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Abstract 

In February 2018, the US Drug Enforcement Agency (DEA) released a statement of the 

emergency scheduling (Schedule 1) of all illicit fentanyl analogs not already regulated by the 

Controlled Substances Act due to an alarming increase in overdose deaths linked to synthetic 

opioids. Fentanyl analogs are pharmacologically similar to fentanyl, but often more potent. This 

increased potency can create problems with proper dosing of fentanyl analogs and can lead to 

untoward effects including an increase in overdoses and deaths. Since 2018, there has been a 

38.4% increase in illicitly manufactured fentanyl overdose deaths leading the Centers for 

Disease Control and Prevention (CDC) to make available the Fentanyl Analog Screening Kit 

(FAS Kit) and Emergent Panels containing previously unavailable fentanyl analog reference 

materials. A limited number of published methods for the identification of multiple fentanyl 

analogs are available, none of which present a full analog class. Therefore, there is a need for 

analytical methods capable of identifying isomeric fentanyl analogs. Within the isomeric classes 

inter/intraclass isobars exist creating the issue of the same molecular weight and transitions, thus 

the mass spectrometer alone cannot identify the analogs. Given the increase in overdose deaths, 

an analytical method for identification and separation of all classes of fentanyl analogs is needed 

to help the clinical and forensic communities overcome this epidemic. 

Presented is a three-aim study including the development of a triple quadrupole mass 

spectral method, an ultra-pressure and high-performance liquid chromatographic method, and an 

extraction procedure capable of separation and detection of twelve sulfur-containing fentanyl 

analogs. Validation of the methods developed followed ANSI/SWGTOX guidelines including 

selectivity, carryover, precision, and limit of detection (LOD).  

Keywords: Method Development; Fentanyl Analog; Thiofentanyl; HPLC; UPLC-MSMS 
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Introduction 

In 1984, the US Drug Enforcement Agency (DEA) amended the controlled substances 

act, the Comprehensive Crime Control Act (CCCA). The CCCA allows DEA administrators to 

place a substance temporarily into Schedule 1 if the intent is to avoid an imminent hazard to the 

public health. The emergency scheduling is permitted on substances not currently controlled but 

are currently abused and a high risk for the public. In February 2018, the DEA released a 

statement of the emergency scheduling (Schedule 1) of all illicit fentanyl analogs not already 

regulated by the controlled substances act due to an alarming increase in overdose deaths linked 

to synthetic opioids.1 Fentanyl analogs such as beta-hydroxythiofentanyl, acetyl fentanyl, 

sufentanil, carfentanil, and others have a similar chemical structure to fentanyl creating a similar 

physiological effect, but with higher potency than fentanyl2, creating a dangerous problem for 

users who unknowing ingestion fentanyl analogs in their heroin/cocaine/fentanyl mixture.  

Only controlled medicinal fentanyl analogs are regulated by the Food and Drug 

Administration making the identification of illicit analog substances difficult. An increase in 

confiscation of fentanyl and fentanyl analogs by law enforcement agencies points to illicit 

manufacturing as a fueling source. The challenge comes from a lack of universal methodology 

applying to readily available instruments on which a general toxicology screen is performed. The 

newly emerging synthetic opioids are appearing on the street as not only illicitly manufactured 

substances but also diverted research chemicals so analytical information on separation and 

identification is difficult to gather. Given the 10-fold increase in overdose deaths from 2013-

20173 and the 38.4% increase in synthetic opioid overdose deaths (specifically illicitly 

manufacture fentanyl) from May 2019-May 20204, it is important novel psychoactive substance 

(NPS) compounds be accurately identified in biologically matrices to have a better understanding 
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of the drugs.5 Much of the current knowledge concerning fentanyl analogs comes from 

postmortem toxicology findings caused by a previous lack of fentanyl analog class standards; U-

47700, acetyl fentanyl, carfentanil, norfentanyl, furanyl fentanyl, and beta-hydroxythiofentanyl 

are amongst the most frequently encountered analogs.   

The Center for Disease Control and Prevention (CDC) contracted with Cayman Chemical 

Corporation and Cerilliant Corporation to release fentanyl-analog screen kits (FAS kit) and a 

traceable opioid material kit (TOM kit) to allow researchers the opportunity to examine over 200 

fentanyl analogs via reference material. The CDC’s recent release of a fentanyl analog screening 

kit has allowed for the possibility of full analog class research. Currently, there are only two 

publications5,6 that directly address the CDC kits. These publications only include a small subset 

of the over 200 analogs provided in the kits and only one6 has a method for testing and involves 

a liquid chromatography quadrupole time-of-flight (LC-QTOF) which is not available in many 

laboratories.  

Several publications have discussed poly-analog analysis6–9, all of which discuss 

separation and detection of analogs structurally similar to fentanyl (2-Furanyl fentanyl, 3-

methylfentanyl, 4- ANPP, acetyl fentanyl, acryl fentanyl, alpha-methylfentanyl, alfentanil, 

butyrylfentanyl, carfentanyl, cyclopropylfentanyl, fentanyl, methoxy acetyl fentanyl, 

norfentanyl, ocfentanil, parafluoroisobutyrylfentanyl, remifentanil, sufentanil, and 

tetrahydrofuranylfentanyl), none of which separate and quantitate structurally similar analogs 

such as the sulfur-containing class of fentanyl analogs. Tabarra et al8 provides a review of 

sample preparation techniques including extraction methods such as liquid-liquid extraction 

(LLE), solid-phase extraction (SPE), and a hybrid method (Quick, Easy, Cheap, Effective, 

Rugged and Safe (QuEChERS)). LLE is most common followed by SPE, but one publication 
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involving the identification of acetyl fentanyl10 showed the QuEChERS method to be the only 

method to reach acceptable extraction criteria for three fentanyl analogs when compared to LLE 

and SPE.  

Several extraction techniques are commonly used for drug extraction from tissue 

including SPE, supported liquid extraction (SLE), and LLE. SPE is a preparation technique 

utilizing an absorbent disk to filter select species from the matrix-analyte solution. UCT, Waters, 

and Biotage specifically have developed several SPE columns commonly used in drug extraction 

from complex matrixes such as clean screens, FASt columns, Xcel Columns, QuEChERS, 

Elution plate, Water’s Oasis Prime HLB11, and Isolute+ PLD. SLE and LLE are extraction 

techniques reliant on the target analyte and the matrix interferences have a varying polarity as 

two immiscible layers (polar and nonpolar) will form, allowing for the discard of the matrix layer 

and further filtering of the analyte layer.  

Due to the structural similarity of fentanyl analogs, most ELISA (enzyme-linked 

immunosorbent assay) immunoassays demonstrate positive cross-reactivity showing ELISA 

immunoassays are valid for presumptive identification of target analogs in various matrices and 

confirmatory testing such as a mass spectral method must follow. Confirmatory methodologies 

for poly-analog detection are currently mostly liquid chromatography-tandem mass spectrometry 

(LCMS). UPLC (ultra-pressure liquid chromatography) systems utilize smaller particle size 

columns12 which increases efficiency and decreases analysis time compared to typical LC 

systems. Only a small number of publications7,13 include the UPLC-MS (UPLC tandem mass 

spectrometry) systems utilized in the identification of fentanyl analogs when compared to the 

publications utilizing the LCMS system. 
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Postmortem analysis of fentanyl analogs9,13,14 appear more often in the literature 

compared to antemortem analysis. This is believed to be caused by either the increased potency 

of the analogs or an increased need for clinical identification via urine or plasma. Poklis et al.13,15 

described two case studies where a fentanyl immunoassay presented as a presumptive positive, 

but after analysis on GC-MS (gas chromatography-tandem mass spectrophotometry) and GC 

headspace, the sample was negative for fentanyl. The absence of fentanyl led to a targeted screen 

(acetyl fentanyl, and butyryl fentanyl) to find the presence of butyryl fentanyl in both cases.  

