14 days (Lane-9). The 

top red arrow represents the band corresponding to serum albumin whereas the bottom green 

arrow represents the hFGF1 protein band. 

 

Densitometric analysis of the SDS PAGE gels suggest that sFGF1 is mostly resistant to 

the action of proteases present in cell culture medium. On the other hand, about 80% of wtFGF1 

is digested within 24 hours under similar conditions (Fig. 14). These results clearly indicate that 

introduction of mutations in wtFGF1 has increased the resistance of protein to proteolytic 

digestion. 
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Fig. 14: Densitometric analysis to assess the stability of wtFGF1 and sFGF1 in cell culture 

medium as monitored by SDS-PAGE. 

 

Chen et al., reported that the thermal instability of FGF2 is because of the heparin 

binding region. Thus, they mutated one of the heparin binding residue (K128) to a neutral, polar 

amino acid (N). Surprisingly, they found that the mutation (K128N) helped hFGF2 maintain its 

activity in the cell culture medium at 37°C incubation [35]. Similarly, the stability provided by 

sFGF1 in DMEM cell culture media appears to be due to the presence of two mutations in the 

heparin binding pocket (R136E and K126N). Replacement of Arg with Glu and Lys with Asn 

could have plausibly reduced the repulsion between the positively charged residues in the 

heparin binding region. 

Conclusions 

Acidic fibroblast growth factor exhibits a wide array of activities such as, mitogenic 

activity, angiogenic activity, wound healing, and bone growth. However, there are some 

limitations to its use due to the thermal instability of hFGF1. Introduction of mutations in hFGF1 

led to new interactions (hydrogen bonds and salt bridges) which increased its inherent structural 

stability. Results of the present study show that sFGF1 is more resistant in a broader pH range 

than wtFGF1. Unlike wtFGF1, sFGF1 is stable at higher concentration of aliphatic alcohols 
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(acetonitrile, TFE, and ethanol). wtFGF1 is only stable upto 10% v/v TFE, 20% v/v ethanol, and 

15% v/v acetonitrile concentrations. Contrastingly, sFGF1 is stable upto 20% v/v TFE, 80% v/v 

ethanol, and 50% v/v acetonitrile concentrations. Native wtFGF1 is highly unstable under normal 

cell culture conditions, with a half-life of approximately 5 hours. Findings of this study 

demonstrate that wtFGF1 is susceptible to the action of proteases in cell culture media and 

degrades in 24 hours. On the other hand, sFGF1, highly stable human acidic fibroblast growth 

factor, exhibits increased stability in the cell culture medium up to 14 days. As, sFGF1 stays 

biologically active for a longer period than wtFGF1 in standard cell culture conditions, it may be 

now possible to design cost effective cell culture medium and also design new FGF1 based 

therapeutic formulations for chronic wound care.  

Materials and methods 

Materials 

The site-directed mutagenesis kit (QuikChange lightning kit) was from Agilent, and the 

DNA plasmid isolation kit was from Qiagen. Escherichia coli strain BL21(DE3)pLysS was from 

New England Biolabs. Heparin-Sepharose affinity resin was from Amersham Biosciences. The 

basic components of culture media were purchased from IBI Scientific. Complete protease 

inhibitor mixture was from Roche Applied Science. The buffer components were from VWR 

Scientific. NIH 3T3 cells were purchased from ATCC and all the cell culture reagents including, 

DMEM media, fetal bovine serum (FBS) and penicillin, streptomycin were obtained from 

Thermo Fisher Scientific. All other chemicals were purchased from Sigma and were of high-

quality grade. 

