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Proteins, as a fundamental class of biomolecules, have been studied from various perspectives 

over the past two centuries. The traditional notion is that proteins require fixed and stable three-

dimensional structures to carry out biological functions. However, there is mounting evidence 

regarding a “special” class of proteins, named intrinsically disordered proteins, which do not have 

fixed three-dimensional structures though they perform a number of important biological 

functions. Computational approaches have been a vital component to study these intrinsically 

disordered proteins over the past few decades. Prediction of the intrinsic disorder and functions 

of intrinsic disorder from protein sequences is one such important computational approach that 

has recently gained attention, particularly in the advent of the development of modern machine 

learning techniques.  

This dissertation runs along two basic themes, namely, prediction of the intrinsic disorder and 

prediction of the intrinsic disorder functions. The work related to the prediction of intrinsic 

disorder covers a novel approach to evaluate the predictive performance of the current 
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computational disorder predictors. This approach evaluates the intrinsic disorder predictors at 

the individual protein level compared to the traditional studies that evaluate them over large 

protein datasets. We address several interesting aspects concerning the differences in the 

protein-level vs. dataset-level predictive quality, complementarity and predictive performance of 

the current predictors. Based on the findings from this assessment we have conceptualized, 

developed, tested and deployed an innovative platform called DISOselect that recommends the 

most suitable computational disorder predictors for a given protein, with an underlying goal to 

maximize the predictive performance. DISOselect provides advice on whether a given disorder 

predictor would provide an accurate prediction for a given protein of user’s interest, and 

recommends the most suitable disorder predictor together with an estimate of its expected 

predictive quality. The second theme, prediction of the intrinsic disorder functions, includes first-

of-its-kind evaluation of the current computational disorder predictors on two functional sub-

classes of the intrinsically disordered proteins. This study introduces several novel evaluation 

strategies to assess predictive performance of disorder prediction methods and focuses on the 

evaluation for disorder functions associated with interactions with partner molecules. Results of 

this analysis motivated us to conceptualize, design, test and deploy a new and accurate machine 

learning-based predictor of the disordered lipid-binding residues, DisoLipPred. We empirically 

show that the strong predictive performance of DisoLipPred stems from several innovative 

design features and that its predictions complements results produced by current disorder 

predictors, disorder function predictors and predictors of transmembrane regions. We deploy 

DisoLipPred as a convenient webserver and discuss its predictions on the yeast proteome. 
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Chapter 1. Introduction   

Proteins are the actual workhorse behind the cellular functions in all living cells and viruses. 

These functions are governed by a mechanism known as the central dogma of biology where 

the genetic information encoded in DNA flows to RNA and where the messenger RNAs (genes) 

encode protein sequences [1]. Furthermore, the central dogma of structural biology is that one 

protein sequence has one structure and that this structure determines function of this protein 

sequence. Correspondingly, the conventional belief among biologists used to be that fixed and 

stable three-dimensional structures of proteins are essential for their function. Contemporary 

studies have revealed the existence of a large number of proteins and protein regions which 

perform important biological functions without having fixed and stable three-dimensional 

structures [2]. These regions without stable three-dimensional structure are generally identified 

as intrinsically disordered regions (IDRs). Proteins that include of one or more IDRs are referred 

to as the intrinsically disordered proteins (IDPs). The IDRs are widespread among three 

kingdoms of life as well as in viruses. Topical bioinformatics studies have suggested that IDRs 

are present in about 30% of proteins in Eukaryote, around 20% of proteins in Bacteria and 

Archaea domains and over 20% in viral proteins [3, 4]. A wide spectrum of important biological 

functions is performed by IDRs/IDPs. Interactions with biomolecules such as proteins, nucleic 

acids, lipids, metals etc., acting as domain linkers and entropic chains are some of common 

examples of these functions [5-7].  

In general, computational tools contribute to protein studies from two basic viewpoints. First, 

they provide support to analyze massive amounts of data generated by high throughput protein 

sequencing platforms with the goal to reveal interesting patterns and trends. The other key 

contribution is their use as predictive platforms to explore untouched territories in protein 

sciences. The rate at which new protein sequences are being discovered has accelerated in recent 

years with the aid of new and cheap high-throughput sequencing techniques. Yet, compared to 

that rapid growth in the sequence space, we have access to only a relatively small amount of the 

experimentally annotated IDPs/IDRs, all the while studies suggest that they are prevalent in living 

organisms and viruses. The experimental annotations of IDPs/IDRs are deposited in public 
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repositories like Disprot[8] and Protein Data Bank (PDB)[9]. Conventional experimental 

techniques to annotate IDPs/IDRs are unable to keep up on par with the rate of production of 

the new protein sequences. As a result of this mismatch of rates, the gap between the number 

of the protein sequences and their available IDP/IDR annotations keeps widening. This is where 

the computational IDP/IDR predictors come into action. At this point, around 70 IDP/IDR related 

computational predictors were already published in the peer-reviewed literature [10-14]. 

Multiple studies show that they can accurately predict IDP/IDRs [15-18]. This work focuses on 

the computational disorder and disorder function predictions and assessment of these 

predictions. 

1.1 Motivation  

We investigate computational approaches that predict IDPs/IDRs and their related functions. We 

cover two basic themes, namely, predicting disorder and predicting functions of IDPs/IDRs in 

protein sequences. From the prediction of disorder perspective, to date the assessments of the 

predictive performance of disorder predictors have been carried out using large datasets without 

considering the performance at the individual protein level [14, 16]. We consider an interesting 

and new angle to investigate whether the datasets level performance is comparable to the 

performance at the protein level. Moreover, we note the number of the available computational 

methods that predict disorder in proteins. This large number of methods could confuse users, 

particularly those unfamiliar with this field. A proper guidance how to select suitable predictor 

would be invaluable to ensure that users can achieve highest predictive quality for a given protein 

of their interest. Considering the second theme related to predicting functions of IDPs/IDRs, to 

date there have been no study that investigates how well the current computational disorder 

predictors perform for specific functional subclasses of disordered proteins, particularly the 

commonly occurring IDRs that interact with proteins and nucleic acids. Such study would provide 

a valuable perspective for the development of predictors of specific functions of disorder.  

Moreover, some of functions in IDPs/IDRs do not have any methods that could be used to predict 

them in protein sequences [4, 18, 19]. The lipid binding is one such function of disorder that is 
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yet to be addressed with a predictive method.  Correspondingly, we focus on addressing the 

following four issues: 

1. How the predictive performance of disorder predictors at protein level compares with the 

current results that rely on the dataset level performance? 

2. Is it possible to recommend predictors that perform well for specific protein sequences? 

3. What is the predictive performance of the current disorder predictors for disordered 

proteins with protein binding regions and disordered nucleic acid binding regions? 

4. Is it possible to accurately predict disordered lipid-binding residues from protein 

sequences? 

1.2 Objectives and Proposed Contributions   

This dissertation includes four main objectives which are organized in a sequential manner, 

where one objective flows into and motivates the next one. With the overarching goal to explore 

novel approaches for disorder and disorder function prediction we start with an exploratory 

analysis to identify relatively unexplored niche areas related to these predictions. This analysis 

motivates and informs us in the development of novel computational approaches to address 

specific issues in these niche areas.  

The four main objectives are as follows. 

Objective 1: Elucidation and comparative analysis of protein-level predictive performance for 

current disorder predictors. 

We empirically investigate the disparity between protein-level and dataset-level predictive 

performance for the widely used disorder predictors. Since proteins are very diverse in their 

sequences and functions, we expect a considerable variation of the predictive performance 

across individual proteins, which is contrast to more “stable” and predictable benchmark dataset 

level performance. 

Objective 2: Development of a novel protein-level predictor recommendation system to 

improve predictive performance of disorder predictions. 



4 | P a g e  
 

Findings from objective 1 show that certain methods perform particularly well (or rather poorly) 

for certain proteins. This predictive performance depends on the physiochemical properties of 

the individual proteins. We use this observation to conceptualize, design, build and test a novel 

recommendation engine that predicts the better performing methods for given individual 

proteins using their unique sequence-derived physiochemical properties. 

Objective 3: Assessment and comparative analysis of the predictive performance of disorder 

predictions for specific functional types of disordered proteins. 

We identify two common functional types of disordered proteins based on their binding partners: 

those that bind to proteins and nucleic acids. We assessed the predictive performance of widely 

used disorder predictors for above two functional subclasses of disordered proteins to 

investigate potential strengths and weaknesses of the current methods. This analysis aims to 

identify the functional subclasses of disordered proteins that may need further improvements in 

the quality of the disorder predictions. Motivated by the results from the objective 1, we perform 

this analysis at both dataset and protein levels.  

Objective 4: Accurate prediction of the disordered lipid-binding residues from protein 

sequences.  

Objective 3 reveals that predictions of disordered proteins that interact with proteins and nucleic 

acids are reasonably accurate. However, we note lack of tools that can predict interactions with 

other partner molecules, such as lipids. Consequently, we conceptualize, design, develop and 

comprehensively test a new computational tool that provides accurate prediction of the 

currently unexplored disordered lipid binding regions. 

1.3 Organization of the dissertation 

This section provides a brief outline to the flow of the upcoming chapters starting from chapter 

two. 

Chapter Two provides background concerning the concepts and methods that are used in this 

research.  As this is a multidisciplinary research area, the basic concepts cover two different 
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domains: Biological Sciences and Computer Science. Section one of the chapter two introduces 

the background on proteins and disorder in proteins. Furthermore, it describes the functional 

importance of intrinsically disordered proteins from a biological and biochemical perspective.  

The second part of this chapter introduces existing computational approaches to predict disorder 

and disorder functions in proteins. 

Chapter Three and the following chapters are organized in a sequential manner to reflect the 

flow of the four objectives. In chapter three, we analyze the predictive performance of a 

comprehensive set of disorder predictors at the individual protein level. In this chapter, we 

contrast the protein level predictive performance of disorder predictors with their dataset level 

performance. Finally, we demonstrate the differences between dataset level and protein level 

performances through a detailed analysis and a case study. 

Chapter Four is motivated by the findings from chapter three. Based on the differences in the 

predictive performances of disorder predictors at the individual protein level, we conceptualize, 

design and empirically test a novel system that recommends the most suitable/accurate disorder 

predictor(s) for individual proteins. This method aims to outperform the predictive quality 

offered by current representative set of disorder predictors. Moreover, it provides an innovative 

ability to estimate predictive performance of a given disorder predictors for a specific protein 

before the prediction is calculated.  

Chapter Five analyzes a set of representative disorder predictors with respect to their predictive 

performance on two large functional subclasses of disordered proteins. We categorize 

disordered proteins based on their associated functions defined in the DisProt database. Next, 

we use the functionally annotated proteins from this database to perform comparative empirical 

assessment of the disorder predictors. We perform this assessment on multiple versions of the 

benchmark dataset after reducing the sequence similarity to the training datasets of evaluating 

predictors as well as after experimentally validating the unannotated regions in the disordered 

proteins. The motivation behind this analysis is to identify the areas that may require further 

improvements when it comes to the accuracy of the disorder predictions. 
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Chapter Six introduces a new methodology that predicts disordered lipid-binding residues. We 

review the current relevant methods to identify the fact that this important function of disorder 

lacks computational predictors. The current tools predict several other disorder functions and 

related transmembrane regions. We conceptualize, design and test an innovative  deep recurrent 

neural network model that accurately identifies disordered lipid binding regions in proteins. We 

comprehensively validate predictive performance of this model and compare it to current related 

tools, with the goal to demonstrate that it provides high-quality and complementary results. 
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Chapter 2. Background and Related Work 

2.1 Introduction to proteins, intrinsic disorder and its functions 

Proteins are found in all living systems including simple organisms, such as bacteria/virus, as well 

as complex mammals, like humans.  The word protein has originated from a Greek source 

proteos, which means “of prime importance” or “of first rank” [20]. As the name suggests, these 

are very (most) important biomolecules. The functions that proteins perform span across a wide 

range of biochemical and biological activities. Some of the examples are enzymes that catalyze 

biochemical reactions, hemoglobin for transportation, myoglobin for storage, and collagen for 

structure. The basic building block of proteins is called amino acid (AA). Several AAs bind to each 

other by peptide bonds to make polypeptide chains. One or more of these polypeptide chains 

folds in three-dimensional space to make a protein. The three-dimensional folding of polypeptide 

chains plays a crucial role to define the function for many of the proteins. The spatial 

conformation, commonly known as structure of the protein, is hierarchically organized into four 

levels. The primary structure is the liner sequential chains of amino acids, also referred as 

polypeptide chains. The secondary structure is the organization of the polypeptide chains into 

local and regular structural blocks that include α-helices and β-strands. The tertiary structure is 

defined by the 3D folding of those secondary structures. The highest level, the quaternary 

structure, involves spatial arrangement of multiple folded polypeptide chains. 

2.1.1 Intrinsic disorder in proteins 

The long-held convention is that proteins function comes as a linear flow from sequence to 

structure to the function. This notion emphasizes the fact that amino acid sequence governs the 

protein three-dimensional structure that directly determines the functions [2]. The three-

dimensional structures of proteins are generally revealed through experimental techniques, like 

X-Ray crystallography, Nuclear Magnetic Resonance (NMR) and electron microscopy. The 

recently growing evidence reveals presence of a special class of proteins that have fundamentally 

challenged the classical paradigm that rigid three-dimensional structure is required for proteins 
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to function. These proteins exist as dynamic conformational ensembles without a fixed/rigid 

three-dimensional structure. They may lack the defined structure in entirety or in a specific 

region and correspondingly they are known as intrinsically disordered proteins (IDPs) and 

intrinsically disordered regions (IDRs) [21-23]. The functional studies of IDPs/IDRs are done 

directly from the AA sequence, typically without attempting to reveal their (ensembles of) 

structure. IDPs/IDRs are estimated to be abundant in all living systems and viruses.  Recent 

studies suggest that eukaryotes, bacteria and archaea have on average 19%, 6% and 4% of the 

disordered amino acids, respectively[4]. Furthermore, eukaryotic proteomes consist of 30% to 

50% of proteins that have long IDRs (≥ 30 consecutive AAs) [3, 24]. The fully disordered proteins 

account for 6% to 17% of the proteins across various genomes[25]. The experimental annotations 

of IDPs/IDRs are deposited in several databases. Disprot [8] and IDEAL[26] include experimentally 

annotated information regarding function of IDPs/IDRs. Furthermore, while the Protein Data 

Bank (PDB) is primarily used as a repository of protein structures [9], is also provides information 

about IDPs/IDRs that “hide” in the regions with missing coordinates in the crystal structures and 

can be directly observed as extremely flexible residues in the NMR structures [27]. Even though 

these databases provide valuable information regarding IDPs/IDRs, they represent only a rather 

small number of proteins. The latest version of Disprot has 1 600 proteins and 3 500 IDRs, 

compared to the number of currently sequences proteins that has reached 214 million (as of April 

2021). 

Figure 1 illustrates the intrinsic disorder using the NMR structure of human Bcl-2-like protein 1 

(PDB ID: 2ME8)[28]. This protein is an inhibitor for the programmed cell death (DisProt ID: 

DP00298)[29]. The three-dimensional structure of this protein was resolved by X-ray 

crystallography and NMR techniques. An intrinsically disordered region from 28th to 80th residue 

was identified by missing electron density of  X-ray crystallography data[30]. Furthermore, 

experimental evidence shows that this intrinsically disordered regions acts as a flexible linker[30].  
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Figure 1: The PyMOL visualization of NMR structure of human Bcl-2-like protein 1 (PDB ID: 2ME8).  All 20 
different models are overlapped, and single color denotes a single model.  

The PyMOL[31] cartoon visualization of the above proteins shows 20 different superimposed 

structures/conformation to illustrate the structural ensembles that make up disordered regions; 

each color denotes a single structure. The dense grey part in the middle corresponds to an 

ordered/structured region where all conformations converge into one fixed structure. The 

surrounding sparely distributed multi-color sections corresponding to the disordered region.    

2.1.2 Functional aspect of intrinsically disordered proteins  

The wide range of functions that performs by IDPs/IDRs is broadly classified into two categories: 

by molecular level functions and by the interacting molecular partners [5, 22, 32]. This 

classification schema is followed by the DisProt database, the primary and largest source of the 

functional annotation of IDP/IDR [33, 34]. The molecular functions of the IDRs are further divided 

into seven classes: entropic chains, display sites, chaperons, effectors, assemblers, scavengers, 

and biological condensation[22]. Entropic chains are permanently unstructured to perform the 
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functions that needs a great degree of flexibility. IDRs present in the titin protein provides a good 

example for entropic chains[35]. Display sites act as facilitators for the post-translational 

modifications and they are located inside IDRs[36]. This localization facilitates downstream 

reactions that occur after catalytic site modifying enzyme approaches the effector protein[37]. 

The functional category of IDRs that acts as chaperons facilitates the folding of RNA molecules 

and other proteins into their functional conformations[38]. More than 33% of RNA chaperons 

and over 50% of protein chaperons are reported to be disordered[39]. The effectors show a 

functional shift upon binding to another molecule and transform from disorder to order state – 

this process is known as coupled folding and binding[40, 41]. The cell cycle regulatory proteins 

named p21 and p27 in the family of the cyclin dependent kinase and p53, which has multiple 

binding partners, are excellent examples of well-studied effectors. Assemblers serve as hub 

proteins that bring large number of proteins together to form large complexes. They act as either 

scaffolds or structural mortars to stabilize large molecular complexes [42, 43]. Examples of the 

assemblers that perform stabilizing function are the hub proteins which collects β-catenin, casein 

kinase Iα, and glycogen synthetase kinase 3β[44]. The scavengers digest and discard the debris 

of small ligands. Adrenaline and ATP scavenger by Chromogranin A are good examples for 

scavenging activity[45].  

The other functional classification scheme of IDRs is according to their binding partners. This 

classification includes seven well-known categories of molecules that binds to IDR, namely 

proteins, DNAs, RNAs, lipids, metals, inorganic salt and small molecules. This supplements the 

information associated with some of the molecular function categories, such as effectors, 

chaperons, assemblers and scavengers. 

The current version of 8.0 of the DisProt provides information for 2494 experimentally annotated 

unambiguous disorder regions.  Table 1 shows the seven molecular level function level categories 

and their sub categories with the corresponding counts of proteins and functionally annotated 

disordered regions. The category with highest number of annotations is the molecular 

recognition assemblers, with 570 regions in 252 proteins. The other two highly annotated 

categories are the entropic chains (particularly the sub category of flexible linkers that has 175 

regions) and molecular recognition effectors, which are covered by 448 and 488 regions, 
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respectively. Apart from above, the other four categories have relatively low numbers of 

annotations: recognition display sites with 270 regions, chaperones with 74 regions, scavengers 

with 54 regions, and biological condensation with 58 disordered regions in 40 proteins.  

Table 1: Number of the molecular function annotations for the functionally annotated IDRs in the DisProt 
database. Annotations tagged as ambiguous have been excluded. 

Functional annotations Number of annotated 
IDRs 

Number of 
annotated proteins Molecular functions Molecular function subcategories 

Molecular Recognition: 
Assembler 

Assembler 100 51 
Localization (targeting) 20 11 
Localization (tethering) 38 22 
Total 570 252 

Entropic Chain Flexible linker/spacer 175 117 
Entropic bristle 12 6 
Entropic spring 3 2 
Self-transport through channel 4 2 
Structural mortar 1 1 
Total 448 283 

Molecular Recognition: 
Effector 

Inhibitor 94 59 
Activator 52 22 
DNA bending 4 3 
Disassembler 6 1 
DNA unwinding 1 1 
Total 488 237 

Molecular Recognition: 
Chaperone 

Space filling 8 2 
Entropic exclusion 6 3 
Total 74 33 

Molecular Recognition: 
Display Site 

Phosphorylation 76 53 
Glycosylation 10 5 
Fatty acylation 6 3 
Acetylation 14 10 
Ubiquitination 2 1 
Limited proteolysis 8 4 
ADP-ribosylation 1 1 
Methylation 9 7 
Total 270 169 

Molecular Recognition: 
Scavenger 

Metal binding/metal sponge 2 1 
Neutralization of toxic molecules 4 3 
Water storage 2 1 
Total 54 38 

Biological Condensation Liquid-liquid phase separation 12 12 
Amyloid 1 1 
Prion 16 7 
Total 58 40 
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Table 2 provides the annotation counts in terms of the binding partner-defined functions. The 

highest number of binding partner annotations are for the protein binding, with 1126 IDRs in 598 

proteins. The binding partner annotations for other partners are lower and account for 143 

regions for DNA binding, 71 regions for metal binding, 63 regions for RNA binding, 45 regions for 

lipid binding, 43 regions for small molecules, and just 3 regions for inorganic salt binding. 

Table 2: Number of molecular partner annotations for the functionally annotated IDRs in the DisProt 
database. 

 

 

 

 

 

2.2 Residue level protein structure and function prediction in disorder proteins 

2.2.1 Computational prediction of intrinsic disorder in proteins 

The interest in the annotation of intrinsic disorder proteins and ever growing gap between the 

available experimental annotations for disorder and the exponential growth in protein sequences 

motivates the development computational methods that predict disorder in protein sequences.  

Figure 2 illustrates disorder and disorder function predictions. It shows results produced by three 

popular disorder predictors, IUPred-Long, IUPred-Short and SPOT disorder, for the human Bcl-2-

like protein 1, which we introduced in section 2.1.1. Moreover, the disorder function predictor 

DFLpred was deployed to predict disordered flexible linker regions. Using the PyMOL’s 

visualization of three-dimensional structure, the red color denotes ordered regions and blue 

color corresponds to a disordered region. The visualization of the predictions are generated using 

our recently released DEPICTER (Disorder Prediction Center) server [46], a new platform which 

provides simultaneous predictions of disorder and disorder functions.  The results for each 

Molecular Partner Number of annotated 
IDRs 

Number of annotated 
proteins 

Protein 1126 598 
DNA 143 88 
Metal 71 43 
RNA 63 50 
Small molecule 43 35 
Lipid 45 30 
Inorganic Salt 3 3 
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predictor include numerical propensity scores, which quantify likelihood that a given amino acids 

is disordered (the top plot), and binary predictions, which categorizes each amino acid as either 

disordered or structured (presence of the horizontal bar corresponds to the disorder prediction). 

 

Figure 2: Panel A is three-dimensional structure of the human Bcl-2-like protein 1. The red and blue 
regions denote native (experimentally annotated) ordered and disordered regions, respectively. Panel B 
visualizes disorder and disorder function prediction from IUPred-Long, IUPred-Short, SPOT Disorder and 
DFLpred. The top horizontal bar gives the actual/native disorder and order annotations while the panels 
below show the putative propensities and the corresponding binary predictions (gray and pink horizontal 
bars) generated by the four predictors. The presence of a bar denotes presence of putative disorder or 
specific disorder function in the corresponding region. 
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Function Predictors 
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The computational prediction of disorder benefits from the fact that amino acid sequence 

composition differs between the disordered and ordered regions [32, 47, 48].  Over 60 predictors 

of intrinsic disorder have been developed in the past forty years [11, 13, 16, 49]. They can be 

categorized  in to three classes based on their underlying predictive models [11]: 

1. Ab initio models. 

These predictors rely on physical/analytical models that use physiochemical properties 

of amino acid sequences to differentiate between disordered regions and ordered 

regions. Some of the example predictors form this category would be NORSP [50] , 

GlobPlot[51] and IUPred [52]. 

2. Machine learning algorithms. 

This category of predictors use machine-learning algorithms to produce predictive 

models. These models are trained on training set to maximize fit into the known 

disorder annotations and tested on an independent (low similarity to training set) 

datasets of proteins. This category includes a large number of predictors with some 

examples being RONN [53], DisEMBL [54], DISpro [55], DISOPRED [56], VSL2B [57], 

SPINE-D [58], SPOT-Disorder [59] . 

3. Meta predictors. 

Meta predictors generate predictions by combining outputs from several predictors 

with the intention of maximizing the predictive performance. The idea behind 

developing the meta predictors is to combine complementary disorder predictions to 

maximize their strong aspects (where they agree) and to minimize their weaknesses 

(where they disagree) [60]. Examples meta-predictors are MetaDisorder [61], MFDp [62, 

63], disCoP [60], CSpritz [64], and ESpritz [65].  

Furthermore, pre-calculated disorder predictions for about a dozen of popular methods are 

available in the MobiDB [66] and D2P2 [67] databases.  

 

The predictive performance of disorder predictors have been evaluated using several benchmark 

datasets. Many comparative surveys have been published [68-78]. These surveys evaluate 

predictive performance of the disorder predictors on different benchmark datasets that vary in 
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size from about 100 to over 20 000 proteins. One such popular assessment series was run as part 

of the Critical Assessment of protein Structure Prediction (CASP) experiments between 2002 

(CASP5) and 2012 (CASP10) [68, 75-79]. A popular metric to evaluate predictive performance is 

the area under the curve of receiver operating cure (ROC-AUC). The ROC is a relation between 

true-positive rates (TPRs) and false-positive rates (FPRs) that is computed by using many 

thresholds to binarize numeric propensity scores produced by the predictors [80]. The AUC values 

range from 1.0 for perfect prediction and 0.5 for random prediction. The most accurate 

predictors have reached ROC-AUC of 0.89 [81] and 0.91 [79] in recent evaluations. These 

numbers suggest that disorder predictors perform with acceptable levels of predictive 

performance.  Most of these predictors are available as standalone versions or webservers that 

are free to use for the scientific community. 

