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ABSTRACT

Automated test case generation tools have been successfully pro-

posed to reduce the amount of human and infrastructure resources

required to write and run test cases. However, recent studies demon-

strate that the readability of generated tests is very limited due to

(i) uninformative identifiers and (ii) lack of proper documentation.

Prior studies proposed techniques to improve test readability by

either generating natural language summaries or meaningful meth-

ods names. While these approaches are shown to improve test

readability, they are also affected by two limitations: (1) generated

summaries are often perceived as too verbose and redundant by de-

velopers, and (2) readable tests require both proper method names

but also meaningful identifiers (within-method readability).

In this work, we combine template based methods and Deep

Learning (DL) approaches to automatically generate test case sce-

narios (elicited from natural language patterns of test case state-

ments) as well as to train DL models on path-based representations

of source code to generate meaningful identifier names. Our ap-

proach, called DeepTC-Enhancer, recommends documentation and

identifier names with the ultimate goal of enhancing readability of

automatically generated test cases.

An empirical evaluation with 36 external and internal develop-

ers shows that (1) DeepTC-Enhancer outperforms significantly the

baseline approach for generating summaries and performs equally

with the baseline approach for test case renaming, (2) the trans-

formation proposed by DeepTC-Enhancer results in a significant

increase in readability of automatically generated test cases, and (3)

there is a significant difference in the feature preferences between

external and internal developers.
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1 INTRODUCTION

Software testing is a crucial part of the software development life

cycle that ensures software system quality and reliability proper-

ties [9]. However, writing tests is a resource-intensive endeavor;

developers often spend 25% of their development time on software

testing [11]. To help reduce the cost of testing, software engineering

researchers have developed several approaches to generate tests

automatically. A significant amount of progress has been made

primarily in the case of unit tests. Today, there exist several tools,

such as EvoSuite [16] and Randoop [35], that can automatically

generate an entire test suite given a project’s source code (or byte-

code). The maturity of the field also resulted in surveys [10, 31]

and several editions of tool competitions [15, 25, 32]. Furthermore,

empirical studies showed that the tests synthesized by these tools

are effective [5, 18] at detecting faults, and are substantially cheaper

to produce [37].

Despite these advances, generated unit tests pose a significant

maintenance burden when including them in a project [12]. This

is because developers have to manually validate the generate as-

sertions (oracle problem) and analyze the thrown exceptions [24]

(potential crashes). These automatically written tests have poor

readability compared to their human-written counterparts due to

the lack of documentation and the use of obfuscated variable names.

Consider for example, the test case in Figure 1, which is automati-

cally generated using EvoSuite [16] for the class KeycloakUriBuilder

from the Keycloak open-source project. While the test method is

concise, its purpose is not immediately obvious. The variable names

have no clear purpose and just tell us the types of the instantiated

objects and primitive types and their counts. Besides, the name of

the test in itself is generic, and there are no comments to provide

any hints about the scenario under test.

In recent years, researchers have proposed various approaches

to partially mitigate these issues. The related work can be classified

into two main categories: (1) generating natural language sum-

maries to support comprehension, and (2) improving the test code

for better readability. Panichella et al. [38] proposed a template-

based summary generator for automatically generated tests. Their

empirical study showed that test summaries help developers during

debugging, i.e., finding more bugs and in less time. Daka et al. [14]
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Figure 1: A unit test generated by EvoSuite.

proposed a technique to generate descriptive test names based

on code coverage heuristics. Their empirical study showed that

humans perceive the synthesized names as descriptive as manually-
written test names [14]. While these two approaches address the

test readability problem in different and complementary ways, they

both have significant limitations. First, developers often perceive the

generated summaries as too detailed (statement-level comments)

and redundant [38]; they also do not solve the nondescript naming

convention (developers’ feedback reported in [38]). Furthermore,

the approach from Daka et al. [14] considers only test method

names, while the actual content of the test methods remains un-

changed. In other words, the readability of the generated tests is still

affected by meaningless identifier names (e.g., string0 in Figure 1).

To address these open challenges, we propose a two-stage ap-
proach, called DeepTC-Enhancer, that comprehensively improves

the readability of automatically generated unit tests. First, DeepTC-
Enhancer automatically generates test case scenarios using a tem-
plate based approach. These scenarios are method-level summaries,

i.e., leading comments, that aim to summarize the steps, i.e., the

scenario being set up and tested by a given test case. Our test sce-
narios differ from those generated by existing approaches [38] in

the level of abstraction—they are more high-level (method-level

as opposed to statement-level) and, therefore, more concise. The

rationale is that higher-level summaries will quickly provide de-

velopers with enough information to decide whether the given

test case needs to be further investigated for the task at hand. Sec-
ond, DeepTC-Enhancer relies on extreme code summarization tech-
niques based on Deep Learning to rename all identifiers in the test

case with meaningful names. We hypothesize that such renaming

can significantly increase the readability of these test cases and

ease program comprehension and test maintenance activities.

Specifically, our contributions can be summarized as follows:

• A novel approach for generating natural language scenarios

of JUnit test cases. DeepTC-Enhancer generates test method-
level summaries that describe the test case scenarios.

• A novel adaptation of an existing identifier renaming tech-
nique applied in the context of unit tests in Java and adapted

to remove its reliance on existing identifier names.

• An empirical evaluation of DeepTC-Enhancer using 6 inter-
nal and 30 external developers, including a comparison to

existing approaches [14, 38].

Figure 2: Overview of DeepTC-Enhancer.

• A replication package1 that includes (1) a prototype imple-

mentation of the proposed approach, (2) internal and external

developer surveys and (3) the data used for the evaluation.

Paper Structure. Section 2 details of the implementation of

DeepTC-Enhancer. Section 3 provides an overview of the study

design and research questions. Section 4 discusses the results, while

threats to its validity are discussed in Section 5. Section 6 provides

an overview of the related work and contrasts the work proposed

here to the state-of-the-art approaches. Finally, Section 7 concludes

the paper and outlines directions for the future work.

