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Abstract

In the modern age of social media and networks, graph representations of real-world phenom-

ena have become incredibly crucial. Often, we are interested in understanding how entities

in a graph are interconnected. Graph Neural Networks (GNNs) have proven to be a very

useful tool in a variety of graph learning tasks including node classification, link prediction,

and edge classification. However, in most of these tasks, the graph data we are working with

may be noisy and may contain spurious edges. That is, there is a lot of uncertainty associ-

ated with the underlying graph structure. Recent approaches to modeling uncertainty have

been to use a Bayesian framework and view the graph as a random variable with probabili-

ties associated with model parameters. Introducing the Bayesian paradigm to graph-based

models, specifically for semi-supervised node classification, has been shown to yield higher

classification accuracies. However, the method of graph inference proposed in recent work

does not take into account the structure of the graph. In this paper, we propose Neighbor-

hood Random Walk Sampling (NRWS), a Markov Chain Monte Carlo (MCMC) based graph

sampling algorithm that utilizes graph structure, improves diversity among connections, and

yields consistently competitive classification results compared to the state-of-the-art in semi-

supervised node classification.

Keywords: Semi-Supervised Learning, Graph Neural Networks, Bayesian Inference, Node

Classification, Markov Chain Monte Carlo
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1 Introduction

Many phenomena in the world are represented through graphs since they can contain rich

relation information among the entities. From modeling molecular structures to social net-

works, graphs have been a source of tremendous information. Graphs, however, are more

useful than for just modeling purposes. We can mine graphs and retrieve insights that could

be beneficial in understanding the behavior among connections in the graph. For example,

we could analyze a friend network of Facebook users. We can use features such as posts that

people like and sources that people follow to make predictions about the extent to which

two Facebook friends may enjoy the same content.

A modern application of graph theory is in the field of deep learning. Specifically, ana-

lyzing graphs to retrieve useful insights. Graph Neural Networks proposed by Gori et al. [1]

have become a useful method for predicting certain behaviors in graphs. Examples include

node classification, edge classification, and recommendation systems, among others. This

paper focuses on the node classification task. This is a classic classification problem where

we are given an observed graph with partially labeled nodes and our task is to train our

model on this data so that given a node and its features, the model will be able to predict

the correct label of an unlabeled node up to some degree of accuracy. This is an incredibly

important task because, in the real world, true labels are expensive to obtain, so we rely

on techniques such as random sampling to get these labels and use these labels to develop

label prediction models. Additionally, if we are considering demographics, a node connected

to another node with a specific label can tell us that the two nodes are likely to share the

same node label. For example, if one’s friends are all Australian, they are more likely to
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be Australian as well based on the correlations in their friend network. Going back to our

Facebook example, we are able to monitor a graph at a certain timestep (the observed graph)

with nodes representing users and the edges being connections among users. Each user will

have some features associated with them. Now, given a certain number of categories that

each user can fall into, our task would be to classify an uncategorized user into a class.

To improve on classification accuracies from the GNN, Defferrard et al proposed a spatial

variant, [2] the Graph Convolutional Neural Network (GCN). Due to the fact that convo-

lution operations are a spatial operation, meaning that they take into account contextual

information, it helps a node in a graph to find its place in the graph with respect to its

neighboring nodes. This method has proven to be among the best performing architectures

for a variety of graph learning tasks. One caveat with GCNs is that they fail to account

for the uncertainty in the underlying structure of a graph such as noisy data with spurious

edges. We can tackle this issue by simply viewing the observed graph as a sample from a

parametric random variable and target joint inference of the graph and GCN weights using a

Bayesian scheme called a Bayesian Graph Convolutional Neural Network (BGCN) [3]. The

framework of a BGCN allows graphs to be sampled randomly, which helps to account for

uncertainty in the graph thereby increasing accuracy in node classification.

Previous works use an effective scheme called node copying, from Pal et al. [4], to sample

graphs from the observed graph under some probability distribution with a fixed hyper-

parameter. However, a more effective technique could be to use the notion of rejection

sampling and Markov Chain Monte Carlo methods such as Metropolis-Hastings to sample

graphs based on graph structure. Our method, Neighborhood Random Walk Sampling, al-

lows the sampling to occur with respect to the structure of the observed graph with a random
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walk simulating a Markov chain and allows for more diversity in connections among loosely

connected nodes. Additionally, our graph inference model yields competitive performance

results compared to previous graph inference schemes for BGCNs.

The paper is organized as follows. Section II talks about some of the related work in the

field of GCNs and BGCNs and the methods used. Section III explains the Preliminaries and

fundamentals of Graphs and Neural Networks. Section IV dives into the mathematics behind

sampling from probability distributions. Section V is where the workings of the BGCN are

explained and the Metropolis-Hastings graph sampling variant is introduced. Section VI

describes the datasets used and outlines the experimentation procedure and summarizes the

results from the implementation. Finally, Section VII concludes the paper and discusses

potential future work.

2 Related Work

Recent research in the area of graph-based models focuses on leveraging neural networks and

deep learning to analyze structured data when there is a graph describing the relationships

among the data. Work by Gori et al [1] led to the development of the graph neural net-

work, which relies on recursive processing and propagation of information across the graph.

However, as the sheer quantity of data has increased in recent times, standard graph neural

networks have become undesirable due to long training times and computational inefficiency.

Due to this, the graph convolutional network (GCN) was proposed by LeCun et al and

spectral methods by Kipf et al [5]. Starting from the framework of spectral graph convolu-

tions introduced in Defferrard et al [2], Kipf and Welling introduce simplifications that allow
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for faster training time and higher prediction accuracy.

The GCN, although yielding higher classification accuracies, requires costly matrix op-

erations. To address the key challenges of spectral-based graph neural networks, the graph

attention network (GAT) [6] was introduced. The GAT leverages masked self-attention layers

and stacks layers in which nodes are able to attend over their neighborhood’s features.

The original Bayesian Graph Convolutional Network [3] was proposed by Zhang et al.

One problem with GCNs is that they assume the graph is ground truth. In other words,

GCNs don’t take into account noise in the data such as spurious edges and weakly tied links.

The BGCN is designed to address the problem of uncertainty. Using a Bayesian paradigm,

we can model uncertainty in graph data very well. In BGCNs, the graph is viewed as a

random variable. So, the parameters in the model are all random variables with probability

distributions. Experiments show that BGCNs perform better than GCNs not only in general

classification accuracy but also under stricter semi-supervised constraints.