 

Table 3 summarizes nine selected, highly-cited disorder predictors. The model type column 

provides information about the type of the predictive model used. Most of the disorder-

predictors use machine learning-based models while only a few rely on other model types, like 

biophysics-inspired scoring functions. The total number of citations column provides a 

measurement of popularity for a given predictor. The annual citations give a measure that is more 

adequate for side-by-side comparisons, which quantifies how frequently a predictor was cited 

per year. We note that many of these methods are cited dozens of times every year, with the 

most cited predictors being disEMBL, IUPred, and DISOPRED3. The website column provides the 

link to the web resource where a given predictor can be downloaded or is available for online 

use. We observe that all highly-cited tools are available online. 
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Table 3: Summary of the nine highly-cited computational disorder predictors. The number of citations was collected from the Web of Science as 
of May 2020. The methods are sorted in the ascending chronological order. 

Predictor Name Year 
Published Ref. Model Type Number of 

Citations 

Annual 
number of 
citations 

Website 

ESpritz 2012 [65] Bi-directional recursive neural network          185 23.1 http://protein.bio.unipd.it/espritz/ 

disEMBL 2003 [54]  Ensemble of feed-forward neural 
networks 840 49.4 http://dis.embl.de/ 

GlobPlot 2003 [51]  Derivative based curve optimization 678 40.4 http://globplot.embl.de/ 
JRONN 2005 [53]  Radial basis functional neural network 472 31.5 http://www.strubi.ox.ac.uk/RONN 
VSL2B 2006 [57]  Support vector machine 480 34.3 http://www.dabi.temple.edu/disprot/predictor.php 

IUPred  2009 [52]  Scoring function based on energy 
minimization  335 30.5 https://iupred2a.elte.hu/ 

DISOPRED3 2015 [56]  Ensemble of neural network, support 
vector machine and nearest neighbor  234 46.8 http://bioinf.cs.ucl.ac.uk/psipred/ 

DeepCNF 2015 [82]  Deep convolutional neural network 26 5.2 https://ttic.uchicago.edu/~wangsheng/software.html 
SPOT-DISORDER 2016 [59]  Deep bidirectional neural network 73 18.3 http://sparks-lab.org/server/SPOT-disorder/ 
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2.2.2 Computational prediction of functions in intrinsically disordered proteins  

In parallel to the substantial efforts towards the development of a large number of computational 

disorder predictors, computational prediction of functions of IDRs has also gained a considerable 

amount of attention. The development of the disorder function predictors relies on the 

functional annotations from the DisProt database [33]. These annotations are used to design, 

optimize, and empirically test the predictive models. Over 20 computational method that predict 

various functional traits of IDR were developed, implemented and published during the past 

decade [11]. These predictors predict disorder functions directly from the amino acid sequence 

of input proteins. Like in the case of the disorder predictions, the underlying predictive models 

use various types of machine learning algorithms and scoring functions [11]. Vast majority of 

these methods use data driven machine-learning models that are trained and tested using the 

available experimentally annotated functional IDRs. These methods attempt to minimize the 

predictive error on designated training dataset during training phase. After training is complete, 

they are tested on test datasets that include proteins that are explicitly dissimilar to the training 

proteins. The test proteins usually share low sequence similarity (<30%) against training dataset 

– this is to ensure that the evaluation is robust (overfitting training dataset does not lead to good 

results) and that the predictions cannot be simply performed using alignment-based methods.  

The 23 disorder function predictors that were published during past decade fall under two main 

categories: 1) methods that predict IDRs that interact with specific binding partners; and 2) 

methods that predict molecular function of IDRs. The currently available methods cover three 

types of the molecular partners: proteins, DNA and RNA. The methods that predicts molecular 

functions focus so far only on the flexible linkers (a type of entropic chains) and multifunctional 

(moonlighting) IDRs.  Table 3 summarizes the 23 existing disorder function predictors. It shows a 

substantial interest towards developing new function predictors during past few years, as total 

of 17 predictors were published in the last 5 years (between 2015 and 2020) compared to 6 that 

were published prior to that (between 2007 and 2014). 

Many of these disorder function predictors are implemented as publicly accessible web interface 

and/or publicly downloadable standalone software with the source code typically available in 
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freely accessible repositories. Table 3 reveals that 17 of the 23 predictors are accessible through 

their websites. Among these methods, 14 are available as webservers where predictions are done 

on the server side and can be obtained online. Moreover, 11 have downloadable source code 

that can be installed and run locally.  Furthermore, six methods are available as both webserver 

and source code. We note that it is clear that the availability of these predictors is connected 

with the number of citations that they have received. The median annual number of citations for 

the methods without a webserver is 2 compared to 11 for the methods with webservers. The 

methods that provide only source code are cited at the annual median rate of 7 and predictors 

that have both code and webserver have received 9 citations per year. This speaks to the practical 

value for the availability of the webservers.
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Table 4: Classification, citations and availability of the current predictors of IDR functions. The methods are categorized based on their predictive 
target (molecular partner vs. molecular function) and sub-type of the target (protein, DNA and RNA for molecular partners vs. flexible linker and 
moonlighting region for molecular functions). Predictors are sorted within each sub-type by the year of publication. The citations and availability 
are based on information as of Feb 25, 2019. The citations were collected using Google Scholar, where the annual citations are computed as an 
average number of citations per year since publication. Methods without any availability are listed as “not available” and those for which the 
websites cannot be found are denoted as “no longer available”. 

Predictive target Year Method Ref. Citations URL 
Total Annual 

Partners Proteins MoRFs 2007 alpha-MoRFpred [83, 84] 445 37 Not Available 

2010 retro-MoRFs [85] 27 3 Not Available 

2012 MoRFpred [86, 87] 194 28 http://biomine.cs.vcu.edu/servers/MoRFpred/ 

2013 MFSPSSMpred [88] 32 5 No Longer Available 

2015 fMoRFpred [89] 36 12 http://biomine.cs.vcu.edu/servers/fMoRFpred/ 

2015 DISOPRED3 [90] 206 52 http://bioinf.cs.ucl.ac.uk/disopred 

2015 MoRFCHiBi [91] 35 12 https://gsponerlab.msl.ubc.ca/software/morf_chibi/downloads/ 

2016 MoRFCHiBiLight [92] 22 7 https://gsponerlab.msl.ubc.ca/software/morf_chibi/downloads/ 

2016 MoRFCHiBiWeb [92] 22 7 http://morf.chibi.ubc.ca:8080/mcw/index.xhtml 

2016 Predict-MoRFs [93] 6 2 https://github.com/roneshsharma/Predict-MoRFs 

2017 Wang et al. 2017 [94] 2 2 Not Available 

2018 MoRFpred-plus [95] 8 7 https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus 

2018 OPAL [96] 8 6 http://www.alok-ai-lab.com/tools/opal/ 

2018 OPAL+ [97] 0 0 http://www.alok-ai-lab.com/tools/opal_plus/ 

2018 Fang et al 2018 [98] 0 0 Not Available 

2019 Sharma et al. 2019 [99] 0 0 https://github.com/roneshsharma/BMC_Models2018/wiki. 

SLiMs 2012 SLiMPred [100] 54 8 http://bioware.ucd.ie/~compass/biowareweb//Server_pages/slimpred.php 

2016 PSSMpred [101] 0 0 No Longer Available 

ALL 2009 ANCHOR [102, 103] 388 39 http://anchor.enzim.hu 

2015 disoRDPbind [104, 105] 44 11 http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 

2018 ANCHOR2 [106] 17 10 https://iupred2a.elte.hu/ 

DNAs 2015 disoRDPbind [104, 105] 44 11 http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 

RNAs 2015 disoRDPbind [104, 105] 44 11 http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 

Functions Flexible linkers 2016 DFLpred [107] 17 8 http://biomine.cs.vcu.edu/servers/DFLpred/ 

Moonlighting regions 2018 DMRpred [108] 0 0 http://biomine.cs.vcu.edu/servers/DMRpred/ 

http://biomine.cs.vcu.edu/servers/MoRFpred/
http://biomine.cs.vcu.edu/servers/fMoRFpred/
http://bioinf.cs.ucl.ac.uk/disopred
https://gsponerlab.msl.ubc.ca/software/morf_chibi/downloads/
https://gsponerlab.msl.ubc.ca/software/morf_chibi/downloads/
http://morf.chibi.ubc.ca:8080/mcw/index.xhtml
https://github.com/roneshsharma/Predict-MoRFs
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download
http://www.alok-ai-lab.com/tools/opal/
http://www.alok-ai-lab.com/tools/opal_plus/
https://github.com/roneshsharma/BMC_Models2018/wiki.
http://bioware.ucd.ie/%7Ecompass/biowareweb/Server_pages/slimpred.php
http://anchor.enzim.hu/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
https://iupred2a.elte.hu/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://biomine.cs.vcu.edu/servers/DisoRDPbind/
http://biomine.cs.vcu.edu/servers/DFLpred/
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A vast majority of the available disorder function predictors are designed to predict protein-

binding regions in IDRs (Table 4). This can be explained by the availability of the (by far) highest 

number of functionally annotated IDR in this functional category in DisProt (Table 2). The protein 

binding prediction methods can be further divided into specific type of protein binding IDR that 

they intended to predict. Molecular recognition features (MoRFs) are one such category that is 

targeted by 16 predictors. MORFs are short protein binding regions, which usually span between 

5 and 25 adjacent residues, that undergo disorder to order transition upon binding to their 

protein partners and which are placed inside of longer IDRs [41, 109]. The popular MORF 

predictors include alpha-MoRFpred [110, 111], which predicts MoRFs that fold into alpha helices, 

MoRFpred [87], MoRFCHiBi [91], fMoRFpred [41] and DISOPRED3 [112]. The second category of 

protein binding IDRs are short linear sequence motifs (SLiMs). They are short conserved motifs 

usually 3 to 12 amino acids long that are involved in protein interactions [113] . The Eukaryotic 

Linear Motif (ELM) resource provides a list of all currently known SLiMs that were used to design 

and test these predictors. SLiMpred [100] and PSSMpred [114] are the two methods that predict 

SLiMs. The remaining methods, which include ANCHOR [115], DisoRDPbind [116] and ANCHOR2A 

[52], predict a generic set of protein-binding IDRs, which include the short MoRF and SLiMs as 

well as longer protein-binding IDRs. 

Computational approaches that predict functions other than protein binding are low in numbers. 

DisoRDPbind is the only method that predicts DNA binding and RNA binding IDRs. Moreover, 

DFLpred predicts flexible linkers and DMRpred predicts disordered multifunctional regions 

(moonlighting regions).  

The popularity of the disorder function predictors can be quantified through the number of 

citations (Table 4). As of Feb 2019, The 25 predictors were cited 1651 times, with the median 

number of citations at 22. Based on the annual citation numbers, the most popular predictors 

are DISOPRED3 (52 citations per year), ANCHOR (39 citations per year), alpha-MoRFpred (37 

citations per year), MoRFpred (28 citations per year), and fMoRFpred and MoRFCHiBi (12 

citations per year). The high number of citations for DISOPRED3 could be partly due to its ability 

to predict disorder in general in addition to prediction of protein binding regions in IDR.  



21 | P a g e  
 

2.2.3 Computational modelling related to the development of disorder predictors 

Prediction of IDRs and their functions in proteins can be viewed as a classification task from the 

machine learning perspective. The classification task requires a fixed-size input. In this case, the 

raw input is the amino acid sequence of proteins. Since these amino acid sequences are 

represented as a text string of variable length, they must be converted into a fixed-length 

numerical feature vector. This is where physiochemical and putative structural properties of 

amino acids are used to encode sequences into the feature vectors. For example, sequence can 

be converted into 20-dimensional vector of the frequencies of the 20 amino acids. Next, the input 

feature vectors are processed by predictive models to produce predictions of disorder and 

disorder functions. Various machine learning algorithms are used to produce predictive models. 

Popular examples include Logistic Regression [117], Decision Trees [118], Naïve Bayes [119], 

Random Forest [120], and (recently) Deep Neural Networks [121]. The training and optimization 

of the machine learning models (including in some case feature selection) is typically done 

through cross validation on the training datasets, with the intention to minimize overfitting. Once 

the models perform adequately well on the training datasets, their predictive performance is 

validated using independent (sharing low similarity with the training proteins) test datasets.  

The dataset definition and preparation play a crucial role to instill trust for the built predictors. 

The usual practice is to divide the currently available data into two parts: training set and test 

set. Further, it is important to ensure that training dataset and test datasets are dissimilar from 

each other, as measured by the protein sequence similarity. This similarity is usually reduced to 

less than 30% between training set and test set. This way the test proteins cannot be accurately 

predicted from the training proteins using sequence alignment.  The training dataset is further 

divided into several folds for the cross validation. In the cross validation, the training dataset is 

divided into equally sized (in terms of number of proteins) x subsets (folds), and in the ith (1≤ i ≤x) 

fold of the cross validation, x-1 subsets are used to train the model, and the remaining ith subset 

is used as test set to evaluate the trained model. The results of the cross validation tests are 

reported as the aggregate over all test folds or as an average over the x folds of tests. 
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2.2.4 Evaluation of predictive performance  

We use numerical evaluation criteria/metrics to assess the predictive quality of disorder and 

disorder function predictors. These predictors typically generate two forms of outputs. The first 

is the real-valued propensity for disorder (disorder function) that quantifies likelihood that a 

given amino acid is disordered (has disorder function). The second is the is the binary prediction 

where 0 usually means ordered (lacking given function) and 1 means disordered (having given 

function). In fact, in most cases the binary prediction is generated from the propensities, such 

that residues with propensities greater than or equal than a given threshold are predicted as 

disordered (functional); otherwise they are predicted as ordered (non-functional). 

One of the most common metrics that is used to evaluate the propensities is the area under the 

receiver-operating curve (ROC-AUC). The ROC is a relation between true-positive rates (TPRs) and 

false-positive rates (FPRs) that is computed by using many thresholds. Typically, the thresholds 

are set to equal the set of all unique propensities produced by a given predictor. TPRs and FPRs 

are calculated by comparing the native annotation of disorder/disorder function with the 

predictions at different thresholds. TPR and FPR are defined as: 

TPR =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=

𝑇𝑇𝑇𝑇
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

FPR =  
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
=

𝐹𝐹𝐹𝐹
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

where TP is the number of true positives (correctly predicted positives), FN is the number of false 

negatives (positive residues that are predicted as negative), FP is the number of false positive 

(negative residues that are predicted as positive), and TN is the number of true negatives 

(correctly predicted negatives). Given TPR and FPR values generated at different thresholds 

ranging from 0 and 1, we plot the ROC curve and calculate the corresponding AUC value. Note 

that positive means disordered (having a given disorder function) while negative means ordered 

(not having a given disorder function). 

We note that the classification in the context of disorder/disorder function prediction is 

imbalanced. Significant majority of residues are ordered/lack specific function. Thus, it is 
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desirable to evaluate in the regime where we set a low false positive rate (FPR), e.g. at or below 

5% or 10%. This ensures that the predictors do not over-predict the disorder/disorder function. 

Correspondingly, we calculate AUClowFPR that covers the ROC curve for the low range of FPR values 

(typically between 0 and 5%). Since AUClowFPR are rather small and difficult to assess directly, we 

compute AUCratio = AUClowFPR/AUCrandom_lowFPR, where AUClowFPR is divided by the AUC of a random 

predictor (for which FPR always equals to TPR) in the same FPR range. This ratio quantifies the 

rate of improvement over a random predictor, i.e., ratio > 1 means that a given method is better 

than random and ratio of two indicates that this method is twice better than random. 

In addition to the calculating the AUClowFPR, another relatively popular measure to calculate the 

predictive performance for an imbalanced dataset is the area under the precision recall curve 

(PR-AUC). The PR-AUC is a functional relation between the precision and recall values computed 

by using thresholds that binarize the propensity scores generated by the predictors. Higher 

precision and higher recall values means lower false positive rate and lower false negative rate 

respectively.  This means that higher PR-AUC values correspond to more accurate predictions.  

To evaluate the binary predictions, we use accuracy, precision, sensitivity and Matthews 

Correlation Coefficient (MCC): 

Accuracy =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
=  

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=

𝑇𝑇𝑇𝑇
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

Sensitivity =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
=  

𝑇𝑇𝑇𝑇
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

MCC =  
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

The AUC ranges between 0.5 (equivalent to a random prediction) and 1 (perfect prediction). 

Accuracy, precision and sensitivity range between 0 and 1 where 0 denotes that no residues were 

predicted correctly and 1 denotes perfect prediction. MCC ranges between -1 and 1, where -1 
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denotes that the prediction is inverted (all functional residues are predicted as non-functional 

residues and vice versa), 0 denotes a random result and 1 denotes the perfect prediction. 

We also emphasize the importance to measure the consistency of differences in the predictive 

performance between two predictors, i.e., to assess statistical significance of the differences. We 

place the n results from the two predictive models (e.g. using n test proteins) side by side, and 

have n pairs of results. We use the Student’s paired t-test if both sets of the n results follow 

normal distribution, and otherwise we use Wilcoxon signed-rank test. Student’s paired t-test 

[122] evaluates two groups of data (e.g., two groups of AUC values), and determines whether 

their mean values are significantly different. Wilcoxon signed-rank test [123] is an alternative to 

student’s paired t-test when X1 or X2 does not follow normal distribution. It determines the 

difference between the medians of X1 and X2. We use Anderson-Darling test (at the 5% 

significance) to verify if a sample of n results follows the normal distribution. The Anderson-

Darling test [124] is a statistical test that checks whether a set of data follows a certain probability 

distribution. 
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Chapter 3. Elucidation and comparative analysis of protein-level 

predictive performance for current disorder predictors 

This chapter describes work related to objective 1 from section 1.3. The results and methods 

reported in this chapter were published in [125].  

Large-scale evaluation of predictive quality for computational disorder predictors have received 

substantial amount of attention [68-78]. These evaluations usually report popular metrics such 

as area under receiver operating curve (ROC-AUC), accuracy, sensitivity, specificity, and MCC. The 

usual practice is to evaluate these predictors at a dataset level without considering the 

performance at the individual protein level. However, users typically apply these predictors to 

individual proteins rather than large datasets.  

This chapter investigates the predictive quality of selected disorder predictors at individual 

protein level, besides the usually considered dataset level performance. We also contrast our 

results with a few previously done dataset level assessments to ensure that our results cross-

check with these studies and to provide context for the protein level analysis. The first part 

describes details of the benchmark dataset that we used and selection criteria that we used to 

derive the list of the considered disorder predictors. Then we assess the selected set of 

computational disorder predictors at both dataset and protein levels. The next section 

investigates complementarity/similarity of predictive quality between the selected set of 

predictors. The complementarity study intends to demonstrate differences and similarities 

between predictive performance and the potential to use these methods in tandem.  Finally, the 

chapter presents a case study using a selected protein to demonstrate the predictions coming 

from several different methods. 

3.1 Related work in disorder predictor assessment  

Several comparative assessments have been carried out in recent years to benchmark the 

predictive quality of computational disorder predictors [15, 17, 18, 68-78, 126]. These 

assessments compare the predictive performance of a given set of disorder predictors on a 
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benchmark dataset. These benchmark datasets vary in size between 100 and 20 000 proteins.  

The critical assessment of protein structure predictions (CASP) is one such bi annual assessment, 

which considered disorder predictions from 2002 (CASP5) to 2012, (CASP10) [68, 73, 75-78]. CASP 

experiments have used relatively small datasets with around 100 proteins.  Some of the more 

recent assessments rely on datasets from CASP10 experiment[13], use a larger datasets of 250 

proteins collected from DisProt [18] and 500 proteins collected from PDB and DisProt[15]. The 

evaluation with the largest dataset covers 13 predictors evaluated on a dataset of over 25 000 

proteins[126]. Furthermore, a set 13 computational disorder predictors was assessed on dataset 

of 350 membrane proteins [127].  A comprehensive survey of these assessments was done 

recently in [128].  

The results that are reported in the above assessments can be used to evaluate the relative 

performance of the computational disorder predictors at the dataset level. None of the currently 

available surveys focused on evaluating the disorder predictors at the individual protein level. 

This is a noteworthy concern as arguably most of the time users characterize disorder for 

individual protein rather than large-scale datasets. Many instances of the protein-level analysis 

can be found in literature. For example, MFDp predictor[129], which was developed in our lab, 

was used to predict disorder in flagella capping protein[130], Cia2[131], SpSM30B[132], 

AP24[133] and BRCA1[134], among many other proteins.  

We use Figure 3 to illustrate differences between the protein and the dataset level analyses. the 

figure contrasts the dataset level predictive performance reported for few selected 

computational disorder predictors in the recent large-scale assessment [126] with predictive 

performance for a few selected proteins. The selected disorder predictors include three methods 

that are characterized by different ranges of the dataset level performance: GlobPlot on the 

lower end, IUPred for medium performance, and VSL2b for high end, according to the considered 

assessment. The evaluation measure is ROC-AUC that ranges from 0.5 to 1.0. The reported 

dataset level performance for GlobPlot, IUPred and VSL2b are 0.631, 0.726 and 0.821 

respectively. The individual predictive performance for the proteins such as guanylate kinase (red 

marker in Figure 3; UniProt Q2GLF7) and phytoene desaturase (blue marker; UniProt P21685) are 

in sync with the datasets-level AUCs. At the same time, for nonhemagglutinin type D (green 
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marker in Figure 3; UniProt Q9LBR2) the protein level performance varies substantially from the 

dataset level performance.  The GlobPlot’s performance for this protein is considerably better 

than its dataset level performance while the results of the other two predictors are similar to 

their dataset-level performance. In this case, the worst at the dataset level GlobPlot outperforms 

the other two methods. Another interesting example is hydroxymethyltransferase (orange 

marker in Figure 3; UniProt P0A5Q8) where the highest predictive performance is provided by 

IUPred, while the dataset-level assessment shows that VSL2B outperforms IUPred. Overall, all 

three predictors outperform their corresponding dataset-level results for this protein. The 

alkaline phosphatase protein (violet marker; UniProt A1YYW7) is predicted poorly by both 

GlobPlot and IUPred, at level much lower than their dataset-level benchmark suggests, while the 

predictions from VSL2B substantially outperforms its dataset-level AUC. 

 

Figure 3: Comparison of the benchmark (dataset-level) and protein-level predictive performance 
measured with AUC for three disorder predictors (GlobPlot, IUPred and VSL2B) and five color-coded 
proteins: non-toxic nonhemagglutinin type D (green marker; UniProt Q9LBR2), guanylate kinase (red 
marker; UniProt Q2GLF7), alkaline phosphatase (violet marker; UniProt A1YYW7), 
hydroxymethyltransferase (orange marker; UniProt P0A5Q8) and phytoene desaturase (blue marker; 
UniProt P21685). The benchmark AUC values are shown on the x-axis, while the protein-level AUC values 
are color-coded, shown on the y-axis and their values are given next to the corresponding markers. The 
black isometric AUC line shows equivalent dataset-level and protein-level values. Published in [125] 
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Altogether, Figure 3 clearly illustrates that protein level predictive performance can vary 

considerably from the dataset level results that are reported by previous assessments. This 

chapter assesses and investigates variability of the protein level predictive performance, and 

contrasts these results with the dataset level performance for a set of 13 representative disorder 

predictors using a large dataset of 6,271 proteins.  

3.2 Benchmark datasets and selection of disorder predictors 

This evaluation was done on a protein dataset with disorder annotations that was originally used 

in the large prior dataset-level assessment [126]. The initial dataset in that study included 25,717 

proteins for which annotations, disorder predictions and protein sequences were extracted from 

the MobiDB database [66]. We improved the original dataset to remove low quality protein 

sequences and to reduce redundancy, i.e., the datasets includes many clusters of similar proteins 

that could skew results toward these over-represented protein families. We removed sequences 

with unknown/undetermined amino acid (AA) types, which is required to generate disorder 

predictions, and by reducing within-dataset redundancy. We used BLASTCLUST[135] to cluster 

proteins with over 25% similarity and we selected one protein from each cluster. The final dataset 

has 6,271 proteins that share <25% similarity and that include 105,709 disordered and 1,672,907 

structured residues. This dataset was also utilized in another study that investigates quality 

assessment of disorder predictions [136]. This study shows that  the predictive performance of 

the disorder predictors on the original dataset of 25,717 proteins that was assessed in [126] is 

very similar to the performance on the improved benchmark dataset with 6,271 proteins [136]. 

