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ABSTRACT 
 
Modeling Substance Use and Mental Disorder Comorbidity Using Latent Variable 

and Network Approaches 
 
By Courtney Taylor Blondino, MPH, Ph.D. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 
 

 
Virginia Commonwealth University, 2021 

 

Director: Elizabeth Prom-Wormley, Ph.D. 
Assistant Professor 

Division of Epidemiology 
Department of Family Medicine and Population Health 

 
Introduction. Substance use disorder (SUD) is a common condition that affects millions 

of Americans and represents a substantial burden to the U.S. healthcare system. 

Addressing SUD has been complicated by comorbid mental disorders and co-occurring 

substance use. Consequently, detailing and addressing SUD and comorbid SUD 

represent an important goal to improve the health of Americans. 

Objective. The research goal of this dissertation was to characterize the comorbidity 

between substance use, including tobacco use, and mental disorder symptoms 

measured as negative affect and externalizing symptoms in a population-based sample 

using latent variable and network approaches. Specifically, this project aims to: 

preliminarily assess comorbidity using multinomial regression between lifetime negative 

affect severity, externalizing severity and nicotine dependence, and current use of 

tobacco (cigarettes and e-cigarettes) and alcohol (Chapter 2); identify latent classes of 



 xi 

comorbid substance use as well as negative affect and externalizing symptoms and 

their ability to predict SUD severity (Chapter 3); detail substance use, negative affect, 

and externalizing symptom networks and test for differences in the network structure 

and connectivity by gender (Chapter 4); and use pairwise comparisons from the LCA 

and network results to address stability or movement of comorbidity structures over 

three waves of data (Chapter 5). 

Methods. Waves 1 – 3 from the Population Assessment of Tobacco and Health Study 

were used. Various statistical analyses were used to complete each project including 

multinomial and ordinal regression, latent class analysis, cumulative ROC curve 

analysis, and network analysis.  

Results. The associations between psychopathology (negative affect vs. externalizing 

severity) varied by different substance use combinations. Results from the latent class 

analysis identified a four-class solution as most optimal in characterizing comorbidity: 

low symptom (N=23,571, 72.9%), negative affect (N=4,098, 12.7%), externalizing 

(N=2,691, 8.3%), and comorbid (N=1,960, 6.1%). Network analysis results showed 

similarities between men and women. The strongest substance use/mental health 

symptom connections estimated as edge-weights (EW) in the network were between 

marijuana with lying (EW = 0.60, 95% CI = 0.49; 0.70), marijuana with engaging in fights 

(EW = 0.54, 95% CI = 0.27; 0.81), prescription drugs not prescribed (PDNP) with having 

trouble sleeping (EW = 0.53, 95% CI = 0.40; 0.66), and alcohol and impulsivity (EW = 

0.48, 95% CI = 0.42; 0.53). Both latent class analysis and network analysis results 

identified relationships between (1) exclusive cigarette, dual cigarette and e-cigarette, 

marijuana, and PDNP with negative affect symptoms, and (2) alcohol with externalizing 
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symptoms. Similar latent profiles emerged across the three waves specifically where the 

low symptom class was largest (65.5% to 72.9%) and the comorbid class was smallest 

(6.1% to 8.2%). Network structure and connectivity did not significantly differ by wave; 

however, edge-weight comparisons identified some stronger connections among the 

substance use behaviors and mental disorder symptoms from preceding to subsequent 

waves. 

Conclusions. The results from the four different studies fill extensive gaps in the 

comorbidity research. This dissertation identified specific combinations of substance 

use behaviors and mental disorder symptoms, determined which sociodemographic 

factors play a role in specific comorbidity profiles, and assessed the patterns of 

comorbidity among three waves of data. These results support the need to approach 

substance use and mental disorders from a more holistic perspective, taking 

comorbidity into account to better support the overall wellbeing of the individual. The 

results can inform robust and targeted prevention strategies to effectively mitigate the 

substantial burden and societal costs of comorbidity in the U.S. population.  
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CHAPTER 2: THE ASSOCIATION BETWEEN NEGATIVE AFFECT AND 
EXTERNALIZING SEVERITY WITH CURRENT USE OF CIGARETTES, E-
CIGARETTES, AND ALCOHOL IN ADULTS: WAVE 1 OF THE POPULATION 
ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY 
 
Introduction. Concurrent tobacco/alcohol use is common in adults, and associated with 

the severity of symptoms experienced by those with mental health disorders. However, 

few studies have explored this relationship across different combinations of tobacco 

products [i.e., conventional cigarette (CIG) and electronic cigarette (ECIG)] and alcohol.  

Objective. Examine the association of lifetime mental disorder symptom severity and 

past 30-day combinations of CIG, ECIG, and alcohol use. 

Methods. Data from the Wave 1 (2013-2014) Population Assessment of Tobacco and 

Health study were used. A total of 15,947 adults aged 18 years or older with complete 

study information were included. Multinomial logistic regression analyses were 

performed to determine the relationship between lifetime negative affect/externalizing 

severity and past 30-day use of tobacco and alcohol, adjusting for nicotine dependence 

(ND), sex, age, race, education, and income. 

Results. Negative affect severity was more strongly associated with CIG and alcohol 

use (moderate AOR= 1.47, 95% CI= 1.22-1.77; high AOR= 1.29, 95% CI= 1.03-1.61) as 

well as alcohol-exclusive use (moderate AOR= 1.58, 95% CI= 1.27-1.96; high AOR= 

1.31, 95% CI= 1.05-1.64) while externalizing severity was more strongly associated with 

ECIG and alcohol use (high AOR= 2.97, 95% CI= 1.84-4.81, moderate AOR= 2.29, 95% 

CI= 1.53-3.43) when accounting for ND compared to none. The relationship between 

externalizing severity with ECIG use was dependent on alcohol being used with ECIG.  

Conclusions. The associations between psychopathology (negative affect vs. 

externalizing severity) vary by different combinations of alcohol, CIG, and ECIG. 

Further, these relationships may be mediated through ND. Future investigations into the 

comorbidity between mental disorder symptoms with tobacco and alcohol use should 

consider use of specific substances and their combination. 
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CHAPTER 3: LATENT CLASSES OF COMORBID SUBSTANCE USE AND 
NEGATIVE AFFECT AND EXTERNALIZING SYMPTOMS AND THEIR ROLE IN 
ADULT SUBSTANCE USE DISORDER SEVERITY  
 
Introduction. SUD poses a substantial burden on the United States’ health system. 

Many prevention efforts exist to slow the progression or prevent SUD from occurring. 

Substance use and mental health comorbidity profiles could predict SUD severity, 

further informing prevention and intervention strategies. 

Objective. Identify latent classes of comorbid substance use as well as negative affect 

and externalizing symptoms and assess their ability to predict SUD severity. 

Methods. Latent class analysis of past-month endorsement of negative affect and 

externalizing symptoms and past 30-day substance use will be used for each wave 

separately. We tested the degree to which demographic and social factors influence the 

probability of class membership. The probability of comorbidity class membership will 

be included in regression models to test the predictive probability of SUD severity.  

Results. A four-class solution was considered to best fit the data and were categorized: 

low symptom (N=23,571, 72.9%), negative affect (N=4,098, 12.7%), externalizing 

(N=2,691, 8.3%), and comorbid (N=1,960, 6.1%). Substance use varied across the 

mental disorder symptoms. Exclusive cigarette use, dual cigarette and e-cigarette use, 

marijuana use, and prescription drugs not described more commonly occurred in the 

negative affect class while exclusive e-cigarette and alcohol use more commonly 

occurred with the externalizing class. Women and people with low socioeconomic status 

had higher odds of membership in the comorbid and negative affect classes. Social 

satisfaction was a very strong factor associated with the comorbid and negative affect 

classes. Latent class membership predicting SUD severity performed similarly to a 

model where the symptoms were grouped separately (i.e., negative affect symptoms, 

externalizing symptoms, and substance use behaviors). 

Conclusions. A four-class solution best described the comorbidity structure in a 

nationally representative sample of U.S. adults. Certain substance use behaviors were 

more commonly associated with specific mental disorder symptoms. Demographic 

factors and a potentially modifiable social factor were significantly associated with latent 
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class membership. Overall, prediction of SUD severity was poor for latent class 

membership as well as substance use behaviors and mental disorder symptoms group 

separately. These results identify the need for prevention efforts required to mitigate 

development of more severe course of illness. Future work should consider other 

methodological approaches (e.g., factor mixture modeling and network analysis) to 

further investigate the comorbidity structure of U.S. adults. 
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CHAPTER 4: A NETWORK APPROACH TO SUBSTANCE USE, NEGATIVE 
AFFECT, AND EXTERNALIZING COMORBIDITY IN U.S. ADULTS  
 
Introduction. Use of conventional cigarettes (CIG), alcohol, marijuana, and sedatives 

[i.e., benzodiazepines and barbiturates]) commonly co-occur with negative affect and 

externalizing disorders. It is unclear how these relationships extend to electronic 

cigarettes (ECIG) and prescription drugs not prescribed (i.e., sedatives, tranquilizers, 

and painkillers [PDNP]), and whether they differ by gender. 

Objective. Detail substance use, negative affect, and externalizing symptom networks, 

and compare by gender. 

Methods. Data from Wave 1 of the adult PATH sample was used to test a network 

model of past 30-day substance use, negative affect symptoms, and externalizing 

symptoms. Global and local differences in men and women networks were tested 

through visual comparisons, global strength invariance, network structure invariance, 

and edge strength invariance. 

Results. Overall, networks were consistent between men and women. The strongest 

substance use/mental health symptom connections estimated as edge-weights (EW) 

were between marijuana with lying (EW = 0.60, 95% CI = 0.49; 0.70), marijuana with 

engaging in fights (EW = 0.54, 95% CI = 0.27; 0.81), PDNP with having trouble sleeping 

(EW = 0.53, 95% CI = 0.40; 0.66), and alcohol and impulsivity (EW = 0.48, 95% CI = 

0.42; 0.53). 

Conclusions. There were many weak connections throughout the substance use and 

negative affect/externalizing network. A few important connections were identified and 

encourage future study. In particular, PDNP was most strongly associated with negative 

affect while marijuana, alcohol and PDNP use were most strongly associated with 

externalizing.   
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CHAPTER 5: PRELIMINARY PATTERNS OF SUBSTANCE USE AND MENTAL 
DISORDER SYMPTOM COMORBIDITY IN ADULTS OVER TIME 
 
Introduction. Patterns of co-occurring substance use and mental health conditions are 

well-described in youth and young adult populations. It remains unclear whether these 

patterns continue into adulthood. 

Objective. Perform a preliminary assessment to determine the stability of substance use 

and mental disorder comorbidity across three years of data (2013-2016) using both 

latent class and network analyses. 
Methods. Latent class analyses were conducted cross-sectionally for each wave of data 

(Wave 1, Wave 2, Wave 3). Class probability parameters, item response probability 

parameters, transition patterns and results from the multinomial logistic regression were 

compared across the three waves. Network models were estimated, and three tests of 

network invariance were used to test significant differences in network models by wave. 

Results. Four-class solutions generated from the latent class analyses were compared 

by wave. Similar latent profiles emerged across the three waves specifically where the 

low symptom class was largest (65.5% to 72.9%) and the comorbid class was smallest 

(6.1% to 8.2%). Overall, when individuals transitioned from one class to another, they 

typically transitioned into the low symptom class (62.3% to 66.8%) from preceding to 

subsequent wave. Network structure and connectivity did not significantly differ by 

wave; however, edge-weight comparisons identified some stronger connections among 

the substance use behaviors and mental disorder symptoms from preceding to 

subsequent waves. 

Conclusions. The comorbidity structure is consistent across waves. The connections 

between these behaviors and symptoms may become stronger at each wave. 

Therefore, investment of time, money, and other resources are encouraged to support 

those experiencing comorbidity as they are unlikely to change in adulthood
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CHAPTER 1: INTRODUCTION 
 

Substance use disorder 

 Substance use disorder (SUD) develops as a result of prolonged use of any 

psychoactive substance at high doses and/or frequencies, and is defined as the 

continued use of alcohol and/or drugs despite clinically significant impairment, including 

health problems, disability, and failure to meet major responsibilities at work, school, or 

home.1–3 The essential feature of a SUD is a cluster of cognitive, behavioral, and 

physiological symptoms showing that the individual continues substance use despite 

significant substance-related problems.2 Diagnosis of SUD is based on a pathological 

pattern of behaviors related to the use of a substance.2 

 SUD represents a significant public health burden because of the life-years lost 

due to disability, impaired quality of life, disruption of work and family relationships, and 

death from accidents or overdose.4 In 2018, approximately 19.3 million American adults 

met diagnostic criteria for a past-year SUD,5 and drug abuse and addiction cost society 

an estimated $600 billion every year.6   

 

Substance use disorder and mental health comorbidity  

SUD commonly co-occurs across substances and with mental disorders. 

Approximately 6% of American adults are affected with SUD.2,7,8  Of those affected with 

SUD, about 50% have a co-occurring or comorbid mental illness such as negative affect 

(i.e., behaviors such as depression or anxiety where the distress of an affected 

individual is expressed inward) or externalizing disorders (i.e., behaviors such as 

attention-deficit hyperactivity disorder where the distress of an affected individual is 
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expressed outward).5 Further, many people affected with SUD also engage in use of 

other substances. For example, alcohol use disorder and nicotine dependence are 

commonly reported in approximately 25-50% of those with marijuana, cocaine, 

prescription opioid, and heroin use disorders.9 Some common mental disorders that 

have been associated with SUDs (e.g., tobacco, alcohol, marijuana, cocaine, sedatives) 

include anxiety disorders, depressive disorders, conduct disorder, ADHD, and antisocial 

personality disorder.9–17 

Comorbid substance use and mental disorders represent a substantial burden to 

the American health care system. Of the approximately 20 million adults in the United 

States (U.S.) who experience a SUD, half also have a co-occurring mental illness.5 

People with comorbid substance use and mental disorders suffer from more severe 

health outcomes compared to those who experience one disorder.18 Substance use and 

mental disorders are the leading cause of disease burden in the U.S. This has 

increased from 2779 DALYs (age standardized disability adjusted life years) in 1990 to 

3355 DALYs in 2015.19 Additionally, the U.S. has the highest rate of death due to 

substance use and mental disorders together at an age standardized death rate = 12.0 

per 100,000 compared to an average of 4.9 per 100,000 in similarly wealthy countries 

(e.g., France = 6.5 per 100,000; Canada = 5.8 per 100,000; United Kingdom = 5.2 per 

100,000; Netherlands = 2.5 per 100,000).19 The economic burden of substance use and 

mental disorder comorbidity, due to treatment spending from all public and private 

sources, is expected to increase from $171.7 billion in 2009 to $280.5 billion in 2020.20 

Co-occurring mental disorders, without SUD, are also common. Negative affect 

disorders like depression and anxiety are frequently associated with one another.21,22 
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Examples of negative affect symptoms include feeling depressed, feeling anxious, 

having sleep trouble, or becoming distressed or upset about the past. Negative affect 

symptoms are commonly reported in those with externalizing disorders.23 Externalizing 

disorders reflect distress expressed outward which is commonly diagnosed as attention 

deficit hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, 

antisocial personality disorder, and sometimes SUD.22 Examples of externalizing 

symptoms include having a hard time paying attention or listening, feeling restless, 

acting impulsively, lying or conning, threatening people, and starting physical fights with 

people.  

SUD is a common condition that affects millions of Americans and represents a 

substantial burden to the U.S. healthcare system. Addressing SUD has been 

complicated by comorbid mental disorders and co-occurring substance use. 

Consequently, detailing and addressing SUD and comorbid SUD represent an important 

goal to improve the health of Americans. 

 

Current state of SUD measurement 

The American Psychiatric Association’s Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-V) is a classification of mental disorders, including 

SUD, with associated criteria designed to facilitate more reliable diagnoses of these 

disorders.2 To date, the DSM-V is the standard reference for clinical practice and is 

considered the best description of how mental disorders are expressed.2 In the DSM-V, 

substance-related disorders encompass ten separate classes of drugs: alcohol; 

caffeine; cannabis; hallucinogens (with separate categories for phencyclidine [or 
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similarly acting arylcyclohexylamines] and other hallucinogens); inhalants; opioids; 

sedatives, hypnotics, and anxiolytics; stimulants (amphetamine-type substances, 

cocaine, and other stimulants); tobacco; and other (or unknown) substances. For a 

twelve-month period for diagnoses, two of the eleven criteria are required: (1) take 

substance in larger amounts or over longer period than intended, (2) express consistent 

desire to cut down or regulate use, (3) spent a great deal of time obtaining or using the 

substance, or recovering from its effects, (4) intense desire or urge for the substance 

(craving), (5) use results in failure to fulfill major role obligations, (6) continues use 

despite persistent social or interpersonal problem, (7) reduced involvement in activities 

because of use, (8) risky use in situations which are physically hazardous, (9) continued 

use despite physical or psychological problems, (10) requiring an increased dose of 

substance to achieve desired effect (tolerance), and (11) withdrawal symptoms. 

Diagnostic criteria allow a severity rating along with diagnosis: mild SUD defined as two 

or three symptoms, moderate SUD defined as four or five symptoms, and severe SUD 

defined as six or more symptoms.  

The International Classification of Disease, Tenth Revision, Clinical Modification 

(ICD-10-CM) is the other main diagnostic classification systems for SUD in the United 

States.24 The World Health Organization produces the ICD-10-CM with the primary 

focus for mental and behavioral disorder classification to help countries reduce the 

disease burden of mental disorders.24 It is the standard transaction code set for 

diagnosis under the Health Insurance Portability and Accountability Act (HIPAA) and is 

used to track disease burden, mortality statistics, and to ensure appropriate billing.25 
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The ICD-10-CM lists the same ten substances as the DSM followed by a list of 

specifiers under larger categories including abuse, dependence, and use.  

There are other instruments used in clinical and non-clinical settings to identify 

and measure SUD and SUD severity, overall or by specific substance. Common 

evidence-based instruments include the Addiction Severity Index (ASI), Alcohol Use 

Disorders Identification Test (AUDIT), Drug Abuse Screen Test (DAST), Fagerstrom 

Test for Nicotine Dependence (FTND), and the Global Appraisal for Individual Needs 

(GAIN).26–28 These tools are useful to assess SUD and SUD severity in settings such as 

epidemiologic research of large populations where it is impractical to establish 

diagnoses.27,28 This is important because substance use that does not result in a 

diagnosis of SUD remain pervasive throughout American society.8 For example, 85.6% 

of American adults engage in alcohol use.29 Of these, 25.8% engage in patterns of use 

that would not necessarily lead to a diagnosis of alcohol use disorder such as binge 

drinking (i.e., consuming 5 or more alcoholic drinks for males or 4 or more alcoholic 

drinks for females on the same occasion) in the past-month.29 Additionally, 8.3% of 

Americans 12 years of age and older reported past-month marijuana use with intensity 

of use increasing (i.g.,11.1% of heavy use in 1992 to 35.4% in 2014).30 Further, there is 

increasing evidence that environmental stressors such as the current COVID-19 

pandemic can influence sub-threshold use towards problematic use.31,32 Nevertheless, 

there are few effective strategies that address sub-threshold use in order to address 

population-level mental health issues in people with who do not meet criteria for SUD. 

Consequently, the use of other tools that can evaluate substance use beyond 

disordered substance use is particularly useful to detail population-level substance use 
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that measure sub-threshold SUD. Nevertheless, a common limitation of current SUD 

instruments is that none of these tools address SUD comorbidity. Therefore, it has been 

challenging to characterize SUD comorbidity with currently available measurement 

tools. Instead, research has focused on modeling SUD comorbidity across measures of 

substance use and mental disorders.  

 

Conceptual models of SUD-mental disorder comorbidity  

 Epidemiological research of substance use, negative affect, and externalizing 

disorders has typically studied comorbidity from three major perspectives. These 

models attempt to either identify or confirm an association between symptoms or 

disorders, test the causal relationship between comorbid disorders, or describe the 

patterns of overlap across disorders or symptoms.12,22,33–41 To date, these models have 

concluded: (1) substance use behaviors and disorders co-occur,34–36,42 (2) negative 

affect and externalizing symptoms and disorders co-occur,22,38–40 and (3) substance use 

behaviors/disorders co-occur with negative affect and externalizing 

symptoms/disorders.12,33,41 However, the use of each model has often been completed 

in isolation and this approach produces gaps in our understanding of comorbidity. The 

section below reviews the models that have been used to study comorbidity, their 

strengths and weaknesses, and identifies needs to expand insights that could be gained 

from these models.  

Common cause model. To date, the major psychiatric classification systems (i.e., 

DSM-V and ICD-10) measure SUD, negative affect, and externalizing disorders as 

single latent constructs based on observable symptoms.43 Therefore, SUD represents a 
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latent or unobservable construct of disease (denoted as a circle) that causes the 

observable symptoms (denoted as squares) which are measured to diagnose SUD 

(e.g., substance use taken in large amounts, cravings, social problems, and cessation 

attempts) (Figure 1.1). Based on the DSM’s approach to diagnosis, at least two of the 

eleven symptoms listed in the criteria above are needed to result in a diagnosis of SUD. 

This model is called the common cause model. It has also been referred to as the 

medical model and has also been applied to physical conditions.44,45 

 

Figure 1.1: Common Cause Model of Disease 

 

The common cause model assumes that the disease has a common pathogenic 

pathway or an etiology in which the mechanism is fully understood.45 However, common 

pathogenic pathways for mental disorders, including SUDs, have not been identified.45–

48 Additionally, the common cause model is unidimensional and does not account for 

comorbidity. These models become complicated to interpret when we take multiple 

disorders, and their overlapping symptomatology, into account. This is problematic 

because there is a high degree of comorbidity that is not accounted for through our 
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current diagnostic classification systems resulting in potential misclassification of 

disorder diagnosis. The internalizing-externalizing model presents an extension to the 

common cause model to account for comorbidity between internalizing and 

externalizing mental disorders. 

 Internalizing-Externalizing Model. The internalizing-externalizing model is a two-

factor model of internalizing and externalizing factors that explain the interrelationships 

of psychiatric disorders, seen in Figure 1.2.22,38  In this model, internalizing disorders 

like mood (major depressive disorder and dysthymia) and anxiety (generalized anxiety 

disorder, separation anxiety disorder, phobias, obsessive-compulsive disorder) 

disorders reflect a similar construct, and are associated with or explains the variance of 

the internalizing factor. Externalizing disorders like ADHD, oppositional defiant disorder, 

conduct disorder, antisocial personality disorder, and sometimes SUDs reflect a 

separate construct, an externalizing factor. The internalizing and externalizing factors 

can also be correlated in this model, indicating that internalizing and externalizing 

disorders are comorbid with each other.22 This model has received considerable 

attention for understanding co-occurring psychiatric disorders, including SUDs, as latent 

factors in adults.22,38–40 
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Figure 1.2: Internalizing-Externalizing Model. In the internalizing-externalizing model, the 
observable symptoms (in boxes) are caused by an unobserved internalizing and externalizing 

latent variables (in circles). This model allows there to be some correlation between the 
internalizing and externalizing latent variables. 

 
The internalizing-externalizing model assumes that negative affect disorders 

represent a latent negative affect construct with externalizing disorders, including SUD 

represent a latent externalizing construct. Statistically, these latent factors represent the 

proportion of variance shared between the observed disorder (i.e., depression) and the 

latent construct (i.e., internalizing). This model extends the common cause model 

because it accounts for the comorbidity between internalizing and externalizing 

disorders. This model predominantly focuses on mental disorders as latent constructs 

and does not include a robust set of substance use behaviors. This method explains the 

relationships between the observed disorders or symptoms that explain the latent 

construct by calculating the model implied covariance. However, this calculation does 

not describe the unobserved heterogeneity in the population to identify different 
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comorbidity patterns in a population. This is a limitation of the negative internalizing-

externalizing model. 

 Network Model. The network model is a relatively new psychometric approach 

that can reduce the lack of clarity on the relationships between the observed disorders 

or symptoms that explain the latent construct and address the associations between the 

observed disorders or symptoms. A network model is likely to support a deeper 

understanding of comorbidity because it conceptualizes symptoms as mutually 

interacting, often reciprocally reinforcing elements of a complex network.46 The network 

approach is based on the idea that comorbidities arise from shared symptoms between 

disorders which can capture complexity and individual variation in psychopathology.49  

The network approach naturally accommodates comorbidities as a central part of its 

theory.50 In the network approach, comorbidity represents causal relationships between 

symptoms in which pathways can bridge symptoms that are part of multiple disorders.46 

Using a network model, symptoms, rather than disorders, are considered within the 

network structure. Rather than the disorder acting as the underlying cause of all 

symptoms, it is the symptoms that mutually interact and set a person into a disordered 

mental health state.  

An example of the use of a network model is detailed in Figure 1.3 to summarize 

comorbidity of symptoms for SUD and depression. Symptoms found in depression and 

SUD include insomnia and weight loss. Within a network model, the symptoms make up 

a comorbid network structure of several symptoms that is specific to the person. This 

model conceptualizes how symptoms of different disorders function together specifically 

to produce a comorbid disordered state. The network approach explains the co-
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occurrence of mental disorder symptoms, including substance use behaviors, as 

resulting from direct interactions between these symptoms.50 In network analysis, the 

term interaction is used to explain the reciprocal action or influence of symptoms. In the 

context of network analysis, interaction is not used to test whether an effect can be 

greater than (positive interaction, synergism) or less than what we would expect 

(negative interaction, antagonism).51 

 

Figure 1.3: Network Model of Depression and SUD symptoms. The network model of 
depression and SUD is made of nodes (circles) and edges (lines connecting nodes). This is a 
directed network (arrows are directed from source to target node) where one symptom can lead 
to the activation of another. The depression symptoms in red are clustered together to the left of 
the network. The SUD symptoms in blue are clustered together to the right of the network. 
Insomnia and weight loss (in purple) are symptoms that occur in both depression and SUD and 
act as bridges between the disorders. The positioning and the distance between the 
symptoms/nodes within the network have implications for the comorbidity structure of 
depression and SUD. 
 

Patterns of symptom-symptom or symptom-behavior interactions can be 

encoded in a network structure.45 Measured symptoms and behaviors are represented 

as nodes. Nodes are connected by edges (seen in Figure 1.3). Edges represent the 
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interactions between the nodes. Nodes that directly activate each other (i.e., 

demonstrate an association) are connected while nodes that do not directly activate 

each other are not. Changes that occur outside the network, external forces, can 

influence the symptoms and the interactions between the symptoms.45 

Principles underlying the network approach imply the etiology of mental disorders 

as a process of spreading activation in a symptom network.45 For example, if a 

symptom arises (for any reason), it may influence the probability that a connected 

symptom will activate as well.45 A mental disorder will arise when a group of tightly 

coupled symptoms activate, and the cluster becomes self-sustaining.45 Although 

symptom interactions may be most active within symptoms sets that are associated with 

a given mental disorder, these interactions do not stop at diagnostic boundaries.45 

In network theory, diagnosis is conceptualized as a process where the presence 

of symptoms is identified by clinicians and any symptom-symptom interactions that 

sustain themselves.45 An example of sustained symptom-symptom interactions could be 

a phenomenon in which one’s depressive mood results in a lack of restful sleep which 

could lead to greater fatigue which may ultimately sustain their depressed mood, 

rendering the person to be diagnosed with a depressive disorder. Treatment could then 

evolve to intervene on the symptom interactions (i.e., directly change the state of one or 

more symptoms), the external field (i.e., remove triggering causes or add a protective 

layer to mitigate the symptom activation), or the network (i.e., modify the symptom-

symptom connections).  

 

Longitudinal trends for SUD and comorbidity 
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 An inherent limitation of the models previously described is that the analysis is 

done at a single point in time. Previous studies have described that substance use 

behaviors, including past month substance use, can change over time. The gateway 

hypothesis of substance use posits that single and extensive use of alcohol and tobacco 

products can function as an entrance to polysubstance use, the use of at least two 

different psychotropic substances.52–54 There is also evidence that certain mental health 

conditions can increase the risk of developing future mental health conditions, 

sometimes more severe. For example, chronicity of depressive symptoms increases the 

likelihood of anxiety and substance use disorders.2,55,56 Studies of adolescents have 

reported that (1) externalizing problems (i.e., ADHD, ODD, CD) in youth precede 

substance use in both boys and girls whereas (2) substance use (i.e., alcohol and 

marijuana) in youth predict negative affect disorders in adulthood specifically for 

women.57–61 Less is known about how these trends continue in adulthood. Therefore, 

greater investigation into substance use behaviors over time with mental health 

conditions are necessary to further develop the literature around longitudinal trends for 

SUD and comorbidity. 

 

Common knowledge gaps across all chapters 

The gold-standard diagnostic classification systems (i.e., DSM and ICD-10-CM) 

in the United States describe disorders as single latent constructs or single dimensions 

rather than considering disorders as multidimensional. Nevertheless, the American 

Psychiatric Association recognizes that mental disorders do not always fit completely 

within the boundaries of a single disorder.2 This approach to diagnosis may be limited 
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and could benefit from additional insight because (1) comorbidity is common and (2) the 

current tools do not consider comorbidity within the context of diagnosis. Additionally, in 

order to receive a diagnosis, a person must have the appropriate number of criteria to 

reach a diagnostic threshold and access to a physician or person qualified to diagnose. 

Using a threshold approach in current classification systems may underestimate the 

number of people who experience substance use and mental disorders, especially 

those that present as comorbidities. Consequently, current SUD research suffers from 

the unidimensional approach that does not account for comorbidity. Further, addressing 

SUD comorbidity could benefit from knowledge of the patterns of the symptoms 

underlying an SUD diagnosis. Such a symptoms approach to measuring comorbidity 

(e.g., past-month substance use or endorsement of mental disorder symptom) may be 

better in estimate the prevalence of comorbidity correctly. Furthermore, better prediction 

of additional health outcomes and more targeted prevention and intervention strategies 

are likely to result in a more accurate representation of comorbidity prevalence. 

Patterns of comorbidity are not the same although current knowledge is based on 

homogeneous samples. People present with different combinations of substance use 

behaviors and mental health conditions due to biological, social, and environmental 

reasons.2,12,16,62–66 Further, much of the comorbidity research so far has been 

conducted in clinical samples rather than population-based samples. Therefore, a 

robust set of substance use behaviors and mental disorder symptoms in a large sample 

of nationally representative adults are required to close this knowledge gap and 

appropriately characterize comorbidity. This assessment of comorbidity in a larger 

sample of U.S. adults will shed light on the comorbidity profiles that exist in the general 
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population, expanding the current literature of clinical samples. Furthermore, factors that 

influence these associations must also be considered. Appropriate characterizations are 

important to target and personalize treatment and result in greater success in prognosis 

for people experiencing comorbidity. 

Although SUD comorbidity is persistent across the life course, it is unclear whether 

patterns of comorbidity remain stable or change over time. Some studies report that 

comorbidity does not readily change, while others explain shifts in substance use and 

mental health conditions.67–69 Consequently, assessment of comorbidity over time is 

needed to better understand the stability and/or continuity of comorbidity, and what 

factors may be associated with these trends. These studies will help to better 

understand the progression or regression of symptoms or behaviors in adults, and 

identify how to better support individuals experiencing comorbidity. 

 

The goal of the dissertation 

The research goal of this dissertation is to address the aforementioned 

knowledge gaps (current SUD research suffers from the unidimensional approach that 

does not account for comorbidity; patterns of comorbidity are not the same, although 

current knowledge is based on homogeneous samples; and it is unclear whether 

patterns of comorbidity remain stable or changes over time) by characterizing the 

comorbidity between substance use, including tobacco use, and mental disorder 

symptoms measured as negative affect and externalizing symptoms in a population-

based sample. This is characterized in Table 1.1. These characterizations are needed 

to better support people experiencing substance use and mental disorder comorbidity. 
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Table 1.1: Assumptions, strengths, and limitations of conceptual models 
 Assumptions Strengths Limitations Addressed in 

Dissertation 
Common 
cause model 

Disease has a 
common 
pathogenic 
pathway or an 
etiology in which 
the mechanism 
is fully 
understood 

Used by DSM, 
ICD-10-CM 

Etiology for 
SUD/mental 
disorders not 
fully 
understood 
 
Does not 
account for 
comorbidity 

All chapters 
address the 
limitation of 
the common 
cause model 
by accounting 
for comorbidity 

Internalizing-
externalizing 
model 

Internalizing 
disorders 
represent a 
latent 
internalizing 
construct with 
externalizing 
disorders, 
including SUD 
represent a 
latent 
externalizing 
construct 
 
Internalizing and 
externalizing 
factors can also 
be correlated 

Extension of 
common cause 
model 
 
Accounts for 
high level 
comorbidity 
between 
internalizing 
and 
externalizing 
disorders 

Rarely 
accounts for 
substance use 
behaviors 
 
Does not 
describe the 
unobserved 
heterogeneity 
in the 
population to 
identify 
different 
comorbidity 
patterns in a 
population 

Chapter 2 and 
5 (Aims 1 and 
3)  

Network 
model 

Comorbidities 
arise from 
shared 
symptoms 
between 
disorders which 
can capture 
complexity and 
individual 
variation in 
psychopathology 

Can use 
symptom level 
data 
 
Naturally 
accommodates 
comorbidities 
as a central 
part of its 
theory 

New 
methodological 
approach 
 
Does not follow 
DSM or ICS-
10-CM 
approach to 
diagnosis 

Chapter 4 and 
5 (Aims 2 and 
3) 
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Chapter 2 is a preliminary assessment of comorbidity. Multinomial logistic 

regression analyses will be used to determine the association between lifetime negative 

affect severity, externalizing severity and nicotine dependence (ND) and current use of 

tobacco (cigarettes and e-cigarettes) and alcohol, adjusting for sex, age, race, 

education and income. Two adjusted multinomial regression models are considered. 

The first model only includes negative affect and externalizing severity, adjusting for the 

correlation between the two factors. The second model builds on the first model by 

including ND to determine if ND explained more of the association between substance 

use. 

Chapter 3 addresses the knowledge gap of diagnostic classifications, comorbidity 

profiles, and addresses factors associated with the comorbidity profiles by (1) estimating 

latent classes of comorbid substance use as well as negative affect and externalizing 

symptoms and (2) assessing their ability to predict SUD severity. The latent class 

approach is a type of mixture modeling used to identify unobserved heterogeneity in a 

population and find meaningful groups of people that are similar based on their 

responses to measured items.70 This approach follows the common cause model in that 

the measured items (i.e., substance use behaviors and mental disorder symptoms) give 

rise to the latent unobservable disorder or in this case, comorbidity, and extends the 

internalizing-externalizing model by accounting for one overall latent class. Latent class 

analysis goes beyond the multinomial regression and allows for the consideration of 

multiple substance use and mental disorder symptom combinations. Analyses related to 

this chapter also move beyond the descriptiveness of the latent class approach and use 

the predictive probabilities generated from the latent class analysis to predict a health 
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outcome, SUD severity. The prediction analyses allow us to determine whether 

comorbidity versus a single construct (i.e., substance use, negative affect or 

externalizing separately) is important in predicting a distal health outcome. 

Chapter 4 builds on the knowledge developed in Chapter 3 by detailing 

substance use, negative affect, and externalizing symptom networks. Network analysis 

is a complement to the latent class approach. Network analysis does not follow the 

common cause model yet it posits that the substance use behaviors and mental 

disorder symptoms mutually interact and comorbidities arise from shared symptoms 

between disorders which can capture complexity and individual variation in 

psychopathology. The network approach allows for us to determine if symptoms cross 

over diagnostic boundaries. We also extend past the network approach and test 

whether there are differences in the network structure and connectivity by gender.   

Chapter 5 addresses the knowledge gap of stability or movement of comorbidity 

structures by assessing the structure over time using the results from the latent class 

and network analyses. Pairwise comparisons occur in two separate approaches. First, 

using results from latent class analyses of three waves of adult data, we (1) compare 

the class probabilities across the waves, (2) assess the item response patterns for each 

class by wave, and (3) identify the transition patterns to determine the stability or 

movement among the classes. Second, network comparison tests including global 

strength, network structure, and edge strength will be tested to determine if there are 

differences in the comorbidity networks by wave. 

 

Setting and measures 
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 All chapters use adult data from the Population Assessment of Tobacco and 

Health (PATH) Study.71 Chapters 2, 3, and 4 use data from the first wave of 

participants. Chapter 5 uses data from waves 1, 2, and 3 to assess the comorbidity 

patterns in adults across time. Information regarding the sample size, dates of data 

collection, and the weighted response rate among participants is provided in Table 1.2. 

Table 1.2: PATH Information for Waves 1, 2, and 3 
 Sample 

Size Data Collection 
Weighted 
Response 

Rate* 
Wave 1 32,320 September 2013 – December 2014 74.0% 
Wave 2 28,362 October 2014 – October 2015 83.2% 
Wave 3 28,148 October 2015 – October 2016 78.4% 
*Weighted response rate among participants is conditional on Wave 1 participation. 

 

 The PATH study launched in 2011 in response to the Family Smoking Prevention 

and Tobacco Control Act in order to inform the Food and Drug Administration’s 

regulatory activities.71 This study is a collaborative effort among the National Institute on 

Drug Abuse, National Institutes of Health, and the Center for Tobacco Products at the 

Food and Drug Administration. There are eight primary objectives for the PATH study: 

1. “Identify and explain between-person differences and within-person changes in 

tobacco-use patterns, including the rate and length of use by specific product 

type and brand, product/brand switching over time, uptake of new products, and 

dual- and poly-use of tobacco products (i.e., use of multiple products within the 

same time period and switching between multiple products). 

2. Identify between-person differences and within-person changes in risk 

perceptions regarding harmful and potentially harmful constituents, new and 

emerging tobacco products, filters and other design features of tobacco products, 
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packaging, and labeling; and identify other factors that may affect use, such as 

social influences and individual preferences. 

3. Characterize the natural history of tobacco dependence, cessation, and relapse, 

including readiness and self-efficacy to quit, motivations for quitting, the number 

and length of quit attempts, and the length of abstinence related to various 

tobacco products. 

4. Update the comprehensive baseline and subsequent waves of data on tobacco-

use behaviors and related health conditions, including markers of exposure and 

tobacco-related disease processes identified from the collection and analysis of 

biospecimens, to assess between-person differences and within-person changes 

over time in health conditions potentially related to tobacco use, particularly with 

use of new and different tobacco products, including modified-risk tobacco 

products. 

5. Assess associations between TCA-specific actions and tobacco-product use, risk 

perceptions and attitudes, use patterns, cessation outcomes, and tobacco-

related intermediate endpoints (e.g., biomarkers of exposure and biomarkers 

related to disease). Analyses will attempt to account for other potential factors, 

such as demographics, local tobacco-control policies, and social, familial, and 

economic factors, that may influence the observed patterns. 

6. Assess between-person differences and within-person changes over time in 

attitudes, behaviors, exposure to tobacco products, and related biomarkers 

among and within population sub-groups identified by such characteristics as 
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race-ethnicity, gender, and/or age, or by risk factors, such as pregnancy or co-

occurring substance use or mental health disorders. 

7. To the extent to which sample sizes are sufficient, assess and compare samples 

of former and never users of tobacco products for between-person differences 

and within-person changes in relapse and uptake, risk perceptions, and 

indicators of tobacco exposure and disease processes. 

8. Use data from the PATH Study's baseline and follow-up waves on tobacco-use 

behaviors, attitudes, and related health conditions, including potential markers of 

exposure and related disease processes identified from the analysis of 

biospecimens, to screen and subsample respondents for participation in 

formative and/or nested studies conducted during and after the PATH Study's 

waves of data and biospecimen collection”71 

PATH is a nationally representative longitudinal cohort study of the civilian, non-

institutionalized household population of the U.S. aged 9 and older at Wave 1, and 

participants engaged in all levels of tobacco use ranging from never using tobacco to 

frequent use. Participants were selected through a four-stage stratified area probability 

sample design, with a two-phase design for sampling adults at the final stage71: 

1. Selected stratified sample of geographical primary sampling units (PSU) (i.e., 

county or group of counties) 

2. Within each PSU, smaller geographical segments were formed and a sample of 

these segments was drawn 

3. Sampling frame consisted of residential addresses located in the segments 
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4. Selected adults and youth from the sampled households identified at these 

addresses (with varying sampling rates of adults by age, race, and tobacco 

status). 

a. Adults were sampled in two phases: 

i. Sampling used information provided in the household screener 

ii. Sampling used information provided by the adult 

Study domains include tobacco use behavior, attitudes and beliefs, and tobacco-

related health outcomes. Specific topics are included in Table 1.3. 

