
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2021

Semi-Supervised Spatial-Temporal Feature Learning on Anomaly-Semi-Supervised Spatial-Temporal Feature Learning on Anomaly-

Based Network Intrusion Detection Based Network Intrusion Detection

Huy Mai

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Artificial Intelligence and Robotics Commons, OS and Networks Commons, Service

Learning Commons, and the Theory and Algorithms Commons

Citation Citation
Mai, H. (2021). Semi-Supervised Spatial-Temporal Feature Learning on Anomaly-Based Network Intrusion
Detection. Computer Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/90

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1024?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1024?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/90?utm_source=scholarworks.uark.edu%2Fcsceuht%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Semi-Supervised Spatial-Temporal Feature
Learning on Anomaly-Based Network Intrusion

Detection

An Undergraduate Honors College Thesis
in the

Department of Computer Science and Engineering
College of Engineering
University of Arkansas

Fayetteville, AR

By

Huy Mai

May 2021
University of Arkansas

Abstract

Due to a rapid increase in network traffic, it is growing more imperative to have sys-

tems that detect attacks that are both known and unknown to networks. Anomaly-

based detection methods utilize deep learning techniques, including semi-supervised

learning, in order to effectively detect these attacks. Semi-supervision is advan-

tageous as it doesn’t fully depend on the labelling of network traffic data points,

which may be a daunting task especially considering the amount of traffic data

collected. Even though deep learning models such as the convolutional neural

network have been integrated into a number of proposed network intrusion detec-

tion systems in recent years, little work has been done on spatial-temporal feature

extraction for network intrusion anomaly detection using semi-supervised learn-

ing. This paper introduces Anomaly-CNVAE, a variational autoencoder where the

encoding and decoding layers perform convolution and transpose convolution, re-

spectively, in order to account for spatial feature extraction. In addition, in order

to account for time-based features in the dataset, the proposed model utilizes 1D-

CNN for the convolution operations. The performance of the model in network

intrusion detection is evaluated against an autoencoder and a vanilla variational

autoencoder. Results show that Anomaly-CNVAE significantly outperforms the

other semi-supervised learning models with a 5-10 percent increase in evaluation

metrics.

Keywords: Network Intrusion Detection, Semi-Supervised Learning, Anomaly

Detection

TABLE OF CONTENTS

1 Introduction . 1

2 Related Work . 3

3 Background . 6
3.1 Artificial Neural Network . 6
3.2 Autoencoder . 7
3.3 Variational Autoencoder . 9
3.4 Convolutional Layers in Machine Learning 11

4 Methodology . 13
4.1 Data Preprocessing . 13
4.2 Architecture . 14
4.3 Anomaly Detection . 16

5 Experimentation . 18
5.1 Datasets . 18

5.1.1 NSL-KDD . 18
5.1.2 UNSW-NB15 . 19
5.1.3 TRAbID . 20

5.2 Experiments . 21
5.2.1 Hyperparameters For Each Model 22
5.2.2 Evaluation Metrics . 23

5.3 Results . 23

6 Conclusion . 25

Bibliography . 26

iv

1 Introduction

Cyber-attacks are becoming more prevalent in our society today. In particular, the

number of attacks pertaining to the entrance of unauthorized traffic into networks

is increasing. Even though some technologies such as firewalls are commonly placed

to stop these attacks from intruding into the network, recent advancements, which

have highlighted the pitfalls of these common technologies, have been presented to

improve the mitigation of this issue, including the development of network intru-

sion detection systems.

The primary function of a network intrusion detection system (NIDS) is to

detect malicious network traffic and raise an alert in the event of such an attack.

There are two types of identification: signature-based detection and anomaly de-

tection [1]. Using a database of predefined attacks, signature-based approaches

are able to effectively identify known network traffic attacks. Despite their low

false alarm rate, these approaches are futile against unknown attacks and zero-day

attacks. Furthermore, updating the database seems to be more of a cumbersome

task as attacks are growing more frequent and diverse. In contrast, anomaly de-

tection systems utilize normal traffic activity to identify traffic that deviate from

normal behavior. Even though they are able to identify both known and unknown

attacks, anomaly detection technologies are subject to high false alarm rates.

Regarding network intrusion detection, numerous machine learning ap-

proaches have been proposed over the past few years. A majority of these ap-

proaches fit under the category of supervised learning, where the models are trained

on data that include labels for all network traffic records. The convolutional neural

network (CNN), which is a deep learning model commonly utilized for classifica-

tion tasks in fields such as voice recognition and image processing [2], has been

included in several recent proposed models for multiclass classification of network

1

traffic. Nevertheless, supervised learning models, including the CNN, are depen-

dent on the strenuous labelling of traffic data.

By contrast, semi-supervised learning requires that a certain portion of the

data is labelled. Some models that are designed to follow this learning process

include the autoencoder and variational autoencoder. In the case of anomaly de-

tection, both models take advantage of dimensionality reduction and input recon-

struction to first train on normal data in order to minimize reconstruction loss and

then identify data points within testing data that deviate from normal behavior.

When considering that benchmark datasets related to network intrusion detection

are imbalanced in favor of normal traffic behavior [3], semi-supervised anomaly

detection is advantageous. However, little work has been done to explore semi-

supervised anomaly detection on network traffic. Moreover, even as [4] proposed

a variational autoencoder model for anomaly detection, major improvements, in-

cluding those related to feature extraction, need to be made to the model.