2 THE DEEPTC-ENHANCER APPROACH

Figure 2 depicts the proposed DeepTC-Enhancer, which is designed

to automatically generate method-level summaries and automati-

cally rename identifiers contained within leveraging (i) existing ap-

proaches on code summarization and (ii) deep learning techniques.

In this section, we elaborate these steps, detailing DeepTC-Enhancer’s

approach, which consists of twomain phases: (1) Test Case Scenario-

based Summaries and (2) Test Case Identifier Renaming.

2.1 Test Case Scenario-based Summaries

At a high level, the summary generation phase starts by analyzing

each line of code to filter out redundant information. Then, the

remaining statements are aggregated to allow the actual generation

of the method-level summary. Following is an in-depth description

of each step in the summary generation phase.

2.1.1 Statement Analysis. We analyze all statements in the gen-

erated test case, looking for opportunities to reduce redundancy.

For this, we employ intra- and inter-statement heuristics. Intra-

statement heuristics determine whether details can be removed

from within a single statement. For example, if a statement con-

tains a method call with more than one argument, we remove the

details about the parameters of the method call. Inter-statement

heuristics determine which statements should be summarized. For

example, if a temporary variable is created in a test case as a place-

holder, then its creation does not need to be summarized as shown

1https://github.com/devjeetr/DeepTC-Enhancer-Improving-the-Readability-of-
Automatically-Generated-Tests
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in Figure 3 where the variable in line 21 is not part of the summary.

Another example, also shown in Figure 3, is when multiple variable

declarations (l.12–17) can be summarised in one sentence (l.2–3).

The rationale here is that providing detailed information about

every statement brings the summary too close to the actual source

code. Instead, we hypothesise that if developers need more infor-

mation, they will refer to the source code to procure it. Thus, the

summaries that DeepTC-Enhancer generates are intended to guide

developers in identifying relevant tests for their maintenance activ-

ity, rather than to convey detailed information about the tests.

Figure 3: Example of test case scenario-based summary gen-

erated by DeepTC-Enhancer.

2.1.2 Statement Aggregation. Once redundancy has been reduced,

DeepTC-Enhancer aggregates the remaining statements into a final

summary. To this end, DeepTC-Enhancer takes a template-based

approach as templates have been shown to be successful for the

generation of summaries [28, 38, 41]. DeepTC-Enhancer uses a set

of heuristics that we crafted by manually investigating 293 JUnit

tests files from over 31 open-source projects. During this manual

investigation process, we identified several common sequences of

statements that appear in unit tests and that can be summarized

by a single statement. For example, a common pattern is the use of

several assertions verifying different properties of a target object as

shown in Figure 1. In this example, the last two assertions (l.13–14)

can be aggregated into a single phrase “checks if port is -1 and

host is not null”. Another common pattern is a method invocation

and an assert statement on the same object as shown in Figure 3

(l.20 and 22) which are summarized as one step (step 3) in the test

case scenario. The comment in Figure 3 represents the summary

generated by DeepTC-Enhancer.

The aggregation is performed iteratively, resulting in aggregated

statements themselves being combinedwith others when applicable.

We use a simple abstraction to enable this behavior: each individual

or aggregated statement is assigned an object and an action. When

test case statements do not fall under these aggregation patterns,

we simply provide the statement level scenarios. Our templates

cover 97% of the statements in the automatically generated tests

from the projects described in Section 3.3.1.2.

2.2 Identifier Renaming

For the identifier renaming phase of the proposed approach, we

leverage and adapt existing deep learning approaches for extreme

source code summarizations [2, 4, 6, 8]. The identifier renaming

process consists of two separate prediction tasks: test case renam-

ing and variable renaming. There exist several techniques that

have achieved substantial success in both of these tasks [4, 6, 40].

Recently, deep learning techniques have achieved state-of-the-art

performance for predicting the method name from the body of a

method. Conversely, structured prediction has been successfully

applied to the task of clarifying variable names from the obfuscated

code [40]. Motivated by the success of machine learning models for

these well known tasks, we divide the identifier renaming aspect

of our approach into two learning tasks: test case name prediction

and variable name prediction. We train the model on open source

projects, as detailed in Section 2.2.4, and then use it to predict test

case and variable names for automatically written tests. The ra-

tionale is that if the model can learn to predict identifier names

used in human written test cases, it would be able to predict similar

names for automatically written tests.

One key difference between this and prior works for these tasks

is that our model does not rely on variable names already presented

in the source code. This is important as our approach is being

applied to automatically generated test cases that lack meaningful

variable names. For both the variable and the test case prediction

tasks, this is done by masking all variable names during the training

of the model; we mask the variable that needs to be renamed with

a special token.

2.2.1 Source Code Representation. One of the most important con-

siderations when designing a machine learning system for software

systems is source code representation. In practice, this can vary

from simplistic representations of source code as a stream of to-

kens [21] to more structured, graph-based representations [3]. Our

rationale for the selection process is two-fold:

(1) Cost: The cost of generating the representation should be

minimal, in order to incorporate this tool as an IDE plugin.

(2) Dependencies: The source code representation must be gen-

erated solely from the raw text of the given test case. We

impose this constraint to minimize the configuration burden

on the developer end.

Based on these criteria, we use a path-based representationwhich

Alon et al. proposed [7] and applied for various source code sum-

marization tasks [6, 8]. In this approach, a section of source code is

represented as an unordered set of abstract syntax tree (AST) paths.

Each path represents a walk between two leaves in the AST of a

program. We direct readers to [6–8] for detailed treatments and

formalized definitions.

At the time it was proposed, this path-based representation pro-

duced state-of-the-art performance for several summarization tasks.