Table 1.3: Topics assessed in PATH Study 
Tobacco Products Measures/Topics 

Associated with 
Tobacco Products 

Additional Topics 

Cigarettes 
E-cigarettes/Electronic 
nicotine products 
Cigars (traditional, cigarillos, 
filtered) 
Pipe tobacco 
Hookah 
Smokeless tobacco (snus 
pouches and other forms of 
smokeless tobacco) 
Dissolvable tobacco 
Bidis and kreteks (youth only) 

Ever use 
Recency of use 
Frequency of use 
Amount of use 
Brands used 
Purchase details 
Use of flavored 
products 
Harm and 
addictiveness 
Reasons for use 

Poly use 
Nicotine dependence 
Packaging and health 
warnings 
Risk and harm perceptions 
Secondhand smoke exposure 
Marketing and advertising 
Media use 
Demographics 
Health 
Psychosocial and mental 
health 
Substance use 
Cessation 
Peer and family influences 

 

Participants responded to tobacco-specific items including tobacco-use patterns, 

risk perceptions and attitudes towards current and newly emerging tobacco products, 

tobacco initiation, cessation, relapse behaviors, and health outcomes.72 Participants 

also responded to non-tobacco items (e.g., media use, peer and family influences, 
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health effect outcomes, and industry advertising and promotion).72 A detailed list of the 

measures used in the dissertation are provided below. 

Past Month Tobacco and Substance Use. Six substance use categories were 

used in this dissertation: exclusive cigarette, exclusive e-cigarette, dual cigarette and e-

cigarette, alcohol, marijuana, and prescription drugs not prescribed (PDNP) including 

painkillers, sedatives, tranquilizers. Current cigarette use was endorsed if the 

respondent indicated ever smoking a cigarette (even one or two puffs), has smoked at 

least 100 or more cigarettes in his or her entire life, and now smokes cigarettes every 

day or some days, while also excluding the current use of e-cigarettes. Current e-

cigarette use was endorsed if the respondent indicated ever using an e-cigarette (even 

one or two puffs), ever smoked e-cigarettes fairly regularly, and now uses e-cigarettes 

every day or some days, while also excluding the current use of cigarettes. Current dual 

cigarette and e-cigarette use was identified if the respondent indicated that they were a 

current cigarette and current e-cigarette user. Current alcohol, marijuana, and PDNP 

was endorsed if the respondent indicated ever using the substance and has used the 

substance within the past 30 days. Only past month or current use of the substances 

was considered (coded as 1, else = 0) to reduce the potential for recall bias and ensure 

for accurate overlap with negative affect and externalizing symptoms occurring in the 

same time frame. 

Negative Affect and Externalizing Severity and Symptoms. Negative affect and 

externalizing symptoms were measured using the Global Appraisal of Individual 

Needs—Short Screener (GAIN-SS).73 The GAIN-SS refers to negative affect as 

“internalizing symptoms”; however, these symptoms provided within the GAIN-SS are 
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better represented as “negative affect”. Negative affect refers to the experience of 

negative drive states such as depression, anxiety, and stress,74 and therefore, is a more 

appropriate term for these symptoms compared to “internalizing”. Negative affect will be 

the term used for the rest of the dissertation. 

The GAIN-SS is derived from the full GAIN instrument and identifies individuals at 

risk for mental health disorders using a continuous measure of severity.73 The full GAIN 

assessment is a validated, standardized biopsychosocial assessment and 

recommended for use in epidemiologic samples.28,73 Four questions were used to 

measure negative affect symptoms that asked the last time you had significant 

problems with:  

(1) “feeling trapped, lonely, sad, blue, depressed, or hopeless about the future,” 

(2)  “sleep trouble- such as bad dreams, sleeping restlessly or falling asleep during 

the day,”  

(3) “feeling very anxious, nervous, tense, scared, panicked or something bad was 

going to happen,” and  

(4) “becoming very distressed and upset when something reminded you of the past.”  

Externalizing symptoms were also measured using the GAIN-SS.28,73 Seven questions 

were used to assess externalizing symptoms. Items asked the last time you did the 

following two or more times:  

(1) “lied or conned to get things you wanted or to avoid having to do something,”  

(2) “had a hard time paying attention at school, work or home,”  

(3) “had a hard time listening to instructions at school, work or home,”  
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(4) “were a bully or threatened other people,”  

(5) “started physical fights with other people,”  

(6) “felt restless or the need to run around or climb on things” and  

(7) “gave answers before the other person finished asking the question.”  

The items selected to identify negative affect and externalizing symptoms from the 

GAIN-SS instrument are ordinal and measures people across four times periods: past 

month, 2 to 12 months, over a year ago, and never. 

Ethical considerations 

This research uses publicly available secondary data, where information is 

recorded by the investigator in a manner that subjects cannot be identified (either 

directly or through identifiers). Therefore, this is considered exempt by the Virginia 

Commonwealth University School of Medicine Institutional Review Board.  
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CHAPTER 2: THE ASSOCIATION BETWEEN NEGATIVE AFFECT AND 
EXTERNALIZING SEVERITY WITH CURRENT USE OF CIGARETTES, E-
CIGARETTES, AND ALCOHOL IN ADULTS: WAVE 1 OF THE POPULATION 
ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY1 
 
INTRODUCTION 

Tobacco and alcohol are two of the most common substances used in the United 

States (U.S.).75,76  In 2018, approximately 20.9% of U.S. adults were current 

conventional cigarette (CIG) smokers and 55.3% reported drinking alcohol in the past 

month.77–79 Among individuals with alcohol use disorder, 23.8% also had nicotine 

dependence and 12.9% of individuals with nicotine dependence also had alcohol use 

disorder.9 Concurrent use of CIG and alcohol represents a major public health concern 

because they have been associated with more negative health outcomes such as 

increased risk of cardiovascular disease, cirrhosis, head and neck cancers, liver cancer, 

pancreatitis, and psychiatric comorbidity than the exclusive use of either substance.80–82 

To date, it is unclear whether the factors associated with co-occurring tobacco and 

alcohol use are specific to CIG or extend to electronic cigarettes (ECIG).  

Although dual use of ECIG and CIG is common and increasing in the U.S.,83 the 

trends related to this form of tobacco use with alcohol remain unclear. In 2018, 57.3% 

and 25.2% of former CIG users were engaged in ever-use and current-use of ECIGs, 

respectively.84 Approximately 9.7% of current ECIG users also engaged in CIG use.84 In 

2014, about 16% of current smokers were also current ECIG users.85 Recent studies 

have reported that current ECIG users are at an increased risk of harmful alcohol use 

 
1 This chapter has been modified from the original manuscript accepted for publication in Addictive 
Behaviors: https://doi.org/10.1016/j.addbeh.2021.106890 
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compared to ECIG non-users,86,87 with dual CIG and ECIG use resulting in more past-

month total drinks compared to exclusive-ECIG users.88 However, compared to studies 

of CIG use and alcohol, there is far less knowledge regarding the co-occurring use of 

ECIG and alcohol. Consequently, there is a need to examine the use of ECIG, CIG, and 

alcohol, which may be associated with more severe or different risk factors than dual or 

exclusive use of any of these three substances.  

Negative affect (e.g., depression and anxiety) and externalizing [e.g., attention-

deficit hyperactivity disorder (ADHD) and conduct disorder] psychopathology2,16,73,89–91 

are important mental health factors that have been consistently associated with 

exclusive use of either CIG or alcohol. A meta-analysis reported that current CIG 

smokers had a two-fold increased risk of depression relative to never and former CIG 

users.92 Further, adults with depression are more likely to smoke and are less likely to 

be successful at quitting than adults without depression.93 Whether this bidirectional 

association is maintained among ECIG users is unclear. The relationship between the 

use of alcohol, CIG, and ECIG, and negative affect and externalizing psychopathology 

is currently undetermined. Prior studies of the relationship between psychopathology 

and tobacco products, specifically ECIG, as well as alcohol typically focus on youth and 

young adults. These results indicate ECIGs are commonly used with other substances 

(i.e., CIG, alcohol, marijuana and opiates) and associated with mental health 

symptomatology (i.e., diagnosis of ADHD, PTSD, anxiety, and substance use 

disorders).94–97 However, it is unclear if these associations are specific to youth and 

young adults, or if they also occur across adulthood. 
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 This study addresses the aforementioned knowledge gaps by examining the 

association of lifetime mental disorder symptom severity and past 30-day combinations 

of CIG, ECIG, and alcohol use. We asked the following questions: (1) is there an 

association between negative affect/externalizing severity across combinations of CIG, 

ECIG, and alcohol use in US adults, and (2) is there a difference in severity based on 

tobacco product type (CIG vs. ECIG)? We expect (1) a significant, positive association 

between negative affect/externalizing severity across all combinations of CIG, ECIG, 

and alcohol use. For exploratory aim (2), we expect that this association varies with type 

and number of tobacco products used (i.e., CIG associated with negative affect; ECIG 

associated with externalizing/negative affect; CIG + ECIG associated with negative 

affect/externalizing). 

 

METHODS 

Study material and participants 

Data from 32,320 adults aged 18 years and older participating in the first wave 

(2013-2014) of the Population Assessment of Tobacco and Health (PATH) study were 

used.71 PATH is a nationally representative longitudinal cohort study of the civilian, non-

institutionalized adult household population of the U.S., and participants engaged in all 

levels of tobacco use.72 The household screener response rate was 54%.71 The 

weighted response rate among participants was 74%.73 

 

Study representativeness 
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 Participants with missing data on tobacco and alcohol measures, mental health 

symptoms, or covariates were not included in the analysis (N=16,373). Survey 

respondents of the analytic sample endorsed greater substance use overall, negative 

affect/externalizing severity, and nicotine dependence (ND) than those not included in 

the analytic sample. The participants in the analytic sample were more likely to be men, 

aged 25-54 with lower levels of education and lower annual household income than 

those who were missing. 

 

Measures 

Current tobacco and alcohol use. Current tobacco and alcohol use was 

measured as an aggregate variable indicating the degree of past-month use of CIG, 

ECIG, and alcohol, and was developed from individual current-use items defined 

according to the National Health Interview Survey (2017) and listed in Table 2.1.98  

 
Table 2.1: Individual criteria used to define current-use of alcohol, cigarettes, or e-
cigarettes.  

 
Code 

 
Current Alcohol Use Current Cigarette (CC) 

Use 
Current E-Cigarette (EC) 

Use 

 
1  

• Ever used alcohol in 
past 30 days 

• Ever smoked a CC (even 
1-2 puffs) 

• Smoked ≥ 100 CC in 
lifetime 

• Smoke CC every day or 
some days 

• Ever used an EC (even 1-2 
times) 

• Ever smoked EC fairly 
regularly 

• Now use EC every day or 
some days 

 
0  

• Never used alcohol  
• Ever used alcohol but 

not in past 30 days 

• Never smoked a CC 
• Smoked ≤ 99 CC in 

lifetime 
• Do not smoke CC now 

• Never used an EC 
• Do not smoke EC regularly 
• Do not use EC now 

Depending on responses, subjects were classified as current users (coded as 1), or non-
current users (coded as 0). 
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The outcome variable was developed as an eight-level categorical variable: (1) 

alcohol-exclusive; (2) CIG-exclusive; (3) ECIG-exclusive; (4) CIG and alcohol; (5) ECIG 

and alcohol; (6) CIG and ECIG; (7) alcohol, CIG, and ECIG; and (8) non-use. This 

variable allowed us to evaluate the relationships between all combinations of alcohol, 

CIG, and ECIG use and negative affect/externalizing severity, with non-users as a 

reference group. 

Negative affect/ externalizing severity. Negative affect and externalizing severity 

were measured in PATH using the Global Appraisal of Individual Needs—Short 

Screener (GAIN-SS).73 The GAIN-SS is derived from the full GAIN instrument assessing 

individuals at risk for mental disorders using a continuous measure of severity. The full 

GAIN assessment is a reliable and validated biopsychosocial assessment 

recommended for use in epidemiologic samples.28,73,99 There was good internal 

consistency among the negative affect (Cronbach’s α=0.85) and externalizing 

(Cronbach’s α=0.80) items in the analytic sample. 

Items used to measure negative affect/externalizing symptoms are listed in Table 

2.2. Responses were measured across four time periods: past month, 2-12 months, 

over a year ago, and never. Lifetime negative affect/externalizing items were coded as 

past month, 2-12 months, or over a year ago = 1 vs never = 0. The binary responses 

were summed to reflect a scale score of the number of lifetime symptoms. The score 

ranging from 0-4 negative affect symptoms and 0-7 externalizing symptoms were 

categorized into low (0), moderate (1-2), and high (3+) severity). These cut points were 

previously recommended based on validation analyses of the dimensional measures 

and have high predictive validity in other samples.28,73,99 Higher scores indicate 
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increased severity, a greater likelihood for diagnosis with a mental health disorder, and 

increased need for services.73 Negative affect/externalizing severity were highly 

correlated with one another (r=0.68, ASE=0.0051, p<0.001). 

 
Table 2.2 Items used to measure negative affect, externalizing, and nicotine 
dependence. 
Negative 
affect 
Symptoms* 

Last time respondent had significant problem with: 
• feeling trapped, lonely, sad, blue, depressed, or hopeless about the future 
• sleep trouble - such as bad dreams, sleeping restlessly or falling asleep during 

the day 
• feeling very anxious, nervous, tense, scared, panicked, or that something bad 

was going to happen 
• becoming very distressed and upset when something reminded you of the past 

Externalizing 
Symptoms* 

Last time respondent engaged in the following behaviors 2-3 times: 
• lied or conned to get things you wanted or to avoid having to do something 
• had a hard time paying attention at school, work or home 
• had a hard time listening to instructions at school, work, or home 
• were a bully or threatened other people 
• started physical fights with other people 
• felt restless or the need to run around or climb on things 
• gave answers before the other person finished asking the question 

Nicotine 
Dependence 
ǂ 
 

WISDM: Primary 
• I find myself reaching for [product] without thinking about. 
• I frequently crave [product]. 
• My urges keep getting stronger if I don’t use [product]. 
• Tobacco products control me. 
• My [product] use is out of control. 
• I usually want to use [product] right after I wake up. 
• I can only go a couple of hours without using [product]. 
• I frequently find myself almost using [product] without thinking about it. 
WISDM: Secondary 
• Using [product] would really help me feel better if I’ve been feeling down. 
• Using [product] helps me think better. 
• I [would] feel alone without my [product]. 
NDSS 
• I would find it really hard to stop using [product]. 
• I would find it hard to stop using [product]. 
• After not using [product] for a while, I need to use [product] in order to feel less 

restless and irritable. 
• After not using [product] for a while, I need to use [product] in order to keep 

myself from experiencing discomfort. 
DSM: Impaired Control 
• In the past 12 months, did you find it difficult to keep from using [product] in 

places where it was prohibited? 
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*Responses were measured across four time periods: past month, 2-12 months, over a year ago, and never. 
Participants indicating that they experienced a symptom at any time were coded as 1. Participants indicating that 
they never experienced an item were coded as 0. Binary responses were summed to reflect a scale score with a 
range of 0-4 symptoms for negative affect and 0-7 symptoms for externalizing. The scores were categorized into 
low (0), moderate (1-2), and high (3+) severity based on the recommended cut points. 
ǂ Responses for WIDSM: Primary, WIDSM: Secondary, and NDSS were measured based on level of agreement 
from 1 = not true of me at all to 5 = extremely true to me. Response option for DSM: Impaired Control was 1 = Yes 
and 0 = No. These were summed to reflect a scale score with a range of 0-76 with higher values indicating greater 
ND. 

 

Covariates. The role of nicotine dependence (ND) was included as a potential 

confounder. Adults with mental health disorders may have higher levels of ND as a 

result of tobacco product use.100,101 Similarly, there is a strong association between ND 

and all levels of alcohol use.102 People who engage in ECIG and CIG dual use have 

greater ND than exclusive use of either ECIG or CIG.103,104 Sixteen items [8 from 

Wisconsin Inventory of Smoking Dependence Motives (WIDSM): Primary, 3 from 

WISDM: Secondary, 4 from Nicotine Dependence Syndrome Scale (NDSS), 1 from 

Diagnostic and Statistical Manual of Mental Disorders (DSM): Impaired Control] were 

used to measure ND and are listed in Table 2.2. These 16 items were recommended to 

use as a common instrument to assess ND across different tobacco product users from 

a differential item function analysis.27 The items were summed into one continuous 

variable ranging from 0-76, with higher values indicating greater ND. 

Sex, age, race/ethnicity, education, and annual household income were also 

included as covariates because they are consistently associated with mental health, and 

tobacco and alcohol use.61,73,105–114 

Age, measured in PATH as a seven-level categorical variable, was re-

categorized to have a uniform distribution with six levels (18-24, 25-34, 35-44, 45-54, 

55-64, and 65 years or older). Education, measured in PATH as a six-level categorical 

variable, was re-categorized as a five-level categorical variable with a uniform 
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distribution [less than high school, GED/high school graduate, some college (no degree) 

or Associate’s degree, Bachelor’s degree, and Advanced degree]. Race/ethnicity was 

measured as a four-level categorical race variable and included information from a 

separate variable that accounted for Hispanic ethnicity (Non-Hispanic White, Non-

Hispanic Black, Non-Hispanic Other, and Hispanic Multicultural). The significance of the 

association between these variables and tobacco and alcohol use was tested as a 

series of unadjusted multinomial logistic regressions (Table 2.4). 

 

Statistical analyses 

 Unadjusted multinomial logistic regression was used to test the association 

between tobacco and alcohol use and negative affect/externalizing severity. Tests were 

repeated after adjustment for sex, age, race, education, and annual household income. 

Two adjusted multinomial regression models were considered: the first model included 

only negative affect/externalizing severity, adjusting for the correlation between the two 

factors, while the second model also included ND to determine the degree to which ND 

explained the association between mental health severity and substance use. Odds 

ratios (OR) or adjusted odds ratios (AOR) and 95% confidence intervals (95% CI), 

profiled from estimates of standard error, are reported. All analyses were performed in 

SAS software, Version 9.4 (SAS Institute Inc, Cary, NC) and accounted for complex 

survey design and sampling weight using PROC SURVEYFREQ and PROC 

SURVEYLOGISTIC. Fay’s method, a variant of balanced repeated replication method, 

was used to form replication weights in variance estimation in all analyses. 
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RESULTS 

Descriptive statistics 

 Data from 15,947 participants with complete information were analyzed. Almost 

one quarter of the population engaged in alcohol-exclusive use (24.0%), 22.4% in CIG-

exclusive use, and 1.3% in ECIG-exclusive use (Table 2.3). Across the different 

combinations of tobacco and alcohol use, 33.3% engaged in CIG and alcohol use, 1.7% 

engaged in ECIG and alcohol use, 2.0% engaged in CIG and ECIG, and 3.2% engaged 

in alcohol, CIG, and ECIG use. Almost half of the sample endorsed high negative affect 

(47.9%) and high externalizing (44.7%) severity. The mean ND was 37.0 (range=1-76, 

standard deviation=0.23) for the sample (Table 2.3). 

 



 52 

Table 2.3: Overall Frequencies of the Analytic Sample (n = 15,947, Weighted N = 61,482,491)—PATH Wave 1 (2013-
2014)  

n (Weighted %)  n (Weighted %) 
Sex*  Negative Affect Severity*  
   Male 9039 (59.6)    Low  4310 (28.1) 
   Female 6908 (40.4)    Moderate  3731 (24.0) 
Age*     High  7906 (47.9) 
   18-24 years old 4304 (17.7) Externalizing Severity*  
   25-34 years old 3580 (24.3)    Low  4058 (26.8) 
   35-44 years old 2696 (18.3)    Moderate 4436 (28.5) 
   45-54 years old 2579 (18.5)    High  7453 (44.7) 
   55-64 years old 1871 (14.1) Nicotine Dependence  
   65 years or older 917 (7.1) 37.0 (0.23)a 
Race*  Tobacco and Alcohol Use*  
   Non-Hispanic White 10257 (68.2)    Alcohol only 3603 (24.0) 
   Non-Hispanic Black 2305 (13.8)    CC only 3678 (22.4) 
   Non-Hispanic Other 1218 (6.4)    EC only 219 (1.3) 
   Hispanic Multiracial 2167 (11.7)    CC and Alcohol 5387 (33.3) 
Education*     EC and Alcohol 288 (1.7) 
   Less than high school 2304 (13.4)    CC and EC 336 (2.0) 
   GED/High school graduate 5385 (35.5)    Alcohol, CC, and EC 558 (3.2) 
   Some college (no degree) or Associate’s degree 5931 (34.9)    None 1878 (12.2) 
   Bachelor's degree 1685 (11.9)   
   Advanced degree 642 (4.3)   
Annual Household Income*    
   Less than $10,000 3532 (19.5)   
   $10,000 to $24,999 4120 (24.8)   
   $25,000 to $49,999 3746 (24.2)   
   $50,000 to $99,999 2974 (20.2)   
   $100,000 or more 1575 (11.4)   
* Indicates a significant difference at p <0.05. 
a Indicates mean and standard deviation (95% CL for the mean = 36.6-37.5) 
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Unadjusted multinomial logistic regression analysis 

 Compared to subjects with low negative affect severity, those with high negative 

affect severity were significantly more likely to engage in alcohol, CIG, and ECIG use 

(OR=3.42, 95% CI=2.48-4.72), CIG and ECIG use (OR=2.24, 95% CI=1.63-3.08), ECIG 

and alcohol use (OR=2.20, 95% CI=1.57-3.09), CIG and alcohol use (OR=2.28, 95% 

CI=1.97-2.65), CIG-exclusive use (OR=1.69, 95% CI=1.42-2.02), and alcohol-exclusive 

use (OR=1.42, 95% CI=1.20-1.69) than no use. Relative to those with low externalizing 

severity, subjects with high externalizing severity were more likely than not to engage in 

every level of tobacco and alcohol use except ECIG use, especially alcohol, CIG, and 

ECIG use (OR=4.56, 95% CI=3.31-6.30) and ECIG and alcohol use (OR=4.23, 95% 

CI=2.84-6.29). There were significant, positive associations between ND and alcohol, 

CIG, and ECIG use (OR=1.05, 95% CI=1.05-1.06), CIG and ECIG use (OR=1.08, 95% 

CI=1.07-1.08), CIG and alcohol use (OR=1.05, 95% CI=1.04-1.05), and CIG-exclusive 

use (OR=1.06, 95% CI=1.06-1.07). Females, relative to males, had significantly 

increased odds for CIG and ECIG use (OR=1.74, 95% CI=1.35-2.25), CIG and alcohol 

use (OR=1.21, 95% CI=1.06-1.38), ECIG-exclusive use (OR=1.99, 95% CI=1.45-2.74), 

and CIG-exclusive use (OR=1.65, 95% CI=1.43-1.90), except for alcohol-exclusive use 

(OR=0.71, 95% CI=0.61-0.84). There were significant associations by age, race, 

education, and annual household income (Table 2.4). 
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Table 2.4: Summary of Unadjusted Bivariate Associations by Level of Current Tobacco and Alcohol Use (n = 15,947, Weighted N = 61,482,491) 
 Alcohol, 

Cigarette, and 
E-cigarette 

Cigarette and 
E-cigarette 

E-cigarette and 
Alcohol 

Cigarette and 
Alcohol 

E-cigarette 
Only 

Cigarette 
Only 

Alcohol 
Only 

Variable OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 
Negative Affect Severity        

Low Reference Reference Reference Reference Reference Reference Reference 
Moderate  1.71 (1.14-2.56) 1.50 (0.96-2.36) 1.36 (0.89-2.08) 1.79 (1.52-2.11) 1.12 (0.71-1.77) 1.37 (1.10-1.71) 1.66 (1.36-2.01) 
High  3.42 (2.48-4.72) 2.24 (1.63-3.08) 2.20 (1.57-3.09) 2.28 (1.97-2.65) 1.30 (0.89-1.88) 1.69 (1.42-2.02) 1.42 (1.20-1.69) 
Externalizing Severity         
Low Reference Reference Reference Reference Reference Reference Reference 
Moderate 2.32 (1.59-3.39) 1.67 (1.15-2.42) 2.84 (1.91-4.23) 2.00 (1.68-2.38) 1.01 (0.67-1.52) 1.21 (1.01-1.43) 2.04 (1.70-2.44) 
High  4.56 (3.31-6.30) 2.22 (1.61-3.05) 4.23 (2.84-6.29) 2.58 (2.19-3.03) 1.31 (0.89-1.94) 1.31 (1.11-1.55) 2.29 (1.91-2.76) 
Nicotine Dependence        

1.05 (1.05-1.06) 1.08 (1.07-1.08) 1.00 (0.99-1.01) 1.05 (1.04-1.05) 1.00 (0.99-1.01) 1.06 (1.06-1.07) 0.97 (0.96-0.97) 
Sex        
Male Reference Reference Reference Reference Reference Reference Reference 
Female 1.24 (0.98-1.56) 1.74 (1.35-2.25) 1.26 (0.94-1.69) 1.21 (1.06-1.38) 1.99 (1.45-2.74) 1.65 (1.43-1.90) 0.71 (0.61-0.84) 
Age        
18-24 years old Reference Reference Reference Reference Reference Reference Reference 
25-34 years old 1.75 (1.37-2.25) 3.62 (2.53-5.20) 1.69 (1.21-2.35) 2.42 (2.02-2.89) 1.86 (1.08-3.20) 2.53 (2.04-3.12) 1.40 (1.17-1.67) 
35-44 years old 1.28 (0.87-1.88) 2.93 (2.00-4.31) 0.84 (0.55-1.30) 1.95 (1.57-2.42) 1.49 (0.89-2.51) 2.27 (1.81-2.86) 0.90 (0.72-1.12) 
45-54 years old 0.57 (0.41-0.79) 1.78 (1.15-2.75) 0.69 (0.44-1.10) 1.55 (1.28-1.87) 2.01 (1.26-3.21) 2.25 (1.89-2.68) 0.76 (0.63-0.93) 
55-64 years old 0.46 (0.32-0.66) 1.99 (1.31-3.02) 0.64 (0.38-1.07) 1.21 (0.98-1.49) 1.04 (0.60-1.80) 2.02 (1.64-2.49) 0.63 (0.48-0.83) 
65 years or older 0.16 (0.07-0.35) 1.42 (0.70-2.88) 0.31 (0.14-0.66) 0.60 (0.47-0.76) 1.03 (0.51-2.11) 1.90 (1.47-2.47) 0.47 (0.36-0.61) 
Race        
White Reference Reference Reference Reference Reference Reference Reference 
Non-Hispanic Black 0.23 (0.16-0.35) 0.35 (0.23-0.55) 0.45 (0.27-0.73) 0.61 (0.51-0.73) 0.37 (0.20-0.67) 0.50 (0.42-0.60) 0.63 (0.51-0.77) 
Non-Hispanic Other 0.70 (0.44-1.12) 0.60 (0.38-0.94) 0.98 (0.56-1.72) 0.72 (0.56-0.91) 1.00 (0.57-1.76) 0.66 (0.53-0.82) 0.81 (0.62-1.06) 
Hispanic Multicultural 0.32 (0.23-0.46) 0.32 (0.20-0.52) 0.35 (0.22-0.57) 0.48 (0.40-0.57) 0.58 (0.40-0.86) 0.50 (0.41-0.61) 0.67 (0.53-0.83) 
Education         
Less than high school Reference Reference Reference Reference Reference Reference Reference 
GED/High school 2.30 (1.61-3.28) 1.15 (0.75-1.78) 2.22 (1.16-4.26) 1.50 (1.24-1.81) 1.51 (0.90-2.53) 0.96 (0.80-1.17) 1.74 (1.39-2.17) 
Some college 4.79 (3.28-6.99) 1.72 (1.16-2.56) 4.75 (2.60-8.67) 2.13 (1.78-2.56) 2.31 (1.46-3.64) 0.96 (0.80-1.15) 3.58 (2.89-4.43) 
Bachelor's degree 4.91 (3.26-7.39) 1.68 (0.99-2.86) 5.04 (2.47-10.32) 2.34 (1.85-2.97) 1.86 (1.00-3.46) 0.65 (0.48-0.88) 7.16 (5.41-9.49) 
Advanced degree 3.67 (1.98-6.82) 0.69 (0.28-1.69) 2.32 (0.62-8.63) 1.50 (1.07-2.10) 1.85 (0.75-4.56) 0.40 (0.27-0.59) 6.73 (4.80-9.44) 
Income        
< $10,000 Reference Reference Reference Reference Reference Reference Reference 
$10,000-24,999 1.94 (1.42-2.64) 1.49 (1.05-2.12) 1.31 (0.82-2.09) 1.33 (1.09-1.62) 1.07 (0.62-1.83) 1.26 (1.03-1.54) 1.30 (1.07-1.59) 
$25,000-49,000 2.59 (1.85-3.62) 1.41 (0.98-2.02) 2.00 (1.41-2.83) 1.63 (1.36-1.97) 1.21 (0.77-1.92) 1.08 (0.89-1.31) 1.66 (1.35-2.05) 
$50,000-99,999 2.95 (2.01-4.32) 1.33 (0.86-2.05) 3.03 (2.06-4.46) 1.98 (1.58-2.48) 1.82 (1.07-3.08) 0.90 (0.71-1.14) 3.04 (2.42-3.82) 
>=$100,000 2.88 (1.83-4.53) 1.06 (0.59-1.91) 3.37 (2.16-5.24) 1.72 (1.38-2.14) 1.33 (0.68-2.62) 0.53 (0.38-0.72) 5.07 (3.91-6.57) 
Bolded values indicate estimate significant a p < 0.05 
The “none” category is used in reference for the tobacco and alcohol use outcome. 
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Adjusted multinomial logistic regression analysis 

Model 1: Negative affect/externalizing severity 

 Compared to subjects with low negative affect severity, those with high negative 

affect severity were significantly more likely to engage in alcohol, CIG, and ECIG use 

(AOR=2.01, 95% CI=1.30-3.09), CIG and alcohol use (AOR=1.61, 95% CI=1.30-2.00), 

and CIG-exclusive use (AOR=1.42, 95% CI=1.13-1.79) than none (Table 2.5). 

Participants with moderate negative affect severity, compared to low, were significantly 

more likely to engage in CIG and alcohol use (AOR=1.52, 95% CI=1.27-1.81), CIG-

exclusive use (AOR=1.26, 95% CI=1.01-1.58), and alcohol-exclusive use (AOR=1.53, 

95% CI=1.24-1.90) than none. Participants with high externalizing severity, compared to 

low, had 113% greater odds of alcohol, CIG, and ECIG use (AOR=2.13, 95% CI=1.36-

3.34), 54% greater odds of CIG and ECIG use (AOR=1.54, 95% CI=1.04-2.28), 196% 

greater odds of ECIG and alcohol use (AOR=2.96, 95% CI=1.82-4.80), 74% greater 

odds of CIG and alcohol use (AOR=1.74, 95% CI=1.38-2.20), and 69% greater odds of 

alcohol-exclusive use (AOR=1.69, 95% CI=1.33-2.14) than no use. Participants with 

moderate externalizing severity, compared to low, were significantly more likely to 

engage in alcohol, CIG, and ECIG use (AOR=1.56, 95% CI=1.02-2.40), ECIG and 

alcohol use (AOR=2.32, 95% CI=1.55-3.46), CIG and alcohol use (AOR=1.54, 95% 

CI=1.26-1.88), alcohol-exclusive use (AOR=1.60, 95% CI=1.32-1.94) than no use.  
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Table 2.5: Model 1 - Multinomial Logistic Regression for Level of Current Tobacco and Alcohol Use (n = 15,947, Weighted N = 61,482,491) 
 Alcohol, 

Cigarette, and 
E-cigarette 

Cigarette and 
E-cigarette 

E-cigarette and 
Alcohol 

Cigarette and 
Alcohol 

E-cigarette 
Only 

Cigarette 
Only 

Alcohol 
Only 

Variable AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) 
Negative Affect Severity         
Low Reference Reference Reference Reference Reference Reference Reference 
Moderate  1.37 (0.88-2.13) 1.23 (0.77-1.98) 0.98 (0.61-1.56) 1.52 (1.27-1.81) 1.03 (0.64-1.67) 1.26 (1.01-1.58) 1.53 (1.24-1.90) 
High  2.01 (1.30-3.09) 1.46 (0.99-2.14) 1.20 (0.78-1.83) 1.61 (1.30-2.00) 1.00 (0.62-1.61) 1.42 (1.13-1.79) 1.21 (0.97-1.51) 
Externalizing Severity         
Low Reference Reference Reference Reference Reference Reference Reference 
Moderate 1.56 (1.02-2.40) 1.33 (0.90-1.97) 2.32 (1.55-3.46) 1.54 (1.26-1.88) 0.88 (0.57-1.37) 1.04 (0.86-1.25) 1.60 (1.32-1.94) 
High  2.13 (1.36-3.34) 1.54 (1.04-2.28) 2.96 (1.82-4.80) 1.74 (1.38-2.20) 1.15 (0.69-1.93) 1.04 (0.82-1.32) 1.69 (1.33-2.14) 
Sex        
Male Reference Reference Reference Reference Reference Reference Reference 
Female 1.11 (0.87-1.40) 1.57 (1.19-2.06) 1.23 (0.91-1.66) 1.12 (0.98-1.29) 2.01 (1.45-2.79) 1.52 (1.30-1.78) 0.72 (0.61-0.84) 
Age        
18-24 years old Reference Reference Reference Reference Reference Reference Reference 
25-34 years old 1.72 (1.33-2.23) 3.95 (2.73-5.71) 1.70 (1.22-2.39) 2.44 (2.03-2.93) 1.97 (1.12-3.47) 2.74 (2.21-3.40) 1.21 (0.99-1.47) 
35-44 years old 1.22 (0.85-1.76) 3.25 (2.17-4.87) 0.80 (0.52-1.23) 1.93 (1.55-2.42) 1.54 (0.90-2.64) 2.53 (2.00-3.20) 0.70 (0.55-0.89) 
45-54 years old 0.57 (0.41-0.80) 1.90 (1.20-3.00) 0.70 (0.43-1.12) 1.54 (1.27-1.87) 2.08 (1.28-3.39) 2.32 (1.92-2.80) 0.65 (0.53-0.80) 
55-64 years old 0.48 (0.33-0.70) 2.13 (1.39-3.28) 0.68 (0.40-1.17) 1.23 (0.98-1.54) 1.11 (0.63-1.94) 2.07 (1.65-2.60) 0.55 (0.41-0.73) 
65 years or older 0.19 (0.09-0.40) 1.58 (0.76-3.30) 0.38 (0.17-0.85) 0.66 (0.50-0.88) 1.13 (0.53-2.42) 1.89 (1.41-2.54) 0.43 (0.32-0.59) 
Race        
White Reference Reference Reference Reference Reference Reference Reference 
Non-Hispanic Black 0.32 (0.21-0.48) 0.36 (0.23-0.57) 0.64 (0.38-1.08) 0.73 (0.60-0.88) 0.40 (0.22-0.73) 0.44 (0.37-0.53) 1.00 (0.81-1.25) 
Non-Hispanic Other 0.59 (0.38-0.93) 0.60 (0.38-0.94) 0.89 (0.51-1.56) 0.69 (0.55-0.88) 1.06 (0.62-1.81) 0.72 (0.58-0.89) 0.64 (0.49-0.84) 
Hispanic Multicultural 0.36 (0.25-0.52) 0.33 (0.20-0.54) 0.43 (0.26-0.73) 0.54 (0.44-0.66) 0.66 (0.44-0.99) 0.47 (0.38-0.59) 0.90 (0.71-1.14) 
Education         
Less than high school Reference Reference Reference Reference Reference Reference Reference 
GED/High school 1.68 (1.15-2.44) 0.98 (0.62-1.53) 1.63 (0.83-3.22) 1.23 (1.01-1.50) 1.32 (0.79-2.22) 0.90 (0.73-1.10) 1.43 (1.12-1.82) 
Some college 2.65 (1.77-3.97) 1.32 (0.85-2.05) 2.62 (1.39-4.97) 1.51 (1.23-1.86) 1.79 (1.12-2.86) 0.89 (0.72-1.09) 2.46 (1.94-3.13) 
Bachelor's degree 2.48 (1.63-3.77) 1.25 (0.69-2.28) 2.25 (1.07-4.72) 1.50 (1.15-1.96) 1.31 (0.72-2.40) 0.63 (0.46-0.87) 4.13 (3.04-5.62) 
Advanced degree 2.05 (1.07-3.90) 0.53 (0.21-1.35) 1.06 (0.29-3.95) 0.97 (0.68-1.40) 1.29 (0.53-3.15) 0.41 (0.28-0.59) 3.82 (2.59-5.63) 
Income        
< $10,000 Reference Reference Reference Reference Reference Reference Reference 
$10,000-24,999 1.78 (1.28-2.48) 1.28 (0.88-1.85) 1.22 (0.76-1.97) 1.25 (1.01-1.56) 0.95 (0.56-1.61) 1.12 (0.90-1.40) 1.26 (1.03-1.54) 
$25,000-49,000 2.05 (1.44-2.93) 1.05 (0.72-1.53) 1.70 (1.17-2.48) 1.38 (1.12-1.71) 0.98 (0.61-1.57) 0.92 (0.74-1.14) 1.39 (1.12-1.73) 
$50,000-99,999 2.17 (1.46-3.23) 0.94 (0.59-1.48) 2.47 (1.62-3.77) 1.61 (1.24-2.07) 1.37 (0.81-2.32) 0.76 (0.59-0.99) 2.22 (1.74-2.82) 
>=$100,000 2.04 (1.26-3.29) 0.80 (0.43-1.50) 2.76 (1.72-4.41) 1.43 (1.11-1.85) 1.03 (0.51-2.06) 0.51 (0.36-0.72) 3.13 (2.33-4.22) 
Bolded values indicate estimate significant a p < 0.05 
The “none” category is used in reference for the tobacco and alcohol use outcome. 
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 Participants with high negative affect severity, compared to low, had the greatest 

odds for alcohol, CIG, and ECIG use rather than no use while adjusting for externalizing 

severity, sex, age, race, education, and annual household income. Participants with 

high externalizing severity, compared to low, had the greatest odds for ECIG and 

alcohol use rather than no use while adjusting for negative affect severity, sex, age, 

race, education, and annual household income. 