In this work, I propose a novel semi-supervised learning model, Anomaly-

CNVAE, where convolution and transposed convolution are added to the varia-

tional autoencoder in order to extract and reconstruct spatial features in network

traffic data. Moreover, instead of the more common two-dimensional approach used

for images, the convolution and transpose convolution are both one-dimensional in

order to account for temporal features in the data. Anomaly-CNVAE outperforms

a few semi-supervised learning models on a number of benchmark datasets.

The remainder of the thesis is organized as follows. Chapter 2 gives a thor-

ough overview of literature related to network intrusion detection systems. Chapter

3 presents background information necessary for the proposed methodology, which

is introduced in Chapter 4. After the datasets are introduced in Chapter 5, Chap-

ter 6 breaks down the experiment conducted on the methodology against other

semi-supervised models for anomaly-based network intrusion detection, where the

results are discussed in Chapter 7. Chapter 8 concludes the paper and offers ideas

for future work.

2

2 Related Work

Anomaly-based network intrusion detection is the other primary means of keeping

track of normal and abnormal activity in a network. More research has been

conducted within this domain due to the ability of this type of system to identify

not only known intrusions, but also unknown and zero-day attacks. For these

new attacks, databases do not need to be updated [5]. Anomaly-based network

intrusion detection makes use of machine learning methods, where most work has

been done on supervised and unsupervised learning for network intrusion detection.

Supervised learning methods allow NIDS models to be trained on existing

network traffic data to identify unknown activity as normal or abnormal. This

opens up for the use of artificial neural networks (ANNs), which are function

approximators that model decision making inspired by the interconnections of

neurons in the human brain [6]. Researchers in this area have implemented certain

types of ANNs such as multi-layer perceptrons (MLPs), which are simple networks

that each consists of one input layer, one hidden layer, and one output layer,

support vector machines (SVM), which utilize nonlinear mapping to transform the

original training data into a new dimension in order to separate the data into

two classes with a hyperplane, and k-nearest neighbor (KNN), which takes the

proximity of data points into consideration in order to classify a certain data point.

One early example of use of these classifiers includes [7], whose MLP was trained

on the Defense Advanced Research Projects Agency set to identify and predict

network attacks. Nevertheless, the MLP was still weak in classifying unknown

attacks as indicated in the significant difference between classification rates for

known and unknown attacks. Another example is [8], which proposed a recursive

SVM to build upon regular SVM classification in order to account for the extraction

of main features of data. [9] proposed an algorithm that combined the KNN and

3

MARS algorithms in order to classify normal and abnormal behavior based on

collections of neighbors.

As stated before, a significant proportion of recent supervised learning

models tasked for NID incorporates the CNN architecture. One example model,

highlighted in [10], converts a normalized feature vector generated from a bench-

mark NID dataset to a two-dimensional format frequently used for images, which

required the removal of a feature using the coefficient of variance. The two-

dimensional input then goes through two convolutional layers and two pooling

layers before going through a fully-connected layer in order to classify the input as

normal or as an attack class. Additional works have expanded upon this model,

a number of which also integrated schemes to solve the problem of class imbal-

ance in NID datasets. For instance, [3] introduces AS-CNN, where the ADASYN

algorithm augments the data in order to account for an imbalanced data distribu-

tion and a split convolution component is incorporated to the CNN architecture

to reduce interchannel information redundancy. Another example is [11], which

proposed a one-dimensional CNN tasked for supervised learning on time-series

NID data. Moreover, more works have applied CNNs to a hierarchical framework

that considers other types of features not related to spatial locality in the dataset.

This is seen in [12], for example, where a CNN architecture is combined with a

bi-directional long short-term memory (LSTM) model that extracts time-based

features. Even though most supervised learning models include methods to ac-

count for class imbalance in the datasets, this paper neither focuses on supervised

learning nor the problem of imbalanced distribution.

On the other hand, more intrusion detection algorithms include unsuper-

vised learning techniques, where the input data does not need a label. These tech-

niques generally incorporate clustering, which allows analysis of patterns within

data by the partition of the dataset. The ultimate goal of clustering algorithms

is to maximize intraclass similarity and minimize interclass similarity. K-means is

a well-known clustering algorithm that partitions data based on the selection of k

cluster centroids. [13] was the one of the earliest papers to propose an intrusion

4

detection algorithm based on K-means. Even though the algorithm is suitable for

large datasets, the algorithm is not as robust as other clustering algorithms due to

its requirement of a pre-defined k value before running the algorithm. [14] intro-

duced density-based spatial clustering of applications with noise (DBSCAN), which

offered more robustness compared to K-means by requiring one input parameter

and supporting the user in determining an appropriate value for that parameter.

Semi-supervised learning requires that a certain proportion of data points

contains labels while the rest are unlabeled [15], which can be useful as labelling

data from a large dataset becomes a daunting task for human annotators. Some

models that utilize this type of learning train on the labelled data in order to assign

a label to a previously unlabeled point. For example, [16] applied the above task

to images outputted by a GAN generator using feature matching, where images

are generated based on the statistics of real data. These newly generated images

are added to the training set.