Current areas that need more research are poly-fentanyl analog methodology2 for UPLC 

systems that can detect and separate structurally similar fentanyl analogs. The methodology must 

be transferable to an LC system for when a UPLC system is not available. Therefore, there is 

currently a need for analytical methods capable of separating and detecting poly-drug presence in 

biological matrices as most drug users are poly-drug users. Unsuccessful identification of all 

compounds present in a poly-analyte toxicology screen arises when similar analytes co-elute 

creating poor chromatography. Methodology for identification and separation of structurally 

similar analogs such as thiofentanyl, thienyl fentanyl, alpha-methyl thiofentanyl, cis/trans-3-

methyl thiofentanyl, sufentanil, and norsufentanil creates an elimination of isobaric-interferences 

and poor chromatography during the analysis.  

 

Research Materials and Methods 

The fentanyl analog screen (FAS) kit16 obtained from Cayman Chemical (Ann Arbor, 

Michigan) contained ten of the twelve analogs analyzed (-Methyl Thiofentanyl, -

Hydroxythioacetylfentanyl, cis-3-Methyl Thiofentanyl, Norsufentanil, Sufentanil, 
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Tetrahydrothiophene Fentanyl, Thienyl Fentanyl, Thiofentanyl, Thiophene Fentanyl, trans-3-

methyl Thiofentanyl), while the opioid CRM Kit17 obtained from Cerilliant (Round Rock, Tx) 

contained -hydroxythiofentanyl and the isotopically labeled internal standard -

hydroxythiofentanyl (13C6) (Group 1; part number: CSQ-25819A-1EA). LC-MS grade 

acetonitrile (ACN) was obtained from Fischer Scientific (Waltham, MA); LC-MS grade 

methanol (MeOH) was obtained from Honeywell (Muskegon, MI); LC-MS grade water was 

obtained from Sigma-Aldrich (St. Louis, MO). A working stock solution was prepared in MeOH 

at a concentration of 5g/mL.  

Each analog was diluted in MeOH to obtain a standard working stock solution for analysis.  

 

Aim 1: Develop and optimize a mass spectral method for the detection of sulfur-containing 

fentanyl analogs on a triple quadrupole mass spectrometer with ANSI/SWGTOX 

acceptable interferences.  

The analogs were divided into five groups based on m/z and further diluted to 50ng/mL 

in 50:50 MeOH: LCMS water. Ammonium formate (Acros Organic, New Jersey) was added to 

each sample group before manual infusion. Manual infusion and compound optimization of the 

analogs was completed on both a Water’s ACQUITY UPLC-TQs-micro and an AB Sciex triple 

quadrupole 5500; declustering potential (dp), entrance potential (ep), collision energy (ce), cxp 

(collision cell exit potential), and cone voltage were optimized for each sulfur-containing 

fentanyl analogs (SFA) to identify unique daughter ions. The mass spectral fragments will be 

utilized to determine the fragmentation patterns of the compounds. The two most abundant and 
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identifiable daughter ions from each analog were chosen as the target fragments for positive 

identification during the separation method development.  

 

Aim 2: Develop and optimize an ultra-high pressure and high performance liquid 

chromatographic method for separation of sulfur-containing fentanyl analogs on a Water’s 

ACQUITY UPLC-TQs micro and a Shimadzu LC20AD XR coupled to AB Sciex triple 

quad 5500. 

A final solution group containing the eleven sulfur-containing fentanyl analogs and the 

internal standard was diluted to 50ng/mL. The six samples were analyzed in each trial method. 

The aqueous mobile phase for all chromatographic injections was 0.1% formic acid in water and 

the organic mobile phase (OMP) for all chromatographic injections was 0.1% formic acid in 

ACN. Initial chromatographic conditions were based on Sofalvi et al.9 on the HPLC-triple 

quadrupole system utilizing a PFPP column (Selectra PFPP 100 x 2.1mm 3mm) with a flow rate 

of 0.4mL/minute and a total injection time of 5 minutes.  

Chromatographic conditions such as injection time (5-20minutes), gradient (linear and 

curve), and column chemistry (pentafluorophenylpropyl (PFPP), BiPhenyl, C18) were then 

varied to obtain optimal separation and chromatography.  

 

Aim 3: Evaluate extraction and detection methods to identify the 11 analogs and one 

isotopic analog from a blood serum matrix following ANSI/SWGTOX guidelines for matrix 

effects (ME), process efficiency (PE), and absolute recovery (RE).  
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Several extraction methods were analyzed including a mixed phase (MCX) micro elution 

plate, an MP3 SPE column, a UCT DAU Purple (micro) column, and an alkaline LLE. 

Extraction on the Waters Oasis PRiME microelution plate3 included a pH adjustment with 4% 

phosphoric acid, a wash of 0.1M 2% FA (formic acid) in ammonium formate and MeOH, 

followed by an elution buffer of ACN: MeOH containing 5% ammonia. Extraction on the MP3 

SPE column15  included a pH adjustment of phosphate buffer (pH 6), a column condition of 

MeOH and 100mM phosphate buffer, a wash of DI water and acetic acid, and an elution buffer 

of dichloromethane: isopropanol: ammonia (78:20:2). Extraction on the UCT DAU Purple micro 

plate18 included a pH adjustment with 100mM pH 6 phosphate buffer, a wash of DI H2O/acetic 

acid/hexane, and an elution buffer of dichloromethane: isopropanol: ammonia (78:20:2). The 

MP3 and UCT DAU required a final drying before reconstitution in the mobile phase. Extraction 

utilizing an alkaline LLE19 utilizes the addition of ammonium hydroxide and N-butyl 

chloride/ACN (4:1), centrifuging and rotating of the solution, removal of the organic layer, 

drying of the aqueous phase, and reconstitution in the mobile phase. Extraction methods were 

initially analyzed at a 1ng/mL to assess which method resulted in the most acceptable PE, RE, 

and ME. 

Validation of the preferred method followed SWGTOX20 guidelines: interference, 

carryover, and limit of detection determination. Interferences evaluated consisted of 10 different 

sources of plasma, one blank containing IS, one 10ng SFA sample, and endogenous/exogenous 

potential interferences such as BioRad TDM3 (pharmaceuticals), BioRad C4 (illicit substances), 

BioRad Unassayed Multiqual (abnormal serum), and three classes of fentanyls (acryl, butyryl, 

and furanyl). Carryover was identified by injecting consecutive blank samples after the high 

control (10ng SFA). An empirical limit of detection was identified using a nine-point linear 
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curve. Precision of the cutoff value was evaluated in a 5-extraction triplicate of the empirical 

cutoff including an 50% below and 50% above sample. 

 

Research Results and Discussion 

Aim 1: MS method 

The mass to charge ratio chosen for each analog was centered around the molecular 

weight determined from the chemical formula. The product ions are unique to the m/z for each 

analog and were gathered from manual infusion optimization of the dp, ce, cxp, and cone voltage 

on the Waters and Sciex systems, the analytes were ionized via collision induced dissociation 

(CID). Mass spectral parameters and daughter ions of each analog including the internal standard 

are listed in Table 1. The ions identified were the most abundant and stable products discovered 

from the manual infusion and optimization (Figure 1-11). 

 

Aim 2: LC method 

The changes in LC method consisted of injection time, gradient type, and column 

chemistry. Column chemistry variation consisted of dipole moments, pi-pi interactions, and 

polarity, all of which were found in the literature.  