 

Model 2: Negative affect, externalizing, and ND 

 Compared to subjects with low negative affect severity, those with high negative 

affect severity were more likely to engage in CIG and alcohol use (AOR=1.29, 95% 

CI=1.03-1.61) and alcohol-exclusive use (AOR=1.31, 95% CI=1.05-1.64) than no use 

(Table 2.6). Similar associations were found between moderate negative affect severity, 

relative to low, and CIG and alcohol use (AOR=1.47, 95% CI=1.22-1.77) and alcohol-

exclusive use (AOR=1.58, 95% CI=1.27-1.96) than no use. Participants with high 

externalizing severity, compared to low, had 79% greater odds for alcohol, CIG, and 

ECIG use (AOR=1.79, 95% CI=1.15-2.78), 197% greater odds of ECIG and alcohol use 

(AOR=2.97, 95% CI=1.84-4.81), 53% greater odds of CIG and alcohol use (AOR=1.53, 

95% CI=1.21-1.92), and 75% greater odds of alcohol-exclusive use (AOR=1.75, 95% 

CI=1.38-2.22) than no use. Subjects with moderate externalizing severity, compared to 

low, were more likely to engage in ECIG and alcohol use (AOR=2.29, 95% CI=1.53-

3.43), CIG and alcohol use (AOR=1.41, 95% CI=1.16-1.72), and alcohol-exclusive use 

(AOR=1.62, 95% CI=1.33-1.97) than no use when adjusting for ND. ND was 

significantly associated with all combinations of tobacco and alcohol use, compared to 
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none, except for ECIG and alcohol use (AOR=1.00, 95% CI=0.99-1.01) and ECIG-

exclusive use (AOR=1.00, 95% CI=0.99-1.01). 
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Table 2.6: Model 2 - Multinomial Logistic Regression for Level of Current Tobacco and Alcohol Use (Including Nicotine Dependence) (n = 15,947, Weighted N = 
61,482,491) 

 Alcohol, 
Cigarette, and 

E-cigarette 

Cigarette and 
E-cigarette 

E-cigarette and 
Alcohol 

Cigarette and 
Alcohol 

E-cigarette 
Only 

Cigarette 
Only 

Alcohol 
Only 

Variable AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) 
Negative Affect Severity        
Low Reference Reference Reference Reference Reference Reference Reference 
Moderate  1.33 (0.85-2.07) 1.21 (0.74-1.97) 0.97 (0.61-1.56) 1.47 (1.22-1.77) 1.04 (0.64-1.68) 1.22 (0.96-1.55) 1.58 (1.27-1.96) 
High  1.53 (1.00-2.36) 1.02 (0.68-1.53) 1.19 (0.78-1.81) 1.29 (1.03-1.61) 1.00 (0.62-1.60) 1.08 (0.85-1.38) 1.31 (1.05-1.64) 
Externalizing Severity         
Low Reference Reference Reference Reference Reference Reference Reference 
Moderate 1.42 (0.93-2.17) 1.16 (0.77-1.74) 2.29 (1.53-3.43) 1.41 (1.16-1.72) 0.87 (0.56-1.37) 0.92 (0.76-1.13) 1.62 (1.33-1.97) 
High  1.79 (1.15-2.78) 1.23 (0.82-1.85) 2.97 (1.84-4.81) 1.53 (1.21-1.92) 1.16 (0.69-1.95) 0.88 (0.70-1.11) 1.75 (1.38-2.22) 
Nicotine Dependence        

1.06 (1.05-1.07) 1.08 (1.07-1.09) 1.00 (0.99-1.01) 1.05 (1.04-1.05) 1.00 (0.99-1.01) 1.06 (1.05-1.06) 0.97 (0.97-0.98) 
Sex        
Male Reference Reference Reference Reference Reference Reference Reference 
Female 1.17 (0.92-1.48) 1.65 (1.26-2.16) 1.22 (0.91-1.65) 1.17 (1.01-1.35) 2.02 (1.46-2.80) 1.58 (1.34-1.86) 0.71 (0.60-0.83) 
Age        
18-24 years old Reference Reference Reference Reference Reference Reference Reference 
25-34 years old 1.30 (1.01-1.68) 2.76 (1.92-3.97) 1.74 (1.23-2.46) 1.96 (1.63-2.37) 2.01 (1.12-3.60) 2.11 (1.69-2.63) 1.32 (1.09-1.61) 
35-44 years old 0.76 (0.53-1.09) 1.74 (1.15-2.63) 0.82 (0.53-1.29) 1.34 (1.07-1.68) 1.58 (0.90-2.76) 1.62 (1.28-2.06) 0.82 (0.64-1.04) 
45-54 years old 0.33 (0.24-0.45) 0.92 (0.60-1.42) 0.72 (0.44-1.16) 1.00 (0.83-1.20) 2.12 (1.31-3.43) 1.38 (1.13-1.68) 0.77 (0.62-0.95) 
55-64 years old 0.28 (0.19-0.41) 1.06 (0.67-1.68) 0.70 (0.41-1.20) 0.81 (0.64-1.03) 1.12 (0.64-1.98) 1.26 (0.99-1.60) 0.65 (0.48-0.86) 
65 years or older 0.12 (0.06-0.27) 0.90 (0.43-1.92) 0.39 (0.17-0.89) 0.48 (0.36-0.64) 1.16 (0.53-2.53) 1.31 (0.96-1.77) 0.51 (0.37-0.70) 
Race        
White Reference Reference Reference Reference Reference Reference Reference 
Non-Hispanic Black 0.40 (0.26-0.61) 0.48 (0.30-0.77) 0.64 (0.38-1.08) 0.87 (0.71-1.06) 0.40 (0.22-0.73) 0.55 (0.45-0.67) 0.95 (0.76-1.19) 
Non-Hispanic Other 0.69 (0.44-1.09) 0.75 (0.48-1.18) 0.89 (0.51-1.57) 0.79 (0.62-1.00) 1.06 (0.62-1.83) 0.85 (0.67-1.08) 0.63 (0.48-0.83) 
Hispanic Multicultural 0.55 (0.38-0.81) 0.57 (0.35-0.94) 0.43 (0.25-0.73) 0.77 (0.62-0.95) 0.65 (0.43-1.00) 0.73 (0.58-0.91) 0.79 (0.62-1.01) 
Education        
Less than high school Reference Reference Reference Reference Reference Reference Reference 
GED/High school 1.82 (1.24-2.66) 1.10 (0.70-1.71) 1.60 (0.82-3.15) 1.31 (1.07-1.60) 1.31 (0.78-2.20) 0.97 (0.78-1.20) 1.39 (1.09-1.78) 
Some college 3.41 (2.26-5.14) 1.77 (1.13-2.76) 2.55 (1.33-4.87) 1.82 (1.46-2.25) 1.79 (1.12-2.85) 1.09 (0.87-1.37) 2.23 (1.73-2.85) 
Bachelor's degree 4.40 (2.83-6.85) 2.48 (1.37-4.52) 2.16 (1.00-4.67) 2.32 (1.76-3.06) 1.32 (0.72-2.40) 1.04 (0.75-1.46) 3.33 (2.43-4.56) 
Advanced degree 3.98 (2.09-7.59) 1.16 (0.46-2.92) 1.02 (0.27-3.84) 1.60 (1.11-2.31) 1.29 (0.52-3.19) 0.70 (0.48-1.03) 3.02 (2.02-4.52) 
Income         
< $10,000 Reference Reference Reference Reference Reference Reference Reference 
$10,000-24,999 1.86 (1.34-2.58) 1.39 (0.96-2.01) 1.22 (0.75-1.97) 1.30 (1.05-1.61) 0.94 (0.56-1.59) 1.18 (0.95-1.46) 1.26 (1.02-1.55) 
$25,000-49,000 2.32 (1.62-3.32) 1.27 (0.86-1.88) 1.69 (1.16-2.47) 1.52 (1.24-1.87) 0.96 (0.60-1.54) 1.04 (0.85-1.29) 1.37 (1.10-1.70) 
$50,000-99,999 2.45 (1.64-3.67) 1.12 (0.71-1.78) 2.44 (1.59-3.74) 1.76 (1.38-2.25) 1.35 (0.80-2.28) 0.86 (0.67-1.10) 2.15 (1.68-2.76) 
>=$100,000 2.57 (1.56-4.25) 1.09 (0.57-2.08) 2.74 (1.70-4.42) 1.74 (1.34-2.26) 1.02 (0.51-2.03) 0.65 (0.45-0.92) 2.87 (2.12-3.89) 
Bolded values indicate estimate significant a p < 0.05 
The “none” category is used in reference for the tobacco and alcohol use outcome. 
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 Participants with high negative affect severity, compared to low, had the greatest 

odds for alcohol-exclusive use rather than no use while adjusting for externalizing 

severity, ND, sex, age, race, education, and annual household income. Participants with 

high externalizing severity, compared to low, had the greatest odds for ECIG and 

alcohol use rather than no use while adjusting for negative affect severity, ND, sex, age, 

race, education, and annual household income.  

 Additional models compared results across all categories of reference groups to 

establish differences for each category of tobacco/alcohol use (Appendix A, 

Supplemental Table 2.1). All significant associations between negative 

affect/externalizing severity and tobacco and alcohol combinations were significantly 

lower when referencing alcohol, CIG, and ECIG as well as ECIG and alcohol use. 

Conversely, significant positive associations were found between negative 

affect/externalizing severity and tobacco and alcohol combinations when referencing 

CIG and ECIG use, ECIG-exclusive, and CIG-exclusive. Results were mixed when 

referencing CIG and alcohol use, and alcohol-exclusive use. 

  

DISCUSSION 

 Our study is one of the first to examine the relationships between negative 

affect/externalizing severity and combinations of CIG, ECIG, and alcohol use across 

adulthood. There were three major results. First, strong, positive associations with 

negative affect/externalizing severity at various levels of CIG, ECIG, and alcohol use 

were detected. Overall, negative affect severity was more strongly associated with CIG 

and alcohol use as well as alcohol-exclusive use while externalizing severity was more 
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strongly associated with ECIG and alcohol use when accounting for ND. Second, ECIG 

may represent a new and underappreciated substance related to externalizing 

psychopathology. Alcohol was significantly associated with psychopathology when 

ECIG was included. Third, ND may mediate the relationship between negative 

affect/externalizing severity and various levels of CIG, ECIG, and alcohol use. 

 

Patterns of tobacco and alcohol use vary by negative affect/externalizing severity  

We detected specific patterns of association between tobacco and alcohol use 

with negative affect/externalizing severity. Specifically, high negative affect severity had 

a higher magnitude of association with CIG and alcohol use as well as alcohol-exclusive 

use. In contrast, externalizing severity was more strongly associated with ECIG and 

alcohol use. These results expand on recent positive associations that were detected 

between mental disorder symptoms and exclusive use of tobacco products in adults.73  

Specifically, multiple mental disorder symptoms (i.e., higher severity) was generally 

associated with use of more than one substance, except for alcohol. To date, individuals 

with co-occurring mental health disorders have been reported to have a more severe 

course of illness, health and social consequences, more difficulties when seeking and in 

treatment, or worse treatment outcomes than people with a single disorder.18 

Additionally, tobacco use has been reported to be higher among people with mental 

health problems (e.g., major depressive disorder, generalized anxiety, schizophrenia, 

and/or antisocial personality/conduct disorder).90,115,116 These results suggest that 

patterns, rather than a dose-response, of tobacco and alcohol use are associated with 
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negative affect/externalizing severity. Further investigation of these comorbidity 

patterns, including tobacco use, is required. 

 

ECIG use associated with externalizing severity with co-occurring alcohol use 

Negative affect/externalizing severity were not significantly associated with 

ECIG-exclusive use. This is inconsistent with previous work, perhaps due to differences 

in defining ECIG use.73 Specifically, we expanded our study of “ECIG use” to include a 

commonly occurring form of tobacco use- dual use of ECIG and CIG. Our results 

provide a more detailed and nuanced description of the relationship between negative 

affect/externalizing psychopathology and ECIG use by parsing out co-occurring CIG 

and alcohol use from ECIG. 

Concurrent ECIG and alcohol use, however, was significantly associated with 

externalizing severity. Further, compared to low externalizing severity, high and 

moderate externalizing severity showed stronger association with alcohol use of any 

kind (i.e., alcohol, CIG, and ECIG use; ECIG and alcohol use; CIG and alcohol use; and 

alcohol-exclusive use). This association between externalizing and alcohol is consistent 

with prior studies,38,117,118 and this association remains when ECIGs are used with 

alcohol. This finding builds upon previous work that has established more harmful 

alcohol use with ECIG use in that externalizing symptoms are associated with this 

pattern of use. More research is needed to better understand the relationship between 

different combinations of tobacco and alcohol, including ECIG, and psychopathology.  
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ND may mediate the relationship between negative affect/externalizing severity and 

current tobacco and alcohol use in adults 

 The magnitude of the associations between negative affect/externalizing severity 

and levels of tobacco/alcohol use were reduced, although generally remained 

significant, when ND was included. The associations between negative affect severity 

and alcohol, CIG, and ECIG use and CIG-exclusive use as well as externalizing severity 

and CIG and ECIG use were no longer statistically significant. ND may explain more of 

the relationship between negative affect severity and alcohol, CIG, and ECIG use as 

well as CIG-exclusive use. Previous work has indicated that externalizing behaviors act 

as a precursor or factor involved in substance use, especially alcohol use.38,117,118 

Therefore, the relationship between externalizing severity and alcohol use in adults, 

whether exclusive or with tobacco, is expected to be mediated or have an indirect effect 

through ND. In an ad hoc mediation analysis,119 ND was determined to be a significant 

mediator between negative affect/externalizing and tobacco and alcohol use. This is 

consistent with prior work that has identified ND as a mediator between mental 

conditions.120 We also included a test for SUD severity (GAIN-SS) as a mediator in 

models including ND since it measures broader substance use behavior, including 

alcohol. However, no significant direct or indirect effect of SUD was detected. As 

mediation is inherently a causal hypothesis, we recommend future researchers to 

confirm this with a longitudinal analysis to accurately model a mediation pathway in the 

context of the transactional effect between tobacco initiation and ND development.  

 

Strengths and limitations 
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 These results should be interpreted while considering the following points. First, 

these data were collected in 2013-2014, so these analyses do not capture more recent 

ECIG products (i.e., pod-mods). Consequently, these results may not be generalizable 

to the current generation of ECIG devices. Second, the analytic sample size was 

reduced from the Wave 1 sample after removing participants with missing data. Many 

participants (N=13,865) were removed due to a skip pattern identified for the ND items 

used to calculate the composite ND item. If a participant was not a current tobacco user, 

a former 12-month tobacco user, or a current experimental tobacco user, they were not 

asked the ND items. ND is contingent upon tobacco initiation121; therefore, it was 

inappropriate to code these missing observations as 0. Therefore, there is systematic 

bias introduced by the missingness; however, results from sensitivity analyses in which 

all missing observations on the ND items were coded as 0 did not demonstrate 

differences that would alter the overall study conclusions. Third, use of self-reported 

data has the potential to introduce misclassification bias, which may underestimate the 

magnitude of associations. However, this would lead to an attenuation of effect sizes, 

rather than an overestimation. Fourth, the GAIN-SS measures negative 

affect/externalizing symptom severity rather than psychiatric diagnoses. We recognize 

use of symptom data as a strength, as we are more likely to capture true rates of mental 

health disorders without relying on disease-specific diagnoses. There is growing support 

for the use of subthreshold or transdiagnostic symptoms over traditional diagnoses to 

better explain the high rates of comorbidity among common mental disorders, 

particularly when characterizing population-based samples.122 Therefore, these results 

represent the full distribution of severity across several mental health domains. Future 
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investigations should test these associations with negative affect and externalizing 

symptoms rather than a composite severity score to further detail comorbidity patterns. 

Fifth, to answer our research questions, this study focused on current CIG, ECIG, and 

alcohol use, and ND. We could not determine if ND was due to the CIG or ECIG use or 

another tobacco product that was not included in these analyses. Future studies are 

encouraged to explore direct associations with other tobacco products and ND. Sixth, 

by using only data from Wave 1, direction of causation cannot be determined and future 

longitudinal studies are needed. 

 

Conclusions 

 Negative affect and externalizing severity were strongly associated with multiple 

levels of CIG, ECIG, and alcohol use in this study. The magnitude of association varied 

by the tobacco product used. Overall, negative affect severity was more strongly 

associated with CIG and alcohol use as well as alcohol-exclusive use while 

externalizing severity was more strongly associated with ECIG and alcohol use when 

accounting for ND. ECIG may represent a new and underappreciated substance related 

to externalizing psychopathology. The magnitudes of these associations were reduced 

when ND was included in the model, indicating that ND may mediate the association 

between negative affect/externalizing severity and current tobacco and alcohol use. 

Future work is encouraged to investigate the different patterns of tobacco and alcohol 

use (i.e., using latent variable and network approaches) since our results suggest 

patterns of use rather than a dose-response relationship between tobacco and alcohol 
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use and negative affect/externalizing severity. Longitudinal studies could provide deeper 

insight into the stability of these patterns over time. 
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CHAPTER 3: LATENT CLASSES OF COMORBID SUBSTANCE USE AND 
NEGATIVE AFFECT AND EXTERNALIZING SYMPTOMS AND THEIR ROLE IN 
ADULT SUBSTANCE USE DISORDER SEVERITY 
 

INTRODUCTION 

Substance use disorder (SUD) results from the prolonged use of any 

psychoactive substance at high doses and/or frequencies, and is defined as continued 

use despite associated health and social problems.2,123 SUD poses a substantial burden 

on the United States’ health system, with almost 20 million American adults meeting 

diagnostic criteria for a past-year SUD in 2018.5 Of the 20 million adults in the United 

States (U.S.) who experience a SUD, half also have a co-occurring mental disorder.5 

The co-occurrence of mental disorders is common among people who use substances 

or engage in polysubstance use, consuming more than one substance over a defined 

period.10,12,35 People with co-occurring tobacco use, substance use, and mental 

disorders have more severe courses of mental illness, more severe health and social 

consequences, more difficulties seeking and receiving treatment, and worse treatment 

outcomes compared to people with a singular disorder.18 Therefore, people who 

experience greater comorbidity may be at a greater risk for SUD severity. 

 

Study of Comorbidity Characterizes Common Patterns of Co-Occurring Disorders  

Historically, comorbidity research involving substance use or symptoms 

underlying mental disorders has generally focused on the identification and description 

of either polysubstance use or mental disorder classes, separately. These studies have 

identified several specific subcategories of either SUD or mental disorders. For 
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example, a recent study examined past-month polysubstance use among a small 

sample of psychiatric inpatients with co-occurring mental disorder and SUDs. This study 

identified three polysubstance use profiles: cannabis and alcohol (35.1%), alcohol only 

(49.3%), and polysubstance use including cocaine plus alcohol and marijuana 

(15.7%).35 Other latent class analyses of substance use focus on a sample of specific 

substance users. For example, a five-class solution was most optimal in describing 

polysubstance use in a small sample of lifetime cocaine users: past 30-day tobacco use 

only (45%), past 30-day alcohol, marijuana and tobacco use (31%), past 30-day 

tobacco, prescription opioid and sedative use (13%), past 30-day cocaine, alcohol, 

marijuana and tobacco use (9%), and past 30-day cocaine and multiple polysubstance 

use (2%).37 Another study of opioid-dependent patients identified a two-class solution: 

severe comorbidity with high rates of other SUDs specifically amphetamine and 

sedative (10%), and a less severe comorbidity class with moderate rates of nicotine, 

alcohol, cannabis, and cocaine disorders (90%).36 Overall, the comorbidity 

characteristics are different depending on the population being studied.  

In another study assessing only mental disorder comorbidity, a four-class 

solution best described the sample: low psychopathology (84.0%), internalizing (9.9%), 

externalizing (4.5%), and high psychopathology (1.6%).41 The high psychopathology 

class was more strongly associated with lifetime suicide attempt, compared to the 

internalizing and externalizing classes.41 The internalizing and externalizing classes had 

overall higher odds of lifetime affective and substance use disorders, respectively.41 

These four class solutions are commonly identified in mental disorder only 

comorbidity.41,124 
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Detailing comorbidity between substance use and mental disorders has only 

recently been addressed and confirms the strength of association between these two 

conditions. For example, a more recent study evaluated the class structure of substance 

use and mental disorders together and identified a four-class solution: low disorder 

(73.6%); mental health and low SUD (10.6%); alcohol, cannabis, and low mental health 

disorder (12.2%); and polysubstance use and moderate mental health disorder 

(3.5%).12 Mental disorders were more likely to occur with polysubstance use disorders 

in young adults.12 Another study accounting for both mental and SUDs also identified a 

four-class solution: little psychopathology (62.5%), internalizing disorders (16.9%), 

externalizing disorders (16.4%), and both internalizing/externalizing disorders (4.2%).124 

The most severe class, internalizing/externalizing disorder, demonstrated elevated rates 

for both mental disorders as well as alcohol (85.4%), cannabis (76.2%), and hard drug 

use disorders (61.1%) while the internalizing class had moderate alcohol use disorder 

endorsement (34.2%) and the externalizing class had greater endorsement of alcohol 

(84.2%), cannabis (82.0%), and hard drug disorders (53.7%).124  As a whole, these 

studies confirm and demonstrate a consistent comorbidity structure that likely takes 

form in four classes. These studies also identify a larger, low psychopathology group 

and a smaller yet more severe comorbidity group with more moderate comorbidity 

somewhere in between. The severe comorbidity group has higher endorsement of 

mental disorders and substance use behaviors. Understanding and identifying these 

comorbidity profiles have the potential to better support people with comorbidity through 

risk assessment and interventions.41 
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Limitations in Current Approach to Studying Comorbidity 

 Despite recent advancements in the study of comorbid SUD, several gaps in 

knowledge remain. First, the current comorbidity literature usually considers diagnosis 

to measure substance use and mental disorders. However, the overlap between 

symptoms from multiple disorders and the simultaneous co-occurrence of multiple 

disorders is very common. The current classification systems are limited in their ability 

to characterize comorbidity and may neglect to appropriately account for these 

overlaps. Therefore, using symptom-level data and a more recent measure of 

substance use behaviors (i.e., past-month substance use) will not only account for 

these overlaps, but these measurements could also indicate severity. For example, 

people who engaged in past-month use compared to people who used in the past-year 

may be more likely to have higher levels of SUD severity. Furthermore, there may be an 

underestimation of the population level burden of comorbidity due to the measurement 

of substance use and mental disorder through diagnostic classifications only. People 

who use substances or experience mental health problems that are not severe enough 

to receive a diagnosis or have access to a diagnosis are not included.117 Most 

substance-related health and social problems occur among individuals who are not 

addicted or have a SUD diagnosis.8 Consequently, using subthreshold measures may 

better address this issue of underreporting while also accounting for the overlap 

between substance use behaviors and mental health conditions. 

Second, tobacco use is rarely considered in comorbidity research, despite 

consistent literature supporting the association of tobacco use and mental 

disorders.12,41,92 Nicotine dependence occurs in a substantial proportion of individuals 
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with alcohol use disorder (23.8%), marijuana use disorder (32.6%), cocaine use 

disorder (47.7%), prescription opioid use disorder (45.4%), and heroin use disorder 

(66.3%).9 Negative affect (e.g., depression and anxiety) and externalizing [e.g., 

attention-deficit hyperactivity disorder (ADHD) and conduct disorder] 

psychopathology2,16,73,89–91 are important mental health factors that have been 

consistently associated with exclusive use of conventional cigarettes (CIG). A meta-

analysis reported that current CIG users had a two-fold increased risk of depression 

relative to never and former CIG users.92 Further, adults with depression are more likely 

to smoke and are less likely to be successful at quitting than adults without 

depression.93 With the increase in access and use of electronic cigarettes (ECIG) alone 

and in CIG users,84,125 it is increasingly important to consider this alternative method of 

nicotine delivery in comorbidity research alongside CIG use. 

Third, comorbidity is typically studied using smaller samples of more severely 

disordered participants,35 which does not provide a sense of the etiology of comorbidity 

for people who are affected with lower levels of severity. This is unfortunate, because 

people with lower levels of comorbid severity are expected to make up at least 2/3 of 

the U.S. population.12,41,124 Consequently, there is a gap in our understanding of 

comorbidity across the population. Specifically, it is unclear whether the latent class 

structure of SUD comorbidity from clinical samples will be detected in a population-

based sample where severity of SUD is generally lower. Nevertheless, population-

based study samples can measure SUD severity using screeners like the Addiction 

Severity Index (ASI), Alcohol Use Disorders Identification Test (AUDIT), Drug Abuse 

Screen Test (DAST), Fagerstrom Test for Nicotine Dependence (FTND), and the Global 
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Appraisal for Individual Needs (GAIN).26–28 These instruments are useful to assess SUD 

and SUD severity in settings that cannot specifically assess diagnosis. Use of these 

instruments can therefore capture people who (1) have subthreshold levels of 

impairment, and (2) may not have access to a physician to receive a diagnosis. 

Therefore, it is possible to model the relationship among a robust set of substance use 

behaviors, including tobacco, and mental disorder symptoms in a large, nationally 

representative sample to detail the comorbidity between SUDs and mental disorders on 

a population-level.  

 

Use of Comorbidity Details to Predict SUD Severity 

In addition to the aforementioned limitations, the detailing of comorbidity between 

co-occurring substance use and mental disorder has primarily been descriptive (i.e., 

developing comorbidity profiles) with some tests of association between comorbidity 

profiles and other factors (i.e., demographic characteristics, early life factors [i.e., 

parental factors], psychiatric diagnoses, suicide attempts, self-efficacy in abstinence, 

and treatment involvement).12,35,41 However, there have been few advancements in 

improving treatment outcomes and reducing the prevalence of mental disorders and/or 

SUDs.9 Consequently, there has been a stated need for comorbidity research due to the 

“insufficient information” that exists today.126 Recent studies have suggested the value 

in accounting for patterns of substance use and comorbidity to categorize SUD. Such 

detail is expected to improve the identification of individuals at risk for high SUD 

severity.41 Consequently, it is possible that establishing a “comorbidity profile” may be 
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useful to screen individuals for SUD risk in order to appropriately address additional risk 

factors. 

 Comorbidity profiles are also expected to be associated with sociodemographic 

characteristics like sex, age, race, education, annual household income, and perceived 

social connectedness. Being female is a significant predictor of membership for a 

mental health disorder class,12 internalizing or negative affect class and high 

psychopathology class.41 People who are older in age (65 years and older) and black, 

non-Hispanic are significantly protected from membership in internalizing or negative 

affect, externalizing and high psychopathology classes.41 Higher income level is also 

indicative of a protective relationship from membership in internalizing or negative 

affect, externalizing, and high psychopathology classes.41 Perceived social 

connectedness and support have been found to protect adults against substance use 

behaviors and mental disorder symptoms.127,128  Therefore, these sociodemographic 

characteristics must be considered when developing comorbidity profiles to predict SUD 

severity. 

 

Purpose, research questions, and hypotheses 

Prediction modeling using the probability of class membership is an extension to 

previous LCA work that can further inform prevention and potential intervention 

strategies among polysubstance users with varying levels of mental disorder symptoms. 

The three goals for this study are: (1) identify latent classes of comorbid substance use 

behaviors and mental disorder symptoms using LCA, (2) determine if there are 

differences in comorbidity by demographic and social factors, and (3) predict SUD 
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severity using the probability of comorbidity class membership severity in the first wave 

of adult data from the Population Assessment of Tobacco and Health study. Based on 

previous literature, we expect substance use to vary across the mental disorder 

symptoms. More substance use behaviors will cluster with highly comorbid mental 

disorder classes. Certain demographic factors will increase the risk of highly comorbid 

class membership, while social satisfaction will decrease risk. Higher probabilities of 

class membership in the highly comorbid and externalizing classes will predict greater 

SUD severity compared to probability of class membership in the low comorbidity and 

negative affect classes. This research will support population-level strategies to prevent 

or treat SUDs, including nicotine dependence, and the development of more severe 

mental health problems. 

 

METHODS 

Setting 

Wave 1 adult data (N=32,320) from the Population Assessment of Tobacco and 

Health (PATH) study was used.71 These data are cross-sectional and were collected 

between September 2013 and December 2014. PATH is a nationally representative 

longitudinal cohort study of the civilian, non-institutionalized household population of the 

U.S., and participants engaged in all levels of tobacco use ranging from never using 

tobacco to frequent use.  

The weighted response rate among participants was 74.0% for Wave 1.73 

Participants responded to tobacco-specific items including tobacco-use patterns, risk 

perceptions and attitudes towards current and newly emerging tobacco products, 
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tobacco initiation, cessation, relapse behaviors, and health outcomes.72 Participants 

also responded to non-tobacco items (e.g., media use, peer and family influences, 

health effect outcomes, and industry advertising and promotion).72 

 

Study representativeness 

 Participants with missing data on the substance use, negative affect, and 

externalizing measures were not included in the analysis (N= 2,109). Survey 

respondents of the analytic sample endorsed significantly greater substance use 

overall, negative affect symptoms, and externalizing symptoms (except for fighting) 

compared to those not included in the analytic sample. The participants in the analytic 

sample were more likely to be Non-Hispanic white, men, aged 25-54 with higher levels 

of education and annual household income than those who were missing. 

 

Measures 

Seventeen variables were studied: six substance use variables, four negative 

affect variables, and seven externalizing variables.  

 Past Month Tobacco and Substance Use. Six substance use categories were 

used in this study: exclusive cigarette, exclusive e-cigarette, dual cigarette and e-

cigarette, alcohol, marijuana, and prescription drugs not prescribed (PDNP) including 

painkillers, sedatives, tranquilizers. Only past month or current use of the substances 

was considered (coded as 1, else = 0) to reduce the potential for recall bias and ensure 

for accurate overlap with negative affect and externalizing symptoms occurring in the 

same time frame. 
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Past Month Negative Affect and Externalizing Symptoms. Negative affect and 

externalizing symptoms were measured using the Global Appraisal of Individual 

Needs—Short Screener (GAIN-SS).73 The items selected to identify negative affect and 

externalizing symptoms from the GAIN-SS instrument are ordinal and measures people 

across four times periods: past month, 2 to 12 months, over a year ago, and never. 

Participants indicating that they experienced a symptom within the past month were 

coded as 1. Participants indicating that they experienced the symptom 2 to 12 months 

ago, over a year ago, and never were coded as 0. Only past month or current negative 

affect and externalizing symptoms were considered reducing the potential for recall bias 

and ensure accurate overlap with substance use occurring in the same time frame. 

Past Month Substance Use Disorder Symptoms. Substance use disorder (SUD) 

severity was measured using the Global Appraisal of Individual Needs—Short Screener 

(GAIN-SS).73 Seven questions were used to measure SUD symptoms that asked the 

last time:  

(1) “used alcohol/drugs weekly or more often,”  

(2) “spent a lot of time getting alcohol/drugs,”  

(3) “spent a lot of time using or recovering from alcohol or other drugs,”  

(4) “kept using alcohol or other drugs even though it was causing social problems, 

leading to fights, or getting you into trouble with other people,”  

(5) “your use of alcohol or other drugs reduced your involvement in activities at work, 

school, home or social events,”  

(6) “had withdrawal problems such as shaky hands, throwing up, having trouble 

sitting still or sleeping,” and  
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(7) “use of alcohol/drugs to avoid withdrawal.”  

These items are ordinal and measures people across four time periods: past month, 

2 to 12 months, over a year ago, and never. Participants indicating that they 

experienced a symptom within the past month were coded as 1. Participants indicating 

that they experienced the symptom 2 to 12 months ago, over a year ago, and never 

were coded as 0. Only past month or current SUD symptoms was considered to reduce 

the potential for recall bias and ensure accurate overlap with substance use, negative 

affect symptoms, and externalizing symptoms occurring in the same time frame. The 

binary responses were summed to reflect a scale score of the number of current SUD 

symptoms. The score ranging from 0 to 7 SUD symptoms will be categorized into low 

(0), moderate (1-2), and high (3+) severity). This is the final measure used as the SUD 

severity outcome. These are the recommended cut points based on validation analyses 

of the dimensional measure.28 The ordinal severity categories were informed by other 

studies, showing concurrent and high predictive validity in other samples.28,73,99 A higher 

score indicates increased severity, a greater likelihood for diagnosis with a SUD, and 

increased need for services.73 There is substantial overlap with the symptoms identified 

in the GAIN-SS and the symptoms identified in the DSM-5 as the GAIN-SS uses 

symptoms from the DSM to generate dimensional symptom count measures (Table 

3.1).28,129 
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Table 3.1: Overlap between SUD Symptoms for DSM-5 Diagnostic Criteria and GAIN-
SS 
DSM 
Criterion 

DSM Symptom Description GAIN-SS Symptom 
Description 

Impaired 
Control 

Taking substance in larger 
amounts or over a longer period 
than initially intended. 

Used alcohol/drugs weekly or 
more often 

Expressing a persistent desire to 
cut down or regulate use and may 
report unsuccessful attempts to do 
so. 

 

Spending a great deal of time 
obtaining the substance, using the 
substance, or recovering from its 
effects. 

Spent a lot of time getting 
alcohol/drugs 
Spent a lot of time using or 
recovering from alcohol or other 
drugs 

Craving manifested by an intense 
desire or urge for the drug that 
may occur at any time but is more 
likely in an environment in which 
drug use has previously occurred. 

 

Social 
Impairment 

Recurrent substance use results in 
failure to fulfill major role 
obligations at work, school, or 
home. 

Your use of alcohol or other 
drugs reduced your involvement 
in activities at work, school, 
home or social events 

Continuing substance use despite 
persistent social/interpersonal 
problems exacerbated by the 
effects of the substance. 

Kept using alcohol or other 
drugs even though it was 
causing social problems, 
leading to fights, or getting you 
into trouble with other people 

Giving up or reducing important 
social, occupational, or 
recreational activities because of 
substance use. 

Your use of alcohol or other 
drugs reduced your involvement 
in activities at work, school, 
home or social events 

Risky Use 

Recurrent substance use in 
physically hazardous situations. 

 

Continuing use despite knowledge 
that persistent physical or 
psychological problems are 
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exacerbated or caused by 
substance use. 

Pharmacology 

Markedly increased dose of the 
substance required to achieve 
desired effect. 

 

Withdrawal symptoms specific to a 
drug class. 

Had withdrawal problems such 
as shaky hands, throwing up, 
having trouble sitting still or 
sleeping 
Use of alcohol/drugs to avoid 
withdrawal 

Note: SUD is diagnosed with the occurrence of two or more symptoms.  2 – 3 
symptoms = mild presentation, 4 – 5 symptoms = moderate presentation and 6 or 
more symptoms = severe presentation. GAIN-SS symptom severity is categorized as 
0 symptoms = low severity, 1-2 symptoms = moderate severity, and 3 or more 
symptoms = high severity. 

 
 Covariates. Sociodemographic variables such as sex, age, race, education, 

annual household income, and social satisfaction were included as auxiliary variables to 

predict the probability of class membership. These factors were chosen because they 

have been identified by previous studies to significantly predict latent class 

membership.12,41,127,128 Sex was a binary variable with one level representing male and 

the other level representing female. Age, measured in PATH as a seven-level 

categorical variable, was re-categorized to have a uniform distribution with six levels 

(18-24, 25-34, 35-44, 45-54, 55-64, and 65 years or older). Race/ethnicity was 

measured as a four-level categorical race variable and included information from a 

separate variable that accounted for Hispanic ethnicity (Non-Hispanic White, Non-

Hispanic Black, Non-Hispanic Other, and Hispanic Multicultural). Education, measured 

in PATH as a six-level categorical variable, was re-categorized as a five-level 

categorical variable with a uniform distribution [less than high school, GED/high school 

graduate, some college (no degree) or Associate’s degree, Bachelor’s degree, and 
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Advanced degree]. Annual household income was measured as a five-level categorical 

variable: less than $10,000, $10,000 to $24,999, $25,000 to $49,999, $50,000 to 

$99,999, and $100,000 or more. Level of satisfaction with social activities and 

relationships was measured as a five-level categorical variable: extremely satisfied, very 

satisfied, moderately satisfied, a little satisfied, and not at all satisfied. 

 

Statistical analysis 

Latent Class Analysis. Latent Class Analysis (LCA) was used to assign 

participants into classes of substance use and/or mental disorders using their 

responses to self-report measures of substance use, negative affect, and externalizing 

symptoms while accounting for demographic and environmental factors as predictors of 

class membership. The general goal of an LCA is to define an unobserved, latent 

variable (i.e., comorbidity) as a set of classes where the observed variables or items 

(i.e., substance use and negative affect-externalizing symptoms) are locally 

independent.130 Local independence or conditional independence is a condition in which 

the observed items are independent of one another, condition on the level of the latent 

variable.130 This means that the relationship or correlation between the observed items 

represents a distinct domain that is fully explained by the level of the latent class and 

that there is no residual correlation between the items.70,131  LCA accounts for the 

observed covariation between substance use and mental disorder symptoms and offers 

objective indices of class classification accuracy that are not available in traditional 

cluster analysis methods.132 
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LCA models are produced by estimating item probability parameters and class 

probability parameters.70 Item probability parameters represent the probability of 

endorsing an item conditional on latent class membership. It can also be referred to as 

the item response probabilities or conditional item probabilities.70 An LCA estimates the 

probability of being in a latent class conditional on the probability of endorsing a 

measured item. The combination of these two parameters is used to estimate the 

probability of being in a latent class with the marginal item probability for item !! =

1	(& = 1,2, … *) given by: 

 ,-!! = 1. = 	/,(0 = 1),(!! = 1|0 = 1)

"

#$%
 (1) 

 

where ! is a categorical latent variable 0 with 3 classes (0	 = 	1; 	1	 = 	1, 2, … , 3) across 

* binary items.70  Specifically, class probability parameter ,(0 = 1) reflects the 

probability that a person in a given latent class has of endorsing the specific item.70 The 

class probability parameter specifies the prevalence of each class in the population or 

the relative frequency of class membership.70 Further, the item probability parameter or 

conditional item probability for a given class is defined by the logistic regression: 

 

 ,-!! = 150 = 1. = 	
1

1 + exp	(−;!#)
 (2) 

 

where the ;!# is the logit for each of the !!′s for each of the latent classes, 1.70 The 

class probability parameter or the prevalence of each class in the population is =# =

,(0 = 1).70  
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Model Selection. Five LCA models, ranging from 2-6 classes were tested and 

included the seventeen variables of interest. Models were evaluated using measures of 

model fit, model parsimony, and entropy.   

Model fit quantifies how well a model explains the data. Model fit is assessed as 

the -2 log-likelihood which and reflects how much unexplained variation there is in the 

estimated model. Model fit comparisons generally test which model best explained the 

data by using a likelihood ratio test (LRT) which compares the relative fit of two models 

that differ by a set of parameter restrictions.133 The traditional LRT is a hypothesis test 

that compares two nested models: 

 

 >?@ = 	−2 log D
>&(EF)

>'(EF)
 (3) 

 

 

where G represents the likelihood for the null model and H represents the 

likelihood of the nested model. The estimated values of a traditional LRT follow a chi-

square distribution with the number of degrees of freedom equal to the difference in 

parameter numbers between the two models that will be compared.133,134  

Model fit comparisons for LCA do not meet certain regularity assumptions that 

must be satisfied133,134 and as such the use of classic LRT for model comparison is not 

appropriate. Specifically, LCA violates the assumption that the additive property of the 

likelihood ratio statistic can assess the statistical difference between pairs of 

hierarchically related models, meaning that one model is a constrained form of the 

other.135 Consequently, model fit for the LCA was assessed using a Lo-Mendell-Rubin 
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adjusted likelihood ratio test (LMRT) rather than the traditional LRT.133,134 The LMRT 

approximates the likelihood ratio test distribution which can be used for comparing 

nested latent class models.70 LMRT uses the adjusted asymptotic distribution of the 

likelihood ratio statistic and compares the improvement in fit between neighboring class 

models (i.e., comparing 1 − 1 and the 1 class models) with a p-value that can be used 

to determine if there is a statistically significant improvement in the fit for the inclusion of 

one more class.70   

Model parsimony was used to assess how well the model explains the data while 

accounting for differences in the number of model parameters estimated in models with 

different. Parsimony was evaluated using Akaike information criteria (AIC), Bayesian 

information criteria (BIC), and sample-size adjusted BIC. AIC was estimated as:  

 IJ0 = 	−2 log > + 2K (4) 
 

where L is the likelihood function, p is the number of free model parameters.70,136 

The benefit of using AIC is that it measures the closeness of the estimated model to the 

true model among the competing models.136 The smallest value of the AIC is selected 

as the more parsimonious model.136 

Bayesian information criteria (BIC)137 was estimated as:   

 

 LJ0 = 	−2 log > + K log(M) (5) 
 

where −2 log >  is -2 times the log-likelihood of the estimated model and M is the 

number of observations. BIC aids model selection by penalizing the number of factors in 

a model.138 The smaller BIC indicates a more parsimonious model. 



 84 

Sample-size adjusted BIC139 builds on BIC by replacing the same size M in the 

BIC equation above with M*. It was estimated as: 

 M* = (M + 2)/24 (6) 

 
 

PQ&!GRDQ	LJ0 = 	−2 log > + K log[(M + 2)/24] 
 

(7) 

 

The benefit of sample-adjusted BIC is that it accounts for the sample size. 

Simulation studies have confirmed that BIC and sample-size adjusted BIC are better 

indicators of the number of latent classes than AIC.70   

Entropy is commonly used as a model selection criterion that indicates the 

model’s ability to classify a person in a latent class (i.e., level of separation).133 It 

measures aggregated classification uncertainty and reflects accuracy of class 

membership assignment.133 Classification uncertainty is assessed at the individual level 

by posterior probabilities from the estimated model.140 Therefore, entropy identifies the 

estimated model’s ability to classify an individual into a class based on their poster 

probability of having endorsed a specific item. There is little distinction between classes 

when posterior probabilities across the classes are very similar. Entropy ranges from 0 

to 1 and a higher entropy represents a better fit; values > 0.80 indicate the latent 

classes highly discriminate.133   

Joint evaluation of parsimony, entropy, and model fit was used to identify the 

LCA model that best explained the data. Consequently, models with lower values for 

AIC and BIC were preferred. Models with a larger entropy value were preferred because 

they strongly discriminate between classes. Statistically significant results from the 

LMRT were used to determine the model with the lowest number of classes that best fit 
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the data. Interpretability and average latent class probabilities were also considered in 

determining optimal class solution.70,141 

 The best fitting model was also used to assign class membership to each 

participant. This assignment of class membership was then used in the multinomial 

logistic regression and prediction analyses as detailed below.  

Multinomial Logistic Regression. Multinomial regression was used to determine 

whether any covariates were significantly associated with membership of a latent class. 

142 Multinomial regression was conducted using the three-step method (R3STEP) via 

the AUXILIARY statement in Mplus. This approach was used to identify the variables to 

use as covariates in the third step multinomial logistic regression. A multinomial 

regression tests the association between any set of categorical or continuous predictors 

with a categorical outcome as: 

 ,(0 = 1|U) =
1

1 + DVK()*+,)
 

 
(8) 

 

where p has a categorical latent variable 0	with U as the covariate of interest (i.e., 

sex, age, race, education, annual household income, and level of satisfaction with social 

activities and relationships). The intercept is denoted as W and the regression coefficient 

is X. This approach was used in order for the latent class model and the latent class 

predictor model to be obtained automatically142 rather than introducing potential bias by 

performing a multinomial regression after the latent class models were selected.  