In the case of network intrusion detection, works that utilize semi-supervised

learning follow the procedure of performing an unsupervised feature extraction and

supervised classification, which is usually done using an autoencoder-based archi-

tecture. For example, [17] proposed an approach based on a stacked autoencoder,

where encoding layers from each autoencoder in a set of n autoencoders are at-

tached for feature extraction after the layers pretrained to minimize reconstruction

error.

However, little work has been done to consider a semi-supervised approach

for anomaly-based network intrusion detection, where the model is trained on

labeled normal data in order to minimize reconstruction error before including

both normal and attack data during the testing process. Network traffic attacks

are identified if they produce an anomalous reconstruction error. [4] tested au-

toencoder and variational autoencoder models against a support vector machine

to assess performance on the CIC-IDS2017 dataset, showing that the variational

autoencoder performed best out of the three models.

5

3 Background

It is important to have an understanding of preliminary concepts within machine

learning before delving into the proposed model. This chapter explores the ideas of

artificial neural network, autoencoder, variational autoencoder, and convolutions

when used in machine learning technologies.

3.1 Artificial Neural Network

Let x = (x1 x2 . . . xn)T be a column vector. We define an artificial neural

network as a mathematical model of interconnected nodes that includes a set of

input nodes that process x and a set of output nodes such that one output node

is emphasized given x. The nodes are arranged in layers, where the output of one

layer may serve as input to another [18]. To simulate synaptic connection and

the transference of information in the brain, a node ci in one layer of size m is

connected to all or a subset of nodes dj in the next layer of size n using a weighted

value wmn. (Let’s assume for the sake of this explanation that each node di is

connected to all nodes dj.) The value of each node dj is computed using

dj = f(
m∑
i

wjici + b),

where f is called the activation function, which simulates the level of activity of

dj, and b is the bias term, which allows dj to have a required output value in case

it is not possible. Some activation functions such as the sigmoid and hyperbolic

tangent functions are commonly utilized to assign a value between a certain range,

where the higher value denotes an active node while the lower value denotes an

inactive node.

6

Our proposed model uses a feedforward neural network, where the connec-

tions between nodes do not form a cycle. In other words, input to the neural

network is generally processed from one layer to another such that the information

does not revert back to a layer in order to obtain an output for the input. This

output is compared with the actual output for the data point x(i), where the calcu-

lated difference is called the loss. Various loss functions such as the mean-squared

error and binary cross-entropy are commonly used.

During the training process, the network learns through a process called

backpropagation, where loss is fed back through the network, resulting in updates

of weights in the network. Different gradient-based techniques such as Adam [19]

and stochastic gradient descent have been used to update these weights such that

the loss converges as the training process progresses.

3.2 Autoencoder

With regards to the proposed model, we first define an autoencoder as an acyclic

feed-forward unsupervised neural network that learns how to reconstruct a given

input with minimal loss. An autoencoder generally consists of four components:

the encoder layer, the decoder layer, the bottleneck, and the reconstruction loss

function.

Let x be any input to an autoencoder. The encoder layer f yield the

bottleneck z by computing z = f(x), where z is of lower dimension than x. In

other words, the bottleneck z is a compressed representation of the original input x.

From there z serves as input for the decoder layer g, producing the reconstruction x′

after computing x′ = g(z). To train the autoencoder, we examine the minimization

of the reconstruction loss L(x, x′) = L(x, (g ◦ f)(x)), which helps us assess the

performance of the decoder by measuring how close the reconstructed input is to

the original input.

We note that although a traditional autoencoder consists of a single layer

for both the encoder and the decoder, multiple layers can be applied to the encoder

7

Figure 3.1: Deep Autoencoder

and the decoder, producing an architecture that has autoencoders within autoen-

coders. We call this particular type of autoencoder a stacked (or deep) autoen-

coder, which is shown in Figure 3.1. Stacked autoencoders have been frequently

used for dimensionality reduction [20]. As they consist of multiple traditional au-

toencoders, the training process for a stacked autoencoder can be ”layer-wise” for

each autoencoder: The process typically starts with the pre-training of each in-

dividual autoencoder before attaching encoders and decoders together such that

for i = 1, 2, . . . , n, the output of ith encoder layer acts as input for the (i + 1)th

encoder layer while the output of the (i+ 1)th decoder layer acts an input for the

ith decoder layer.

With a semi-supervised learning paradigm, where the training process in-

volves unlabelled normal data points, the reconstruction loss makes an autoencoder

a popular model for detecting anomalies. As a result of L(x, x′) being minimized

after training, this implies that L(x, x′) is relatively low among normal data points.

8

Hence, when the trained autoencoder is given an anomalous data point, we expect

L(x, x′) to have a significantly large value. This allows us to enact a threshold θ

on a value for L(x, x′) of any tested data point x to detect whether x is a normal

point or an anomaly using the following output y:

y =

normal, L(x, x′) < θ

anomaly, L(x, x′) ≥ θ

We do note that there are different ways of determining the threshold θ for

an anomaly detection task. One method is to determine θ beforehand and utilize

trial and error to optimize θ, which may prove to be tedious. Alternatively, θ can

be expressed as a function of the losses of each data point x(i), where the function

could be the mean, median, or percentile of the losses [21].