2Details regarding the aggregations and their associated templates can be found in the
replication package
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Since then, other approaches have been proposed that utilize al-

ternative abstract syntax tree representations [27] or use a hybrid

approach that combines an AST representation with a textual rep-

resentation [44], with varying levels of performance. We chose the

path-based representation because it is very cheap to compute and

offers a level of generalization that enables it to be applied unmodi-

fied to our two learning tasks: variable name prediction and test

case name prediction.

2.2.2 Machine Learning Model. Many of the advances made in

code summarization over the past 5 years frame the problem as a

translation problem, i.e., translating source code to natural language.

This formulation allows for the use of a vast variety of approaches

dealing with sequence transduction developed for neural machine

translation (NMT) systems. For both of our learning tasks, we adapt

the model proposed by Alon et al. [6]. This model follows the stan-

dard encoder-decoder architecture that, until recently, has been

primarily utilized in NMT systems. The main difference between

the model proposed by Alon et al. and the standard encoder-decoder

architecture is that it is designed to use the path based representa-

tion discussed in the previous section. The model uses a specialized

encoder to create a distributed representation of each AST path,

which is then merged with token embeddings for the two terminal

nodes of the path. This is then used by the decoder to sequentially

generate the target prediction.

2.2.3 Token Representation. Originally, code2seq utilized subto-

ken embeddings to represent source code tokens. In this approach,

tokens in the source code are split into subtokens. Recently, Karam-

patsis et al. show that the use of subword embeddings such as

byte pair encoding (BPE) can significantly decrease the size of the

vocabulary and improve the performance of machine learning mod-

els in the context of source code tasks [23]. Hence, for this work,

we utilize SentencePiece BPE [26] based vocabulary. For the label

(method or variable names) subtokens, we limit the vocabulary size

to 16,000, and for the terminal node subtokens (any identifier that is

not a variable or method name), we limit the vocabulary to 32,000.

2.2.4 Dataset. Deep learning approaches are typically data ineffi-

cient, requiring a lot of training data. However, we must ensure that

our predicted identifier names would be of high quality. Manual

validation of the dataset is not feasible, due to the scale of data we

needed to collect. To ensure only engineered software projects are

considered for this work, we used the dataset Munaiah et al. gen-

erated using REAPER [34]. This dataset includes quality metrics for

each project. We used this to filter dataset for projects with a test-to-

source code ratio greater than 0.01. We selected this threshold using

descriptive statistics to find a compromise between the quality of

the unit tests and the size of the resulting dataset. After filtering,

we extracted all Java files that start or end with “Test", which is a

common naming convention for unit test files. The final dataset

consists of 274 engineered projects containing 96,534 unit test files

for a total of 678,860 unit test cases. We divided the dataset into

training (70%), validation (10%), and test set (20%) for our model.

2.2.5 Examples of suggested names. For the automatically gener-

ated test shown in Figure 1, DeepTC-Enhancer suggests testUri

as test name and primaryKeyUri, uriBuilder, and host for variables

uRI0 (l.3), keycloakUriBuilder0 (l.4), and string0 (l.6), respectively.

Figure 4: Test case from Figure 1 enhanced using

DeepTC-Enhancer.

For the example shown in Figure 3, DeepTC-Enhancer suggests

the test to be renamed to testGetGroup and variables loggerGroups0

(l.12), hashMap0 (l.14), linkedList0 (l.16), and loggerGroup0 (l.21) to

be renamed to logger, expected, string, and result, respectively.

Figure 4 and Figure 5 show the test cases from Figure 1 and Figure 3

with suggested method name and variable names generated by

DeepTC-Enhancer.

Figure 5: Test case from Figure 3 enhanced using

DeepTC-Enhancer.

3 STUDY DEFINITION AND DESIGN

3.1 Research Questions

The goal of this study is to evaluate the ability of DeepTC-Enhancer to

improve the readability of automatically generated test cases using

test case scenarios and identifier renaming. The quality focus is the

evaluation of tool’s performance from the perspective of developers.

The perspective of the study is developers who are interested in

using automatically generated test cases but struggle with their

readability. Hence, the study is designed to answer the following

research questions (RQs):

RQ1: How does DeepTC-Enhancerperform compared to existing

techniques? Several other approaches aim to improve the readability

of automatically generated tests, by creating test case summaries or

by providingmoremeaningful test names. As DeepTC-Enhancer en-

hances both the documentation (by addingmethod-level summaries)
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and code (by renaming identifiers) of generated tests, we compare

its performance against the existing approaches for that generate

both. For this RQ, we use the datasets used in the original evalua-

tions of existing approaches to survey external developers.

RQ2: To what extent does DeepTC-Enhancerincrease the readabil-

ity of the generated tests? Automatic test case generation requires

fewer resources than the standard manual efforts. However, they

incur a higher maintenance effort due to their poor readability. For

this RQ, in addition to external developers, we also perform an

evaluation with internal developers to gain insight on how useful

developers might find DeepTC-Enhancer in their day to day work.

For this RQ, we use a dataset that we collected consisting of top

starred Java projects on GitHub.

RQ3: What aspects of DeepTC-Enhancerdo developers find most

useful? We aim to assess whether developers perceive some en-

hancements applied by our approach more useful than others. For

this RQ, we use the same developer pool and dataset as in RQ2.

3.2 Baselines

To the best of our knowledge, DeepTC-Enhancer is the first ap-

proach to apply both automated documentation and test code en-

hancement (via identifier renaming) towards improving the read-

ability of automatically generated test cases. However, there are ap-

proaches that improved individually one or the other aspects. Hence,

we compare the test scenarios generated by DeepTC-Enhancerwith

the test case summaries generated by TestDescriber, proposed by

Panichella et al. [38]. TestDescriber automatically generates test

case summaries of the portion of code exercised by each test to

provide a dynamic view of the class under test. The generated sum-

maries have been shown to help developers to better understand

the code under test and improve their bug fixing performance [38].

We compare the test case names generated by DeepTC-Enhancerwith

the names generated by Daka et al.’s approach [14]. The later syn-

thesizes descriptive names for automatically generated unit tests

in terms of their observable behavior at a test code level. This

technique has been implemented as an extension to EvoSuite.

