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A New Bi-Objective Approach for Optimal Sizing of
Electrical and Thermal Devices in Zero Energy
Buildings Considering Environmental Impacts

Mahdi Mehrtash , Member, IEEE, Florin Capitanescu , Per Kvols Heiselberg, and Thomas Gibon

Abstract—This paper proposes a new bi-objective optimization
model, trading-off cost and environmental impacts, for sizing the
key electrical and thermal devices in a zero energy building (ZEB),
i.e., a building that roughly generates as much renewable energy as
it consumes annually. A salient novel feature is the consideration
of the environmental impacts, computed through a rigorous life
cycle assessment approach, of buying electricity from the grid
and manufacturing devices. Furthermore, an enhancement of the
proposed model, as compared to the existing models, is to prioritize
storing the ZEB excess of energy rather than selling it to the
grid. The proposed solution approach of the initial mixed-integer
nonlinear programming model relies on McCormick relaxation
linearization to obtain a more tractable mixed-integer linear model.
An augmented ε-constraint method is applied to solve the ob-
tained bi-objective model. Finally, considering the building owners’
willingness-to-pay for environmental impacts, a decision-making
criterion is proposed to select the optimal size of the devices among
all non-dominated solutions of the Pareto front.

Index Terms—Environmental impacts, McCormick relaxation,
mixed-integer linear programming, multi-objective optimization,
zero energy building, ε-constraint method.

NOMENCLATURE

Indices
t Index of time interval (e.g., 8760 hours per

year)
ei Index for environmental impact categories

Parameters
CRF(i, n) Capital recovery factor
CEI(e) Cost of environmental impact e
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COP Coefficient of performance of heat pump
[p.u.]

EP(t) Electricity price [€/kWh]
FIT(t) Feed-in-tariff [€/kWh]
H(t) Heat demand at time interval t [kW]
IC0

B /ICO&M
B Initial investment/operation and mainte-

nance cost of the battery [€/kWh]
IC0

PV/ICO&M
PV Initial investment/operation and mainte-

nance cost of the PV [€/kWp]
IC0

ST/ICO&M
ST Initial investment/operation and mainte-

nance cost of the solar thermal [€/kWp]
IC0

HS/ICO&M
HS Initial investment/operation and mainte-

nance cost of the heat storage [€/kWh]
IC0

HP/ICO&M
HP Initial investment/operation and mainte-

nance cost of the heat pump [€/kWh]
i Interest rate of financial investment
n Number of years of financial investment
PL(t) Electricity demand at time interval t [kW]
SOCmin

B / SOCmax
B Minimum/maximum state of charge of the

battery [p.u.]
SOCmin

HS / SOCmax
HS Minimum/maximum state of charge of the

heat storage [p.u.]
SR(t) Solar radiation at time interval t [p.u.]
Δt Time interval duration (e.g., 1 hour)
ηBc , ηBd Charging/discharging efficiency of the bat-

tery and converter system
ηHS
c , ηHS

d Charging/discharging efficiency of the heat
storage system

WTP Willingness-to-pay for environmental im-
pacts reduction

Variables
CB Battery capacity [kWh]
CPV PV capacity [kWp]
CST Solar thermal capacity [kWp]
CHS Heat storage capacity [kWh]
CHP Heat pump capacity [kWh]
EHP(t) Heat pump electricity demand at time

interval t [kW]
Iemax(t)/ I

e
min(t) Binary variables indicating that state of

charge of battery is reaching to its maxi-
mum/minimum at time interval t

IHS
max(t)/ I

HS
min(t) Binary variables indicating that state of

charge of heat storage is reaching to its
maximum/minimum at time interval t
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Ie+(t)/ Ie−(t) Binary variables indicating that PV produc-
tion is higher/less than electricity demand
at time interval t

Ith+(t)/ Ith−(t) Binary variables indicating that solar ther-
mal production is higher/less than heat
demand at time interval t

P e+(t)/ P e−(t) Excess/Deficit of electricity at time interval
t [kW]

P th+(t)/ P th−(t) Excess/Deficit of heat at time interval t
[kW]

Pb(t)/ Ps(t) Active power buy from/sell to grid at time
interval t [kW]

Pc(t)/ Pd(t) Charging/discharging power of the battery
at time interval t [kW]

QHP(t) Heat pump heat production at time interval
t [kWh]

SOCB(t) State of charge of battery at time interval t
[p.u.]

SOCHS(t) State of charge of heat storage at time
interval t [p.u.]

ωB(t) Auxiliary variable for McCormick relax-
ation

ωHS(t) Auxiliary variable for McCormick relax-
ation

I. INTRODUCTION

THE consequence of using fossil fuels to produce electricity
is the increase in greenhouse gases emission. Buildings, as

one of the major contributors to CO2 emissions, are in charge
of 40% of the final energy consumptions and 36% of CO2

emissions in the European Union. To mitigate this, the idea of
zero energy buildings (ZEBs) was imposed in the recast of the
Energy Performance of Building’s Directive in 2010 [1]. By
definition, a ZEB is a building that roughly generates as much
energy from renewable sources as it consumes annually [2].

Multiple technologies can be employed to fulfill the crite-
rion of a ZEB for both renewable energy production side, e.g.
rooftop photovoltaic (PV) systems or solar thermal collectors,
and improved energy efficiency side (e.g., heat pump). Albeit the
annual net energy consumption of a ZEB is almost zero, it still
exchanges a substantial amount of electricity with the grid due
to the mismatch between generation and consumption patterns.
Accordingly, storage systems, e.g. building-integrated battery
energy storage (BES) or heat storage tank, can be economically
beneficial for the ZEB owner as well as for the grid (e.g. in
congestion relieving manner) [3]–[6]. This paper focuses on
finding the optimum size of each energy production, storage
and energy-efficient device at ZEB planning stage that satisfies
the zero energy constraint.