The Bayesian Graph Convolutional Network with a node copying scheme [4] was proposed

by Pal et al. A graph sampling technique called node copying is proposed, from which the

BGCN model is able to perform much more effective graph inference. The node copying

scheme is designed to sample from the original graph in a way such that all the nodes are

randomly chosen from the same class. The neighbors of a node with the same label are copied

to the original node under some fixed probability. The goal of this approach is to provide

more dense representations of nodes so the model can yield higher classification results.
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3 Preliminaries

3.1 Fundamentals of Graph Representation

Computationally speaking, a graph is a data structure that models a set of objects (nodes)

and their relationships (edges). A graph can be represented as follows

G = (V,E)

where V represents the set of nodes and E = {(u, v) | u, v ∈ V } represents the set of

edges (unordered pairs) in graph G. These edges may be weighted, which means that each

edge has an associated numeric quantity that may represent the strength of the two entities

interlinked, or unweighted, which would be just a connection between two nodes. The edges

in a graph are often represented with an adjacency matrix, A. If the edges are weighted,

A ∈ RV×V and if the edges are unweighted, A ∈ {0, 1}V×V , where a 1 indicates a connection

between two nodes and 0 indicates no connection. In either case, A is a symmetric matrix.

Graphs can be either directed or undirected. In directed graphs, elements of E are

ordered pairs {(u, v) | u, v ∈ V }. That is, (u, v) is distinct from (v, u). By convention,

(u, v) points to node v. If both (u, v) and (v, u) are in E, then edges are said to be mutual.

The following is an example of an unweighted graph and its adjacency matrix.
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Observed Graph

4

5

1

2

3

Adjacency Matrix



0 1 0 0 1

1 0 1 0 1

0 1 0 1 0

0 0 1 0 1

1 1 0 1 0



A subgraph or an induced graph of a graph G is denoted G ′ = (V ′, E ′) such that

E ′ ⊆ E and V ′ ⊆ V . That is, any subset of the graph’s edges and vertices is considered an

induced graph. This concept is crucial for understanding techniques that are discussed later

on. Lets take an example:

Observed Graph

4

5

1

2

3

Induced Graph

5

1

2

We can see that the observed graph is G = (V,E), where V = {1, 2, 3, 4, 5}. The induced

subgraph is G ′ = (V ′, E ′), where V ′ = {1, 2, 5} ⊂ V and E ′ ⊂ E.

Definition 3.1.1 An edge (u, v) is incident with the nodes u and v. The degree(dv) of

node v is its number of incident edges.
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Definition 3.1.2 The neighborhood Ni of a node i is the set of all of its adjacent nodes.

Further, |Ni| = di

For example, the degree of node 1 in the graph above is d1 = 2 and its neighborhood is

N1 = {2, 5}. The value of the degree will range from 0 to |V | − 1. The sum of the degree

sequence among all nodes is twice the size of the graph G. That is,

|V |∑
v=1

dv = 2|E|

Oftentimes, we want to traverse through a graph in a certain way. A path of length l

from v0 to vl is a consecutive sequence of distinct vertices such that vi and vi+1 are adjacent

for i = v0, v1, . . . , vl. A walk is simply a path where vertices do not have to be distinct. This

concept will be used later on in the thesis when we talk about random walks.

3.2 Neural Networks

The foundation of deep learning is the artificial neural network. A node in a neural network

is a structure, emulating a neuron in the brain. Analogous to neurons, we can think about

each node as a neuron and the links connecting nodes as the stimuli fired from neuron to

neuron, where we have nodes that are connected from one layer to the next. The simplest

neural network is known as a perceptron, which is a single-layer neural network. A deep

neural network is simply a neural network with multiple hidden layers. Generally, multiple

hidden layers are able to learn more complex representations of features and can provide

higher classification accuracy as a result. An L-layer neural network is one with an input

layer and L − 1 hidden layers. Figure 1 shows a fully connected deep neural network. The
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goal of a neural network is: given a vector of input features and output classes, learn a

function that can best represent the mapping. This is known as supervised learning, where

we are given our inputs and output classes ahead of time to train the network. In general

machine learning system design, we split the dataset we are given into three partitions, one

for training, one for cross-validation, and one for testing purposes. Usually, the majority of

the dataset is assigned as training and the other two are split up about proportionally. For

example, a common split is 60% training, 20% validation, and 20% testing. The validation

set is used to evaluate the performance of the trained model and tune hyperparameters in

the model for optimal performance. The test set is to truly evaluate the model on data that

the model has never seen before.

Figure 1: An L-layer deep neural network [7]

With a neural network, each layer has a weight matrix, an input vector, and an activation

function to take inputs from one layer to outputs to the next layer. That is, we have that

a1 = xinp and ai = σ(Wai−1 + bi), where bi is some bias unit and ai is the input vector

from layer i. We also apply a non-linear activation function, σ to the output to bound

8



Figure 2: Popular activation functions [8]

the outputs so that they are not too large. Some common activation functions are ReLU

(rectified linear unit), tanh (hyperbolic tangent), and sigmoid as shown in Figure 2. This

process of computing outputs for the subsequent layer given weights and inputs is called a

forward pass.

Now, we need a method to tell the network about its flaws so that it can learn from the

mistakes. This is where the loss function comes in. A loss function is a function L that

computes the difference between the ground-truth outputs and the predicted outputs and

gives us a metric to represent the amount of loss between the predicted and actual output.

The goal of a neural network is to minimize this loss to compute as accurate predictions

as possible. Generally, in multi-class classification problems, we use the categorical cross-

entropy loss as follows:

Lcross entropy(y, ŷ) = −
∑
i

yi log(ŷi)

where yi is the ground truth class and ŷi is the predicted class label. To optimize the values of

all parameters, we differentiate the loss function with respect to each of the parameters in the

model and compute the gradient, which tells us how much we should adjust that parameter
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to get to a global minimum in the loss. Then, each parameter is adjusted according to the

gradient. This process is known as backpropagation. It is an incredibly powerful algorithm

that is able to optimize loss in neural networks. This optimization procedure occurs a number

of times or epochs, which is usually set as a hyperparameter. This is the training process

with a neural network.