3.3 Variational Autoencoder

Our proposed approach consists of a special type of autoencoder, the vari-

ational autoencoder, that involves variational Bayesian inference [22], where

the latent variable z is sampled from an approximate posterior inference qφ(z|x)

given a set of input X. Let φ be the parameters associated with the encoding layer

and θ be the parameters associated with the decoding layer. Compared to the

traditional autoencoder, the encoding layer of a variational autoencoder calculates

the approximate posterior inference qφ(z|x), where the approximate posterior in-

ference is needed over the true posterior inference pφ(z|x(i)) as the true posterior

is intractable due to the high-dimensional nature of X. Moreover, the decoding

layer calculates the approximate marginal inference p(x|z).

Letting X= {x(1), x(2), . . . , x(n)} be input data points from a dataset, the

objective function for a variational autoencoder is defined as the variational lower

bound of the marginal likelihood of the whole dataset, where the marginal likeli-

9

hood of the set on parameters θ is computed as

log pθ(x
(1), . . . , x(n)) =

n∑
i=1

log pθ(x
(i)) (3.1)

The marginal likelihood of each data point x(i) is expressed as

log pθ(x
(i)) = DKL(qφ(z|x(i))||pφ(z|x(i)) + L(θ, φ;x(i)) (3.2)

The first term on the right side of Equation 3.2 is the Kullback-Leibler divergence,

which measures the dissimilarity between the approximate posterior and the actual

posterior. Meanwhile, the other term on the right side of equation (3.2) is the

variational lower bound of the marginal likelihood of x(i), which can be written as

the following equation:

L(θ, φ;x(i)) = −DKL(qφ(z|x(i))||pφ(z|x(i)) + Eqφ(z|x(i))[log pθ(x
(i)|z)] (3.3)

In order to perform backpropagation to train the variational autoencoder,

we need to compute the gradient of L(θ, φ;x(i)) with respect to the parameters θ

and φ. While the KL-divergence term is differentiable [22], when considering the

second term of L(θ, φ;x(i)), however, the computation is a very difficult task for

a number of reasons, including the inability to evaluate the second term, which

is an expectation function, in closed form [23]. Hence it is necessary to find an

estimator of the gradient of Eqφ(z|x(i))[log pθ(x
(i)|z)] that is differentiable.

The inclusion of a stochastic gradient estimator may also alter the way the

latent variable z is sampled from the approximate posterior qφ(z|x(i)). This is

where z ∼ qφ(z|x(i)) is reparametrized to a function gφ(ε, x) that is differentiable,

where ε ∼ p(ε).

This results in the following estimator L̃(θ, φ;x(i)):

L̃(θ, φ;x(i)) = −DKL(qφ(z|x(i))||pφ(z|x(i))) + log pθ(x
(i)|z), (3.4)

where z = gφ(ε, x(i)) and ε ∼ p(ε). This equation can be interpreted as the overall

reconstruction loss function, where the KL-divergence term regularizes the encod-

ing parameters φ in order to ensure that qφ(z|x(i)) is close to the prior pφ(z) and

the second term is the expected reconstruction error.

10

3.4 Convolutional Layers in Machine Learning

The CNN architecture is usually implemented in order to capture spatial patterns

within data. Unlike regular ANNs, the primary operation that is computed in

a layer of a CNN is convolution , denoted as the symbol ∗. In general, the

convolution of any two functions a(t) and b(t) gives the following result h(t):

h(t) = (a ∗ b)(t) =

∫
a(s)b(t− s)ds (3.5)

In the case of the CNN architecture, the convolution between the input matrix and

a kernel matrix produces an output matrix that is often called a feature map. Even

though both the input and kernel matrices are of n-dimension for some positive

integer n, the size of the kernel is smaller than the size of the input in order to

preserve the spatial relationship between input units. This is what we refer to as

the sparse connectivity of layers as opposed to the full connectivity between layers

as seen in artificial neural networks.

As mentioned earlier, the CNN architecture is frequently used on image

data, which would require the input matrices to be two-dimensional (or three-

dimensional if the image has colors other than those of greyscale). However, the

two-dimensional input does not have to involve image data. In the previous chap-

ter, a few key works that utilized methods of converting one-dimensional vectors

to two-dimensional image formats were highlighted.

In the case of the input matrix I ∈ Ra×b and the kernel matrix K ∈ Rm×n,

where a > m and b > n, we have the following for the convolution of I and K on

some location Si,j in the resulting convolution S:

Si,j = (I ∗K)i,j =
∑
m

∑
n

Ii−m,j−nKm,n (3.6)

This value can also be activated using an activation function to produce a feature

map that is in Rs×t. We note that multiple kernels, hence multiple feature maps,

can be considered for a convolution layer in order to extract different pieces of

information from an input. For instance, feature maps for an image can contain

11

information about edges or various shapes [24]. Having multiple feature maps

allows the network to better learn on input.

The resulting set of feature maps may be modified using an operation called

pooling , which provides a summary statistic of a small number of regions in the

outputted set. There are a number of statistics that can be reported such as the

max value, the L2 norm of the region, or even a weighted average based on the

distance from the central pixel in the region. When it comes to network traffic

data, even though we do not need to worry about the translation invariance that

pooling ensures, we do take advantage of the improved computational efficiency of

pooling as it reduces the number of parameters for a training model.

We also note that especially for generative models. reverse operations for

convolution, which is called transpose convolution and pooling, which is called

unpooling, exist. The transpose convolution operation on a layer with m feature

maps undoes the convolution operation by expanding each of the m feature maps

to be the input of the convolution operation, resulting in a matrix Ra×b.