3.3 Experiment Design

To answer our research questions, we conduct two online empirical

studies involving internal and external developers. Section 3.3.2

provides detailed information about the participants and their pro-

gramming experience. We recruited participants via e-mail and

social media. For each internal developer, we create a specific ver-

sion of the survey for the open-source project for which they are

listed as a contributor. The use of an online questionnaire was pre-

ferred over in-person interviews, as it is more convenient for the

participants. Each survey starts by gathering demographic informa-

tion. Then participants are asked to respond to a series of questions

regarding the generated summaries, method renaming, and variable

renaming. The survey also contained open-ended feedback forms

after each question to allow the developers to provide additional

insight into their responses.

3.3.1 Objects. We use three different datasets to evaluate different

aspects of DeepTC-Enhancer:

1) Test summaries:We used the dataset used by Panichella et al. [38]

to compare the test case summaries generated by DeepTC-Enhancer

Table 1: Experience of Participants.

External Internal

Experience # (%) #

0-2 years 6 (20%) 0
3-6 years 14 (47%) 1
7-10 years 7 (23%) 0
>10 years 3 (10%) 5

Total 30 (100%) 6

and TestDescriber in the survey with external developers. The

dataset consists of two Java classes extracted from two open-source

projects. We use this dataset to answer RQ1, RQ2, and RQ3.

2) Method renaming: Daka et al. [14] followed a systematic proto-

col [17] to select objects from the SF110 corpus3 of open-source Java

projects. They selected ten target methods from different classes.

We use data from this dataset to answer RQ1, RQ2, and RQ3.

3) Variable renaming and evaluation of the overall approach: We

use the 30 most-starred open-source Java projects from GitHub.

We use the same dataset to recruit internal developers for our

evaluation. This dataset was used to evaluate the quality of the

suggested variable names and the overall approach that includes

the generated summaries, method names, and variable names. It is

used to answer RQ2 and RQ3.

3.3.2 Participants. We recruited both external developers, i.e., peo-

ple that have not developed the code under investigation, and inter-

nal developers, i.e., contributors of the projects we are analyzing.We

invited external developers from industry, students, and researchers

from the authors’ institutions as well as from other institutions by

e-mail and social media. For our study with internal developers we

invited 198 top contributors from the 30 most starred open-source

Java projects from GitHub. At the end, 30 external and 6 internal

developers responded to our surveys. Table 1 details the partici-

pants’ programming experience. All participants have a Computer

Science background. They were all volunteers and did not receive

any reward for participation in the study.

3.3.3 Surveys. We performed two different surveys: one with ex-

ternal and one with internal developers. Here we briefly describe

the surveys; more details can be found in our replication package.

1) External developers survey: The purpose of this survey is to eval-

uate several research tools developed to enhance the readability of

generated tests. We create two versions of the survey to contain

different code snippets which are randomly selected from the corre-

sponding datasets. Participants are randomly assigned to a survey

and asked to evaluate the enhancements using different criteria.

The survey consists of 17 questions divided into four sections; there

is also optional feedback forms intended to allow participants to

elaborate on their answers. In Section 1, participants are asked to

evaluate the quality of the test case summary generated by our

approach and the baseline TestDescriber [38]. In Section 2, they

evaluate the quality of the test names suggested by our tool and

by the work of Daka et al. [14]. Sections 3 contains an evaluation

of the variable renaming in isolation, and Section 4 contains an

evaluation of the overall approach. To minimize order and sequence

3http://www.evosuite.org/experimental-data/sf110/
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effects as well as other bias, for Sections 1 and 2, the identity of the

tools is not revealed, and the order in which the summaries and

method names are presented is randomized.

2) Internal developers survey: The goal of this survey is to evaluate

the usefulness of DeepTC-Enhancer for software developers. For

all developers that indicate an interest in participating, we create

a unique survey, even if there is more than one developer for a

particular project. The survey consists of 16 questions and optional

feedback forms divided into four sections. Three of these sections

evaluate the test case scenario, method renaming, and variable

renaming in isolation, while the last section contains an evaluation

for the complete approach. The same automatically generated test

case is used for each of these sections.

3.4 Evaluation metrics

Similar to related work [33, 38, 42], the quality of generated sum-

maries is evaluated according to three dimensions: conciseness,

content, and readability. Concise summaries do not include extra-

neous or irrelevant information. Content measures whether the

summary correctly reflects the content of the test case. Readability

measures to what extent a test case (including the generated en-

hancements) is perceived as readable and understandable by the

participants. In addition, participants evaluate how the intent of the

test case are captured by the suggested test case name and variable

names. Participants also rate the naturalness of the suggested test

case name which indicates how easy it is to read and to understand

it. Finally, participants are asked to rate the improvement in read-

ability of the code snippet enhanced using DeepTC-Enhancer over

the original automatically generated test and their likelihood to

utilize DeepTC-Enhancer if they were to use automatically writ-

ten tests. Depending on the question, participants express their

opinions using a 3-, 4-, or 5-point Likert scale.

3.5 Analysis Method

We used statistical tests to assess the significance of the difference

between the scores achieved by different tools.We use theWilcoxon

Rank Sum test with a significance level of 𝛼 = 0.05. We opted for

non-parametric tests because the Shapiro-Wilk test revealed that

our data (scores) does not follow a normal distribution (𝑝-value
< 0.01). Besides, we use Cliff’s 𝑑 effect size [20] to measure the

magnitude of the difference, which can be interpretted as follows:

small for 𝑑 < 0.33, medium for 0.33 ≤ 𝑑 < 0.474 and large for

𝑑 ≥ 0.474 [20].