Purification of wtFGF1 and sFGF1 

          A construct comprising a truncated form (residues, 21–154) of human FGF1 in the pET-

20b expression vector was used. Mutagenesis and protein expression were performed as reported 
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previously [36]. wtFGF1 and sFGF1 were expressed at 37 °C in E. coli BL21(DE3)pLysS strain 

and were cultured at 37 °C to an A600 of 0.5 and induced with 1 mM isopropyl-L-thio-  -D-

galactopyranoside (IPTG) for 3.5 h. The cells were then lysed using the sonicator, and the 

soluble proteins were purified on a heparin-Sepharose affinity column, followed by size-

exclusion chromatography on Superdex-75 using AKTA Explorer system (Amersham 

Biosciences). Protein purity was confirmed by Coomasie blue-stained SDS-PAGE. The purity of 

wtFGF1 and sFGF1 was estimated to be >98% based on SDS-PAGE analysis. The 

conformational changes in wtFGF1 and sFGF1 were examined by circular dichroism and 

fluorescence spectra measurements. The numbering system used to identify amino acids in 

hFGF1 has been reported previously [36]. Purified hFGF1C protein was stored at -80°C until 

further use. 

SDS-PAGE was also performed to validate the thermal refolding and unfolding of 

wtFGF1 and sFGF1. After the thermal unfolding of proteins, the protein samples were pipetted 

out of the DSC machine and centrifuged at 13000 rpm for 3 minutes. The supernatant (active 

protein sample) was separated from the pellet (aggregated protein sample) into a different 

Eppendorf tube. TCA preparation was performed on each sample (aggregated and soluble 

wtFGF1 and sFGF1) immediately after the centrifugation. The results were assessed using SDS-

PAGE analysis. The percentage of unaggregated protein was measured by comparing the band 

intensities in lane 1, 2 and 3 using UN-SCAN-IT software. The native protein (unfolded) was 

considered as 100% unaggregated protein (lane -1), the pellet and supernatant after the unfolding 

of proteins were considered as lane 2 and 3, respectively. After obtaining the values from the 

UN-SCAN-IT software, Microsoft excel was employed to obtain the graph of percentage active 

protein versus the protein samples. 
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Fluorescence and Circular Dichroism spectroscopy 

Circular dichroism and intrinsic fluorescence spectra were measured using a Jasco J-1500 

Spectrophotometer. Circular dichroism provides the information regarding the secondary 

structural changes whereas fluorescence spectroscopy determines the tertiary structural changes 

between wtFGF1 and sFGF1. All measurements were carried out at a protein concentration of 33 

µM in a 10 mm quartz cuvette. CD spectra were recorded in the wavelength range 195–250 nm 

in 10 mM phosphate buffer with 100 mM NaCl (pH 7.2) at 25⁰C with a scan speed of 20 

nm/min, slit width set to 2 nm and a response time of 1 second. To acquire intrinsic fluorescence 

spectra, an excitation wavelength of 280 nm was used, and emission spectra were collected from 

300 to 450 nm in a 1 cm quartz cuvette. 

Differential Scanning Calorimetry 

The protein samples of wtFGF1 and sFGF1 at a concentration of 0.5 mg/ml in 10 mM 

phosphate buffer containing 100 mM NaCl, pH 7.2 was used to determine the thermal 

denaturation on a N-DSC III Differential Scanning calorimeter. Prior to loading, all samples 

were subjected to degassing at 25°C for 15 minutes and after loading, the cells were equilibrated 

for 10 minutes at the same temperature. Scans were performed from 10 to 90 °C with a 1 C/min 

ramping temperature and variable pH solutions. To obtain a stable baseline, buffer blanks 

experiments were conducted before running the protein scans. Data obtained was processed 

using CpCalc Version 2.2.0.10 software provided by the manufacturer. 

15% of sFGF1 protein was found to be aggregated. As it was difficult to remove the 

aggregates due to the process of unfolding, thermograms provided by DSC showed lower 

intensities for the refolded sFGF1. Therefore, normalization of protein concentration was done 

(multiplied the refolded intensities by a factor of 7.5 because 75% of sFGF1 was found to be 

active as shown in Fig. 6C) using Microsoft excel. 
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Cell culture experiments 

The NIH 3T3 fibroblast cell line was obtained from ATCC (Manassas, VA). NIH 3T3 

cells were grown in complete media consisting of Dulbecco's modified Eagle's medium 

supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were grown to 80-90% 

confluency and were incubated overnight at 37°C with 5% CO2 in serum free media before 

further use. Cells were seeded into tissue culture plates the day preceding the start of the 

experiments. Cells were then co-incubated individually with wtFGF1 and sFGF1 at 

concentrations of 50 ng/mL for 1, 2, 3, 4, 5, 6, 7, and 14 days. TCA preparation was performed 

on each sample immediately after being removed from the culture plate. The results were 

assessed using SDS-PAGE analysis along with UN-SCAN-IT gel software. The proteins 