12

4 Methodology

This chapter discusses the proposed method for anomaly-based network

intrusion detection. This method utilizes a semi-supervised learning algorithm

through the use of a variational autoencoder, Anomaly-CNVAE, that is properly

trained on the spatial and temporal features that are represented in benchmark

network intrusion datasets. As they contain stochastic latent representations due

to their probabilistic nature, variational autoencoders better discern the difference

between normal and anomalous data points by accounting for the variability be-

tween data points rather than solely the average that autoencoders account for.

As a result, anomaly detection using variational autoencoders can produce a lower

false alarm rate than detection using autoencoders.

In order to learn on the spatial and temporal features of network traffic

data, we incorporate the use of one-dimensional convolutional layers as opposed

to two-dimensional convolutional layers. Even though it is a popular choice for

CNNs, the option of using two-dimensional convolutional layers comes down to

optimizing the size of the input, which may result in loss of information especially

if the number of features for each data point in the set cannot be evenly converted

to an n-by-n format.

The following sections provide a detailed description of each component

of the proposed method of identifying anomalies in network traffic data: data

preprocessing, architecture, and the anomaly detection method.

4.1 Data Preprocessing

Let X = {x(1), . . . , x(n)} be the set of input network traffic data such that

each data point x(i) is m-dimensional, with m as the number of features. We first

13

eliminate any data points in X that have missing values.

Our semi-supervised learning algorithm requires data to be numerical. This

is problematic for benchmark datasets dealing with network activity, some of which

having a few features containing categorical data, which is non-numerical. There-

fore, in order for these features to be processed through our model, we perform one-

hot encoding for each categorical feature in X if X contains any non-numerical

features. The encoding process generates new columns for X with each new col-

umn titled a category represented in categorical data. Each new column consists

of binary labels 0 and 1 where 0 denotes that a data point x(i) does not take on

that category and 1 denotes that x(i) takes on that category.

The last step of data preprocessing is the normalization of X in order to

improve the performance of Anomaly-CNVAE. We chose to scale features to have

values between 0 and 1 by computing the normalized value x′(ij) for 1 ≤ j ≤ m

with the following equation:

x′(ij) =
x(ij) −min(x(i1), . . . , x(im))

max(x(i1), . . . , x(im))−min(x(i1), . . . , x(im))
(4.1)

4.2 Architecture

After the input data is preprocessed, the architecture takes each normalized x′(i)

as input. The architecture of Anomaly-CNVAE, which is diagrammed in Fig-

ure 4.1, consists of four components: the encoding convolutional layers, a latent

representation, the decoding transpose-convolutional layers, and a loss function

associated with the model.

First, each x′(i) is encoded through 1 one-dimensional convolution layer that

is followed by a pooling layer. With each kernel having size 7, the convolution layer

is going to consist of 40 feature maps, which are of size p, where

p = (number of features)− 6.

Each feature map yj produced using the following equation, with a as input for

the feature map, σ denoting an activation function, K denoting a kernel matrix,

14

Figure 4.1: The architecture of Anomaly-CNVAE using input with 122 features

and b as bias:

yj = σ(Ka+ b)

The feature maps then go through maximum pooling of kernel size 4 and stride 4,

reducing the dimensionality of the feature maps by half. After the sequence of one

convolutional layer and one max pooling layer, the feature maps are then flattened

into a single layer of size q, where

q = (p/4)− 3.

The flattened layer is then split into the mean and variance vectors. The

latent representation z, which has the same dimension as the mean and variance

vectors, is obtained using the reparametrization trick discussed earlier in chapter

3. Assuming that the approximate posterior q(z|x(i)) is a multivariate Gaussian

distribution N (µ(i), σ2(i)), we have a reparametrization

z = gφ(ε, x(i)) = µ(i) + σ2(i) � ε, (4.2)

where ε ∼ N (0, I).

15

The latent representation z, which is initially transformed to have 40 fea-

ture maps, is then decompressed through a sequence of max unpooling and one-

dimensional transpose convolution. The decompression starts by performing max

unpooling on z using a kernel size of 4 and a stride of 4 in order to revert the max

pooling operation that was done x′(i) in the encoding layer. After that, the data

is taken through a one-dimensional transpose convolutional layer using kernel size

7 to undo the one-dimensional convolution operation performed in the encoding

layer. This will result in an output that has one feature map. Finally, in order

to account for the loss function, we attach a fully-connected layer of input size,

producing a reconstruction of the input x′(i).

The following equation is the loss function used to train and perform anomaly

detection using the Anomaly-CNVAE model:

L(θ, φ;x(i)) =
1

2

q∑
j=1

(1 + log((σ(i))2)− (µ(i))2 − (σ(i))2) + log pθ(x
(i)|z(i)). (4.3)

4.3 Anomaly Detection

Our proposed model Anomaly-CNVAE is designed to perform anomaly de-

tection on network traffic data. Rather than using a pre-specified threshold, we

demonstrate the robustness of the detection mechanism by considering a thresh-

old function t as the 95th percentile of the distribution of losses Ltrain obtained

from the last epoch of the training process. The last epoch is the theoretical

point where the average loss of data converges, i.e. the point where the loss re-

mains almost stagnant from epoch to epoch. In addition, the threshold function t

produces a threshold relative to the dataset rather than merely choosing a value

for the threshold, which could be a bit cumbersome when working with multiple

benchmark datasets.