Prediction Analysis. Cumulative receiver operator characteristic (ROC) curves 

(developed from the cumRoc3 MACRO143) were used to: (1) estimate the ability of the 

class membership probabilities created from the LCA to predict SUD severity; (2) 
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estimate ability of the substance use variables, negative affect symptoms, and 

externalizing symptoms to each separately predict SUD severity; and (3) compare the 

predictive ability of the two approaches. This comparison was addressed in order to 

determine if establishing latent class membership performed better compared to the use 

of separate variables for predicting SUD severity.  

The classic ROC curve is computed by comparing a binary outcome Y with a 

continuous measure X where each observed level of X is evaluated as a candidate cut 

point discriminating observed Y = 1 (positive) from Y = 2 (negative).143 Traditionally, 

ROC curves have been used to establish the value of a diagnostic test measured as a 

binary outcome. Results from a ROC curve analysis provides results that support in the 

identification of the threshold that distinguishes a positive test from a negative test.144 

The correct classifications among positive outcomes are the true positives (TP). The 

correct classifications of the negative outcomes are the true negatives (TN). The 

incorrect classifications among negative outcomes are the false positives and the 

among the positive outcomes the false negatives. These classifications are used to 

compute the sensitivity (i.e., probability that an observation with a positive outcome is 

correctly classified as positive [sensitivity = TP/(TP + FN)]) and specificity (i.e., 

probability that an observation with a negative outcome is correctly classified as 

negative [specificity = TN/(TN + FP)]) of a test. The coordinates of a ROC curve are 

computed where the x-axis is the false positive rate (i.e., 1 – specificity) and the y-axis 

is the sensitivity or true positive rate.143  

A cumulative ROC curve analysis extends the classical empirical ROC curve by 

discriminating three or more ordinal outcome levels on a shared continuous scale.143 
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The cumulative ROC calculates the area under the curve (AUC) which explains the 

ability of a continuous measurement to discriminate between ordinal outcome levels 

(i.e., 3-level SUD severity outcome). In this case, the AUC is the probability that an 

observation with a higher severity SUD outcome will have a higher continuous 

measurement (i.e., higher class probability) than an observation with a lower severity 

SUD outcome.143 An AUC of 0.5 represents no discriminating ability (i.e., no better than 

chance) versus an AUC of 1.0 represents perfect discrimination between the groups.145  

The probability of the SUD severity (P./0) for class membership (V%) was 

estimated as follows: 

 

 P./0 =	
exp	[X1 +	X%V%]

(1 + exp[X1 +	X%V%])
 (9) 

 

where X1 is the intercept, and X% is the estimated regression coefficient for the 

probability of latent class membership (V%).146 

 Predictive probabilities were generated from four ordinal logistic regression 

models. The main model of interest estimated the probability of class membership 

(generated from the LCA) and SUD severity. Three additional models were run using 

predictive probabilities from regressing substance use variables, negative affect 

symptoms, and externalizing symptoms separately on SUD severity. 

Statistical Programs, Handling Missingness and Complex Sampling Design. Data 

management, summary statistics, and the prediction analysis were performed in SAS 

9.4. All LCA was conducted in MPlus.147 Participants with missing data were not 

included in the latent class analysis (N = 2,109, missing data patterns = 256). Complex 
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sampling design was accounted for in SAS 9.4 using PROC SURVEYFREQ (to 

generate summary statistics) and PROC SURVEYLOGISTIC (to generate the predictive 

probabilities from the logistic regression models), and in MPlus using the WEIGHT 

option.  

 

RESULTS 

Summary statistics 

 The sample was 51.9% female and 66% Non-Hispanic White. Age was evenly 

distributed among the sample. Most of the sample had at least a GED or high school 

education (88.4%), had an annual household income of more than $25,000 (65.9%), 

and were very (46.1%) or extremely (22.3%) satisfied with their social activities and 

relationships. Current alcohol use was most frequently reported (52.4%), followed by 

exclusive cigarette use (16.6%), marijuana use (7.1%) and PDNP (5.1%). Sleep trouble 

was the most common past-month negative affect symptom reported (26.7%), followed 

by feeling very anxious (16.1%), feeling depressed (13.4%), and becoming distressed 

about the past (12.5%). The most frequently endorsed past-month externalizing 

symptom was giving answers before the other person finished asking the question 

(32.0%), followed by having a hard time paying attention (14.6%) and having a hard 

time listening to instructions (10.4%). Most of the sample indicated low past month SUD 

severity (63.2%, Table 3.2). 
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Table 3.2: Wave 1 Summary Statistics 
 Wave 1 

(N=32320) 
 N (Weighted %) 
Sex  
   Male 16306 (48.1) 
   Female 15980 (51.9) 
Age  
   18-24 9110 (13.0) 
   25-34 6337 (17.7) 
   35-44 4930 (16.5) 
   45-54 4846 (17.9) 
   55-64 3971 (16.6) 
   65+ 3110 (18.2) 
Race  
   Non-Hispanic White 19295 (66.0) 
   Non-Hispanic Black 4496 (11.2) 
   Non-Hispanic Other 2429 (7.5) 
   Hispanic Multiracial 4817 (13.3) 
Education  
   Less than high school 4233 (11.6) 
   GED/High school graduate 9765 (29.5) 
   Some college (no degree) 11300 (31.0) 
   Bachelor’s degree 4498 (17.8) 
   Advanced degree 2311 (10.1) 
Annual household income  
   Less than $10,000 5668 (13.7) 
   $10,000- $24,999 6768 (20.4) 
   $25,000- $49,999 6670 (23.0) 
   $50,000- $99,999 6140 (24.9) 
   $100,000 or more 3914 (18.0) 
Satisfaction with social activities and relationships  
   Extremely satisfied 6942 (22.3) 
   Very satisfied 13742 (46.1) 
   Moderately satisfied 8157 (23.7) 
   A little satisfied 2376 (5.6) 
   Not at all satisfied 1001 (2.3) 
Past month tobacco and substance use  
   Exclusive CIG 10381 (16.6) 
   Exclusive ECIG 578 (0.9) 
   Dual CIG + ECIG 996 (1.5) 
   Alcohol 17787 (52.4) 
   Marijuana 4392 (7.1) 
   PDNP  1950 (5.1) 
Past month negative affect symptoms   
   Depressed 5692 (13.4) 
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   Sleeping 9564 (26.7) 
   Anxious 6864 (16.1) 
   Distressed/Past 5605 (12.5) 
Past month externalizing symptoms   
   Lied 3245 (7.1) 
   Attention 5831 (14.6) 
   Listening 4128 (10.4) 
   Bully 737 (1.7) 
   Fights 404 (0.7) 
   Restless 2953 (6.2) 
   Answered 11399 (32.0) 
Past month SUD severity  
   Low 16481 (63.2) 
   Moderate 8985 (31.7) 
   High 2156 (5.1) 

 
 
 
Class membership and item-response probabilities 

A four-class model was identified as best fitting the data and was selected to 

conduct additional analyses (Table 3.3). Classes from the 4-class model were labeled 

based on the highest conditional probabilities that characterized the class. The 

characteristics and patterns for each class are detailed below. Figure 3.1 displays the 

probability of being categorized within one of the four classes (i.e., the class 

membership probabilities) given the specific patterns of past-month substance use and 

endorsement of negative affect and externalizing symptoms in the past month (i.e., item 

response probabilities or conditional probability). 
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Table 3.3: Wave 1 LCA Model Fit and Parsimony 

 AIC BIC 

Sample-
Size 

Adjusted 
BIC 

Entropy Ho LL LMRT p-value LC 1 LC 2 LC 3 LC 4 LC 5 LC 6 

2 class 311322.5 311616 311504.7 0.864 -176279 41085.86 <0.05 7339 
(22.7%) 

24981 
(77.3%)     

3 class 307151.6 307596 307427.5 0.773 -155626 4184.516 <0.05 2637 
(8.2%) 

7375 
(22.8%) 

22308 
(69.0%)    

4 class 303521.4 304116.6 303891 0.844 -153520 3640.512 <0.05 1960 
(6.1%) 

2691 
(8.3%) 

23571 
(72.9%) 

4098 
(12.7%)   

5 class 302018.6 302764.7 302481.9 0.695 -151679 1508.737 0.6834 1854 
(5.7%) 

3800 
(11.8%) 

2594 
(8.0%) 

5497 
(17.0%) 

18575 
(57.5%)  

6 class 301484.8 302381.8 302041.7 0.718 -150917 559.354 0.7626 734 
(2.3%) 

1383 
(4.3%) 

5385 
(16.7%) 

2500 
(7.7%) 

3658 
(11.3%) 

18659 
(57.7%) 

NOTE: AIC = Akaike information criteria, BIC = Bayesian information criteria, LL = log likelihood, LMRT = Lo Mendell Rubin Test, LC = latent class 
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Low-Symptom Class. Most participants were categorized as being in the low 

symptom class (N=23,571, 72.9%). This class, overall, had lower conditional 

probabilities for endorsing all items compared to the other classes. Consequently, 

participants in this class had a low probability of endorsing most substance use and 

negative affect/externalizing items. However, the conditional probability of exclusive 

cigarette use was marginally higher for the low symptom class compared to the 

externalizing class (13.6% vs. 12.9%) meaning that a person in the low symptom class 

had a 13.6% probability for endorsing exclusive cigarette use in the past month.  

Negative Affect Class. The negative affect class (N=4,098, 12.7%) had higher 

conditional probabilities for the four negative affect symptoms compared to the low 

symptom class, and externalizing class. A person was more likely to endorse exclusive 

CIG, dual CIG and ECIG, marijuana, and PDNP use if they were in the negative affect 

class compared to the low symptom, and externalizing classes. This class represents a 

population of people who more commonly endorse the four negative affect symptoms 

along with past-month substance use, excluding ECIG. 

Externalizing Class. The externalizing class (N=2,691, 8.3%) had higher 

conditional probabilities for all seven externalizing symptoms compared to low 

symptom, and negative affect classes except for the “start physical fights with other 

people” (Externalizing class = 0.7%, Negative Affect class = 2.00%). The conditional 

probability for exclusive ECIG and alcohol use was greater for those in the externalizing 

class compared to the low symptom, and negative affect classes. Therefore, this class 

represents adults who experience higher levels of externalizing symptoms along with 

exclusive ECIG and alcohol use. 
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Comorbid Class. Approximately 6% of participants were categorized as being in 

the comorbid class (N=1,960, 6.1%).  Compared to the other classes, this class had 

higher conditional probabilities for all items except for alcohol use (Comorbid class = 

57.8%, Externalizing class = 64.4%). This class represents a small population of people 

who, overall, have high endorsement of all seventeen items and, therefore, may indicate 

more severe presentation of substance use and mental disorder symptom severity. 

 

Figure 3.1: Four class solution of substance use behaviors and mental disorder 

symptoms. 

Associations between Sociodemographic Factors and Substance Use/Mental Disorder 

Classes 

 Males were significantly less likely than females to be classified in the comorbid 

(OR = 0.72, 95% CI = 0.63-0.82, p < 0.05) and negative affect (OR = 0.74, 95% CI = 

0.66-0.83, p < 0.05) classes relative to the low symptom class (Table 3.4).  
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As age increased, the odds of class membership decreased for all classes 

relative to the low symptom class. Therefore, the youngest age group (18-24 years) had 

the highest odds of class membership compared to the oldest age group (65 years and 

older), relative to the low symptom class (Comorbid Class OR = 10.02, 95% CI = 7.06-

14.24, p < 0.05; Negative Affect Class OR = 3.88, 95% CI = 3.11-4.83, p < 0.05; 

Externalizing Class OR = 3.39, 95% CI = 2.69-4.28, p < 0.05). Respondents who 

identified as Non-Hispanic Black, Hispanic Multicultural, and Non-Hispanic Other were 

significantly less likely than respondents who identified as Non-Hispanic White to be 

classified in any of the classes relative to the low symptom class.  
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Table 3.4 Wave 1 - Association Between Demographic and Social Variables with Probability 
of Latent Class Membership 
 Comorbid Class Negative Affect Externalizing 

 OR (95% CI) OR (95% CI) OR (95% CI) 

Sex    
Female REF REF REF 
Male  0.72 (0.63-0.82)* 0.74 (0.66-0.83)* 1.00 (0.87-1.14) 
Age    
18-24 years 10.02 (7.06-14.24)* 3.88 (3.11-4.83)* 3.39 (2.69-4.28)* 
25-34 years 6.00 (4.17-8.64)* 2.39 (1.90-3.01)* 1.81 (1.40-2.33)* 
35-44 years 4.10 (2.83-5.94)* 1.69 (1.32-2.16)* 1.46 (1.11-1.91)* 
45-54 years 3.77 (2.60-5.47)* 1.52 (1.19-1.93)* 1.13 (0.86-1.50) 
55-64 years 2.27 (1.54-3.36)* 1.44 (1.12-1.85)* 0.98 (0.73-1.32) 
65 years and older REF REF REF 
Race    
Non-Hispanic White REF REF REF 
Non-Hispanic Black 0.48 (0.40-0.59)* 0.76 (0.64-0.89)* 0.62 (0.51-0.77)* 
Non-Hispanic Other 0.73 (0.57-0.94)* 0.72 (0.56-0.91)* 0.69 (0.53-0.89)* 
Hispanic Multiracial 0.50 (0.41-0.61)* 0.78 (0.66-0.93)* 0.65 (0.52-0.80)* 
Education    
Less than high school 1.53 (1.05-2.21)* 1.62 (1.22-2.15)* 0.79 (0.57-1.09) 
GED/High school graduate 1.37 (0.98-1.92) 1.42 (1.10-1.83)* 0.80 (0.61-1.05) 
Some college (no degree) 1.79 (1.29-2.47)* 1.36 (1.06-1.75)* 1.08 (0.85-1.37) 
Bachelor’s degree 1.35 (0.94-1.93) 1.16 (0.88-1.53) 1.10 (0.85-1.42) 
Advanced degree REF REF REF 
Income    
Less than $10,000 2.54 (2.03-3.18)* 1.61 (1.32-1.95)* 0.83 (0.65-1.06) 
$10,000- $24,999 2.02 (1.62-2.51)* 1.51 (1.25-1.83)* 0.55 (0.44-0.68) 
$25,000- $49,999 1.45 (1.16-1.81)* 1.11 (0.92-1.33) 0.84 (0.68-1.04) 
$50,000- $99,999 1.00 (0.78-1.27) 0.99 (0.82-1.20) 1.21 (1.00-1.46)* 
$100,000 or more REF REF REF 
Level of satisfaction with social activities and relationships 

Extremely Satisfied REF REF REF 
Very satisfied 1.65 (1.31-2.07)* 1.55 (1.31-1.85)* 1.42 (1.18-1.70)* 
Moderately satisfied 8.15 (6.54-10.15)* 4.53 (3.78-5.43)* 2.66 (2.18-3.26)* 
A little satisfied 34.19 (26.40-44.29)* 11.09 (8.70-14.14)* 3.08 (2.17-4.39)* 
Not at all satisfied 95.87 (66.32-138.58)* 22.62 (15.44-33.16)* 3.67 (1.62-8.31)* 
Note: Low symptom class was the reference level for the outcome.  
* Indicates a p-value < 0.05 

 
Compared to those with an advanced degree, participants with lower education 

levels were significantly more likely to be in the comorbid (Less than High School OR = 
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1.53; Some College/No Degree OR = 1.79) and negative affect (Less than High School 

OR = 1.62; GED/High School Graduate OR = 1.42; Some College/No Degree OR = 

1.36) classes relative to the low symptom class. The associations between education 

level and the externalizing class were not statistically significant. Compared to an 

income of $100,000 or more, those with annual household incomes of $99,999 and 

below were significantly more likely to be in the comorbid (Less than $10,000 OR = 

2.54; $10,000-$24,999 OR = 2.02; $25,000-$49,999 OR = 1.45) and negative affect 

(Less than $10,000 OR = 1.61; $10,000-$24,999 OR = 1.51) classes, compared to the 

low symptom class (Table 3.4).  

A reduction in social satisfaction was associated with membership in comorbid, 

negative affect, and externalizing classes. For example, compared to being extremely 

satisfied, as social satisfaction decreased, the likelihood of being in the comorbid class 

increased (Not at all satisfied OR = 95.87, 95% CI = 66.32-138.58, p < 0.05). Similarly, 

compared to participants who were extremely satisfied, participants who were not at all 

satisfied were about 23 times more likely to be categorized in the negative affect class 

(OR = 22.62, 95% CI = 15.44-33.16, p < 0.05) and almost four time more likely to be in 

the externalizing class (OR = 3.67, 95% CI = 1.62-8.31, p = 0.002). This relationship 

was not detected for the alcohol class. 

Prediction modeling 

 Data generated from the LCA model (i.e., class membership and probability of 

class membership) were exported from Mplus and imported into SAS to determine the 

predictive ability of the latent class on SUD severity. Class membership significantly 

predicted SUD severity (Table 3.5).  
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Table 3.5: Prediction of the probability of class membership and SUD severity 

Latent Class SUD Severity 
Odds Ratio (95% Confidence Interval) 

Low Symptom Class REF 
Comorbid Class 2.31 (2.07-2.59)* 
Externalizing Class 1.54 (1.38-1.72)* 
Negative Affect Class 1.51 (1.38-1.65)* 
* Indicates a p-value < 0.0001. 

 

Relative to the low symptom class, membership in the comorbid class increased 

the odds of SUD severity by 2.31 times (OR = 2.31, 95% CI = 2.07-2.59, p < 0.0001). 

The externalizing and negative affect classes had similar relationships with SUD 

severity (Externalizing OR = 1.54, 95% CI = 1.38-1.72, p < 0.0001; Negative Affect OR 

= 1.51, 95% CI = 1.38-1.65, p < 0.0001). These estimates were unadjusted since the 

sociodemographic covariates were accounted for in the development of the latent 

classes. 

 

Figure 3.2: Area under the curve comparisons generated from the cumulative ROC 

Curves 

Negative Affect Externalizing Substance Use Class Membership
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 Cumulative ROC curves (see Appendix B, Supplemental Figures 3.1-3.8) were 

generated to determine if latent class membership (combining substance use behaviors, 

negative affect, and externalizing symptoms) was a better predictor of specific levels of 

SUD severity compared to any of the indicators that make up the latent class 

separately. Past-month substance use behaviors best predicted SUD severity. For 

example, the area under the curve (AUC; i.e., the degree of separability) for past-month 

substance use to predict low SUD severity versus moderate/high SUD severity was 

0.57 (Figure 3.2). This means that the substance use variables would only be correct in 

predicting SUD severity about 57% of the time. Further, the AUC improved when 

predicting low/moderate SUD severity versus high SUD severity (AUC = 0.6479). 

Therefore, at this threshold (low/moderate vs high SUD severity), the predictive ability 

increased from 57% to 65%. The ability of the latent class to predict SUD severity was 

marginally better than the negative affect and externalizing indicators for the 

low/moderate versus high SUD severity (Class Membership AUC = 0.51; Negative 

Affect AUC = 0.51; Externalizing AUC = 0.47). Therefore, substance use behaviors 

measured alone performed better at predicting SUD severity compared to comorbid 

substance use as reflected in comorbid latent class membership. 

Overall, AUCs ranged from 0.47 (low/moderate SUD severity vs high SUD 

severity level for externalizing) to 0.65 (low/moderate SUD severity vs high SUD 

severity for substance use behaviors) meaning that predictions of SUD severity were 

only correct about 47-65% of the time. 
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DISCUSSION 

To our knowledge, this is one of the first studies to use a latent class approach to 

describe comorbidity between substance use behaviors and mental disorder symptoms 

together in a large nationally representative sample of U.S. adults. This study also used 

information from the latent class analysis to predict a health outcome, SUD severity. 

There are three major results from this study. First, a four-class solution (i.e., low 

symptom class, negative affect class, externalizing class, and comorbid class) best 

described the data. These classes also allowed us to understand what symptoms and 

substance use behaviors commonly occur together in this sample, confirming our 

hypothesis that substance use would vary across mental disorder symptoms. For 

example, exclusive cigarette, dual cigarette and e-cigarette, marijuana, and PDNP use 

more commonly occurred in the negative affect class while exclusive e-cigarette and 

alcohol use more commonly occurred with the externalizing class. Second, 

sociodemographic factors were significantly associated with latent class membership 

and social satisfaction was a strong factor associated with the comorbid and negative 

affect classes. Third, latent class membership predicting SUD severity performed 

similarly to a model where the symptoms were grouped separately (i.e., negative affect 

symptoms, externalizing symptoms, and substance use behaviors).  

 

Class prevalences and underestimation 

 The four-class solution was determined to best fit the data for this sample. This is 

consistent with prior latent class results that have identified a four-class solution to be 

most optimal. Salom et al. identified a four-class solution of comorbid polysubstance 
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use and mental health disorders in young adults: low disorder (73.6%); mental health 

and low SUD (10.6%); alcohol, cannabis, and low mental health disorder (12.2%); and 

polysubstance use and moderate mental health disorder (3.5%).12 Other studies have 

also found that four-class solutions are most optimal in their samples with the low 

psychopathology class being the largest group (62.5% to 84.0%) followed by an 

internalizing or negative affect class with some substance use endorsement (i.e., 

alcohol use disorder), an externalizing class with high endorsement of substance use 

problems (i.e., nicotine dependence, alcohol use disorder, and drug use disorder), and 

a comorbid or both internalizing or negative affect/externalizing with high endorsement 

of substance use problems class as the smallest group (1.1% to 4.2%).41,124 Therefore, 

our results confirm and support a four-class solution to best explain substance use and 

mental disorder comorbidity in U.S. adults. 

 Similar to other latent class findings, the low symptom class was most common 

in this sample (72.3%, N=23,571). This suggests that most American adults may 

engage in some substance use (i.e., current CIG or alcohol use) while also experiencing 

some mental disorder symptoms, specifically impulsivity or sleep problems, but 

otherwise have low endorsement of other substance use behaviors and mental disorder 

symptoms. Almost thirty percent (27.7%) of the sample, however, were categorized in 

the other three remaining classes based on higher probabilities of endorsing substance 

use or mental disorder symptom items. These people have the potential to be 

underestimated or not accounted for based on the current classification systems due to 

their subthreshold levels of possible impairment. This presents a missed opportunity to 

identify the comorbid substance use and mental disorder symptoms, and potentially 
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prevent the comorbidity from becoming progressively worse. Therefore, this part of the 

population could benefit from refined detection and possible intervention (e.g., access to 

support or educational materials). Early detection could result in better intervention 

outcomes and better overall mental health outcomes. 

 

Patterns of substance use varies by negative affect and externalizing classes 

Exclusive cigarette, dual cigarette and e-cigarette, marijuana, and PDNP use had 

higher endorsement in the negative affect class. In comparison, exclusive e-cigarette 

and alcohol use had higher endorsement in the externalizing class. These patterns may 

be helpful in identifying people at risk for development of more severe comorbidity in 

public health spaces. The implications of these results are considered below. 

Negative affect class 

Previous work reports that people who engage in conventional cigarette use are 

at an increased risk of negative affect disorders like depression and anxiety.90,92 The 

relationship between negative affect symptoms and dual cigarette and e-cigarette use is 

not as well understood. Our prior analysis (see Chapter 2) showed that the combined 

use of alcohol, cigarette and e-cigarette was significantly associated with high negative 

affect severity while dual cigarette and e-cigarette use was not significantly associated 

with any level of negative affect severity after adjusting for demographic covariates.148 

The LCA results add to our understanding of psychopathology, confirming the 

association between dual cigarette and e-cigarette use with negative affect symptoms, 

especially as this dual use is currently increasing in adults, specifically young adults.83   
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There was higher endorsement for past-month marijuana use in the negative 

affect class compared to the externalizing class. There is a vast literature demonstrating 

the association between marijuana use and negative affect symptoms such as anxiety 

and depression.149–152 Additionally, marijuana use has been increasing at a greater rate 

in women, who are more likely to endorse negative affect symptoms, compared to men 

over the last decade (40% increase for men, 53% increase for women from 2006 to 

2016).153 Therefore, the reason there is greater endorsement of marijuana in the 

negative affect versus the externalizing class may be because women are more likely to 

make up the negative affect class.  

The finding of high endorsement of PDNP in the negative affect class is 

consistent with the literature. Evidence suggests that opioid use, a substance measured 

within PDNP, is associated with PTSD symptoms.154 Other studies have also identified 

that people in SUD treatment for nonmedical use of prescription painkillers like opioids, 

almost half (43%) have a diagnosis or symptoms of anxiety and depression.155  

Externalizing class 

The item response probability for exclusive e-cigarette use was higher for the 

externalizing class compared to the low symptom and negative affect classes. This is 

not supported by our prior analysis (see Chapter 2) where exclusive e-cigarette use was 

not significantly associated with negative affect or externalizing severity using a 

multinomial logistic regression.148 However, e-cigarette and alcohol use together were 

significantly associated with externalizing severity.148 Given that alcohol use is widely 

accepted to be associated with externalizing behaviors,38,117,118 we hypothesized that 

the alcohol use may drive the relationship between e-cigarette and externalizing 
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severity when alcohol was used with e-cigarettes (i.e., dual use). Nevertheless, the 

results from this LCA study support that exclusive e-cigarette use may be more related 

to externalizing symptoms than negative affect. As e-cigarettes continue to increase in 

use,125 it is important to understand how this electronic nicotine delivery system differs 

from conventional cigarette use. Some studies have identified similarities in that both 

deliver nicotine and result in poor health outcomes specifically related to the lungs.125 

However, regarding comorbidity with mental disorder symptoms, e-cigarettes may 

present differently than conventional cigarettes. Alcohol use was also endorsed at a 

greater probability in the externalizing class compared to the negative affect and low 

symptom classes. This is consistent with prior studies that suggest that alcohol use 

contributes to a latent factor of externalizing behaviors.38,117,118 

 

Sociodemographic characteristics and latent class membership 

As age increased, the odds of class membership decreased. This is consistent 

with previous work, where younger people are at greater risk for mental health and 

substance use problems compared to people in older age categories.41 This could 

indicate an increase in substance use initiation which is typical in younger age 

categories.156 This also matches with the age of onset for most mental disorders as 

roughly 50% to 75% of all lifetime mental disorders start by the mid-teens and mid-20s, 

respectively.2 Therefore, broad prevention strategies that address all latent class 

profiles could be helpful in supporting younger people with comorbidity.  

Compared to Non-Hispanic White participants, those in all other race categories 

were less likely to be in any of the latent classes. Another study has also identified the 
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association between race and comorbidity, whereas those who identify as Non-Hispanic 

White are at increased risk of latent class membership compared to individuals in other 

racial/ethnic groups, specifically Non-Hispanic Black and Hispanic Other.41 There are 

many potential reasons why this occurs. First, Non-Hispanic White populations are 

overrepresented in psychopathology and comorbidity research.123 It is also likely that 

diagnoses of comorbidity are optimized for the Non-Hispanic White population rather 

than across all groups. Therefore, it has been more difficult to draw associations with 

other racial/ethnic groups. Second, due to the historical distrust in the U.S. healthcare 

system, people of other racial/ethnic groups may be less likely to participate in research 

and indicate that they participate in substance use behaviors or experience mental 

disorder symptoms.157 However, a likely conclusion that is not an artifact of study 

sampling or potential misclassification could be the strong levels of resiliency in other 

racial/ethnic groups, specifically seen in African Americans or those who identify as 

Black.158 This is known as the black-white mental health paradox and explains that 

Black Americans tend to experience similar or relatively low rates of psychiatric 

disorders compared to Whites despite higher stress exposure, greater material 

hardship, and worse physical health.158 While it is important to support those who 

identify as Non-Hispanic White, it remains important to continue being inclusive of all 

racial/ethnic categories in comorbidity research to develop more consistent results and 

provide the appropriate level of support and targeted prevention efforts. 

Women had higher odds of membership in the comorbid and negative affect 

classes. This is consistent with previous LCA work that has shown that women are 

more likely to be in a comorbid or internalizing/negative affect class.12,41,124 Men, 
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however, were not significantly associated with membership in the externalizing class. 

Men typically have higher rates of alcohol use and endorse more externalizing 

symptoms and disorders. This may due to the robust set of other items included in the 

generation of the latent classes. 

Compared to those at higher levels of socioeconomic status, people at lower 

levels of socioeconomic status had a greater risk of membership in the comorbid and 

negative affect classes. This is consistent with previous studies. For example, a 

longitudinal study of 34,653 noninstitutionalized U.S. adults identified that low levels of 

household income were associated with several lifetime mental disorders and a 

reduction in household income was associated with increased risk of incident mood, 

anxiety or substance use disorders compared to respondents with no change in 

income.159 Additionally, prior work has identified that higher income and education 

levels represent a protective relationship from membership in internalizing or negative 

affect, externalizing, and high psychopathology classes.41  

The magnitudes of the association between social satisfaction and the comorbid 

as well as negative affect classes were very large. Social satisfaction was also 

associated with the externalizing class. Those who were less satisfied with their social 

lives had greater odds of externalizing class membership. Although not incredibly 

precise, the association between social satisfaction and class membership may be a 

place to intervene, as social satisfaction is (1) a more easily modifiable factor compared 

to other demographic characteristics and (2) demonstrates a protective association. For 

example, as people became less satisfied with their social activities and relationships, 

their odds of membership in the comorbid, negative affect, or externalizing classes 
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significantly increased. Therefore, if social satisfaction can improve (i.e., becoming more 

content with one’s activities and relationships with the support of a psychological 

therapist or counselor), there could be a decrease in the risk of belonging to the 

comorbid, negative affect, or externalizing classes. This buffering effect through social 

support has been demonstrated previously160 and could be an opportunity to intervene 

or prevent further development of comorbid or negative affect psychopathology.  

 

Limited ability to predict SUD severity 

The comorbid class had the strongest association with SUD severity when 

predicting SUD severity using class membership in a multinomial logistic regression. 

The comorbid class had greater endorsement of past month substance use behaviors, 

except for alcohol use, and mental disorder symptoms compared to the other classes. 

This finding indicates that people with endorsement of more items at greater rates are 

associated with greater SUD severity. Therefore, we assumed that by grouping 

symptoms together and describing them as they occur using a latent modeling 

approach, we would be better able to predict health outcomes than assessing these 

symptoms separately. However, the cumulative ROC analyses showed that the ability of 

latent class membership to predict SUD severity was no better than the symptoms 

grouped separately (i.e., negative affect symptoms, externalizing symptoms, and 

substance use behaviors). Further, predictions of SUD severity were only correct about 

47-65% of the time.  

The poor ability of latent class membership to predict SUD severity may be due 

to the incongruency between measurement tool used and population assessed. The 
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outcome measure, SUD severity, was created to approximate SUD diagnosis. This tool 

was originally validated in populations which were oversampled with SUD in order to 

appropriately distinguish between SUD and no SUD.28 Therefore, the tool used to 

measure SUD may not perform as well in a sample of people who experience 

subthreshold levels of SUD or other mental disorders. Classes generated from other 

methods like factor mixture modeling131 that can account for heterogeneous groups (i.e., 

SUD and no SUD) may be better in predicting SUD severity. Another reason could be 

due to misclassification bias introduced by the measurement used for negative affect 

and externalizing symptoms, and SUD severity. We could be misclassifying individuals 

by collapsing 2 to 12 months, over a year ago, and never into one reference category to 

compare to the past-month endorsement. Additionally, the negative affect and 

externalizing symptoms were correlated, which may also affect the ability of either items 

to predict SUD severity. Future studies should consider using a factor mixture modeling 

approach to determine comorbidity’s predictive ability of SUD severity. Until then, it may 

be that disorders do better at predicting SUD severity compared to subthreshold or 

symptom-level measures. 

 

Strengths and limitations  

 There are several strengths and limitations to this study. First, this study used 

data from a large, nationally representative sample of U.S. adults allowing for the 

generalizability of these results to the adult, noninstitutionalized population in the U.S. 

However, participants included in this study differed significantly from participants with 

missing data as those included had greater endorsement of substance use, negative 
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affect symptoms, and externalizing symptoms. Therefore, these participants may not 

represent the U.S. adult population. Additionally, these data are cross-sectional and this 

study cannot resolve causal inference. As more waves of data are collected, we will be 

able to assess the stability of this class structure along with changes in class 

membership using longitudinal methods (e.g., latent transition analysis) especially 

considering the more recent changes in substance use over time (e.g., the increase in 

e-cigarette and marijuana use).  

Second, the substance use and mental disorder symptoms measure comorbidity 

within the same time frame (i.e., past month endorsement of substance use as well as 

the negative affect-externalizing symptoms and SUD severity). There is potential 

misclassification due to how the measure was developed by collapsing the 2 to 12 

months, over a year ago, and never response options into one group (coded as 0 vs 

past-month coded as 1). People who endorsed a symptom in the last 2 to 12 months or 

over a year ago differ from people who never endorsed a symptom. Future work could 

consider (1) developing a three-level categorical variable that separates those who 

never endorsed a symptom from those who endorsed a symptom in the last 2 to 12 

months and over a year ago to compare with the past-month level, or (2) maintain the 

original four levels of the item to avoid losing information through dichotomizing or re-

categorizing the variables. Our binary measurement, however, allowed us to model 

current comorbid polysubstance use and negative affect and externalizing symptoms 

while also predicting SUD severity within the same time period. Additionally, by using 

symptom measures, we accommodate and provide a better understanding of 

comorbidity compared to a diagnostic classification system.117 Additionally, it is 
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important to note that although the cut points for SUD severity have acceptable 

reliability, validity, and overlap with DSM-5 SUD criterion in this sample, we may not be 

appropriately treating these variances as a continuous probability. Future research is 

encouraged to evaluate the SUD severity items and consider measurement techniques 

such as the use of quantiles161 to confirm that the categorization of the SUD severity 

variable is appropriate for the population being studied (i.e., based on the distribution of 

population’s responses).  

Third, the assessment of factors associated with class membership is limited to 

the demographic and social factors included in this study. There could be other factors 

associated with comorbidity that were not included and could result in residual 

confounding. Future work should investigate the association of other environmental 

factors on class membership to better understand the influence of additional social 

determinants of health on comorbidity. 

Fourth, we ran an ordinal regression model for the prediction analysis. However, 

the model violated the proportional odds assumption (chi-square = 439.2, p-value < 

0.0001). This means that the relationship between any two pairs of the outcome groups 

(i.e., low vs moderate/high SUD severity and low/moderate vs high SUD severity) was 

not statistically the same. We also ran a multinomial regression model because of the 

assumption violation. However, results from a multinomial regression were consistent 

with the ordinal regression results and, therefore, we presented the ordinal regression 

results in order to be synonymous with results presented from the cumulative ROC 

curves. Nevertheless, predicting SUD severity is a strength. It is an extension to the 

primarily descriptive ability of using an LCA. Further, by utilizing the ROC curves, we 
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were able to identify the ability of latent class membership to predict SUD severity and 

compare that to the substance use behaviors and mental disorder symptoms 

separately.  

Fifth, a LCA model was used to assign participants into comorbidity classes 

using their responses to self-report measures of substance use, negative affect, and 

externalizing symptoms. This approach is considered to be important to discover 

classes based on observed data and characterize participants based on latent class 

membership. LCA was selected to compare results with previous studies that assessed 

for comorbidity and be used in clinical and research settings specifically for risk 

assessment and treatment.41 Further, the interpretability of LCA results (i.e., 

classifications and assigning individuals to groups based on their item endorsement) 

can be easily translated for use in clinical settings by identifying individuals at potential 

risk for increased comorbidity severity based on their current substance use and mental 

disorder symptoms. It is possible that messaging could be developed based on the 

latent classes identified in this study. Results could be shared with policy makers so 

they may allocate more resources toward developing comorbid support in clinical 

spaces. 

Nevertheless, there are several limitations related to the use of the LCA model. 

Specifically, by using categorical data to assign individuals into discrete classes, there 

may be a loss of information that would emerge from a model that accounts for a 

continuous distribution. For example, we observed parallel trends of the item response 

probabilities across the classes. This observation suggests that there could be a 

continuous distribution to these data and that a dimensional presentation, rather than 
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discrete, may be more appropriate in characterizing the comorbidity within the 

population. Therefore, the discrete latent classes generated from the LCA may not 

represent the actual types of individuals in the population.162 Additionally, the conditional 

independence assumption of the LCA model can also be seen as a limitation. 

Conditional independence simplifies the presentation of underlying classes in a 

population based on consistent patterns in the data (i.e., item response probabilities) yet 

it may be an over-simplification or biased representation of the true heterogeneity in the 

population.163 It may not be true that the latent class fully explains the relationship 

between the observed variables. A possible solution to address both major LCA 

limitations is the use of a factor mixture model. The factor mixture model uses a hybrid 

of latent class and factor analysis where the latent variable allows for the classification 

of individuals into groups while the factor models the heterogeneity of the disorder 

within the latent class, relaxing the conditional independence assumption.131 This is 

useful because comorbidity class membership and the range of severity within and 

across classes can be modeled concurrently.164 A factor mixture model estimates a 

factor score for each individual which quantifies the heterogeneity within a class; 

however, there is no model-based classification of individuals because individuals are 

assumed to be from the same homogeneous population.164 Network analysis can also 

assess comorbidity structure without the assumption of conditional independence, and 

is an approach used in Chapter 4.  

Sixth, we could not use the bootstrap likelihood ratio test as an additional 

examination of model fit when accounting for complex sampling design during the LCA. 

LCA includes a bootstrap likelihood ratio test to test for model fit across models with 
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various classes. However, it could not be performed when using weighted data to 

account for complex sampling design. Consequently, we relied on the Lo-Mendell-Rubin 

adjusted likelihood ratio test along with other parsimony metrics to decide on the optimal 

class solution. This is considered a promising and appropriate approach when 

determining the number of classes from an LCA model.165 

Seventh, this is a sample of mainly healthy people and as such, the 

dimensionality of comorbidity may be different here compared to a sample of people 

diagnosed with psychiatric conditions (e.g., those who are institutionalized). This 

approach should be replicated in other samples to confirm or refute the dimensionality 

of comorbidity. Nevertheless, the results from this sample detail the patterns of mental 

disorder symptoms and substance use behaviors in a broader population in order to 

appropriately characterize comorbidity at a population level. This is important because 

substance use and/or mental disorder symptoms that do not result in a diagnosis 

remain pervasive throughout American society.8 Undiagnosed individuals may go 

untreated and untreated mental illness, including SUD, represents $300 billion due to 

losses in productivity annually.166 Therefore, it is important to identify and detail patterns 

of substance use and mental health outcomes throughout the full population in addition 

to those at highest risk for disorders or those who are affected.117131 

 

Conclusions 

 In a nationally representative sample of U.S. adults, four latent classes were 

most optimal at describing mental disorder symptom and substance use comorbidity. 

Negative affect symptoms were commonly seen with exclusive CIG use, dual CIG and 
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EIG use, marijuana, and PDNP use. Externalizing symptoms were commonly seen with 

exclusive ECIG use and alcohol. Social satisfaction may be an important factor to 

consider when intervening on comorbidity. Comorbidity of latent class membership was 

similar to negative affect, externalizing, and substance use behaviors, separately, in 

predicting SUD severity. This may suggest that network psychometrics may be a better 

approach to understanding the predictive ability of comorbidity for other health 

outcomes. Future research may benefit from using a network approach to better 

understand comorbidity. 
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CHAPTER 4: A NETWORK APPROACH TO SUBSTANCE USE, NEGATIVE 
AFFECT, AND EXTERNALIZING COMORBIDITY IN U.S. ADULTS2 
 
 

INTRODUCTION 

Substance use (e.g., tobacco, alcohol, marijuana, and sedatives [i.e., 

benzodiazepines and barbiturates]) commonly co-occurs with negative affect disorders 

(i.e., behavioral problems that manifest and are maintained within the individual167) such 

as depression and anxiety, and externalizing disorders (i.e., behavioral problems that 

manifest as negative outward behavior acting on the external environment168) like 

attention-deficit hyperactivity disorder (ADHD). These comorbidities are summarized in 

Table 4.1.11,89,91,149–152,169–183   

Many of the most consistent results regarding comorbidity have focused mainly 

on disorder, as seen in Table 4.1. However, other papers have used different substance 

use measures (e.g., initiation, recency of use, quantity of use) and they too have seen 

comorbidity with mental disorders and mental disorder symptoms.151,152,169,178,179,181 

Given the consistency of results in disorder and other use measures, it is worth the 

effort to focus on lower levels of symptomatology and explore the etiology of 

comorbidity below the diagnostic threshold.   