Waters ACQUITY TQs micro 

Four columns with various gradients were evaluated on the Water’s UPLC system: 

Restek Biphenyl, UCT C18, Waters CSH C18, and Waters UPLC BEH C18. Initial separation 

was attempted using pi-pi interactions from the biphenyl column combined with dipole moments 
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from the ACN (Figure 12). The twelve compounds eluted from the biphenyl column in three-

time intervals resulting in three broad, unsymmetrical peaks (1-2min; 2-3.5min; 4.5-5.5min) 

meaning the pi-pi interactions of the biphenyl column were unsuccessful in the separation of the 

twelve SFA. 

Next, a polar column- UCT C18- using a linear method was evaluated; two initial 

concentrations of 0.1% FA in ACN were evaluated, 5% and 20%. The 5% initial concentration 

of OMP was linearly ramped to 95% to assist in the identification of the mobile phase ratio 

elution occurred on the C18 column. The 5-95 linear ramp resulted in 7 unresolved and 

unseparated peaks between 5 and 7 minutes (Figure 13). The organic to aqueous mobile phase 

ratio in which the SFA eluted from the C18 column was around 30% organic, 70% aqueous; 

Therefore, the initial starting condition of the OMP was raised to 20% and the linear gradient 

was reevaluated (Figure 14). The increase in starting conditions of the OMP resulted in an 

increased separation in less time of the SFA, but sufficient separation and ideal chromatography 

were not found.  

The third column evaluated was the Waters CSH C18. While still a nonpolar C18 

column, each manufacture’s columns vary to increase/decrease the specificity of various 

functional groups, therefore a second nonpolar column from Waters was chosen to increase the 

specificity of the SFA functional groups. The same linear gradient (20-95% OMP over 9 

minutes) was evaluated on the CSH C18 and resulted in 5 sharp, tall, narrow peaks within the 

first 5 minutes of the injection (Figure 15). While fewer overall peaks were identified using the 

CSH C18 in comparison to the UCT C18, the elution bands obtained from the CSH C18 are fully 

resolved and resemble a more ideal chromatographic shape. The initial OMP concentration was 

then decreased (15,10,5%) while maintaining the nine-minute linear gradient to assess if an 
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increased OMP slope would increase separation. Decreasing the initial concentration of OMP to 

5% (Figure 16) increased the separation of the analogs in the column resulting in the addition of 

a sixth peak. While the 5% allowed for increased separation of the analogs, peaks lost the ideal 

shape resulting in broad, unsymmetrical peaks meaning the slope obtained from a linear 5-95% 

OMP was to step to obtain narrow bands in the column. Increasing the OMP to 10% (Figure 17) 

resulted in more ideal chromatography and a slow enough increase in 0.1% FA in ACN that 

separation using dipole and polar interactions was partially achieved. Although the 10% initial 

OMP resulted in the best combination of separation and chromatography of the twelve SFA thus 

far, the three isobars a-methyl/cis/trans-3-methyl thiofentanyl were not chromatographically 

separated. Due to the isobars having the same molecular weight and transitions, the isobars 

cannot be mass spectrally separated so chromatographic separation is the only mode for 

separation. For this reason, a 15% initial (Figure 18) OMP was evaluated; 10 peaks can be fully 

identified from 0-6 minutes including chromatographic separation of the three methyl 

thiofentanyl isobars.  

While either chromatographic or mass spectral separation was achieved for all twelve 

isobars utilizing the linear gradient of 15-95% OMP on the CSH C18 column (Figure 18), ideal 

chromatography was not achieved for all 10 peaks- RT 1.14 is broader than the remaining 9 

analog peaks showing norsufentanil and thienyl fentanyl did not achieve full separation in the 

elution. In an attempt to overcome the insufficient separation of norsufentanil and thienyl 

fentanyl when utilizing the CSH C18 column, a Waters UPLC BEH C18 was evaluated. While 

both columns are intended for separation based on polarity, the BEH and CSH have differing 

specificity and sensitivity. The BEH C18 column is packed with is C18 particles with bridged 

ethanes in the silicon matrix, whereas the CSH is packed with BEH particles that are coated in a 
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charged surface followed by the C18 end cap. Waters produced the BEH column for reliability 

and reproducibility, while the CSH was produced to maximize selectivity.21 The CSH C18 and 

BEH C18 columns not only differ in silicon matrix, they also differ in particle size of the matrix- 

the CSH particle size is 2.5m, while the BEH particle size is 1.7m. The decrease in particle 

size increases the number of theoretical plates and requires a higher-pressure system for analysis 

to occur. The increase in theoretical plates and pressure allowed for a tighter analyte band in the 

column resulting in a narrow, tall symmetrical peak on the chromatogram (Figure 19-21) 

compared to the broader peaks observed when the same gradient was evaluated on the CSH 

column (Figure 15-18). Three of the gradients evaluated on the CSH were reevaluated on the 

BEH column: 5%, 10%, and 15% (Figure 19). Of the three gradients reevaluated, the same 

conclusions were made as with the CSH C18 column. The 5 and 10% OMP initial concentration 

did not provide a slow enough change in OMP to produce separation of the SFA, while the 15% 

OMP resulted in 10 baseline separated peaks.  

While baseline separation with the most ideal chromatography obtained of all columns 

and gradients was achieved using the linear gradient from 15-95% OMP on the BEH column, 

increased baseline separation was desired. Knowing the SFA eluted from the column between 

25-35%, the injection time was doubled (20 minutes) and a gentle curve of 7 and 8 from 15-40% 

over 17 minutes was evaluated (Figure 20). Doubling the time provided more time at each 

mobile phase composition resulting in a tighter band of each analyte within the column. The 

tighter band results in a narrower elution time of each analyte allowing for tall narrow peaks 

decreasing potential for interferences and increasing ease in quantitation. The curve of 7 resulted 

in more ideal chromatography while the curve of 8 lost baseline separation between BOH 

thiofentanyl/13C6 and thienyl fentanyl and resulted in more broad, shorter peaks.  
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The presence of tall, sharp, narrow, baseline separated peaks including the baseline 

separation of the methyl thiofentanyl isobars in the 20 minute, 15-60% 0.1FA in ACN, curve of 

7 (Figure 21 and Table 2) gradient applied to the Waters BEH C18 column proves to be the best 

method evaluated on the UPLC system.    

Shimadzu LC AD 20 coupled AB Sciex 5500 MS 

Initially, dipole and pi-pi interactions were analyzed in a step-type gradient22 using a 

PFPP column. The step type gradient combined with the dipole and pi-pi interaction of the PFPP 

column on the HPLC system resulted in separation of the Norsufentanil and 13C6 BOH 

Thiofentanyl while the remaining SFA eluted from the column between 18 and 19 minutes 

(Figure 22).  

Upon identification of insufficient separation and chromatography of the SFA using 

dipole and pi-pi interactions, separation based more on polarity was analyzed. Three variations 

of a nonpolar column UCT C18, Restek C18, and Water’s CSH C18 (charged surface hybrid) 

were analyzed. The UCT C18 column was initially analyzed on the HPLC system with the same 

step-type gradient evaluated on the PFPP and resulted in similar chromatography as the PFPP. 

Elution of most analogs was within the last minute of the injection run and only one analog 

separated with broad unsymmetrical peaks (Figure 23).  

After additional thought into the unique structural aspect of each SFA structure, the UCT 

C18 was evaluated again on the HPLC system but with a linear gradient of 5-95% OMP (Figure 

24) to identify the percentage of 0.1% FA in ACN the structurally similar SFA eluted at. The 

linear gradient resulted in all twelve analogs eluting from the column between 5.5 and 7 minutes 

with peaks that exhibited more optimal shape: tall, narrow, and symmetrical. Elution of the SFA 
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analogs was identified at approximately 30% OMP (ACN). The initial OMP concentration was 

then varied (10,15,20%) to assess chromatography and separation of the SFA. The 20% OMP 

(Figure 25) and 10% OMP (Figure 26) resulted in similar chromatography with all analogs 

eluting between 5.8 and 7 minutes and no baseline separation between the tall narrow peaks. The 

15% OMP resulted in comparable peak shape and resolution but with a shorter retention time, all 

analogs eluted from the UCT C18 column between 5 and 7 minutes.  