4 RESULTS

4.1 RQ1 : How does DeepTC-Enhancerperform
compared to existing techniques?

4.1.1 Test Case Summaries. For the reader to get a sense of the

summaries generated by different tools, we present examples of

summaries generated by DeepTC-Enhancer and TestDescriber in

Figure 8 and Figure 7, respectively, for the same unit test. Figure 6

shows the results of the evaluation of the proposed test case scenar-

ios when compared with TestDescriber [38]. In terms of conciseness,

19 (64%) respondents rated test case scenarios as containing no

unnecessary information, while on the other hand, 11 (37%) rated

Figure 6: Results from the comparison of

DeepTC-Enhancer and TestDescriber for method summaries

on a 3-point Likert scale (higher numbers are better).

Figure 7: Example summary generated by TestDescriber.

Figure 8: Example summary generated by DeepTC-Enhancer.

TestDescriber’s summaries as having no unnecessary information.

For either approach, 7-9 respondents found that the summaries con-

tain some unnecessary information. Only 3 respondents found test

case scenarios to contain mostly unnecessary information, as com-

pared to 3 (10%) respondents for TestDescriber summaries. In terms

of content adequacy, test case scenarios scored better overall, with

17 (57%) respondents reporting them to contain all important infor-

mation, while 7 (23%) and 4 (13%) respondents reported them to be

missing some important information and missing some very impor-

tant information, respectively. On the other hand, TestDescriber’s
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summaries were reported to contain all important information by

10 (33%) respondents, missing some important information by 11

(37%) and missing some very important information by 7 (23%)

respondents. Lastly, on the criteria of readability, most respondents

found test case scenarios to be either easy (19 (63%)) or somewhat

easy to read (9 (30%)), while only one respondent rated it as being

difficult to read. TestDescriber’s summaries were reported by 8

(26%) to be easy to read, somewhat easy to read by 12 (40%) and

difficult to read by 8 (27%). Overall, 20 (67%) respondents preferred

test case scenarios to TestDescriber’s summaries, while 4 (13%)

preferred neither.

From a statistical point of view, the results of the Wilcoxon test

revealed that the test scenarios generated by DeepTC-Enhancer are

perceived by participants as significantlymore concise (𝑝-value=0.02)
and more readable (𝑝-value≤0.01) compared to the summaries by

TestDescriber. The effect size is medium in both cases, being 0.32

and 0.44, respectively. Instead, there is no significant difference in

terms of quality of the content (𝑝-value=0.07).
Discussion: Across all three criteria evaluated in the survey on

external developers, test case scenarios performed better than Test-

Describer’s summaries. Based on our qualitative analysis of the

respondents, we attribute these higher ratings to test case scenarios

being shorter and less detailed than the summaries provided by

TestDescriber. While DeepTC-Enhancer provides high-level sum-

maroes of test cases at the method-level, the latter instead provides

detailed, line by line summaries. Some respondents indicated that

detailed comments is redundant, as reading the source code that

follows each statement summary would provide them with the

same information. This sentiment was echoed by another partici-

pant stated that the test case scenario was “concise, easy to read”

whereas the for TestDescriber summary they could “tell from the

code what it does”. However, while overall DeepTC-Enhancer is

received better than TestDescriber, two respondents did not see the

value in the summaries.

Figure 9: Results from the comparison of

DeepTC-Enhancer and Daka et al. ’s approach for test

case names on a 5 and 3 points Likert scales for intent and

naturalness respectively (higher numbers are better).

Figure 10: Example test case that needs renaming.

4.1.2 Test Case Names. Results for the comparison of Daka et al. ’s

method naming approach to DeepTC-Enhancer’s method renam-

ing are shown in Figure 9. More survey respondents found the

method names provided by Daka et al. ’s approach to fully capture

the intent of the test case (13 (43%)) as compared to those sug-

gested by DeepTC-Enhancer(4 (13%)). 7 (23%) respondents reported

that the names suggested by DeepTC-Enhancer either mostly cap-

ture the intent of the test case as compared to 5 (17%) for Daka et

al. ’s approach. On the other end of the spectrum, 4 (13%) respon-

dents reported the name generated by DeepTC-Enhancer as not

capturing the intent of the test case while 3 (10%) reported the

same for the baseline approach. A similar number of respondents

(6 (20%) versus 8 (27%)) reported that the test case names proposed

by either approach were misleading in conveying the intent of

the test case. With regard to readability, the names suggested by

DeepTC-Enhancer were perceived as slightly more readable than

those suggested by the baseline. 14 (47%), 8 (27%), and 6 (20%) re-

spondents reported the proposed approach as being easy, somewhat

easy and difficult to read, respectively, while 11 (37%), 12 (47%) and

3 (10%) reported the same for Data et al. ’s approach. Lastly, 11

(37%) respondents each indicated a preference for either tool, while

8 (26%) indicated they preferred neither.

However, the Wilcoxon test revealed that there is not signifi-

cant difference in quality between the test names generated by

DeepTC-Enhancer and the approach by Daka et al. [14]. More

precisely, there is no significant difference in terms of intent (𝑝-
value=0.07) nor in terms of readability (𝑝-value=0.84).

Discussion: Overall, Daka et al. ’s approach performs slightly

better in terms of capturing the intent of the test case, and slightly

worse in terms of readability, albeit the differences are not statis-

tically significant. Despite that, participants were equally likely

to prefer names generated by either approach. We posit that this

preference arose out of the conciseness of DeepTC-Enhancer’s sug-

gested names, and conversely the excessive verbosity of Daka et

al. ’s approach. Indeed, several respondents indicated that they pre-

fer conciseness over verbosity for test case names, unless increased

verbosity is required to address naming conflicts. For example,

for the test case in Figure 10, Daka et al. ’s approach suggests

test name testVisitAnnotation-WithNonEmptyStringAndFalse and

DeepTC-Enhancer suggests testVisitAnnotation. We also observe

from the responses that names suggested by DeepTC-Enhancer

might be perceived as too general. One respondent stated that

this can be a problem when multiple test cases are similar to

one another. Lastly, our results reveal that a significant portion

(8, i.e., 26%) of the respondents did not prefer the method names

from either tool. This indicates that the method names generated by

both DeepTC-Enhancer and Daka et al. have quite some room for
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improvements. We surmise that respondents would prefer method

names that combine some aspects of the verbosity of Dakaet al. ’s

names, while also retaining some of the conciseness of the names

suggested by DeepTC-Enhancer.