Once the loss is optimized in the training stage, we use the validation set to evaluate the

performance of the model while tuning hyperparameters such as the number of epochs or

regularization to optimize the loss even further. Finally, the test set is used to evaluate the

performance of the model on new data. A common evaluation metric is accuracy, which is

simply the number of correct predictions out of all predictions.

3.3 Bayesian Inference

Before introducing the Bayesian neural network, we need to understand what bayesian in-

ference really is and how it is applicable. Generally, we are given a dataset, D, that we

want to use to make inferences about the world, where we are given a model M that we use

to make predictions about the data which is defined as a function of some parameters ΘM .

Now, we are interested in the probability of seeing the data conditioned on a specific choice

of parameters from the model. That is, we want to estimate p(D | ΘM ,M). In Bayesian

inference, we are interested in the flipped quantity. That is, we are wanting to estimate

p(ΘM | D,M), the probability that the underlying parameters of the model are actually ΘM

given our data and assuming we are using our model, M . Now, Bayes’ Theorem can help

10



us compute the posterior as follows:

p(ΘM | D,M) =
p(D | ΘM ,M)p(ΘM |M)

p(D |M)
(1)

The p(ΘM |M) term is referred to as the prior distribution. This probability represents

the preconceived notions about the data. The p(D | ΘM ,M) term is called the likelihood

of the data given the model and its parameters. Lastly, the

p(D |M) =

∫
p(D | ΘM ,M)p(ΘM |M) dΘM (2)

is the evidence or marginal likelihood for our model marginalized over all possible pa-

rameter values ΘM . This value is simply trying to quantify how well our model explains the

data after averaging over all possible values of ΘM of the true underlying parameters [9].

Figure 3: An illustration of Bayes’ Theorem [9]

The p(ΘM | D,M) value is known as the posterior, which quantifies our belief in
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ΘM after taking into account our prior intuition along with the current observations p(D |

ΘM ,M) and normalizing by the overall evidence p(D | M). The posterior probability can

be thought of as a compromise between the prior and the likelihood.

3.4 Bayesian Neural Networks

A common definition of a Bayesian neural network is a stochastic artificial neural network

that is trained using Bayesian inference [10]. Generally, in regular neural networks, the

network weights are not treated as random variables. Rather, they are assumed to have a

true value that may not be known yet. Bayesian Neural Networks (BNNs) treat weights as

a random variable and learn the model weights based off information we have at hand. The

goal is to learn a distribution of the weights (or any relevant parameters) conditional on

what we observe in the data [11]. During the process of training and learning of Bayesian

neural networks, unknown model weights are inferred based on what we can observe or

know already. This is known as inverse probability and can be solved by the use of Bayes’

Theorem. Let W represent the weights of our model. Since we can’t immediately assume

a true distribution for these weights, we can use Bayes’ theorem to introduce a distribution

over the weights conditional on the data we observe p(W|D) (the posterior distribution). We

can initially observe the joint distribution between the model weights and the data p(W ,D),

which is defined by our prior beliefs and our choice of model (likelihood). That is,

p(W ,D) = p(W)p(D|W) (3)

With the prior and likelihood, we can now use Bayes’ Theorem to specify how the pos-
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terior distribution may be obtained. Specifically,

p(W|D) =
p(W)p(D|W)∫
p(W)p(D|W) dW

=
p(W)p(D|W)

p(D)
(4)

The denominator in the posterior distribution is known as the marginal likelihood or the

evidence. The reason for this quantity is to act as normalization to ensure that the posterior

is a valid distribution.

Now, we can apply this process to a supervised learning classification setting. Let X =

{x1, . . . , xn} be the training inputs and Y = {y1, . . . , yn} be the corresponding outputs. The

goal is to learn a function y = f(x) using a neural network to find a relationship between x

and y. Using the Bayesian framework, we model the weights of our network W as a random

variable with a prior distribution introduced over them. The weights are not a deterministic

parameter, so the outputs of the neural network will also be a random variable. So, we

compute the marginal likelihood of the outputs conditioned on the set of inputs and outputs

as follows

p(y|x,X,Y) =

∫
p(y|x,W)p(W|X,Y) dW (5)

where p(y|x,W) is the likelihood that can be computed by applying a softmax function

to the output of the network. This integral is intractable, so we can use Monte Carlo

techniques, which are discussed later in Section 4.2, to approximate the integral. Namely,
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we can approximate the posterior as follows

p(y|x,X,Y) ≈ 1

T

S∑
i=1

p(y|x,Wi) (6)

where T is the number of samples drawn, S is the number of weights Wi obtained using

Monte Carlo dropout [3].

3.5 Geometric Deep Learning

3.5.1 Graph Neural Networks

Graph reasoning models have become immensely useful in research topics pertaining to social

networks. The Graph Neural Network (GNN), proposed by Gori et al. [1], is a connectionist

model that can capture the dependence of graphs using a technique known as message

passing. Unlike the regular counterparts, Graph Neural Networks are able to aggregate

information from neighboring nodes and pass it along as a hidden state into the node being

observed. This allows GNNs to model inputs and outputs that have dependencies in a

graph [12]. Graphs are a complex data structure so it is difficult for standard neural networks

such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to

model them effectively. GNNs disregard the input order of nodes. Rather, they propagate

on each node respectively. So, the output of a GNN has nothing to do with the ordering

of the nodes in the graph. Edges in a graph represent dependency between the interlinked

nodes. Instead of using these dependencies as features, GNNs are able to propagate based on

the structure of the graph. Perhaps the most impressive, it has been proven that untrained
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GNNs can perform relatively well on graph datasets.

In a graph, each node is defined by its features and its connections to neighboring nodes.

The goal of a GNN is to attempt to learn a state embedding hv ∈ Rs of the neighborhood

of a node v. This embedding can be used to generate an output ov, which in this case can

represent the class of the node. Suppose f is a local transition function shared among all the

nodes in the graph and updates the state of the node according to the input neighborhood.