At variable initial concentrations of OMP, the UCT C18 was unable to achieve baseline 

separation of the SFAs, so a Restek C18 column was evaluated. Two concentrations of initial 

OMP were evaluated, 5 and 20%. The linear gradient of 5-95% (Figure 28) and 20-95% (Figure 

29) OMP on the Restek C18 column both resulted in fewer overall peaks compared to those 

observed utilizing the UCT C18, and the few peaks observed were broad and unseparated.  

The absence of ideal chromatography combined with the lack of separation of the peaks 

observed when the linear gradient was applied to the Restek C18 column led to the evaluation of 

the Waters CSH C18. The 5% initial (Figure 30) OMP resulted in unresolved narrow peaks while 

the 10% (Figure 31) and 15% (Figure 32) showed resolution of the methyl thiofentanyl isobars. 

While both the 10-95% and 15-95% linear OMP were the only chromatographic methods 

evaluated that resulted in ideal peak shape and separation of the methyl thiofentanyl isobars, the 

15-95% linear method on the CSH C18 resulted in the best separation of the isobar peaks of the 

methods evaluated.  

Of the methods evaluated on the HPLC system, the 15-95% linear gradient on the Waters 

CSH C18 column resulted in the most ideal chromatography and separation of the methyl 

thiofentanyl isobar but did not achieve baseline separation of all SFA. In an attempt to achieve 

similar separation to that achieved on the UPLC system with the Waters BEH C18, a curved 
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gradient was evaluated from 15-60% OMP. The curve of 3 (Figure 33) – similar exponential 

increase to that identified on the UPLC system- allowed for a gradual increase between 15 and 

40% OMP resulting in each analog eluting from the column before the next analog eluted.  

The presence of tall, sharp, narrow, baseline separated peaks including the baseline 

separation of the methyl thiofentanyl isobars in the 20 minute, 15-40% 0.1FA in ACN, curve of 

3 (Figure 21 and Table 3) gradient applied to the Waters CSH C18 column proves to be the best 

method evaluated on the HPLC system 

Of the columns tested, the ultra-pressure BEH C18 resulted in the best chromatographic 

separation of the eleven analogs on the UPLC-MS/MS system. The BEH C18 column available 

was an ultra-pressure column, therefore the backpressure of the HPLC system was too high for 

the BEH C18 to be used. The CSH C18 resulted in the best chromatic separation of the analogs 

on the HPLC-MS/MS system. Both the CSH and BEH C18 columns resulted in a narrow elution 

time of the analogs producing a narrow, sharp peak.  

 

Separation of Structurally Similar Analog Classes 

Potential interferences from three other fentanyl classes (acryl fentanyl, butyryl fentanyl, 

and furanyl fentanyl) were analyzed against the mass spectral method for the SFA using the 

optimized UPLCMSMS method- two interferences were detected: fluoro furanyl fentanyl and 

methyl furanyl fentanyl. These interferences were overcome when separation was based on pi-pi 

bonding using a biphenyl column (kinetics core shell 2.6 m 100x3mm) (Figure 34). Utilization 

of the biphenyl column resulted in a longer retention time for the thio-ring analogs and a short 

retention time for the furanyl analogs. The greater affinity for the biphenyl stationary phase can 
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be attributed to the phenyl group substitution of the thiophene and the propanamide substitution 

of the furanyl.  

 

Aim 3: Plasma Extraction Method 

 The ideal PE and RE is 100% while the ideal ME is 0% each with an acceptable error rate 

of 25%. Peak height and peak area were evaluated across the four extractions to determine the 

most efficient extraction method. Of the three extraction methods evaluated, the alkaline LLE19 

resulted in over ideal ME and lower than ideal RE/PE (Table 5). The MCX elution3 SPE 

resulted in over ideal RE/PE, but ME that was within the ideal range (Table 6). While the MCX 

elution proved to have less ME than the alkaline LLE, ion suppression of BOH thiofentanyl and 

BOH thiofentanyl 13C6 was noted resulting in the evaluation of an additional extraction 

technique. The MP3 proved to not be as consistently out of ideal PE, RE, and ME (Table 7). The 

MP3 extraction technique provided ideal RE, PE, and ME for BOH thioacetylfentanyl and 

thienyl fentanyl as well as ideal RE was achieved for all analogs other than BOH thiofentanyl 

13C6 and tetrahydrothiophene fentanyl. The MP3 extraction resulted in overall more ideal RE, 

PE, and ME, but the non-ideal ME and PE were inconsistent and resulted in some analogs such 

as BOH thiofentanyl and thiophene fentanyl with lower than ideal ME and some analogs such as 

tetrahydrothiophene fentanyl and alpha-methyl thiofentanyl with higher than ideal ME.  

The inconsistencies observed when the SFA were extracted using the MP3 column 

resulted in the evaluation of an additional extraction technique found in the literature: UCT DAU 

Purple micro-extraction columns. While not perfect, the UCT purple extraction method resulted 

in consistent RE, PE, and ME allowing eight of the twelve analogs to achieve ideal RE, PE, and 
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ME (Table 8). Norsufentail, BOH thiofentanyl, and tetrahydrothiophene fentanyl were observed 

to have low recovery and processing efficiency, where BOH thiofentanyl 13C6 only observed 

lower than ideal recovery. Due to the consistency and overall increased ideal RE, PE, and ME 

across all twelve analogs, the UCT Purple microextraction was chosen as the extraction method 

of choice.  

To determine specificity of the screening method developed, 10 patient serum samples 

(Figure 35), common drugs of abuse (BioRad C4, Figure 36), common pharmaceuticals (BioRad 

TDM3, Figure 37), common abnormalities in serum (BioRad Liquid Unassayed Multiqual, 

Figure 38), and three fentanyl classes (acryl, butyryl, and furanyl) were evaluated. All five 

potential interference groups evaluated resulted in the presence of only the added internal 

standards fentanyl D5, norfentanyl D5, and 13C6 BOH thiofentanyl (Figure35-38). The absence 

of peaks beyond the internal standards shows the screening method including the mass spectral 

method (Figure 1), the liquid chromatographic method (Figure 21), and the UCT DAU extraction 

method are specific for the twelve SFA class identified in this study and other potentially present 

compounds will not appear as a false positive. 

The determination of a cutoff concentration post-preparative consisted of extracting nine 

concentrations varying from 10pg/mL to 1000pg/mL (0.01-1ng/mL) to evaluate a linear curve. 

Cutoff concentration was determined by the lowest concentration where 50% and 150% of target 

concentration can be definitively distinguishable. Figures 38 and 39 show the difference in 

including and excluding the higher concentrations (250-1000pg/mL). When the upper limit 

concentrations are included in the linear curve (Figure 39), the lower limit concentration linearity 

is distorted, whereas exclusion of the upper limit values (Figure 40) allows for the lowest linear 

portion of the curve to be identified. After evaluation of the lower linearity across all twelve 
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analogs, 50pg/mL was identified as the empirical cutoff due to the distinct separation and 

linearity at between 25, 50, and 75pg/mL.  

The final SWGTOX qualitative validation is precision at the decision point meaning 

consistency at the empirical cutoff value. The precision was evaluated in a 5-extraction n=3 at 

25, 50, and 75pg/mL with Fentanyl D5 as the internal standard for post-preparative concentration 

determination (Figure 41).  Fentanyl D5 was chosen as the internal standard in place of 13C6 

BOH Thiofentanyl as Fentanyl D5 is more stable and did not coelute with any of the analogs. 