RQ1 External developers find the proposed test case scenarios

generated by DeepTC-Enhancer to be more concise, content

adequate, and readable than the summaries generated by the

baseline. The difference is statistically significant for concise-

ness and readability with a medium effect size. They also found

the method names suggested by DeepTC-Enhancer to be more

concise than those of the baseline. In terms of readability and in-

tent, the method names by DeepTC-Enhancer and the baseline

are statistically equivalent.

4.2 RQ 2: To what extent does
DeepTC-Enhancerincrease the readability of

the generated tests?

4.2.1 Overall Approach. We observe that respondents provided fa-

vorable ratings of the proposed approach’s impact on the readability

of automatically generated unit tests. 13 respondents (43%) reported

that the enhancement applied by DeepTC-Enhancer resulted in a

significant improvement in the readability of the generated test

cases, while 11 (37%) reported that the increase in readability was

minor. Three respondents (10%) indicated that there was no change

in readability while 2 (7%) reported that there was a minor decrease

in readability. No participant indicated there to be a significant

decrease in readability as a result of the enhancements provided

by the proposed approach. As to the likelihood of respondents

using DeepTC-Enhancer to enhance automatically generated test

cases, we found that 6 participants (20%) reported that they were

extremely likely to use it, while 16 (53%) indicated that they were

somewhat likely to use it. One respondent indicated that they were

somewhat unlikely to use the proposed approach while two in-

dicated that they were highly unlikely to use DeepTC-Enhancer.

Lastly, most participants (20 (67%)) indicated that the existence of

the proposed tool would make them more likely to utilize auto-

mated test generation tools in their projects. 7 participants (23%)

indicated that the existence of the tool would have no effect on their

choice of using automatic test generation tools; two respondents

indicated that DeepTC-Enhancer was unlikely to have an effect on

their choice to use these tools.

Internal developers, much like external developers, positively

rated the impact of DeepTC-Enhancer on readability: 4/6 indicate a

significant increase and 2/6 indicate aminor increase. However, they

were not as likely as external developers to utilize DeepTC-Enhancer

should they use automatic test generation; with 3/6 indicating they

were highly or somewhat likely to use it, 1/6 neutral and 2/6 either

highly or somewhat unlikely. Lastly, all 6 participants indicated

that the presence of DeepTC-Enhancerwould not make them more

likely to use automatic test case generation. This is mostly because

the generated tests do not match the code styles of their organiza-

tions.

4.2.2 Test Case Scenarios. We report the results of the evalua-

tion of the proposed test case scenarios by internal developers in

Table 2. Respondents rated the test case scenarios generated by

Table 2: Internal developers’ feedback on test case scenarios

generated by DeepTC-Enhancer.

Criteria Rating # Resp.

Conciseness No unnecessary information 2/6

Mostly unnecessary information 4/6

Content Not missing important information 4/6

Missing some very important information 2/6

Readability Easy to read/understand 4/6

Somewhat easy to read/understand 2/6

Table 3: External and Internal developer feedback on vari-

able names suggested by DeepTC-Enhancer.

Rating
External Internal

# (%) #

Fully conveys intent 167 (48%) 7/18

Somewhat conveys intent 121 (35%) 8/18

Does not convey intent 33 (10%) 2/18

Misleading with regard to intent 24 (7 %) 1/18

DeepTC-Enhancer favorably in terms of readability and content ad-

equacy, but not in terms of conciseness. This is somewhat consistent

with the external developer responses reported in Section 4.1.1.

However, internal developers rated the conciseness of the scenarios

much lower than the external counterparts. Their concerns mir-

rored those of external developers; 1 participant indicated that they

preferred reading the actual source code instead of the summary

comment to figure out what the test case exactly does. They also

were more specific about code quality standards for unit tests; one

developer indicated that a good test case should make it evident

what is being tested; they would rather the intent of the test case

be contained in the code than the comments. In general, internal

developers were not in favor of have comments that describe the

functionality of the test cases. Part of the reasons for that might

be due to the fact that for the evaluation respondents were shown

single test cases as opposed to the entire test suite generated by

EvoSuite. We hypothesize that developers will see more value in

the test case scenarios in the context of test case navigation. We

plan to perform such evaluation as part of future work.

4.2.3 Test Case Names. Overall, internal developers found the

method names suggested by DeepTC-Enhancer do not successfully

capture the intent of the test cases presented to them. Four develop-

ers indicated that the suggested name either didn’t capture intent

(2) or was misleading (2). However, they rated the suggested names

favorably in terms of readability, with 5 indicating that it was easy

to read (3) or somewhat easy to read (2), with the remaining devel-

oper indicating the name to be not easy to read. This is once again

similar to the results of the external developer survey reported in

Section 4.1.2.

4.2.4 Variable Names. The survey results with external developers

for the variable names suggested by DeepTC-Enhancer are shown

in Table 3. Overall, participants reported that the names capture the

intent of the variable usage to some extent 83% of the times, with the

remaining 17% reporting that the variable renaming either did not
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Table 4: External and internal developer feedback for useful-

ness of features

Internal External

Useful Not Useful Useful Not Useful

Summary 3/6 2 / 6 20 (67%) 9 (30%)

Variable 5/6 0 / 6 23 (77%) 5 (17%)

Method 5/6 0 / 6 22 (73%) 6 (20%)

capture the intent or was misleading. 48% of the times, respondents

indicated that the suggested variable name fully captured the intent

of its usage.