A BES sizing problem for residential ZEBs, in which real data
of a household in Portugal is used, concludes that the designed
BES system can reduce the energy export/import to/from the
grid by 76% and 78.3%, respectively [7]. The compensation of
the mismatch between the production and consumption patterns
of ZEBs is addressed in [8]. A BES sizing problem for residential

ZEBs is proposed in [9]. The model prioritized to store the excess
electric power in the battery rather than selling it to the grid. This
is an appropriate tactic since the electricity price is usually fixed
and it is higher than the feed-in-tariff for residential buildings.
However, the model suffers from not having a tractable mathe-
matical formulation with the guaranteed optimality gap.

To meet the ZEB criterion, it is also important to consider
the size of the devices on the thermal side of the building [10].
A cost-optimal ZEB design is studied for a typical house in
Germany by [11]. Multiple possible technologies from both
thermal and electrical standpoints are studied. It is shown that
depending on the solar irradiation, energy costs, and building
consumptions, some of the technologies might or might not be
selected for a cost-optimal ZEB designing model.

All aforementioned technologies have certain impacts on the
environment, mostly during their manufacturing. Furthermore,
the electricity injected into the grid by generating units is also
responsible for CO2 emissions, which depend on the mix of
technologies used to produce electricity [12]. The growing
environmental concerns and green conscience of many people
make it pertinent to consider further environmental aspects in
the ZEB planning problem rather than only satisfying the zero
energy constraint. This underpins the proposal of this paper,
which is specifically in line with approaches from other areas
[13], to consider a bi-objective optimization model trading-off
an economic goal and an environmental goal.

The main contributions of the paper are as follows:
� A new mathematical model and solution approach for

the joint optimal electric and thermal device sizing of a
ZEB is proposed. The proposed model is formulated as a
mixed-integer nonlinear programming (MINLP) problem.
Then, it is reformulated to reduce nonlinearities into only
two bilinear constraints. Finally, the bilinear constraint is
linearized using McCormick relaxation to obtain a mixed-
integer linear programming (MILP) model. Further, the
proposed model is enhanced to prioritize storing ZEB
excess energy rather than selling it to the grid. This is a
more realistic approach since the electricity price is usually
fixed and it is higher than the feed-in-tariff for residential
buildings.

� The proposed model is bi-objective, trading-off an eco-
nomic goal and an environmental objective related to the
impacts of buying electricity from the grid and manufactur-
ing thermal and electrical devices. To solve the proposed
bi-objective model, a tailored solution algorithm based on
the augmented ε-constraint method of [14] is proposed.
Finally, a decision-making criterion, which takes into ac-
count the building owners’ willingness-to-pay for environ-
mental impacts, is proposed to select the optimal size of
the devices from all non-dominated solutions of the Pareto
front.

The rest of the paper is organized as follows. The ZEB
configuration is described in Section II. The proposed optimal
device sizing model and the solution algorithm are presented in
Section III. Numerical results are presented in Section IV and
conclusions are given in Section V.
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Fig. 1. Model description and energy flow directions of ZEB.

II. ZERO ENERGY BUILDING MODEL DESCRIPTION

Fig. 1 sketches the energy flows of a ZEB and its interaction
with the electricity grid. On the electric side, the building is
equipped with PV and BES systems to supply the electrical
demand. On the thermal side, a solar thermal collector along with
a heat storage tank supply the thermal demand. Note that the heat
pump plays an interfacing role between electrical and thermal
sides. It consumes electricity and produces heat corresponding
to its coefficient of performance (COP).

First, the optimal device sizing model is formulated as an
MINLP problem. Then, the MINLP model is effectively refor-
mulated such that the nonlinear terms are reduced. Finally, the
bilinear constraint is linearized using McCormick relaxation to
obtain a MILP model.

It is worth mentioning that the proposed model is capable of
prioritizing supplier of the demand to maximize the efficiency
and minimize the curtailment of renewable sources. That is, the
model considers that the required electricity demand at time
interval t is firstly provided by the PV and BES systems. The
electricity demand exceeding the PV production plus the stored
electricity in the BES system has to be bought from the grid.
On the other hand, the excess electricity produced by the PV
is firstly stored in the BES system. If the BES system does not
have enough capacity to store the excess electricity, it is sold to
the grid. A similar trend is considered on the thermal side.

III. PROBLEM FORMULATION AND SOLUTION ALGORITHM

A. MINLP Model

To model the economical objective function, first we should
take into account the financial source. Assuming that the initial
investment costs of the devices are financed with an interest rate
of i for a period of n years, the capital recovery factor CRF can
be calculated by (1) [15].

The economical objective function (2) of the proposed optimal
sizing model includes costs (initial investment, operation and
maintenance) of PV, BES, solar thermal, heat storage, and heat
pump, as well as the cost of buying/selling electricity from/to the
grid. Note that the proposed objective function (2) is also valid
in the case of time-varying electricity price and feed-in-tariff
(i.e., EP(t) and FIT(t) can be different for diverse intervals).

TABLE I
Four Possible Statuses for Each Time Interval

The second objective function, which minimizes the envi-
ronmental impacts, is modeled by (3). It includes the total
environmental impacts of buying electricity from the grid, which
depends on the prime sources of electricity generation, and the
environmental impacts of manufacturing the devices.