Let g be a local output function that generates the output. Then, we define the embedding

and output as follows [1]:

hv = f(xv, xco[v], hne[v], xne[v])

ov = g(hv, xv)

where xv, xco[v], hne[v], xne[v] are the node features of node v, the edge features, the hidden

states, and the node features of the neighboring nodes, respectively. More generally, for all

nodes in the graph, we have the following compact representation

H = F (H,X)

O = G(H,XN)

where H, O, X, and XN are vectors generated by stacking all the values of the respective

quantities for each node, and F and G are global functions. In GNNs, all nodes in the graph

are updated in parallel at the same time. So, we can run it for a certain number of iterations,

where each iteration is a timestep of the whole graph’s state at that point. That is,

H t+1 = F (H t, X)

15



Figure 4: Graph and neighborhood of a node [1]

where H t represents the t-th iteration of H. Now, given a target tv (perhaps a class label)

for node v, the generic loss function is defined as follows:

L =

p∑
i=1

(ti − oi)

where p is the number of nodes that are labeled through supervision. The loss and weights

are optimized via standard gradient descent. Figure 4 shows an illustration of how the GNN

operates on graph structure.

Regardless of all the benefits that GNNs provide when modeling a complex structure such

as a graph, they still have their limitations. For instance, the iterative update of the hidden

states of the node is quite inefficient. Also, GNNs lack representation of nodes since the

representation at a fixed point in time is not as informative when it comes to distinguishing

nodes.
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3.5.2 Graph Convolutional Networks

Due to the problems outlined above, the Convolution operation was introduced in graphs

to boost the GNNs efficacy. The Graph Convolutional Neural Network, proposed by Def-

ferrard et al [2] and Kipf et al [5], is a variant of the GNN. For the sake of comparison,

we will compare graph convolutions with image convolutions. In the context of image data,

a convolution operation aggregates the features of local pixels sequentially while reducing

the spatial dimension by clustering features of nearby pixels. A convolution on a graph is

similar, except the pixels are instead a varying number of neighboring nodes. Images have

a fixed structure, but graphs have a variable number of neighbors, so kernels are generally

more difficult to define.

Figure 5: GCN Architecture [5]

As shown in Figure 5, the convolution operation takes the input graph, propagates

through hidden layers, and flattens the representation by aggregating features and ulti-

mately condensing it down to a layer with labels. Once this is done, a simple softmax can
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be taken to determine the probabilities of each label.

The Propagation Rule of the GCN is as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l))

where H(l+1) represents the hidden features (activations) at the next hidden layer, Ã is the

adjacency matrix with self-loops accounted for so that each node includes its own features

at its next representation, and D̃ is the Degree Matrix of Ã which is used to normalize

nodes with large degrees because otherwise, nodes with a large number of neighbors can

be computationally demanding. We have that (D̃−
1
2 ÃD̃−

1
2 ) ∈ Rn×n, H(l) ∈ Rn×d, and

W (l) ∈ Rd×n [5]. Intuitively, we can see the difference between a 2D image convolution and

a graph convolution in Figure 6.

Figure 6: Graph convolution analogous to image convolution [12]

We can see that (a) in the figure is the aggregation of pixels in a neighborhood to perform

a convolution and reduce the spatial dimension. In (b), we can see that the aggregation is

from neighboring nodes that may differ in size.
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4 Sampling Theory

Before diving into our approach, we must define some important results in probability sam-

pling. Often, in the bayesian paradigms, we are interested in sampling from some posterior

distribution that we may not know. That is, we are interested in sampling from some pro-

posal distribution that is close to the posterior in an attempt to sample from the posterior

distribution. We can estimate sampling from a posterior by building a Markov chain that

converges to some target distribution. The following subsections explain each of these meth-

ods and how they are used together to perform effective sampling.

4.1 Markov Chains

Markov Chains are stochastic random processes that can describe a sequence of events

where the probability of each event depends only on the state of the previous event. This

property is powerful and is referred to as the Markov Property. More formally, we look

at the following definitions.

Definition 4.1.1 Let I be a countable set. Then, each element i ∈ I is called a state and

I is called the state-space.

Definition 4.1.2 Suppose (Xt)t≥0 are all random variables that map an event to a state in

the state-space I. We say that (Xt)t≥0 is a Markov chain with initial distribution π if for all

t ≥ 0 and i0, . . . , it,

• P(X0 = i0) = πi0

• P(Xt = it | Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0) = P(Xt = it | Xt−1 = it−1)
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for some time t [13].

This implies that the probability distribution at time t, given all the previous events of the

chain, is equal to the probability distribution given only the previous event. That is, we can

determine the next state solely based on our current state in the chain. But on what basis

do we decide to go to the next state? The transition matrix

P = (pij : i, j ∈ I, pij ≥ 0 for all i, j)

defines the probability of transitioning from state i to state j. This matrix is a stochastic

matrix, which means that
∑

j∈I pij = 1. We can see a simple Markov chain in Figure 3.

State 1 State 2

State 3

0.9

0.025

0.075
0.8

0.15

0.05

0.5

0.25

0.25

Figure 7: An example of a Markov Chain
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From this state machine, we can construct a transition matrix with each row and column

representing the respective state. The weighted arrows will be entries in the matrix. For the

Markov chain in Figure 7, our transition matrix would be


0.9 0.075 0.025

0.15 0.8 0.05

0.25 0.25 0.5


The matrix shows that the probability of transitioning from state 1 to state 2 is 0.8 since

the (1, 2) entry in the matrix is 0.8. If we are on iteration t of the chain, then

P(Xt+1 = j | Xt = i) = Pij

Suppose we start the chain at state 2 with a probability of 1. So, we have an initial

probability distribution π0 = (0, 1, 0). After one iteration, the probability distribution of the

states is

π1 = π0P = (0.15, 0.8, 0.05)

That is, after an iteration, we can be in state 1 with 0.15 probability, stay at state 2 with

0.8 probability, or be in state 3 with 0.05 probability. We can actually run the chain for n

iterations so that we have the probability distribution after n iterations as follows

πn = π0P
n = P (n)

Now that we have defined some terminology when working with Markov chains, we can
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explore some of the important properties that make Markov chains so useful in sampling

from distributions. Firstly, we define a basic limit theorem.

To understand this theorem, we start with an example. Suppose we have a clock with

6 numbers on it: 0, 1, 2, 3, 4, 5. We perform a random walk by moving either clockwise,

counterclockwise, or staying in place all with probability 1
3

at time n. That is,

P (i, j) =



1/3 if j = (i− 1) mod 6

1/3 if j = i

1/3 if j = (i+ 1) mod 6

Suppose we start at state X0 = 2. This implies that

π0 = (0, 0, 1, 0, 0)

π1 = π0P = (0,
1

3
,
1

3
,
1

3
, 0, 0)

π2 = π1P = (
1

9
,
2

9
,
1

3
,
2

9
,
1

9
, 0)

We can see that the initial probability, concentrated at state 2 is now spreading out to

the other states. The probability will continue spreading until πn approaches the following

uniform distribution:

πn → (
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
)

as n→∞. We could have started anywhere on the chain and we would end up with the same

uniform distribution. That is, what the distribution converges to does not depend upon the
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initial distribution. The Basic Limit Theorem states this in more general terms [14].