Table 3 also shows the internal developer evaluation of the vari-

able names on 18 different instances. Overall, they rated the variable

names’ ability to convey the intent of their usage fairly positively:

seven variable names being rated as fully capturing the intent of

their usage and eight being rated as somewhat capturing the in-

tent of the usage. Two variable names were rated as not capturing

the intent of their usage while one was rated is being misleading

with regard to intent. In general, developers were very enthusiastic

about the variable renaming feature. One developer indicated that

the impact of the renaming of the variables would be much more

apparent in larger test cases.

RQ2 Overall, external and internal developers report that the

transformations of DeepTC-Enhancer result in a significant in-

crease in readability of automatic test cases. Internal develop-

ers are particularly enthusiastic about the variable renaming.

Moreover, internal developers also find test case scenarios to be

readable and content adequate, but lacking conciseness.

4.3 RQ3:What aspects of DeepTC-Enhancerdo
developers find most useful?

Table 4 shows the results from the evaluation with external de-

velopers. Respondents were asked to place the three features of

DeepTC-Enhancer (scenarios, test case names, and variable names)

in two buckets: useful and not useful. 20 (67%) respondents placed

test case scenarios in the useful bucket, while nine (30%) placed

them in the not useful bucket. Variable renaming were considered

useful by 22 (73%) respondents and not useful by 6 (20%). Lastly, 23

(77%) respondents found the test case renaming to be useful, while

5 (17%) found it to not useful.

In terms of the relative importance of these three aspects of the

proposed approach, the largest number of participants reported

test case scenarios to be the most important feature, with 12 (40%)

participants rating it as the most important, whereas 6 (20%) and

8 (27%) participants ranked variable and method renaming respec-

tively as the most important feature. Test case scenarios were also

the most frequently top-ranked feature rated by respondents (3) as

not being useful.

The results for internal developers are in contrast with the results

from external developers. 3/6 developers rank variable renaming

as the feature they found the most useful while another ranked

it second. Method name renaming is ranked as the second most

useful feature by 3/6 developers. Lastly, internal developers did not

find test case scenarios to be as useful as the external developers;

in fact, 2/6 rated summaries as not being useful at all.

The results of the Wilcoxon test revealed that the test scenarios

are significantly ranked higher than the other features in our tool

in terms of usefulness as indicated in participants’ answers (𝑝-
value=0.05). The effect size is medium (0.39) compared to variables

names and small (0.283) compared to method names. Instead, there

is no statistical difference between the other two features, i.e., , the

usefulness (ranks) of methods and variables names.

Discussion:We observe that for external developers, test case sce-

narios are themost useful enhancement offered by DeepTC-Enhancer.

This is contrary to our findings for internal developers. From a qual-

itative analysis of the comments left by respondents, we gather that

internal developers often prefer self-documenting code over explicit

documentation. While this is true even for external developers, the

section of respondents that expressed this preference was in the

minority as evidenced by the results. In addition, internal develop-

ers tended to perceive the test scenarios from the perspective of

the project being evaluated; one of them indicated that both the

coding style and the test scenarios of the automatically generated

test presented to them did not fit their current coding quality stan-

dards. We also posit that the difference in the perception of test case

scenarios for internal and external developers could be, at the very

least, attributed to the familiarity the developers had with these

projects. Some snippets used for internal developers were also used

for the external evaluation, and given the external developers’ lack

of familiarity with the code, they found test case scenarios to be

more helpful.

RQ3 External developers consider the automatically gen-

erated test case scenarios as the most useful aspect of

DeepTC-Enhancer, whereas internal developers prefer the vari-

able renaming feature. We attribute the main reasons for the

different opinions to the familiarity (or lack of it) with the code

and the coding standards followed by different projects and

developers.

5 THREATS TO VALIDITY

In this section, we outline possible threats to the validity of our

study and show how we mitigated them.

Threats to construct validity concern the way in which we

set up our study. Due to the fact that our study was performed in a

remote setting in which participants could work on the tasks at their

own discretion, we could not oversee their behaviours. To minimize

potential bias in the participants’ behaviours, we have shared the

experimental data with the participants using an online survey

platform, which support the participants (1) to perform tasks and

(2) facilitate the filling of the questionnaires. In additional, to limit

this threat, we also involved both external and internal developers,

so that the final reported results are more reliable.

Threats to internal validity concern factors that might af-

fect the casual relationship. To reduce biasing developers to the

baselines evaluated, the name of the tools used to generate the

summaries and identifiers names were not revealed in the survey.

To avoid bias in the task assignment, we randomly assigned the

tasks to the participants in order to have a balanced number of

data points for all treatments. Specifically, for external developer
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surveys, participants were randomly assigned to one off the two

surveys. For internal developers surveys, we created a unique sur-

vey, even if there was more than one developer for a particular

project, we then randomly selected both test method and test class

from the automatically generated test suite. Another factor that

can influence our results is the order of assignments. However, our

results suggest similar results among participants, thus, presenting

no interaction between the treatments and the final outcome.

Threats to external validity concern the generalizability of

our findings, and in particular on the evaluation of DeepTC-Enhancer.

To limit this threat, we considered different dataset to evaluate our

approach. To evaluate the quality of generated test summaries and

suggested method names, we considered the original datasets used

in the studies involving two baselines [14, 38]. We also use a new

dataset containing 30 top starred projects on Github to evaluate

DeepTC-Enhancer. We plan to evaluate DeepTC-Enhancer with a

larger dataset with more complex test cases. We will also work on

improving the suggestions for test case names. Future work will

also focus on investigating how the approach helps developers fix

potential bugs [38], which deserve future investigations. Finally,

even if our population included a substantial part of professional in-

ternal and external developers, we plan to replicate this study with

more participants in the future in order to increase the confidence

in the generalizability of our results.

Threats to conclusion validity concern the degree to which

our conclusions about DeepTC-Enhancer are reasonable based on

the data. DeepTC-Enhancer generates test summaries and suggests

identifier names for automatically generated test cases by Evosuite.