Figure 40 highlights the separation of the cutoff concentration from the negative and positive 

concentrations. Ten of the eleven SFA evaluated for precision at the cutoff value achieved 

distinction of the 50% above (75pg/mL) and 50% below (25pg/mL). Based on the indistinction 

of the cutoff concentration from the 50 above and 50% below concentration concerning 

Norsufentanil, the screening method provided could not be validated for this analog. All 

remaining ten analogs achieved the desired distinction of the cutoff from the 50% below and 

50% above concentrations across the five-extraction triplicate validating the screening method 

provided with the use of Fentanyl D5 as the internal standard. 
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Conclusion 

A qualitative screening method for SFA including a mass spectral, liquid 

chromatographic, and extraction method have been validated for the separation and identification 

of eleven of the twelve analogs evaluated: a-Methyl Thiofentanyl, b-Hydroxythioacetylfentanyl, 

b-Hydroxythiofentanyl, b-Hydroxythiofentanyl 13C6, cis-3-Methyl Thiofentanyl, Sufentanil, 

Tetrahydrothiophene Fentanyl, Thienyl Fentanyl, Thiofentanyl, Thiophene Fentanyl, and trans-3-

methyl Thiofentanyl. Validation included selectivity, carryover, sensitivity, and precision 

outlined by SWGTOX. 

The mass spectral method developed included manual optimization of the ce, dp, cone 

voltage, and cxp for all analogs followed by manual identification of the most stable unique 

daughter ions of each analog. The mass spectral method developed includes unique product ions 

for all SFA allowing for unique identification of all twelve analogs including the me-thiofentanyl 

isobars. 

Three column types of several manufactures including biphenyl, PFPP, and C18 were 

evaluated at various mobile phase gradients including step type, linear, and curved with a 

variation in injection time to achieve baseline separation of the SFA. The gradient and injection 

time to achieve the desired chromatographic profile of the SFA was a 20.5-minute injection with 

a curved and linear gradient. A gentle exponential increase in OMP from 15-40% over 16 

minutes on both the UPLC and HPLC system on Waters C18 columns resulted in optimal 

separation of all twelve analogs including baseline separation of the a-methyl, cis-3-methyl, and 

trans-3-methyl thiofentanyl isobars. The increased backpressure capable in the UPLC system 

allowed for the use of the BEH C18 column with sub 2 micro particle size, while the HPLC 

system required a larger particle size to accommodate for the lower backpressure of the system. 
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The Waters CSH C18 and BEH C18 had similar separation, but due to the increased theoretical 

plates in the BEH C18 column the BEH C18 resulted in overall sharper peaks. The decreased 

possible system backpressure in the HPLC system did not allow for use of the BEH C18 and 

therefore the best chromatographic separation was achieved using the Waters CSH C18 column. 

Several extraction methods were evaluated including an alkaline LLE, Waters Oasis 

melution, MP3, and the UCT DAU Purple micro. Of the four extraction methods evaluated, the 

UCT DAU column utilizing the wash buffers LCMS H2O, 100mM acetic acid, and hexane 

followed by the elution slolvent dicholormethane: isopropanol: ammonium hydroxide 

(DCM:IPA: NH4OH) (78:20:2) resulted in the most consistent and overall ideal conditions of 

less than 15% variation from the mean ME, PE, and RE. 

  



23 
 

References 

(1)  U.S. Drug Enforcement Administration Emergency Schedules All Illicit Fentanyls In An 

Effort To Reduce Overdose Deaths https://www.dea.gov/press-releases/2018/02/07/us-

drug-enforcement-administration-emergency-schedules-all-illicit (accessed Jun 28, 2020). 

(2)  Schueler, H. E. Emerging Synthetic Fentanyl Analogs. Acad. Forensic Pathol. 2017, 7 (1), 

36–40. https://doi.org/10.23907/2017.004. 

(3)  Danaceau, J. P.; Wood, M.; Ehlers, M.; Rosano, T. G. Analysis of 17 Fentanyls in Plasma 

and Blood by UPLC-MS/MS with Interpretation of Findings in Surgical and Postmortem 

Casework. Clin. Mass Spectrom. 2020, 18, 38–47. 

https://doi.org/10.1016/j.clinms.2020.10.003. 

(4)  CDC HAN Archive - 00438 

https://emergency.cdc.gov/han/2020/han00438.asp?ACSTrackingID=USCDC_1026-

DM45245&ACSTrackingLabel=December%202020%20Drug%20Overdose%20Updates

&deliveryName=USCDC_1026-DM45245 (accessed Dec 22, 2020). 

(5)  Mojica, M. A.; Carter, M. D.; Isenberg, S. L.; Pirkle, J. L.; Hamelin, E. I.; Shaner, R. L.; 

Seymour, C.; Sheppard, C. I.; Baldwin, G. T.; Johnson, R. C. Designing Traceable Opioid 

Material§ Kits to Improve Laboratory Testing during the U.S. Opioid Overdose Crisis. 

Toxicol. Lett. 2019, 317, 53–58. https://doi.org/10.1016/j.toxlet.2019.09.017. 

(6)  Krajewski, L. C.; Swanson, K. D.; Bragg, W. A.; Shaner, R. L.; Seymour, C.; Carter, M. 

D.; Hamelin, E. I.; Johnson, R. C. Application of the Fentanyl Analog Screening Kit 

toward the Identification of Emerging Synthetic Opioids in Human Plasma and Urine by 

LC-QTOF. Toxicol. Lett. 2020, 320, 87–94. https://doi.org/10.1016/j.toxlet.2019.12.007. 

(7)  Noble, C.; Dalsgaard, P. W.; Johansen, S. S.; Linnet, K. Application of a Screening 

Method for Fentanyl and Its Analogues Using UHPLC-QTOF-MS with Data-Independent 

Acquisition (DIA) in MSE Mode and Retrospective Analysis of Authentic Forensic Blood 

Samples. Drug Test. Anal. 2018, 10 (4), 651–662. https://doi.org/10.1002/dta.2263. 

(8)  Tabarra, I.; Soares, S.; Rosado, T.; Gonçalves, J.; Luís, Â.; Malaca, S.; Barroso, M.; 

Keller, T.; Restolho, J.; Gallardo, E. Novel Synthetic Opioids – Toxicological Aspects and 

Analysis. Forensic Sci. Res. 2019, 4 (2), 111–140. 

https://doi.org/10.1080/20961790.2019.1588933. 

(9)  Sofalvi, S.; Schueler, H. E.; Lavins, E. S.; Kaspar, C. K.; Brooker, I. T.; Mazzola, C. D.; 

Dolinak, D.; Gilson, T. P.; Perch, S. An LC–MS-MS Method for the Analysis of 

Carfentanil, 3-Methylfentanyl, 2-Furanyl Fentanyl, Acetyl Fentanyl, Fentanyl and 

Norfentanyl in Postmortem and Impaired-Driving Cases. J. Anal. Toxicol. 2017, 41 (6), 

473–483. https://doi.org/10.1093/jat/bkx052. 

(10)  Yonemitsu, K.; Sasao, A.; Mishima, S.; Ohtsu, Y.; Nishitani, Y. A Fatal Poisoning Case 

by Intravenous Injection of “Bath Salts” Containing Acetyl Fentanyl and 4-Methoxy PV8. 

Forensic Sci. Int. 2016, 267, e6–e9. https://doi.org/10.1016/j.forsciint.2016.08.025. 