As shown in Equation 4.4, we determine whether a data point x(i) is normal

or anomalous using the trained Anomaly-CNVAE model, which has a learned loss

function L(θ, φ;x(i)).

16

result =

normal, L(θ, φ;x(i)) < t(Ltrain)

anomaly, L(θ, φ;x(i)) ≥ t(Ltrain)
(4.4)

17

5 Experimentation

5.1 Datasets

Dataset No. of Features Normal Abnormal (Attack)

NSL-KDD 122 77,054 10,719

UNSW-NB15 198 93,000 13,950

TRAbID 43 43,676 6,551

Table 5.1: Data Used for Experiments

Table 5.1 shows statistics that are considered for the experimentation of

Anomaly-CNVAE for each dataset, with the number of features being computed

after one-hot encoding during the data preprocessing stage. In this section, we

discuss three benchmark datasets chosen for preprocessing and the testing of each

model for network intrusion detection.

5.1.1 NSL-KDD

The NSL-KDD dataset, proposed by [25], was collected at the Canadian Institute

for Cybersecurity as an improvement on another benchmark dataset: the KDD-

CUP99 set. Even though it’s been widely utilized, KDDCUP99 has its fair share

of issues, namely redundancy in records in the set, which would cause biases to-

ward the records, and a low difficulty of prediction for the set. NSL-KDD not only

removes redundant records from KDDCUP99 but also increases the difficulty for

classifiers when they learn on the set.

Features of the NSL-KDD dataset, which remained unchanged from the

KDDCUP99 dataset, are divided into three groups: basic features, where values

18

are extracted from the TCP/IP connection, traffic features, which contain time-

based values that are calculated in relation to a window of 2 seconds (or 100

connections to account for attacks that do not produce intrusion patterns within

the two-second window), and content features, which examine the data portion of

packets to account for attacks such as R2L and U2R that do not have time-based

intrusion patterns.

Attacks represented in the dataset fall into one of four categories: Denial of

Service (DoS), where attackers may force computing resources to be unavailable to

legitimate users, User to Root Attack (U2R), where attackers initially have access

to a system as normal users en route to root access to the system, Remote to Local

Attack (R2L), where the attacker has the ability to send packets to a machine over

a network without having an account, and probing, where the attacker seeks to

gather information about a network in order to gain access through a weak point

in the network.

5.1.2 UNSW-NB15

The UNSW-NB15 dataset was created by researchers at the Cyber Range Lab

of the Australian Centre for Cyber Security to include more modern examples

than other records in sets such as KDDCUP99 and NSL-KDD. The set contains

a mixture of real normal activities and synthetic attack abnormal network traffic,

where nine families of attacks are represented [26]. However, in order to address

the lack of low footprint attacks, where the attacks don’t install new software to a

computer, most of these attacks differ from attacks represented in the NSL-KDD

dataset. Besides DoS, the UNSW-NB15 dataset includes groups of low footprint

attacks such as generic, where the attacker targets block ciphers, fuzzers, where

the attacker attempts to suspend a computer program or network by giving it

randomly generated data, and exploits, where the attacker has enough knowledge

of a pitfall in the network’s security to exploit its vulnerability.

Using two tools that process raw packet files, Argus and Bro-IDS, the first

19

35 features of the UNSW-NB15 dataset are obtained by matching the generated

features that come from the output files in an SQL Server database. These features

include packet-based features, where values come from examining the payload of

a network packet, and flow-based features, where values come from examining

packets that are under network connections. The last 12 features of the UNSW-

NB15 dataset are considered general purpose and connection features.

5.1.3 TRAbID

The TRAbID dataset [27] is named after the paper ”Towards a Reliable

Anomaly-Based Intrusion Detection in real-world environments”, from which the

set was proposed. In order to address the lack of datasets that represent real-

world network traffic, sixteen intrusion databases were created with network data

points generated from activity of two automated users to a honeypot server: normal

client and attacker. For the background traffic, each client, which executes random

behavior not reliant on a statistical distribution, requests services such as HTTP,

SMTP, and SSH that are common in network behavior. The traffic is determined

to be valid if the client sends a real and valid request to the server and receives a

real and valid reply from the server. On the other hand, the automated attacker

can generate one of two types of attacks, probing and DoS, resulting in different

groups of attack similarity such as network-level vulnerabilities and service-level

vulnerabilities that are represented in the databases.

To extract features, a set of 50 predetermined features that was determined

and experimented by the same group in an earlier study was considered for each

network packet. (In the dataset, 43 features are represented.) Each feature fits into

one of three categories: header-based, where values are based on the network packet

header, host-based, which examines the communication history between hosts, and

service-based, which examines the communication history between services.

20

5.2 Experiments

The training algorithm is shown in Algorithm 1. The performance of Anomaly-

CNVAE on network intrusion detection was evaluated against two other semi-

supervised models: a vanilla deep autoencoder, where all layers are fully connected,

and a variational autoencoder, which were both implemented by [4]. The exper-

iments were implemented using Python 3.7 along with built-in libraries such as

Sci-kit Learn and Pytorch, both of which are commonly used to program machine

learning models. In particular, the Pytorch library contains built-in implemen-

tation for various layers such as convolution, transpose convolution, max pooling,

and linear that were used to construct the model. The experiments were conducted

on a Dell Precision 7920 with an Intel Xeon Gold 5220 CPU and a NVIDIA Quatro

RTX 8000.