(wtFGF1 and sFGF1) were loaded in the first lane on SDS-PAGE (without media) to identify 

hFGF1 out of all the other proteins in culture media. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

Fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric 

proteins which control a plethora of developmental and pathophysiological processes, including 

tissue repair, wound healing, angiogenesis, and embryonic development. Human acidic fibroblast 

growth factor (hFGF1) is a 16kDa protein characterized by its mitogenic properties and high 

affinity for heparin. It has been known that heparin protects the unstable form of the growth 

factor against heat and proteolytic degradation. Thus, the putative role of heparin is to prevent 

the degradation of the hFGF1 molecule. But, the kind of structure stabilization and new forces 

brought into place by heparin is still unclear.  

The major focus of this dissertation was to construct a hFGF1 variant that exhibits 

increased thermal, chemical, and proteolytic stability, enhanced bioactivity, and reduced heparin 

binding affinity. These characteristics form the basis for a better wound healing agent. We also 

wanted to gain some insights into the role of heparin in hFGF1-FGFR complex formation and 

activation. In this context, wtFGF1 was subjected to mutation at positions 54 (Q54P), 61 (S61L), 

107 (H107S), 126 (K126N), and 136 (R136E). Site directed mutagenesis technique was 

employed to construct the mutations mentioned above. 

Interestingly, with contradicting studies showing that heparin either influences the 

receptor activation of hFGF1 or fosters hFGF1 stability with electrostatic interactions, the 

hFGF1-heparin complex becomes the most studied protein-glycosaminoglycan complex. 

Inferences from Chapter II indicate that although heparin affects the stability of the growth 

factor, it could have little implications on the proliferation efficiency of the protein. Isothermal 
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titration calorimetric studies reveal that the positions crucial on hFGF1 for heparin binding are 

K126 and R136. Additionally, other results pertaining to the mutation at positions Q54P, S61L, 

H107S, K126N, and R136E correspond to heparin-independent hFGF1 proficiency with 

increased thermal, chemical, and structural stability and improved cell proliferation activity. 

The members of the FGF family has a characteristic β-trefoil conformation which helps 

in the functioning of the protein but there still remains an elusive understanding of its functional 

capability. In Chapter III, it was verified that with the decrease in the repulsion of positive 

charges in the heparin binding site, the structural stability of hFGF1 can be improved. Apart 

from this, limited enzymatic digestion, thermal and urea unfolding, and isothermal titration 

calorimetry were also performed. It was noticed that sFGF1 showed superior characteristics 

when compared to wild type in all aspects of the analyses mentioned. Furthermore, investigating 

the findings of molecular dynamic (MD) simulations, results showed that the flexibility of the 

heparin-binding site was hindered by the mutations, and increased stability was achieved due to 

the formation of salt bridges and hydrogen bonds. Also, with sFGF1 there was an elevated cell 

proliferation activity and a considerable rise in the activation of pathways such as Erk 1/2 and 

Akt. Thus, the above-mentioned results qualify sFGF1 as a promising wound healing drug. 

In chapter IV, we indicate that modification of amino acids to reverse the charge in the 

heparin binding pocket of hFGF1 increases its stability without disrupting its structure. We have 

experimentally demonstrated that introduction of Q54P, K126N, and R136E mutations on 

wtFGF1 lead to reversible thermal and chemical denaturation of the growth factor. Thermal and 

urea induced unfolding and refolding results indicate that a triple variant of wtFGF1 

(Q54P/K126N/R136E) render more stability and facilitates refolding of the growth factor. In 

fact, the triple variant has shown to exhibit hysteresis between unfolding and refolding processes 
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with difference in temperature and urea concentration gradient. MD simulations suggest that the 

triple variant render less flexibility to the heparin binding region and enhances the stability of 

hFGF1 by forming stable electrostatic interactions such as R133-E136 and N126-S130. 1H-15N 

HSQC experiment reveals that the triple variant does not significantly affect the gross three-

dimensional structure of hFGF1. Interaction analyses from MD simulations and NMR thus 

indicate that the variant residues in the heparin binding region (R136E and K126N) along with 

Q54P mutation are critical to the stabilization of the protein observed in silico and the refolding 

process observed experimentally. 