We selected a diverse set of 13 publicly available computational disorder predictors for our 

analysis. Ten out of the 13 predictors were used in the previous large scale assessment [126]. The 

selected 13 predictors include three versions of ESpritz that predict intrinsic disorder annotated 

from x-ray structures (ESpritz-Xray), NMR structures (ESpritz-NMR) and using DisProt database 

(ESpritz-DisProt)[65]; the two versions of IUPred that are separately optimized to predict short 

IDRs (IUPred-short) and to predict long IDRs (IUPred-long)[52]; the two versions of DisEMBL 

which are developed for X-ray structures (DisEMBL-465) and to predict IDRs that form loop 

secondary structures (DisEMBL-HL)[54]; GlobPlot[51], RONN[53] and VSL2B[57]. We excluded 
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three methods SEG [137] , Pfilt [138] and FoldIndex [139] that were used in the previous 

assessment, considering that they are rather old and that their dataset level predictive 

performance is low [126]. Furthermore, we added three recent disorder predictors: DISOPRED3 

[112] (that performed very well in CASP10 [73]) and two recently published deep learning-based 

methods: SPOT-Disorder [112] and DeepCNF-D [82]. We use the fast version of DeepCNF-D 

(DeepCNF-D ami_only) given the large size of our dataset. These methods were published 

between 2002 and 2016 (work presented in this chapter was done in 2017 and 2018) and most 

of them use machine learning-based predictive models. They are well-cited, with the annual 

number of citations ranging between 5 (for the new methods) and 50. The selected predictors 

uniformly cover the three categories of methods (Section 2.2.1) including ab-initio tools (IUPred-

short, IUPred-long and GlobPlot), machine learning-based predictors (RONN, DisEMBL-HL, 

DisEMBL-465, VSL2B, DeepCNF-D and SPOT-Disorder) and meta-predictors (DISOPRED3, ESpritz-

Xray, ESpritz-NMR and ESpritz-DisProt). They were designed to address prediction of all major 

types of disorder annotations including annotations that rely on x-ray crystal structures, NMR 

structures and a variety of other experimental methods that are covered in the DisProt resource. 
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Table 5: Dataset- and protein-level predictive quality for the 13 considered disorder predictors. The dataset-level accuracy and AUC are compared 
against the previously published results. We note that false positive rates are typically not reported in the past studies. Protein-level results are 
summarized with the median value. The methods are sorted by their dataset-level AUC on our benchmark dataset. These results were published 
in [125]. 

Disorder 
predictor 

Accuracy (binary predictions) AUC (putative propensities) FPR (binary predictions) 

Protein-
level 

median 

Dataset-
level 

Previously 
reported 
dataset-

level 

Difference 
dataset-

level 

Protein-level 
median 

Dataset-
level 

Previously 
reported 
dataset-

level 

Difference 
dataset-

level 

Protein-level 
median Dataset-level 

GlobPlot 0.876 0.855 0.847 0.8% 0.662 0.626 0.631 0.5% 0.090 0.111 
disEMBL-HL 0.715 0.713 0.721 0.8% 0.780 0.725 0.727 0.2% 0.282 0.277 
IUPred-long 0.945 0.922 0.921 0.1% 0.798 0.732 0.726 0.6% 0.012 0.040 
JRONN 0.848 0.847 0.839 0.8% 0.824 0.772 0.759 1.3% 0.132 0.131 
ESpritz-NMR 0.931 0.905 0.903 0.2% 0.879 0.776 0.770 0.6% 0.041 0.068 
IUPred-short 0.934 0.921 0.924 0.3% 0.852 0.778 0.778 0.0% 0.043 0.051 
disEMBL-465 0.931 0.921 0.925 0.4% 0.835 0.780 0.787 0.7% 0.047 0.049 
ESpritz-Xray 0.904 0.849 0.840 0.9% 0.904 0.796 0.778 1.8% 0.071 0.136 
VSL2B 0.832 0.816 0.805 1.1% 0.874 0.810 0.821 1.1% 0.161 0.177 
ESpritz-DisProt 0.959 0.917 0.934 1.7% 0.861 0.816 0.791 2.5% 0.000 0.034 
DeepCNF 0.952 0.936 0.944 0.8% 0.926 0.871 0.898 2.7% 0.027 0.033 
DISOPRED3 0.977 0.957 0.955 0.2% 0.969 0.899 0.897 0.2% 0.004 0.016 
SPOT-Disorder  0.971 0.956 0.950 0.6% 0.969 0.904 0.891 1.3% 0.011 0.018 
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3.3 Predictive performance of disorder predictors  

3.3.1 Dataset level predictive performance  

Table 5 provides dataset level predictive performance of 13 disorder predictors on the 

benchmark dataset with 6,271 proteins. Furthermore, this analysis contrasts the dataset level 

performance with previous assessments. The previously published performance for the 

DISOPRED3 comes from CASP10 [79], for SPOT-Disorder from [59] and for DeepCNF from [82]. 

The other ten predictors were assessed in [126]. The “difference form dataset level” columns 

show the percentage of the differences between the previously reported results and the 

assessment on our dataset for the accuracy and AUC measures. The average differences (over 

the 13 predictors) in accuracy and AUC are 0.67% and 1.04%, respectively. This shows that our 

analysis that uses a larger dataset closely reflects the current state of the per-dataset 

assessments. The results are also in agreement with the previous assessments showing that 

DeepCNF, SPOT-Disorder and DISOPRED3 outperform the other 10 disorder predictors.  

3.3.2 Protein level predictive performance 

The analysis of the protein level predictive performance explores the per protein distributions of 

three commonly used criteria of the predictive performance: AUC, accuracy (ACC) and false 

positive rate (FPR). Figure 4 illustrates distribution of these metrics over the 6,271 proteins. The 

distributions of the accuracy and AUC metrics for all predictors are right-skewed with long tails. 

The corresponding distributions of the FPR values are left-skewed with similarly long tails; this is 

because larger values of FPR indicate lower predictive quality. These distributions demonstrate 

that while majority of the proteins are predicted with above average predictive performance, 

minority of proteins that are located in the long tails are predicted with low performance. 
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Figure 4: Distributions of the protein‐level predictive quality measured with accuracy (green plots), AUC 
(blue plots) and false positive rate (FPR; red plots) for the 13 disorder predictors. The y‐axis gives the 
fraction of the proteins in a given range of accuracy/AUC/FPR values. These results were published in 
[125]. 

The above distributions are summarized and compared with the corresponding dataset level 

results in Figure 5. Panels 5A, 5B and 5C show accuracy, ROC-AUC and FPR, respectively.  The box 

plots show the first quartile (in red), second quartile (median; where red and green meet) and 

third quartile (in green), with whiskers that denote the 10th and 90th percentiles. The long tails 

are represented by the long bottom whiskers for accuracy and AUC (long top whiskers for FPR) 

when compared to the corresponding top whiskers (bottom whiskers for FPR). The black 

horizontal lines denote the dataset-level values. Figure 5 reveals that majority of the proteins 
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secure higher levels of predictive performance than their corresponding dataset-level 

assessment suggests. Furthermore, protein-level medians for accuracy and AUC are consistently 

higher or at worst similar to the dataset-level values, while the protein-level medians for FPR are 

consistently lower or similar when compared to the dataset-level values. These values can be 

directly compared in Table 5. This trend is consistent across the 13 disorder predictors and the 

three measures of predictive performance. 

 

 

 

 

 

 

 

 

Figure 5: Distributions of the protein-level predictive quality measured with accuracy (panel A), AUC 
(panel B) and false positive rate (panel C) for the 13 disorder predictors. Box plots show the second 
quartile (in red), median (between red and green boxes) and third quartile (in green) for the distribution 
of the protein-level values. The whiskers denote the corresponding 10th and 90th percentiles. The black 
horizontal lines show the benchmark dataset-level performance. The predictors are sorted by their 
median values of the predictive performance. These results were published in [125]. 

We observe that the fraction of proteins for which performance is better than the dataset level 

estimate varies between the disorder predictors. Proteins for which a given predictor performs 

better than expected (i.e., better than its dataset level estimate) are denoted as easy-to-predict 

proteins and proteins which it performs lower than expected (i.e., lower that its dataset level 

estimate by a margin equal to the average difference of the pairwise comparison of all predictors) 

are denoted as hard-to-predict proteins. The value of the margin equals 0.067 and 0.071 for 

accuracy and AUC, respectively. Figure 6 illustrates the rates of the hard-to-predict and easy-to-

predict proteins for each disorder predictor evaluated with AUC and accuracy (ACC).  
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Figure 6: Analysis of the easy- and hard-to-predict proteins for the 13 disorder predictors. The easy 
proteins are predicted with higher-than-expected accuracy or AUC, i.e. their protein-level accuracy 
(AUC) > dataset-level accuracy (AUC). The hard proteins are predicted with relatively low accuracy or AUC, 
i.e. their protein-level accuracy (AUC) < (dataset-level accuracy (AUC) – average margin of difference 
between disorder predictors). Bars represent the fraction of the easy proteins (green bars) and the hard 
proteins (red bars) when predictive performance is quantified with AUC (dark shade) and accuracy (light 
shade). Predictors are sorted by fraction of the easy proteins quantified with AUC (dark green bars). These 
results were published in [125]. 

When it comes to AUC, between 57% of proteins (for GlobPlot) and 75% of proteins (for 

DISOPRED3) are easy to predict, i.e., their predictive performance higher than the expected 

value. Similarly, between 50% (for JRONN) and 69% (for DISOPRED3) of proteins have better than 

expected accuracy. Red bars in Figure 6 quantify the abundance of the hard-to-predict proteins. 

Figure 6 shows that between 14% of proteins (for SPOT-Disorder) and 32% of proteins (for 

ESpritz-DisProt) are hard-to-predict with respect to their AUCs. Similarly, the analysis reveals that 

between 9% (for DISOPRED3) and 30% (for disEMBL-HL) of proteins have lower-than-expected 

accuracy. This means that the users should expect low-quality protein-level predictions for 

anywhere between 10% (for accurate predictors like DISOPRED3 and SPOT-Disorder) and 30% 

(for less accurate predictors like JRONN and disEMBL-HL) of proteins that they submit. In other 

words, the end users will be unpleasantly surprised with their results for anywhere between 1 in 

10 proteins to 3 in 10 proteins.  
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A few studies have reported that predictive performance of disorder predictors is sensitive to the 

native protein-level disorder content [17, 59, 126]. The trend that they observe is that 

performance on proteins with a substantial amount of disorder is lower compared to the proteins 

with little to no disorder. We investigate this trend by comparing the protein-level accuracy 

against the protein sequence length and fraction of the disordered residues. The Pearson 

correlation coefficients (PCCs) computed for accuracy vs chain length for the 13 disorder 

predictors are low and range between 0 and 0.37, with the average of 0.12. In contrast, the PCCs 

between disorder content and accuracy are relatively high and vary between −0.14 and −0.75, 

with the average of −0.42. The negative sign implies that, as expected, proteins with more 

disorder score (on average) lower predictive performance. 

 

Figure 7: Relation between the protein-level predictive performance and the native disorder content. 
Panel A shows medians of the average (over the 13 predictors) accuracy and AUC for proteins grouped by 
their native disorder content, defined as the fraction of disordered residues in the sequence. The whiskers 
give the 10th and 90th percentiles of these averages. Panel B gives the distribution of the disorder content 
for the easy and hard proteins that are in common across the 13 predictors. The box plots show the 2nd 
quartile, median (black horizontal line and 3rd quartile for the distribution of the protein-level disorder 
content values. The whiskers denote the corresponding 10th and 90th percentiles. These results were 
published in [125]. 

We further analyze the relation between disorder content and the predictive performance in 

Figure 7. Figure 7A shows average predictive performance of the 13 computational disorder 

predictors for proteins binned into discrete ranges based on their disorder content. This Figure 
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shows a clear trend of declining predictive performance with the increasing native disorder 

content for both metrics: AUC and ACC. The predictive performance stays relatively high until the 

native disorder content stays below 0.5 and drops substantially when the disorder content 

exceeds 0.7. The median values of the average protein-level accuracy and AUC equal only to 

0.387 and 0.642, respectively, for the proteins which has disorder content above 0.7. The 

whiskers, which denote the 10th and 90th percentiles, reveal that many proteins with over 0.7 

disorder content secure near random levels of accuracy and AUC. Figure 7B illustrates this 

relation using the previously defined sets of easy-to-predict and hard-to-predict proteins. It 

compares the distribution of the disorder content between these two proteins sets. It is clear 

that the easy-to-predict proteins have much lower disorder content in the case of both metrics: 

AUC and accuracy. These findings are relatively troubling, as they reveal that the current disorder 

predictors perform relatively poorly for the proteins where they are arguably needed the most 

(proteins with the most disorder).  

3.4 Complementarity and relative protein-level performance of disorder predictors 

This section investigates significance of differences in the predictive performance for the 13 

predictors and also analyzes complementarity of their predictions. First, we quantify the 

significance of the differences. The results are shown using arrows in Figure 8. We assume that a 

given pair of predictors is significantly different if the corresponding p-value < 0.01. The analysis 

suggests that majority of the differences are significant, which means that the improvements are 

consistent across majority of proteins. When it comes to the ROC-AUC, the difference between 

the best performing SPOT-Disorder and DISOPRED3 is not significant, while they both significantly 

outperform the other 11 disorder predictors. In terms of accuracy, DISOPRED3 significantly 

outperforms the other 12 disorder predictors. ESpritz-DisProt that has the lowest median 

protein-level FPR and has significantly lower FPR values when contrasted with each of the 12 

other predictors. The reason behind this low FPR for ESpritz-DisProt is that it under-predicts the 

amount of disorder. This was also shown in [136], where ESpritz-DisProt predicts 2.6% disorder 

content in a large dataset with 5% native disorder content, while the other nine methods 



37 | P a g e  
 

considered in that article predict disorder content between 6% (IUpred-long) and 29% (DisEMBL-

HL). 

 

Figure 8: Comparison of the protein-level predictive performance between the 13 disorder predictors. 
Panel A summarizes comparison of the AUC values (on green background) and accuracies (on blue 
background). Panel B considers the false positive rates (on red background). Statistical significance of the 
differences between all pairs of methods was assessed with the t-test for normal measures and otherwise 
with the Wilcoxon rank-sum test. Normality was tested with the Anderson–Darling test at 0.05 
significance. We assume that the difference in predictive performance for a given pair of predictors is 
significant if the corresponding P-value is <0.01. Arrows point to the methods that secure significantly 
better predictive performance (P < 0.01). The P-values are shown for the pairs of methods that are not 
significantly different. These results were published in [125]. 

We analyze complementarity of the 13 computational disorder predictors by computing the 

Pearson’s correlation coefficients (PCCs) for each pairwise comparison of the protein-level AUC-

ROC and accuracy values. Figure 9 illustrates the mutual correlation grid for accuracy and ROC-

AUC in panel A and panel B, respectively. The color-coding is used to denote different ranges of 

PCC values where red denotes weak correlation (PCC < 0.3); yellow denotes modest correlation 

(0.3 > PCC > 0.66) and green denotes high correlation (PCC > 0.66).  We find two clear clusters of 

computational disorder predictors when performing assessment with accuracy (Figure 9A).  The 

low correlation cluster (shown in red) includes six disorder predictors: disEMBL-HL, ESpritz-

DisProt, ESpritz-Xray, ESpritz-NMR, GlobPlot and DISOPRED3. The high correlation cluster (shown 

in green) has three sub cluster groups as follows: i) VSL2B and JRONN; (ii) IUPred-long, IUPred-

short, disEMBL-465 and DeepCNF; and (iii) disEMBL-465, DeepCNF and SPOT-Disorder. Figure 9B 
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illustrates this analysis for ROC-AUC. We identify three highly correlated (green) clusters: (i) 

ESpritz-Xray and DeepCNF; (ii) disEMBL-465, JRONN, VSL2B, IUPred-long, IUPred-short and 

disEMBL-HL; and (iii) SPOT-Disorder and DISOPRED3. Overall, we show that certain methods 

provide similar levels of predictive performance for the same proteins while they differ 

substantially from other predictors. This opens an interesting and worth further pursuit 

opportunity to design meta-predictors that combine results produced by multiple disorder 

predictors to improve predictive performance. 

 

Figure 9: Pearson correlation coefficients (PCCs) between the protein-level predictive performances for 
each pair of the considered 13 disorder predictors. Panels A and B quantify the performance with accuracy 
and AUC, respectively. Both correlation matrices are symmetric. The sorting of the predictors differs 
between the two panel and was optimized to highlight clusters of highly correlated methods. Values of 
the PCC are color-coded where red denotes no correlation (PCC < 0.3), yellow denotes modest correlation 
(0.3 ≤ PCC ≤ 0.66) and green corresponds to high correlation (PCC > 0.66). These results were published in 
[125]. 

Along the lines of the complementarity analysis, we assess contributions of individual disorder 

predictors to produce high quality predictions at the protein level. Figure 10A shows the fraction 

of proteins for which a given disorder predictor generates the most accurate result, as quantified 

with the accuracy (inner ring) and AUC (outer ring). The best performing at the dataset-level 

DISOPRED3 and SPOT-Disorder provide the best protein-level results for only about half of the 

proteins. Moreover, each of the 13 tools generates the most accurate protein-level predictions 

for some proteins. This includes the worst dataset-level performers, GlobPlot and disEMBL-HL, 
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which provide the best accuracies for 0.9% and 0.5% of proteins, respectively, and the highest 

AUCs for 0.9% and 1.7%, respectively. Figure 10B breaks down the proteins for which a given 

number of predictors offers highly accurate predictions, i.e. predictive quality that is higher than 

the expected quality of the best method (the dataset-level performance of the best method). The 

Figure reveals that only less than 19% of proteins lack highly accurate predictions (dark red 

regions in Figure 8B). Furthermore, over half of the proteins secure highly accurate predictions 

(measured with either accuracy or AUC) by at least four disorder predictors, while 25% of proteins 

(when using accuracy) and 39% of proteins (when using AUC) have such accurate predictions 

produced by the majority of the 13 disorder predictors. The bottom line is that high-quality 

protein-level predictions can be often obtained from several disorder predictors. This suggests 

that the end users should not limit themselves to using only the most accurate (at the dataset-

level) methods. 

 

Figure 10: Contributions of the 13 disorder predictors to the production of the highly accurate predictions. 
Panel A quantifies the fraction of proteins for which a given method generates the highest predictive 
performance compared to all other disorder predictors. Panel B show the fraction of proteins for which a 
given number of predictors offer highly accurate predictions, i.e. predictive performance that is higher 
than the expected performance of the best method (the dataset-level performance of the best method). 
The inner and outer rings show results when using accuracy and AUC, respectively. These results were 
published in [125]. 
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3.5 Case Study 

This section demonstrates predictions from five selected computational disorder predictors for 

hydroxymethyltransferase from Mycobacterium tuberculosis (Uniprot id: P9WIL7). The native 

disorder annotation for this protein was obtained from missing electron densities in PDB crystal 

structures (PDB ID: 1OY0). Figure 11 illustrates predictive propensity scores and binary 

predictions from DISOPRED3, SPOT-Disorder, VSL2B, IUPred-long and GlobPlot. These five 

computational disorder predictors are selected to represent three different ranges of the overall 

predictive performance: DISOPRED3 and SPOT-Disorder for high quality predictions; VSL2B and 

IUPred-long for medium range and the GlobPlot for the low quality range. The selected five 

predictors comfortably exceed their dataset-level ROC-AUCs for this protein: DISOPRED3 

(AUC = 0.96 for this protein versus 0.90 at the dataset-level), SPOT-Disorder (0.96 versus 0.90), 

VSL2B (0.88 versus 0.81), IUPred-long (0.93 versus 0.73) and GlobPlot (0.80 versus 0.63). The 

native disorder annotation for this protein includes three disordered regions (shown in red in 

Figure 11). While the N-terminus region is was predicted reasonably well by all five disorder 

predictors, the short IDR at the C terminus is detected by only three out of five predictors. 

Moreover, only GlobPlot and IUPred-long found the disordered region in the middle of the 

sequence. The very high AUCs of SPOT-Disorder and DISOPRED3 comes from the fact that these 

methods produce high propensities for the disordered region at the N-terminus while also 

predicting low propensities for the structured regions. Moreover, outputs of these two methods 

show spikes in their predicted propensities near the two other disordered regions. While these 

spikes are not high enough to trigger generation of the binary disorder prediction (they are below 

their thresholds shown using the dashed horizontal lines), they suggest that disorder is more 

likely in these regions than in the other parts of this sequence. Overall, this case study shows how 

the disorder predictors beat their dataset-level predictive performance, which is a typical 

scenario that we revealed in this analysis. 
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Figure 11: A case study that compares disorder predictions for the hydroxymethyltransferase protein from 
M. tuberculosis (Uniprot id: P9WIL7) that were generated by five methods: VSL2B (dark green), SPOT-
DISORDER (magenta), DISOPRED3 (orange), GlobPlot (lime) and IUPred-long (gray). The putative 
propensities are shown using the solid, color-coded lines. The corresponding binary predictions are given 
using the color-coded horizontal bars at the bottom of the figure; thresholds that are used to convert the 
propensities into the binary predictions are visualized with the dashed horizontal lines in the top part of 
the figure. The red and blue horizontal bar denotes the native annotation of disordered and structured 
regions, respectively, which were annotated using crystal structure (PDB ID: 1OY0). These results were 
published in [125]. 

3.6 Summary 

This chapter addresses assessment of the computational disorder predictor from a novel and 

important viewpoint. Our first-of-its-kind large-scale analysis of 13 representative disorder 

predictors shows that the quality of the protein-level predictions is often very different from the 

corresponding dataset-level results. This assessment shows that the protein-level predictive 

performance is in fact higher than the corresponding dataset-level assessments values for a 

significant majority of proteins, as of many as over 70% of proteins for the ESpritz-Xray, SPOT-

Disorder and DISOPRED3 methods. However, at the same time, we show there are also relatively 

many poorly predicted proteins for every considered disorder predictor. The fraction of the poor 

predictions falls within the range of 10% to 30% of the proteins. 
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Our investigation further reveals that the predictive performance of disorder predictors is 

correlated with the amount of the native disorder content in a given protein. We observed a 

trend where performance of disorder predictors drops for proteins with higher disorder content. 

We demonstrate that easy-to-predict proteins are characterized by low amounts of disorder 

while the hard-to-predict proteins typically have substantial amounts of disorder. Furthermore, 

we investigate complementarity of the predictive performance across the 13 disorder predictors 

as well their relative performance. We show that while two methods, SPOT-Disorder and 

DISOPRED3, are significantly better than the other predictors, the other methods also provide 

good quality results for some of the proteins. 

Our analysis suggests that disorder predictors provide complementary results. This reveals an 

interesting opportunity to develop a recommender system that would suggest the most suitable 

disorder predictor(s) for a given protein sequence. This recommendation system would need to 

rely on accurate linking of unique characteristics of the input protein sequence, such as 

physiochemical properties of its amino acids, with the predictive performance of a given 

predictor. The motivation to pursue this objective comes from the large number of the available 

disorder predictors, which as we show offer complementary results, and the fact that end users 

would be undoubtedly overwhelmed by the task of selecting a suitable predictor for their protein 

of interest. 
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Chapter 4. Development of a novel protein-level predictor 

recommendation system to improve predictive performance of 

disorder predictions 

The previous chapter investigated predictive performance of computational disorder predictors. 

It concludes that the performance cannot be simply represented by the dataset level values and 

it also must consider results for individual proteins. Furthermore, Chapter 3 has revealed that 

some of the current disorder predictors perform in a complementary fashion when tested on 

individual proteins. In other words, some predictors may perform very well while some other 

may secure poor performance on the same protein, irrespective of their performance on 

benchmark datasets.   

Motivated by the findings from Chapter 3, here we describe the work towards objective 2 that 

we define in Section 1.3. The results and methods reported in this chapter were published in 

[140]. This chapter investigates answers to two questions:  

1. Is it possible to predict the predictive performance of a given disorder predictor for a 

given protein? 

2. Given that answer to question one is positive, could this prediction be used to identify 

well-performing disorder predictors for a given protein?  

We cover a comprehensive set of 12 disorder predictors representing the three categories of 

methods that were described in Section 2.2.1. These computational disorder predictors are 

selected based on their relatively low runtime, availability and previously reported predictive 

performance. The estimation of the predictive performance for given proteins is based solely on 

the physiochemical properties of the input amino acid sequence and hence the only input that 

we use is the readily available sequence. The overarching goal is to suggest the disorder predictor 

that provides the highest performance for a given input protein sequence. As a byproduct of our 

approach, we will also offer an estimate of the expected predictive performance that will be 



44 | P a g e  
 

produced by the selected predictor, giving the end users useful information whether to pursue 

the prediction and suggesting which particular predictive tool to use. 

4.1 Protein-level predictive performance of disorder predictors  

We use the AUC-ROC as the performance evaluation measure. This is the most widely used metric 

to evaluate the predictive performance of disorder predictors [13, 15, 18, 79, 128].  