 
 
 
 
 
 
 
 

 
2 A modified version of this chapter was submitted for publication to Addictive Behaviors, Special Issue on 
Networks, Complexity and Addictive Behaviors. 
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Table 4.1: Summary of Previously Reported Comorbidity by Substance 
Substance 
Use Disorder Co-Occurring Substance use Comorbid Mental Health 

Tobacco 
Alcohol Major depressive disorder 
Marijuana Generalized anxiety disorder 
  ADHD 

Alcohol  

Marijuana Anxiety disorders 
Opioids Depressive disorders  
  ADHD 
  Conduct disorder 

Marijuana 
Alcohol use disorder Depression 
Tobacco use disorder Anxiety 
Substance use disorders Conduct disorder 

Sedatives 

Tobacco use disorder Depressive disorders 
Alcohol use disorder Anxiety disorders 
Opioids  
General illicit drug use  

Opioids 

Tobacco Depression 
Alcohol Anxiety 
Marijuana PTSD 
Sedatives Conduct disorder 

 
 To date, it is unclear whether the same patterns of comorbidity identified with 

substances such as conventional cigarettes (CIG), alcohol, and marijuana extend to 

relatively new products including electronic cigarettes (ECIG) and use of prescription 

drugs in a manner not previously prescribed (e.g., sedatives, tranquilizers, and 

painkillers) which have increased in popularity over the past several years.  For 

example, the prevalence of ECIG use has increased from 2.4% in 2012 to 7.6% in 

2018.125 Further, the patterns of some substance use in ECIG users have been reported 

to be similar to that of CIG users. Specifically, ECIG use frequently occurs with alcohol 

use and other substances.87,94,95,97 Similar to ECIG, the prevalence of PDNP (i.e., 

prescription drug use not prescribed, nonmedical use of a prescription drug including 

recreational use) has also been increasing for the last fifteen years with overdose 

deaths involving prescription opioids being four times greater in 2018 than in 1999.184 
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People with SUDs and mental disorders are at a higher risk for nonmedical use of 

prescription opioids.185 Of those in SUD treatment for nonmedical use of prescription 

painkillers, almost half (43%) have a diagnosis or symptoms of anxiety and 

depression.155 Additionally, opioids and sedatives are sometimes combined for 

recreational use, resulting in a higher risk for comorbid mental conditions as well as 

nonfatal and fatal overdoses.186,187 Therefore, as the prevalence of these substances 

increase there has also been increasing evidence for their comorbidity with negative 

affect/externalizing behaviors and other substances. 

 

Patterns of mental health comorbidity focus on diagnoses rather than symptoms 

Most research on the patterns of comorbidity between substance use, 

externalizing, and negative affect behaviors has focused on diagnoses of disorders 

rather than the symptoms underlying these diagnoses.22,39 However, this approach 

neglects the inclusion of people who experience subthreshold levels of impairment and 

results in a potential loss of information when summing symptoms to reach diagnosis.33 

Most substance-related health and social problems occur among individuals who are 

not addicted or have a SUD diagnosis.8 Additionally, many of these symptoms cross 

over diagnostic boundaries.33,188 Consequently, there is a substantial gap in 

understanding the overlap between substance use and mental disorder symptoms. By 

using another measure like past-month substance use, it is possible to capture people 

who use substances with and without a diagnosis of a SUD, allowing for a more robust 

assessment of comorbidity patterns and accounting for overlaps between substance 

use behaviors and mental disorder symptoms. If the focus were to remain solely on 
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diagnosis, there would be no evidence to support people who experience subthreshold 

use and comorbid mental disorder symptoms. Therefore, past-month substance use 

offers an opportunity to study a larger population of people who use substances (i.e., 

those with and without disorder) as well as identify and intervene at the subthreshold 

level to better support individuals experiencing comorbid substance use. 

 

Gender differences in the comorbidity of substance use and mental health  

Much of the substance use and SUD research has largely been conducted in 

men. However, the prevalence of substance use in the U.S. has been increasing in 

women.123 Further, negative affect/externalizing symptoms present differently in men 

and women.2,123 For example, men are more likely to experience externalizing 

disorders, while women are more likely to report negative affect disorders.123,183,189,190 

Furthermore, comorbid psychiatric conditions occur more frequently in women with 

SUDs compared to men.190,191 Consequently, the comorbidity between substance use 

and psychopathology may also vary by gender.  

 

Study goals and hypotheses 

Network analyses of substance use or SUDs have yet to account for comorbid 

mental disorders.34,192 Therefore, the primary goal of this study is to detail a network 

system of past-month substance use as well as a wide range of negative 

affect/externalizing symptoms, and quantify how well a given node can be predicted by 

all other nodes it is connected to in the network using nodewise predictability. A 

secondary goal of this study is to determine whether there are gender differences in the 
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comorbidity network structure. Based on prior literature, we hypothesize that tobacco, 

alcohol, marijuana, and PDNP will connect with negative affect, specifically depression 

and anxiety symptoms, and tobacco, alcohol, and marijuana will connect with 

externalizing symptoms, specifically impulsivity and conduct disorder symptoms. We 

also expect differences in network structure by gender, with men experiencing greater 

connection between substance use and externalizing symptoms and women with 

greater connection between substance use and negative affect symptoms.   

 

METHODS 

Setting 

Wave 1 adult data (N=32,320) from the Population Assessment of Tobacco and 

Health (PATH) study were used.71 These data are cross-sectional and were collected 

between September 2013 and December 2014. PATH is a nationally representative 

longitudinal cohort study of the civilian, non-institutionalized household population of the 

U.S., and participants engaged in all levels of tobacco use ranging from never using 

tobacco to frequent use.  

The weighted response rate among participants was 74.0% for Wave 1.73 

Participants responded to tobacco-specific items including tobacco-use patterns, risk 

perceptions and attitudes towards current and newly emerging tobacco products, 

tobacco initiation, cessation, relapse behaviors, and health outcomes.72 Participants 

also responded to non-tobacco items (e.g., media use, peer and family influences, 

health effect outcomes, and industry advertising and promotion).72 
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Study representativeness 

 Participants with missing data on the substance use, negative affect, and 

externalizing measures were not included in the analysis (N= 2,109). Survey 

respondents of the analytic sample endorsed significantly greater substance use 

overall, negative affect symptoms, and externalizing symptoms (except for fighting) 

compared to those not included in the analytic sample. The participants in the analytic 

sample were more likely to be Non-Hispanic white, men, aged 25-54 with higher levels 

of education and annual household income than those who were missing. 

 

Measures 

 Past Month Tobacco and Substance Use. Six substance use categories were 

used in this study: exclusive cigarette, exclusive e-cigarette, dual cigarette and e-

cigarette, alcohol, marijuana, and prescription drugs not prescribed (PDNP) including 

painkillers, sedatives, tranquilizers. The summary of past-month substance use is 

described in Table 4.2. Current dual cigarette and e-cigarette use were identified if the 

respondent indicated they were a current cigarette and current e-cigarette user. Current 

alcohol, marijuana, and PDNP was endorsed if the respondent indicated ever using the 

substance and has used the substance within the past 30 days. Only past month or 

current use of the substances was considered (coded as 1, else = 0) to reduce the 

potential for recall bias and ensure for accurate overlap with negative affect and 

externalizing symptoms occurring in the same time frame. These substance use 

variables were nodes in the networks. 
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Table 4.2: Summary of Past-Month Substance Use and Symptoms of Negative affect 
and Externalizing Disorders 
Past-Month 
Tobacco and 
Substance 
Use 

Variable Definition 

Exclusive CIG 
(or CIG) 

Ever smoking a cigarette (even one or two puffs), has smoked at 
least 100 or more cigarettes in his or her entire life, and now 
smokes cigarettes every day or some days, while also excluding the 
current use of e-cigarettes 

Exclusive ECIG 
(or ECIG) 

Ever using an e-cigarette (even one or two puffs), ever smoked e-
cigarettes fairly regularly, and now uses e-cigarettes every day or 
some days, while also excluding the current use of cigarettes 

Dual CIG + 
ECIG 

That they were a current cigarette and current e-cigarette user 

Alcohol Ever using alcohol and has used alcohol within the past 30 days 

Marijuana 
Ever using marijuana and has used marijuana within the past 30 
days 

PDNP 
Ever using prescription drugs not prescribed (PDNP) (i.e., 
painkillers, sedatives, and tranquilizers) and has used PDNP within 
the past 30 days 

Past-Month 
Negative 
affect 
Symptoms* 

The last time you had significant problems with: 

Depressed 
Feeling trapped, lonely, sad, blue, depressed, or hopeless about the 
future 

Sleeping 
Sleep trouble such as bad dreams, sleeping restlessly or falling 
asleep during the day 

Anxious 
Feeling very anxious, nervous, tense, scared, panicked or 
something bad was going to happen 

Distressed/Past 
Becoming very distressed and upset when something reminded you 
of the past 

Past-Month 
Externalizing 
Symptoms* 

The last time you did the following two or more times: 

Lied 
Lied or conned to get things you wanted or to avoid having to do 
something 

Attention Had a hard time paying attention at school, work or home 
Listening Had a hard time listening to instructions at school, work or home 
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Bully Were a bully or threatened other people 
Fights Started physical fights with other people 
Restless Felt restless or the need to run around or climb on things 
Answered Gave answers before the other person finished asking the question 
* The items selected to identify negative affect and externalizing symptoms from the 
GAIN-SS instrument are ordinal and measures people across four times periods: past 
month, 2 to 12 months, over a year ago, and never. Participants indicating that they 
experienced a symptom within the past month were coded as 1. Participants 
indicating that they experienced the symptom 2 to 12 months ago, over a year ago, 
and never were coded as 0. 

 
Past Month Negative Affect and Externalizing Symptoms. Negative affect and 

externalizing symptoms were measured using the Global Appraisal of Individual 

Needs—Short Screener (GAIN-SS).73 The summary of past-month negative affect and 

externalizing symptoms are described in Table 4.2. The items selected to identify 

negative affect and externalizing symptoms from the GAIN-SS instrument are ordinal 

and measures people across four times periods: past month, 2 to 12 months, over a 

year ago, and never. Participants indicating that they experienced a symptom within the 

past month were coded as 1. Participants indicating that they experienced the symptom 

2 to 12 months ago, over a year ago, and never were coded as 0. Only past month or 

current negative affect and externalizing symptoms were considered reducing the 

potential for recall bias and ensure accurate overlap with substance use occurring in the 

same time frame. The negative affect and externalizing symptoms, along with the 

substance use variables, were nodes in the networks. 

Covariates. Networks were stratified by gender to confirm significant differences 

in comorbidity networks by gender. Men and women experience substance use and 

mental disorders differently; therefore, it is important to test these differences by 

stratifying the networks. Previous work shows that women are more likely to experience 
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negative affect symptoms while men are more likely to experience externalizing 

symptoms.41,123 Men also tend to participate in substance use more regularly than 

women and experience substance use problems at twice the rate as females.123 

Therefore, it is important to determine how these comorbidities present by gender.  

  

Statistical Analysis 

Summary Statistics. Summary statistics were generated for the sample using 

PROC SURVEYFREQ in SAS 9.4 to account for complex sampling design. 

Network Analysis. A network model can support a deeper understanding of 

comorbidity because it conceptualizes symptoms as mutually interacting, often 

reciprocally reinforcing elements of a complex network.46 The network approach is 

based on the idea that comorbidities arise from shared symptoms between disorders 

which can capture complexity and individual variation in psychopathology.49 The 

network approach naturally accommodates comorbidities as a central part of its 

theory.50 In the network approach, comorbidity represents causal relationships between 

symptoms in which pathways can bridge symptoms that are part of multiple disorders.46  

Using a network model, symptoms, rather than disorders, are considered within the 

network structure. Rather than the disorder acting as the underlying cause of all 

symptoms, it is the symptoms that mutually interact and set a person into a disordered 

mental health state.  

Within a network model, the symptoms make up a comorbid network structure of 

several symptoms that is specific to the person. This model conceptualizes how 

symptoms of different disorders function together specifically to produce a comorbid 
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disordered state. The network approach explains the co-occurrence of mental disorder 

symptoms, including substance use behaviors, as resulting from direct interactions 

between these symptoms.50 In network analysis, the term interaction is used to explain 

the reciprocal action or influence of symptoms. In the context of network analysis, 

interaction is not used to test whether an effect can be greater than (positive interaction, 

synergism) or less than what we would expect (negative interaction, antagonism).51 

Patterns of symptom-symptom or symptom-behavior interactions can be explained 

using a network structure.45 

An example of the use of a network model is detailed in Figure 4.1 to summarize 

comorbidity of symptoms for SUD and depression. The network model of SUD and 

depression is made of symptoms denoted as nodes (circles) and the associations 

between the symptoms denoted as edges (lines connecting nodes). Every node in a 

network is connected by edges. Edges represent the interactions between the nodes. 

Nodes that directly activate each other (i.e., are associated with one another) are 

connected with an estimated edge, while nodes that do not directly activate each other 

are not. This figure details a directed network where arrows are directed from one node 

to another, indicating that one symptom can lead to the activation of another. 

Depression symptoms (red) are clustered together to the left of the network. SUD 

symptoms (blue) are clustered together to the right of the network. Insomnia and weight 

loss (in purple) are symptoms that occur in both depression and SUD and act as 

bridges between the disorders. The positioning and the distance between the 

symptoms/nodes within the network have implications for the comorbidity structure of 

depression and SUD.   
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Figure 4.1: Network Model of Depression and SUD symptoms. 

 

Overall Network Modeling Strategy. Two sets of network analyses were 

completed to evaluate the connections between substance use behaviors and negative 

affect/externalizing symptoms. The first analysis estimated network models in the entire 

sample and also tested for the consistency of network connections by gender (i.e., 

network comparison tests). The second set of network analyses consisted of model 

evaluation to establish the nodewise metrics (i.e., centrality and predictability), and 

accuracy/stability of the network models as detailed below.  This second set of analyses 

is common to all networks, regardless of the presence or absence of gender 

differences. 
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Network Model Estimation. All networks were estimated using an Ising Model in 

R 3.6.0 using the IsingFit package.193 Ising model selection uses the Extended 

Bayesian Information Criteria (EBIC) to measure model parsimony for moderate sample 

sizes and for a high number of variables by accounting for the number of unknown 

parameters and the complexity of the model space.194–196 Models determined to best 

explain the data using EBIC were interpreted for relevant relationships.193,197 Edges 

between two nodes were estimated at most pairwise, after adjusting for all other 

substance use, negative affect, and externalizing variables.196 Edges were compared 

against each other to determine strength. Networks were visualized using the qgraph 

package.198 Blue edges illustrate positive partial correlations; red edges illustrate 

negative partial correlations. The wider the edge, the stronger the correlation. 

The Ising model contains two node-specific parameters: an interaction parameter 

and a node parameter. The interaction parameter, !!" , represents the strength of the 

interaction between variables j and k. The node parameter, τj, represents the 

autonomous disposition of the variable to take the value of one, regardless of 

neighboring variables. The model estimates these parameters with logistic regressions, 

iteratively, (i.e., one variable is regressed on all others).196 The conditional probability of 

#$ given all other nodes #\$	'( given by: 

 

 Pθ+x#-x$%. = 	
exp	[τ#x# + x# 		∑ β#&x&&∈(\# ]
1 + exp[ τ# +	∑ β#&x&&∈(\# ]  

 
(10) 
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where 8	 = 	 (8*, 8+, … , 8,) and 8- = 	0	>?	1. The node parameter or intercept is τj , the 

threshold of the variable. The interaction parameter or slope is !!" , the connection 

strength between the relevant nodes.196  

A network approach was conducted to estimate the edges, or connections 

between the nodes (i.e., denoted as lines between the nodes and are called edges) as 

partial correlations among a set of binary items (i.e., current substance use behaviors 

[exclusive cigarette, exclusive e-cigarette, dual cigarette and e-cigarette, alcohol, 

marijuana, and PDNP], four negative affect symptoms, and seven externalizing 

symptoms).34,196,199 

Network Comparisons to Test for Gender Differences. Gender differences across 

networks were evaluated using two approaches. First, visual comparisons using an 

average layout established differences in the magnitude and direction (i.e., positive or 

negative) of edge-weights between nodes. Second, three tests of network invariance 

were used to test significant differences in network models by gender: global strength 

invariance, network structure invariance, and edge strength invariance. 

Global strength invariance. The global strength invariance hypothesis tested 

whether the overall level of connectivity in a network was identical between men and 

women. The global strength invariance hypothesis tests the weighted absolute sum of 

all edges in the networks (i.e., @ or the sum of the unique variance in the network).200 

The null hypothesis specifies that the connectivity for a network in men (A-!* ) and 

women (A-!+ ) are equal: B.:	∑-/*
0 ∑!1--A-!* - = 	∑-/*

0 ∑!1--A-!+ -, where A-!2  is the edge-

weights between nodes ' and $ of network D.  

For all ' < 	$, the distance @ between two networks if defined as:  
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 @+A-!* , A-!+ . = 	 |∑-/*
0 ∑!1-(-A-!* - − -A-!+ -)| (11) 

 

The test of global strength invariance was accomplished through permutation 

testing procedure as implemented in the NetworkComparisonTest package201 to 

statistically assess the difference in global strength by gender. Briefly, permutation 

testing was conducted by repeatedly rearranging the data and calculating the test 

statistic of each permutation. 

 Network structure invariance. A test of the network structure invariance 

hypothesis was conducted to determine whether network structures were identical by 

gender. This test was conducted by comparing the maximum differences in the edge 

weights between all nodes in the networks.200 The null hypothesis that specifies all 

edges are equal is: B.:	H* = H+, where H2 denotes a symmetric I	8	I matrix that 

contains the edge weights of graphical model D. Therefore, gender difference in 

network structure would be detected if any of the edge weights between the nodes are 

determined to be different by gender.  

 The test of network structure invariance computed the maximum difference (J) 

in network edge-weights (A-!2  between nodes ' and $ of network D) by gender. The 

maximum statistic provides the largest value among each element of a vector which 

contains the differences in unique edge weights of networks in men (A-!* ) and women 

(A-!+ ). This is defined as:  

 J+A-!* −	A-!+ . = KL8-!|A-!* −	A-!+ | (12) 
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for ' < 	$ (i.e., the upper triangle of the matrix Ω). This metric functioned as the test 

statistic, and followed the same permutation procedure used to test the global strength 

invariance.   

Edge strength invariance. A test of the edge strength invariance hypothesis was 

conducted to determine if a specific edge between two nodes was equally strong by 

gender. Edge strength is also referred to as the edge weight, quantified as the 

magnitude of an edge. This is the magnitude of association between two nodes. The 

null hypothesis for this test is B.:	A-!* = A-!+ . This was assessed by taking the absolute 

difference in edge strength (A-!) between two nodes ('	LMN	$, O>?	' < $) of interest then 

testing differences between nodes across all other node combinations in the 

networks200: 

 

 P+A-!* 	, A-!+ . = |A-!* −	A-!+ | (13) 
 

 Network Model Evaluation. Once network models were produced, the network 

structure was detailed across four categories: centrality (i.e., the influence of a node in a 

network), nodewise predictability (i.e., how well a given node can be predicted by all 

other nodes it is connected to in the network), model accuracy (i.e., the degree to which 

the model correctly describes the data), and model stability (i.e., the degree to which 

network estimates are expected in other samples). The aggregate evaluation of these 

edge-related metrics provides additional detail regarding how nodes within a network 

connect with one another and the degree to which a given network model is expected to 

consistently explain the data.  
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 Centrality. Three centrality metrics (closeness, betweenness, and node strength) 

were computed for all three networks (full sample, men only, women only) in order to 

detail how nodes (i.e., substance use behaviors and negative affect-externalizing 

symptoms) interact with one another within a network.  

Closeness quantifies how well a node is indirectly connected to other nodes.197 

Closeness is a measure of reach or importance of an individual node, based on the 

number of connections of that node, localized to that node. It considers the indirect ties 

to other nodes in addition to immediate connections. The closeness of a node is the 

reciprocal of the sum of the shortest path distances from the node to all n-1 other 

nodes. The higher closeness centrality, the shorter reach to other symptoms in the 

network meaning the more connected the symptom is to other symptoms in the 

network.  

Betweenness refers to how critical a node is to a network as a bridging node to 

all other nodes in the network. It quantifies the number of times a node act as a bridge 

between the shortest path of two other nodes.197 Betweenness is a measure of 

centrality based on the shortest path length connecting any two nodes. For a given 

node, betweenness is the sum of the fraction of all possible shortest paths that pass 

through that node. The more of these shortest paths that go through a node, the higher 

their betweenness centrality. Betweenness identifies bridges or go-betweens to identify 

other symptoms that may be key players in the comorbidity network.  

The node strength also known as degree of a node is the number of edges that 

touches that node. It quantifies how well a node is directly connected to other nodes.197 
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Nodes that have many edges would be considered to have a high node strength 

because it indicates more connectedness to other nodes.  

All centrality estimates were standardized using z-scores in order to compare the 

metrics across the networks. Additional details for each centrality metric calculated from 

the example network model visualized in Figure 4.2 is summarized in Table 4.3. 

 

 
 

Figure 4.2: Example Network Model 
 

Table 4.3: Calculations, Examples and Interpretations of Node Centrality Metrics 
Derived from Example Network Model 
Metric Calculation Figure Example  Interpretation 
Closeness Reciprocal of the 

sum of the 
shortest path 
distances from 
the given node to 
all n-1 other 
nodes. 
 
Calculated as: 
1/(sum of 
shortest path 
distances from 
given node/3). 

Values for closeness 
centrality for each node:  
A = 0.75, B = 1.0, C = 1.0, 
and D = 0.75.  
 
Sum of shortest paths for 
node A: 
(A—B) = 1 
(A—C) = 1 
(A—D) = 2 
Total = 4 
 
Closeness for node A is 
calculated: 1/[4/3] = 0.75. 

Nodes B and C have 
the highest 
closeness value 
because they only 
have a shortest path 
of 1 to all other 
nodes in the graph. 
Nodes A and D have 
a shortest path of 2 
to one another. 
 

Betweenness For a given node, 
the sum of the 
fraction of all 
possible shortest 
paths that pass 

Betweenness centrality is 
as follows: A = 0.0, B = 
0.166, C = 0.166, and D = 
0. 
 

Nodes B and C have 
higher betweenness 
centrality compared 
to nodes A and D. 
Nodes B and C are 
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through that 
node. 
 
 

All possible shortest paths: 
(A—B), (A—C), (A—C—
D), (A—B—D), (C—D), 
(B—D), and (B—C). Only 
the A—D path that 
includes C is counted in 
the calculation of for 
betweenness. 
 
Betweenness for node C 
is = 1/6 = 0.166. 
 

between nodes A 
and D. One must go 
through B and C to 
connect to nodes A 
and D.  

Strength Count of the 
number of edges 
that touches a 
given node. 

Strength 
A = 2 
B = 3 
C = 3 
D = 2 

Nodes B and C have 
the highest strength 
and have greater 
connectedness 
compared to nodes A 
and D. 

 
 Nodewise Predictability. In addition to evaluating network structure as 

summarized above, it is important to also analyze nodewise predictability. The concept 

of predictability complements the interpretation of network structures. Specifically, 

nodewise predictability quantifies how well a given node can be predicted by all the 

other adjacent nodes it is connected to in the network.202 Estimating predictability is 

crucial for three reasons. First, it considers how much of the variance at a given node is 

explained by the edges connected to it. Consequently, an edge that explains 50% of the 

variance of a node will be considered more important than an edge that explains 0.5% 

of the variance of the node. Second, the predictability at one node can provide an 

expectation regarding the extent to which a specific node is influencing another node. 

Therefore, nodewise predictability can produce expectations regarding whether a node 

can be influenced by intervening on the nodes that are connected to it. Third, estimates 

of predictability across nodes indicates whether a network (or portion of the network) is 

influenced by itself through strong interactions between nodes (i.e., high predictability) 
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or whether it is mostly determined by other factors that are not included in the network 

(i.e., low predictability).202 Consequently, interpretation of nodewise predictability can 

yield important insight about the whole network in addition to those related to network 

structure (i.e., centrality). 

Estimation of Predictions in Network Model. Nodewise predictability is estimated 

by computing the mean of the conditional distribution of a specific node given all its 

neighboring nodes.  

 

Figure 4.3: Six-node network to determine nodewise predictability of Node A 

 

For example, in a six-node network (Figure 4.3) consisting of nodes A, B, C, D, E 

and F, an estimated network is produced and the probability of observing a node (A) 

within the network given the nodes that are connected to it (C and D) is estimated as: 

 

E

D

B

F

A

C
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 P(A = k|S, T) = 	
exp	{µ&}

∑3/*4 	exp{µ&}
 (14) 

 

where A is a node measured as a binary variable and k indicates the category, K 

is the number of categories that the node (for a binary node, K = 2). C and D represent 

the nodes adjacent to A. µ& represents the mean of the conditional distribution at node 

A and is estimated as: 

 µ& =	!." +	!5"S +	!6"T (15) 
 

where !5"S and !6"T represent the edge weights of nodes C and D on node A. 

Therefore, the probability of observing a specific value at node A depends on the 

influence of nodes C and D on node A.  

Quantifying Predictability Using Categorical Data. The estimation of nodewise 

predictability for categorical data establishes how close estimated predictabilities at 

each node compared to the observed values in the data. The predictability of a network 

that uses continuous data is estimated as a proportion of the variance for the network 

model that is explained by the predictability measure, measured as: 

 

 X7+ = 1 −	
YL?(Z[ − Z)
YL?(Z)  (16) 

 

where YL? is the variance, Z[ is a vector of predictions for Z	as defined in equation 

14, and Z is the vector of observed values in the data. All variables are centered to 

reflect a mean of zero in order to remove the possibility that an intercept from a given 

node can affect the predictability measure. When X+	= 1, a node can be perfectly 
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predicted by its neighboring nodes.  In comparison, when  X+ = 0, a node cannot be 

predicted by all its neighboring nodes in the network. 

 The estimation of nodewise predictability for categorical data differs from that of 

continuous data. In particular, the use of categorical data necessitates the estimation of 

a value of “normalized accuracy” which parallels the estimation of nodewise 

predictability by centering the mean to be equal to zero. Normalized accuracy is 

estimated by removing the marginal effects at each node (i.e., probabilities of the 

categories when ignoring all other variables) to determine how well a given node was 

predicted by all other nodes in the network. The utility of normalized accuracy can be 

exemplified using a hypothetical sample with 100 observations, where ten observations 

have a score of zero and 90 observations with a score of one. The marginal 

probabilities for the node are I0 = 0.1 and I1 = 0.9. Further, if all other nodes in the 

network do not contribute to predicting whether a node has a value of 1 or 0, it is 

possible to predict a value of one for all cases. Subsequently, a 90% correct 

classification would be estimated. However, this is misleading and results in an inflated 

estimate of predictability because nothing can be predicted by all the other nodes. 

Normalized accuracy is estimated to remove the accuracy that occurs from the “trivial” 

prediction from other nodes using marginal of the variable (I1 = 0.9) alone. Therefore, 

normalized accuracy is estimated as the ratio between the additional accuracy due to 

the remaining nodes in the network and one minus the accuracy of the node alone: 
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 Z,89: =
Z −KL8{I., I*, … , I:}
1 − max{I., I*, … , I:}

 (17) 

 

where Z = 	 *,∑-/*
, 	 ∥ (_- = ŷ-), which reflects the proportion of correct predictions 

(accuracy/correct classification). Additionally, I., I*,… I: represent the marginal 

probabilities of the categories for a node where ∥ is the indicator function for the event 

a- =	ab̂-. For binary variables, the marginal probabilities are defined as I. and I* = 1 −

	I..  Therefore, Z,89: indicates how much the node of interest can be predicted by all 

other nodes in the network, beyond what is trivially predicted by the marginal 

distribution. When Z,89: = 0, none of the other nodes contribute to the marginal in 

predicting the node of interest. When Z,89: = 1, all other nodes perfectly predict the 

node of interest.202 

 Interpreting and Visualizing Predictability Using Categorical Data. It is valuable to 

interpret estimates of Z  and Z,89:	via network model visualization as a multi-colored 

ring surrounding a node.  

 

Figure 4.4: Visualizing the Nodewise Predictability of Categorical Data 
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In Figure 4.4, the accuracy of a node from an intercept-only model (i.e., a model 

estimating node predictability without the influence of the other nodes) is represented by 

the orange part of the ring. The red part of the ring reflects the additional accuracy of 

the node that is achieved by all the remaining nodes. The sum of the red and orange 

sections represents Z, or the accuracy of the full model.   Z,89: is the normalized 

accuracy that is estimated as the ratio between the additional accuracy due to the 

remaining nodes in the network and one minus the accuracy of the node alone (white + 

red sections). 

Model estimation to compute nodewise predictability was completed using the 

mgm package.203 The estimated models for the nodewise prediction were the same as 

those estimated using the IsingFit package because the approach was the same: 

neighborhood selection-based method to estimate the binary-valued Ising model.202 The 

predict ( ) function was used to compute the predictability for each node in the network, 

specifying accuracy/correct classification, normalized accuracy, and the accuracy of the 

intercept (marginal) model to visualize the decomposition of total accuracy. 

Accuracy and Stability. Typical parameter estimates in a model provide some 

indication of the degree of uncertainty around the estimate (e.g., standard error or 

confidence intervals). However, such estimates are not automatically generated from a 

network model. Consequently, a preliminary network model cannot provide insight 

regarding the uncertainty of the parameters estimated. Additional calculations of 

accuracy and stability related to the network parameter estimates can be produced to 

establish confidence in the model’s ability to estimate the true value from the data. 
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 Tests of accuracy and stability established confidence in the network model’s 

ability to generate the accurate estimate, allowing for appropriate interpretation of 

results. Therefore, network accuracy and stability tested the inferences about the 

network structure and centrality indices. Accuracy and stability were calculated in three 

steps: (1) estimating the accuracy of estimated edge-weights, by drawing bootstrapped 

confidence intervals, (2) investigating the stability of centrality indices, and (3) testing 

whether edge-weights and centrality estimates for different variables differ from each 

other using a bootstrapped difference test.197  

Edge-weight accuracy (i.e., the accuracy of estimated network connections) was 

assessed by obtaining confidence intervals around the estimated edge-weights using 

non-parametric bootstrapping (bootnet package204).197 Confidence intervals generated 

around the estimated edge-weights identifies the precision of the edge-weight and 

whether the confidence intervals overlap with the bootstrapped confidence intervals of 

other edge-weights. An edge-weight with high accuracy has a narrow confidence 

interval that does not overlap with the confidence interval of other edges. The non-

parametric bootstrapping evaluated whether edge-weights for the variables in the 

network differed from each other in three steps: (1) estimate the difference between the 

bootstrap value of two edge-weights using non-parametric bootstrap, (2) construct 

bootstrapped confidence interval around difference scores, and (3) test the model with 

estimated connections against a model of the null hypothesis to establish whether edge-

weights differed from one another by checking if zero was in the bootstrapped 

confidence interval.197 Results from the edge-weight accuracy test are visualized as a 

plot. 
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Centrality stability refers to the degree to which an estimate of a centrality metric 

(i.e., closeness, betweenness, or strength) is consistent after re-estimating the network 

in other samples with characteristics similar to the study sample. Centrality stability can 

be estimated for each metric separately, and answers the question: “Does the order of 

the centrality indices remain the same after re-estimating the network with a smaller 

sample?”  

The stability of the centrality indices is quantified as a correlation stability 

coefficient (i.e., CS-coefficient). The CS-coefficient represents the maximum proportion 

of observations that can be dropped from the original sample. The higher the CS-

coefficient the greater the stability of the centrality indices. A CS-coefficient should not 

be below 0.25 and preferably above 0.5 for appropriate interpretation of the results. In 

step 2, centrality stability was investigated by using a case-dropping subset bootstrap 

procedure where a centrality metric was obtained for the dataset. Then, networks were 

re-estimated after subsetting the sample to determine if the CS-coefficient for the 

centrality indices retained a correlation of 0.5 in at least 95% of the samples.197 

The estimation of a bootstrapped difference test (nonparametric bootstrap) was 

used to test the degree to which edge and centrality estimates differ from each other 

across variables. A bootstrapped difference test uses the difference between the 

bootstrapped value of one edge weight/centrality and another edge weight/centrality 

using non-parametric bootstrap and constructs a bootstrapped confidence interval 

around difference scores. The bootstrapped difference test identifies whether (1) a 

specific edge (e.g., A—B) is significantly larger than another edge (e.g., A—C) and (2) 

the centrality of node A is significantly larger than the centrality of node B. If the 



 139 

confidence interval generated from the bootstrapped difference test includes zero than 

the two edges or two centrality metrics of interest are considered to not differ 

significantly from each other. This bootstrapped difference test was done for the 

estimated edge-weights and node strength. 

Missingness and Complex Sampling Design. Missing data were removed using 

listwise deletion (N = 2,109). Complex sampling design was not accounted for in the 

estimation of the network models. 

 

RESULTS 

Summary statistics 

32,320 participants were included in the overall sample, and 30,211 participants 

had complete data for all nodes. The sample was 51.9% female and 66.0% Non-

Hispanic White. Age was evenly distributed across the sample. Most of the sample had 

at least a GED or high school education (88.4%) and an annual household income of 

more than $25,000 (65.9%). Past-month alcohol use was most frequently reported 

(52.4%), followed by CIG use (16.6%), and marijuana use (7.1%, Table 4.4). Sleep 

trouble was the most common past-month negative affect symptom reported (26.7%), 

followed by feeling very anxious (16.1%), feeling depressed (13.4%), and becoming 

distressed about the past (12.5%) (Table 4.4). Giving answers before the other person 

finished asking the question was the most common past-month externalizing symptom 

(32.0%), followed by having a hard time paying attention (14.6%) and listening to 

instructions (10.4%).  
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Table 4.4: Demographic Characteristics of the Overall Sample by Gender 
 Men 

(N=16306, 48.1%) 

Women 

(N=15980, 51.9%) 

Overall 

(N=32320, 100%) 

 N (Weighted %) N (Weighted %) N (Weighted %) 
Age*     
   18-24 4609 (13.6) 4495 (12.5) 9110 (13.0) 
   25-34 3232 (18.6) 3103 (16.9) 6337 (17.7) 
   35-44 2448 (16.4) 2478 (16.7) 4930 (16.5) 
   45-54 2428 (18.0) 2409 (17.9) 4846 (17.9) 
   55-64 2039 (16.7) 1929 (16.5) 3971 (16.6) 
   65+ 1547 (16.8) 1558 (19.5) 3110 (18.2) 
Race*    
   Non-Hispanic White 9815 (66.8) 9467 (65.4) 19295 (66.0) 
   Non-Hispanic Black 2129 (11.0) 2364 (11.3) 4496 (11.2) 
   Non-Hispanic Other 1266 (7.8) 1162 (7.3) 2429 (7.5) 
   Hispanic Multiracial 2383 (12.4) 2429 (14.1) 4817 (13.3) 
Education*    
   Less than high school 2287 (12.1) 1938 (11.1) 4233 (11.6) 
   GED/High school graduate 5187 (30.6) 4570 (28.5) 9765 (29.5) 
   Some college (no degree) 5353 (29.6) 5942 (32.4) 11300 (31.0) 
   Bachelor’s degree 2237 (17.6) 2260 (18.1) 4498 (17.8) 
   Advanced degree* 1132 (10.1) 1176 (10.0) 2311 (10.1) 
Annual household income*    
   Less than $10,000 2519 (11.9) 3144 (15.3) 5668 (13.7) 
   $10,000- $24,999 3287 (19.4) 3477 (21.4) 6768 (20.4) 
   $25,000- $49,999 3453 (23.3) 3214 (22.8) 6670 (23.0) 
   $50,000- $99,999 3338 (25.8) 2797 (24.0) 6140 (24.9) 
   $100,000 or more 2220 (19.6) 1692 (16.5) 3914 (18.0) 
Past month tobacco and substance use    
   CIG* 5435 (19.0) 4942 (14.3) 10381 (16.6) 
   ECIG* 299 (1.0) 278 (0.8) 578 (0.9) 
   Dual CIG + ECIG* 533 (1.7) 463 (1.3) 996 (1.5) 
   Alcohol* 9550 (56.3) 8231 (48.8) 17787 (52.4) 
   Marijuana* 2611 (9.1) 1780 (5.3) 4392 (7.1) 
   PDNP * 914 (4.7) 1035 (5.4) 1950 (5.1) 
Past month negative affect symptoms    
   Depressed* 2513 (12.1) 3178 (14.6) 5692 (13.4) 
   Sleeping* 4313 (24.6) 5249 (28.7) 9564 (26.7) 
   Anxious* 2931 (14.0) 3931 (18.0) 6864 (16.1) 
   Distressed/Past* 2459 (11.2) 3143 (13.6) 5605 (12.5) 
Past month externalizing symptoms    
   Lied* 1763 (8.2) 1480 (6.0) 3245 (7.1) 
   Attention* 2712 (13.9) 3114 (15.2) 5831 (14.6) 
   Listening 1976 (10.2) 2148 (10.6) 4128 (10.4) 
   Bully 384 (1.8) 352 (1.6) 737 (1.7) 
   Fights* 258 (0.9) 146 (0.5) 404 (0.7) 
   Restless* 1661 (7.3) 1292 (5.3) 2953 (6.2) 
   Answered* 5459 (30.5) 5937 (33.4) 11399 (32.0) 
*Significantly different between men and women at p = 0.05 level. 
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Network Comparisons by Gender 

 The range of the magnitudes of the tetrachoric correlations between were similar 

for men and women: substance use and negative affect symptoms rMen = 0.001-0.33, 

rWomen = 0.07-0.30, substance use and externalizing symptoms rMen = 0.01-0.31, rWomen= 

-0.03-0.36, and negative affect and externalizing symptoms rMen = 0.34-0.61, rWomen= 

0.32-0.61 (Table 4.5). This suggested few gender differences between comorbid 

substance use and negative affect/externalizing symptoms. 
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Table 4.5: Tetrachoric correlations for Men (N =16,306) and Women (N =15,980)  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. CIG 1 -0.94* -0.999* 0.03* 0.26* 0.20* 0.20* 0.18* 0.21* 0.21* 0.10* 0.09* 0.12* 0.16* 0.17* 0.07* 0.06* 
2. ECIG -0.94* 1 -0.958* -0.02 0.01* 0.10* 0.08* 0.10* 0.10* 0.08* 0.03 0.09* 0.14* 0.09 -0.03 0.04 0.02 
3. Dual CIG + ECIG -0.999* -0.92* 1 0.06* 0.21* 0.21* 0.12* 0.15* 0.19* 0.15* 0.03 0.17* 0.14* 0.05 0.09 0.09* 0.09* 
4. Alcohol 0.04* 0.01 0.06* 1 0.38* 0.04 0.06* 0.07* 0.07* 0.07* 0.12* 0.12* 0.08* 0.07* 0.08* 0.15* 0.23* 
5. Marijuana 0.27* 0.10* 0.18* 0.32* 1 0.28* 0.30* 0.20* 0.29* 0.30* 0.35* 0.25* 0.22* 0.27* 0.36* 0.26* 0.19* 
6. PDNP 0.21* 0.06 0.21* 0.06* 0.30* 1 0.32* 0.33* 0.34* 0.34* 0.26* 0.25* 0.26* 0.19* 0.28* 0.17* 0.18* 
7. Depressed 0.16* 0.001 0.16* 0.07* 0.25* 0.28* 1 0.70* 0.79* 0.75* 0.49* 0.58* 0.54* 0.45* 0.44* 0.46* 0.32* 
8. Sleeping 0.12* 0.05 0.16* 0.10* 0.17* 0.32* 0.71* 1 0.73* 0.66* 0.42* 0.56* 0.54* 0.35* 0.36* 0.46* 0.35* 
9. Anxious 0.16* 0.01 0.20* 0.06* 0.22* 0.33* 0.79* 0.74* 1 0.79* 0.49* 0.61* 0.58* 0.45* 0.47* 0.50* 0.37* 
10. Distressed/Past 0.18* 0.05 0.22* 0.07* 0.26* 0.32* 0.77* 0.69* 0.81* 1 0.54* 0.57* 0.55* 0.46* 0.47* 0.49* 0.35* 
11. Lied 0.07* 0.11* 0.12* 0.19* 0.30* 0.26* 0.50* 0.43* 0.53* 0.56* 1 0.53* 0.52* 0.52* 0.51* 0.40* 0.38* 
12. Attention 0.03* 0.07* 0.17* 0.15* 0.23* 0.22* 0.58* 0.55* 0.61* 0.59* 0.57* 1 0.91* 0.47* 0.34* 0.52* 0.48* 
13. Listening 0.07* 0.01 0.16* 0.07* 0.21* 0.23* 0.57* 0.55* 0.61* 0.59* 0.53* 0.91* 1 0.48* 0.38* 0.51* 0.47* 
14. Bully 0.17* 0.07 0.14* 0.12* 0.27* 0.26* 0.45* 0.43* 0.53* 0.53* 0.54* 0.48* 0.50* 1 0.66* 0.38* 0.33* 
15. Fights 0.17* 0.07 0.11* 0.05 0.31* 0.30* 0.36* 0.35* 0.42* 0.46* 0.46* 0.36* 0.40* 0.73* 1 0.46* 0.28* 
16. Restless 0.06* 0.03 0.15* 0.11* 0.26* 0.16* 0.45* 0.43* 0.49* 0.47* 0.45* 0.53* 0.51* 0.45* 0.46* 1 0.49* 
17. Answered 0.01 0.05 0.13* 0.22* 0.20* 0.14* 0.34* 0.36* 0.40* 0.39* 0.44* 0.49* 0.45* 0.42* 0.31* 0.52* 1 
* Significant association at p < 0.05 level. 
Note: Correlations for women are on the top diagonal. Correlations for men are on the bottom diagonal. 
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The average layouts between networks for men and women did not indicate 

substantial differences by gender (Figure 4.5). The tobacco cluster was also quite 

similar for both men and women. The edge weight between “Bully” and “Fights” was 

thicker (i.e., greater) in the male network compared to the female network. Some nodes 

had more or fewer edges, depending on the network. The following nodes had more 

edges in women: PDNP, feeling depressed, feeling anxious, attention difficulties, 

fighting, and restlessness. The following nodes had more edges in men: CIG, alcohol, 

feeling distressed about the past, lying, listening difficulties, and giving answers before 

person finished asking the question. 