CRF (i, n) =
i(1 + i)n

(1 + i)n − 1
(1)

F1 = CRF (i, n) · {(IC0
B + ICO&M

B

)
.CB

+
(
IC0

PV + ICO&M
PV

) · CPV

+
(
IC0

ST + ICO&M
ST

)
.CST +

(
IC0

HS + ICO&M
HS

)
.CHS +

(
IC0

HP + ICO&M
HP

)
.CHP

+Δt.

(∑
∀t

Pb (t) .EP (t)−
∑
∀t

Ps (t) .FIT (t)

)

(2)

F2 =
∑
∀t

∑
∀e

Δt · Pb (t) · CEIb (ei)

+
∑
∀e

CB · CEIB (ei) +
∑
∀e

CPV · CEIPV (ei)

+
∑
∀e

CST · CEIST (ei) +
∑
∀e

CHS · CEIHS (ei)

+
∑
∀e

CHP · CEIHP (ei) (3)

The management of excess and deficit of electricity in the
ZEB (see Table I) is modeled by a particular set of constraints
as follows. Two binary decision variables Ie+(t) and Ie−(t) are
defined to respectively represent the case of having excess and
deficit of electricity at time interval t. If the PV production at
time interval t is higher than the total electricity demand at that
time interval, then Ie+ (t) = 1. Similarly, if the PV production
at time interval t is less than the total electricity demand at that
time interval, then Ie− (t) = 1. Constraint (4) imposes that at
each time interval one of the binary variables Ie+(t) and Ie−(t)
is equal to one, and the other one must be zero. In the case
of having excess of electricity at time interval t, the excess of
electric power can be calculated by (5). Similarly, for intervals
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that deficit of electricity exists, the deficit of electric power can
be obtained by (6). As imposed by (7) and (8), the continuous
variables P e+(t) and P e−(t) are always non-negative.

Ie+ (t) + Ie− (t) = 1;∀t (4)

P e+ (t) = (SR (t) · CPV − PL (t)− EHP (t)) · Ie+ (t) ;∀t
(5)

P e− (t) = − (SR (t) · CPV − PL (t)− EHP (t)) · Ie− (t) ;∀t
(6)

P e+ (t) ≥ 0; ∀t (7)

P e− (t) ≥ 0;∀t (8)

Furthermore, two binary decision variables Iemax and Iemin

are introduced to model possible statuses of the BES system at
time interval t. If the battery has enough capacity to store the
excess of electric power without reaching to its maximum state
of charge (SOC) at time interval t, then Iemax is equal to zero,
and it is equal to one otherwise. Similarly, the binary variable
Iemin is equal to zero if the battery has enough energy to provide
the deficit of electric power without reaching its minimum SOC
at time interval t, and it is equal to one otherwise.

Introducing four binary decision variables for each time inter-
val t, 24 = 16 possibilities exist. However, constraint (4) prunes
eight infeasible possibilities. Constraints (9) and (10) must be
considered to prune the other four infeasible possibilities and set
the feasibility region according to the desired statuses presented
in Table I.

The amount of electric power that can be sold to the grid is
modeled by (11), where the battery charging power Pc(t) can be
calculated by (12). Likewise, the amount of electric power that
has to be imported from the grid is modeled by (13), where the
battery discharging power Pd(t) can be obtained from (14).

Iemax (t) ≤ 2× Ie+ (t) ;∀t (9)

Iemin (t) ≤ 2× Ie− (t) ;∀t (10)

Ps (t) =
(
P e+ (t)− Pc (t)

) · Iemax (t) ; ∀t (11)

Pc (t) = (SOCmax
B − SOCB (t− 1))× CB

ηBc ·Δt
; ∀t (12)

Pb (t) =
(
P e− (t)− Pd (t)

) · Iemin (t) ; ∀t (13)

Pd (t) =
(
SOCB (t− 1)− SOCmin

B

)× ηBd · CB

Δt
; ∀t (14)

The battery SOC at time interval t with respect to the desired
statuses mentioned in Table I is modeled by (15). According
to (15), the battery SOC is fixed to SOCmax and SOCmin for
status 1 and status 3, respectively. Furthermore, constraint (15)
models status 2 of Table I in which the battery SOC is equal
to the summation of the excess of electric power stored in the
battery andSOC(t− 1). Similarly, to model status 4, the battery
SOC is equal to SOC(t− 1) minus the deficit of electric power
provided by the battery. The energy preservation constraint (16)
imposes that the battery SOC in the last interval should be equal
to the initial SOC of the battery. Constraint (17) enforces the

limitation of the battery SOC.

SOCB (t) = SOCB (t− 1) · (1− Iemax (t)− Iemin (t))

+
P e+ (t) ·Δt · ηBc

CB
(1− Iemax (t))

− P e− ·Δt

ηBd · CB
(1− Iemin (t)) + SOCmax

B · Iemax

+ SOCmin
B · Iemin; ∀t (15)

SOCB (t = 0) = SOCB (t = last) (16)

SOCmin
B ≤ SOCB (t) ≤ SOCmax

B ; ∀t (17)

The same logic is proposed to model the solar thermal col-
lector and heat storage tank on the thermal side of the building.
Two binary decision variables Ith+(t) and Ith−(t), which are
constrained by (18), are defined to respectively represent the case
of having excess and deficit of heat at time interval t. The excess
and deficit of heat at time interval t are modeled by (19) and
(20). As represented by (21) and (22), the continuous variables
P th+(t) and P th−(t) are non-negative.