This section evaluates per protein ROC-AUC for 12 representative computational disorder 

predictors that include three versions of ESpritz that predict intrinsic disorder annotated from x-

ray structures (ESpritz-Xray), NMR structures (ESpritz-NMR) and using DisProt database (ESpritz-

DisProt)[59]; the two versions of IUPred that are optimized to predict disorder short regions and 

disorder long regions (IUPred-short and IUPred-long, respectively)[48]; the two versions of 

DisEMBL which cover X-ray structures (DisEMBL-465) and loop secondary structures (DisEMBL-

HL) [50]; GlobPlot [47], RONN [49], VSL2B [53], DISOPRED3 [100] and SPOT-Disorder [100]. The 

evaluation was done on the dataset of 5,272 proteins that was described in the Section 3.2. Since 

calculation of AUC requires presence of both disordered (positive) and ordered (negative) 

residues, we limit this analysis to proteins that have at least four ordered and at least four 

disordered residues. Figure 12 illustrates distribution of ROC-AUC values for the corresponding 

set of 3,621 proteins and the 12 selected predictors.  
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Figure 12: Distribution of per‐protein AUC values 12 computational disorder predictors over 3,126 
proteins in the benchmark dataset. These results were published in [140]. 

Virtually all considered disorder predictors, except for GlobPlot, have long tails of poorly 

predicted proteins and the bulk of the predictions characterized by high ROC-AUC values, which 

agrees with results from Chapter 3. This shows that this pattern of predictive performance is not 

affected by the above selection of the proteins that have both disordered and structured 

residues. The DISOPRED3 predictor has the highest reported dataset level ROC-AUC of 0.9 [17] 

and it secures a sharp peak with relatively low but still fairly long tail of poor-quality predictions. 

As another example, VSL2B has lower dataset level ROC-AUC of 0.82 [126] and we observe a 

wider peak with a bigger tail when compared to DISOPRED3.  As we noted in Chapter 3, AUC 

values for individual proteins vary widely from the dataset‐level values. For instance, for VSL2B 

that has the dataset‐level AUC = 0.82, Figure 12 reveals that 59.2% proteins have AUCs >0.9 while 

9.3% of proteins are predicted with AUCs <0.6. Similarly, for DISOPRED3 that has the dataset‐
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level AUC = 0.90, 9.5% of proteins are predicted with AUCs <0.8 while 68.5% have AUCs >0.95. 

This wide range of the per-protein predictive performance motivates the development of a tool 

that estimates performance for a given protein. 

4.2 Experimental workflow  

We aim to develop a system that recommends a well-performing predictor for a given protein 

sequence. The first step is to predict the expected ROC-AUC for a given protein and a given 

disorder predictor. Next, we simply recommend the predictors with the highest predicted 

performance. This system offers practical value in two novel ways. The first is to assist the users 

in selection of a good disorder predictors for a specific protein. This is valuable even for 

experienced end users who are well-informed about the availability and quality of different 

disorder predictors. This is because the benchmark results for disorder predictor may vary widely 

from their protein-level performance. The second is to offer an estimate of the performance that 

will be produced by the selected predictor. This will inform the user to which extend they can 

trust the prediction and will allow them to judge whether to pursue the prediction in the first 

place.  

4.2.1 Architecture and design of the protein-level predictors of disorder prediction quality  

This first step provides estimate of the expected ROC-AUC values of a disorder predictor for a 

given input protein. These estimates are produced by machine learning models. Figure 13 

illustrates the architecture of the proposed method. Panel (a) gives the flowchart while panel (b) 

provides a pseudocode for this prediction process.  



47 | P a g e  
 

 

 

  

Figure 13:  Architecture of the proposed recommendation system. Panel (a) gives flowchart of the proposed model while panel (b) shows the 

corresponding pseudocode. This illustration was published in [140].
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The prediction begins by collecting the amino acid sequence of the proteins as the sole input. 

Next, we use the amino acid sequence to generate a sequence profile that provides additional 

residue-level information about the input protein. This sequence profiles consist of a few 

physicochemical and structural properties that are related with presence of disorder [25, 32, 48, 

141-145].  They include two putative structural properties generated by third-party predictors: 

solvent accessibility predicted with ASAquick [146] and secondary structure predicted with the 

single sequence version of the PSIPRED [147]. The selection of these structural predictors was 

based on their availability and computational efficiency. The profile also includes sequence 

complexity generated by the SEG algorithm [137] and a few sequence-derived  physicochemical 

properties like hydrophobicity, hydropathy, charge, structural entropy, polarity, volume, size, 

flexibility, refractivity, transfer and solvation energies, and propensity for coil, turn, strands, helix 

and disordered conformations. These physicochemical properties rely on the corresponding 

indices that we collected from AAindex database [148]. We encode the sequence profile into a 

vector of 130 numeric features that aggregate the information concerning structural and 

physiochemical properties at the whole‐protein level. These features are detailed in the 

Appendix 1. They include 21 features computed directly from the input sequence (AA 

composition and sequence length), 3 features computed from the putative solvent accessibility, 

2 features from the sequence complexity, 8 features from the putative secondary structure, and 

96 features based on the physiochemical properties. 

Figure 13 summarizes the architecture of our predictive models using the 3-layer design. The 

layers 1 and 2 refer to the generation of the feature vector from the sequence profile which is 

processed by the predictive model, in the form of a regression tree. We performed feature 

selection and optimization of the predictive model using the training set of 5,272 proteins 

described in Section 3.2. From the machine learning perspective, this task is a regression problem 

where each machine learning model is trained to predict the expected ROC-AUC for a given 

disorder predictor.  

The feature selection was done in two steps. First, features with high mutual correlation were 

removed in order to filter out similar features. We quantified the mutual similarity for all pairs of 

the 130 features based on the Pearson correlation coefficients (PCCs). For each pair of highly 
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correlated features (|PCC| > 0.65), one of them that has lower predictive performance was 

removed. The predictive performance was measured based on the PCC with the per‐protein AUC 

scores for a given disorder predictor. This step resulted in the removal of between 21 and 40 

features, depending on the predictor.   

Next, we removed features that have low predictive power via wrapper-based feature selection, 

done separately for each of the 12 disorder predictors. In short, we screened features by their 

ROC-AUC values when used individually to predict the protein-level AUCs of a given disorder 

predictor. A subset of features with |PCC| > threshold was selected, where the value of the 

threshold was selected to provide the highest predictive quality assessed by the three fold cross 

validation on the training set. The threshold during was gradually increased by 0.01 starting from 

0 until the cross-validated PCC between actual ROC-AUC and predicted ROC-AUC drops. The 

selected feature sets ranged in size between 24 and 38, depending on the disorder predictor 

used.  

As part of the wrapper-based feature selection and optimization of the predictive model, we 

considered three types of regression models: nearest neighbor regression [149], linear regression 

[150], and extra tree regression [151]. The corresponding average (over different disorder 

predictors) PCCs on the training set were 0.15, 0.13 and 0.31, respectively. The average mean 

squared error (MSE) values for the same three algorithms were 0.018, 0.011 and 0.007, 

respectively. Hence, the extra tree regression was selected the best performing predictive model. 

The extra tree regressor is an enhanced version of extremely randomized random forests that 

relies on randomization to grow trees [152]. The key objective behind this randomization is to 

minimize overfitting into the training set. The avoidance of overfitting is specifically important in 

our case as the training set and test set share low (<25%) similarity. Furthermore, the extra tree 

regression is more computationally efficient than the conventional random forests. We 

parametrized our regression models via a grid search for each of the 12 disorder predictors, with 

the aim to maximize the PCC for the 3-fold cross validation on the training dataset. For instance, 

for the extra tree regression we parameterized the maximum depth of the trees (using 0–20 

range), number of trees in the forest (100–180 range), minimum number of samples required for 
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a split (0–30 range), and the number of features to consider when calculating best split (0–50 

range). 

4.2.2 Design of the protein-level disorder predictor recommendation system 

In the second step the 12 extra tree regression-generated estimates of ROC-AUCs are processed 

and compared and the disorder predictor with the highest expected ROC-AUC is recommended 

to the user. More specifically, predictions from each of the 12 regressors are mapped into the 

distribution of AUCs values from the training datasets for the corresponding disorder predictor 

(third layer in Fig. 13). This ensures that the predicted AUCs are calibrated to cover the entire 

spectrum of AUC values that are produced by a specific disorder predictor. Finally, the 12 

predicted AUCs are compared and the method with the highest putative AUCs is recommended 

back to the user. We call the complete recommendation system DISOselect. The outputs 

generated by DISOselect include the recommended disorder predictor, its putative AUC and the 

AUC values for each of the other 11 predictors. 

4.2.3 Analysis of the predictive model 

This section investigates how our model accomplishes the prediction of the expected AUCs 

values. More specifically, we analyze relation between the input features and the output (AUC 

values). We investigate individual features produced in the layer 1 of the model (Figure 13) and 

the importance of specific features groups to the predictive performance of the extra tree 

regressor.  

In order to analyze the contribution of individual features, we focus on the top two features with 

the highest PCC with the output for each of the 12 considered disorder predictor. After selecting 

top two most correlated features, we obtained 18 features since some of these features were 

shared by multiple disorder predictors. The predictive value of these features is summarized in 

Figure 14 where darker shading corresponds to a higher magnitude of correlation with the output 

(stronger contribution to the model). The direction of the arrows denotes the sign of the 

correlation where upwards pointing arrows are for positive correlation and downwards pointing 

arrows are for negative correlations. 
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As one highlight, we observe that the average accessible surface (ASA) area is a strong contributor 

to our model (bottom of Figure 14). Interestingly, ASA is positively correlated with the SPOT‐

Disorder’s and DISOPRED3’s AUCs, but negatively correlated with the ESpritz‐DisProt’s 

performance. In general, we note that virtually all features switch the sign of the correlation 

when used to make predictions for different disorder predictors. This demonstrates each 

disorder predictor has its own unique predictive pattern. Individual performance biases may 

reflect the makeup of the training sets and the selection of the sequence‐derived predictive 

inputs utilized by individual predictors.  

 

 

Figure 14: Key predictive features used to predict AUC of the 12 disorder predictors. The predictive 
performance of individual features is quantified with the Pearson correlation coefficients (PCC) between 
feature values (horizontal lines) and the prediction output (actual AUC) for each disorder predictor 
(vertical lines) that were quantified on the training dataset. Detailed explanation of features is available 
in Appendix 1. PCC values are color-coded where dark green is for |PCC| ≥ 0.3, light green for |PCC| 
between 0.15 and 0.30, white for |PCC| < 0.15, and grey with ‘x’ symbol indicate the a given feature is 
not included in the model for that predictor. The direction of arrows reveals the sign of PCC where 
upwards arrows denote positive correlation while downward arrows denote negative correlation. These 
results were published in [140]. 



52 | P a g e  
 

We also analyze importance of the five feature categories that are described in Section 4.2.1 and 

which are defined by the data in the sequence profile that was used to produce them. The 

importance was quantified with information gain, which measures decrease in the classification 

entropy due to the use of a given feature. This is motivated by the use of the entropy in extra‐

tree regressor models [153]. The results for each of the considered 12 disorder predictors are 

summarized in Figure 15. The dominant feature category (features extracted from the putative 

secondary structure) is consistent for all 12 computational predictors, although the magnitude 

of the contribution varies considerably. The predictive value of the secondary structure can be 

explained by its relation to the intrinsic disorder. The disorder is poorly predicted in the proteins 

with higher fractions of the secondary structures (helices and strands) given that these proteins 

are primarily structured. On the other hand, disorder in the proteins heavily composed of coils is 

in general well predicted. Moreover, putative secondary structure is also used as the predictive 

input by some of the considered here disorder predictors, such as MFDp2 [129], CSpritz [64] and 

Spritz [154]. The second and third-best categories of features are the physiochemical properties 

and AA composition. They are closely related as both are extracted directly from the protein 

sequence. This reveals an implicit bias of the disorder predictors for which performance depends 

on the amino acid composition and physiochemical characteristics of the protein. The two least-

contributing feature categories are the sequence complexity and solvent accessibility.  
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Figure 15: Importance the five feature categories for the predictive models designed for the 12 disorder 
predictors. We used a three-step process to derive the scores for each predictive model. First, the 
information gain of individual features was calculated from the extra-tree regressors. Second, features 
were divided into the five classes and the information gain of the features in the same category was 
summed up. Third, the summed values were dived by the sum of the information gain values of all features 
in the same model. The last step allow for directly comparison of relative contributions of each feature 
category. These results were published in [140]. 

To summarize, the ability of the regressors to predict AUCs of the 12 disorder predictors primarily 

depends on the information extracted from the predicted secondary structure, physicochemical 

properties and amino acid composition of the input protein sequence. Furthermore, the 

predictive quality of specific disorder predictors is governed by unique set of relations, which is 

why it is necessary to build and optimize regressors individually for each disorder predictor. 

4.3 Assessment of the protein-level disorder predictor recommendation system 

4.3.1 Predictive performance of the extra tree regressor models 

The regressors that were trained and optimized on the training set of 5,272 proteins were next 

comparatively evaluated on the dissimilar test set of 999 test proteins.  We note that the training 

and test proteins share <25% sequence similarity. The predictive performance of our models is 

compared to two controls. We note that this is the first-of-its-kind model that predicts 
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performance of disorder predictors and so we are unable to compare it with the prior published 

solutions. The first control is a predictor that selects at random an AUC value from the training 

dataset. This ensures that this predictor generated the correct distribution of the AUC values for 

a given disorder predictor. The second control is based on sequence alignment/similarity. For a 

given test protein we use the AUC of the most similar training protein that is selected using the 

popular BLAST algorithm with default parameters [155, 156].  

The predictive performance is quantified with two metrics: (a) mean squared error (MSE) of 

predicted AUCs (when compared with the native/true AUC) and (b) correlation between the 

actual ROC-AUC and the predicted ROC-AUC. We use the better of the two controls to calculate 

the ratio of improvement between our model and controls. 

Table 6: Predictive performance of the extra tree regressor-based model and two controls. Mean squared 
error (MSE) and Pearson correlation coefficients (PCC) values are calculated between the predicted AUC 
and the actual AUC for each test proteins. Controls were produced using a random and a sequence 
similarity-based approaches. Paired significance tests were performed between the predicted AUCs of our 
regressor and the results produced by the controls: [+] denotes that our model is significantly better with 
p‐value <.05. We used the paired t test for normal measurements and the Wilcoxon test otherwise; 
normality was tested with the Anderson‐Darling test at the .05 significance. These results were published 
in [140]. 

Disorder predictor 

 MSE (mean squared error)  PCC (Pearson correlation coefficient) 
 
Extra tree regressor Random control 

Similarity-
based 

control 

Improvement 
ratio 

 
Extra tree regressor Random 

control 

Similarity-
based 

control 

Improvement 
ratio 

disEMBL-HL  0.009 0.05 [+] 0.05 [+] 5.6  0.36 0.01 [+] 0.13 [+] 2.8 
IUPred-long  0.011 0.05 [+] 0.04 [+] 3.6  0.32 -0.01 [+] 0.18 [+] 1.8 
IUPred-short  0.011 0.05 [+] 0.05 [+] 4.6  0.32 0.03 [+] 0.07 [+] 4.6 
VSL2B  0.008 0.05 [+] 0.05 [+] 6.3  0.31 0.03 [+] 0.14 [+] 2.2 
disEMBL-465  0.008 0.05 [+] 0.05 [+] 6.3  0.30 -0.03 [+] 0.14 [+] 2.1 
GlobPlot  0.011 0.05 [+] 0.05 [+] 4.6  0.28 -0.13 [+] 0.09 [+] 3.1 
ESpritz-NMR  0.009 0.05 [+] 0.05 [+] 5.6  0.28 0.02 [+] 0.08 [+] 3.5 
SPOT-Disorder  0.010 0.05 [+] 0.04 [+] 4.0  0.24 0.00 [+] 0.00 [+] 48.0 
DISOPRED3  0.004 0.04 [+] 0.05 [+] 12.5  0.24 -0.11 [+] 0.15 [+] 1.6 
ESpritz-Xray  0.007 0.05 [+] 0.05 [+] 7.1  0.23 -0.08 [+] 0.03 [+] 7.7 
JRONN  0.008 0.05 [+] 0.06 [+] 7.5  0.19 -0.01 [+] 0.00 [+] 190.0 
ESpritz-DisProt  0.007 0.05 [+] 0.04 [+] 5.7  0.12 0.00 [+] 0.05 [+] 2.4 

 

Table 6 summarizes the results and reveals that our extra tree regressor model significantly 

outperforms both controls in terms of both MSE and PCC (p‐value < .05). While the MSE and PCC 
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values of our predictor are modest (PCC at around 0.3 and MSE at about 0.01), we note that the 

rate of improvement over the controls is relatively high. The MSE values are between 3.6 and 

12.5 folds better than the best control, while correlation values are between 1.6 and 190 folds 

better than the controls. 

4.3.2 Use of the extra tree regressors for the selection of well-predicted proteins 

The extra tree regressors aim to identify proteins that can be predicted with higher predictive 

performance for each of the 12 disorder predictors. This will allow the end users and designers 

of the future predictors to identify poorly vs. well predicted proteins for a given disorder 

predictor. Figure 16 investigates whether our regressors can be used for this purpose. First, for 

each disorder predictor, we sort the test proteins in the ascending order of their regressor-

predicted AUCs. Then we progressively remove the 5% of proteins with the lowest predicted 

AUCs and we calculate the actual AUCs of these protein sets.  Figure 16 plots the relation between 

the predicted and the actual AUC values of these proteins sets.  

The raising trends in Figure 16 demonstrate that the selection done based on the predicted AUC 

aligns with the actual predictive performance. The upwards trends are consistent across all 12 

disorder predictors. The differences in the actual AUC values between the results on the entire 

test dataset (left‐most points in Figure 16) and the smallest set of the 5% of proteins with the 

highest estimated AUCs are very substantial. As an example, for DISOPRED3, the 5% of proteins 

with the best estimated AUCs secure AUC = 0.950 when compared to AUC = 0.918 on the test 

datasets, which translates to (0.950–0.918)/(1–0.918) = 39% error reduction. The largest 

absolute increase in AUC is for disEMBL‐HL where the 5% of the best predicted proteins secure 

AUC = 0.896 compared to the AUC = 0.761 on the whole test dataset, which corresponds to 

(0.896–0.761)/(1–0.761) = 56% error reduction.  
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Figure 16: The dataset‐level actual AUC values for subsets of the test proteins that are sorted based on 
their AUCs values estimated by the extra tree regressors. Individual panels correspond to different 
disorder predictors. Points in each panel correspond to AUCs of the subsets of test proteins for which the 
estimated AUCs are above a given percentile of all estimated AUCs, that is, the 20 mark on the x‐axis 
corresponds to the 80% of the test proteins that have estimated AUCs that are above the 20th percentile 
of estimated AUCs generated by the extra tree regressors. The left‐most point corresponds to the result 
on the complete test dataset while the right‐most point corresponds to the 5% of test proteins with the 
highest estimated AUCs. The line is the third‐degree polynomial fit into the measured data. These results 
were published in [140]. 
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Figure 17 summarizes the differences in the actual predictive performance measured using 

several metrics across the 12 disorder predictors. It shows PR-AUC, sensitivity, MCC and accuracy 

in addition to the ROC-AUC. The boxes in the Figure 17 represent the distribution of improvement 

for the given evaluation criteria over the 12 disorder predictors. The improvements are measured 

by comparing the results on the whole dataset with the results for the three quartiles of selected 

proteins according to the predicted AUC (75%, 50% and 25%). Positive values indicate 

improvements. The Figure demonstrates that the improvements are always positive, substantial 

and consistent for all evaluation criteria.  Overall, we conclude that our regressors can be used 

to accurately predict the well performing proteins for a given disorder predictor. 
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Figure 17: Improvements in the actual ROC-AUC, PR-AUC, sensitivity, MCC and accuracy values computed as the difference between the values 
for subsets of the top 25% (in green), 50% (in orange) and 75% (in blue) of the test proteins selected based on their AUCs values estimated by 
extra tree regressors and the whole dataset-level AUCs. Positive values of the improvement indicate that AUC for the subsets of the test proteins 
are higher than for the complete test dataset. The box plots represent the distribution of the improvements across the 12 disorder predictors 
where whiskers corresponding to the minimal and maximal improvements and boxes denote the first, second and third quartiles. These results 
were published in [140]. 
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4.3.3 Predictive quality of DISOselect 

This section investigates the performance of the complete recommendation system, DISOselect. 

We compare the results produced by the predictors recommended by DISOselect with the results 

of the original disorder predictors used individually. We also compare with conventional meta 

approaches to combining disorder predictions, where several prediction methods are combined 

to give a single prediction, usually at the residue level. We consider several residue-level meta-

prediction methods based on the 12 individual disorder predictors examined in this work.  We 

use several variations on the meta-predictor construction: two-different architectures – logistic 

regression (LR) and support-vector regression (SVR), and different input predictors – either all 12 

predictors or only the best of the predictors.  The best predictors were selected based on the 

dataset level performance on the training set.  Based on these assessments, we selected two 

prediction methods – SPOT Disorder and Disopred3 – as significantly better than the other 

individual methods. This gave four meta-predictors: Twelve Predictor LR, Twelve Predictor SVR, 

Top Two Predictor LR, and Top Two Predictor SVR. The logistic regression model was trained with 

the 3-fold cross validation on the training dataset with default L2 regularization penalty by 

balanced class weights according to the proportions of training set using the L-BFSG optimization 

algorithm. The SVR models were trained with the 3-fold cross validation on the training dataset 

after subsampling 10% of each fold randomly to minimize the training time. We used the radial 

basis function kernel and performed a grid search for the penalty parameter C (2-5 to 25), kernel 

coefficient gamma (0 to 1), and tolerance for stopping criteria (10-3 to 103). 

Figure 18 illustrates the protein level ROC-AUC values of DISOselect on the test set (in dark black 

thick line) against other 12 individual computational disorder predictors and the two best 

conventional meta-predictors (thick blue line and thick yellow line). The dark red line denotes a 

hypothetical oracle predictor which always picks the best performing disorder predictor for each 

given individual protein.  Figure 18 shows that DISOselect performs substantially better than all 

individual disorder predictors and the conventional consensus approaches.  Moreover, the 

DISOselect’s performance is relatively close to the hypothetical best possible approach (oracle 

predictor).  
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Figure 18: Comparison of the per-protein AUC values between the 12 disorder predictors, the selection 
of the best disorder predictor using the highest putative AUCs generated by DISOselect (thick black line), 
and the oracle method (thick red line), and two conventional meta predictors (thick yellow and blue lines) 
on the test proteins. The oracle method selects the disorder predictor with the highest AUC among the 
12 disorder predictors. Lines show the per-protein AUCs that are sorted in the ascending order for each 
of the considered methods. These results were published in [140]. 

Table 7 directly compares the performance of the considered models. It compares the mean of 

per protein ROC-AUC values produced by DISOselect, the twelve individual disorder predictors, 

and the oracle approach. Statistical tests of significance reveal that DISOselect generates the per-

protein ROC-AUC values that are significantly better than the results offered by each of the 12 

disorder predictors (p-value < 0.01). The oracle predictor gives the per protein mean ROC-AUC of 

0.98 while DISOselect has ROC-AUC = 0.97. 
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Table 7: Comparison of the per-protein AUC values produced by the 12 disorder predictors, the oracle 
method that selects the predictor with the highest AUC and the selection based on the highest putative 
AUC produced by DISOselect for the test proteins. We compared the mean per-protein AUCs computed 
over the test proteins and the AUCs for the worst (the least accurately predicted) quartile of the test 
proteins (i.e., the 25% point in Figure 17). Methods are sorted by their mean per-protein AUCs. 
Significance of the differences in the per-protein AUCs of the predictions selected by DISOselect and the 
predictions generated by the other methods (including the oracle) was assessed with the t-test for normal 
measurements and the Wilcoxon test otherwise; normality was tested with the Anderson-Darling test at 
0.05 significance; we sampled 50% of proteins in the test dataset ten times at random and compared the 
corresponding 10 pairs of AUCs; the resulting p-values are listed in the last column. These results were 
published in [140]. 

Predictor Mean per-
protein AUC 

Per-protein AUC at the worst 
quartile of proteins 

Significance of differences 
compared to DISOselect 

Oracle 0.983 0.984 p-value<0.01 (significantly better) 
DISOselect 0.974 0.971  
SPOT-Disorder 0.940 0.927 p-value<0.01 (significantly worse) 
DISOPRED3 0.935 0.921 p-value<0.01 (significantly worse) 
ESpritz-Xray 0.880 0.832 p-value<0.01 (significantly worse) 
ESpritz-NMR 0.865 0.809 p-value<0.01 (significantly worse) 
VSL2B 0.864 0.816 p-value<0.01 (significantly worse) 
disEMBL-465 0.853 0.768 p-value<0.01 (significantly worse) 
IUPred-short 0.843 0.768 p-value<0.01 (significantly worse) 
disEMBL-HL 0.816 0.719 p-value<0.01 (significantly worse) 
ESpritz-DisProt 0.772 0.649 p-value<0.01 (significantly worse) 
JRONN 0.733 0.603 p-value<0.01 (significantly worse) 
IUPred-long 0.718 0.584 p-value<0.01 (significantly worse) 
GlobPlot 0.646 0.537 p-value<0.01 (significantly worse) 

 

The analysis in Figure 18 is aggregated at the test dataset level for clarity, i.e., we compared re-

sorted per-protein AUCs across different methods. Figure 19 offers a direct comparison of 

predictive performance of the results selected with DISOselect against the most accurate 

individual disorder predictor (SPOT-Disorder), the best performing meta-prediction method (Top 

Two Predictor SVR), and an average disorder predictor. When compared against SPOT‐Disorder 

(red line), DISOselect selects a better disorder prediction for 64% of proteins, the same prediction 

for 5% of proteins, and worse prediction for 31% of proteins and has average overall 

improvement of 0.035. DISOselect is better for 64% of proteins, equal for 4% of proteins and 

performs worse for 34% proteins when compared to the best conventional consensus method 

(green line). Finally, DISOselect performs better than average of the 12 computational disorder 

predictors for 95% of proteins with overall average improvement of 0.152. 
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Figure 19: Evaluation of the differences in the protein‐level area under the receiver operating 
characteristic curves (AUCs) for the same test proteins between the predictions selected with DISOselect 
and the average AUC of the 12 disorder predictors (blue line), between the predictions selected with 
DISOselect and the predictions generated by the most accurate disorder predictor at the dataset level, 
SPOT‐Disorder (red line), and between the predictions selected with DISOselect and the best consensus‐
based method that relies on the support vector regression (SVR) (green line). Points indicate where the 
difference between protein AUCs crosses zero. The proteins are sorted by the value of the difference in 
the descending order. These results were published in [140]. 