 

 

Figure 4.5 Network Structure by Gender 

 

 The edge-weights (EW) were significantly different (p < 0.05) between men and 

women for eight edges: (1) alcohol—marijuana (EWMen = 0.87, EWWomen = 1.08), (2) 

alcohol—sleeping problems (EWMen = 0.08, EWWomen = 0), (3) marijuana—feeling 
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anxious (EWMen = 0, EWWomen = 0.15), (4) ECIG—lying (EWMen = 0.25, EWWomen = 0), (5) 

alcohol—lying (EWMen = 0.31, EWWomen = 0), (6) alcohol—attention difficulties (EWMen = 

0.25, EWWomen = 0), (7) lying—attention difficulties (EWMen = 0.86, EWWomen = 0.56), 

alcohol—listening difficulties (EWMen = -0.11, EWWomen = 0). 

Despite some node-specific relationships that differed by gender, the overall 

structure of the networks (maximum difference = 1.33, p-value = 0.32) and the global 

strength (Men = 53.4, Women = 50.9, p-value = 0.46) did not significantly differ between 

men and women. Therefore, the overall structure and connectivity was not different 

across men and women, and we focus detailing overall network results for men and 

women together first, then we subsequently provide information for men and women 

separately to further detail these networks.  

 

Overall Network 

The overall network consisted of 17 nodes (Figure 4.6). The network had 94 non-

zero edges out of 136 possible edges (density=0.691), indicating that 69.1% of possible 

connections were identified in the network. The figure below shows the estimated 

network structure of 6 substance use behaviors (in green), 4 negative affect symptoms 

(in blue), and 7 externalizing symptoms (in yellow). The network structure is an Ising 

model, which is a network of partial correlation coefficients. Especially strong 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening”, and “Fights” and “Bully”. The negative affect symptoms were positioned 

between the substance use behaviors and externalizing symptoms, with many of the 

nodes lying on the periphery of the network. 
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Figure 4.6: Overall Network of Substance Use, Negative Affect and Externalizing 

Comorbidity 

 

The assessment of the accuracy of estimated network connections demonstrated 

that many edge-weights significantly differ from one-another (Appendix C, Supplemental 

Figure 4.1). Results from the edge-weights significant difference test for the overall 

sample network can be found in Appendix C, Supplemental Figure 4.2. Tobacco 

products were negatively associated with one another (CIG—ECIG = -4.74 [95% CI = -

5.50; -3.98], dual CIG + ECIG—CIG = -4.60 [95% CI = -5.82; -3.39], dual CIG + ECIG—

ECIG = -2.66 [95% CI = -4.11; -1.21]) (Appendix C, Supplemental Table 4.1).  

Externalizing symptoms also demonstrated strong connections with one another. 

For example, attention difficulties had the strongest connection with listening difficulties 
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(EW = 3.47, 95% CI = 3.36; 3.58). Bullying was positively associated with fighting (EW = 

2.40, 95% CI = 2.10; 2.70).  

The connections between PDNP were strongest with negative affect symptoms. 

Specifically, the connections with the largest magnitudes were PDNP—sleeping 

problems (EW = 0.53, 95% CI = 0.40; 0.66), PDNP—feeling anxious (EW=0.31, 95% CI 

= 0.17; 0.46), and PDNP—feeling distressed about the past (EW = 0.31, 95% CI = 0.16; 

0.45).  

The connections between marijuana, alcohol, and PDNP use were strongest with 

externalizing symptoms. Specifically, the connections with the largest magnitudes were 

marijuana—lying (EW = 0.60, 95% CI = 0.49; 0.70), marijuana—fighting (EW = 0.54, 

95% CI = 0.27; 0.81), alcohol—answered (EW = 0.48, 95% CI = 0.42; 0.53), 

marijuana—restlessness (EW = 0.37, 95% CI = 0.26; 0.49) and PDNP—fighting (EW = 

0.36, 95% CI = 0.001; 0.72).  

The investigation of the stability of centrality indices demonstrated that closeness 

(CS coefficient = 0.517) and strength (CS coefficient = 0.594) were stable enough for 

interpretation. The betweenness CS coefficient (0.206), however, was too low to 

interpret for the overall network (Appendix C, Supplemental Figure 4.3). Significant 

differences between node strength were also tested and are displayed in Appendix C, 

Supplemental Figure 4.4.  

The centrality metrics are provided in the Table 4.6, and also depicted as z-

scores in Appendix C, Supplemental Figure 4.5. “CIG” has the greatest strength in the 

network (strength = 2.39), followed by “Dual CIG + ECIG” (strength = 1.47), “ECIG” 

(strength = 0.92), and “Anxious” (strength = 0.38). Nodes with the greatest closeness 



 147 

centrality include “Lied” (closeness = 2.34), “Marijuana” (closeness = 1.46), “Fights” 

(closeness = 1.24), and “Bully” (closeness = 0.75). Alcohol was lowest for strength, and 

ECIG was lowest for closeness. Both are seen on the periphery of the network. 

Table 4.6. Node Centrality Indices for the Overall 
Sample 

 Strength Closeness 

CIG 2.39 -1.00 

ECIG 0.92 -1.51 

Dual CIG + ECIG 1.47 -0.59 

Alcohol -2.01 -1.07 

Marijuana -0.18 1.46 

PDNP -1.02 -0.41 

Depressed -0.35 -0.59 

Sleeping -0.21 0.05 

Anxious 0.38 -0.08 

Distressed/Past 0.27 0.13 

Lied -0.11 2.34 

Attention 0.70 0.49 

Listening -0.25 -0.68 

Bully -0.18 0.75 

Fights -0.51 1.24 

Restless -0.54 -0.003 

Answered -0.78 -0.53 
 

Men-Only Network 

The men-only network consisted of 17 nodes (N = 15,268) visualized in Figure 

4.7. The network had 85 non-zero edges out of 136 possible edges. Figure 4.7 shows 

the estimated network structure of 6 substance use behaviors (in green), 4 negative 

affect symptoms (in blue), and 7 externalizing symptoms (in yellow). The network 

structure is an Ising model, which is a network of partial correlation coefficients. Similar 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening”, and “Fights” and “Bully”.  
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Figure 4.7: Men-Only Network of Substance Use, Negative Affect and 

Externalizing Comorbidity 

 

The assessment of the accuracy of estimated network connections demonstrated 

that many edge-weights significantly differed from one-another (Appendix C, 

Supplemental Figure 4.6). Results from the edge-weights significant difference test for 

the overall sample network can be found in Appendix C, Supplemental Figure 4.7. 

Especially strong connections emerged among “Dual CIG + ECIG” and “CIG” (edge 

weight = -5.31), “CIG” and “ECIG” (edge weight = -4.16), “Dual CIG + ECIG” and “ECIG” 

(edge weight = -1.55), “Attention” and “Listening” (edge weight = 3.45), and “Bully” and 
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“Fights” (edge weight = 2.59). Other connections were absent like “Exclusive CIG” and 

“Sleeping” (edge weight = 0) (Appendix C, Supplemental Table 4.2). 

The investigation of the stability of centrality indices demonstrated that strength 

(CS coefficient = 0.517) was stable enough for interpretation. Closeness (CS coefficient 

= 0.361) was lower than the preferred 0.50, but higher than 0.25. Closeness metrics 

should be interpreted with caution. The betweenness CS coefficient (0.128), however, 

was too low to interpret for the men-only network (Appendix C, Supplemental Figure 

4.8). Significant differences between node strength were also tested and are displayed 

in Appendix C, Supplemental Figure 4.9. 

 The centrality metrics are provided in the Table 4.7, and also depicted as z-

scores in Appendix C, Supplemental Figure 4.10. “CIG” had the greatest strength in the 

network (strength = 2.62), followed by “Dual CIG + ECIG” (strength = 1.16), “Anxious” 

(strength = 0.71), and “Attention” (strength = 0.67). Nodes with the greatest closeness 

centrality included “Distressed/Past” (closeness = 1.62), “Lied” (closeness = 1.57), and 

“Bully” (closeness = 1.15). Alcohol was lowest for all centrality metrics. 

Table 4.7: Node Centrality Indices for the Men-Only 
Sample 

 Strength Closeness 

CIG 2.62 -0.27 

ECIG 0.07 -1.77 

Dual CIG + ECIG 1.26 0.0004 

Alcohol -1.87 -1.91 

Marijuana -0.32 0.46 

PDNP -1.19 -0.55 

Depressed -0.39 -0.31 

Sleeping -0.37 0.27 

Anxious 0.71 0.59 

Distressed/Past 0.56 1.62 

Lied 0.11 1.57 

Attention 0.67 -0.01 
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Listening -0.09 -0.76 

Bully -0.08 1.15 

Fights -0.49 0.65 

Restless -0.55 0.09 

Answered -0.66 -0.81 
 

Women-Only Network 

The women-only network consisted of 17 nodes (N = 14,925) visualized in Figure 

4.8. The network had 84 non-zero edges out of 136 possible edges. Figure 4.8 shows 

the estimated network structure of 6 substance use behaviors (in green), 4 negative 

affect symptoms (in blue), and 7 externalizing symptoms (in yellow). The network 

structure is an Ising model, which is a network of partial correlation coefficients. Similar 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening.”  

 

Figure 4.8: Women-Only Network of Substance Use, Negative Affect and Externalizing 

Comorbidity 
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The assessment of the accuracy of estimated network connections suggested 

that many edge-weights significantly differed from one-another (Appendix C, 

Supplemental Figure 4.11). Results from the edge-weights significant difference test for 

the overall sample network can be found in Appendix C, Supplemental Figure 4.12. 

Especially strong connections emerged among “Dual CIG + ECIG” and “CIG” (edge 

weight = -3.98), “CIG” and “ECIG” (edge weight = -3.48), “Dual CIG + ECIG” and “ECIG” 

(edge weight = -1.96), “Attention” and “Listening” (edge weight = 3.49), and “Bully” and 

“Fights” (edge weight = 2.04). Other connections were absent like “CIG” and “Alcohol” 

(edge weight = 0) (Appendix C, Supplemental Table 4.3). 

Closeness (CS coefficient = 0.439) and strength (CS coefficient = 0.361) were 

lower than the preferred 0.50, but higher than 0.25. Closeness and strength metrics 

should be interpreted with caution. The betweenness CS coefficient (0.128), however, 

was too low to interpret for the women-only network (Appendix C, Supplemental Figure 

4.13). Significant differences between node strength were also tested and are displayed 

in Appendix C, Supplemental Figure 4.14. 

The centrality metrics are provided in Table 4.8, and also depicted as z-scores in 

Appendix C, Supplemental Figure 4.15. “CIG” had the greatest strength in the network 

(strength = 1.91), followed by “Dual CIG + ECIG” (strength = 1.35), “Attention” (strength 

= 1.13), and “Anxious” (strength = 1.03). Nodes with the greatest closeness centrality 

included “Lied” (closeness = 2.25), “Anxious” (closeness = 1.13), and “Marijuana” 

(closeness = 0.95). Alcohol was lowest for strength, and PDNP was lowest for 

closeness. Both are seen on the periphery of the network. 
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Table 4.8: Node Centrality Indices for the Women-
Only Sample 

 Strength Closeness 

CIG 1.91 -0.34 

ECIG 0.17 -1.34 

Dual CIG + ECIG 1.35 0.38 

Alcohol -2.27 -0.94 

Marijuana 0.08 0.95 

PDNP -1.11 -1.42 

Depressed -0.13 0.41 

Sleeping -0.29 0.01 

Anxious 1.03 1.13 

Distressed/Past 0.37 0.63 

Lied 0.02 2.25 

Attention 1.13 0.31 

Listening -0.05 -0.56 

Bully -0.48 -0.12 

Fights -0.23 0.76 

Restless -0.57 -0.97 

Answered -0.95 -1.15 
 

Nodewise Predictability 

 Nodewise predictability results are summarized in Table 4.9 and are graphically 

depicted in Figure 4.9. The predictability measures accuracy/correct classification and 

normalized accuracy. The accuracy of the intercept (marginal) model was also used to 

estimate the decomposition of the total accuracy in the intercept model (Table 4.9, 

Accuracy of Intercept column, orange) and the contribution of other variables (Table 4.9, 

Correct Classification – Accuracy of Intercept Model column). Figure 4.9 visualizes the 

results from Table 4.9. The colors in the ring around the node indicate the accuracy of 

the intercept model (orange) and the total accuracy (orange plus red). The normalized 

accuracy is the ratio red/ (red + white). 
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Table 4.9. Nodewise Predictability Values 

Variable 

Total Accuracy 
(Accuracy/Correct 
Classification) 

Normalized 
Accuracy 

Accuracy of 
Intercept 
(Marginal) 
Model 

Correct 
Classification – 
Accuracy of 
Intercept Model 
(Contribution 
from other 
variables) 

CIG 0.687 0.037 0.675 0.012 
ECIG 0.982 0.000 0.982 0 
Dual CIG + ECIG 0.969 0.000 0.969 0 
Alcohol 0.590 0.041 0.572 0.018 
Marijuana 0.861 0.011 0.859 0.002 
PDNP 0.938 0.001 0.938 0 
Depressed 0.878 0.312 0.823 0.055 
Sleeping 0.808 0.357 0.701 0.107 
Anxious 0.876 0.422 0.785 0.091 
Distressed/Past 0.883 0.330 0.825 0.058 
Lied 0.904 0.048 0.899 0.005 
Attention 0.908 0.498 0.817 0.091 
Listening 0.914 0.332 0.871 0.043 
Bully 0.977 0.024 0.976 0.001 
Fights 0.987 -0.027 0.987 0 
Restless 0.909 0.009 0.908 0.001 
Answered 0.707 0.186 0.640 0.067 

 

Results from the CIG node are detailed as an example by which to interpret 

results. The normalized accuracy (i.e., estimate of nodewise predictability for use with 

categorical variables) was 0.037. The normalized accuracy was computed by taking the 

ratio of the contribution from other variables (0.012) to the contribution from other 

variables (0.012) plus one minus the total accuracy: 0.012/0.012 + 0.313 = 0.037. 

Therefore, 3.7% of the CIG node could be predicted by all other nodes in the network. 

Further, the total accuracy of the CIG node was 68.7% (0.675 + 0.012 = 0.687). 

Therefore, most of accuracy of the CIG node (67.5%) was due to contributions of this 

node specifically. Since the other variables do not strongly contribute to the 

predictability of CIG, it is expected that successful intervention on past-month CIG use 
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specifically could potentially address use by 68.7%. In contrast, intervention for other 

behaviors related to past-month CIG use is likely to influence this behavior by 3.7%. 

Results for the CIG node are compared against the Anxious node, where a 

greater proportion of the predictability was due to other nodes. The normalized accuracy 

of the Anxious node was 0.422 meaning that 42.2% of the Anxious node could be 

predicted by all other nodes in the network. Furthermore, the total accuracy of the 

Anxious node was 87.6%, meaning that the majority of accuracy of the Anxious node 

(42.2%) was due to contributions of other nodes in the network, not the Anxious node 

specifically (45.4%). Unlike the CIG node, successful intervention on other nodes 

connected to the Anxious node could potentially address this symptom by 87.6%. 

 

Figure 4.9: Mixed Graphical Model Estimated on the Data. Green edges indicate 
positive relationships and red edges indicate negative relationships. The orange part of 
the ring indicates the accuracy of the intercept model. The red part of the ring is the 
additional accuracy achieved by all remaining variables. The sum of both orange and 
red is the accuracy of the full model A. The normalized accuracy Anorm is the ratio 
between the additional accuracy due to the remaining variables (red) and one minus the 
accuracy of the intercept model (white + red). 
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 Nodes with greater strength and greater magnitudes in edge-weights were 

predicted better (e.g., Dual CIG + ECIG and Attention) than nodes with fewer or weaker 

edges (e.g., Alcohol). Alcohol (0.590), CIG (0.687), and Answered (0.707), and had the 

lowest total accuracy in the network whereas Fights (0.987), ECIG (0.982), and Bully 

(0.977) had the highest total accuracy. Interestingly, the predictability of fights, ECIG, 

and Bully had no contribution from the other variables (correct classification = 0 or near 

0). Other nodes also had a correct classification of 0 (i.e., Dual CIG + ECIG and PDNP) 

meaning that other nodes in the network did not predict the node at hand beyond the 

intercept model. Additional accuracy due to the remaining variables contributed to the 

predictive ability of the negative affect items as well as Attention, Listening, and 

Answered externalizing items (denoted by the red portion of the ring).  

The average predictability as estimated across the accuracy/correct classification 

column for all nodes was 0.85, indicating that 85% of the variance of the network was 

explained by the nodes in the network. Therefore, the network was largely determined 

by itself through strong mutual interactions between nodes. Intervention on any of these 

nodes would likely result in a decrease of a neighboring symptom, especially for nodes 

with higher contribution from other variables in the network. 

 

DISCUSSION 

 To our knowledge, this is one of the first studies to investigate a comorbidity 

network including substance use behaviors and a wide range of mental disorder 

symptoms in a large sample of U.S. adults. There were two major results from this 
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study. First, networks for men and women did not significantly differ in structure and 

connectivity, although there were significant differences by gender between specific 

nodes. Second, the overall network structure and edge-weights confirmed the 

connections of substance use behaviors, negative affect symptoms, and externalizing 

symptoms in the network. Yet, there were edges that crossed the construct boundaries 

(i.e., substance use, negative affect, externalizing), identifying connections across these 

three constructs. Furthermore, high predictability of all nodes indicated the network was 

largely determined by itself through strong mutual interactions between nodes. These 

results suggest that symptom connections, including substance use, (1) do not 

significantly differ between men and women, and (2) connect based on construct with 

some overlap. 

 

No gender differences between overall networks but some gender-specific differences 

between nodes 

There were no significant gender differences for the overall comorbidity 

networks. This was inconsistent with our hypothesis based on expectations developed 

in the prior literature.123,190 In general, these studies report a higher prevalence of 

alcohol, tobacco, illicit substance use, and externalizing problems in men and greater 

negative affect symptoms and comorbidity in women.123,183,189,190 Differences in the 

network structures may be due to the measurement of past-month substance use and 

mental health symptom endorsement rather than diagnosis. There were gender 

differences in higher severity due to use of aggregate sum scores. However, this 
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difference was not present in a comorbidity network of people experiencing 

subthreshold levels of use or symptoms.205,206  

Some gender-specific differences were discovered between nodes. These are 

detailed below: 

(1) Alcohol—marijuana (EWMen = 0.87, EWWomen = 1.08): One would likely expect 

that this connection between alcohol and marijuana would have a larger 

magnitude for men, especially given that men experience more substance use 

and externalizing behaviors.123,183,189,190 However, as men have a higher 

prevalence of marijuana use, women have demonstrated a greater increase in 

use over time.153 From 2006-2016, the rate of marijuana use increased 40% for 

men (from 8.1% to 11.3%), and 63% for women (from 4.1% to 6.7%).153 Data 

also suggest that women have a faster development of cannabis use disorder 

with poorer outcomes compared to men.153 Therefore, the alcohol—marijuana 

connection may be a greater connection of interest in women, but should also not 

be discounted in men. 

(2) Alcohol—sleeping problems (EWMen = 0.08, EWWomen = 0): There was a small 

positive connection between alcohol use and sleeping problems for men where 

there was no edge present for women, indicating that alcohol use was associated 

with sleeping problems in men. The relationship between alcohol use and sleep 

disturbances is well established.207 A recent study conducted in the United 

Kingdom identified that men who maintained a heavy volume of drinking over 

three decades, had unstable consumption patterns, and sustained hazardous 

drinking had worse sleep profiles compared to men without these problems while 
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results for women were mixed.208 This relationship is consistent with the literature 

and should continue to be a relationship of interest in comorbidity research. 

(3) Marijuana—feeling anxious (EWMen = 0, EWWomen = 0.15): Women have 

demonstrated a greater increase in marijuana use over time compared to men, 

although men have a higher prevalence of marijuana use.153 Women with 

cannabis use disorder are more likely to experience anxiety and depression 

compared to men with cannabis use disorder.153 This relationship is consistent 

with prior work and underscores the importance of marijuana use and anxiety 

problems in women. 

(4) ECIG—lying (EWMen = 0.25, EWWomen = 0): Men reported more ECIG use and 

lying behaviors compared to women. This is consistent with research that has 

established women reporting less substance use, including e-cigarettes, and 

externalizing behaviors compared to men.123,183,189,190,209 Additionally, this 

significantly different edge demonstrates that this connection is not present in 

women where other positive connections exist for the lying node (e.g., attention 

difficulties—lying). This relationship may be of more importance in men versus 

women. 

(5) Alcohol—lying (EWMen = 0.31, EWWomen = 0) and Alcohol—attention 

difficulties (EWMen = 0.25, EWWomen = 0): Men consistently drink more alcohol 

and have a higher likelihood of alcohol use disorders compared to women.210–212 

Similarly, men experience more externalizing symptoms than women.123,183,189,190 

The relationship between with alcohol and externalizing symptoms is in line with 
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prior research and these results confirm the importance of this relationship, 

especially with lying and attention difficulties, in men. 

(6) Lying—attention difficulties (EWMen = 0.86, EWWomen = 0.56): Lying and 

attention difficulties are externalizing behaviors that are associated with each 

other in both men and women. The association between attention difficulties, 

commonly seen with ADHD, and emotional dysregulation is well recognized.213 

Emotional dysregulation encompasses emotional expressions and experiences 

that are context-inappropriate, which is clinically expressed as irritability.213 

Those with irritability can react to the external stimuli in ways that are overly 

angry and aggressive214; however, the connection between attention difficulties 

and lying is not well understood. This connection should be investigated further, 

especially in men as we see a stronger magnitude of association compared to 

women. 

(7) Alcohol—listening difficulties (EWMen = -0.11, EWWomen = 0): The relationship 

between alcohol and listening difficulties is not as well understood compared to 

other externalizing symptoms identified with alcohol use. Listening difficulties can 

be classified as an inattention ADHD symptom.2 The comorbidity between ADHD 

and alcohol has been identified14,15,215 yet our results reflect a negative 

relationship between listening difficulties and alcohol for men and no relationship 

for women. This may be because the inattention ADHD symptom may be less 

likely to be associated with alcohol use compared to the hyperactivity/impulsivity 

ADHD symptoms.216 However, results are mixed.216–219 Further work is needed to 

better understand this relationship by gender. 
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Overall network connections with negative affect and externalizing symptoms varies by 

substance 

 The largest edge-weight between any tobacco product and a negative affect or 

externalizing symptom was found between dual use of CIG and ECIG and feeling 

anxious. Furthermore, out of all potential connections with negative affect and 

externalizing symptoms, ECIG was only connected to sleeping problems. Previous 

studies of adolescents and young adults found ECIG use was associated with ADHD, 

PTSD, anxiety and other SUDs.94,95,97 More research is needed to confirm the 

relationship between ECIG and mental health symptoms in adults. It is possible that 

these differences in results are due to the measurement of tobacco use. It is rare for 

studies to exclude ECIG use from CIG use and vice versa, which misclassifies the 

relationships between CIG and ECIG use to be more strongly associated than reality. 

Consequently, the study of this association may be important to consider in future 

research.  

PDNP was connected to negative affect and externalizing symptoms with the 

strongest connection found with sleeping problems, followed by fighting, feeling 

anxious, and becoming distressed about the past. These results confirm previous work 

which identified nonmedical prescription drug disorders with externalizing behaviors220 

as well as negative affect behaviors, specifically opioids with PTSD symptoms.154  

Marijuana had a relatively strong connection between two externalizing 

symptoms (i.e., lying and fighting). These connections with conduct disorder specific 

symptoms confirm and reinforce the association with marijuana use as stronger than 
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with previously identified negative affect symptoms (i.e., anxiety and depression).149–152 

Although these connections were not as strong as those within the construct, they exist 

and demonstrate the overlapping nature among these symptoms and behaviors. 

Alcohol was connected to the impulsivity item which is consistent with previous 

alcohol focused literature demonstrating an association between highly impulsive 

behaviors and alcohol use.221 A bidirectional relationship has been identified in that 

impulsivity significantly increases the risk for initiation, continuation, and excessive 

alcohol use and can also result from acute intoxication and long-term alcohol abuse. 221 

These results confirm this association specifically with a past month measure of alcohol 

use and through the externalizing symptom of giving an answer before a question is 

finished being asked. 

Finally, several weaker and negative connections remain across substances and 

negative affect/externalizing symptoms although there were some strong connections 

across constructs, which is supported by the prior literature.89,149,169–173 These broad, 

though weaker connections emphasize the complexity of the comorbidity across 

substance use and negative affect/externalizing disorders. 

 

Node Centrality and Predictability 

 Strength and closeness were the only centrality metrics stable enough to 

interpret for the overall, men, and women networks. Exclusive CIG use and dual CIG 

and ECIG use were the two nodes with the largest strength in all three networks. This 

means that these two types of tobacco use had the most connections to other nodes in 
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these networks. This may be due to the oversampling of tobacco users in the PATH 

data or due to tobacco use being common across the other behaviors.  

 Lying, acting as a bully, physical fighting, feeling anxious, feeling distressed 

about the past, and marijuana use were the nodes with the highest closeness centrality 

for the three networks. Based on these results, we could consider lying, acting as a 

bully, and physical fighting as more important externalizing nodes in the comorbidity 

structure compared to the others given their stronger measure of indirect ties to other 

nodes in the network. Similarly, we could assume that feeling anxious and feeling 

distressed about the past may be a more important negative affect node in the 

comorbidity structure as it has a closer measure of reach compared to the other 

negative affect symptoms. Marijuana use could also be considered an important 

substance use node in the comorbidity structure based on its high closeness centrality. 

 Nodes with more and stronger edges had higher node predictability compared to 

other nodes in the network with lower strength. The overall high predictability of all 

nodes in the network, however, has implications for potential intervention. Since, on 

average, 85% of the variance of a node was explained by its neighbors, then one could 

intervene on one of these symptoms which could affect the entire network. The negative 

affect variables had the highest predictability contributed from other nodes in the 

network. Therefore, if we wanted to reduce anxiousness, the network model suggests 

intervening on the variables that are closely connected to the anxious node: sleep 

problems, feeling depressed, and feeling distressed about the past. Nodewise 

predictability tells us we might reduce anxiousness by approximately 87.6% (total 
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accuracy) if we were to intervene on sleep problems, feeling depressed, and feeling 

distressed about the past. 

 The node with the overall lowest centrality in all networks was past month alcohol 

use. This is consistently low across all networks, perhaps because in the way alcohol 

was measured in this study. Past month alcohol use is not indicative of severity or 

problematic alcohol use. Therefore, people who indicated past month alcohol use were 

not likely to also indicate other substance use behaviors and mental disorder symptoms, 

as demonstrated by the low strength and closeness. More severe measures of 

problematic alcohol use, however, may perform differently in a comorbidity network. 

Future work should consider other measures of alcohol use in determining comorbidity 

structure of substance use behaviors and mental disorder symptoms.  

 

Strengths and limitations  

These results should be evaluated in light of the following limitations. First, 

conclusions that are drawn from this study are not indicative of severe psychopathology 

or SUD because it uses a population-based sample and data from subthreshold 

behaviors. Therefore, we cannot draw conclusions about disorders. Nevertheless, the 

purpose of this project was to better understand how the wide range of behaviors and 

symptoms interact in a typical sample of adults. Second, the items included in the 

networks were dichotomized either from combining multiple measures as seen in the 

substance use items or from collapsing the ordinal negative affect/externalizing items. 

This strategy results in a loss of information, but allows for easier interpretation of the 

results, especially since all items overlap regarding time (i.e., past-month endorsement). 
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Additionally, the items included in the network analysis represent three separate 

constructs (i.e., substance use, negative affect problems, and externalizing problems) 

and this presents a potential limitation regarding nodewise predictability because these 

constructs are correlated. This could result in edge-weights indicating how similar the 

variables are and do not necessarily reflect mutual influence. Therefore, further 

investigation in the nodewise predictability of these items is warranted. Future analyses 

could include three categorical items that represent the constructs and then test for 

nodewise predictability. Third, these models did not adjust for the influence of other 

sociodemographic variables. Therefore, there may be some residual confounding. 

Fourth, these data are cross-sectional. We cannot draw any causal inferences from 

these networks. Future research is encouraged to study these networks over time. Fifth, 

networks can only be estimated with complete data. Approximately 2,109 participants 

were missing data on all seventeen items and not included in the estimation of the 

overall network. There may be potential for social desirability or misclassification biases 

in that the people with missing information on these items did not want to endorse their 

substance use or mental disorder symptoms. 

A strength of this project includes the use of accuracy, stability and comparison tests 

to ensure that the inferences made by these study results were appropriate.  

 

Conclusions 

Results emphasized many weak connections throughout the substance use and 

negative affect/externalizing network and identified a few important connections for 

future study. In particular, PDNP was most strongly associated with negative affect 
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while marijuana, alcohol and PDNP use were most strongly associated with 

externalizing. Future work should replicate these analyses in other large samples, 

including additional nodes of importance and/or sociodemographic factors that may play 

a role in the comorbidity structure and assess the stability of these networks over time. 
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CHAPTER 5: PRELIMINARY PATTERNS OF SUBSTANCE USE AND MENTAL 
DISORDER SYMPTOM COMORBIDITY IN ADULTS OVER TIME 
 
 

INTRODUCTION 

 Comorbidity of substance use and mental health problems are more common 

than exclusive substance use or mental health problems only.67 Comorbidity has been 

detected consistently across age groups, and studies within a specific age group have 

demonstrated different results. For example, younger age groups are at a greater risk of 

experiencing substance use and mental health comorbidity compared to older age 

groups.41,222 It is unclear, however, whether patterns of comorbidity in adults change 

over time.  

 

Substance use comorbidity over time 

 Several longitudinal studies identifying co-occurring substance use over time 

have focused primarily on youth and young adults. These studies have discovered a 

similar result in that substance use behaviors are relatively stable over time; however, if 

there is a change in behavior, it usually moves from less severe to more severe (e.g., 

alcohol only to using multiple substances simultaneously [polysubstance use]). 

Generally, early substance use (e.g., alcohol and illicit substances) in adolescents is 

strongly associated with later substance use disorder (SUD) development.223 

Longitudinal association studies in youth have demonstrated that ever tobacco use 

predicts subsequent substance use224 while others have identified heavy alcohol use 

predicting marijuana use during college.225,226 A latent transition analysis of adolescents 
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identified three substance use groups (mild alcohol use, alcohol and moderate 

marijuana use, and polysubstance use). Overall, adolescents generally remained in the 

same group over time; however, when they did transition, adolescents were most likely 

to move to a more harmful substance use status.227 Another longitudinal analysis of 

vocational students (16 to 20 years) in Germany found a similar result. Approximately, 

10% of alcohol users at baseline transitioned to polysubstance use of alcohol, 

cigarettes, and marijuana at 18-month follow up.52 It is unclear whether this stability and 

potential transition to more harmful substance use continues in adulthood. 

 

Mental health comorbidity over time 

 Compared to co-occurring substance use, more is understood about co-occurring 

mental health conditions in adults. There is evidence that less severe mental disorders 

precede more severe disorders.2 Certain mental health conditions can increase the risk 

of development of future mental health conditions. For example, chronicity of depressive 

symptoms increases the likelihood of anxiety and substance use disorders.2,55,56 

Epidemiologic studies have provided evidence for both continuity and change of mental 

disorder comorbidity.67–69 Overall, the highest stability rates are documented in low 

psychopathology and externalizing classes, whereas the internalizing or negative affect 

and highly comorbid classes are moderately stable. Furthermore, results from a latent 

transition analysis of a nationally representative sample demonstrated that internalizing 

or negative affect presentations progressed toward remission, while comorbid and 

externalizing presentations was notably symptomatic across time.67  
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Substance use and mental health comorbidity over time 

 Less, however, is understood about the stability of substance use and mental 

disorder comorbidity in adults over time. To date, comorbidity studies have reported that 

(1) externalizing problems (e.g., ADHD, ODD, CD) in youth precede substance use in 

both boys and girls whereas (2) substance use (e.g., alcohol and marijuana) in youth 

predict internalizing or negative affect disorders in adulthood specifically for women.57–61 

A systematic review and meta-analysis of prospective cohort studies suggests a 

positive association between anxiety and later alcohol use disorders.228 More 

longitudinal approaches to assessing the comorbidity structure over time is needed. 

These studies will help to better understand the progression or regression of symptoms 

or behaviors in adults, and identify how to better support individuals experiencing 

comorbidity. 

 

Study goals and hypotheses 

 The primary goal of this study is to perform a preliminary assessment of the 

substance use and mental disorder symptom comorbidity patterns across three years of 

data (2013-2016) using both latent class and network analyses. The secondary goal of 

this study is to describe the similarities and differences in the patterns of comorbidity 

across LCA and network analyses. Based on the current understanding of substance 

use and mental disorder symptoms over time, we hypothesize that overall adult 

comorbidity patterns will not significantly differ across time. However, we expect minor 

changes in the relationship between a few behaviors and substances across waves.  

 



 169 

 

METHODS 

Setting 

The Population Assessment of Tobacco and Health (PATH) study is a nationally 

representative longitudinal cohort study of the civilian, non-institutionalized household 

population of the U.S., and participants engaged in all levels of tobacco use ranging 

from never using tobacco to frequent use.72 Three waves of data were included in this 

study. 

Wave 1. Wave 1 adult data (N=32,320) are cross-sectional and were collected 

between September 2013 and December 2014. The weighted response rate among 

participants was 74.0% for Wave 1.73 This interview rate is conditional on completion of 

the Wave 1 screener. 

Wave 2. Wave 2 adult data (N=28,362) were collected between October 2014 

and October 2015. The weighted response rate among participants was 83.2% and is 

conditional on Wave 1 participation.71 

Wave 3. Wave 3 adult data (N=28,148) were collected between October 2015 

and October 2016. The weighted response rate among participants was 78.4% and is 

conditional on Wave 1 participation.71 

Study Representativeness. New participants introduced at Waves 2 or 3 were 

excluded. This includes youth that “aged up” into the adult questionnaires. Therefore, 

we included the same adults from Wave 1 through Wave 3 resulting in Wave 2 N = 

26,444 and Wave 3 N = 26,239.  
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Participants with missing data on the substance use, negative affect, and 

externalizing measures were not included in the analysis (NWave1= 2,109, NWave2= 852, 

NWave3= 880). Survey respondents of the analytic sample endorsed significantly greater 

substance use overall, negative affect symptoms, and externalizing symptoms (except 

for fighting in Waves 1-3 and bullying in Waves 2-3) compared to those not included in 

the analytic sample. The participants in the analytic sample were more likely to be Non-

Hispanic white, men, aged 25-54 with higher levels of education and annual household 

income than those who were missing. 

 

Measures 

Past Month Tobacco and Substance Use. Six substance use categories were used 

in this study: exclusive cigarette, exclusive e-cigarette, dual cigarette and e-cigarette, 

alcohol, marijuana, and prescription drugs not prescribed (PDNP) including painkillers, 

sedatives, tranquilizers. Only past month or current use of the substances was 

considered (coded as 1, else = 0) to reduce the potential for recall bias and ensure for 

accurate overlap with negative affect and externalizing symptoms occurring in the same 

time frame. 

Past Month Negative Affect and Externalizing Symptoms. Negative affect and 

externalizing symptoms were measured using the Global Appraisal of Individual 

Needs—Short Screener (GAIN-SS).73 Four questions were used to measure negative 

affect symptoms that asked the last time you had significant problems with:  

(1) “feeling trapped, lonely, sad, blue, depressed, or hopeless about the future,” 
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(2)  “sleep trouble- such as bad dreams, sleeping restlessly or falling asleep during 

the day,”  

(3) “feeling very anxious, nervous, tense, scared, panicked or something bad was 

going to happen,” and  

(4) “becoming very distressed and upset when something reminded you of the past.”  

 

Externalizing symptoms were also measured using the GAIN-SS. Seven questions were 

used to assess externalizing symptoms. Items asked the last time you did the following 

two or more times:  

(1) “lied or conned to get things you wanted or to avoid having to do something,”  

(2) “had a hard time paying attention at school, work or home,”  

(3) “had a hard time listening to instructions at school, work or home,”  

(4) “were a bully or threatened other people,”  

(5) “started physical fights with other people,”  

(6) “felt restless or the need to run around or climb on things” and  

(7) “gave answers before the other person finished asking the question.”  

 

The items selected to identify negative affect and externalizing symptoms from the 

GAIN-SS instrument are ordinal and measures people across four times periods: past 

month, 2 to 12 months, over a year ago, and never. Participants indicating that they 

experienced a symptom within the past month were coded as 1. Participants indicating 

that they experienced the symptom 2 to 12 months ago, over a year ago, and never 

were coded as 0. Only past month or current negative affect and externalizing 
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symptoms were considered reducing the potential for recall bias and ensure accurate 

overlap with substance use occurring in the same time frame. 

Covariates. Sex, age, race, education, annual household income, and level of 

satisfaction with social activities and relationships were included as covariates in the 

generation of latent class models for Waves 1, 2, and 3. Sex was a binary variable with 

one level representing male and the other level representing female. Age, measured in 

PATH as a seven-level categorical variable, was re-categorized to have a uniform 

distribution with six levels (18-24, 25-34, 35-44, 45-54, 55-64, and 65 years or older). 

Race/ethnicity was measured as a four-level categorical race variable and included 

information from a separate variable that accounted for Hispanic ethnicity (Non-Hispanic 

White, Non-Hispanic Black, Non-Hispanic Other, and Hispanic Multicultural). Education, 

measured in PATH as a six-level categorical variable, was re-categorized as a five-level 

categorical variable with a uniform distribution [less than high school, GED/high school 

graduate, some college (no degree) or Associate’s degree, Bachelor’s degree, and 

Advanced degree]. Annual household income was measured as a five-level categorical 

variable: less than $10,000, $10,000 to $24,999, $25,000 to $49,999, $50,000 to 

$99,999, and $100,000 or more. 

 Level of satisfaction with social activities and relationships was measured as a 

five-level categorical variable: extremely satisfied, very satisfied, moderately satisfied, a 

little satisfied, and not at all satisfied. 

These covariates were included as auxiliary variables to predict the probability of 

class membership. Covariates were not included or adjusted for in the development of 

the networks for Waves 1, 2, and 3. 
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Statistical analysis 

Summary Statistics. Data management and summary statistics for the three 

waves were done in SAS 9.4. Data were then exported from SAS and imported into 

Mplus to conduct the LCA. Results from the LCA were then imported back into SAS to 

evaluate the pairwise comparisons. The original data generated in SAS were also 

imported into R to estimate the network structures. 

 

Latent Class Comparisons 

Latent Class Analysis. Latent class analysis (LCA) is a type of mixture modeling 

used to identify unobserved heterogeneity in a population and find meaningful groups of 

people that are similar based on their responses to measured items.70,141 The observed 

items (i.e., six substance use behaviors, four negative affect symptoms, and seven 

externalizing symptoms) are independent of each other given an individual’s response 

on the latent variable meaning that the latent variable (i.e., comorbidity class) explains 

why the observed items are related to one another.130 LCA accounts for the observed 

covariation between substance use and mental disorder symptoms and offers objective 

indices of class classification accuracy that are not available in traditional cluster 

analysis methods.132 

Two parameters are estimated in the LCA model: item probability parameters 

and class probability parameters. Item probability parameters represent the probability 

of endorsing an item conditional on latent class membership. It can also be referred to 

as the item response probabilities or conditional item probabilities. Class probability 
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parameters reflect the probability that a person in a given latent class has of endorsing 

the specific item. The class probability parameter specifies the prevalence of each class 

in the population or the relative frequency of class membership. Therefore, a LCA 

estimates the probability of being in a latent class conditional on the probability of 

endorsing a measured item.70 More detail on LCA is provided in the methods section of 

Chapter 3. 