In general, the training process was conducted on a train/test split for each

dataset, where 75% of data points, all normal, were used for training while the

other 25%, which contains both normal and anomalous data points, were used to

evaluate anomaly detection.

The following sections highlight specific hyperparameters used to test each

21

model, and two evaluation metrics to analyze the results of the experiment.

5.2.1 Hyperparameters For Each Model

The three models shared a number of hyperparameters, including ones for the

Stochastic Gradient Descent optimizer algorithm such as learning rate, which was

set to 0.001, the momentum, which was set to 0.3, and the L2 penalty, which was

set to 0.001. Moreover, a batch size of 256 and an epoch size of 30 were used to

train each model on each of the three datasets. These values were chosen after

tuning on the hyperparameters.

It is also important to note the following activation functions and layers

used for each model. For the vanilla deep autoencoder, three hidden layers of size

512, 256, and 64 were used with the latent representation having size 64. For all

layers except for the very last decoding layer, the sigmoid function S(x), defined

as

S(x) =
1

1 + e−x
, (5.1)

was chosen as the activation function. The softmax function σ(x)i, defined for all

1 ≤ i ≤ m as

σ(x) =
exi∑m
j=1 e

xj
, (5.2)

was chosen as the activation function for the final decoding layer, which produces

a reconstruction of the input.

The sizes of the encoding and decoding layers for the vanilla variational

autoencoder were the same as the vanilla autoencoder. However, instead of the

sigmoid function, the Leaky ReLU function f(x), defined as

f(x) =

x, x > 0

0.01x x ≤ 0
(5.3)

was replaced as the activation for almost all the layers except the final decoding

layer, which still used the softmax function as its activation function, in order to

resolve the vanishing gradient problem that the sigmoid function runs into [28].

22

For Anomaly CN-VAE, the sizes of the one-dimensional convolution, pool-

ing, max unpooling, and one-dimensional transpose convolution layers were stated

earlier in chapter 4. Both the convolution and transpose convolution layers used

the Leaky ReLU function as their activation functions.

5.2.2 Evaluation Metrics

The performance of the three models were evaluated on each test set of the bench-

mark datasets using two metrics. One metric is accuracy, which is simply the

percentage of data points that the model correctly detects as either normal or

anomalous. However, it is not enough to have accuracy as the sole metric for

this experiment as there is a larger proportion of normal data points compared to

anomalous data points across all datasets.

Hence, in addition to accuracy, our experiments use the F1 score to de-

termine how well the models detect the network traffic data points. The metric,

defined in equation (6.4), is the harmonic mean of the following two metrics: pre-

cision P , which is the proportion of true normal results to the number of data

points classified as normal, and recall R, which is the proportion of true normal

results to the number of data points labelled normal.

F1 score = 2 · P ·R
P +R

(5.4)

5.3 Results

Model NSL-KDD UNSW-NB15 TRAbID

Vanilla AE [4] 69.28 58.61 62.44

Vanilla VAE [4] 72.63 70.60 64.19

Anomaly-CNVAE 83.60 79.49 70.35

Table 5.2: Accuracy for each model by dataset

23

Model NSL-KDD UNSW-NB15 TRAbID

Vanilla AE [4] 66.94 53.52 41.11

Vanilla VAE [4] 70.71 70.67 47.19

Anomaly-CNVAE 81.02 78.49 57.22

Table 5.3: F1 score for each model by dataset

Tables 7.1 and 7.2 indicate the accuracy and F1 score, respectively, of each

model on the four benchmark datasets. For the first three datasets, the Anomaly-

CNVAE model was significantly more accurate in its detection of network traffic

anomalies. Moreover, there was an apparent increase in F1 score for the Anomaly-

CNVAE model, indicating that model’s accuracy does not favor the set of normal

data points, which is substantially larger than the set of anomalous data points.

Moreover, the difference between accuracy and F1 score either stayed con-

sistent or even better for Anomaly-CNVAE than the other two models. This is

especially apparent for experiments on the three models for the TRAbID dataset,

where the dropoff was greatest. Despite the significant dropoff, we also see that the

reduction of the dropoff was greatest for Anomaly-CNVAE on top of its improved

accuracy and F1 score.

Even though we see increases in accuracy and F1 score for Anomaly-CNVAE,

the results also indicate that more work needs to be done to further improve the

model’s performance. We do note that the performance of the models need to be

evaluated on a few more benchmark network traffic datasets in order to confirm not

only that the Anomaly-CNVAE outperforms the autoencoder and the variational

autoencoder models but also that its accuracy and F1 score allow the model to be

integrated into future network intrusion detection systems. As seen in the results

for the TRAbID dataset, a 57.22 F1-score for the Anomaly-CNVAE is an indicator

that the model is still not as precise in detecting anomalous network behavior as

it should be.

24

6 Conclusion

In this paper we introduced a new variational autoencoder model that

performed anomaly-based detection on network intrusion using semi-supervised

learning. In order to learn on features in network traffic datasets, which are both

content-based (spatial) and time-based (temporal), we infused one-dimensional

convolutional and transpose convolutional layers into the model. After training

the model on normal traffic data points to reduce reconstruction loss, we incorpo-

rated the model into an overall detection scheme that determined whether a traffic

record was normal or anomalous based on a threshold computed using a percentile

of losses obtained from the training of the model. With an increase in accuracy

and F1 score, experiments on four benchmark datasets show that model signifi-

cantly outperformed other semi-supervised learning models in detecting network

intrusions.