4.4 DISOselect webserver 

We developed and released a webserver that implements DISOselect as a free service for non-

commercial users. This webserver is available at http://biomine.cs.vcu.edu/servers/DISOselect/. 

DISOselect requires only the FASTA-formatted protein sequences as input. Up to 1000 proteins 

can be predicted in a single run. All computations are performed on the webserver side. The 

webserver outputs the putative AUC and the qualitative performance (including the percentile 

of predicted AUC value) for each of the 12 disorder predictors, which are sorted in the descending 

order of the predicted AUC. The predictor at the top of the list, which has the highest estimated 

AUC, is recommended to the user as the best option to collect the disorder predictions. For the 

user’s convenience, the main page of the webserver provides links to the websites of these 
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disorder predictors under the “Help” section. The results are available via an HTML page, which 

can be accessed via a direct link, and a parsable text file. We will archive these results for at least 

one month. 

4.5 Summary 

Our empirical analysis shows that the per-protein predictive quality of popular disorder 

predictors varies widely between different proteins. The users cannot expect that the disorder 

predictor with the best benchmark-dataset level results will provide favorable results across all 

proteins. These results suggest that a computational tool that can accurately estimate per-

protein predictive performance for a given disorder predictor and a given protein is needed.  

To this end, we developed a new recommendation system, DISOselect, which accurately 

identifies well-predicted proteins for each of the 12 considered disorder predictors and which 

recommends the best performing disorder predictor for a given input protein. We analyze these 

two capabilities from several different perspectives and we show that DISOselect outperforms 

the currently available solutions. More specifically, the disorder predictions selected using 

DISOselect are significantly more accurate than the results produced by any of the 12 disorder 

predictors, including the top‐performing methods such as SPOT‐Disorder and DISOPRED3, and a 

selection of four conventional consensus predictors. The average per‐protein AUC for the 

predictions selected with DISOselect is 0.97, compared to an average AUC of 0.82 generated by 

the 12 methods, and an average AUC of 0.94 for the consensus methods.  

DISOselect provides two key advantages to the end users. First, it offers advice on whether a 

given disorder predictor would provide an accurate prediction for a given protein of user’s 

interest. Second, if users are comfortable with using multiple disorder predictors, DISOselect 

accurately recommends the most suitable predictor. Importantly, besides suggesting the best 

tool, DISOselect informs the users about the expected predictive quality of this selected and 

other disorder predictors. This fast-to-compute insight is provided before the user has to actually 

make the possibly time-consuming disorder prediction. 
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Chapter 5. Assessment and comparative analysis of the predictive 

performance of disorder predictions for specific functional types of 

disordered proteins  

Protein functions and structures can be classified using a wide range of resources, which include 

Pfam [157], SCOP [158], SUPERFAMILY [159], and CATCH [160]. Along those same lines, IDPs are 

classified based on different criteria, such as function [5, 25, 34, 161, 162], functional motifs 

[163], and sequence features [164, 165]. This chapter addresses objective 3, which aims to 

compare predictive performance of disorder predictions for specific functional types of IDPs. 

These results were published in [166]. 

As we discuss in Chapter 3, the predictive performance of disorder predictors was empirically 

assessed in numerous comparative studies [68-78]. The results of these studies, which were 

surveyed in Chapter 3 (at the protein level) and a recent article (at the dataset level) [14], can be 

used to perform side-by-side comparisons of the predictive performance of the disorder 

predictors. They can be used to guide the users to select accurate predictors and to inform the 

both users and developers about the current levels of predictive quality offered by the best tools. 

The latter fuels the progress in the development of gradually more accurate tools. This progress 

was recently summarized in [23], where the authors show that the predictive performance 

measured with AUC (Area Under the ROC Curve) have risen from the 0.73 to 0.79 range in mid 

2000s, to the 0.85 to 0.90 range that is secured by the methods that were published in the last 

four years. While the past comparative studies provide invaluable insights, they also share a few 

drawbacks. First, they perform the assessment using generic sets of proteins while they rarely 

(only once) analyzed performance for specific functional protein families. Second, they overlook 

an important aspect of the similarity between the benchmark dataset and the training datasets 

that were used to develop the tested predictors. High levels of similarity may result in an 

overestimation of the predictive performance and may distort the results by favoring certain 

methods for which the similarity is higher. Third, some of the previous assessments assume that 

non-disordered regions from the proteins that are collected from DisProt database are structured 
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while some of these regions bear the possibility of being disordered. To this end, we performed 

the first-of-its-kind comparative analysis that includes analysis of the performance for several key 

functional types of disordered proteins (protein- and nucleic acid-binding proteins [167-170]), 

that develops and utilizes a new benchmark dataset that ensures controlled/low levels of 

similarity with the training datasets of the assessed predictors with validated structured regions.  

5.1 Overview of the past intrinsic disorder predictor assessments  

We start our assessment by providing a detailed overview of previous surveys of the intrinsic 

disorder predictors. We identified a total number of 28 surveys regarding intrinsic disorder 

predictors that were published during the period from 2003 to 2020 in peer reviewed venues 

[14, 68-78, 171-186]. The conventional format used in the above surveys is to start with a 

historical background of disorder predictor development and subsequently contrast the designs 

of different methods, including their input features and predictive models. In some of the 

surveys, selected disorder predictors were compared based on their predictive performance.  

The first reported survey on disorder predictors was published in 2003 as part of the CASP5 [68] 

(Critical Assessment of Structure Prediction), which is 5th edition of the biannual assessment of 

the protein structure predictions.  We summarize the abovementioned 28 surveys in the figure 

20 based on their date of publication and categorize them into to three groups considering the 

intended target of the assessment. The respective categories include the assessments of disorder 

predictors, assessments of the disorder function predictors and assessments that consider both 

disorder predictors and disorder function predictors. The recent surveys put more emphasis 

towards assessing the disorder function predictors over the disorder predictors. Functions of IDRs 

are classified based on their cellular function and the interaction partners [187-189]. Recent 

study reveals that protein binding and nucleic acids binding collectively account for 84% of 

available molecular partner annotations in the DisProt for IDR [171]s. The specific fractions of 

available molecular partner annotations in the DisProt for IDRs with different interaction partners 

are as follows. Protein binding accounts for 66% of available molecular partner annotations while 

nucleic acid binding, metals, lipids, small molecules and inorganic salts respectively account for 
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17%, 6%, 5% ,5% and 1%. These fractions justify our focus on the protein binding and nucleic acid 

binding IDRs in this assessment. 

 

Figure 20: Chronological summary of the past surveys of the intrinsic disorder and intrinsic disorder 
function predictors. This figure was published in [166]. 

Out of the 28 surveys, 11 have conducted comparative assessments to compare the predictive 

performance between multiple disorder and disorder function predictors. We further analyze the 

above mentioned 11 surveys in Table 8 to assess their impact and scope. Majority of the above 

surveys accumulated over 100 citations according to Google Scholar, suggesting that they have 

attracted substantial amount of interest. These 11 surveys include six editions of CASP from 

CASP5 (2002) to CASP10 (2012) [68, 73, 75-78]. The disorder assessment category was 

discontinued from the CASP series after 2012 with the intention of initiating a separate dedicated 

community driven assessment for intrinsic disorder.  
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Table 8: Summary of the past comparative assessments of disorder predictors. The articles are sorted chronologically (from the most recent). The 
citation numbers were collected from Google Scholar on September 29, 2020. Predictors shown in the bold font in the “suggested best disorder 
predictors” column are included in the comparative assessment in this section. This table was published in [165]. 

Article Target of assessment Suggested best disorder predictors (year 
published) 

Year 
assessment 
published 

Year most recent 
assessed 
predictor 
published 

Number 
of 

citations  
 

Benchmark 
dataset has 

reduced similarity 
with training sets 
of the assessed 

predictors 

this 
article 

disordered proteins; disordered 
protein-binding protein; disordered 
nucleic acids-binding proteins 

N/A N/A 2018 N/A yes 

[69] disordered proteins SPOT-Disorder (2017), DISOPRED3 (2015) 2019 2017 4 no 
[70] disordered proteins Espritz (2012) 2018 2017 33 no 
[71] disordered proteins DisEMBL (2003), IUPred (2005) 2015 2012 121 no 

[73] disordered proteins DISOPRED3 (2015), PrDOS (2007), MFDp (2010) 2014 2015 128 no 

[72] disordered integral membrane 
proteins PreDisorder (2009) 2014 2012 12 no 

[74] disordered proteins MFDp (2010), MD (2009), PONDR-FIT (2010) 2012 2010 149 no 

[75] disordered proteins PrDOS (2007), DISOPRED (2004) 2011 2010 118 no 

[76] disordered proteins GS‐MetaServer (2012), PreDisorder (2009) 2009 2008 131 no 

[77] disordered proteins DISOPRED (2004), DISpro (2005) 2007 2006 109 no 
[78] disordered proteins predictor by Obradovic et al. 2005 2004 114 no 
[68] disordered proteins N/A 2003 2002 97 no 
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Table 8 reveals that depending on the assessment, the set of the disorder predictors that are 

indicated to provide the best predictive performance differs. This inconsistency is partly due to 

the fact that these articles consider different sets of disorder predictors in the assessments. 

However, majority of the surveys suggested that the best disorder predictors are among the most 

recently published methods, respective to the time when the survey was conducted. As an 

example, the latest comparative survey that was published in 2019 [69] indicates that SPOT-

Disorder [190] and DISOPRED3 [191] as best disorder predictors while SPOT-Disorder was 

commissioned after nine out of 11 surveys were published. The latest three surveys [69-71], at 

the time when this work was published in 2020 [166], indicate that SPOT-Disorder [190], 

DISOPRED3 [191], ESpritz [192], DisEMBL [54] and IUPred [193-195] as the highest performing 

disorder predictors.  

According to Table 8, when it comes to the intended target of the assessment, 10 surveys assess 

the disorder predictions for a generic set of proteins while one [72] assesses the disorder 

predictions for the disordered integral membrane proteins. The latter survey compares the 

predictive performance among 13 disorder predictors using a dataset that consists of around 350 

membrane proteins. Potential reason for the fact that none of the past survey focused on the 

disorder function predictors could be the limited number of available experimental annotation 

for the disorder functions. The disorder binding partner annotations were added to the DisProt 

database in 2016 and in limited quantities. They were further extended from the original list of 

1108 IDRs to 1476 IDRs only in 2020 in the new release of DisProt. 

We discuss another important aspect of disorder predictor assessments in the last column of 

Table 8 where we consider the sequence similarity of the test data they use with respect to the 

training datasets of the predictors that they asses. None of the 11 assessments take measures to 

limit the sequence similarity of the benchmark dataset against the training datasets. As an 

example, the CASP assessments [68, 73, 75-78] create their benchmark datasets using unreleased 

PDB structures at the time of the assessment and disregard the similarity to the training datasets 

of the considered predictors. Other recent surveys collect their benchmark proteins from 

MobiDB, DisProt and UniProt databases without limiting the sequence similarity to the training 

datasets of the assessed predictors [69-71]. Interestingly, the process of training and 
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validation/testing of new disorder predictors ensures that the sequence similarity of the test 

dataset against the training datasets is intentionally reduced, at least for the methods that is 

being proposed. The usual practice is to limit the sequence similarity between test dataset and 

training dataset below 30% [62, 196-200]. Limiting the sequence similarity of the test dataset is 

meant to demonstrate that a given method can solve the non-trivial problem of predicting 

dissimilar sequences. This is because a simple sequence alignment is capable of making strong 

predictions in the presence of high similarity.  

Altogether, we show that past surveys share several drawbacks. They do not consider evaluating 

disorder predictions for specific disorder functions (except for one survey that focuses on 

membrane proteins) and fail to properly control sequence similarity of their test dataset to the 

training datasets of the tested methods. We address these aspects in our subsequently described 

survey.  

5.2 Selection of disorder predictors 

We cover a comprehensive set of 10 disorder predictors. The selection of these predictors was 

motivated by their availability, availability of their training datasets, computational efficiency and 

previously reported predictive performance.  The selected computational disorder predictors 

cover all three types of prediction architecture classes that were described in the Section 2.2.1. 

The analysis includes GlobPlot [47], IUPred-short and IUPred-long [48] representing the ab initio 

methods. DisEMBL, VSL2B [53], SPOT-Disorder [100] that are the machine learning methods. 

Finally, DISOPRED3 [112] and the three versions of ESpritz that are tuned to predict intrinsic 

disorder annotated from X-ray structures (ESpritz-Xray), NMR structures (ESpritz-NMR) and using 

DisProt database (ESpritz-DisProt) [192] represents the meta predictors. These predictors are 

highly-cited and by extension often used. Their citation numbers are 1763 (IUPred), 1241 

(DisEMBL), 1002 (GlobPlot), 680 (VSL2B), 355 (DISOPRED3), 256 (ESpritz), and 107 (SPOT-

Disorder); source: Google Scholar on April 14, 2020. Moreover, this selection of methods overlaps 

with the predictors that were covered in the recent comparative assessments [69-71] and 

includes the five tools (SPOT-Disorder, DISOPRED3, DisEMBL, IUPred and ESpritz) that have been 

highlighted as the best-performing in the last three comparative surveys [69-71].  



70 | P a g e  
 

5.3 Collection of benchmark dataset  

According to a recent analysis, the two most commonly annotated partners of IDPs are proteins 

and nucleic acids, which collectively cover 84% of the partner-annotated disordered regions in 

the DisProt resource [171]. More precisely, 66% partner-annotated regions have protein 

partners, 17% nucleic acids partners, 6% metals, 5% lipids, 5% small molecules, and 1% inorganic 

salt partners. This motivates our focus on the protein- and nucleic acids-binding IDPs. 

Recent comprehensive survey concludes that an “updated and more comprehensive benchmark 

datasets should be established” [14]. Correspondingly, we establish a new benchmark set with 

two main objectives in mind: 1) explicit reduction in similarity to the training sets of the selected 

10 disorder predictors; and 2) inclusion of the annotations of the protein-binding and nucleic-

acid binding proteins. First, we collected the complete set of 1,418 proteins from the newest 

version 8 of DisProt that have experimental annotations of disorder and binding partners; we 

exclude the annotations marked as “ambiguous” in DisProt. Second, we collected the training 

datasets of the ten disorder predictors. We clustered the combined set of the DisProt and training 

proteins using CD-Hit [201] at 30% sequence similarity and we removed all clusters that include 

at least one training protein. The remaining set of 319 DisProt proteins is dissimilar to the training 

proteins (at 30%) and includes functional annotations that allow us to identify the sets of protein-

binding proteins (that include at least one disordered protein-binding region) and nucleic-acid 

binding proteins (that include at least one disordered nucleic acid-binding region). Third, we 

mapped the un annotated regions from DisProt protein sequences into PDB. In order to execute 

this mapping, we first create a database of PDB sequences where regions that lack structure are 

masked. Then we align unannotated regions from Disprot protein sequences to above masked 

PDB sequence database using BLAST. We annotate any unannotated DisProt protein region which 

aligns to at least one masked PDB sequence region with ≥ 90% similarity and have e-value ≤ 0.1 

as structured. In order to do generate a more diverse and balanced dataset we match the number 

of fully disordered proteins (38) in the dataset with equal number of fully structured proteins 

from PDB. When we are selecting fully structured sequences from PDB we make sure to minimize 

the risk of them including any disordered regions by selecting  monomers with high-quality crystal 
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structures (resolution < 2Å) that cover complete UniProt sequences based on mapping with SIFTS 

[202]. We cluster abovementioned fully structured protein sequences from PDB with the training 

datasets of selected disorder predictors using CD-HIT at 30% sequence similarity threshold and 

select 38 random proteins which do not belong to clusters with protein sequences from training 

datasets of selected disorder predictors. The final dataset consists of total number of 357 

proteins that has experimental disorder and disorder function annotations from Disprot, 

validated structured region annotation from PDB and unmapped regions where they are 

excluded from the assessment. This benchmark dataset is summarized in Table 9. We emphasize 

that this dataset not only ensures low similarity to the training datasets of the tested methods 

but also uses high-quality annotations of the structured regions and includes fully structured 

proteins. This allows us to accurately study performance of the disorder predictors on the 

structured proteins and regions, which is another important feature that is missing in the past 

surveys. 

Table 9: Summary of the benchmark dataset. This table was published in [165]. 

Metric Complete 
dataset 

Protein-binding 
proteins 

Nucleic acids-
binding proteins 

Number of proteins 357 108 15 
Number of residues 186,337 38,221 5,934 
Number of disordered residues 31,608 14,125 1,567 
Disorder content (% of disordered residues) 0.17 0.37 0.26 

 

5.4 Comparative assessment of predictive performance 

5.4.1 Effect of the sequence similarity reduction and structured region validation on benchmark 

dataset 

In this section we assess the impact of the sequence similarity reduction and structured region 

validation of the benchmark dataset to the predictive performance of selected 10 disorder 

predictors. As an initial point of reference, we report the predictive performance of same 10 

disorder predictors from previously conducted surveys. The previously reported predictive 

performance nine of the ten predictors was taken for from [70] and for the remaining SPOT-
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Disorder from [203]. The previous evaluations do not limit the similarity of benchmark dataset 

against the training datasets of the respective disorder predictors as well as do not validate the 

experimental annotations for the unannotated regions in the DisProt proteins. In Figure 21, we 

denote the results from previous surveys as “previous results” using the black line. We also report 

results for two versions of our new benchmark dataset. One with limited similarity to the training 

datasets of the tested predictors (but without validation of the experimental annotations of 

order, like it was done in the past surveys) and in the other version we limit the similarity to the 

training datasets and validate the experimental annotations of unannotated regions in the 

DisProt proteins. The results for the methods in the first version are denoted as the “limited 

similarity benchmark” in Figure 21 and shown using the red line. The predictive performance for 

the second version of dataset with limited similarity and ordered region validation is denoted as 

the “new benchmark” and shown using green lines. 

 

Figure 21: Comparison of the predictive quality measured with AUC (panel A; solid lines) and MCC (panel 
B; dashed lines). We report results on the new benchmark (in green; dataset with <30% sequence 
similarity to the training proteins + with experimental validation of structured regions + with fully 
structured proteins), based on recent previous reports (in black; datasets with no limits on sequence 
similarity to the training proteins + with no experimental validation of structured regions + with only 
disordered proteins), and based on a similarity-limited benchmark (in red; a version of the new benchmark 
dataset with <30% sequence similarity to the training proteins + no experimental validation of structured 
regions + only disordered proteins). The latter dataset is a proxy for the datasets used in prior studies with 
the only difference being the reduced similarity to the training proteins. Disorder predictors are sorted by 
their AUC values on the new benchmark dataset. This figure was published in [165]. 



73 | P a g e  
 

The analysis of the differences in the predictive performance between the “previous results” 

(black lines in Figure 21) and the “limited similarity benchmark” (red lines in Figure 21) allows us 

to assess the effect of limiting sequence similarity against the training datasets of the selected 

disorder predictors.  These results are highly correlated with Pearson’s correlation coefficient of 

0.94 for ROC-AUC and 0.89 for MCC. Moreover, we note a consistent drop in the predictive 

performance across the 10 considered predictors from the “previous results” to the “limited 

similarity benchmark” results in both ROC-AUC and MCC. The average ROC-AUC across all 10 

considered predictors drops by 0.03 (0.72 vs 0.75). The average MCC drops by 0.06 (0.03 vs 0.36). 

Furthermore, the best methods based on the two predictive performance measures also record 

a drop in the predictive performance with the sequence similarity reduction. ESpritz-DisProt 

which records the highest AUC in the past survey drops by 0.05 (from 0.804 to 0.758) and SPOT-

Disorder which records the highest MCC in the past survey drops by 0.10 (from 0.462 to 0.361) 

These observations demonstrate that results on the benchmark datasets that share high 

sequence similarity with the training datasets of the predictors that they asses tend to 

consistently inflate the predictive performance. 

The predictive performance difference of methods between the “limited similarity benchmark” 

and the “new benchmark” experiments demonstrate the impact of providing experimental 

validation to the unannotated regions in the DisProt proteins. We observe that the predictive 

performance improves when using the validated experimental annotations of the ordered 

regions. According to Figure 21, the highest improvement is for VSL2B which improves ROC-AUC 

by 0.14 and MCC by 0.20. In contrast, the overall poorly performing GlobPlot drops its predictive 

performance when using the experimentally validated order annotations. GlobPlot is originally 

designed to differentiate globular proteins from non-globular proteins, where the lack of 

“globularity” acts as a proxy to detect disorder. We show that GlobPlot detects validated 

structured regions as non-globular while they are in fact not disordered (and not necessarily 

globular).
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Table 10: Predictive performance on the new benchmark dataset. The table lists results on the complete benchmark dataset with 357 proteins, 
the set of 38 fully disordered proteins, the set of 38 fully structured proteins, and the benchmark dataset of 319 proteins that exclude the fully 
structured proteins. We quantify statistical significance of differences in AUC between the best predictor (identified in bold font) and each the 
other nine predictors on a given dataset. We bootstrap 50% of the proteins 100 times. For normal measurements (tested with the Anderson-
Darling test at 0.05 significance) we use the paired t-test; otherwise we use the Wilcoxon rank sum test; = and + mean that the differences are not 
significant (p-value > 0.01) and significant (p-value ≤ 0.01), respectively. This table was published in [165]. 

Predictor 
Benchmark dataset Fully disordered 

proteins 
Fully ordered 

proteins Benchmark dataset without fully ordered proteins 

AUC Precision Sensitivity FPR MCC Sensitivity FPR AUC Precision Sensitivity FPR MCC 
VSL2B 0.897 0.609 0.845 0.204 0.519 0.925 0.000 0.805+ 0.611 0.845 0.399 0.404 
ESpritz-DisProt 0.858+ 0.593 0.487 0.060 0.473 0.811 0.052 0.842 0.685 0.487 0.067 0.486 
SPOT-Disorder 0.795+ 0.334 0.756 0.261 0.390 0.662 0.290 0.826+ 0.578 0.756 0.234 0.485 
ESpritz-Xray 0.790+ 0.375 0.623 0.193 0.366 0.702 0.226 0.812+ 0.586 0.623 0.160 0.459 
IUPred-short 0.788+ 0.431 0.613 0.170 0.386 0.692 0.176 0.801+ 0.607 0.613 0.165 0.444 
IUPred-long 0.785+ 0.422 0.693 0.233 0.373 0.834 0.262 0.806+ 0.625 0.693 0.206 0.463 
ESpritz-NMR 0.743+ 0.336 0.721 0.310 0.317 0.774 0.351 0.776+ 0.563 0.721 0.272 0.414 
DISOPRED3 0.724+ 0.294 0.653 0.293 0.283 0.662 0.340 0.767+ 0.513 0.653 0.248 0.380 
DisEMBL 0.717+ 0.308 0.439 0.162 0.257 0.559 0.193 0.741+ 0.520 0.439 0.132 0.336 
GlobPlot 0.310+ 0.122 0.428 0.655 -0.175 0.388 1.000 0.563+ 0.332 0.428 0.326 0.096 
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5.4.2 Comparative assessment of disorder predictors on the benchmark dataset  

In Table 10 we compare the predictive performance of the ten disorder predictors. The left panel 

gives the results for the full benchmark dataset with 357 proteins. VSL2B predictor records the 

highest ROC-AUC of 0.89 which it is significantly better than other 9 predictors (p-value <0.01). 

At the same time several other disorder predictors record high predictive performance 

(AUC>0.75 and MCC>0.35) on this benchmark dataset including ESpritz-DisProt, SPOT-Disorder, 

ESpritz-Xray and both versions of IUPred.  Precision measures of the VSL2B and ESpritz-DisProt 

reveal that these methods identify majority of the disordered residues correctly. Moreover, 

VSL2B and SPOT-Disorder record the top two sensitivity values indicating they identify over 75% 

of the native disorder residues. These results reveal that several disorder predictors are capable 

of providing accurate predictions.  