Model Selection. A four-class solution was determined to be most optimal in the 

LCA for Wave 1 (Chapter 3). Therefore, only a four-class solution was generated for 

Waves 2 and 3 for comparison.  Lo-Mendell-Rubin adjusted likelihood ratio test (LMRT), 

Akaike information criteria (AIC), Bayesian information criteria (BIC), sample-size 

adjusted BIC, and entropy were tested to show model fit and parsimony. More detail on 

these fit and parsimony tests are provided in the methods section of Chapter 3. A 

smaller AIC and BIC, a larger entropy, and statistically significant results from the LMRT 

are conditions that determine a more optimal class solution.  

Multinomial Logistic Regression. Multinomial regression was used to determine 

whether any covariates were significantly associated with membership of a latent 

class.142 Multinomial regression was conducted using the three-step method (R3STEP) 

via the AUXILIARY statement in Mplus. This approach was used in order for the latent 

class model and the latent class predictor model to be obtained automatically142 rather 

than introducing potential bias by performing a multinomial regression after the latent 

class models were selected. More detail of the multinomial logistic regression procedure 

is provided in the methods section of Chapter 3. 
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Latent Class Analysis Comparisons. Class probability parameters, item response 

probability parameters, transition patterns and results from the multinomial logistic 

regression were compared across the three waves. Differences in class and item 

response probability parameters were compared. Transition patterns were identified to 

determine the stability of movement among the classes across the waves. Odds ratios 

from the multinomial logistic regression were discussed.  

Handling Missingness and Complex Sampling Design. Data management, 

summary statistics, and transition tables for latent class comparisons were performed in 

SAS 9.4. All LCA was conducted in MPlus. Missing data were removed (NWave 1 = 256, 

NWave 2 = 166, NWave 3 = 198). Complex sampling design was accounted for in SAS 9.4 

using PROC SURVEYFREQ (to generate summary statistics), and in Mplus using the 

WEIGHT option.  

 

Network Comparisons 

Network Analysis. Patterns of associations or interactions between substance 

use behaviors and mental disorder symptoms can be encoded in a network structure.45 

Measured symptoms and behaviors (i.e., substance use behaviors and negative affect 

and externalizing symptoms) are represented as nodes. Nodes are connected by 

edges. Edges represent the interactions between the nodes. Nodes that directly activate 

each other (i.e., demonstrate an association) are connected while nodes that do not 

directly activate each other are not. Three networks were generated for comparison, 

one for each wave. The resulting networks produced patterns of symptom-symptom or 

symptom-substance use interactions.45  
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Network Model Estimation. All networks were estimated using an Ising Model in 

R 3.6.0 (IsingFit package193) to estimate the associations between the nodes (i.e., 

edges) as partial correlations among a set of binary items (i.e., current substance use 

behaviors [exclusive cigarette, exclusive e-cigarette, dual cigarette and e-cigarette, 

alcohol, marijuana, and PDNP], four negative affect symptoms, and seven externalizing 

symptoms).34,196,199 Ising model selection uses the Extended Bayesian Information 

Criteria (EBIC) to measure model parsimony for moderate sample sizes and for a high 

number of variables by accounting for the number of unknown parameters and the 

complexity of the model space.194–196 Models determined to best explain the data using 

EBIC were interpreted for relevant relationships.193,197 Edges between two nodes were 

estimated at most pairwise, after adjusting for all other substance use, negative affect, 

and externalizing variables.196 Edges were compared against each other to determine 

strength. Networks were visualized using the qgraph R package.198 Blue edges illustrate 

positive partial correlations; red edges illustrate negative partial correlations. The wider 

the edge, the stronger the correlation. 

The Ising model contains two node-specific parameters: the interaction 

parameter and the node parameter. Details on how these parameters were calculated 

are provided in the methods section of Chapter 4.  

Network Comparisons to Test for Differences by Wave. Differences by wave 

were evaluated using two approaches. First, visual comparisons using an average 

layout established differences in the magnitude and direction (i.e., positive or negative) 

of edge-weights between nodes. Second, three tests of network invariance were used 

to test significant differences in network models by wave. Greater detail of the three 
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tests of network invariance is provided in the methods section of Chapter 4. These tests 

were done in a pairwise fashion in the following order: Wave 1 was compared to Wave 

2, Wave 2 was compared to Wave 3, and Wave 1 was compared to Wave 3.  

The global strength invariance hypothesis tested whether the overall level of 

connectivity in a network was identical between the waves. The global strength 

invariance hypothesis tests the weighted absolute sum of all edges in the networks or 

the sum of the unique variance in the network.200  

 A test of the network structure invariance hypothesis determined whether 

network structures were identical by wave by comparing the maximum differences in the 

edge-weights between all nodes in the networks.200 

Edge strength invariance hypothesis was tested to determine if a specific edge 

between two nodes was equally strong between the waves. Edge strength is also 

referred to as the edge weight, quantified as the magnitude of an edge. This is the 

magnitude of association between two nodes.200  

Handling Missingness and Complex Sampling Design. Participants with missing 

data were removed using listwise deletion (NWave 1 = 2,109, NWave 2 = 852, NWave 3 = 880). 

Complex sampling design was not accounted for in the estimation of the network 

models.  

 

RESULTS 

Summary statistics 

The overall sample size decreased from Wave 1 (N=32,320) to Wave 3 

(N=26,239) as shown in Table 5.1. Women (51.9 to 52.1%) and those who identified as 
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Non-Hispanic White (65.8 to 66.0%) made up the majority of the samples across the 

waves. Age was evenly distributed. Most of the samples had at least a GED or high 

school education, an annual household income of more than $25,000, and were at least 

moderately satisfied with their social activities and relationships. 

 Endorsement of past month substance use and mental disorder symptoms 

remained stable across the waves. Alcohol was the most commonly reported past 

month substance used (52.4% to 54.4%), followed by CIG (16.6%) and marijuana (7.1% 

to 9.7%). Sleep problems were the most commonly reported past month negative affect 

symptom (25.4% to 27.0%) followed by feeling anxious (16.0% to 16.5%). Giving 

answers before the other person finished asking the question was the most common 

past month externalizing symptom (28.5% to 32.0%), followed by having a hard time 

paying attention (14.6% to 15.4%) and listening to instructions (10.4% to 11.3%). 
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Table 5.1: Characteristics of the Samples by Wave 
 Wave 1 

(N=32,320) 
Wave 2 

(N=26,444) 
Wave 3 

(N=26,239) 
 N (Weighted 

%) 
N (Weighted 

%) 
N (Weighted 

%) 
Sex    
   Male 16306 (48.1) 13067 (47.9) 12830 (47.9) 
   Female 15980 (51.9) 13354 (52.1) 13386 (52.1) 
Age    
   18-24 9110 (13.0) 6259 (11.1) 6546 (10.8) 
   25-34 6337 (17.7) 5674 (17.8) 5824 (17.8) 
   35-44 4930 (16.5) 4200 (16.8) 3971 (16.4) 
   45-54 4846 (17.9) 4030 (17.5) 3804 (17.5) 
   55-64 3971 (16.6) 3507 (17.3) 3389 (17.5) 
   65+ 3110 (18.2) 2770 (19.5) 2703 (20.0) 
Race    
   Non-Hispanic White 19295 (66.0) 15757 (65.9) 15368 (65.8) 
   Non-Hispanic Black 4496 (11.2) 3774 (11.2) 3808 (11.2) 
   Non-Hispanic Other 2429 (7.5) 1948 (7.7) 1946 (7.6) 
   Hispanic Multiracial 4817 (13.3) 3949 (13.4) 4067 (13.5) 
Education    
   Less than high school 4233 (11.6) 3159 (10.9) 3101 (10.8) 
   GED/High school graduate 9765 (29.5) 7516 (27.8) 7591 (27.8) 
   Some college (no degree) 11300 (31.0) 9567 (32.3) 9416 (32.0) 
   Bachelor’s degree 4498 (17.8) 3971 (18.4) 3944 (18.7) 
   Advanced degree 2311 (10.1) 2106 (10.6) 2074 (10.8) 
Annual household income    
   Less than $10,000 5668 (13.7) 4358 (12.3) 4192 (11.4) 
   $10,000- $24,999 6768 (20.4) 5598 (19.9) 5384 (19.1) 
   $25,000- $49,999 6670 (23.0) 5665 (22.9) 5672 (22.9) 
   $50,000- $99,999 6140 (24.9) 5415 (26.2) 5546 (26.8) 
   $100,000 or more 3914 (18.0) 3519 (18.7) 3658 (19.8) 
Satisfaction with social activities and relationships       
   Extremely satisfied 6942 (22.3) 5285 (20.9) 5630 (21.4) 
   Very satisfied 13742 (46.1) 11295 (46.8) 10578 (44.6) 
   Moderately satisfied 8157 (23.7) 7015 (24.2) 6895 (24.6) 
   A little satisfied 2376 (5.6) 1975 (5.8) 2119 (6.6) 
   Not at all satisfied 1001 (2.3) 812 (2.3) 939 (2.7) 
Past month tobacco and substance use       
   CIG 10381 (16.6) 8373 (16.6) 7904 (16.6) 
   ECIG 578 (0.9) 593 (1.2) 703 (1.5) 
   Dual CIG + ECIG 996 (1.5) 1069 (2.0) 938 (1.8) 
   Alcohol 17787 (52.4) 15312 (54.4) 14749 (53.9) 
   Marijuana 4392 (7.1) 4363 (8.9) 4630 (9.7) 
   PDNP  1950 (5.1) 1707 (5.4) 1737 (5.8) 
Past month negative affect symptoms       
   Depressed 5692 (13.4) 4639 (13.6) 4421 (13.2) 
   Sleeping 9564 (26.7) 7745 (27.0) 7152 (25.4) 
   Anxious 6864 (16.1) 5602 (16.5) 5433 (16.0) 
   Distressed/Past 5605 (12.5) 4577 (13.1) 4493 (12.7) 
Past month externalizing symptoms       
   Lied 3245 (7.1) 2399 (6.6) 2360 (6.4) 
   Attention 5831 (14.6) 4818 (15.3) 4798 (15.4) 
   Listening 4128 (10.4) 3480 (11.3) 3478 (11.3) 
   Bully 737 (1.7) 635 (1.7) 641 (1.7) 
   Fights 404 (0.7) 331 (0.7) 336 (0.7) 
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   Restless 2953 (6.2) 2125 (5.9) 2112 (5.6) 
   Answered 11399 (32.0) 8390 (29.8) 8033 (28.5) 

 
 
Latent Class Comparisons 

Four class solution 

 The four-class model was selected for interpretation in Wave 1 because (1) the 

AIC, BIC, and sample-size adjusted BIC were smallest for the four-class solution 

compared to the three- and two- class solutions, and (2) the LMRT was statistically 

significant, rejecting the five-class model when compared to the four-class model. A 

four-class solution was also selected for Waves 2 and 3 to compare latent classes 

across waves (Table 5.2). 
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Table 5.2: Model Parsimony and Fit Statistics for Five-Class Solution by Wave 
 

AIC BIC Sample-Size 
Adjusted BIC Entropy Ho LL LMRT p-value LC 1 LC 2 LC 3 LC 4 

Wave 1 303521 304117 303891 0.844 -153520 3641 <0.05 1960 
(6.1%) 

2691 
(8.3%) 

23571 
(72.9%) 

4098 
(12.7%) 

Wave 2 252434 253015 252789 0.847 -127721 3134 <0.05 1727 
(6.5%) 

2316 
(8.8%) 

3478 
(13.2%) 

18922 
(71.6%) 

Wave 3 249796 250377 250151 0.787 -125429 1196 0.5789 2140 
(8.2%) 

5400 
(20.6%) 

17176 
(65.5%) 

1524 
(5.8%) 

NOTE: AIC = Akaike information criteria, BIC = Bayesian information criteria, LL = log likelihood, LMRT = Lo Mendell Rubin Test, LC = latent 
class 
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Class probability  

 The four classes were labeled based on the characteristics of the item response 

probabilities of the specific class. The low symptom class was most common across the 

three waves and gradually decreased from Wave 1 to Wave 3 (NWave 1 = 23,571, 72.9%; 

NWave 2 = 18,922, 71.6%; NWave 3 = 17,176, 65.5%). The comorbid class was the least 

common across the three waves and gradually increased from Wave 1 to Wave 3 

(NWave 1 = 1,960, 6.1%; NWave 2 = 1,727, 6.5%; NWave 3 = 2,140, 8.2%), seen in Table 5.3. 

 
Table 5.3: Class Probability by Wave 
 Comorbid 

Class 

Low 
Comorbid 

Class 

Externalizing 
Class 

Low 
Symptom 

Class 

Negative 
Affect Class 

Substance 
Use Class 

 N (Weighted %) N (Weighted %) N (Weighted %) N (Weighted %) N (Weighted %) N (Weighted %) 

Wave 1 1960 (6.1%) -- 2691 (8.3%) 23571 (72.9%) 4098 (12.7%) -- 
Wave 2 1727 (6.5%) -- 2316 (8.8%) 18922 (71.6%) 3478 (13.2%) -- 
Wave 3 2140 (8.2%) 5400 (20.6%) -- 17176 (65.5%) -- 1524 (5.8%) 

 
The externalizing and negative affect classes remained stable at Waves 1 and 2. 

At Wave 3, however, the classes changed in composition. Rather than externalizing and 

negative affect classes, low comorbid and substance use classes emerged.  

 

Item response probabilities  

 Figures 5.1 – 5.3 display the item-probability plots for the four-class solution for 

Waves 1, 2, and 3. Tables 5.4 – 5.6 presents the corresponding conditional probability 

or item response probability values for the four comorbidity classes for Waves 1, 2, and 

3. There are seventeen items (six substance use, four negative affect, and seven 

externalizing items) along the x-axis of each plot. The y-axis represents the probability 

of endorsing a given item. The four lines, called profiles, correspond to the four classes 
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in the LCA solution and the values are the conditional item probabilities for each of the 

seventeen items across the four classes. 

The comorbid and the low symptom classes were the most extreme classes that 

consistently emerged across the three waves. The comorbid class, overall, had high 

probability of endorsing most items while the low symptom class generally had low 

probability of endorsing all items except for endorsing past 30-day alcohol use. 

Similar profiles emerged across Waves 1 and 2, particularly for the negative 

affect and externalizing classes. The negative affect class had high item response 

probabilities on the four negative affect items: feeling depressed (40.2% to 45.5%), 

sleeping problems (63.5% to 67.0%), feeling anxious (57.3% to 58.3%), and feeling 

distressed about the past (37.7% to 42.3%). The externalizing class had high item 

response probabilities on the seven externalizing items: lying (13.8% to 17.9%), 

attention problems (75.7% to 78.0%), listening problems (55.3% to 56.9%), bullying 

(2.8% to 3.4%), getting into physical fights (0.7% to 1.0%), restlessness (15.9% to 

16.9%), and giving an answer before a question is finished being asked (62.9% to 

65.3%). 

In Wave 3, a low comorbid and substance use class emerged. The low comorbid 

class resembled the comorbid class with similar peaks yet overall lower item 

endorsement compared to the comorbid class. This was specifically noticeable for the 

negative affect and externalizing symptoms where the item response probabilities were 

second highest relative to the comorbid class for all negative affect and externalizing 

items except for getting into physical fights. The substance use class had higher item 

response endorsement for cigarette (43.1%), alcohol (76.1%), and marijuana (69.9%) 
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use compared to all other classes. Item response probabilities were also high for e-

cigarette use (2.9%), dual cigarette and e-cigarette use (3.4%), and PDNP (7.9%). 

 

 
Figure 5.1: Wave 1 - Four-Class Solution of Substance Use Behaviors and Mental 

Disorder Symptoms 
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Table 5.4: Wave 1 Item Response Probability Values for Four Latent 
Classes 

 

Comorbid 
N=1960 
(6.1%) 

Externalizing 
N=2691 
(8.3%) 

Low Symptom 
N=23571 
(72.9%) 

Negative Affect 
N=4098 
(12.7%) 

CIG 34.20% 12.90% 13.60% 26.20% 
ECIG 1.90% 1.30% 0.70% 1.00% 
Dual CIG + ECIG 4.60% 1.60% 1.00% 2.50% 
Alcohol 57.80% 64.40% 49.60% 56.40% 
Marijuana 21.00% 10.30% 4.30% 13.20% 
PDNP 17.70% 5.20% 2.90% 10.50% 
Depressed 79.20% 10.50% 1.60% 45.50% 
Sleeping 90.30% 40.10% 11.30% 67.00% 
Anxious 92.40% 14.50% 1.40% 57.30% 
Distressed/Past 80.10% 8.20% 1.10% 42.30% 
Lied 39.40% 17.90% 1.50% 13.50% 
Attention 91.20% 75.70% 1.00% 8.90% 
Listening 74.30% 55.30% 0.50% 2.70% 
Bully 13.60% 3.40% 0.20% 3.00% 
Fights 5.60% 0.70% 0.00% 2.00% 
Restless 34.70% 15.90% 1.50% 11.30% 
Answered 70.30% 65.30% 22.00% 43.20% 
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Figure 5.2: Wave 2 - Four-Class Solution of Substance Use Behaviors and Mental 

Disorder Symptoms 
 

Table 5.5: Wave 2 Item Response Probability Values for Four Latent Classes 
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Figure 5.3: Wave 3 - Four-Class Solution of Substance Use Behaviors and Mental 

Disorder Symptoms 
 

Table 5.6: Wave 3 Item Response Probability Values for Four Latent Classes 
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Transitions based on cross-sectional results 

 Individuals in the sample were assigned to one of the four classes based on the 

LCA posterior probabilities. This was done for Waves 1, 2, and 3 and class membership 

information was merged across the waves to create cross-classification tables. The 

tables were used to describe individual movement among the comorbidity classes over 

time. Table 5.7 includes cross tabulations for three transition points (i.e., Wave 1 to 

Wave 2, Wave 2 to Wave 3, and Wave 1 to Wave 3). To read the Table 5.7, start with 

the preceding wave first and look to where people move to the subsequent wave. 

Interpret the proportion forward whereas 9.5% of individuals in the negative affect class 

at Wave 1 transitioned to the comorbidity class at Wave 2. It is not appropriate, 

however, to interpret this proportion backwards (i.e., 9.5% of those in the comorbid 

class at Wave 2 were in the negative affect class at Wave 1). 

Table 5.7: Transition Tables based on Cross-Sectional LCA Results (%) 
  W2 W3 
W1 COM EXT LS NA   W2 COM L COM LS SU  
COM 8.6% 9.2% 65.4% 16.8% 100% COM 7.6% 21.5% 64.3% 6.6% 100% 
EXT 9.5% 10.2% 64.3% 15.9% 100% EXT 7.8% 20.2% 65.0% 6.1% 100% 
LS 9.5% 8.9% 65.1% 16.2% 100% LS 8.4% 20.5% 65.3% 5.8% 100% 
NA 9.8% 10.0% 62.3% 15.0% 100% NA 8.2% 20.7% 64.9% 6.1% 100% 
  W3             

W1 COM L COM LS SU              
COM 8.2% 21.0% 64.9% 6.0% 100%             
EXT 7.1% 20.2% 66.8% 5.9% 100%             
LS 8.7% 20.2% 65.0% 6.1% 100%             
NA 7.6% 22.6% 64.2% 5.6% 100%             
W1 = Wave 1, W2 = Wave 2, W3 = Wave 3, COM = comorbidity class, NA = negative affect class, EXT 
= externalizing class, LS = low symptom class, L COM = low comorbid, SU = substance use 

 
 

The values shaded in grey are values that describe stability in membership 

status. For example, 8.6% of individuals who were in the comorbidity class in Wave 1 

remained in the comorbidity class in Wave 2. The values that are not shaded describe 
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movement among the classes. For example, of the individuals who were in the 

comorbid class in Wave 1, 16.8% transitioned into the negative affect class in Wave 2. 

The low symptom class was the most stable class for all transitions (62.3% to 66.8%). 

From Wave 1 to Wave 2, the negative affect class was second to the low symptom 

class in stability (15.0%) followed by the externalizing class (10.2%).   

 As seen in all three transition tables, overall, when individuals transitioned, they 

typically to transitioned into the low symptom class (62.3% to 66.8%). The second most 

common transition was to the low comorbid class (20.2% to 22.6%) from Wave 2 to 

Wave 3 and Wave 1 to Wave 3. 

 

Sociodemographic characteristics 

 In Waves 1 and 2, males were significantly less likely than females to be 

classified in the comorbid and negative affect classes relative to the low symptom class, 

seen in Tables 5.8 – 5.10. In Wave 3, this relationship between sex and probability of 

latent class membership extended to the low comorbid class where men were less likely 

to be classified in the low comorbid class (OR = 0.79, 95% CI = 0.70-0.89), Table 5.10. 

However, males were more likely than females to be classified in the substance use 

class relative to the low symptom class in Wave 3 (OR = 1.98, 95% CI = 1.73-2.27), 

Table 5.10. 

 For all waves, a trend emerged for age across all classes: as age increased, the 

odds of class membership decreased for all classes relative to the low symptom class. 

Therefore, the youngest age group (18-24 years) had the highest odds of class 

membership compared to the oldest age group (65 years and older), relative to the low 
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symptom class (Tables 5.8 – 5.10). In Waves 1 and 2, the relationship between age and 

probability of latent class membership was largest in magnitude for the comorbid class. 

In Wave 3, the magnitude of association between age and the comorbid class (18-24 

years ORWave3 = 13.99, 95% CI = 9.83-19.90) was smaller than the substance use class 

(18-24 years ORWave3 = 30.75, 95% CI = 18.99-49.81), Table 5.10. 

 Respondents who identified as Non-Hispanic Black, Hispanic Multicultural, and 

Non-Hispanic Other were significantly less likely than respondents who identified as 

Non-Hispanic White to be classified in any of the classes relative to the low symptom 

class across all waves except for the relationship between Non-Hispanic Black and the 

substance use class in Wave 3 (OR = 1.10, 95% CI = 0.93-1.29). 

 Generally, all education levels relative to having an advanced degree increased 

one’s odds for membership in the comorbid classes for all waves, negative affect 

classes for Waves 1 and 2, and the substance use class for Wave 3, relative to the low 

symptom class across all three waves. The opposite relationship emerged between 

education and the externalizing classes for Waves 1 and 2, and the low comorbid class 

for Wave 3. Relative the having an advanced degree, generally all education levels 

demonstrated a protective effect for membership in the externalizing classes, especially 

in Wave 2 (Tables 5.8 – 5.9). The same relationship between education and latent class 

membership emerged between income and latent class membership except for the low 

comorbid class in Wave 3. Yet, these associations were not statistically significant (Less 

than $10,000 ORWave3 = 1.20, 95% CI = 0.94-1.53; $10,000-$24,999 ORWave3 = 1.14, 

95% CI = 0.93-1.39; $25,000-$49,999 ORWave3 = 1.07, 95% CI = 0.89-1.28; $50,000-

$99,999 ORWave3 = 1.01, 95% CI = 0.85-1.19), Table 5.10.  
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Compared to being extremely satisfied, as social satisfaction decreased, the 

likelihood of being in the comorbid (Not at all satisfied ORWave1 = 95.87, 95% CI = 66.32-

138.58; Not at all satisfied ORWave2 = 83.35, 95% CI = 54.05-128.53; Not at all satisfied 

ORWave3 = 88.94, 95% CI = 58.93-134.24), negative affect (Not at all satisfied ORWave1 = 

22.62, 95% CI = 15.44-33.16; Not at all satisfied ORWave2 = 18.34, 95% CI = 11.66-

28.84), externalizing (Not at all satisfied ORWave1 = 3.67, 95% CI = 1.62-8.31; Not at all 

satisfied ORWave2 = 6.31, 95% CI = 3.12-12.78), low comorbid (Not at all satisfied 

ORWave3 = 8.78, 95% CI = 5.47-14.12), and substance use (Not at all satisfied ORWave3 = 

4.21, 95% CI = 2.40-7.41) classes significantly increased. A dose-response relationship 

was identified with each level decrease of social satisfaction for every latent class 

across all waves. 
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Table 5.8: Wave 1 - Association Between Demographic and Social Variables on Probability of Latent Class 
Membership* 
 Comorbid Class Externalizing Class Negative Affect Class 
 OR (95% CI) OR (95% CI) OR (95% CI) 
Sex    
Female REF REF REF 
Male  0.72 (0.63-0.82) 1.00 (0.87-1.14) 0.74 (0.66-0.83) 
Age    
18-24 years 10.02 (7.06-14.24) 3.39 (2.69-4.28) 3.88 (3.11-4.83) 
25-34 years 6.00 (4.17-8.64) 1.81 (1.40-2.33) 2.39 (1.90-3.01) 
35-44 years 4.10 (2.83-5.94) 1.46 (1.11-1.91) 1.69 (1.32-2.16) 
45-54 years 3.77 (2.60-5.47) 1.13 (0.86-1.50) 1.52 (1.19-1.93) 
55-64 years 2.27 (1.54-3.36) 0.98 (0.73-1.32) 1.44 (1.12-1.85) 
65 years + REF REF REF 
Race    
Non-Hispanic White REF REF REF 
Non-Hispanic Black 0.48 (0.40-0.59) 0.62 (0.51-0.77) 0.76 (0.64-0.89) 
Non-Hispanic Other 0.73 (0.57-0.94) 0.69 (0.53-0.89) 0.72 (0.56-0.91) 
Hispanic Multiracial 0.50 (0.41-0.61) 0.65 (0.52-0.80) 0.78 (0.66-0.93) 
Education    
Less than high school 1.53 (1.05-2.21) 0.79 (0.57-1.09) 1.62 (1.22-2.15) 
GED/High school graduate 1.37 (0.98-1.92) 0.80 (0.61-1.05) 1.42 (1.10-1.83) 
Some college (no degree) 1.79 (1.29-2.47) 1.08 (0.85-1.37) 1.36 (1.06-1.75) 
Bachelor’s degree 1.35 (0.94-1.93) 1.10 (0.85-1.42) 1.16 (0.88-1.53) 
Advanced degree REF REF REF 
Income    
Less than $10,000 2.54 (2.03-3.18) 0.83 (0.65-1.06) 1.61 (1.32-1.95) 
$10,000- $24,999 2.02 (1.62-2.51) 0.55 (0.44-0.68) 1.51 (1.25-1.83) 
$25,000- $49,999 1.45 (1.16-1.81) 0.84 (0.68-1.04) 1.11 (0.92-1.33) 
$50,000- $99,999 1.00 (0.78-1.27) 1.21 (1.00-1.46) 0.99 (0.82-1.20) 
$100,000 or more REF REF REF 
Level of satisfaction with social activities and relationships  
Extremely satisfied REF REF REF 
Very satisfied 1.65 (1.31-2.07) 1.42 (1.18-1.70) 1.55 (1.31-1.85) 
Moderately satisfied 8.15 (6.54-10.15) 2.66 (2.18-3.26) 4.53 (3.78-5.43) 
A little satisfied 34.19 (26.4-44.29) 3.08 (2.17-4.39) 11.09 (8.70-14.14) 
Not at all satisfied 95.87 (66.32-138.58) 3.67 (1.62-8.31) 22.62 (15.44-33.16) 
*Reference low symptom class 
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Table 5.9: Wave 2 - Association Between Demographic and Social Variables on Probability of Latent 
Class Membership* 
 Comorbid Class Externalizing Class Negative Affect Class 
 OR (95% CI) OR (95% CI) OR (95% CI) 

Sex    
Female REF REF REF 
Male  0.57 (0.49-0.66) 1.01 (0.87-1.17) 0.70 (0.62-0.79) 
Age    
18-24 years 8.17 (5.73-11.64) 2.75 (2.09-3.62) 2.59 (2.09-3.22) 
25-34 years 5.48 (3.79-7.92) 2.29 (1.73-3.04) 1.88 (1.49-2.36) 
35-44 years 4.39 (3.01-6.39) 1.97 (1.48-2.63) 1.40 (1.11-1.78) 
45-54 years 3.60 (2.46-5.28) 1.30 (0.96-1.77) 1.44 (1.14-1.82) 
55-64 years 2.33 (1.56-3.49) 1.17 (0.85-1.62) 1.31 (1.03-1.68) 
65 years + REF REF REF 
Race    
Non-Hispanic White REF REF REF 
Non-Hispanic Black 0.43 (0.35-0.53) 0.51 (0.39-0.65) 0.81 (0.69-0.95) 
Non-Hispanic Other 0.80 (0.59-1.09) 0.58 (0.43-0.77) 0.74 (0.55-0.99) 
Hispanic Multiracial 0.62 (0.50-0.78) 0.53 (0.41-0.69) 0.73 (0.61-0.88) 
Education    
Less than high school 1.28 (0.86-1.90) 0.51 (0.34-0.77) 1.42 (1.04-1.94) 
GED/High school graduate 1.26 (0.89-1.78) 0.62 (0.47-0.82) 1.40 (1.07-1.85) 
Some college (no degree) 1.58 (1.14-2.21) 0.94 (0.73-1.19) 1.48 (1.13-1.93) 
Bachelor’s degree 1.08 (0.74-1.59) 0.91 (0.71-1.17) 1.06 (0.79-1.41) 
Advanced degree REF REF REF 
Income    
Less than $10,000 2.14 (1.66-2.76) 0.78 (0.57-1.07) 1.63 (1.31-2.04) 
$10,000- $24,999 1.87 (1.46-2.39) 0.89 (0.69-1.15) 1.52 (1.23-1.87) 
$25,000- $49,999 1.29 (1.01-1.65) 0.98 (0.79-1.22) 1.18 (0.97-1.44) 
$50,000- $99,999 1.01 (0.78-1.30) 0.90 (0.73-1.10) 0.90 (0.73-1.10) 
$100,000 or more REF REF REF 
Level of satisfaction with social activities and relationships  
Extremely satisfied REF REF REF 
Very satisfied 1.79 (1.35-2.35) 1.60 (1.3-1.97) 1.69 (1.4-2.03) 
Moderately satisfied 8.36 (6.4-10.91) 3.24 (2.59-4.05) 4.07 (3.35-4.94) 
A little satisfied 33.21 (24.27-45.45) 4.47 (3.05-6.54) 10.9 (8.35-14.23) 
Not at all satisfied 83.35 (54.05-128.53) 6.31 (3.12-12.78) 18.34 (11.66-28.84) 

*Reference low symptom class 
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Table 5.10: Wave 3 - Association Between Demographic and Social Variables on Probability of Latent 
Class Membership* 
 Comorbid Class Low Comorbid Class Substance Use Class 
 OR (95% CI) OR (95% CI) OR (95% CI) 

Sex    
Female REF REF REF 
Male  0.78 (0.68-0.91) 0.79 (0.70-0.89) 1.98 (1.73-2.27) 
Age    
18-24 years 13.99 (9.83-19.90) 3.23 (2.66-3.94) 30.75 (18.99-49.81) 
25-34 years 8.31 (5.81-11.90) 2.00 (1.64-2.45) 17.64 (10.87-28.62) 
35-44 years 5.49 (3.80-7.94) 1.45 (1.18-1.80) 11.45 (6.99-18.76) 
45-54 years 4.15 (2.87-6.00) 1.26 (1.02-1.56) 7.46 (4.53-12.30) 
55-64 years 2.16 (1.48-3.15) 1.27 (1.03-1.57) 6.39 (3.81-10.69) 
65 years + REF REF REF 
Race    
Non-Hispanic White REF REF REF 
Non-Hispanic Black 0.45 (0.37-0.56) 0.61 (0.52-0.73) 1.10 (0.93-1.29) 
Non-Hispanic Other 0.76 (0.57-1.01) 0.68 (0.53-0.86) 0.61 (0.47-0.80) 
Hispanic Multiracial 0.57 (0.46-0.71) 0.61 (0.51-0.73) 0.54 (0.45-0.66) 
Education    
Less than high school 1.64 (1.12-2.40) 0.76 (0.57-0.99) 2.08 (1.38-3.13) 
GED/High school graduate 1.34 (0.94-1.89) 0.81 (0.65-1.01) 2.34 (1.60-3.43) 
Some college (no degree) 1.68 (1.20-2.34) 1.04 (0.85-1.27) 2.25 (1.55-3.26) 
Bachelor’s degree 0.98 (0.68-1.42) 0.89 (0.72-1.11) 1.62 (1.10-2.38) 
Advanced degree REF REF REF 
Income    
Less than $10,000 2.87 (2.20-3.76) 1.20 (0.94-1.53) 2.35 (1.84-2.99) 
$10,000- $24,999 2.19 (1.70-2.81) 1.14 (0.93-1.39) 1.94 (1.55-2.43) 
$25,000- $49,999 1.43 (1.12-1.83) 1.07 (0.89-1.28) 1.42 (1.14-1.76) 
$50,000- $99,999 1.12 (0.86-1.45) 1.01 (0.85-1.19) 1.07 (0.85-1.34) 
$100,000 or more REF REF REF 
Level of satisfaction with social activities and relationships  
Extremely satisfied REF REF REF 
Very satisfied 1.92 (1.51-2.46) 1.56 (1.32-1.85) 1.23 (1.04-1.44) 
Moderately satisfied 7.52 (5.98-9.45) 3.50 (2.91-4.20) 1.92 (1.59-2.30) 
A little satisfied 36.74 (27.49-49.11) 7.17 (5.43-9.47) 2.51 (1.86-3.39) 
Not at all satisfied 88.94 (58.93-134.24) 8.78 (5.47-14.12) 4.21 (2.40-7.41) 

*Reference low symptom class 
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Network Comparisons 

 

Wave 1 

The Wave 1 network consisted of 17 nodes (Figure 5.4). The network had 94 

non-zero edges out of 136 possible edges (density=0.691), indicating that 69.1% of 

possible connections were identified in the network. The network structure is an Ising 

model, which is a network of partial correlation coefficients. Especially strong 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening”, and “Fights” and “Bully”. The negative affect symptoms were positioned 

between the substance use behaviors and externalizing symptoms, with many of the 

nodes lying on the periphery of the network. Edge-weights are shown in the Appendix D 

(Supplemental Table 5.1). 

 

 

Figure 5.4: Visualization of Wave 1 Network 
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Wave 2 

The Wave 2 network consisted of 17 nodes and had 84 non-zero edges out of 

136 possible edges (density = 0.618), indicating that 61.8% of possible connections 

were identified in the network (Figure 5.5). The network structure is an Ising model, 

which is a network of partial correlation coefficients. Similar to Wave 1, strong 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening”, and “Fights” and “Bully”. The nodes were clustering based on their 

respective groups rather than the negative affect symptoms lying between the 

substance use behaviors and negative affect symptoms, as seen in the Wave 1 

network. Edge-weights are shown in the Appendix D (Supplemental Table 5.2). 

 

Figure 5.5: Visualization of Wave 2 Network 
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Wave 3 

The Wave 3 network consisted of 17 nodes and had 95 non-zero edges out of 

136 possible edges (density = 0.699), indicating that 69.9% of possible connections 

were identified in the network (Figure 5.6). The network structure is an Ising model, 

which is a network of partial correlation coefficients. Similar to Waves 1 and 2, strong 

connections emerged between the tobacco use nodes, between “Attention” and 

“Listening”, and “Fights” and “Bully”. Edge-weights are shown in the Appendix D 

(Supplemental Table 5.3). 

 

Figure 5.6: Visualization of Wave 3 Network 
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Wave 1 vs Wave 2 Comparison 

 There were not too many noticeable differences when visually comparing the 

Wave 1 and Wave 2 networks (Figure 5.7). The direction of the edges (e.g., positive or 

negative) was the same in both networks. The edge-weight between “Bully” and “Fights” 

appears larger in Wave 2 compared to Wave 1. Some nodes had more or fewer 

connections, depending on the network. For example, alcohol had six connections in 

the Wave 1 network versus only three connections in the Wave 2 network. 

 

Figure 5.7: Visual Comparison of Wave 1 and Wave 2 Networks 
 

 Nine edges (edge-weights = EW) were significantly different (p < 0.05) between 

Wave 1 and Wave 2 (Table 5.11). Overall, these edges increased in magnitude from 

Wave 1 to Wave 2 except for the connections between sleeping problems—restless 

(EWWave 1= 0.37, EWWave 2 = 0.09), marijuana—PDNP (EWWave 1= 0.62, EWWave 2 = 0.37), 

and CIG—sleeping problems (EWWave 1= 0.16, EWWave 2 = 0). Some connections existed 
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in one wave where it did not in another: CIG—sleeping (EWWave 1= 0.16, EWWave 2 = 0) 

and  ECIG—distressed about the past (EWWave 1= 0, EWWave 2 = 0.42).   

 

Table 5.11: Significant Edge Differences between Wave 1 and Wave 2 
Node 1 Node 2 W1 Edge W2 Edge P-value 
CIG Marijuana 0.78 0.91 0.01 
Marijuana PDNP 0.62 0.37 0.01 
CIG Sleeping 0.16 0 0.04 
ECIG Distressed/Past  0 0.42 0.03 
Anxious Lied 0.25 0.46 0.03 
Distressed/Past Listening 0.20 0.46 0.01 
Attention Listening  3.47 3.72 0.02 
Bully Fights  2.40 2.80 0.04 
Sleeping Restless 0.37 0.09 0.01 

 

 Despite some node-specific relationships that differed by wave, the overall 

structure of the networks (maximum difference = 1.56, p-value = 0.23) and the global 

strength (Wave 1 = 56.0, Wave 2 = 59.3, p-value = 0.27) did not significantly differ 

between Wave 1 and Wave 2. Therefore, the overall structure and connectivity was not 

different between Wave 1 and Wave 2. 

 

Wave 2 vs Wave 3 Comparison 

There were fewer differences between Waves 2 and 3 versus Waves 1 and 2 

when visually comparing the networks (Figure 5.8). The direction of the edges was the 

same in both networks. The magnitudes of the edge-weight appear very similar 

between Waves 2 and 3. Some nodes had more or fewer connections depending on the 

network. For example, marijuana had eight connections in the Wave 2 network versus 

twelve connections in the Wave 3 network. 
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Figure 5.8: Visual Comparison of Wave 2 and Wave 3 Networks 
 

 Nine edges were significantly different (p < 0.05) between Wave 2 and Wave 3 

(Table 5.12). Five edges increased in magnitude from Wave 2 to Wave 3: Dual CIG + 

ECIG—listening difficulties (EWWave 2= 0, EWWave 3 = 0.22), listening difficulties—fighting 

(EWWave 2= 0, EWWave 3 = 0.40), feeling depressed—restlessness (EWWave 2= 0.14, 

EWWave 3 = 0.44), alcohol—answered (EWWave 2= 0.44, EWWave 3 = 0.55), and bullying—

answered (EWWave 2= 0.38, EWWave 3 = 0.65). The remaining four edges decreased in 

magnitude from Wave 2 to Wave 3. 
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Table 5.12: Significant Edge Differences between Wave 2 and Wave 3 
Node 1 Node 2 W2 Edge W3 Edge P-value 
ECIG Distressed/Past 0.42 0 0.03 
Dual CIG + ECIG Listening 0 0.22 0.02 
Marijuana Listening 0 -0.2 0.02 
Listening Fights 0  0.4 0.02 
CIG Restless 0  -0.29 0.02 
Depressed Restless 0.14 0.44 0.02 
Distressed/Past Restless 0.43 0.23 0.04 
Alcohol Answered 0.44 0.55 0.03 
Bully Answered 0.38 0.65 0.05 

 

Despite the nine node-specific relationships that differed by wave, the overall 

structure of the networks (maximum difference = 1.32, p-value = 0.23) and the global 

strength (Wave 2 = 59.3, Wave 3 = 60.0, p-value = 0.75) did not significantly differ 

between Wave 2 and Wave 3. Therefore, the overall structure and connectivity was not 

different between Wave 2 and Wave 3. 