Ith+ (t) + Ith− (t) = 1;∀t (18)

P th+ (t) = (SR (t) · CST −H (t)) · Ith+ (t) ;∀t (19)

P th− (t) = − (SR (t) · CST −H (t)) · Ith− (t) ;∀t (20)

P th+ (t) ≥ 0;∀t (21)

P th− (t) ≥ 0;∀t (22)

Constraints (23) and (24) prune four infeasible possibilities
and set the feasibility region similar to the desired statuses
mentioned in Table I (similar logic as of (9) and (10)). With a
similar interpretation as of (15), the heat storage SOC is modeled
by (25). The energy preservation constraint and the limitation
of the heat storage SOC are modeled by (26) and (27).

IHS
max (t) ≤ 2× Ith+ (t) ;∀t (23)

IHS
min (t) ≤ 2× Ith− (t) ;∀t (24)

SOCHS (t) = SOCHS (t− 1) · (1− IHS
max (t)− IHS

min (t)
)

+
P th+ (t) ·Δt · ηHS

c

CHS

(
1− IHS

max (t)
)

− P th− (t) ·Δt

ηHS
d · CHS

(
1− IHS

min (t)
)

+ SOCmax
HS · IHS

max + SOCmin
HS · IHS

min; ∀t (25)

SOCHS (t = 0) = SOCHS (t = last) (26)

SOCmin
HS ≤ SOCHS (t) ≤ SOCmax

HS ; ∀t (27)

The heat pump is modeled by (28)–(31). Constraint (28)
imposes that in case of not having enough stored heat to supply
the deficit of heat demand (IHS

min (t) = 1), heat pump must
be committed. The relation between the heat pump generation
and its electricity consumption is modeled by (29). The linear
relation between the heat pump heat production (QHP) and the
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heat pump electric power consumption (EHP) can be defined by
the COP of the heat pump [16]. Constraint (30) limits the heat
pump generation to be equal or less than the size of the heat
pump. Constraint (31) is considered to select the size of the heat
pump in a way that it can robustly supply the annual peak of the
heat demand profile. According to the zero energy constraint of
(32), the annual electric power drawn from the grid must be less
or equal than the annual electric power injected into the grid.

QHP (t) = IHS
min (t) ·

(
Δt · P th− (t)

− ηHS
d CHS

(
SOCHS (t− 1)− SOCmin

HS

))
; ∀t (28)

QHP (t) = Δt · COP · EHP (t) ;∀t (29)

QHP (t) ≤ CHP; ∀t (30)

CHP ≥ Δt ·H (t) ;∀t (31)∑
∀t

Δt · Ps (t) ≥
∑
∀t

Δt · Pb (t) (32)

Finally, the proposed bi-objective device sizing model is
the minimization of objective functions (2) and (3) subject to
(4)–(32). Due to the presence of nonlinear constraints (5), (6),
(11)–(15), (19), (20), (25), and (28), the proposed model in an
MINLP. Next, the MINLP model is reformulated in a way that
the nonlinear terms are confined to two bilinear constraints.

B. Reformulated MINLP Model

To reduce the nonlinearity of the proposed MINLP model,
auxiliary variables ωB(t) and ωHS(t) are introduced as (33) and
(34), respectively. They represent the amount of energy that is
stored in the optimal size of the battery and heat storage tank at
time interval t.

ωB (t) = CB · SOCB (t) ;∀t (33)

ωHS (t) = CHS · SOCHS (t) ;∀t (34)

A disjunctive (big-M) technique is applied to linearize (5) as
(35) and (36). When Ie+ (t) = 1, constraint (35) is inactive
and (36) forces P e+(t) to be equal to the excess of electric
power. On the other hand, when Ie+ (t) = 0, constraint (36)
is inactive and (35) set the value of P e+(t) to zero. A similar
technique is used to linearize (6) as (37) and (38). Constraint
(11) is rewritten as linear constraints (39) and (40). Using
the introduced auxiliary variable ωB(t), constraint (12) can be
replaced by linear constraint (41). Furthermore, (13) and (14)
can be substituted by linear constraints (42)–(44).

0 ≤ P e+ (t) ≤ M · Ie+ (t) ;∀t (35)

−M
(
1− Ie+ (t)

)
+ SR (t) · CPV − PL (t)− EHP (t)

≤ P e+ (t) ≤ SR (t) · CPV − PL (t)− EHP (t)

+M
(
1− Ie+ (t)

)
; ∀t (36)

0 ≤ P e− (t) ≤ M · Ie− (t) ; ∀t (37)

−M
(
1− Ie− (t)

)− (SR (t) · CPV − PL (t)− EHP (t))

≤ P e− (t) ≤ − (SR (t) · CPV − PL (t)− EHP (t))

+M
(
1− Ie− (t)

)
; ∀t (38)

0 ≤ Ps (t) ≤ Pmax
s · Iemax (t) ;∀t (39)

−M (1− Iemax (t)) +
(
P e+ (t)− Pc (t)

)
≤ Ps (t) ≤

(
P e+ (t)− Pc (t)

)
+M (1− Iemax (t)) ;∀t (40)

Pc (t) = [CB · SOCmax
B − ωB (t− 1)]× 1

ηBc ·Δt
; ∀t (41)

0 ≤ Pb (t) ≤ Pmax
b · Iemin (t) ;∀t (42)

−M (1− Iemin (t)) +
(
P e− (t)− Pd (t)

) ≤ Pb (t)

≤ +
(
P e− (t)− Pd (t)

)
+M (1− Iemin (t)) ;∀t (43)

Pd (t) =
[
ωB (t− 1)− CB · SOCmin

B

]× ηBd
Δt

; ∀t (44)

To linearize the nonlinear constraint of (15), new linear
constraints (45)–(47) are proposed. In status 1 when Ie+ =
Iemax = 1 and Ie− = Iemin = 0, constraints (46) and (47) are
inactive while (45) imposes that SOC (t) = SOCmax. This is
the same conclusion obtained from (15). Checking other statuses
of Table I, it can be concluded that linear constraints (45)–(47)
are totally equivalent to (15).