Before we state the theorem, we must define what it means for a markov chain to be

irreducible and aperiodic having a stationary distribution.

Definition 4.1.3 [14] Suppose a distribution π on I such that, if the Markov chain starts

out with initial distribution π0 = π, then we also have π1 = π, and generally, πn = π for

all n. Then, we call π the stationary distribution for the Markov chain. That is, for all

j ∈ I,

π(j) =
∑
i∈I

π(i)P (i, j)

Definition 4.1.4 [14] Let i and j be two states. We say that j is accessible from i if it is

possible, with a positive probability, for the chain to visit state j if the chain starts in state

i. That is,

Pi

{
∞⋃
n=0

{Xn = j}

}
> 0

We say that i communicates with j if j is accessible from i and i is accessible from j. We

say that a Markov chain is irreducible if all pairs of states communicate.

Definition 4.1.5 [14] Given a Markov chain {X0, X1, . . . }, define the period of a state i

to be the greatest common divisor

di = gcd(n | P n(i, i) > 0)

An irreducible markov chain is said to be aperiodic if its period is 1, and periodic otherwise.

We now state the Basic Limit Theorem, but due to the level of involvement in proving
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the Basic Limit Theorem, the proof is omitted.

Theorem 1 (Basic Limit Theorem) Let X0, X1, . . . be an irreducible, aperiodic Markov

chain having a stationary distribution π(·). Let X0 have the distribution π0, an arbitrary

distribution. Then,

lim
n→∞

πn(i) = π(i)

for states i ∈ I.

Now, we define another important property of Markov chains that we should be aware

of. A Markov chain is time reversible if

(X0, X1, . . . , Xn) = (Xn, Xn−1, . . . , X0)

That is, the sequence of states that are moving in the “forward” direction is equal in dis-

tribution to the sequence of states moving in the “backward” direction. This means that

the element-wise states are equal in distribution as well, which implies that the distribution

must be stationary. The property of time reversibility is important because it is relevant in

Markov Chain Monte Carlo (MCMC) methods since it allows for the construction of a proper

Markov chain from which to simulate a posterior distribution. A Markov chain’s station-

ary distribution can well simulate the posterior distribution that we have trouble sampling

from [15].
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4.2 Monte Carlo Sampling

In many high-dimensional sampling problems, a technique known as Monte Carlo Sampling

can be used. This technique is specifically used in two kinds of problems [16]:

• To sample from a posterior distribution p(x)

• Approximating integrals of the form
∫
f(x)p(x) dx

First, we introduce a couple of definitions to lead into Monte Carlo sampling and then we

introduce two important techniques of sampling.

Definition 4.2.1 [17] Suppose we have some d-dimensional data x ∈ Rd. Let f(x) be the

Probability Density Function (PDF) of the data. Let h(x) be another function over the data

x. Then, the expectation of h(x) over the distribution f(x) is:

E[h(x)] =

∫
h(x)f(x) dx (7)

Definition 4.2.2 [17] Using a sample of size n from the distribution f(x) ({x1, . . . , xn} ∼

f(x)), we can approximate the expectation in the previous definition as follows:

E[h(x)] ≈ 1

n

n∑
i=1

h(xi) (8)

This is known as a Monte Carlo approximation.

The MC methods are iterative methods that generate samples from a distribution. Some

of the MC methods are simple MC methods. These methods draw samples blindly like a
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blindfolded person because every step or iteration does not depend on the previous iteration.

Therefore, the iterations are independent and are performed blindly in the space of the data

distribution. There are two significant sampling techniques in this category: importance

sampling and rejection sampling [17].

4.2.1 Importance Sampling

Suppose we have a distribution that may be complicated and isn’t easy to sample from. Let

f(X) be the probability density function (PDF) of this distribution such that

f(X) =
P ∗(X)

Z
(9)

where Z is a marginalizing distribution to normalize the distribution (intractable to com-

pute). The P ∗(X) term is a scaled PDF of the distribution with the shape of the distribution.

Importance sampling is defined as follows. Consider a function of interest, denoted by h(X).

We want to calculate the expectation of this function h(X) on the data, over the distribution

f(X) or P ∗(X). However, since the distribution is hard to compute, we can estimate this

expectation using another simple distribution Q(X). This simple distribution, which we can

easily draw samples from, can be any distribution such as uniform or Gaussian [17].

4.2.2 Rejection Sampling

If we want to draw samples from some complicated distribution f(X), we can use the idea of

rejection sampling to sample from a simple distribution Q(X) instead and use those samples

to generate samples drawn from P ∗(X). The procedure is as follows. In rejection sampling,
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Figure 8: Rejection sampling [17]

we consider a distribution Q(X), where for a positive number c, we have that

c ·Q(X) ≥ P ∗(X), ∀x ∈ domain(X) (10)

For sampling xi from the complicated distribution P ∗(X), we draw a sample from a

simple distribution Q(X) (xi ∼ Q(X)). Then, we uniformly sample a random number

ui ∼ U(0, c ·Q(xi)). Now, if ui is smaller than P ∗(xi), the sample xi is accepted. Otherwise,

we reject the sample and repeat the procedure. An illustration of rejection sampling can be

seen in Figure 8 [17]. The rejection sampling algorithm is described in Algorithm 1.

Algorithm 1: Rejection Sampling

Input: Some distribution Q(x) and n the number of samples
Output: Set of accepted samples
i = 0
while i 6= n do

x(i) ∼ Q(X)
u ∼ U(0, 1)

if u < P ∗(x(i))

cQ(x(i))
then

accept x(i)

i = i+ 1
else

reject x(i)

end

end
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4.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are a set of methods that help in approx-

imating posterior distributions in Bayesian inference. MCMC allows one to characterize

a distribution without actually knowing everything about the distribution’s mathematical

properties. What makes this method so powerful is that it can be used to draw samples

from distributions even when all we know is how to evaluate the probability density for

samples. MCMC provides a straightforward approach to numerically estimate uncertainties

in the parameters of a model using a sequence of random samples. The Monte Carlo part of

the algorithm is used to generate random samples from a known distribution and use these

samples to simulate sampling from the posterior distribution. The Markov chain part of the

method is the idea that random samples are generated in a sequential process. That is, each

sample is used as a sort of stepping stone for the next sample due to the Markov property.