In chapter V, we noticed that although human acidic fibroblast growth factor renders 

many advantages in terms of wound healing and tissue repair, its potential is limited due to its 

short half-life and structural instability. Therefore, to increase the structural stability, several 

mutations were studied in hFGF1. The results showed that when compared to wtFGF1, sFGF1 

was not only resistant to a wider pH range, but also stable in predominantly higher 

concentrations of aliphatic alcohols (ethanol, 2,2,2- trifluoroethanol (TFE), and acetonitrile). 

Additionally, sFGF1 is also stable in the cell culture media for up to 14 days, thereby implying 

that it could be potentially be used to design cost effective wound healing treatment options. 

The implications of these findings imply that binding to heparin is not mandatory for the 

FGF-FGFR signal transduction, further challenging the central dogma of FGF receptor 

activation. In conclusion, binding of heparin to wtFGF1 and hFGF1 variants stabilizes and 

protects the proteins from thermal and proteolytic degradation prior to FGFR activation. 

However, with the engineered hFGF1, since heparin is not required for increased stimulation and 

complexation with the FGF receptor, it has the potential to play a pivotal role in shaping the 

development of wound healing treatment. 
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Significance of this dissertation 

hFGF1 has an intrinsically low thermodynamic stability and almost half of the wild type 

hFGF1 population is denatured at physiological temperature. Several studies have been 

performed to increase the thermal and proteolytic stability of hFGF1. Prior work conducted in 

our lab resulted in the generation of variant hFGF1 referred to as single variant R136E, which is 

located in the heparin binding region. This study is focused on generating hFGF1 variants with 

four more mutations on R136E-hFGF1, to determine the significance of the heparin independent 

sFGF1 (Q54P, S61L, H107S, K126N, R136E). 

Another important aspect of the heparin-binding region is that it contains the secondary 

thrombin cleavage site between Arginine-136 and Threonine-137. Thrombin is a serine protease 

that is generated after endothelial cell damage and during the coagulation cascade. It has also 

been demonstrated to cleave hFGF1 at Arg-136, thus, diminishing the mitogenic activity of 

hFGF1. Many studies have focused on designing hFGF1 variant with increased resistance to 

thrombin with the aim of enhancing its wound-healing potency. Studies have demonstrated that 

the binding of hFGF1 to heparin increases the possibility of degradation of the protein imposed 

by thrombin. Therefore; designing a hFGF1 variant with complete loss of heparin binding 

affinity will be advantageous in pharmaceutical wound healing applications. Topical applications 

of human fibroblast growth factor are believed to accelerate cell proliferation at wound sites 

while leaving other bodily processes intact. The significance of the hFGF1 variants studied in 

this dissertation widens the opportunity for the use of the growth factor in pharmaceutical 

industry. 
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Future directions 

It is evident that there have been significant advances in improving the stability and 

decreasing the heparin binding affinity of hFGF1 through site directed mutagenesis technique. 

However, none of the hFGF1 variants reported so far in the literature exhibit complete loss of 

heparin binding ability. Here, we have generated a hFGF1 variant known as sFGF1 which has 

significantly higher thermal and proteolytic stability and confers zero heparin binding affinity.  

While our variant has shown enhanced mitogenic activity, there has been a recent study 

of another hFGF1 variant (K132E) demonstrating increased metabolic activity and decreased 

potential to promote cell proliferation. Therefore, to take this research a step further we could 

consider combining both, the attributes of increased metabolic and mitogenic activities. This 

variant could especially be used in the field of diabetic research, wherein the role of hFGF1 

variant will be to increase the glucose-lowering activity and enhance the cell proliferation ability. 

This variant great hope for the evolution of a new class of FGF-based protein therapeutics 

against Type-1 & Type-2 diabetes. 
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APPENDIX 

Biosafety committee approval 

Kumar lab biosafety protocol number – 13004 
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