−M (1− Iemax (t)) + SOCmax
B · Iemax (t) ≤ SOCB (t)

≤ SOCmax
B · Iemax (t) +M (1− Iemax (t)) ;∀t (45)

−M (1− Iemin (t)) + SOCmin
B · Iemin (t) ≤ SOCB (t)

≤ SOCmin
B · Iemin (t) +M (1− Iemin (t)) ;∀t (46)

−M (Iemax (t) + Iemin (t)) + ωB (t− 1)

+ Δt

(
P e+ (t) · ηBc − P e− (t)

ηBd

)
≤ ωB (t) ≤ ωB (t− 1)

+ Δt

(
P e+ (t) · ηBc − P e− (t)

ηd

)
+M (Iemax (t)+Iemin (t)) ;∀t

(47)

Likewise, constraints (19) and (20) can be linearized as
(48)–(51). The storage tank SOC represented by (25) can be
also modeled by linear constraints (52)–(54). In addition, linear
constraints (55) and (56) are proposed for the nonlinear model
of the heat pump commitment represented by (28).

0 ≤ P th+ (t) ≤ M · Ith+ (t) ;∀t (48)

−M
(
1− Ith+ (t)

)
+ SR (t) · CST −H (t) ≤ P th+ (t)

≤ SR (t) · CST −H (t) +M
(
1− Ith+ (t)

)
; ∀t (49)

0 ≤ P th− (t) ≤ M · Ith− (t) ;∀t (50)

−M(1− Ith− (t))− (SR (t) · CST −H (t)) ≤ P th− (t)

≤ − (SR (t) · CST −H (t)) +M(1− Ith− (t));∀t (51)

−M
(
1− IHS

max (t)
)
+ SOCmax

HS · IHS
max (t) ≤ SOCHS (t)

≤ SOCmax
HS · IHS

max (t) +M
(
1− IHS

max (t)
)
; ∀t (52)

−M
(
1− IHS

min (t)
)
+ SOCmin

HS · IHS
min (t) ≤ SOCHS (t)
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≤ SOCmin
HS · IHS

min (t) +M
(
1− IHS

min (t)
)
; ∀t (53)

−M
(
IHS
max (t) + IHS

min (t)
)
+ ωHS (t− 1)

+ Δt

(
P th+ (t) · ηHS

c − P th− (t)

ηHS
d

)
≤ ωHS (t) ≤ ωHS (t− 1)

+ Δt

(
P th+ (t) · ηHS

c − P th− (t)

ηd

)

+M
(
IHS
max (t) + IHS

min (t)
)
; ∀t (54)

0 ≤ QHP (t) ≤ M · IHS
min (t) ;∀t (55)

−M
(
1− IHS

min (t)
)

+Δt
(
P th− (t)− ηHS

d · ωHS (t− 1) + ηHS
d · CHS · SOCmin

HS

)
≤ QHP (t) ≤ M

(
1− IHS

min (t)
)

+Δt
(
P th− (t)− ηHS

d ωHS (t− 1) + ηHS
d CHSSOCmin

HS

)
; ∀t

(56)

Finally, the proposed reformulated MINLP model for optimal
device sizing problem is the minimization of objective functions
(2) and (3) subject to (4), (7)–(10), (16)–(18), (21)–(24), (26),
(27), and (29)–(56).

Clearly, the proposed reformulation reduces the number of
nonlinear constraints. Now, bilinear terms of (33) and (34) are
the only nonlinearity of the model. The fact that current versions
of standard solvers, e.g. CPLEX [17] and Gurobi [18], can solve
MILP models very efficiently motivates us to propose a MILP
model for the optimal device sizing problem.

C. MILP Model Using McCormick Relaxation

The MILP model of the optimal device sizing problem is
derived using a McCormick relaxation technique [19]. Mc-
Cormick underestimators (57) and (58) along with McCormick
overestimators (59) and (60) can be added to the model to relax
the bilinear constraint (33). Similarly, the bilinear constraint of
(34) can be replaced by McCormick envelopes (61)–(64). The
advantage of McCormick relaxation over other approximation
techniques is that the relaxed MILP model contains the feasi-
bility region of the original MINLP model completely. Ideally,
the McCormick envelops represent a convex hull for the MINLP
feasibility region [19].

ωB (t) ≥ CB · SOCmin
B ; ∀t (57)

ωB (t) ≥ Cmax
B · SOCB (t) + CB · SOCmax

B

− Cmax
B · SOCmax

B ; ∀t (58)

ωB (t) ≤ Cmax
B · SOCB (t) + CB · SOCmin

B

− Cmax
B · SOCmin

B ; ∀t (59)

ωB (t) ≤ CB · SOCmax
B ; ∀t (60)

ωHS (t) ≥ CHS · SOCmin
HS ; ∀t (61)

ωHS (t) ≥ Cmax
HS · SOCHS (t) + CHS · SOCmax

HS

− Cmax
HS · SOCmax

HS ; ∀t (62)

ωHS (t) ≤ Cmax
HS · SOCHS (t) + CHS · SOCmin

HS

− Cmax
HS · SOCmin

HS ; ∀t (63)

ωHS (t) ≤ CHS · SOCmax
HS ; ∀t (64)

D. Solution Algorithm

The ε-constraint method is well-established and widely used
to generate the Pareto front of bi-objective optimization prob-
lems. In this work, we use an advanced version of this method,
namely the augmented ε-constraint approach [14], which allows
to obtain efficiently an even distribution of non-dominated so-
lutions (the Pareto set).