(11)  Oasis HLB 96-well µElution Plate, 2 mg Sorbent per Well, 30 µm, 1/pk 

https://www.waters.com/nextgen/us/en/shop/sample-preparation--filtration/186001828ba-

oasis-hlb-96-well--elution-plate-2-mg-sorbent-per-well-30--m-1-p.html (accessed Jul 6, 

2020). 

(12)  Nováková, L.; Solichová, D.; Solich, P. Advantages of Ultra Performance Liquid 

Chromatography over High-Performance Liquid Chromatography: Comparison of 

Different Analytical Approaches during Analysis of Diclofenac Gel. J. Sep. Sci. 2006, 29 

(16), 2433–2443. https://doi.org/10.1002/jssc.200600147. 



24 
 

(13)  Poklis, J.; Poklis, A.; Wolf, C.; Hathaway, C.; Arbefeville, E.; Chrostowski, L.; Devers, 

K.; Hair, L.; Mainland, M.; Merves, M.; Pearson, J. Two Fatal Intoxications Involving 

Butyryl Fentanyl. J. Anal. Toxicol. 2016, 40 (8), 703–708. 

https://doi.org/10.1093/jat/bkw048. 

(14)  Guerrieri, D.; Rapp, E.; Roman, M.; Druid, H.; Kronstrand, R. Postmortem and 

Toxicological Findings in a Series of Furanylfentanyl-Related Deaths. J. Anal. Toxicol. 

2017, jat;bkw129v1. https://doi.org/10.1093/jat/bkw129. 

(15)  Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; 

Arbefeville, E.; Merves, M.; Pearson, J. Postmortem Tissue Distribution of Acetyl 

Fentanyl, Fentanyl and Their Respective Nor-Metabolites Analyzed by Ultrahigh 

Performance Liquid Chromatography with Tandem Mass Spectrometry. Forensic Sci. Int. 

2015, 257, 435–441. https://doi.org/10.1016/j.forsciint.2015.10.021. 

(16)  Fentanyl Analog Screening Kit (FAS Kit) and Emergent Panels | CDC 

https://www.cdc.gov/nceh/dls/erb_fas_kits.html (accessed Sep 17, 2020). 

(17)  Opioid Certified Reference Material Kit (Opioid CRM Kit) | CDC 

https://www.cdc.gov/nceh/dls/erb_crm_kits.html (accessed Sep 17, 2020). 

(18)  UCT. Fentanyl and Analogues in Blood. Plasma/Serum, Urine, and Tissu for GC/MS 

Confirmations Using: 200mg Clean Screen Extraction Column. February 3, 2009. 

(19)  Papsun, D.; Krywanczyk, A.; Vose, J. C.; Bundock, E. A.; Logan, B. K. Analysis of MT-

45, a Novel Synthetic Opioid, in Human Whole Blood by LC–MS-MS and Its 

Identification in a Drug-Related Death. J. Anal. Toxicol. 2016, 40 (4), 313–317. 

https://doi.org/10.1093/jat/bkw012. 

(20)  Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for 

Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37 (7), 452–474. 

https://doi.org/10.1093/jat/bkt054. 

(21)  Halby, L. An Introduction to Waters ACQUITY UPLC® Column Technologies for Small 

Molecule Analysis. 

(22)  Sofalvi, S.; Lavins, E. S.; Brooker, I. T.; Kaspar, C. K.; Kucmanic, J.; Mazzola, C. D.; 

Mitchell-Mata, C. L.; Clyde, C. L.; Rico, R. N.; Apollonio, L. G.; Goggin, C.; Marshall, 

B.; Moore, D.; Gilson, T. P. Unique Structural/Stereo-Isomer and Isobar Analysis of 

Novel Fentanyl Analogues in Postmortem and DUID Whole Blood by UHPLC–MS-MS. 

J. Anal. Toxicol. 2019, 43 (9), 673–687. https://doi.org/10.1093/jat/bkz056. 
  



25 
 

Appendix A: Tables 

Table 1. 

  Sciex Waters 

Analog Transitions ce dp ce 

Norsufentanil 
277>184 18 

57 
18 

277>245 18 18 

Thienyl Fentanyl 
329>97 30 

60 
30 

329>180 25 25 

Thiofentanyl 
343>111 26 

62 
34 

343>194 32 24 

 OH 

Thioacetylfentanyl 

345>192 29 
51 

29 

345>327 23 23 

-Me Thiofentanyl 
357>125 35 

65 
40 

357>259 23 34 

trans-3-Me 

Thiofentanyl 

357>208 33 
48 

24 

357>259 33 34 

  Sciex Waters 

Analog Transitions ce dp ce 

cis-3-Me 

Thiofentanyl 

357>111 35 
60 

32 

357>208 31 24 

 OH Thiofentanyl 
359>146 33 

56 
24 

359>192 28 22 

 OH Thiofentanyl 

13C6 

365>152 25 
68 

22 

365>192 31 22 

Sufentanil 
387>238 27 

75 
27 

387>355 27 27 

Thiophene Fentanyl 
391>105 26 

63 
26 

391>188 26 26 

Tetrahydrothiophene 

Fentanyl 

395>105 33 
70 

33 

395>188 33 33 

Table 1 SFA transitions and respective voltages utilized for the identification of the twelve 

analogs on both the UPLC MS/MS and AB Sciex-5500 triple quad mass spectrometer. Cone 

voltage for all transitions was held at 16V. 
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Table 2. 

Time %A %B Curve 

0 85 15 6 

1 85 15 6 

17 60 40 7 

17.8 5 95 6 

18.5 5 95 6 

19 85 15 6 

20.5 85 15 6 

Table 2. Most effective time table gradient to separate the SFA on the Waters BEH C18 column.  
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Table 3. 

Time %A %B Curve 

0 85 15 0 

1 85 15 0 

17 40 60 3 

17.8 5 95 0 

18.5 5 95 0 

19 85 15 0 

20.5 85 15 0 

Table 3. Most effective time table gradient to separate the SFA on the Waters CSH C18 column.  
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Table 4.  

Analog RT UPLC (min) RT HPLC (min) 

BOH Thioacetylfentanyl 2.92 5.16 

Norsufentanil 5.07 8.41 

BOH Thiofentanyl 5.64 9.32 

BOH Thiofentanyl (13C6) 5.64 9.32 

Thienyl Fentanyl 5.86 9.51 

Thiofentanyl 7.42 11.19 

a-methyl Thiofentanyl 8.16 11.87 

trans-3-methyl Thiofentanyl 8.76 12.48 

cis-3-methyl Thiofentanyl 9.14 12.78 

Tetrahydrothiophene Fentanyl 10.48 13.99 

Thiophene Fentanyl 10.97 14.43 

Sufentanil 11.01 14.48 

Table 4. Retention times of all twelve analogs on both UPLC and HPLC systems when gradient 

from Table 2 and 3 are applied to the BEH and CSH C18 column respectively. 
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a ME 236 29 57 185 162 158 195 183 268 1456 488 307 

RE 42 30 5 35 31 31 45 27 28 31 18 24 

PE 142 39 7 101 82 79 13 76 76 488 108 97 

Table 5. Percent matrix effect (ME), recovery (RE), and processing efficiency (PE) calculated 

from peak area after extraction using the alkaline LLE technique. The values in red are outside of 

the ideal error rate of 25%.  
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Table 6 
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 ME -22 31 NA NA -1 -21 4 -4 4 -1 23 -51 

RE 173 84 NA NA 135 174 162 138 148 160 128 91 

PE 134 109 NA NA 134 137 168 132 154 158 159 45 

Table 6. Percent matrix effect (ME), recovery (RE), and processing efficiency (PE) calculated 

from peak area after extraction using the Waters Oasis elution technique. The values in red are 

outside of the ideal error rate of 25%. 
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Table 7 
 

B
O

H
 

T
h

io
a
ce

ty
lf

en
ta

n
y
l 

N
o
rs

u
fe

n
ta

n
il

 