The right panel of Table 10 reports the predictive performance of the ten selected methods on a 

subset of the complete benchmark dataset where we exclude fully structured proteins. In this 

subset ESpritz-DisProt shows the highest predictive performance with ROC-AUC of 0.85 which is 

significantly better than other nine methods (p-value <0.01). The sensitivity remains same as the 

complete benchmark dataset as the native disordered residues are unchanged. The precision 

improves by a large margin for all predictors, except for VLS2B, when the fully ordered proteins 

are removed. This is because majority of these methods predict substantial number of false 

positives in the fully ordered proteins. This is further validated by the FPR column for the fully 

ordered proteins where the considered methods predict between 5% (ESpritz-DisProt) and 100% 

(GlobPlot) of the false positive predictions. The one exception is VSL2B that produces no false 

positives in these proteins. At the same time, we observe that FPRs for the fully ordered proteins 

are in line with FPRs in the subset of the dataset that includes disordered proteins. We find that 

nine out of ten methods overpredict disorder in the fully ordered proteins as well as in the 

ordered regions of the disordered proteins. The one exception, VSL2B, scores 0.00 FPR in the fully 

ordered proteins and highest sensitivity in the fully disordered proteins. This explains VLS2B’s 
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overall best predictive performance in our similarity-limited benchmark dataset (Table 10 and 

Figure 21). 

We conclude that VSL2B is the most versatile method among the ten considered disorder 

predictors, particularly when it comes to predicting disorder for the fully ordered and fully 

disordered proteins.  Apart from this, ESpritz-DisProt and SPOT-Disorder provide strong 

predictive quality measured with the ROC-AUC and MCC scores.   

5.4.3 Predictive performance assessment on the disordered protein-binding and nucleic acid-

binding proteins 

In this section we provide the comparative analysis of predictive performance for the 10 disorder 

predictors in two main functional sub-classes of the disordered proteins, namely the disordered 

protein-binding proteins and the disordered nucleic acid binding proteins. We compare the 

predictive performance of the methods across the above mentioned two functional sub-classes 

as well as against the complete benchmark dataset. In order to conduct this comparison, we 

equalize the native disorder content among the two sub-classes and the complete benchmark 

dataset. The disorder content equalization is motivated by several previous studies that show 

that the predictive performance of disorder predictors drops when tested on proteins with larger 

amount of the native disorder [17, 59, 69, 126].    

We perform disorder content equalization by subsampling the two larger sets (the complete 

benchmark dataset and the disordered protein binding subset) to match the disorder content in 

the smallest set of the disordered nucleic acid binding proteins. We start the subsampling by 

calculating the protein level native disorder content distributions for each dataset and 

quantifying the significance of the differences between these distributions. Next, we remove the 

proteins from two large subsets that increase the p-value by largest margin until we reach p-

value of 0.001.  Figure 22 shows that predictive performance distribution of the 10 methods 

before (grey box plots) and after (white box plots) we equalize the native disorder content. Figure 

22 shows that even though absolute values of the predictive performances are shifted by 

disorder content equalization, the relative differences in the predictive performance across the 
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datasets remain similar (i.e., differences between the white box plots follow the same pattern as 

the differences for the gray box plots). 

 

Figure 22: Distribution of the AUCs (panel A) and MCCs (panel B) over nine disorder predictors. We exclude 
the poorly‐performing GlobPlot from this analysis. The box plots show the lowest AUC (bottom error bar), 
first quartile (bottom of box), median (horizontal line inside box), third quartile (top of box) and highest 
AUC (top error bar). The grey plots are for the original datasets while the white plots are for the 
sampled/disorder content‐equalized datasets that have similar distribution of the per‐protein disorder 
content. The content distribution similarity was measured using Kolmogorov–Smirnov test at p‐value of 
0.001. This figure was published in [165].  

Figure 23 shows the predictive performance of the ten disorder predictors across two functional 

sub-classes of disorder and for the generic disordered proteins in the benchmark dataset. These 

results reveal that predictions for the disordered nucleic acid binding proteins secure similar 

levels of predictive performance as the performance for generic disordered proteins. The average 

(across predictors) ROC-AUC is 0.781 for the nucleic acid binding proteins while it is 0.774 for the 

generic disordered proteins. Similarly, the corresponding average MCCs are 0.422 and 0.406, 

respectively. At the same time, we observe that quality of the predictions for the disordered 

protein binding proteins drops substantially when compared to other two results, with the 

average ROC-AUC of 0.739 and average MCC of 0.356. According to Figure 23, this decrease in 

A B 
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the predictive performance is consistent across eight of the ten predictors. One of the exceptions 

is ESpritz-DisProt that maintains similar levels of predictive performance across two functional 

sub-classes and the generic disordered proteins. The second exception is GlobPlot that registers 

consistently poor predictive performance.  The best performing disorder predictor for the generic 

disordered proteins and disordered protein binding proteins is ESpritz-DisProt while for the 

nucleic acid binding proteins the best results are produced by SPOT-Disorder. These results are 

in agreement with a recent study that was conducted using structured/ordered proteins [204]. It 

shows that the quality of the predictions of the protein binding residues is much worse that the 

quality of the predictions of the DNA/RNA binding protein residues for the structured proteins.  

 

Figure 23: Comparison of the predictive quality measured with AUC (panel A; solid lines) and MCC (panel 
B; dashed lines). We report results on the generic set of disordered proteins (i.e., proteins that have 
disordered residues) from benchmark dataset (in black), the disordered protein-binding proteins (in 
yellow), and the disordered nucleic acids-binding proteins (in blue). Disorder predictors are sorted by their 
AUC values on the disordered proteins. This figure was published in [165].  

5.5 Summary 

Prediction of intrinsic disorder plays an important rule to bridge the large and growing gap 

between the limited amount of the available experimental annotations and the large numbers of 

newly discovered unannotated protein sequences. Over 60 disorder predictors are currently 

available. This large number of tools makes it challenging to identify the best disorder predictor 
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for a given set of proteins. One option to solve this problem is to use DISOselect, the tool that we 

developed and describe in Chapter 4. Another option is to rely on the disorder predictor 

assessments that focus on providing insights that would facilitate selection for specific classes of 

the disordered proteins. This would be suitable in scenarios where the end user would know the 

class of the disordered proteins that they work with (e.g., whether it bind proteins or nucleic 

acids). We identify 11 surveys that provide comparative assessment of predictive performance 

[68-78] and observe that only one of them provides analysis for a specific class of disordered 

proteins (membrane proteins). To this end, we conduct first-of-its-kind analysis that assesses the 

predictive performance for two large functional sub-classes of the disordered proteins: protein 

binding and nucleic acid binding proteins. Our analysis also overcomes two other limitations of 

the previous studies: use of test datasets that may include proteins that are similar to the training 

datasets of the tested predictors and lack of validation for the annotations of the ordered regions. 

We consider a representative set of ten disorder predictors and a benchmark set with limited 

similarity to the training datasets of these predictors and we use validated experimental 

annotations of the ordered regions in that test dataset.  

Our assessment reveals that limiting the similarity of the benchmark dataset against the training 

datasets of the selected disorder predictors results in a consistent and substantial drop in the 

predictive performance when compared with previous assessments that did not limit the 

similarity [69-71, 73, 205]. This means that the results of the past studies likely overestimate the 

predictive performance.  

The proper validation of the experimental annotations of the ordered regions in the disordered 

proteins results in higher levels of the reported predictive quality. This is because higher quality 

ground truth information is used to quantify the predictive performance. We suggest that future 

assessments should take this into consideration when designing benchmark dataset.  

We identify three disorder predictors that offer particularly strong predictive performance. 

VSL2B is the most versatile method that provides the best results for the fully structured and fully 

disordered proteins and very strong results for proteins that have disordered regions. However, 

ESpritz-DisProt and SPOT-Disorder outperform VSL2B for the latter type of proteins. Most 
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importantly, we analyze performance for the two functional classes of disordered proteins: 

protein and nucleic acid binding proteins. We demonstrate that majority of the disorder 

predictors offer much lower predictive performance for the disordered proteins with protein 

binding regions. The AUC and MCC values for these proteins are on average lower by 0.04 and 

0.05 when compared to the set of generic disordered proteins, and by 0.04 and 0.07 when 

compared to the disordered nucleic acids-binding proteins, respectively.  

These results suggest certain functional classes of disordered proteins are more difficult to 

predict accurately, calling for the development of new disorder predictors. At the same time, our 

research also shows complete lack of tools to predicts some of the functional classes of the 

disordered proteins. While specialized tools for the predictions of the disordered protein and 

nucleic acids binding are already available [172, 173, 206], we find that disordered lipid binding 

interactions are devoid of predictive tools. This predictive target was neglected primarily because 

of the limited availability of reliable experimental annotations. However, with the recently 

growing numbers of experimental annotations and rapid advancements in machine learning 

techniques that allow building models from limited-size datasets (e.g., deep neural networks 

coupled with transfer learning), the development of computational methods to predict these 

neglected functions become feasible. The next chapter addresses the development of such new 

predictive tool. 
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Chapter 6. Accurate prediction of the disordered lipid-binding residues 

from protein sequences 

6.1 Introduction and motivation 

This chapter addresses objective 4 that is defined in Section 1.2. We have conceptualized, 

developed and comparatively tested a runtime-efficient computational system that accurately 

predicts disordered lipid-binding residues in the intrinsically disordered proteins. IDRs are shown 

to have molecular level interactions with multiple binding partners including proteins, DNA, RNA, 

lipids, metal ions and other small molecules [34, 167, 168, 207-211]. However,  only few hundred 

of IDRS are experimentally annotated with their binding partners [34, 206]. These data can be 

used to build tools capable of predicting IDR-partner interactions for the majority of the 

disordered proteins that currently lack these functional annotations [172, 173, 180, 206, 212].   

As we show in Section 2.2.2 (Table 4), significant majority of current computational predictors of 

disorder functions aim to predict disordered protein-binding regions. In contrast, there is only 

one method, DisoRDPbind [104, 105] for the prediction of the DNA and RNA interactions. To best 

of our knowledge, there are no tools that predict disordered lipid-binding regions. The lack of the 

computational methods that predict interactions with majority of the binding partners can be 

explained by the lack of a sufficient amount of the experimentally annotated data to develop and 

validate such predictors. However, recent rapid growth in the amount of the available 

experimental annotations for the binding partners has enabled the development of new 

computational predictors. As an example, the latest version (version 8.0) of the DisProt, which is 

the largest repository of the functional annotations of IDPs, has grown by about 50% in the 

amount of the annotations for the disordered lipid binding regions when compared to the 

previous version of DisProt (version 7.2) [8, 33]. 

Lipid molecules carry out many important structural and functional roles including energy 

storage, regulation, signaling, insulating and transporting [213-218]. Studies show that lipids 

interact with proteins. For instance, lipid molecules facilitate fibrillogenesis by inducing protein 
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structures to assemble into protofibrillar and fibrillary structures [219-222]. Conventional 

experimental techniques to identify protein-lipid interactions include immunocytochemistry, 

cytotoxicity assays, circular dichroism spectroscopy, calcein leakage and differential scanning 

calorimetry [223-226]. Several diseases associated with misfolding of IDPs have a connection 

with their affinity to bind lipid molecules [227]. Misfolding of α-synuclein, which is a fully 

disordered protein, and tau proteins, which includes significant amount of disorder, are 

examples where disorder and protein-lipid interactions are connected with pathogenic 

conditions like the Parkinson's disease, Alzheimer's disease, multiple-system atrophy, and 

dementia with Lewy body [224, 225, 228-231]. As another example, SecA from E. coli illustrates 

an interaction between IDRs and a lipid bi-layer [232]. Moreover, some bacteriocins, such as 

colicin A, unfold to the disordered molten globule state when they interact with the 

cytoplasmic lipids of the host cell to perform membrane insertion [233]. 

Motivated by the recent growth in the annotations of the lipid-interacting IDRs and the 

functional importance of these interactions, we present DisoLipPred, first-of-its-kind predictor 

of the disordered lipid binding residues (DLBRs). These residues are intrinsically disordered, 

interact with lipids and exclude the transmembrane regions. This means that DisoLipPred 

produces predictions that complement the results generated with the current predictors of the 

transmembrane regions [234-236]. DisoLipPred utilizes a deep neural network to predict 

propensity for lipid binding in disordered regions for each amino acid in the input protein 

sequence. The design of this tool relies on several innovations. First, we utilize transfer learning. 

We start with a more generic network that predicts IDRs that interact with different types of 

partner molecules, which is motivated by the large amount of the underlying training data. We 

freeze this partner type-agnostic network and extend it to develop the final model that 

specializes the predictions to the lipid partners. Second, we use literature to identify 

physiochemical properties that are associated with protein-lipid interactions and use them to 

expand the inputs to the deep network. Third, we deploy a new training and prediction strategy 

that bypasses ordered/structured residues. More specifically, we train the deep network 

models using only the native disordered residues to identify DLBRs. This focuses our model on 

identifying DLBRs among other disordered residues, compared to a more traditional scenario 
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that differentiates DLBRs from both structured and disordered residues. During the prediction 

process we use a modern disorder predictor to identify disordered residues which are 

processed by our deep network to predict DLBRs. The predicted ordered residues bypass the 

network, since by default they exclude DLBRs. We perform ablation analysis that empirically 

demonstrates that these innovations lead to significant improvements in the predictive 

performance when compared to a more traditional design that exclude these solutions. Such 

traditional design is characteristic to the current predictors of the IDRs that interact with 

proteins and nucleic acids [92, 102, 105, 195, 206, 237-240]. 

6.2 Materials and methods 

6.2.1 Dataset description 

We collect experimental data to establish training and test datasets. We use the training 

dataset to design and train the deep network. More specifically, we further subdivide the 

training dataset into learning and validation subsets where we use the learning partition (2/3 of 

the training dataset) to train the model which we test on the validation partition (1/3 of the 

training dataset). We exclude the test set from the training process and use it solely to perform 

comparative assessment against other, indirect approaches to predict DLBRs. These datasets 

are composed of three types of proteins: proteins with DLBRs, proteins with other IDRs and 

fully structured proteins. This allows us to develop and test models that differentiate DLBRs 

from other disordered and structured residues. We collect the proteins with IDRs and DLBRs 

from version 8 of DisProt [8]. We exclude disordered regions with an ambiguous function or 

structure annotations, which are tagged in DisProt. We also exclude the proteins with IDRs that 

do not have annotated function to minimize the likelihood of false negative annotations (some 

of these IDRs could bind lipids). Moreover, inspired by recent works [166, 205], we further 

process the proteins from DisProt to ensure that we use high-quality annotations of structured 

regions. Instead of assuming that regions that lack disorder annotations are by default 

structured, we map the un-annotated regions to the sequences of the protein structures from 

Protein Data Bank (PDB) [241], for which we mask the disordered residues. We utilize the 
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protocol from [166] that relies on the alignment with Basic Local Alignment Search Tool (BLAST) 

algorithm [155]. The regions in the DisProt sequences that share >90% similarity and e-value 

<0.1 with at least one masked PDB sequences are assumed structured. We collect the fully 

structured proteins from PDB [241]. We minimize the likelihood that these proteins include 

IDRs by collecting high-resolution (<2Å) monomers that do not have disordered regions (i.e., 

structure is resolved for all amino acids) and which map into full UniProt sequences based on 

SIFTS [202]. We cluster the combined collection of these three protein types using the CD-HIT 

algorithm with 25% similarity [242]. We place the entire clusters into either training or test 

datasets, which ensures that these datasets share <25% sequence similarity. The test dataset is 

composed of half of the proteins with DLBRs, 100 proteins with other IDRs and 100 structured 

proteins. We place the remaining proteins into the training dataset. We use two versions of the 

training dataset to implement the transfer learning. The complete training, which we use to 

generate the partner type-agnostic deep network, includes the proteins with DLBRs, proteins 

with IDRs that interact with other molecules and structured proteins. We transfer this network 

into an expanded network that predicts DLBRs and which we train using a resampled training 

dataset, which we dub target training dataset. This dataset focuses on the proteins with DLBRs 

by undersampling at random 100 proteins with the other IDRs and 100 structured proteins. We 

provide details of these datasets, including their overall sizes and numbers of annotated 

residues, in the Table 11. 

Table 11: Description of the training and test datasets. 

 

We use a secondary test dataset to empirically assess whether DisoLipPred’s predictions of 

DLBRs in fact exclude the transmembrane regions. We sourced this TM (transmembrane) test 

dataset from a recent study that introduced SCAMPI2 predictor of the transmembrane regions 

[234]. We clustered the transmembrane proteins used in that study together with the proteins 

Dataset 
Number of residues Number of proteins 

disordered lipid 
binding disordered all fully structured all 

Complete training dataset 1,921 141,018 2,426,416 1,446 2,892 
Target training dataset 1,921 17,823 96,015 100 211 
Test dataset 1,471 20,623 106,348 100 219 
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from the complete training dataset using CD-HIT at 25% similarity and selected the 

transmembrane proteins from clusters that exclude the training proteins. We combine these 

transmembrane proteins with the transmembrane proteins from the test dataset to devise the 

TM dataset. This dataset includes 25 proteins, 15,978 amino acids and 4,308 transmembrane 

spanning residues, and shares <25% sequence similarity to the training datasets.  

6.2.2 DisoLipPred architecture  

The prediction workflow of the DisoLipPred consists with four main components as shown in 

Figure 24, namely bypass module, sequence profile module, neural networks and rescaling 

module. The input protein sequence is first processed by SPOT-Disorder [198], one of the most 

accurate disorder predictors according to multiple recent assessments including the CAID 

experiment [69, 166, 205]. The SPOT-Disorder’s predictions are fed into the bypass module that 

separates the predicted disordered residues, which are subsequently processed by the deep 

network to predict DLBRs, from the predicted order residues, which bypass the deep network 

prediction. Next, sequences of proteins with the predicted disordered residues are used to 

derive sequence profiles. The profiles incorporate sequence-derived structural and functional 

information that is relevant to the prediction of DLBRs. They are utilized as the input to a deep 

neural network that predicts propensity for disordered lipid binding and which is designed using 

transfer learning. Finally, the rescaling module normalizes and merges the outputs from the 

deep network with the predictions of the ordered residues from the bypass module, producing 

the final predictions.  
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Figure 24: Prediction workflow of DisoLipPred. 

6.2.2.1 Bypass module 

DLBRs are localized in the disordered regions. The main challenge for DisoLipPred is to identify 

these lipid-binding residues among the other disordered residues. Consequently, during the 

training process we train and validate the deep network on the native disordered residues. We 

exclude the ordered residues from training since they can be accurately identified with one of 

the currently available accurate disorder predictors. We use the highly-accurate SPOT-Disorder 

predictor [198] for that purpose. The bypass module separates disordered from ordered 

residues based on the SPOT-Disorder’s predictions, such that the putative ordered residues 

bypass the prediction process while the putative disordered residues are selected for prediction 

with the deep network. The SPOT-Disorder generated propensities for the putative ordered 

residues are rescaled and combined with the deep network generated propensities in the 

rescaling module to produce the propensities for DLBRs. We use ablation analysis to 

demonstrate that the approach that applies the bypass module provides more accurate results 

than the direct prediction of DLBRs from all residues. 
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6.2.2.2 Sequence profiles 

The sequence profiles provide a rich source of information that is relevant to the prediction of 

DLBRs and derived directly from the sequences. We use two profiles to facilitate the transfer 

learning. One for the partner-agnostic portion of the deep network that aims to predict 

interacting disordered residues (red areas in Figure 24) and the other for the part of the deep 

network that predicts DLBRs (green areas in Figure 24).  

The partner-agnostic profile relies on a comprehensive collection of predictors of structure, 

intrinsic disorder and disorder functions, with particular focus on the prediction of the 

interacting disordered regions. We use the predictions of the solvent accessibility from 

ASAquick [243], secondary structure from PSIPRED [147], disorder from SPOT-Disorder [198], 

protein, DNA and RNA interacting disordered regions from DisoRDPbind [104, 105], protein-

binding disordered regions from ANCHOR 2 [195], and disordered linker regions from DFLpred 

[107]. This profile is summarized in Appendix 2. 

The second profile, which serves as the input to predict DLBRs, focuses on the sequence-

derived information that is specific to the lipid-binding. We use two relevant structural 

properties, the putative solvent accessibility and secondary structure generated with ASAquick 

[243] and PSIPRED [147], respectively, putative disorder from SPOT-Disorder [198], and a 

curated set of 46 physiochemical properties of amino acids that are associated with protein-

lipid interactions [244]. These properties were selected empirically from a comprehensive 

collection of over 530 physiochemical indices from the AAindex database [245] based on their 

ability to discriminate between lipid-binding and non-lipid binding proteins [244]. They include 

hydrophobicity, hydrophobic moment, charge, isoelectric point, transfer energy, Gibbs energy, 

solvation free energy, propensity for helical and sheet conformations, and propensity for side 

chain interactions. Complete list of these properties is in Appendix 2 

6.2.2.3 Transfer learning of the deep recurrent neural network model 

Transfer learning is a training strategy where knowledge learned from a source domain/dataset 

is transferred to a related target domain/dataset to improve the learning in the target domain 
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[246]. This strategy is deployed when the target dataset has limited amount of data compared 

to a more data-rich source dataset, and is particularly useful for training the data-hungry deep 

neural networks [247]. Transfer learning was recently applied to predict secondary structures of 

RNA [248], caspase and metalloprotease cleavage sites [249], MHC‐I peptide binding [250] and 

transcription factor binding [251], but it was never used to develop predictors of interacting 

disordered regions. Prediction of DLBRs offers an ideal scenario for the transfer learning. While 

we have a relatively limited amount of DLBRs (3,392 residues), the amount of the data 

concerning a generic set of interacting IDRs is very substantial (161,641 residues). Thus, we first 

build a partner-agnostic deep network using the complete training dataset, which we then 

freeze and extent with additional layers to develop the target network that predicts DLBRs 

using the target training dataset. We adopt deep recurrent networks given their recent success 

with the prediction of disorder [198, 199, 203]. 

The partner-agnostic network consists of two long term-short memory layers that are 

sandwiched between fully connected layers with ReLu activation function in the internal layers 

and the sigmoid activation function at the output layer (Figure 25A). We use the RMSprop 

optimizer, binary cross entropy as the loss function, dropout rate of 0.5 (to minimize 

overfitting), and dynamic adjustment of the learning rate which we set to gradually decrease as 

the training progresses. This network uses the partner-agnostic profile as the input. We 

optimized the number of layers and the number of neurons per layer using an iterative 

approach where we start from a small size and increase it by a small increment until AUC 

measured for the prediction of interacting IDRs on the validation set decreases in two 

consecutive iterations.  

The optimized partner-agnostic network is transferred to develop the target network. We 

remove the output layer from the partner-agnostic model and freeze it. We connect the last 

layer of this network to several additional layers that narrow down the partner-agnostic 

prediction to the partner-specific prediction of DLBRs. This network extends the partner-

agnostic profile with the additional inputs relevant to the prediction of DLBRs that we discuss in 

Section 6.2.2.2. This extension includes multiple bidirectional long short-term memory layers 

placed between fully connected layers (Figure 25B). Similar to the training of the partner-
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agnostic network, we optimize the size of the additional layers using the increment approach 

that maximizes AUC for the prediction of DLBRs on the validation set. 

 

Figure 25: Architecture of the deep recurrent neural network used by DisoLipPred. Panel A shows the 
partner-agnostic network that we train using the dataset of IDRs that interact with different partner types. 
Panel B gives the network that extends the partner-agnostic network to perform the partner-specific 
prediction of DLBRs. 

6.2.2.4 Rescaling module 

We combine the disordered lipid-binding propensities generated by our deep recurrent neural 

network for the disordered residues predicted with SPOT-Disorder and the SPOT-Disorder’s 

propensity scores for the predicted ordered residues. First, we normalize the outputs from the 

deep neural network to the unit range. We also rescale the SPOT-Disorder’s propensities for 

predicted ordered residues, which bypass the neural network, so they cover the 0 to 0.5 range. 
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This aims to minimize risk of missing out DLBRs among the incorrect predictions of order from 

SPOT-Disorder. This way, these false negatives can be predicted with moderately high scores. 

6.3 Results 

6.3.1 Ablation analysis of the prediction model 

The three main innovations underlying DisoLipPred include the use of the transfer learning, 

lipid-binding features and the bypass module. We perform ablation analysis to quantify the 

impact of these innovations on the predictive performance of DisoLipPred. To do that, we 

compare the results produced by the DisoLipPred model with the three setups where one of 

these features is removed and the setup where all three features are removed (Table 12). For 

instance, in the setup 1 we exclude transfer learning by removing the partner-agnostic network 

and relying solely of the lipid binding neural network. The bypass module works by training and 

testing the deep network on the disordered residues and sidestepping the deep network 

predictions for the putative ordered residues. The training process utilizes the native disordered 

residues while during tests/predictions we use the predictions from SPOT-Disorder. In setup 3, 

we evaluate the impact of using the predicted disordered residues for both training and 

testing/predictions. The setup 4 excludes all three innovations where for the bypass feature we 

train/test the deep network using both disordered and ordered residues. This bare-bone 

predictor is comparable to current deep learners that are used to predict disorder [196, 198, 

203] and the protein binding IDRs [252, 253]. We trained each of the five setups separately by 

maximizing the AUC on the validation set.  
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Table 12: Experimental setups for the ablation study. 