In the ε-constraint method, one of the objectives is optimized
while the other one is considered as an inequality constraint.
By changing the value of the parameter on the right-hand-side
of the constrained objective, efficient solutions of the single
objective problem can be obtained. Two main challenges of
the ε-constraint method are finding the range of the constrained
objective and the domination guarantee of the obtained solution.
Finding a valid range for the right-hand-side parameter of the
constrained objective is not a trivial task, especially the worst
value over the set of non-dominated solutions (i.e., nadir value).
Besides, the obtained solution is non-dominated only if the
constrained objective function is binding. These challenges are
alleviated in the augmented ε-constraint approach by incorpo-
rating slack variables and transforming the constrained objec-
tive into an equality constraint. More details of the augmented
ε-constraint approach are presented in [14].

After obtaining the Pareto front for objective functions (2) and
(3), the proposed decision-making criterion of (65) can be used.
Parameter WTP is the willingness-to-pay of the building owner
to reduce the environmental impacts. According to previous
studies and surveys, this value differs around the world [20].
Criterion (65) represents the fact that the difference between
the cost of the proposed bi-objective model considering envi-
ronmental impacts and the single objective model ignoring the
environmental impacts should be equal to (or less than) WTP. It
will be shown numerically in the next section that the value of
WTP can be between zero and a positive upper bound. For the
values of WTP larger than the positive upper bound, the model
would be infeasible.

min (F1, F2)−min (F1) = WTP (65)

IV. CASE STUDIES

A. System Description and Simulation Setup

To illustrate the advantages of the proposed model, a typical
residential building in Luxembourg is studied. Solar irradiation
data and per unit output power of roof-top solar panels in
Luxembourg are obtained from [21]. For the annual electricity
consumption of the residential building, CREOS (distribution
electricity utility in Luxembourg) database is used [22]. Fur-
thermore, the annual heat demand of the building is acquired
from [10]. The annual electrical energy consumption and heat
demand are 4738 kWh and 4147 kWh, respectively.
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TABLE II
Cost of Environmental Impacts

The environmental impact of each device depends on its
energy technology and manufacturing process. Life cycle inven-
tories for all technologies have been extracted from the ecoinvent
3.6 database [23], and adapted to Luxembourgish conditions.
In particular, the following inventories were used: “Market for
electricity, low voltage, (Luxembourg)”, “Photovoltaic slanted-
roof installation, multi-Si (Global)”, and “Battery cell, Li-ion
(Global)”. The heat storage system consists of a basic chrome
steel tank, which is equipped with a heat exchanger and a boiler,
made in Europe. The solar thermal system consists of a solar
flat-plate collector for a one-family house with a combined
system for hot water and heating. The heat pump is an air-water
heat exchanger operated in Luxembourg. The environmental
scores are calculated in a sequence of distinct steps. First, the
lifecycle inventories, which contain thousands of environmental
flows (emissions to air, water, soil, or raw material extraction),
are characterized into a series of so-called “midpoint” indicators,
which convey the environmental stress generated indirectly and
directly by each system via various impact mechanisms. For
example, the “climate change” impact is accounted in kg CO2

equivalents (a reference unit to convert the set of greenhouse gas
emissions into one single indicator) using their global warm-
ing potentials over a 100-year horizon as the characterization
factors. The characterization method chosen is the one rec-
ommended by the European Union’s Joint Research Centre in
the context of the Environmental Footprint methodology [24].
Each midpoint indicator is expressed in “points” (Pt), where one
point represents the global impact of that category divided by
the world population (yielding the global per-capita average for
that category). Once expressed in the same unit, results can be
aggregated into a single score, as shown in Table II.

The following assumptions are considered:
� According to [9], [11], the initial investment costs of PV,

BES, solar thermal collector, heat storage tank, and heat
pump are assumed to be 1500 €/kWp, 50 €/kWh, 800
€/kWp, 40 €/kWh, and 2500 €/kWh, respectively. The
annual operation and maintenance cost of PV and solar

Fig. 2. Daily and monthly profiles of per unit PV production.

thermal collector is assumed to be 1% of their investment
costs, while it is assumed to be 2% for other devices [11].
The interest rate of the financial institution is assumed to
be i = 5%.

� The warranty period (or the life cycle) of the devices is
assumed to be greater than the payback period of the loan.
Therefore, the building owner will not pay any replacement
cost over the life span of the systems. This is a reasonable
assumption since, for example, the life cycle of a typical
Lithium-Ion battery can be more than 15 years [25], [26].

� Capacity to power ratio (CPR) of the battery is assumed
to be small enough to fully charge or discharge the battery
between two consecutive intervals. It is a reasonable as-
sumption since the BES systems for the application of the
proposed device sizing problem are not high-storage (i.e.,
in the range of several kWh) and current technologies of
charging systems are able to provide continuous power up
to few kWh.

� The electricity price and feed-in-tariff in Luxembourg are
0.17 €/kWh and 0.121 €/kWh, respectively.

To solve MILP and MINLP models, ILOG CPLEX 12.9
and Baron 19 are respectively used. All solver options are
set to defaults except CPLEX parallel computing options
“cpx_param_parallelmode” and “cpx_param_threads”, which
are respectively set to 1 and 48. We used a full node of a
high-performance computer (up to 187-GB-RAM) with 48 Intel
Skylake @ 2.1GHz cores per node.