This forms a chain of randomly sampled points. There are many MCMC methods, but we

will focus on one specific method that will be used as a sampling technique for our approach:

Metropolis-Hastings.

4.3.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm simulates a set of samples from a probability dis-

tribution by making use of the full joint density function and the proposal distribution for

each random variable in order to simulate sampling from the posterior distribution. The

algorithm is described in Algorithm 2. The steps and details are as follows [18]:
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Overview: We first initialize the sample value for each random variable (perhaps through a

prior distribution). We choose a candidate sample x′ from a proposal distribution q. Then,

we compute an acceptance probability using some acceptance function α(x′) which depends

on the proposal distribution and joint density π(·). Finally, we either accept the candidate

sample with probability α or reject the candidate sample with probability 1− α. The algo-

rithm is as follows:

The Proposal Distribution: We start the algorithm by sampling a candidate value x′

from the proposal distribution q(·). But, firstly, what are proposal distributions? When we

talk about proposal distributions, there are two types we refer to: symmetric and asymmet-

ric. A proposal distribution is symmetric1 if q(x(i) | x(i−1)) = q(x(i−1) | x(i)). The proposal

distribution changes the state of the Markov chain at random, and then either accepts or

rejects the state change under some probability. Algorithms that use symmetric proposal

distributions in this fashion are called Random Walk Metropolis algorithm [18].

The Acceptance Function: There is a special condition that the Metropolis-Hastings

algorithm needs to satisfy: detailed balance. This condition simply guarantees that the

stationary distribution of the markov chain converges to the target posterior distribution

that we are interested in estimating. It is based on this criteria that the acceptance function

is chosen. Consider the following acceptance function:

α(x(i) | x(i−1)) = min
{

1,
q(x(i−1) | x(i))π(x(i))

q(x(i) | x(i−1))π(x(i−1))

}
(11)

1For the sake of this paper, we will only focus on symmetric distributions.
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where π(·) is the full joint density function. If the proposal distribution is symmetric, we

have that q(x(i) | x(i−1)) = q(x(i−1) | x(i)). This implies that the acceptance probability

simply becomes the ratio of the probability of the current state and the next state under the

joint probability density.

Accepting/Rejecting a candidate: The last step in the algorithm is to accept a given

candidate with the acceptance probability α described above. The minimum operator en-

sures that the acceptance probability is never larger than 1. Due to the time-reversibility of

the Markov chain and the q(·) term in the acceptance function, we can ensure that the chain

doesn’t get stuck in one place.

Algorithm 2: Metropolis-Hastings Random Walk

Input: Some distribution q(x) and n the number of samples
Output: Set of accepted samples
Initialize x(0) ∼ q(x)
for i = 1,2,. . . ,n do

x′ ∼ q(x(i) | x(i−1))
α(x(i) | x(i−1)) = min

{
1,
(
q(x(i−1) | x(i))π(x(i))

)
/
(
q(x(i) | x(i−1))π(x(i−1))

)}
u ∼ U(0, 1)
if u < α then

x(i) ← x′

else
x(i) ← x(i−1)

end

end
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5 Approach

5.1 Overview

Generally in the Bayesian paradigm, as we described in the graph setting, the observed

graph is viewed as a random variable and we are trying to use Bayesian methods to infer the

posterior for the underlying graph [19] [4]. Based on this approach, we want to propose a

graph sampling method that can be effective on three fronts. Our approach: utilizes graph

structure to determine acceptance probability during sampling, proposes an MCMC random

walk-based algorithm that allows for diverse connections, and allows the observed graph

to learn connections between weakly linked nodes and potentially missing connections. To

accomplish this, we propose a unique MCMC based random walk technique to sample nodes

from the graph. Previous methods, specifically [4], utilize a version of node copying for graph

inference, shown in Figure 9, which copies the neighbors of a node with the same label as the

current node to the current node’s neighbors. The problem with this approach is that high

node densities can lead to overfitting of the GCN when applied to the graph. Additionally,

unlike our approach, their node copying approach uses a fixed hyperparameter ε to determine

the acceptance probability, which does not use the structure of the graph in any form. The

arbitrary nature of this proposal can prove to be problematic when generalizing to larger

graph datasets.
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Figure 9: Node Copying Scheme (Graph image from [20])

5.2 Neighborhood Random Walk Sampling

Our approach, the Neighborhood Random Walk Sampling, utilizes MCMC methods to sam-

ple nodes from the observed graph and copy neighborhoods of nodes from the random walk.

In order to sample graph G from the proposed model, we utilize the Metropolis-Hastings

random walk. Recall the Metropolis-Hastings algorithm from the previous section. We will

reformulate this algorithm and apply it to graph sampling.

Suppose we want to generate a random variable V taking values {1, 2, . . . , n}, representing

nodes in our graph, according to some target distribution {πi} where i ∈ V . We have that

πi = bi
C

where bi > 0 and the normalizing constant C is difficult to estimate. We simulate a

markov chain such that the stationary distribution of the chain will converge to the target

distribution of the posterior that we have sought after. Let {Xt | t = 0, 1, . . . } be the

state-space of the markov chain M using a transition probability matrix Q, which we will

assume is the proposal distribution for our method [21]. Now, if Xt = i, then we generate a
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candidate sample Y such that P (Y = j) = qij for all i, j ∈ V . Then, we have the following

acceptance function:

α(j | i) = min
{

1,
q(j | i)πj
q(i | j)πi

}
(12)

Now, to accomplish graph sampling, we want to treat the nodes in the observed graph G

as states in a Markov chain. We uniformly sample a neighbor of node i from the proposal

distribution Q, say j. Since we are going to perform a random walk, the transition probability

of moving from state (or node) i to state j is simply 1/di, the degree of the current node

i. The transition matrix Q is a stochastic symmetric positive semi-definite matrix and

therefore is a symmetric distribution. For a uniform target, we have that πi = πj. Further,

q(j | i) = 1/dj and q(i | j) = 1/di. So, our new acceptance function for sampling from

graphs is

α(j | i) = min
{

1,
di
dj

}
(13)