Setup Use of transfer learning Use of lipid features Bypass module during training 
DisoLipPred Yes Yes Native disorder vs native order 
1 No Yes Native disorder vs native order 
2 Yes No Native disorder vs native order 
3 Yes Yes Predicted disorder vs predicted order 
4 No No No 

 

Table 13: Predictive performance of DisoLipPred and its variants from the ablation analysis (Table 1) on 
the test dataset. We perform the assessment on the complete test dataset, and also on the subset of 
disordered residues from the test dataset. We quantify the binary metrics (sensitivity and F1) at the fixed 
specificity = 0.9. We assess the statistical significance of the differences between the results produced by 
DisoLipPred and each of the variants using procedure explained in Section 2.2. * indicates that DisoLipPred 
provides significantly better result (p-value <0.05). 

 Complete test dataset Disordered residues in the test dataset 
Setup AUC Sensitivity Specificity F1 AUC Sensitivity Specificity F1 
DisoLipPred 0.781 0.382 0.900 0.145 0.635 0.286 0.900 0.201 
1 0.747* 0.290* 0.900 0.112* 0.572* 0.162* 0.900 0.118* 
2 0.745* 0.327* 0.900 0.125* 0.603* 0.146* 0.900 0.175* 
3 0.726* 0.260* 0.900 0.101* 0.593* 0.177* 0.900 0.129* 
4 0.678* 0.123* 0.900 0.049* 0.396* 0.046* 0.900 0.035* 

 

We compare predictive performance of the five setups on the test dataset in Table 13. We 

assess the predictions on the complete datasets as well as on the subset of the disordered 

residues. The latter evaluation quantifies the ability of these models to solve a more difficult 

problem of identifying DLBRs among other disordered regions i.e., DLBR are more similar to 

other disordered residues than to the ordered residues.  

DisoLipPred offers accurate predictions with AUC = 0.78 and sensitivity = 0.38. This sensitivity is 

relatively high given that we measure it at the low FPR = 0.10 (specificity = 0.90). Compared to 

the complete DisoLipPred model, we note a noticeable and statistically significant drop in the 

predictive performance for all metrics and ablation variants (p-value < 0.05). Among the setups 

where one of the innovations is removed, the largest drop is for the setup 3 where we 

manipulate the bypass feature. This suggests that our deep networks can be better trained to 

recognize DLBR among native disordered residues than among the predicted disordered 

residues. The errors from the disorder predictions and the networks training seem to 
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accumulate in the latter case. The results further substantially decline when all three 

innovations are removed (setup 4). This means that the contributions of the novel design 

features are complementary.  

As expected, tests on the native disordered residues (right side of Table 13) lead to lower 

predictive performance across all methods. However, DisoLipPred still provides reasonably 

accurate predictions (AUC = 0.64 and sensitivity = 0.29 at FPR = 0.1). The ablation variants 

consistently underperform compared to the complete model (p-value < 0.05), with the bare-

bone model performing at the random levels: AUC < 0.55 and sensitivity and F1 near 0. This 

demonstrates that the basic deep network is incapable of predicting DLBRs since it can only 

solve the trivial problem of differentiating DLBRs from ordered residues (AUC = 0.68 on the 

complete dataset vs. 0.40 on the disordered residues). In other words, the three innovations 

that we introduce are essential to provide accurate predictions. 

6.3.2 Comparative assessment on the test dataset 

We compare DisoLipPred to current alternatives that can be indirectly used to predict DLBR.  

We consider three categories of the indirect predictors. First, we include methods that predict 

transmembrane regions in protein sequences. We select predictors with publicly available 

implementations/servers that include one recently released method, SCAMPI 2 [234], and one 

older and highly-cited method, Phobius [235]. While DLBRs predicted by DisoLipPred exclude 

transmembrane regions, we investigate whether the transmembrane region predictors could 

be used to also predict DLBRs. Second, we cover disorder predictors since DLBR are one of the 

functional subtypes of the disordered residues. We choose 10 disorder predictors that were 

considered in recent comparative surveys [69, 166]: DisEMBL‐465 (trained using X‐ray 

structures) and DisEMBL‐HL (trained to predict disorder-like loop conformations) [54]; three 

versions of ESpritz [65]: ESpritz‐Xray (trained on X‐ray structures), ESpritz‐NMR (trained on 

NMR structures) and ESpritz‐DisProt (trained on the DisProt database data); two flavors of 

IUPred [52, 193]: IUPred‐short (trained to predict short IDRs) and IUPred‐long (trained to 

predict long IDRs); GlobPlot [54] and SPOT-Disorder [198]. Third, we include representative 

predictors of disorder function, such as DisoRDPbind [104, 105] that predicts the disordered 
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RNA binding, DNA binding and protein binding residues,  ANCHOR 2 [195] that predicts 

disordered protein binding residues and DFLpred [107] which predicts disordered linkers. 

Finally, we compute a baseline results based on sequence alignment to the training proteins. 

We perform this alignment with BLAST [155], where DLBR annotations are transferred from the 

aligned positions in the most similar training proteins that secures e-value < 1.0. We setup the 

e-value parameter to maximize performance on the test dataset. 

Table 14: Predictive performance on the test dataset. We perform the assessment on the complete test 
dataset, and also on the subset of the native disordered residues from the test dataset. We quantify the 
binary metrics (sensitivity and F1) at the fixed specificity = 0.9. for the predictors that produce the 
propensity scores. We use the default sensitivity, F1, and specificity values for the other three methods 
that produce only binary predictions: SCAMPI 2, Phobius and BLAST.  We assess the statistical significance 
of the differences between the results produced by DisoLipPred and every other tool using procedure 
explained in Section 2.2. * indicates that DisoLipPred provides significantly better result (p-value <0.05). 
Methods are sorted in the ascending order by their AUC within each predictor type group. 

Predictor  Complete test dataset Disordered residues in the test dataset 
Type Name AUC Sensitivity F1 Specificity AUC Sensitivity F1 Specificity 
Transmem-
brane regions 

SCAMPI 2 N/A 0.019* 0.016* 0.98 N/A 0.019* 0.035* 0.99 
Phobius N/A 0.016* 0.024* 1.00 N/A 0.016* 0.031* 1.00 

Baseline BLAST alignment N/A 0.000* 0.000* 1.00 N/A 0.000* 0.000* 1.00 

Disorder 
function 
predictors 

DFLpred 0.338* 0.037* 0.015* 0.90 0.554* 0.109* 0.081* 0.90 
DisoRDPbind-RNA 0.450* 0.035* 0.014* 0.90 0.517* 0.028* 0.022* 0.90 
ANCHOR 0.637* 0.229* 0.090* 0.90 0.446* 0.178* 0.129* 0.90 
DisoRDPbind-Protein 0.556* 0.016* 0.006* 0.90 0.276* 0.002* 0.001* 0.90 
DisoRDPbind-DNA 0.636* 0.211* 0.083* 0.90 0.554* 0.062* 0.047* 0.90 

Disorder 
predictors 

GlobPlot 0.530* 0.225* 0.088* 0.90 0.482* 0.167* 0.123* 0.90 
ESpritz-NMR 0.571* 0.216* 0.085* 0.90 0.412* 0.113* 0.084* 0.90 
disEMBL-465 0.610* 0.119* 0.048* 0.90 0.433* 0.048* 0.037* 0.90 
disEMBL-HL 0.619* 0.143* 0.056* 0.90 0.477* 0.066* 0.050* 0.90 
IUPred-long 0.626* 0.256* 0.100* 0.90 0.420* 0.167* 0.123* 0.90 
IUPred-short 0.632* 0.257* 0.100* 0.90 0.441* 0.142* 0.105* 0.90 
ESpritz-Xray 0.659* 0.114* 0.046* 0.90 0.428* 0.070* 0.053* 0.90 
VSL2B 0.673* 0.205* 0.081* 0.90 0.433* 0.057* 0.045* 0.90 
SPOT-Disorder 0.692* 0.155* 0.062* 0.90 0.361* 0.043* 0.033* 0.90 
ESpritz-DisProt 0.768* 0.355* 0.135* 0.90 0.498* 0.065* 0.049* 0.90 

DLBR 
predictor DisoLipPred 0.781 0.382 0.145 0.90 0.635 0.286 0.201 0.90 

 

 

Table 14 compares DisoLipPred’s predictive performance against the indirect predictors and the 

baseline. We derive the binary predictions from the propensity scores using thresholds that we 



94 | P a g e  
 

adjust to set FPR = 0.1 (specificity = 0.9). This allows us to directly compare the other binary 

metrics (sensitivity and F1) between methods. DisoLipPred provides accurate predictions of 

DLBRs on the test dataset, with AUC = 0.78 and sensitivity = 0.38 at FPR = 0.10. The latter means 

that DisoLipPred offers 3.8-fold increase in the rate of correct to incorrect predictions. Tests of 

statistical significance of differences reveal that the DisoLipPred’s predictions are significantly 

better than the results of all 17 indirect methods and the baseline (p-value < 0.05). The poor 

performance of the baseline alignment stems from the low sequence similarity, < 25%, between 

the training and test proteins. The most accurate of the indirect predictors include Espritz-DisProt 

(AUC = 0.77, sensitivity = 0.35), SPOT-Disorder (AUC = 0.69, sensitivity = 0.16), and VSL2B (AUC = 

0.67, sensitivity = 0.21). The ROC curves the test dataset for the best-performing methods, 

including DisoLipPred, SPOT-Disorder, VSL2B, Espritz-DisProt, are available in the Supplementary 

Figure S in Appendix 21 They reveal a large margin of improvement for DisoLipPred, particularly 

for low values of FPRs, i.e., conservative predictions where rate of false positives is low. We 

highlight the results from the two predictors of transmembrane regions that secure near zero 

(0.02) sensitivity at 0.1 specificity, which means that they do not predict DLBRs. We conduct a 

further comparison with the two transmembrane region predictors in 6.3.4 using a separate 

dataset of proteins with transmembrane regions.  

The relatively high AUCs of several disorder predictors on the test dataset can be explained by 

the fact that they accurately differentiate DLBRs from the ordered residues. However, the 

results computed on native disordered residues in the test dataset (the right side of Table 14) 

reveal that these methods cannot reliably discriminate DLBRs from the other disordered 

residues. More specifically, AUCs of the top disorder predictors, Espritz-DisProt, SPOT-Disorder, 

VSL2B, are 0.50, 0.36 and 0.43, respectively. Overall, only DisoLipPred generates accurate 

results on the disordered residues while the other predictors are significantly worse (p-value < 

0.05) and their performance is near random levels (AUC < 0.55). This is expected since none of 

the indirect tools were designed to predict DLBRs. 
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6.3.3 DisoLipPred predictions on the Saccharomyces cerevisiae proteome 

We apply DisoLipPred to predict DLBRs for the complete Saccharomyces cerevisiae proteome 

that we source from UniProt [254]. The Baker’s yeast proteome includes 6,049 protein 

sequences and 2,936,363 residues. This is one of the best-annotated proteomes; BUSCO 

(Benchmarking Universal Single-Copy Orthologs) scores its completeness at 99.6% [255]. We 

calibrate the binary predictions to 0.48% prediction rate (% putative DLBRs in the genome), 

which corresponds to the rate of the native DLBRs in the DisProt database. We exclude the 

putative DLBRs if they form segments of < 6 consecutive residues since the shortest 

experimentally annotated disordered lipid binding regions in DisProt are 6 residues long. We 

share these predictions on the DisoLipPred’s website at 

http://biomine.cs.vcu.edu/servers/DisoLipPred/. We predict that about 4.9% of the yeast 

proteins have putative DLBRs (Figure 26A). Majority of these proteins have less than 5% of 

residues predicted as DLBRs, however, about 0.7% of the yeast proteins have a substantial 

amount of over 5% DLBRs (Figure 26B).  

A  B  

Figure 26: Summary of the DisoLipPred’s predictions on the Saccharomyces cerevisiae proteome. Panel A 
shows the fraction of the yeast proteins predicted to have DLBRs. Panel B is the histogram of the putative 
content of DLBRs for the 4.9% of the yeast proteins with DLBRs. 

We validate these predictions using the gene ontology (GO) annotations from UniProt. These 

annotations are independent of the ground truth data used in the test dataset. First, we select 

a subset of the yeast proteins that include the “lipid” keyword in their molecular function GO 

term and the “membrane” keyword within their cellular component GO term. The resulting set 

of 309 proteins is likely to be enriched in the proteins that have DLBRs; we call it GO lipid 
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associated protein set. Second, we compute the rate of proteins predicted to have DLBRs in the 

GO lipid associated protein set using DisoLipPred and compare it to the rate of these 

predictions generated with the second-best ESpritz-DisProt method (Table 14). We calibrate the 

ESpritz-DisProt’s predictions the same way as the predictions from DisoLipPred. Third, we 

calculate the expected rate of proteins with the putative DLBRs in the yeast proteome. We 

compute the rate for a randomly selected set of 309 yeast proteins and repeat this experiment 

100 times to establish distribution of the expected rates. The results are summarized in Figure 

27.  

A  B  

Figure 27:  Analysis of the DisoLipPred predictions (Panel A) and the Espritz-DisProt predictions (panel B) 
for the yeast proteins. The black arrows identify the rate of the putative proteins with DLBRs in the GO 
lipid associated protein set (i.e., set of 309 yeast proteins that share “lipid” keyword in the molecular 
function GO term and the “membrane” keyword in the cellular component GO term). Red lines show the 
distributions of the expected rates of the putative proteins with DLBRs, which we establish based on 
measuring the rate for 100 randomly selected sets of 309 yeast proteins. 

The mean of the distribution for DisoLipPred’s predictions is 4.9% (Figure 27A) and corresponds 

to the overall rate of proteins with DLBRs in yeast (Figure 26A). DisoLipPred predicts 10.3% of 

proteins in the GO lipid associated protein set as having DLBRs. This rate doubles the expected 

rate of 4.9% and the difference is statistically significant based on the distribution of the 

expected values in Figure 27A (p-value < 0.01). On the other hand, the calibrated predictions 

from ESpritz‐DisProt identify only 0.97% of the GO lipid associated protein set as having DLBRs. 

This rate is below the expected rate of the ESpritz‐DisProt’s predictions (red line in Figure 27B), 

for which median is 1.5%. This suggests that the GO lipid associated proteins are overall 

depleted in disorder. In spite of the disorder depletion, the rate of the DisoLipPred’s predictions 
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of DLBRs is 10.3/0.97 = 10.6 times higher that the rate of the ESpritz‐DisProt’s predictions, 

providing further support for our claim that DisoLipPred’s predictions are accurate.  

6.3.4 DisoLipPred prediction assessment on transmembrane proteins  

Given that DLBR are defined as disordered lipid-binding regions that exclude transmembrane 

segments, we empirically evaluate whether the DisoLipPred’s predictions in fact exclude the 

transmembrane residues. We test DisoLipPred and the two representative predictors of the 

transmembrane regions, SCAMPI 2 [234] and Phobius [235], on the TM dataset (Table 15). We 

introduce the TM dataset in the section 6.2.1. Here, we use the predictions from these three 

tools to identify native transmembrane regions, i.e., transmembrane residues are set as the 

positives while the other residues, including a small amount of DLBRs, are set as negatives. 

Since SCAMPI 2 and Phobius produce only binary predictions and thus their prediction rate 

cannot be calibrated, we adjust the rate of the DisoLipPred’s predictions to match the 

specificity of each of the two transmembrane predictors.  Table 15 shows that as expected 

SCAMPI 2 and Phobius provide accurate predictions of the transmembrane regions based on 

their high sensitivity scores, i.e., 0.79 sensitivity at the low 0.09 FPR and 0.57 sensitivity at the 

low 0.06 FPR, respectively. Their predictive positive rate (PPR) defined as the rate of true 

positives among the predicted positives is also relatively high and equals 0.28 and 0.20, 

respectively. In stark contrast, DisoLipPred’s sensitivity values calibrated to the rate of 

predictions from SCAMPI 2 and Phobius are 0.04 and 0.03, demonstrating that it predicts very 

few transmembrane resides as DLBRs. These values are substantially smaller than the 

corresponding sensitivity values on the test dataset (Supplementary Figure S1 in Appendix 2. 

DisoLipPred’s PPR is higher than its corresponding sensitivity because several proteins in this 

dataset include DLBRs, which by definition do not overlap with transmembrane regions. 

Altogether, these results show that DisoLipPred accurately differentiates between the 

transmembrane regions and DLBRs. Moreover, given the correspondingly low sensitivity of 

SCAMPI 2 and Phobius for the prediction of DLBRs (Table 14), we conclude that DisoLipPred 

predicts lipid interacting residues that complement the results produced by the predictors of 

the transmembrane regions.  
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Table 15: Predictive performance on the TM dataset. The performance is measured assuming that the 
native transmembrane regions constitute positive annotations. Both transmembrane predictors (SCAMPI 
2 and Phobius) produce only binary predictions and thus their prediction rate cannot be calibrated. 
Instead, we calibrate the rate of the DisoLipPred’s predictions to match the specificity of SCAMPI 2 and 
Phobius.   

Predictor Sensitivity Specificity PPR F1 
SCAMPI 2 0.795 0.91 0.279 0.780 
DisoLipPred at SCAMPI 2 specificity 0.041 0.91 0.076 0.063 
Phobius 0.574 0.94 0.197 0.663 
DisoLipPred at Phobius specificity 0.035 0.94 0.050 0.059 

 

6.3.5 Case study 

We illustrate the DisoLipPred’s predictions for one of the test proteins, the Sec-independent 

protein translocase protein TatA (UniProt accession number: P69428). Our objective here is to 

visualize and explain the predictions, rather than to evaluate their performance. TatA is a 

membrane associated protein, which is a subunit of the larger twin-arginine translocation (Tat) 

system [226]. The Tat system acts as a facilitator to transport large folded proteins through 

cellular membranes by creating a protein conducting channel [256, 257]. TatA contains a long 

IDR (positions 21 to 89) which was characterized with NMR [258]. Furthermore, proton based 

NMR revealed that part of this IDR (positions 21 to 44) binds to lipids [226]. Figure 28 shows 

DisoLipPred’s predictions for TatA along with the abovementioned native annotations of the 

disordered and disorder lipid binding regions. DisoLipPred generates relatively high 

propensities at the N terminus half of the protein, resulting in the prediction of a long segment 

of DLBRs that overlaps with the experimentally determined lipid-binding region. Interestingly, 

we predict that the residues at the N terminus are also lipid binding. DisProt does not offer a 

conclusive evidence whether this segment is disordered or structured. Our alignment-based 

mapping into PDB (see Section 6.2.1) did not identify a known structure for this segment. 

Further investigation of literature reveals support for our prediction, where this segment is 

shown to likely interact with lipids of the cell membrane from the cytoplasmic side [259]. 

Altogether, this prediction agrees with the experimental annotations and provides support for 
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the hypothesis that the disordered lipid binding region is larger than DisProt suggests, covering 

the N-terminus half of the TatA sequence. 

 

Figure 28: DisoLipPred predictions for TatA protein (Uniprot: P69428; DisProt: DP00834). The blue line in 
the top panel shows the residue level propensity scores generated by DisoLipPred. The horizontal blue 
bars at the bottom are the corresponding experimental annotation of lipid binding regions and the binary 
prediction from DisoLipPred. The horizontal red bar shows the experimental annotation of the intrinsic 
disorder, where grey color identifies regions that lack disorder/order annotations. 

6.3.6 Webserver 

DisoLipPred is freely available as a webserver at http://biomine.cs.vcu.edu/servers/DisoLipPred/. 

DisoLipPred webserver takes up to two amino acid sequences in the FASTA format as the input. 

The entire prediction process is automated, done on the server side and takes about 2-4 minutes 

for an average size protein. Users can optionally provide an email address where we send a 

notification email with the of the unique URL of results once the prediction is completed. The 

webserver provides the output propensities and binary predictions for each amino acid in the 

input protein sequence(s). The threshold that we use to generate the binary predictions 

corresponds to the 10% FPR on the training dataset. The outputs are available in two 

complementary formats: as a parsable text file and an interactive figure. The figure provides a 

graphical summary of the predictions with the zoom in/ out functions, ability to hide user-

selected panels and take a screenshot, and mouse hover that shows additional information. 

http://biomine.cs.vcu.edu/servers/DisoLipPred/
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6.3.7 Summary 

IDRs interact with many partner molecules including proteins, RNA, DNA and lipids. Sequence-

based prediction of these IDRs is currently possible for the interactions with proteins and nucleic 

acids [171-173, 180]. Motivated by the growing amount of experimental data and the need to 

expand coverage of the current predictors, we have designed, implemented, validated and 

deployed a novel computational approach, DisoLipPred. This first-of-its-kind predictor accurately 

identifies DLBRs within intrinsically disordered protein regions. Our solution implements three 

innovative features that include the application of transfer learning, bypass module and selected 

physiochemical properties associated with protein-lipid interactions. 

We deliver a multifaceted validation of the predictions produced by DisoLipPred. The ablation 

tests show that the quality of the DisoLipPred predictions is fueled primarily by the three 

innovations. Analysis on the test dataset reveals that DisoLipPred generates accurate predictions 

and that current tools that could be indirectly used to identify DLBR cannot differentiate the lipid-

interacting residues from the other disordered residues. Validation on the complete yeast 

proteome provides further support for the claim that DisoLipPred produces accurate results. 

Moreover, we demonstrate empirically that the DisoLipPred’s predictions complement the 

results produced by the predictors of the transmembrane regions. Altogether, our analysis 

suggests that DisoLipPred provides high-quality predictions of DLBRs that complement the 

currently available tools. DisoLipPred is available via a convenient webserver at 

http://biomine.cs.vcu.edu/servers/DisoLipPred/.  

http://biomine.cs.vcu.edu/servers/DisoLipPred/
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Chapter 7. Summary 

This thesis focuses on multiple aspects related to the computational prediction of the intrinsic 

disorder and disorder functions. We started with an innovative study that evaluates the 

predictive performance of disorder predictors at their protein level. This analysis suggests that 

the predictive performance of disorder predictors should not be adjudicated solely based at the 

dataset level results. This is because the protein-level results are very different from what the 

dataset-level assessments suggest. Our analysis that spans a dozen disorder predictors shows 

that the protein level predictive performance has a consistent wide distribution with long tails at 

the lower range of predictive performance. This shape of distribution reveals that majority of 

protein level predictions should have higher than expected quality (higher than the protein-level 

results). However, a large number of proteins at the long tails are predicted very poorly. We also 

reveal that the predictive performance of disorder predictors is correlated with the amount of 

the native disorder content. To be more specific, the performance of disorder predictors 

substantially drops for proteins with higher disorder content. Finally, our study suggests that 

disorder predictors provide complementary results. This means that none of them is capable of 

providing the “silver-bullet” solution. 

The objective 2 investigates the possibility of building a recommender system that would suggest 

a suitable disorder predictor for a given protein sequence. This objective is motivated by the 

diversity of the protein-level predictive performance values within and across current disorder 

predictors, which we identified under objective 1. We present a novel framework that predicts 

expected predictive performance of a given disorder predictor for the input protein, and uses 

these results collected over a set of disorder predictors to select the most accurate method. We 

use the physiochemical and putative structural properties of the input protein sequence to 

generate accurate prediction of the predictive performance. Extensive empirical tests 

demonstrate that our recommender system, DISOselect, significantly outperforms all current 

solutions, which include 12 representative disorder predictors and selected classical meta-

models. We provide DISOselect to the research community as a webserver.  
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The third objective investigates the predictive performance of a selected set of 10 representative 

disorder predictors for two key functional subclasses of IDPs: disordered protein binding proteins 

and disordered nucleic acid binding proteins. We introduce three novel aspects in this analysis to 

address drawbacks of the past disorder predictor evaluations. We are the first to create a 

benchmark dataset with test proteins for which similarity was reduced with respect to the 

training datasets of predictors that we evaluate. Second, we use experimentally validated 

annotations of the ordered regions.  Finally, we compare the predictive performance for a generic 

set of disordered proteins with the performance on the disordered protein binding and the 

disordered nucleic acid binding proteins. Our analysis reveals that similarity reduction of the 

benchmark dataset with respect to the training datasets results in a substantial reduction of the 

predictive performance when compared to the performance reported in previous studies where 

benchmark datasets do not limit the similarity. This suggests that the prior studies overestimate 

the predictive equality of disorder predictors. We also show that use of the experimentally 

validated ordered regions has a positive impact on the measured predictive performance. This 

stems from the fact that the ground truth concerning the order annotations has higher quality. 

Most importantly, we reveal that disorder predictions for the disordered nucleic acid binding 

proteins are accurate and share similar quality with the predictions for generic disordered 

proteins. However, disorder predictions for the disordered protein binding proteins suffer lower 

predictive performance, suggesting that future disorder predictors should focus on optimizing 

predictions for these proteins.  