Even though the model showed improvement compared to previous semi-

supervised learning models that perform anomaly-based network intrusion detec-

tion, it is also clear from the results that extensive work still needs to be carried

out to create a model best fit for the task. For future work, we may explore the

performance of learning for preprocessing techniques other than one-hot encoding

in order to generate and test different sets of features.

There may be some possible applications of a model similar to Anomaly-

CNVAE to network intrusion. For example, the model could be part of a pipeline

that not only identifies anomaly-based intrusions but also classifies attacks based on

the model’s detection. To go even further, since unknown attacks commonly occur

in network traffic analysis, especially zero-day attacks where new vulnerabilities

pertaining to a computer network are exploited [29], the results from the model

can help identify new attacks in real time.

25

Bibliography

[1] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From intrusion detection to
attacker attribution: A comprehensive survey of unsupervised methods,” in
IEEE Communications Surveys Tutorials, vol. 20, no. 4, 2018, pp. 3369–3388.

[2] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-
tional neural network,” in 2017 International Conference on Engineering and
Technology (ICET), 2017, pp. 1–6.

[3] Z. Hu, L. Wang, L. Qi, Y. Li, and W. Yang, “A novel wireless network intru-
sion detection method based on adaptive synthetic sampling and an improved
convolutional neural network,” IEEE Access, vol. 8, pp. 195 741–195 751, 2020.

[4] S. Zavrak and M. İskefiyeli, “Anomaly-based intrusion detection from network
flow features using variational autoencoder,” IEEE Access, vol. 8, pp. 108 346–
108 358, 2020.

[5] R. Samrin and D. Vasumathi, “Review on anomaly based network intrusion
detection system,” 2017.

[6] S. C. Wang, Artificial Neural Network, 2003, pp. 81–100. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0377-4 5

[7] J. Shun and H. A. Malki, “Network intrusion detection system using neural
networks,” 2008.

[8] G. Shang-fu and Z. Chun-lan, “Intrusion detection system based on classifi-
cation,” 2012.

[9] X. Cheng, B.-X. Liu, K. Li, and J. Yan, “Intrusion detection system based on
knn-mars,” 2009.

[10] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for a mas-
sive network using convolutional neural networks,” IEEE Access, vol. 6, pp.
50 850–50 859, 2018.

[11] M. Azizjon, A. Jumabek, and W. Kim, “1d cnn based network intrusion detec-
tion with normalization on imbalanced data,” in 2020 International Confer-
ence on Artificial Intelligence in Information and Communication (ICAIIC),
2020, pp. 218–224.

26

[12] K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion detection
combined hybrid sampling with deep hierarchical network,” IEEE Access,
vol. 8, pp. 32 464–32 476, 2020.

[13] M. Jianliang, S. Haikun, and B. Ling, “The application on intrusion detection
based on k-means cluster algorithm,” 2009.

[14] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density- based algorithm for
discovering clusters in large spatial databases with noise,” 1996, pp. 226–231.

[15] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 3, no. 1, pp. 1–130, 2009. [Online]. Available:
https://doi.org/10.2200/S00196ED1V01Y200906AIM006

[16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” 2016.

[17] O. Aouedi, K. Piamrat, and D. Bagadthey, “A semi-supervised stacked au-
toencoder approach for network traffic classification,” in 2020 IEEE 28th In-
ternational Conference on Network Protocols (ICNP), 2020, pp. 1–6.

[18] S. Walczak and N. Cerpa, “Artificial neural networks,” in Encyclopedia of
Physical Science and Technology (Third Edition), third edition ed., R. A. Mey-
ers, Ed. New York: Academic Press, 2003, pp. 631–645. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B0122274105008371

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[20] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.
[Online]. Available: https://science.sciencemag.org/content/313/5786/504

[21] M. U. Ndubuaku, A. Anjum, and A. Liotta, “Unsupervised anomaly thresh-
olding from reconstruction errors,” in Internet and Distributed Computing
Systems, R. Montella, A. Ciaramella, G. Fortino, A. Guerrieri, and A. Liotta,
Eds. Cham: Springer International Publishing, 2019, pp. 123–129.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2014.

[23] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient
estimation in machine learning,” 2020.

27

[24] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” 2013.

[25] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the kdd cup 99 data set,” in 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, 2009, pp. 1–6.

[26] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), 2015, pp.
1–6.

[27] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a re-
liable anomaly-based intrusion detection in real-world environments,”
Computer Networks, vol. 127, pp. 200–216, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128617303225

[28] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München,” 1991.

[29] L. Bilge and T. Dumitras, “Before we knew it: An empirical study of zero-day
attacks in the real world,” 10 2012, pp. 833–844.

28

	Semi-Supervised Spatial-Temporal Feature Learning on Anomaly-Based Network Intrusion Detection
	Citation

	ef8de824468bcefce210d150869f01407c0724438f10de891b215770f7edb565.pdf
	ef8de824468bcefce210d150869f01407c0724438f10de891b215770f7edb565.pdf