B
O

H
 T

h
io

fe
n

ta
n

y
l 

1
3
C

6
 B

O
H

 

T
h

io
fe

n
ta

n
y
l 

T
h

ie
n

y
l 

F
en

ta
n

y
l 

T
h

io
fe

n
ta

n
y
l 

a
-m

e 
T

h
io

fe
n

ta
n

y
l 

tr
a
n

s-
3
-m

e 

T
h

io
fe

n
ta

n
y
l 

ci
s-

3
-m

e
 T

h
io

fe
n

ta
n

y
l 

T
et

ra
h

y
d

ro
th

io
p

h
en

e 

F
en

ta
n

y
l 

T
h

io
p

h
en

e 
F

en
ta

n
y
l 

S
u

fe
n

ta
n

il
 

P
ea

k
 

A
re

a
 ME 31 26 -83 58 22 55 165 61 74 181 75 26 

RE 95 113 364 103 106 105 86 98 97 68 84 113 

PE 124 142 61 162 129 162 227 157 169 190 147 142 

Table 7. Percent matrix effect (ME), recovery (RE), and processing efficiency (PE) calculated 

from peak area after extraction using the MP3 SPE technique. The values in red are outside of 

the ideal error rate of 25%. 
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Table 8 
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 ME -1 -8 19 31 -10 -2 -3 0 -4 2 -3 16 

RE 69 18 48 56 69 70 63 65 65 55 67 55 

PE 68 16 57 73 62 68 61 65 63 56 65 64 

Table 8. Percent matrix effect (ME), recovery (RE), and processing efficiency (PE) calculated 

from peak area after extraction using the UCT DAU (purple) micro technique. The values in red 

are outside of the ideal error rate of 25%. 

 

 

  



33 
 

Appendix B: Figures 

Figure 1. 
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Figure 1. a-methyl Thiofentanyl and respective transitions 
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Figure 2. 
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Figure 2. BOH Thioacetylfentanyl and respective transitions 
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Figure 3. 
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Figure 3. BOH Thiofentanyl and respective transitions 
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Figure 4. 
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Figure 4. cis/trans-3-methyl Thiofentanyl and respective transitions 
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Figure 5. 
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Figure 5. Norsufentanil and respective transitions 
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Figure 6. 

 

 

 

 

 

 

 

  

Figure 6. Sufentanil and respective transitions 
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Figure 7. 

 

 

 

 

 

 

  

Figure 7. Tetrahydrothiophene and respective transitions 
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Figure 8. 
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Figure 8. Thienyl Fentanyl and respective transitions 
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Figure 9.         
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Figure 9. Thiofentanyl and respective transitions 
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Figure 10. 
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Figure 10. Thienyl Fentanyl and respective transitions 
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Figure 11. 
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Figure 11. 13C6 BOH Thiofentanyl and respective transitions 
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Figure 12. 

 

Figure 12. Chromatography of all twelve SFA eluting off the Biphenyl column when a curved, 

step-type gradient22 was applied using 0.1% FA in water (aqueous) and 0.1% FA in ACN 

(OMP). 3 nonsymmetrical, broad, and not baseline resolved peaks were identified to contain the 

twelve SFA. Instrument: Waters ACQUITY TQs UPLC. 
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Figure 13.  

 

Figure 13. Chromatography of all twelve SFA eluting from the UCT C18 column when a linear 

gradient of 5-95% 0.1% FA in ACN over nine minutes was applied. All twelve analogs eluted 

from the column between 5 and 7 minutes resulting in 7 unresolved, broad, short peaks. 

Instrument: Waters ACQUITY TQs UPLC. 
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Figure 14.  

 

Figure 14. Chromatography of all twelve SFA eluting from the UCT C18 column when a linear 

gradient of 20-95% 0.1% FA in ACN over nine minutes was applied. All twelve analogs eluted 

from the column between 1.5 and 6 minutes resulting in 7/8 unresolved, broad peaks. Instrument: 

Waters ACQUITY TQs UPLC. 
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Figure 15.  

 

Figure 15. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 20-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 0 and 2 minutes with five defined peaks. The five peaks resulted in narrow, 

symmetrical, tall, almost baseline separated peaks. Instrument: Waters ACQUITY TQs UPLC. 
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Figure 16 

 

Figure 16. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 5-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 0 and 3.5 minutes with four defined peaks and one large broad unresolved 

several analog elution from 1.5minutes to 2.5 minutes. Instrument: Waters ACQUITY TQs 

UPLC. 
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Figure 17. 

 

Figure 17. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 10-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 0 and 3 minutes with six defined peaks. The six peaks resulted in narrow, 

symmetrical, tall, almost baseline separated peaks. Instrument: Waters ACQUITY TQs UPLC. 
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Figure 18. 

 

Figure 18. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 15-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 0 and 6 minutes with ten defined peaks including chromatic separation of 

the a-methyl thiofentanyl (RT: 1.90), trans-3-methyl thiofentanyl (RT: 2.02), and cis-3-methyl 

thiofentanyl (RT:2.16). The ten peaks resulted in narrow, symmetrical, tall, almost baseline 

separated peaks. Instrument: Waters ACQUITY TQs UPLC. 
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Figure 19.  

 

Figure 19. Three chromatograms showing the elution of all twelve SFA when three different 

mobile phase gradients were applied to the column. The top chromatogram shows 5-95% FA in 

ACN over a linear gradient, the middle chromatogram shows 10-95% FA in ACN over a linear 

gradient, the bottom chromatogram shows 15-95% FA in ACN over a linear gradient. While the 

resolution of the analogs does not change over the three gradient conditions, the elution of the 

SFA is about 0.5 minutes quicker as the initial concentration of the OMP increases by 5%. Only 

eight peaks can be identified in the chromatograms of the 5,10,15% initial OMP conditions. 

Instrument: Waters ACQUITY TQs UPLC. 
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Figure 20.  

  

Figure 20. The injection time was increased to 20 minutes and the addition of a curve was added 

to the gradient. Top chromatogram: curve of 7 from 15-60% OMP over 17 minutes followed by 

a linear ramp to 95% OMP for 1.5 minutes. Bottom Chromatogram: curve of 8 from 15-60% 

OMP over 17 minutes followed by a linear ramp to 95% OMP for 1.5 minutes. The addition of 

the curve allowed for 10 peaks to be defined and resolved. Analogs eluted from the column as 

follows: BOH thioacetylfentanyl, norsufentanil, BOH thiofentanyl/BOH thiofentanyl 13C6, 

thienyl fentanyl, thiofentanyl, alpha-methyl thiofentanyl, trans-3-methyl thiofentanyl, cis-3-

methyl thiofentanyl, tetrahydrothiophene fentanyl, thiophene fentanyl, and sufentanil. 

Instrument: Waters ACQUITY TQs UPLC. 
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Figure 21.  

 

Figure 21. Graphical representation of the most effective gradient to separate the SFA on the 

Waters BEH C18 column and the Waters CSH C18 column.  
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Figure 22. 

 

Figure 22. Chromatogram of all twelve SFA eluting off the PFPP column when Sofalvi et al.22 

gradient was applied with 0.1 FA in Water (aqueous) and 0.1 FA in ACN (OMP. R.T. 7.30 

minutes: Norsufentanil. 13C6 BOH Thiofentanyl was identified as the broad peak with a Wbase of 

3 minutes at 15.5minutes. The remaining 10 analogs eluted from the PFPP column between 18 

and 19 minutes. Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 23. 

 
Figure 23. Chromatogram of all twelve SFA eluting off the UCT C18 column when Sofalvi et 

al.22 gradient was applied using 0.1% FA in water (aqueous) and 0.1% FA in ACN (OMP). R.T. 