In the fourth and final objective we design and develop DisoLipPred, the first method that 

predicts disordered lipid-binding residues (DLBRs) in protein sequences. We introduce three 

innovations in the development of DisoLipPred. First, we use transfer learning based deep 

recurrent neural network. The transfer learning utilizes related large data concerning ligand-

agnostic interactions in IDRs to facilitate/kickstart the design of the network module responsible 

for the predictions of DLBRs. We also utilize the bypass training strategy to train the model using 

native disordered regions and use it to make predictions for the predicted disordered residues. 

These predictions are combined with the predictions of the ordered residues. The main purpose 

behind the bypassing strategy is to improve the neural network’s ability to identify DLBRs among 
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native disordered residues. The third innovation identifies physiochemical properties of proteins 

which are associated with lipid binding using literature and uses them to enhance inputs to the 

deep neural network. Ablation analysis shows that there three innovations are the main drivers 

behind the ability of DisoLipPred to accurately predict DLBRs. We also evaluate the DisoLipPred’s 

predictive performance against multiple alternative/indirect prediction methods on an 

independent test dataset (i.e., test proteins are dissimilar to the proteins in the training dataset). 

This test shows that DisoLipPred is the only tool that provides accurate predictions of DLBRs. 

Moreover, we show that DisoLipPred does not cross-predict transmembrane protein regions as 

DLBRs using a separate test dataset of the transmembrane proteins. Comparison of DisoLipPred 

against two representative predictors of the transmembrane regions shows that these tools 

provide complementary results. We apply DisoLipPred to make predictions on the complete 

yeast proteome. This prediction facilitates additional evaluation using the gene ontology 

annotations, which further confirms that DisoLipPred provides accurate results. Lastly, we 

provide DisoLipPred to the research community as a publicly available webserver.  

The work covered in the first three objectives was recently published in reputed peer-reviewed 

journals [125, 140, 166].   

7.1 Major contributions 

My major contributions related to specific objectives are as follows. 

Objective 1: Elucidation and comparative analysis of protein-level predictive performance for 

current disorder predictors. 

• Evaluated the predictive performance of disorder predictors at individual protein level 

and contrasted it to their dataset level performance.  

• Investigated the complementarity of predictive performance across selected set of 13 

computational disorder predictors both at the protein and dataset levels. 

• Investigated the impact of disorder content of individual proteins to their predictive 

from selected set of 13 computational disorder predictors. 
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Objective 2: Development of a novel protein-level predictor recommendation system to 

improve predictive performance of disorder predictions. 

• Investigated the usefulness of physiochemical properties to predict expected predictive 

performance for individual proteins from selected set of computational disorder 

predictors. To the best of my knowledge, this is the first published study on this topic. 

• Designed, developed and tested the machine learning (regression) based approach to 

predict expected predictive performance of a given protein for an individual disorder 

predictor. 

• Designed, implemented and tested the DISOselect system that recommends the most 

accurate disorder predictor for a given input protein. To the best of my knowledge this 

is first such recommendation system for the computational disorder predictors. 

• Developed and deployed the webserver that implements the DISOselect method. 

Objective 3: Assessment and comparative analysis of the predictive performance of disorder 

predictions for specific functional types of disordered proteins. 

• Collected and annotated the benchmark dataset. 

• Created the similarity reduced benchmark dataset by clustering initial dataset with 

training datasets of evaluating predictors. 

• Validated the experimental annotations for ordered regions by mapping them to a 

masked database of PDB sequences. 

• Collected the disorder predictions from 10 different methods for the benchmark 

dataset. 

• Evaluated the impact of similarity reduction of benchmark dataset to the predictive 

performance of the 10 selected methods. 

• Evaluated the impact of the experimental validation of ordered regions on the 

predictive performance of the 10 selected methods. 

• Evaluated the predictive performance of 10 selected methods for the functional 

subclasses of disordered proteins.  
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Objective 4: Accurate prediction of the disordered lipid-binding residues from protein 

sequences. 

• Collected and functionally annotated the training and test datasets. 

• Identified and investigated the usefulness of different physicochemical features to 

predict disordered lipid-binding residues. 

• Designed and implemented DisoLipPred including the novel approach of using transfer 

learning and bypass strategy to predict the disordered lipid-binding residues from 

protein sequences. 

• Collected the results and empirically assessed predictive performance of DisoLipPred 

against several approaches that can be used to indirectly predict the disordered lipid-

binding residues.  

• Evaluated the predictive performance of DisoLipPred on the benchmark test dataset, on 

the TM test dataset and on the complete yeast proteome.     

• Developed and deployed a freely available webserver that implements the DisoLipPred 

method. 
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Glossary 

This section briefly describes the key terminology used in this document (in alphabetical order). 

Disorder Function: A biological or biochemical function that is assigned to an intrinsically 

disordered region or intrinsically disordered protein.  

Disorder Predictor:  A computational method which predict disorder for individual amino acids 

in the protein sequence. 

Disordered Protein: A Protein that includes one or more intrinsically disordered regions.  

Disordered Region: A unique amino acid sequence that have no single, well-defined equilibrium 

structure and exist as highly dynamic, heterogeneous ensembles of conformers resulting from 

their relatively flat free energy surface.  

Individual Protein Level:  A complete protein sequence. Individual proteins usually have unique 

identifiers that rely on a well-defined naming convention. 

Protein Dataset: A collection of multiple proteins, typically used to perform assessment of 

disorder predictors.  

Protein Region Level:   A sequence of multiple consecutive residues in a single protein.  

Protein Residue Level:  The smallest building unit of proteins. This unit is also referred to as an 

amino acid.  
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Appendix 1 – Complete set of 130 features used to implement the disorder predictor recommendation 

system (the DISOselect method) 

Category Feature name Description Source 

Amino Acid 
composition 
(20 features) 

Alanine Content Fraction of Alanine in the input protein chain Input sequence 
Leucine Content Fraction of Leucine in the input protein chain Input sequence 
Arginine Content Fraction of Arginine in the input protein chain Input sequence 
Asparagine Content Fraction of Asparagine in the input protein chain Input sequence 
Aspartic Content Fraction of Aspartic acid in the input protein chain Input sequence 
Cysteine Content Fraction of Cysteine in the input protein chain  Input sequence 
Glutamic Content Fraction of Glutamic acid in the input protein chain Input sequence 
Glutamine Content Fraction of Glutamine in the input protein chain Input sequence 
Glycine Content Fraction of Glycine in the input protein chain Input sequence 
Histidine Content Fraction of Histidine in the input protein chain Input sequence 
Isoleucine Content Fraction of Isoleucine in the input protein chain Input sequence 
Lysine Content Fraction of Lysine in the input protein chain Input sequence 
Methionine Content Fraction of Methionine in the input protein chain Input sequence 
Phenylalanine Content Fraction of Phenylalanine in the input protein chain Input sequence 
Proline Content Fraction of Proline in the input protein chain Input sequence 
Serine Content Fraction of Serine in the input protein chain Input sequence 
Threonine Content Fraction of Threonine in the input protein chain Input sequence 
Tryptophan Content Fraction of Tryptophan in the input protein chain Input sequence 
Tyrosine Content Fraction of Tyrosine in the input protein chain Input sequence 
Valine Content Fraction of Valine in the input protein chain Input sequence 

Predicted 
Solvent 
Accessibility  
(3 features) 

Total accessible surface area Sum of solvent accessibility of all residues Predicted with ASAquick [260] 
Average accessible surface area Average of solvent accessibility of all residues Predicted with ASAquick [260] 
Total number of exposed 
residues Sum of binary exposed residues Predicted with ASAquick [260] 

Sequence 
Complexity  
(2 features) 

Fraction of complex regions Number of complex regions divided by chain length  Computed by SEG [137] 
Fraction of complex residues Number of complex residues divided by chain length  Computed by SEG [137] 

Predicted 
Secondary 
Structure  

Count of coils Count of putative coil residues in protein  Predicted with PSIPRED [147] 
Count of helices Count of putative helix residues in protein Predicted with PSIPRED [147] 
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(8 features) Count of strands Count of putative strand residues in protein Predicted with PSIPRED [147] 
Count of coils and strands Count of putative coil and strand residues in protein Predicted with PSIPRED [147] 
Content of coils Fraction of putative coil residues in the input protein chain Predicted with PSIPRED [147] 
Content of helices Fraction of putative helix residues in the input protein chain Predicted with PSIPRED [147] 
Content of strands Fraction of putative strands residues in the input protein chain Predicted with PSIPRED [147] 
Content of coils and strands Fraction of putative coils and strand residues in the input protein chain Predicted with PSIPRED [147] 

Physiochemical 
properties of 
amino acids  
(97 features) 

Summed hydropathy Sum of hydropathy values of all residues Extracted from AAindex [245]: KYTJ820101 
Summed net charge Sum of net charge values of all residues Extracted from AAindex [245]: KLEP840101 
Summed hydrophilicity Sum of hydrophilicity values of all residues of all residues Extracted from AAindex [245]: HOPT810101 
Average hydrophilicity Sum of hydrophilicity values divided by chain length   Extracted from AAindex [245]: HOPT810101 
Average absolute entropy Sum of absolute entropy values divided by chain length   Extracted from AAindex [245]: HUTJ700102 
Average unfolding gibbs energy Sum of unfolding Gibbs energy values divided by chain length   Extracted from AAindex [245]: YUTK870101 
Average beta coils Sum of beta-structure-coil equilibrium constants divided by chain length   Extracted from AAindex [245]: OOBM850101 
Average reverse turns Sum of propensities to form reverse turn divided by chain length   Extracted from AAindex [4]: OOBM850102 
Summed transfer energy Sum of transfer energy parameters of all residues Extracted from AAindex [4]: OOBM850103 
Average Isoelectricity Sum of isoelectric points divided by chain length   Extracted from AAindex [4]:  ZIMJ680104 
Sequence complexity Sum of composite amino acid of all residues Raw sequence 
Summed hydrophobicity Sum of hydrophobicity values of all residues Extracted from AAindex [4]: PRAM900101 
Average hydrophobicity Sum of hydrophobicity values divided by chain length   Extracted from AAindex [4]: PRAM900101 
Average hydropathy Sum of hydropathy values divided by chain length    Extracted from AAindex [4]: KYTJ820101 
Summed solvation free energy Sum of solvation free energy values of all residues Extracted from AAindex [4]: EISD860101 
Average solvation free energy Sum of solvation free energy values divided by chain length   Extracted from AAindex [4]: EISD860101 
Summed polarity Sum of polarity values of all residues Extracted from AAindex [4]: GRAR740102 
Average polarity Sum of polarity values divided by chain length Extracted from AAindex [4]: GRAR740102 
Summed volume Sum of volume values of all residues Extracted from AAindex [4]: GRAR740103 
Average volume Sum of volume values divided by chain length Extracted from AAindex [4]: GRAR740103 
Summed absolute entropy Sum of absolute entropy values of all residues Extracted from AAindex [4]: HUTJ700102 
Summed unfolding gibbs Sum of unfolding Gibbs energy in water of all residues Extracted from AAindex [4]:  YUTK870101 
Summed activation gibbs Sum of activation Gibbs energy values of all residues Extracted from AAindex [4]:  KLEP840101 
Average activation gibbs Sum of activation Gibbs energy values divided by chain length Extracted from AAindex [4]:  KLEP840101 
Summed beta coils Sum of beta-structure-coil equilibrium constants of all residues Extracted from AAindex [4]: OOBM850101 
Summed reverse turn Sum of propensity to form reverse turn values of all residues Extracted from AAindex [4]: OOBM850102 
Average transfer energy Sum of transfer energy parameters divided by chain length Extracted from AAindex [4]: OOBM850103 
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Summed isoelectric points Sum of isoelectric points values of all residues Extracted from AAindex [4]:  ZIMJ680104 
Summed charge transfer Sum of parameter of charge transfer capability of all residues Extracted from AAindex [4]: CHAM830107 
Summed charge donor Sum of parameter of charge donor capability of all residues Extracted from AAindex [4]: CHAM830108 
Summed positive charge Sum of parameter of positive charge capability of all residues Extracted from AAindex [4]: CHAM830108 
Summed negative charge Sum of parameter of negative charge capability of all residues Extracted from AAindex [4]: CHAM830108 
Summed hydrophobicity index Sum of hydrophobicity Index values of all residues Extracted from AAindex [4]: ARGP820101 
Average hydrophobicity index Sum of hydrophobicity Index values divided by chain length Extracted from AAindex [4]: ARGP820101 
Summed alpha hydrophobicity Sum of normalized hydrophobicity scales for alpha-proteins of all residues Extracted from AAindex [4]: CIDH920101 

Average alpha hydrophobicity Sum of normalized hydrophobicity scales for alpha-proteins divided by chain 
length Extracted from AAindex [4]: CIDH920101 

Summed normalized average 
hydrophobicity Sum of normalized average hydrophobicity scales of all residues Extracted from AAindex [4]: CIDH920105 
Average normalized average 
hydrophobicity Sum of Normalized average hydrophobicity scales divided by chain length Extracted from AAindex [4]: CIDH920105 
Summed consensus normalized 
hydrophobicity Sum of consensus normalized hydrophobicity scales of all residues Extracted from AAindex [4]: EISD840101 
Average consensus normalized 
hydrophobicity Sum of Consensus normalized hydrophobicity scales divided by chain length Extracted from AAindex [4]: EISD840101 
Summed average surrounding 
hydrophobicity Sum of average surrounding hydrophobicity values of all residues Extracted from AAindex [4]: MANP780101 
Average surrounding 
hydrophobicity Sum of average surrounding hydrophobicity values divided by chain length Extracted from AAindex [4]: MANP780101 

Summed hydrophobicityPH3 Sum of hydrophobicity index values at 3.0 pH of all residues Extracted from AAindex [4]: COWR900101 
Average hydrophobicityPH3 Sum of hydrophobicity index values at 3.0 pH divided by chain length Extracted from AAindex [4]: COWR900101 
Summed native hydrophobicity Sum of native hydrophobicity index values of all residues Extracted from AAindex [4]: CASG920101 
Average native hydrophobicity Sum of native Hydrophobicity index values divided by chain  length Extracted from AAindex [4]: CASG920101 
Disorder complexity Fraction of disorder promoting amino acids in the input protein chain Input sequence 
Order complexity Fraction of order promoting amino acids in the input protein chain Input sequence 
Charge to hydropathy ratio Total charge of a protein as ratio of total hydropathy of all residues Calculated AA index 
Disorder complexity to order 
complexity ratio 

Ratio between disorder promoting amino acids fraction and order promoting 
amino acids fraction in the input protein chain Input sequence 

Summed mass Sum of masses of all residues Input sequence 
Average mass Sum of masses divided by chain length Input sequence 
Summed density Total mass of a protein as a ratio of total volume of all residues Calculated AA index 
Average density Total density of protein divided by chain length Calculated AA index 
Length of each protein Number of amino acids in the input protein chain Input sequence 
Summed CH chemical shifts Sum of alphaCH chemical shift values of all residues Extracted from AAindex [4]: ANDN920101 
Average CH chemical shifts  Sum of alphaCH chemical shift values divided by chain length Extracted from AAindex [4]: ANDN920101 
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Summed NH chemical shifts Sum of alphaNH chemical shift values of all residues Extracted from AAindex [4]: BUNA790101 
Average NH chemical shifts Sum of alphaNH chemical shift values divided by chain length Extracted from AAindex [4]: BUNA790101 
Summed spin coupling  Sum of spin coupling constants of all residues Extracted from AAindex [4]: BUNA790103 
Average spin coupling Sum of spin coupling constants divided by chain length Extracted from AAindex [4]: BUNA790103 
Summed membrane preference Sum of membrane preference indexes of all residues Extracted from AAindex [4]: DESM900101 
Average membrane preference Sum of membrane preference indexes divided by chain length Extracted from AAindex [4]: DESM900101 
Summed hydrophobic moment Sum of atom-based hydrophobic moment values of all residues Extracted from AAindex [4]: EISD860102 
Average hydrophobic moment Sum of atom-based hydrophobic moment values divided by chain length Extracted from AAindex [4]: EISD860102 
Summed hydrophobic moment 
direction Sum of direction of hydrophobic moment values of all residues Extracted from AAindex [4]: EISD860103 
Average hydrophobic moment 
direction Sum of direction of hydrophobic moment values divided by chain length Extracted from AAindex [4]: EISD860103 
Summed mesophilic B protein 
values Sum of B-values of mesophilic protein distributions of all residues Extracted from AAindex [4]: PARS000101 
Average mesophilic B protein 
values Sum of B-values of mesophilic protein distributions divided by chain length Extracted from AAindex [4]: PARS000101 
Summed thermophilic B protein 
values Sum of B-values of thermophilic protein distributions of all residues Extracted from AAindex [4]: KUMS000101 
Average thermophilic B protein 
values Sum of B-values of thermophilic protein distributions divided by chain length Extracted from AAindex [4]: KUMS000101 

Summed buried fractions Sum of ratio of buried and accessible molar fractions of all residues Extracted from AAindex [4]: JANJ790101 
Average buried fractions Sum of ratio of buried and accessible molar fractions divided by chain length Extracted from AAindex [4]: JANJ790101 
Summed normalized flexibility Sum of normalized flexibility parameters of all residues Extracted from AAindex [4]: VINM940103 
Average normalized flexibility Sum of normalized flexibility parameters divided by chain length Extracted from AAindex [4]: VINM940103 
Total average normalized 
flexibility Sum of averaged normalized flexibility parameters of all residues Extracted from AAindex [4]: VINM940101 

Average normalized flexibility Sum of averaged normalized flexibility parameters divided by chain length Extracted from AAindex [4]: VINM940101 
Summed beta sheet frequency Sum of normalized frequency of beta-sheet values of all residues Extracted from AAindex [4]: PALJ810104 
Average beta sheet frequency Sum of normalized frequency of beta-sheet values divided by chain length Extracted from AAindex [4]: PALJ810104 
Summed 14A contact values Sum of 14A contact numbers of all residues Extracted from AAindex [4]: NISK860101 
Average 14A contact values Sum of 14A contact numbers divided by chain length Extracted from AAindex [4]: NISK860101 
Summed beta position 1 affinity Sum of weights for beta-sheet at the window position of 1 of all residues. Extracted from AAindex [4]: QIAN880121 

Average beta position 1 affinity Sum of weights for beta-sheet at the window position of 1 divided by chain 
length Extracted from AAindex [4]: QIAN880121 

Summed bilayer energy Sum of free energies of transfer from bilayer interface to water values of all 
residues Extracted from AAindex [4]: WIMW960101 

Average bilayer energy Sum of free energies of transfer from bilayer interface to water values divided 
by chain length Extracted from AAindex [4]: WIMW960101 

Summed normalized frequency 
of beta structures  Sum of normalized frequency of beta-structure values of all residues Extracted from AAindex [4]: NAGK730102 
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Average normalized frequency of 
beta structures Sum of normalized frequency of beta-structure values divided by chain length Extracted from AAindex [4]: NAGK730102 

Summed optimized side chains Sum of side chain interaction parameter of all residues Extracted from AAindex [4]: OOBM850105 
Average optimized side chains Sum of side chain interaction parameter divided by chain length Extracted from AAindex [4]: OOBM850105 
Summed occupancy of water Sum of fraction of sites occupied by water of all residues Extracted from AAindex [4]: KRIW790102 
Average occupancy of water Sum of sraction of site occupied by water divided by chain length Extracted from AAindex [4]: KRIW790102 
Summed normalized beta sheets Sum of fraction of site normalized frequency of beta-sheets of all residues  Extracted from AAindex [4]: CHOP780202 

Average normalized beta sheets Sum of fraction of site normalized frequency of beta-sheets divided by chain 
length Extracted from AAindex [4]: CHOP780202 

Summed refractivity Sum of refractivity of all residues Extracted from AAindex [4]: MCMT640101 
Average refractivity Sum of refractivity divided by chain length Extracted from AAindex [4]: MCMT640101 
Summed bulkiness Sum of bulkiness of all residues Extracted from AAindex [4]: ZIMJ680102 
Average bulkiness Sum of bulkiness divided by chain length Extracted from AAindex [4]: ZIMJ680102 



125 | P a g e  
 

Appendix 2 –DisoLipPred supplementary data 

 

Appendix 2 Table 1: Partner-agnostic sequence profile 

Description Source 

Predicted disorder propensity  Predicted with SPOT-Disorder [198] 

Predicted solvent accessibility  Predicted with ASAquick [243] 

Predicted coil propensity Predicted with PSIPRED [147] 

Predicted helix propensity Predicted with PSIPRED [147] 

Predicted strand propensity Predicted with PSIPRED [147] 

Predicted disordered protein binding propensity Predicted with DisoRDPbind [116] 

Predicted disordered DNA binding propensity Predicted with DisoRDPbind [116] 

Predicted disordered RNA binding propensity Predicted with DisoRDPbind [116] 

Predicted flexible linker propensity Predicted with DFLpred [107] 

Predicted disordered protein binding propensity Predicted with ANCHOR [195] 

 

 

Appendix 2 Table 2: Extended profile for the prediction of DLBRs. 

Description Source 

Predicted disorder propensity Predicted with SPOT-Disorder [198] 

Predicted solvent accessibility Predicted with ASAquick [243] 

Predicted coil propensity Predicted with PSIPRED [147] 

Predicted helix propensity Predicted with PSIPRED [147] 

Predicted strand propensity Predicted with PSIPRED [147] 

Hydropathy Extracted from AAindex [148]: KYTJ820101 

Net charge Extracted from AAindex [148]: KLEP840101 

Polarity Extracted from AAindex [148]: GRAR740102 

Unfolding Gibbs energy values in water Extracted from AAindex [148]: YUTK870101 

Transfer energy Extracted from AAindex [148]: OOBM850103 

Solvation free energy Extracted from AAindex [148]: EISD860101 

Absolute entropy  Extracted from AAindex [148]: HUTJ700102 

Isoelectric point  Extracted from AAindex [148]: ZIMJ680104 

Charge transfer  Extracted from AAindex [148]: CHAM830107 
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Charge donor Extracted from AAindex [148]: CHAM830108 

Positive charge Extracted from AAindex [148]: FAUJ880111 

Negative charge Extracted from AAindex [148]: FAUJ880112 

Argos hydrophobicity Extracted from AAindex [148]: ARGP820101 

Kyte-Doolittle hydrophobicity Extracted from AAindex [148]: JURD980101 

Manavalan-Ponnuswamy hydrophobicity Extracted from AAindex [148]: MANP780101 

Cowan-Whittaker hydrophobicity Extracted from AAindex [148]: COWR900101 

Casari-Sippl hydrophobicity Extracted from AAindex [148]: CASG920101 

Alpha-CH chemical shifts Extracted from AAindex [148]: ANDN920101 

Spin-spin coupling constants  Extracted from AAindex [148]: GRAR740103 

Membrane preference Extracted from AAindex [148]: DESM900101 

Atom-based hydrophobic moment Extracted from AAindex [148]: EISD860102 

Direction of the hydrophobic moment Extracted from AAindex [148]: EISD860103 

B-values Extracted from AAindex [148]: PARS000101 

Distribution frequencies in thermophilic proteins Extracted from AAindex [148]: KUMS000101 

B-values for residues with a rigid neighbor  Extracted from AAindex [148]: VINM940103 

14 A contact number Extracted from AAindex [148]: NISK860101 

Free energies of transfer peptides from bilayer interface to water Extracted from AAindex [148]: WIMW960101 

Optimized side chain interaction parameter  Extracted from AAindex [148]: OOBM850105 

Fraction of site occupied by water Extracted from AAindex [148]: KRIW790102 

Partition coefficient for ionic strength Extracted from AAindex [148]: ZASB820101 

Side chain hydropathy corrected for solvation Extracted from AAindex [148]: ROSM880102 

Affinity to bind transmembrane regions  Extracted from AAindex [148]: NAKH900112 

Solvation free energy Extracted from AAindex [148]: EISD860101 

Activation Gibbs energy of unfolding at pH 9.0 Extracted from AAindex [148]: YUTK870104 

Relative preference value at N2 Extracted from AAindex [148]: RICJ880105 

STERIMOL length of the side chain Extracted from AAindex [148]: FAUJ880104 

Transfer free energy from chx to oct Extracted from AAindex [148]: RADA880104 

Propensity for N-terminal turn  Extracted from AAindex [148]: ROBB760109 

Side chain torsion angle Extracted from AAindex [148]: LEVM760104 

Ratio of average and computed composition Extracted from AAindex [148]: NAKH900113 

Helix initiation parameter Extracted from AAindex [148]: FINA910101 

Pleated-sheet propensity Extracted from AAindex [148]: ROBB760106 

AA composition of mt-proteins from fungi and plant Extracted from AAindex [148]: NAKH900107 

Alpha-helix propensity  Extracted from AAindex [148]: KOEP990101 

Alpha-helix propensity for alpha/beta-proteins Extracted from AAindex [148]: GEIM800104 

Normalized alpha-helix frequency Extracted from AAindex [148]: MAXF760101 
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Supplementary Figure S1: ROC curves and AUC values on the test dataset for the prediction of DLBRs. 
Solid lines represent results on the complete test dataset while dashed lines show results on the native 
disordered residues in the test dataset. 
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