Let ξ ∈ {1, 2, . . . , n}n be a random vector where n denotes the total number of nodes

and the jth entry ξj denotes the node whose edges are to be copied to the jth node in the

observed graph Gobs [4]. This random vector is similar to the random vector used for the

node copying scheme in Pal et al. Let X ∈ Rn×d represent the node features and YL ∈ Rn

represent the training labels. That is, each row of X is the d-dimensional feature vector of

the corresponding node. We want to predict one of K class labels ĉm ∈ {1, 2, . . . , K} for each

node m in the graph. Define the posterior distribution of the random vector ξ as follows:
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p(ξ | Gobs, X, YL) =
n∏

j=1

p(ξj | Gobs, X, YL)

p(ξj = i | Gobs, X, YL) =


1/di, if i ∈ N (j)

0, otherwise

(14)

Sampling a node ξj is done by selecting a node at random from a random walk generated

by a Markov chain and copying the neighbors of that node. As stated before, the nodes in

the observed graph can be viewed as states of the Markov chain. A random walk is gener-

ated from the current node and a random neighbor of the terminating node is chosen as the

candidate to sample. This candidate is accepted based on an acceptance function calculated

based on the ratio of the degree of the current node and the degree of the candidate node.

The sampling is carried out by simply copying the ξj’th node of Gobs in the place of the jth

node of G independently for all 1 ≤ j ≤ n with probability given by the acceptance function.

Now, assuming that the events (the states), namely ξ, are independently and identically

distributed, our generative model is as follows:

p(G | Gobs, ξ) =
n∏

j=1

(
min

{
1,
di
dj

})1Gj=Gobs,j(
1−min

{
1,
di
dj

})1Gj=Gobs,ξj (15)

where 1Gq=Gobs,j is the indicator function of copying node q in the observed graph Gobs in

place of node j of sampled graph G. This model changes the neighbors of the jth node with

the neighbors of the node reached by the random walk (shown in Figure 10).
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Figure 10: Neighborhood Random Walk Sampling

5.3 Bayesian Convolutional Networks

Given that Z is the final output collected from the last layer of the network (the prediction),

we compute the posterior probability of the node labels by marginalizing with respect to the

graph and the GCN weights [3].

p(Z | YL, X,Gobs) =

∫
p(Z | W,Gobs, X)p(W | YL, X,G)

p(G | Gobs, ξ)p(ξ | Gobs, YL, X) dW dG dξ

where W is the random weight matrix of the BGCN over the graph G and ξ is an n-

dimensional random vector that represents the neighborhood random walk sampling model.

Simply put, this continuous probability consists of the softmax probability, prior distribution

on the weights, generative model for graph sampling, and our model for the posterior for

the random variable ξ. Similar to Pal et al., our approach models the marginal posterior
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distribution of the graph G as p(G | Gobs, X, YL). This allows the features X to play a role

in the graph inference process. This posterior is intractable, so Monte Carlo techniques are

required to approximate the value.

p(Z | YL, X,Gobs) ≈
1

V

V∑
v=1

1

NGS

NG∑
i=1

S∑
s=1

p(Z | Ws,i,v,Gobs, X)

where V samples ξv are drawn from the p(ξ | Gobs, YL, X) distribution. The NG sampled

graphs are sampled from p(G | Gobs, ξv) and S weight matrices are sampled from p(W |

YL, X,Gi,v) from the Bayesian GCN corresponding to the sampled graph. The complete

algorithm is outlined in Algorithm 3.

Algorithm 3: Bayesian GCN using Neighborhood Random Walk Graph Sampling

Input: Gobs, X, YL
Output: p(Z | YL, X,Gobs)
Initialization: Execute a pre-training step for a classifier to obtain predicted labels
for i = 1 to V do

Sample ξv ∼ p(ξ | Gobs, X, YL)
for k = 1 to NG do

for t = 1 to M do
Sample j ∈ N (i)
Uniformly sample u ∼ U(0, 1)
if u ≤ min{1, di/dj} then

accept node j
else

reject j and stay at node i
end

end
Copy neighborhood of accepted node to the neighbors of candidate node

end

end
Run GCN classifier with new inferred graph
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The GCN weights for Bayesian inference can be obtained by performing a variety of

techniques such as expectation propagation [22], variational inference [23] [24] [25], and

Markov chain Monte Carlo methods [26]. We have found that our neighborhood random

walk sampling is quite effective for a multitude of reasons. Firstly, a flaw of the node

copying scheme proposed by Pal et al. is that the sampling occurs under a fixed probability

parameter ε. Instead of fixing a parameter, our model uses the structure of the graph

and an acceptance function to perform rejection sampling. Secondly, the node copying

scheme copies the neighborhood of nodes that have the same label as the current node,

which can lead to overfitting of the model. Nodes can be overly dense, which can cause the

model classification accuracy to suffer. Rather, performing a Markov chain-based random

walk throughout the graph over a number of iterations (set as a hyperparameter) can be

beneficial for diversity in connections. Many connections in a noisy graph can be loose

connections. A random walk can help diversify connection to the current node thereby

broadening information when aggregated together from neighbors when being propagated

through the graph neural network. Lastly, our proposed model works well as the dimension of

the dataset becomes larger. That is, Monte Carlo techniques are generally high dimensional

techniques and thus have better performance on higher dimensional computations.
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6 Experiments and Results

We performed multiple experiments to validate our findings. Specifically, our model increases

the node classification accuracy in a graph.

6.1 Datasets

Cora: The Cora dataset consists of 2708 scientific publications classified into one of 7 classes.

The citation network consists of 5429 links. Each publication in the dataset is described by

a 0/1-valued word vector indicating the absence/presence of the corresponding word from

the dictionary. The dictionary consists of 1433 unique words [27] [28].

Citeseer: The CiteSeer dataset consists of 3312 scientific publications classified into one of

6 classes. The citation network consists of 4732 links. Each publication in the dataset is

described by a 0/1-valued word vector indicating the absence/presence of the corresponding

word from the dictionary. The dictionary consists of 3703 unique words [29] [28].