B. Numerical Results

Applying a K-means++ clustering algorithm, the size of the
hourly raw dataset is reduced to 365 and 12 to respectively
represent average daily and monthly profiles. The daily and
monthly clusters of per unit PV output, electricity consumption,
and heat demand are depicted in Figs. 2, 3, and 4, respectively.
K-means is a model-free method for data clustering and par-
titioning. Given the number of clusters (K value), it aims to
partition the raw dataset into K clusters in which each data
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Fig. 3. Daily and monthly profiles of electricity consumption.

Fig. 4. Daily and monthly profiles of heat demand.

belongs to the cluster with the nearest mean (cluster centroid).
After assigning all data to clusters, recalculated centroids are
considered for the next iteration. The algorithm converges when
the assignments no longer change. To reduce the dependency
of the K-means algorithm to the initial centroids, we apply an
initialization approach, called K-means++, that is proven to
work better than K-means. In addition, the occurrence time
of the data is kept unchanged during the clustering process.
Therefore, time-dependent behavior is preserved in the final
clusters. Details about these algorithms can be found in [27].

As expected, it can be observed that in colder seasons the
electricity and heat consumptions are higher, while the solar
generation is lower than in warmer seasons.

1) Ignoring Environmental Impacts: Considering first only the
economical objective (2), the simulation results of the proposed

TABLE III
SIMULATION RESULTS CONSIDERING ONLY ECONOMICAL OBJECTIVE F1

reformulated MINLP model and the McCormick-based MILP
model for the case of monthly, daily, and hourly intervals are
presented in Table III. In order to guarantee the optimality of the
solution, the tolerance on the optimality gap is set to zero.

As shown in Table III, investing in the solar thermal collector
and heat storage tank is not economical for the case of daily and
hourly intervals. One explanation could be the fact that the size
of the heat pump is usually selected by the robust constraint (31).
Thus, its value must be larger than the peak of the heat demand
profile. For the data with higher resolution (e.g., 365 and 8760
clusters), the spiky nature of the profile leads to a higher peak.
Therefore, the model suggests a larger heat pump for the case
of high-resolution data and a smaller heat pump for the case
of monthly data resolution. Since none of the thermal devices
can help in providing electricity for the building (see Fig. 1),
PV is the only production device responsible for satisfying net
zero electricity building constraint. Therefore, similar to the heat
pump, the presence of PV is necessary. The model suggests that,
due to high COP of the heat pump, it is more economical to
supply the heat demand using the electricity provided by the
electrical side (PV+BES+grid) through the heat pump (which
must exist due to (31)) rather than investing in a solar thermal
collector and a heat storage tank. However, it was not the case
for monthly intervals due to the smaller size of the heat pump. It
should be noted that these results are for a specific geographical
location (Luxembourg) with the assumed cost of the devices.
Assuming other investment costs for the devices or having more
solar radiation might lead to a different decision by the proposed
model.
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Fig. 5. SOC of the battery storage for the case of 365 intervals.

It can be observed that the solution time of the MILP model
is considerably smaller than that of the MINLP one. For the
case of 8760 intervals, the MINLP model does not provide any
feasible solution within 100 000 seconds. It demonstrates the
intractability of the MINLP model for high-resolution data.

Note that the McCormick-based MILP model provides similar
solutions for the case of 12 and 365 intervals with the bench-
mark MINLP reformulation. This shows empirically that the
McCormick relaxation is tight and provides the global opti-
mal solution in this case. Furthermore, similar to all planning
problems (e.g., generation and transmission expansion planning
[28]), the optimal size of each device depends on the data
resolution. Therefore, the preprocessing analysis of raw data
is a key step for the device sizing model.

After obtaining the optimal sizes, the values should be
rounded up to the closest standard size available. For instance,
a PV panel with a size of 6.5 kWp can be selected according to
the solutions of the cases with the daily and hourly resolution.

The SOC of the battery for the case of 365 intervals is depicted
in Fig. 5. Comparing Fig. 5 with Figs. 2–4, one can conclude
that in the warmer seasons, when the consumptions are lower, the
battery stays fully charged more often. However, in the colder
seasons, when the consumption is higher, the battery stays fully
discharged regularly.

As the device sizing problem is in the planning stage, due
to the computational burden, it is not possible to model the
real-time operation precisely. Having a fast-response control
system, in real-time operation, leads to so narrow intervals that
it is unlikely that the battery is fully-charged or fully-discharged
for a long time. Besides, if one wants to avoid that the battery
is fully-discharged, one can add a new reserve constraint to the
model or simply set the SOCmin

B to a larger value.
Fig. 6(a) shows a 3D visualization of the bilinear term of (33).

Figs. 6(b) and 6(c) visualize the McCormick overestimators and
underestimators, respectively. To make the maximum deviation
observable, a side view from the angle of an observer located
on the intersecting line of the underestimator planes is depicted
in Fig. 6(d). As visualized by 3D figures and illustrated by case
studies, the McCormick relaxation is tight enough to practically
results in a high-quality solution of the proposed device sizing
problem.

2) Bi-Objective Model: The proposed bi-objective device
sizing model is solved using the ε-constraint method presented in

Fig. 6. 3D visualization of McCormick envelops: (a) bilinear term, (b) over-
estimators, (c) underestimators, and (d) side view of the envelopes.