Using different automatic test generation tools such as Randoop [35]

might lead to different results. However, we observe that the test

cases generated by Evosuite are not significantly different from

those generated by other existing tools in terms of size, structure

and coverage. We support our findings by using appropriate statis-

tical tests, i.e. the non-parametric Wilcoxon test. We also used the

Wilk-Shapiro normality test to verify whether the non-parametric

test could be applied to our data. Finally, we used the Vargha and

Delaney Â12 statistical test to measure the magnitude of the differ-

ences between different approaches.

6 RELATEDWORK

Source Code Summarization. Researchers have proposed several

approaches that generate summarization of software artifacts at

different levels of granularity to reduce program comprehension

effort during software development and maintenance. At statement

level, Gonzalez et al. develop an automated technique to convert

JUnit assertion statements into natural language sentences [19]. At

method level, Sridhara et al. [42] propose an approach that auto-

matically generates natural language summary comments for Java

methods. At class level, Moreno et al. [33] present an approach to

generate human-readable summaries for Java classes so that devel-

opers can understand the main goal and structure of a class easily.

McBurney and McMillan [30] propose an approach to generate au-

tomatic source code summaries with contextual meaning in them

by analyzing how those methods are invoked to show why the

method exists or what role it plays in the software. To locate cross-

cutting concern code, Rastkar et al. [39] introduce an automated

approach that produces a natural language summary describing

both what the concern is and how the concern is implemented so

that developers can perform change tasks more efficiently. All these

approaches focus on generating summaries for source code; we

target automatically generated test cases and generate test scenario

rather than statement-level descriptions as in [19].

Method and Variable Renaming. Allamanis et al. [2] intro-

duce a neural probabilistic language model for source code that

can suggest method names. In addition, Yonai et al. [45] propose

an approach Mercem to recommend method names in source code

by applying graph embedding techniques to the call graph. Both

approaches target methods whereas DeepTC-Enhancer focuses on

suggesting names for automatically generated test cases.

Raychev [40] build an engine called JSNICE to predict variable

names and type annotations of JavaScript programs. In addition,

Vasilescu et al. [43] presented an approach JSNAUGHTY to recover the

original names from minified JavaScript variable names. However,

both JSNICE and JSNAUGHTY are provided for JavaScript software

system but not automatically generated Java test cases. To the best

of our knowledge, no other work focus on enhancing the readability

of variable names in automatically generated test cases in Java.

Improving the Readability of Test Cases. Kamimura and

Murphy [22] propose generating human-oriented summaries of

test cases based on static source code analysis. Li et al. [28] present

an approach UnitTestScribe that combines static analysis, natural

language processing, backward slicing, and code summarization

techniques to generate descriptions documenting the purpose of

methods within unit tests. UnitTestScribe works for C# project.

Panichella et al. [38] introduce an approach, TestDescriber, to au-

tomatically generates test case summaries of the portion of code

exercised by each individual test to improve. We compare our ap-

proach with the work of Panichella et al.

To generate descriptive method names for Java unit test cases,

Zhang et al. [46] present an approach, NameAssist, that combines

natural-language program analysis and text generation, which can

create test method names that summarize the test’s scenario and

the expected outcome. We considered NameAssist as a candidate

baseline but neither the dataset nor the tool is publicly available,

hence we exclude it from this comparison. Daka et al. [14] introduce

an approach for automatically generated tests that can generate

descriptive names by summarizing API-level coverage goals. We

use the approach by Daka et al. as a baseline for our comparison.

Afshan et al. [1] used a linguistic model to generate ‘English-like”

input strings, which are more understandable that randomly gener-

ated ones. Our work complements this line of research as we aim at

improving readability in different dimensions, i.e., documentation

and method/variable names. Our paper shows that these factors

are perceived as very important by developers. Daka et al. [13]

proposed a domain-specific model to measure and improve the

readability of generated units test and based on human judgments.

EvoSuite already incorporates heuristics to reduce the size of the

generated tests and the number of assertions [16]. One could argue

that, at the same level of coverage, shorter tests are easier to validate

and inspect manually, reducing the oracle cost [36]. However, these

studies focus on the structure, size, and complexity of the generated

tests. Instead, we focus on natural language documentation (not
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included in the model by Daka et al. [13]) and the quality of the

identifiers (that remain obfuscated).

As indicated by Lin et al. [29], the poor quality of the identifiers

in test code is widespread, and it is more severe in generated tests

compared to the manually-written counterpart. Our tool applies

multiple strategies to address, among others, this open issue.

7 CONCLUSIONS AND FUTUREWORK

We propose DeepTC-Enhancer: a hybrid deep learning and tem-

plate based approach to improve the readability of automatically

generated test cases. DeepTC-Enhancer is the first approach that en-

hances both the documentation and code aspects of the tests. To this

end, DeepTC-Enhancer generates leading tests case summaries in

the form of test case scenarios which outline the actions performed

in the test. To enhance the automatically generated identifiers of

tests, DeepTC-Enhancer adapts a deep learning based extreme code

summarization approach to generate test case names and variable

names.

With two empirical evaluations involving 30 external and six

internal developers, we evaluate all aspects of the transformations

proposed by DeepTC-Enhancer and compare it to existing base-

lines. Results show that summaries generated using the proposed

approach significantly outperform the baseline, and the test case

renaming performs similar to the baseline. The variable renaming

feature in the context of automatic tests is first of its kind and thus

is not compared to a baseline. This is the feature that was preferred

by internal developers, while external developers ranked the test

case scenarios as a more important feature. Overall, both internal

and external developers report a significant improvement in the

readability of generated tests after the enhancement applied by

DeepTC-Enhancer. Lastly, the majority of participants indicate that

the existence of DeepTC-Enhancer increases the likelihood of using

tools for automatic test case generation in their projects.

In the future, we plan to evaluate DeepTC-Enhancer in the con-

text of different maintenance tasks that involve test case navigation.

Moreover, from the evaluation with developers, we see that there

is a need to improve the suggestions for test case names.
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