Pubmed: The Pubmed Diabetes dataset consists of 19717 scientific publications from the

PubMed database pertaining to diabetes classified into one of 3 classes. The citation network

consists of 44338 links. Each publication in the dataset is described by a TF/IDF weighted

word vector from a dictionary that consists of 500 unique words [30] [28].
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6.2 Implementation

6.2.1 Running base classifier

The Neighborhood Random Walk Sampling implementation of the BGCN was implemented

using PyTorch Geometric with an altered implementation modified to use the Metropolis-

Hastings Random Walk algorithm for graph inference2 as opposed to the node copying

scheme from [4]. To implement our model, we used a Graph Convolutional Network as our

base classifier. We ran the model for 300 epochs and collected the weights after 240 epochs.

The weights in each layer are normalized according to a Gaussian distribution.

6.2.2 Graph Inference

The graph inference step utilized the Metropolis-Hastings Random walk algorithm to traverse

through random paths in the graph to get to a node and copy the neighbors of that node to

the original node. The sampling was run for 10 iterations to simulate a Markov chain. The

graph inference began roughly after 200 epochs. The graph inference samples nodes based

on the MCMC scheme and generates an “inferred” graph that is used in place of the original

graph when training the model. So, sample graphs are fed into the GCN to compute more

robust representations.

6.2.3 Hyperparameters

The hyperparameters used in our experiments are the same as those used for the GCN.

We ran the model for 300 epochs with 200 epochs used to pre-train a base GCN classifier.

2Modified Implementation: https://github.com/Akomand/BGCN_TORCH
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The rest of the 100 epochs use our MCMC graph sampling to minimize loss and increase

accuracy. Our base GCN is a 2-layer network with input dimension of size the number of

nodes, N , in the dataset, a hidden layer of size 16, and an output layer of size equal to the

number of classes, K. We set the learning rate α to a standard 0.01. To prevent overfitting

of our model, we employed dropout regularization with the keep probability set to 0.5. We

set the number of iterations of the Markov chain to M = 10.

6.3 Results

We ran a series of experiments with a random split. For the random partition, we ran-

domly sample 5, 10, or 20 labels per class to severely limit the number of classes known

for supervision. This is designed to test the limits of the approach under semi-supervision.

The random split can give us a more robust measure of the performance of our model. We

compare our model’s (BGCN-NRWS) performance with that of CheybyNet [2], GCN [5],

GAT [6], BGCN [3], and BGCN using Node Copying [4] for the node classification task. The

base hyperparameters set for the BGCNs and the GCN are identical. Each of the BGCN

models is based on a GCN base classifier. The results of each algorithm are based on an aver-

age of 50 trial runs with Xavier random weight initialization. We use the accuracy measure,

which is simply the number of correctly labeled nodes over the total number of nodes, as our

evaluation metric. All the average accuracies for the three datasets are shown in Figure 11,

12, and 13.

We can see that our BGCN model clearly showcases consistently higher classification

accuracies for both larger datasets and across most levels of supervision (5, 10, and 20
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Random Split 5 labels 10 labels 20 labels
ChebyNet 61.7± 6.8 72.5± 3.5 78.8± 1.6
GCNN 70.0± 3.7 76.0± 2.2 79.8± 1.8
GAT 70.4± 3.7 76.6± 2.8 79.9± 1.8
BGCN 74.6± 2.8 77.5± 2.6 80.2± 1.5
BGCN-NC 73.8± 2.7 77.6± 2.6 80.3± 1.6
BGCN-NRWS 72.2± 2.8 80.6± 2.4 80.6± 1.6

Figure 11: Classification Accuracy for Cora Dataset

Random Split 5 labels 10 labels 20 labels
ChebyNet 58.5± 4.8 65.8± 2.8 67.5± 1.9
GCNN 58.5± 4.7 65.4± 2.6 67.8± 2.3
GAT 56.7± 5.1 64.1± 3.3 67.6± 2.3
BGCN 63.0± 4.8 69.9± 2.3 71.1± 1.8
BGCN-NC 63.9± 4.2 68.5± 2.3 70.2± 2.0
BGCN-NRWS 65.2± 2.8 66.0± 2.4 70.0± 1.6

Figure 12: Classification Accuracy for Citeseet Dataset

Random Split 5 labels 10 labels 20 labels
ChebyNet 62.7± 6.9 68.6± 5.0 74.3± 3.0
GCNN 69.7± 4.5 73.9± 3.4 77.5± 2.5
GAT 68.0± 4.8 72.6± 3.6 76.4± 3.0
BGCN 70.2± 4.5 73.3± 3.1 76.0± 2.6
BGCN-NC 71.0± 4.2 74.6± 3.3 77.5± 2.4
BGCN-NRWS 68.3± 2.8 71.5± 2.4 78.0± 1.1

Figure 13: Classification Accuracy for Pubmed Dataset

labels). We can see that our model performs better for higher levels of supervision on

the Cora dataset, lower levels of supervision on the Citeseer dataset, and higher levels of

supervision on the Pubmed dataset. With more hyperparameter tuning, we believe that our

model has the potential to outperform across all levels of supervision. For instance, if the

number of iterations of the Markov chain is increased, despite time complexity, our model

may be able to perform better due to the ability to generate a longer chain. Compared to

previous BGCN models, our model utilizes the structure of the graph by generating a Markov
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chain random walk to account for diverse connections. This allows us to see consistently close

quantitative improvements in addition to the qualitative enhancements.

7 Conclusion

In this thesis, we present a Bayesian Graph Convolutional Network using a neighborhood ran-

dom walk-based graph sampling method to utilize graph structure, improve diversity among

connections, and enhance the accuracy of the model in semi-supervised node classification.

We put heavy constraints on the number of labels randomly sampled per training sample

so that we can observe how the model performs under such constraints for semi-supervised

learning. Future work includes performing statistical significance tests to determine the

level of diversity our model provides. Additionally, to optimize our generative model, tuning

hyperparameters such as the number of iterations of the Markov chain can help to obtain

higher classification accuracies. Similar to Graph Convolutional Networks, there are other

graph-based models such as the Graph Attention Network that defines specific weights to

give more importance to certain aspects of the network than others. An interesting exper-

iment would be to introduce a Bayesian framework on these attention weights and observe

the effect on a variety of tasks including node classification. To improve our model, we

could also utilize the Graph Attention Layer as one of the layers in the deep neural network.

This could further optimize classification results by having weights for different nodes in a

neighborhood to capture more robust representations.
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