Section III. For the case of daily intervals, Pareto optimal fronts
of the reformulated MINLP and McCormick MILP models are
shown in Fig. 7. As it can be observed, it is possible to control the
number of efficient solutions by properly selecting the number
of grid points within the range of objective functions in the
ε-constraint algorithm. While the non-dominated solutions of
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Fig. 7. Pareto fronts for reformulated MINLP and McCormick MILP models.

TABLE IV
RESULTS OF BI-OBJECTIVE MODEL FOR WTP= 70 AND WTP= 93.53 €/YEAR

the MINLP model are selected manually, a number of 50 effi-
cient solutions are automatically generated for the MILP model
using the augmented ε-constraint method, which is explained in
detail in [14]. The similarity between MINLP and MILP Pareto
fronts is another illustration of the tightness of the McCormick
relaxation.

It can be seen that it is not possible to reduce the total cost of
the environmental impacts less than a lower bound (i.e., 3.0512
Pt). In other words, for the values of WTP larger than a positive
upper bound (i.e., 1,447.5 − 1,353.97 = 93.53 €/year), the
model becomes infeasible because the environmental objective
function (3) is conflicting with the zero energy constraint (32).

After selecting the value of WTP, one can refer to the Pareto
front to find the solution with respect to environmental impacts.
For instance, for an owner who is willing to pay a maximum
amount of 70 € per year, the environmental impacts index can
be reduced from 4.9381 Pt to 3.279 Pt (i.e., 33.6%). The optimal
size of thermal and electrical devices of a ZEB for such an owner
is shown in Table IV. As shown in the table, the value of WTP
is spent on selecting a larger BES as the storage system and
a larger PV as the production source. Several reasons exist for
this selection. First, as shown in Table II, the environmental
impacts of buying electricity from the grid are very high. Thus,
the optimal size of the thermal and electrical devices should be
selected in a way that the amount of buying electricity from the
grid is reduced. While the cost of buying electricity from the
grid in the case of considering only the economical objective is
366.78€/year, the proposed bi-objective model reduces it now to

Fig. 8. Sensitivity of optimal BES and PV to electricity demand variation.

Fig. 9. Sensitivity of optimal BES and PV to solar radiation variation.

247.78 €/year. Second, for the studied building, investing in the
solar thermal collector and heat storage tank is not economically
desired, as illustrated in daily and hourly results shown in
Table III. Finally, the environmental impacts of manufacturing
a larger heat pump are higher than those of a larger PV or BES
(refer to Table II). Therefore, a larger BES and a much larger
PV, which is close to 10 kWp (the assumed maximum limit of
PV capacity), is selected to reduce the environmental impact of
the ZEB. The results for the maximum possible WTP ( = 93.53
€/year) are also shown in Table IV. In this case, the optimal size
of the BES system is the assumed maximum limit (i.e., 5 kWh)
in order to further reduce the amount of electricity bought from
the grid.

3) Sensitivity to Demand and Solar Variation: Considering
up to 10% and 20% variation respectively in electricity demand
and solar radiation, a sensitivity analysis is performed. The
sensitivity analysis results for the optimal size of the BES and PV
in the case of daily data resolution and WTP = 0 are shown in
Figs. 8 and 9. Note that the values of optimal size of BES system
becomes 10 times larger for the sake of visibility.

As shown in Fig. 8, the optimal size of both BES and PV is
almost the same when up to 10% electricity demand reduction
happens. However, by increasing the electricity demand of the
building, larger PV and BES system are required to supply it.
Due to limitations on PV installation (10 kWp for the studied
building), by increasing the electricity demand more than 8%,
the optimal size of the PV is selected to its maximum possible
value. In this case, depending on the cost of each option, either
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a larger battery must be installed or the amount of electricity
bought from the grid must be increased.

By increasing the solar radiation from 80% to 112%, the
optimal size of the PV is linearly decreasing. Having more solar
radiation requires a smaller PV to satisfy demand. However,
after some point (112% in this case study), the amount of solar
radiation becomes high enough to not only meet the demand but
also produce extra energy for the sake of selling it to the grid
(energy arbitrage). Therefore, installing a larger PV becomes
desirable after this point. In addition, by increasing the solar
radiation from 80% to 104%, the optimal size of the BES system
is fixed. However, by increasing the solar radiation to more than
104%, larger storage is selected.

V. CONCLUSION

This paper has proposed a new bi-objective mathematical
model for the optimal sizing of key electrical and thermal
devices to fulfill the requirements of zero energy buildings. To
break down the computational complexity of the initial MINLP
model, we proposed a more tractable MILP model, based on Mc-
Cormick relaxation linearization. Numerical results on a typical
residential building in Luxembourg illustrate that the proposed
MILP model is computationally effective and, contrary to the
MINLP model, scalable to large problems with high-resolution
data. In our numerical experiments McCormick relaxation was
tight, likely due to the rather mild model nonlinearity resulted
from the proposed MINLP reformulation.

In addition to the cost-optimal objective function, the environ-
mental impact, computed from life cycle assessment, of buying
electricity from the grid and manufacturing thermal and electri-
cal devices has been taken into account as a second objective
function. An augmented ε-constraint algorithm was applied to
obtain the Pareto front of the proposed bi-objective model and
has shown good performances in producing evenly distributed
solutions. The Pareto front enables building owners’ to make
informed environmentally friendly decisions in selecting the
optimal size of the devices according to their willingness-to-pay
for environmental impacts.

As illustrated by the sensitivity analysis, over- and under-
estimating the amount of building’s energy demands and solar
radiation affect the optimal size of the devices. Thus, we plan to
consider uncertainties in the proposed model in future work.
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