18.43: Norsufentanil. Remaining 11 analogs eluted from UCT C18 column after 19 minutes. 

Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 24. 

 

Figure 24. Chromatogram of all twelve SFA eluting off the UCT C18 column when a linear 

gradient of 5-95% 0.1% FA in ACN over nine minutes was applied. All twelve analogs eluted 

from the column between 7-8 minutes and resulted in unseparated sharp narrow peaks. 

Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 25.  

 

Figure 25. Chromatogram of all twelve SFA eluting off the UCT C18 column when a linear 

gradient of 20-95% 0.1% FA in ACN over nine minutes was applied. All twelve analogs eluted 

from the column between 5.5-7 minutes. Retention time of analogs left to right: Norsufentanil 

(5.73 minutes), Thienyl Fentanyl (5.96), BOH Thiofentanyl/ 13C6 (6.03), Thiofentanyl (6.21), 

alpha-methyl/trans-3-methyl Thiofentanyl (6.46), Cis-3-methyl Thiofentanyl (6.53), Sufentanil 

(6.96), Tetrahydrothiophene Fentanyl (6.77). Instrument: Shimadzu AD 20 HPLC coupled Sciex 

AB 5500 triple quadrupole. 
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Figure 26. 

 

Figure 26. Zoomed in chromatogram of all twelve SFA eluting off the UCT C18 column when a 

linear gradient of 10-95% 0.1% FA in ACN over 9 minutes was applied. All twelve analogs elute 

from the column between 5 and 7 minutes and resulted in 4 unresolved peaks. Instrument: 

Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 

  

XIC of +MRM (24 pairs): 277.000/245.000 Da ID: Norsufentanil from Sample 6 (Everyone) of 092220.wiff (Turbo Spray) Max. 2.5e5 cps.

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
Time, min

0.0

1.0e5

2.0e5

3.0e5

4.0e5

5.0e5

6.0e5

7.0e5

8.0e5

9.0e5

1.0e6

1.1e6

1.2e6

1.3e6

1.4e6

1.5e6

1.6e6

1.7e6

1.8e6

1.9e6

2.0e6

2.1e6

2.2e6

2.3e6

2.4e6

2.5e6

2.6e6

Inte
nsi

ty, 
cps

6.12



59 
 

Figure 27.  

Figure 27. Zoomed in chromatogram of all twelve SFA eluting off the UCT C18 column when a 

linear gradient of 15-95% 0.1% FA in CAN over 9 minutes was applied. All twelve analogs elute 

from the column between 5 and 7 minutes and resulted in 4 unresolved peaks. Instrument: 

Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 28. 

 

Figure 28. Chromatogram of all twelve SFA eluting off the Restek C18 column when a linear 

gradient of 5-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from the 

column between 5 and 7 minutes and resulted in broad, short, and mixture of symmetrical and 

unsymmetrical peaks. Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple 

quadrupole. 
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Figure 29. 

Figure 29. Chromatogram of all twelve SFA eluting off the Restek C18 column when a linear 

gradient of 20-95% 0.1% FA in ACN over 9 minutes was applied. All analogs eluted from the 

column between 3 and 7 minutes resulting in broad, short, unresolved peaks. Instrument: 

Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 30. 

 
Figure 30. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 5-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 2.5 and 5 minutes with 5 defined peaks. All peaks other than BOH 

Thioacetylfentanyl (RT: 2.5) resulted in narrow, symmetrical, unresolved fully peaks. 

Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 31. 

 

Figure 31. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 10-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 2 and 4.5 minutes with 8 defined peaks. All peaks other than BOH 

Thioacetylfentanyl (RT: 2.5) resulted in narrow, symmetrical, unresolved fully peaks. 

Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 32. 

 

Figure 32. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

linear gradient of 15-95% 0.1%FA in ACN over 9 minutes was applied. All analogs eluted from 

the column between 1 and 4 minutes with 8 defined peaks. All peaks other than BOH 

Thioacetylfentanyl (RT: 2.5) resulted in narrow, symmetrical, almost fully resolved peaks. 

Instrument: Shimadzu AD 20 HPLC coupled Sciex AB 5500 triple quadrupole. 
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Figure 33. 

 

Figure 33. Chromatogram of all twelve SFA eluting off the Waters X-Select C18 column when a 

curved gradient of 15-60% 0.1%FA in ACN over 16 minutes was applied. All analogs eluted 

from the column between 2 and 11 minutes with 10 defined peaks. All peaks resulted in narrow, 

symmetrical, almost fully resolved peaks. Analogs eluted: BOH thioacetylfentanyl, 

norsufentanil, BOH thiofentanyl/BOH thiofentanyl 13C6, thienyl fentanyl, thiofentanyl, alpha-

methyl thiofentanyl, trans-3-methyl thiofentanyl, cis-3-methyl thiofentanyl, tetrahydrothiophene 

fentanyl, thiophene fentanyl, and sufentanil. Instrument: Shimadzu AD 20 HPLC coupled Sciex 

AB 5500 triple quadrupole. 
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Figure 34. 

 

Figure 34. Chromatogram of the structurally similar isobar analogs not chromatographically 

separated from the butyryl, furanyl, and thiofentanyl class. Utilization of the previously 

optimized gradient on a Phenomenex biphenyl column resulted in the separation of p-me furanyl 

fentanyl (MW: 389), Sufentanil (MW: 387), and Thiophene Fentanyl (MW: 391) as well as the 

separation of p-fl Furanyl Fentanyl (MW: 393)and Tetrahydrothiophene Fentanyl (MW: 395). 

All other unlabeled peaks are remaining butyryl fentanyl and furanyl fentanyl unresolved from 

the respective class separation. 
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Figure 35 

 

Figure 35. 10 plasma samples evaluated utilizing the optimized mass spectral method. Two mass 

spectral channels were utilized and the chromatograms are overlayed. MS channel 1 (0-8 

minutes). MS channel 2 (8-21.5 minutes).  
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Figure 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. The SFA mass spectral method (Table 1) evaluated against the BioRad C4-common 

drugs of abuse. Only the transitions of fentanyl, norfentanyl, and BOH thiofentanyl 13C6 were 

identified in the sample all three of which were added as internal standards. 
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Figure 37 

 

Figure 37. The SFA mass spectral method (Table 1) evaluated against the BioRad TDM3 

common pharmaceuticals. Only the transitions of fentanyl, norfentanyl, and BOH thiofentanyl 

13C6 were identified in the sample all three of which were added as internal standards. 
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Figure 38 

 

Figure 38. The SFA mass spectral method (Table 1) evaluated against the BioRad Unassayed 

Multiqual-abnormal serum. The transitions of fentanyl, norfentanyl, and BOH thiofentanyl 13C6 

were identified in the sample all three of which were added as internal standards. The peak 

located at 14.16 was identified as a Furanyl Fentanyl and therefore was not identified in the SFA 

MS method.  
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Figure 39 

 

Figure 39. The graph shows the linearity of the 0.01-1ng/mL extraction of thiofentanyl.   
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Figure 40 

 

Figure 40. The graph shows the lower concentrations of the linear curve-0.010-.100ng/mL. The 

explained variation of 0.025-0.100ng/mL is 98% meaning 98% of the change in post-preparative 

concertation is caused by the change in pre-preparation concentration. The high explained 

variance (r2) allows for the use of 0.05ng/mL as the empirical cutoff concentration.  
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Figure 41 

 

Figure 41. The bar graph shows the precision at the cutoff and allows for visualization of the 

distinctive three groups, 25pg, 50pg, and 75pg, for the eleven analogs. BOH thiofentanyl 13C6 

was removed due to its use as an internal standard. Error bars represent the standard deviation of 

the post-preparative concentration of each analyte over the 5 extraction triplicate. 
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