 

Wave 1 vs Wave 3 Comparison 

 There were few noticeable differences when visually comparing the Wave 1 and 

Wave 3 networks (Figure 5.9). The direction of the edges (e.g., positive or negative) 

was the same in both networks. The edge-weight between “Bully” and “Fights” appears 

larger in Wave 3 compared to Wave 1.  
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Figure 5.9: Visual Comparison of Wave 1 and Wave 3 Networks 
 

Twenty-two edges were significantly different (p < 0.05) between Wave 1 and 

Wave 3 (Table 5.13). Half of these edges increased in magnitude, specifically CIG—

marijuana (EWWave 1= 0.78, EWWave 3 = 0.93), anxious—distressed about the past 

(EWWave 1= 1.63, EWWave 3 = 1.77), and attention difficulties—listening difficulties 

(EWWave 1= 3.47, EWWave 3 = 3.66).  
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Table 5.13: Significant Edge Differences between Wave 1 and Wave 3 
Node 1 Node 2 W1 Edge W3 Edge P-value 
CIG Alcohol  0 -0.07 0.01 
CIG Marijuana 0.78 0.93 0.01 
Marijuana PDNP 0.62 0.32 0.01 
Alcohol Depressed 0  -0.09 0.03 
CIG Sleeping 0.16 0 0.04 
ECIG Sleeping 0.22 0 0.04 
PDNP Distressed/Past 0.31 0.08 0.04 
Anxious Distressed/Past 1.63 1.77 0.05 
Alcohol Lied 0.2 0 0.01 
Marijuana Lied 0.6 0.39 0.02 
Sleeping Lied 0.11 0.3 0.03 
Sleeping Attention 0.53 0.69 0.04 
Dual CIG + ECIG Listening 0 0.22 0.04 
Marijuana Listening 0 -0.2 0.02 
Distressed/Past Listening  0.2 0.4 0.05 
Attention Listening  3.47 3.66 0.03 
Listening Fights 0 0.4 0.03 
Bully Fights 2.40 2.88 0.03 
CIG Restless -0.09 -0.29 0.04 
Depressed  Restless 0.19 0.44 0.01 
Sleeping Restless 0.37 0.14 0.02 
Listening Answered 0.34 0.48 0.05 

 

 Global strength did not significantly differ between Wave 1 and Wave 3 (Wave 1 

= 56.0, Wave 3 = 60.0, p-value = 0.24). There was not a significant difference in the 

maximum difference in edge weights between Waves 1 and 3 (maximum difference = 

0.82, p-value = 0.60). Therefore, the overall structure and connectivity was not different 

between Wave 1 and Wave 3. 

 

Wave 1, Wave 2, and Wave 3 Network 

The network including Waves 1, 2, and 3 consisted of 51 nodes (Figure 5.10). 

The network had 233 non-zero edges out of 1275 possible edges (density=0.183), 
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indicating that 18.3% of possible connections were identified in the network. The 

network structure is an Ising model, which is a network of partial correlation coefficients. 

Edge-weights within a respective wave reduced in magnitude. For example, the edge-

weight between cigarette and e-cigarette for the Wave 1 only network was -4.74 and the 

edge-weight in the network with three waves is -2.28. Edge-weights are shown in the 

Appendix D (Supplemental Table 5.4-5.6). 

 

Figure 5.10: Visualization of the Wave 1, Wave 2, and Wave 3 Network 

 

Nodes clustered by wave with very little overlap. Only two edges connected from 

Wave 1 to Wave 2: distressed about the past from Wave 1—dual cigarette and e-

cigarette from Wave 2 (EW = 0.05, tetrachoric correlation = 0.02, p-value = 0.30), and 

lying from Wave 1—PDNP from Wave 2 (EW = -0.14, tetrachoric correlation = -0.02, p-
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value = 0.31). One edge connected from Wave 1 to Wave 3: marijuana from Wave 1—

feeling depressed from Wave 3 (EW = -0.07, tetrachoric correlation = -0.03, p-value = 

0.02). No edges connected from Wave 2 to Wave 3. All other tetrachoric correlations 

between waves were zero or near zero and were not statistically significant. 

 

DISCUSSION 

This is one of the first studies to use results from latent class and network 

analyses to preliminarily assess whether comorbidity between substance use behaviors 

and mental disorder symptoms changes over time in adults. There were three major 

results from this study. First, both latent class profiles and network analyses suggested 

that the comorbidity structure remained stable over time. Second, results from the latent 

class comparisons demonstrated that for people that did transition to another class, 

these transitions moved from a more severe class to a less severe or low symptom 

class. Third, the edge strength invariance test suggested stronger connections among 

the substance use behaviors and mental health symptoms from preceding to 

subsequent waves.  

 

Overall stability in latent profiles with transitions to low symptom class 

 Similar latent profiles emerged across the three waves in the cross-sectional 

review of the four-class solution specifically where the low symptom class was largest 

(65.5% to 72.9%) and the comorbid class was smallest (6.1% to 8.2%). These 

consistencies also emerged in the multinomial regression analyses to determine which 

sociodemographic factors were significantly associated with class membership. These 
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results support previous work that have established a stability in substance use and 

mental disorder comorbidity over time67–69 and are generally consistent with youth and 

young adult studies.227  

 The largest difference was seen in Wave 3 where low comorbid and substance 

use classes emerged rather than the externalizing and negative affect classes from 

Waves 1 and 2. There are two potential reasons for this difference. First, it could be the 

case that a four-class solution is not most optimal in Wave 3. Results from the entropy 

and the Lo-Mendell-Rubin tests did not support the selection of a four-class solution as 

most optimal. Yet, a four-class solution was selected in order to easily compare the 

latent classes from Wave 3 to the latent classes from Waves 1 and 2. Another reason 

could be that the composition of the latent classes shifted meaning that the comorbidity 

profile changed from Wave 2 to Wave 3. However, this is not a probable reason 

because the same people are included at each wave and a shift in their comorbidity 

profiles is unlikely to occur over the course of a year. 

 The low symptom class was the most stable over the transition periods. Our 

results suggest that there was a greater transition from the original class (i.e., 

comorbidity, negative affect, externalizing, low comorbid or substance use) to the low 

symptom class compared to stability from the preceding to the subsequent waves. This 

is inconsistent with substance use comorbidity research in adolescents, as they have 

identified transitions from less to more severe substance use behaviors.12,223,226,227 

However, results are consistent with prior mental disorder comorbidity literature that 

explains both a continuity and a change.67,227 This transition may indicate that the 

individual is receiving the resources and support necessary to remit to a less severe 
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class. This could also result from characterizing symptom or behavior patterns rather 

than diagnoses. Past month endorsement of a symptom or behavior may be more 

flexible to transition compared to a diagnosis. A true longitudinal assessment like a 

latent transition analysis is needed to confirm these transitions over time. 

 

No difference in network structure over time but an increase in association between 

symptoms and behaviors 

 There was no significant difference in overall structure and connectivity between 

any pairwise network comparison. This finding supports the stability discovered in the 

cross-sectional assessments of the latent classes. However, there were significant 

differences in edge weights between the waves. These differences (1) occurred within 

constructs (e.g., between two substance use behaviors) and across constructs (e.g., 

between a substance use behavior and negative affect symptom), and (2) generally 

demonstrated an increase in magnitude from the preceding wave to the subsequent 

wave. These discoveries enforce that the comorbidity structure was not dynamic, and 

that connections were becoming stronger across a three-year time period. 

There are many reasons why connections may increase across time. This could 

be due to biological factors (i.e., onset of new disorder symptoms) or time-varying 

changes (i.e., age or an increase in education and income). Another important 

consideration, however, is the change in substance use and mental health conditions 

due to cultural or environmental shifts. For example, there is potential for greater access 

to and use of electronic cigarettes as new electronic nicotine delivery systems are 

developed. Marijuana is also becoming more widely available in the United States 
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because of changes in policies either decriminalizing or legalizing recreational use. 

Other worldly events (e.g., the COVID-19 pandemic) may give rise to an increase in 

substance use behaviors and mental health problems.32 The biological, time-varying, 

cultural and environmental shifts have the potential to increase the connections of 

substance use behaviors and mental disorder symptoms over time. 

The network with all three waves of data was very sparse, and interesting 

connections were not found between nodes in different waves. The data were merged 

by an individual’s identification number; however, time was not accounted for in the 

network model, meaning that this was not a true longitudinal analysis. Additionally, the 

nodes in these networks only capture past month endorsement of substance use 

behaviors and mental disorder symptoms. Therefore, it is unlikely that there would be 

connections detected between the waves because nodes within a respective wave 

represent a different time. Prior work has identified comorbid longitudinal relationships 

by using diagnostic level measures after one year68 and three years67 from data 

collected at baseline. Relationships have also been identified between depressive 

symptoms (measured as the frequency of depressive symptoms within one week using 

the Center for Epidemiologic Studies Depression Scale [CES-D]) and past month as 

well as past year major depressive disorder diagnosis over seven years of data 

collection.229 However, these studies did not utilize a network approach. There are 

longitudinal network models for panel data in development that should be leveraged to 

more accurately account for the longitudinal nature of these data and explore possible 

connections over time.  
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Complementary latent class and network results  

Both analyses support stability in the comorbidity structures over time. The 

preliminary assessments of comorbidity patterns of both approaches complement the 

major results that (1) the comorbidity structure exists and remains relatively stable over 

time, (2) if a transition occurs in the comorbidity profile, it is likely to move from more to 

less severe, and (3) connections among the substance use behaviors and mental 

disorder symptoms may be growing larger from preceding to subsequent wave. 

 

Strengths and limitations 

 Results from this study should be interpreted with consideration of the following 

limitations. First, these data were collected between 2013-2016. Three years is likely 

not a long enough time frame to detect significant changes in comorbidity. Although 

there were considerable cultural and environmental changes during this time (like the 

increase and influx of e-cigarette availability and products, respectively, as well as 

changes in marijuana legislation across the U.S.), we recommend a more updated 

longitudinal assessment of the comorbidity structure especially in light of the COVID-19 

pandemic. Second, the approaches used in this study were preliminary assessments of 

the comorbidity patterns in a nationally representative sample of adults. A latent 

transition analysis was not conducted. Additionally, we did not evaluate the differences 

in item response patterns due the overwhelming nature of possible combinations (i.e., 

seventeen items across three time periods). A true longitudinal assessment (i.e., latent 

transition analysis) is needed to ensure optimal class solution across the waves and 

confirm the transitions found in this study. Third, the ability to perform a longitudinal 
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network analysis for panel data is currently limited. This method is in the early stages of 

development; therefore, we were limited to pairwise network comparisons. Researchers 

should consider using this new approach (i.e., cross-lagged network models) to 

investigate the comorbidity structure in future analyses. Fourth, PATH participants who 

did not start the study at Wave 1 were not included in our study. This decreased the 

sample size; however, we could account for any cohort effects by excluding them from 

the study. Furthermore, participants included in the analyses differed significantly from 

participants that were excluded due to missing data. Consequently, these results may 

not be generalizable to the U.S. adult population. Fifth, the network models did not 

adjust for the influence of other sociodemographic variables were not included in these 

analyses. Therefore, there may be some residual confounding. Sixth, accuracy and 

stability test for Waves 2 and 3 were not conducted; therefore, network results should 

be interpreted with caution. 

 

Conclusions 

 This is the first study to use complementary statistical methods, latent class and 

network analysis, to evaluate substance use behavior and mental disorder symptom 

comorbidity patterns in adults over time. These results suggest that the comorbidity 

structure exists and remains stable. Furthermore, the connections between these 

behaviors and symptoms are possibly becoming stronger. Therefore, investment of 

time, money, and other resources are encouraged to support those experiencing 

comorbidity as they are unlikely to change in adulthood. It is important to target and 

maintain interventions based on comorbidity structures because the structure is not 
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changing in composition, but is changing in strength. There is a need to support people 

based on the comorbidities that they present, not just one behavior or symptom at a 

time. 
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CHAPTER 6: DISCUSSION 

 

To date, current approaches to detection and prevention of comorbid SUD have 

been limited by a focus on SUD exclusively even though substance use often co-occurs 

across multiple substances and is often comorbid with mental disorders. This 

dissertation sought to address the following knowledge gaps: (1) current SUD research 

suffers from the unidimensional approach that does not account for comorbidity; (2) 

patterns of comorbidity are not the same, although current knowledge is based on 

homogeneous samples; and (3) it is unclear whether patterns of comorbidity remain 

stable or changes. Therefore, the goal of this dissertation was to characterize the 

comorbidity between substance use, including tobacco use, and mental disorder 

symptoms measured as negative affect and externalizing symptoms in a population-

based sample by: preliminarily assessing comorbidity using multinomial regression 

between lifetime negative affect severity, externalizing severity and nicotine 

dependence, and current use of tobacco (cigarettes and e-cigarettes) and alcohol 

(Chapter 2); identifying latent classes of comorbid substance use as well as negative 

affect and externalizing symptoms and their ability to predict SUD severity (Chapter 3); 

detailing substance use, negative affect, and externalizing symptom networks and 

testing for differences in the network structure and connectivity by gender (Chapter 4); 

and using pairwise comparisons from the LCA and network results to address stability 

or movement of comorbidity structures over three waves of data (Chapter 5). 
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Confirmation of the comorbidity structure in U.S. adults prompts a multidimensional 

approach to substance use and mental disorders 

 Results from Chapters 3 and 4 distinguished different comorbidity groups and 

identified how the substance use and mental disorder symptoms connected with each 

other, respectively. These results confirm a robust comorbidity structure in U.S. adults 

by characterizing seventeen substance use behaviors and mental disorder symptoms 

into groups and identifying specific connections. The LCA results suggest that 

approximately 21% of the sample made up the negative affect or externalizing classes 

at Waves 1 and 2, and about 26% made up the low comorbid or substance use classes 

at Wave 3. These individuals reflect a subpopulation with possible subthreshold levels 

of impairment that may not be identified with current classification systems of substance 

use and mental disorders. Network analysis results confirm that connections between 

behaviors and symptoms overlap and cut across constructs (i.e., diagnostic 

boundaries). Furthermore, these results identified comorbidity patterns, not singular 

disorder in the population. This provides reason to reconsider our current 

unidimensional approach to substance use and mental disorder comorbidity because 

the prevalence of potential subthreshold level comorbidity in the population is 

happening at a greater rate than the high comorbidity class (21-26% vs 6-8%).  These 

results support inclusion and regular study of additional substance use behaviors and 

mental disorder symptoms at subthreshold levels. The robust comorbidity structure can 

provide insight into the overall wellbeing of an individual. Dissertation results have the 

potential to increase comorbidity awareness in clinicians and further help clinicians to 

better target comorbidity because specific aspects of substance use and mental 
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disorder symptoms that are more likely to occur with each other were identified. Future 

studies could build upon these findings and explore how this comorbidity awareness 

can be applied to clinical settings. In the future, comorbidity research done in the clinical 

space could be translated to encourage increased communication about substance use 

behaviors and mental disorder symptoms with clinicians and their clients to consider 

comorbidity during health screenings, and support those affected with multiple 

conditions more efficiently. 

 

Substance use varied by mental disorder symptoms suggesting different comorbidity 

profiles  

Analysis of the Population Assessment of Tobacco and Health Study provided a 

unique opportunity to study patterns of comorbidity across multiple tobacco products 

(i.e., electronic- and conventional- cigarette use) in addition to substance use and 

mental health comorbidity. A relatively novel tobacco product, e-cigarettes, was 

included in the study while also accounting for the dual use of conventional cigarettes 

and e-cigarettes rather than simply classifying any tobacco use through a measure of 

nicotine dependence or considering conventional cigarette use only. Dual users 

represent a novel and distinct class of tobacco users that must be accounted for, 

especially when exploring comorbidity.230 This approach (1) allowed for a more detailed 

investigation into how tobacco products present and connect with comorbid substance 

use behaviors and mental disorder symptoms, and (2) limited the potential 

misclassification bias introduced when dual users are not classified outside of 

conventional or e-cigarette use.  



 215 

Results from Chapters 3 and 4 indicated that conventional cigarette use and dual 

use of conventional cigarettes and e-cigarettes were associated with negative affect 

symptoms, while the exclusive use of e-cigarettes was associated with externalizing 

symptoms. This result differs from a prior study from Conway et al. (2017) that reported 

e-cigarette use to have a larger magnitude of association with negative 

affect/internalizing severity compared to externalizing symptoms.73 This difference is 

likely due to the classification of tobacco product use. The Conway et al. paper 

measured current e-cigarette use without excluding conventional cigarette use. 

Nevertheless, dual use of e-cigarette and cigarette use is increasing in the U.S.83 and 

about 16% of current smokers were also current e-cigarette users in 2014.85 

Additionally, results in Chapter 2 identified patterns of association with mental disorder 

symptoms varied by dual use and exclusive use. The results from this dissertation 

encourage the study of three separate classes of tobacco products (i.e., exclusive 

conventional cigarette use, exclusive e-cigarette use, and dual use of conventional and 

e-cigarettes) in order to provide a clearer understanding of comorbidity profiles related 

to substance use behaviors and mental disorder symptoms in U.S. adults.  

Chapter 2 determined that the associations between psychopathology (negative 

affect vs. externalizing severity) varied by different combinations of alcohol, 

conventional cigarette and e-cigarette use. Negative affect severity was associated with 

cigarette and alcohol use together as well as alcohol-exclusive use, while externalizing 

severity was associated with e-cigarette and alcohol use together. These results confirm 

that associations between negative affect and externalizing severity varies by different 

combinations of alcohol, cigarette, and e-cigarette use. 
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Chapter 3 results built on those of Chapter 2 by including a more robust set of 

substance use and mental disorder symptom variables (i.e., adding marijuana, 

prescription drugs not prescribed [PDNP], four negative affect symptoms, and seven 

externalizing symptoms) and extending past multinomial regression by using a latent 

class analysis approach to detail the patterns of specific substance use behaviors that 

have different relationships with mental disorder symptoms. Specifically, exclusive 

cigarette use, dual cigarette and e-cigarette use, marijuana use, and PDNP were 

associated with a negative affect class. In contrast, exclusive e-cigarette and alcohol 

use were associated with an externalizing class. Results from Chapter 3 confirmed the 

relationship between conventional cigarette use and negative affect identified in Chapter 

2, and provided more clarity on the relationships between dual cigarette and e-cigarette 

use and negative affect as well as exclusive e-cigarette use and alcohol use with 

externalizing symptoms. 

Chapter 4 complemented the results from Chapter 3 by identifying the 

magnitudes of specific connections between a unique pair of variables. PDNP, 

marijuana use, dual use of cigarette and e-cigarette, and conventional cigarette use had 

strong connections with negative affect symptoms. PDNP use was most strongly 

associated with negative affect symptoms. Marijuana and alcohol use were most 

strongly associated with externalizing symptoms. Results from the nodewise 

predictability analysis identified which nodes were most important in influencing the 

other nodes in the network, an important discovery regarding intervention.  

 It is often thought that interventions can be best developed using longitudinal 

data. However, the use and incorporation of marginal effects in models have been 
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utilized more frequently in health systems research to establish expectations related to 

interventions, particularly for cross-sectional data.231 An underappreciated result from 

network models are the estimates of nodewise predictability, which are produced using 

marginal effects. The nodewise predictability results discussed in Chapter 4 provided a 

quantitative understanding into how effective intervention could be as well as guidance 

on how to intervene on substance use behaviors and mental disorder symptoms (i.e., 

through a specific node of interest or neighboring nodes). Most of the nodes in the 

model had a small normalized accuracy, meaning that most of the accuracy or 

predictability of these nodes in the network were due to the contribution of the node in 

question specifically rather than through the contribution of other nodes. The negative 

affect symptoms, attention problems, listening problems, and impulsivity had larger 

normalized accuracy in that the accuracy of these symptoms had larger contributions by 

other nodes in the network. Therefore, intervention on any of the nodes would likely 

influence any other behavior or symptom in the network since the network was largely 

determined by itself through strong mutual interactions between nodes. 

These results could help to inform future research in clinical spaces to target 

specific behaviors and symptom combinations. This type of research could identify a 

potential opportunity for clinicians and their patients/clients to have an open 

conversation about substance use behaviors that may influence their mental health and 

vice versa. A clinician could consider alternative approaches for someone with 

comorbidity versus someone affected with a single condition. For example, if a person 

were to present with co-occurring dual cigarette and e-cigarette use, a clinician could 

consider asking questions about the person’s co-occurring negative affect symptoms. 
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The alternative can happen as well: if a person were to present with negative affect 

symptoms (i.e., feeling depressed, feeling anxious, experiencing sleeping problems, 

and/or feeling distressed about the past), a clinician could ask questions about the 

person’s co-occurring tobacco use, specifically conventional cigarette use or the 

combination of cigarettes and e-cigarettes together.  

 

Sociodemographic characteristics were associated with comorbidity 

 The results in Chapters 3, 4, and 5 were consistent with previous work, 

particularly as it applies to gender.2,41,123 For instance, compared to men, women had 

greater odds of membership in the comorbid, low comorbid, and negative affect latent 

classes (Chapters 3 and 5). Compared to women, men had greater odds of 

membership in the substance use latent class (Chapter 5). Results from Chapter 4 

expanded the gender difference literature related to comorbidity by identifying specific 

connections between comorbid substance use and mental disorder symptoms by 

gender. Specifically, alcohol use and sleeping problems, exclusive e-cigarette use and 

lying, alcohol use and lying, and alcohol use and attention difficulties were all stronger 

for men than they were for women.  

Chapters 3 and 5 emphasized the importance of age on comorbidity. Participants 

of any age category (i.e., 18-24 years, 25-34 years, 35-44 years, 45-54 years, and 55-

64 years) compared to those ages 65 and older, had greater odds of latent class 

membership for all classes. The magnitude of the association gradually decreased as 

age increased. This is consistent with previous work where younger people are at 

greater risk for mental health and substance use problems compared to people in older 
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age categories.41 This matches the age of substance use initiation which typically 

occurs in younger age categories, and age of onset for most mental disorders as 

roughly 50% to 75% of all lifetime mental disorders start by the mid-teens and mid-20s, 

respectively.2,154 Therefore, strategies targeting younger ages, specifically those 

between the ages of 18-24 years, could be helpful in reducing comorbidity in younger 

ages and possibly prevent comorbidity as age increases. 

Chapters 3 and 5 highlighted the role of race/ethnicity on comorbidity and 

encourage additional study in this area. For example, participants who described 

themselves as belonging to non-White racial categories (i.e., Non-Hispanic Black, Non-

Hispanic Other, Hispanic Multiracial) were less likely to be in any of the following latent 

classes compared to those who categorized themselves as Non-Hispanic White:  

comorbid, externalizing, negative affect, low comorbid, and substance use classes. This 

result does support other findings typically identified in the Black-White mental health 

paradox.158 This paradox has generally supported the idea that Black Americans 

experience similar or relatively low rates of psychiatric disorders compared to Whites 

despite higher stress exposure, greater material hardship, and worse physical health.158 

Previous work exploring the Black-White mental health paradox has focused on single 

psychiatric conditions158 and these results identify that this paradox is also present for 

comorbidity. 

Chapters 3 and 5 identified the role of education and income in comorbidity. In 

general, low education and income were positively associated with membership in the 

comorbid, negative affect, and substance use latent classes. However, a negative 

relationship was discovered with low education and income and the externalizing class 
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in Waves 1 and 2, and the low comorbid class in Wave 3. Prior work has identified that 

higher education and income levels represent a protective relationship from 

membership in internalizing or negative affect, externalizing, and high psychopathology 

classes.41 Therefore, our result of low education and income being less likely to occur 

with externalizing and low comorbid classes is different than what has previously been 

identified. Future research should continue to include socioeconomic status variables in 

the assessment of comorbidity to further clarify this association. 

A social support variable was included in Chapters 3 and 5 because the 

relationship between social support and substance use behaviors/disorders (1) is well-

established in youth, but results are mixed, and (2) may be a potential modifiable factor 

to use as part of intervention strategies to address substance use and mental disorder 

symptom comorbidity. This variable also provided insight into how an individual’s 

interpersonal relationships were associated with comorbidity as previous research has 

only focused on a single outcome (e.g., substance use only).232,233 The associations 

between social satisfaction and latent class membership reflected a potential dose-

response relationship where a decrease in social satisfaction significantly increased 

odds of class membership. This represents a very interesting opportunity for potential 

intervention because social satisfaction is an easier factor to influence or change 

compared to the other demographic factors included in the analysis (i.e., sex, age, race, 

education, and income). Specifically, the probability of class membership in comorbid, 

negative affect, low comorbid, or substance use classes could decrease if social 

satisfaction can be improved by increasing satisfaction with activities and relationships. 

Epidemiologic and community-based participatory research studies have identified the 
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benefit of improving social support and relationships to reduce the likelihood of 

developing mental health and substance use problems.234–239 Consequently, social 

satisfaction should be considered and implemented for public health prevention 

strategies related to substance use and mental disorder symptom comorbidity, 

supporting and expanding community-wide efforts to develop and increase social 

satisfaction.   

 

Comorbidity structure remained stable with transition to lower severity groups but 

identification of stronger connections across three data points 

 Results from Chapter 5 confirmed prior research regarding substance use and 

mental disorder symptom comorbidity67,69: the behaviors were stable across three 

years. Both the LCA and network analyses showed that the overall comorbidity profiles 

and network structures were consistent across waves. Further, evaluation of the 

possible latent class transitions among the waves identified that people more commonly 

transitioned from more severe class to a less severe class. However, stronger 

connections were discovered in subsequent waves when specifically testing for 

significant differences in edge-weights of substance use and mental disorder symptom 

connections between the waves. Consequently, the connections between these 

behaviors and symptoms may become stronger over time. Investment of time, money, 

and other resources early in adulthood are encouraged to support those experiencing 

comorbidity as the co-occurring behaviors and symptoms are likely to become more 

severe in adulthood.  
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Latent class analysis and network analysis produce complementary results 

 Although LCA and network approaches are different and follow different 

conceptual frameworks, results from both arrived at similar conclusions described in 

Table 6.1. Both LCA and network analysis identified relationships between (1) exclusive 

cigarette, dual cigarette and e-cigarette, marijuana, and PDNP with negative affect 

symptoms, and (2) alcohol with externalizing symptoms. 

Table 6.1: Associations between substance use and mental disorder symptoms 
identified through LCA and/or network analysis 

Past Month Substance Use Past Month Mental 
Disorder Symptom LCA Network 

Analysis 
Exclusive cigarette Negative affect Yes Yes 
Dual cigarette and e-cigarette  Negative affect Yes Yes 

Marijuana Negative affect Yes Yes 
Externalizing  Yes 

PDNP Negative affect Yes Yes 
Exclusive e-cigarette Externalizing Yes  
Alcohol Externalizing Yes Yes 

  

Latent class analysis was best at distinguishing different comorbidity in the population 

while also accounting for the potential influence of sociodemographic factors compared 

to the network analysis. Although the latent class analysis was unsuccessful at using 

latent class membership to predict SUD severity, a strong relationship between class 

membership and SUD severity was detected. This confirms and underscores the 

importance of the relationship between comorbidity and SUD severity.  

Network analysis was best at demonstrating the total number of connections 

between substance use behaviors and mental disorder symptoms compared to the 

LCA, while also showing which behaviors/symptoms were most influential in the 

comorbidity network. These results identify important comorbid substance use 

behaviors and mental disorder symptoms, informing a more targeted approach to 



 223 

comorbidity. There were no significant differences in network structure or connectivity 

by gender, but specific connections were different and these differences were 

consistent with other literature.2,153,209,240–243  

These approaches complement each other because they fill the gaps of the other 

approach. Latent class results identified heterogeneous groups in the population which 

helped to inform which items were likely to happen with each other. Network analysis 

results provided information regarding the strength of associations between two nodes. 

For example, alcohol use had relatively high item response probabilities across all 

classes, but was highest in the externalizing class. Network analysis results identified 

that alcohol use was more strongly associated with the impulsivity externalizing 

symptom compared to other externalizing symptoms. In addition to identifying which 

substance use behaviors or mental disorder symptoms likely occur with one another, 

network analysis complements the latent class results by identifying the magnitude of 

the associations. Latent variable and network approaches should continue to be used in 

comorbidity studies to further explore the comorbidity structure in other populations 

including additional substance use behaviors and mental disorder symptoms. 

 

Future considerations to address dissertation limitations  

Symptom-level data (i.e., past month endorsement of substance use and 

experiencing negative affect/externalizing symptoms) were used in these analyses to 

address research gaps identified in Chapter 1. A strength of using symptom-level data 

was that it limited recall bias and accurately accounted for comorbidity overlap (i.e., 

comorbidity occurring within the same time frame). However, it did not identify 
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problematic or severe comorbidity. This limitation was obvious in two places in the 

dissertation. First, the poor ability to predict SUD severity using latent class membership 

in Chapter 3 may have been because of the past-month measurement. Second, past-

month alcohol use was not necessarily indicative of problematic or harmful alcohol use. 

This point was acknowledged specifically in Chapters 4 and 5 regarding why the alcohol 

node was not well centralized or connected to others in the network. These points 

should be considered when interpreting results from this dissertation. 

 Results estimated in this dissertation may be subject to bias due to missing data. 

The sample was large and missing data did not influence the statistical power of the 

models tested. However, the missing data may have represented a misclassification 

bias in two ways. First, participants with missing data were significantly different than 

those included in the analyses. Those included in the analyses were more likely to 

endorse substance use, negative affect symptoms, and externalizing symptoms 

compared to those who were missing. Also, the analytic sample were more likely to be 

Non-Hispanic white, men, aged 25-54 years with higher levels of education and annual 

household income than those who were missing. Consequently, these results may not 

be generalizable to the U.S. adult population. Second, there was an expectation for 

social desirability bias to play a role in the missing data, meaning that participants might 

be less likely to endorse their true substance use behaviors and negative 

affect/externalizing symptoms because of the stigmatization surrounding these 

measures. This effect is expected to underestimate the study results. Although those 

included in the analysis were more likely to endorse substance use behaviors and 
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mental disorder symptoms, social desirability may still be at play and should be 

considered when interpreting results. 

Other statistical approaches are encouraged as the comorbidity research 

continues to develop. First, the use of LCA was limited by the conditional independence 

assumption and its inability to account for heterogeneous groups within the population 

(i.e., SUD and no SUD). Consequently, factor mixture modeling (FMM)131 is suggested 

to address this limitation. Unlike LCA, FMM does not operate under the conditional 

independence assumption, meaning that it is not the latent class only that truly defines 

why the classes emerge as they do. FMM may also better account for the people with 

and without SUD in the sample and, therefore, has the potential to create latent classes 

that better predict SUD severity. 

Second, the comorbidity structure using LCA and network analysis was assessed 

separately without the ability to account for both the variance that is unique to pairs of 

variables (network approach) and the variance that is shared across all variables (LCA 

approach). Therefore, a hybrid latent class and network model, also referred to as 

residual network modeling244, should be a method considered in future work. The hybrid 

latent class and network model allows for the estimation of structural equation modeling 

(like LCA) without the assumption of conditional independence, and the estimation of a 

network structure, while considering the fact that the covariance between items may be 

partly due to latent factors.244 This approach may further detail the etiology of 

comorbidity. 

Finally, preliminary assessments of the comorbidity patterns over time were done 

by assessing the latent class and network structure cross-sectionally at three separate 
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time periods. However, a true longitudinal analysis to test whether the stability or 

changes were statistically significant over time was not performed. Latent transition 

analysis70,226 is a necessary next analysis to confirm the suspected trends discovered in 

Chapter 5. A time-series network model245 should also be considered to similarly 

estimate the comorbidity network structure over time. This method for panel data is in 

development, but early results suggest it could be the network equivalent to a latent 

transition analysis.245 

 

Implications of dissertation results and final conclusions 

In summary, there are three specific results from the dissertation that could apply 

to public health practice. First, identification of specific substance use and mental 

disorder symptom connections can be a useful starting point in discussing comorbidity. 

Past-month PDNP was consistently identified to be strongly associated with negative 

affect symptoms while alcohol use was consistently identified to be strongly associated 

with externalizing symptoms. Therefore, building awareness of co-occurring negative 

affect and externalizing symptoms in individuals who are engaged in these past month 

substance use behaviors is an appropriate strategy in approaching the comorbidity 

conversation and future comorbidity research particularly in clinical spaces. 

Second, the nodewise predictability results showed strong mutual interactions 

between all nodes. This implies that interventions on any of the six substance use 

behaviors, four negative affect symptoms, and seven externalizing symptoms would 

likely result in a change in the comorbidity network. Nodes with a greater proportion of 

predictability due to other nodes (i.e., negative affect items, attention difficulties, 
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listening difficulties, and impulsivity) may be important to target due to their influence of 

other nodes in the network. However, targeting one specific behavior or symptom may 

not be the most effective strategy specifically given the pairwise comparison results that 

show a stability in the comorbidity profile. Therefore, it is likely that interventions might 

be most effective when targeting multiple behaviors and symptoms together. 

Last, sociodemographic variables can be helpful in identifying potential risk for 

specific comorbidity profiles. For example, a young woman between the ages of 18-24 

years with a lower education level or income is at potential risk for membership in the 

comorbid or negative affect classes. This demographic information could be used in 

public health practice to offer services or programs to people who may likely fit into this 

risk profile. Studies have identified the use of individual characteristics to create risk 

profiles in machine learning algorithms to predict substance use disorder treatment 

success.246–248 Risk profiles have been generated and used in community and clinical 

settings to effectively target interventions.249,250 Additionally, the dose-response 

relationship identified with social satisfaction and comorbidity represents a unique 

opportunity to encourage overall social support and healthy interpersonal relationships, 

especially when providing mental health and substance use services. Some studies 

have identified that social support interventions (e.g., support group involvement and 

utilizing family/friend support in a community-based substance abuse program) resulted 

in reduced substance use.251–253 Improving social satisfaction could result in reduced 

substance use and may be extended to reducing comorbidity. 

Characterizations of the comorbidity structure provide more information on how 

to approach substance use and mental disorders. Using a large sample of U.S. adults, 
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this study identified specific combinations of substance use behaviors and mental 

disorder symptoms, determined which sociodemographic factors play a role in specific 

comorbidity profiles, and assessed the patterns of comorbidity among three waves of 

data. These results support the need to approach substance use and mental disorders 

from a more holistic perspective, taking comorbidity into account to better support the 

overall wellbeing of the individual. The results can inform robust and targeted prevention 

strategies to effectively mitigate the substantial burden and societal costs of comorbidity 

in the U.S. population.  
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Supplemental Table 2.1: Model 2 - Presentation of Different Reference Levels for Current Substance Use Outcome (Including Nicotine Dependence) (n = 15,947, Weighted N = 
61,482,491) 

 Alcohol, 
Cigarette, and 

E-cigarette 

Cigarette and 
E-cigarette 

E-cigarette and 
Alcohol 

Cigarette and 
Alcohol 

E-cigarette 
Only 

Cigarette 
Only 

Alcohol 
Only 

None 

Variable AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) 
Negative Affect 
Severity (ref=low) 

        

Moderate  REF 0.91 (0.51-1.63) 0.73 (0.39-1.38) 1.11 (0.74-1.67) 0.78 (0.45-1.38) 0.92 (0.61-1.40) 1.19 (0.81-1.75) 0.75 (0.48-1.18) 
High  REF 0.67 (0.40-1.11) 0.78 (0.44-1.38) 0.84 (0.56-1.27) 0.65 (0.38-1.10) 0.71 (0.46-1.10) 0.86 (0.57-1.28) 0.65 (0.43-1.01) 
Externalizing Severity 
(ref=low) 

        

Moderate REF 0.82 (0.48-1.39) 1.61 (0.92-2.82) 0.99 (0.66-1.51) 0.62 (0.34-1.10) 0.65 (0.44-0.97) 1.14 (0.73-1.77) 0.70 (0.46-1.08) 
High  REF 0.69 (0.41-1.17) 1.66 (0.94-2.94) 0.86 (0.57-1.28) 0.65 (0.35-1.18) 0.49 (0.33-0.74) 0.98 (0.64-1.49) 0.56 (0.36-0.87) 
Nicotine Dependence         

REF 1.02 (1.01-1.03) 0.94 (0.93-0.95) 0.99 (0.98-1.00) 0.95 (0.93-0.96) 1.00 (0.99-1.00) 0.92 (0.91-0.93) 0.94 (0.94-0.95) 
Negative Affect 
Severity (ref=low) 

        

Moderate  1.10 (0.62-1.96) REF 0.81 (0.46-1.43) 1.22 (0.81-1.82) 0.86 (0.44-1.69) 1.01 (0.68-1.50) 1.30 (0.87-1.96) 0.83 (0.51-1.35) 
High  1.50 (0.90-2.48) REF 1.17 (0.67-2.02) 1.26 (0.88-1.81) 0.97 (0.58-1.64) 1.06 (0.75-1.51) 1.28 (0.90-1.83) 0.98 (0.65-1.47) 
Externalizing Severity 
(ref=low) 

        

Moderate 1.23 (0.72-2.08) REF 1.97 (1.11-3.50) 1.22 (0.84-1.78) 0.75 (0.46-1.25) 0.80 (0.56-1.14) 1.39 (0.93-2.09) 0.86 (0.57-1.30) 
High  1.46 (0.86-2.47) REF 2.42 (1.32-4.44) 1.24 (0.87-1.78) 0.94 (0.53-1.68) 0.72 (0.50-1.03) 1.42 (0.95-2.12) 0.82 (0.54-1.23) 
Nicotine Dependence         

0.98 (0.98-0.99) REF 0.93 (0.92-0.94) 0.97 (0.97-0.98) 0.93 (0.92-0.94) 0.98 (0.98-0.99) 0.91 (0.90-0.91) 0.93 (0.92-0.94) 
Negative Affect 
Severity (ref=low) 

        

Moderate  1.36 (0.72-2.57) 1.24 (0.70-2.19) REF 1.51 (0.97-2.35) 1.07 (0.56-2.06) 1.26 (0.79-1.99) 1.62 (1.03-2.55) 1.03 (0.64-1.64) 
High  1.29 (0.72-2.28) 0.86 (0.50-1.49) REF 1.08 (0.73-1.61) 0.84 (0.46-1.52) 0.91 (0.61-1.36) 1.10 (0.73-1.65) 0.84 (0.55-1.28) 
Externalizing Severity 
(ref=low) 

        

Moderate 0.62 (0.35-1.09) 0.51 (0.29-0.90) REF 0.62 (0.42-0.91) 0.38 (0.23-0.63) 0.40 (0.28-0.59) 0.71 (0.47-1.06) 0.44 (0.29-0.66) 
High  0.60 (0.34-1.06) 0.41 (0.23-0.76) REF 0.51 (0.34-0.78) 0.39 (0.22-0.68) 0.30 (0.19-0.46) 0.59 (0.38-0.91) 0.34 (0.21-0.55) 
Nicotine Dependence         

1.06 (1.05-1.07) 1.08 (1.06-1.09) REF 1.05 (1.04-1.06) 1.00 (0.99-1.02) 1.06 (1.05-1.07) 0.97 (0.96-0.99) 1.00 (0.99-1.01) 
Negative Affect 
Severity (ref=low) 

        

Moderate  0.90 (0.60-1.36) 0.82 (0.55-1.23) 0.66 (0.43-1.03) REF 0.71 (0.44-1.15) 0.83 (0.71-0.98) 1.07 (0.92-1.26) 0.68 (0.57-0.82) 
High  1.19 (0.79-1.80) 0.79 (0.55-1.14) 0.93 (0.62-1.38) REF 0.77 (0.49-1.23) 0.84 (0.73-0.97) 1.02 (0.85-1.22) 0.78 (0.62-0.97) 
Externalizing Severity 
(ref=low) 

        

Moderate 1.01 (0.66-1.53) 0.82 (0.56-1.20) 1.62 (1.10-2.39) REF 0.62 (0.41-0.94) 0.65 (0.58-0.74) 1.14 (0.97-1.36) 0.71 (0.58-0.86) 
High  1.17 (0.78-1.76) 0.80 (0.56-1.15) 1.95 (1.28-2.95) REF 0.76 (0.47-1.22) 0.58 (0.51-0.66) 1.14 (0.94-1.39) 0.66 (0.52-0.82) 
Nicotine Dependence         

1.01 (1.01-1.02) 1.03 (1.02-1.03) 0.95 (0.94-0.96) REF 0.96 (0.95-0.97) 1.01 (1.01-1.01) 0.93 (0.93-0.93) 0.95 (0.95-0.96) 
Bolded values indicate estimate significant a p < 0.05 
Each model adjusts for sex, age, race, education, and annual household income. 
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Supplemental Table 2.1 CONTINUED:  Model 2 - Presentation of Different Reference Levels for Current Substance Use Outcome (Including Nicotine Dependence) (n = 15,947, Weighted 
N = 61,482,491) 

 Alcohol, 
Cigarette, and 

E-cigarette 

Cigarette and 
E-cigarette 

E-cigarette and 
Alcohol 

Cigarette and 
Alcohol 

E-cigarette 
Only 

Cigarette 
Only 

Alcohol 
Only 

None 

Variable AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) 
Negative Affect 
Severity (ref=low) 

        

Moderate  1.28 (0.73-2.24) 1.16 (0.59-2.28) 0.94 (0.49-1.80) 1.41 (0.87-2.29) REF 1.18 (0.72-1.91) 1.51 (0.95-2.42) 0.96 (0.60-1.55) 
High  1.54 (0.91-2.61) 1.03 (0.61-1.72) 1.20 (0.66-2.18) 1.29 (0.81-2.06) REF 1.09 (0.69-1.71) 1.32 (0.84-2.05) 1.00 (0.63-1.61) 
Externalizing Severity 
(ref=low) 

        

Moderate 1.63 (0.91-2.91) 1.33 (0.80-2.19) 2.62 (1.59-4.31) 1.62 (1.06-2.46) REF 1.06 (0.71-1.58) 1.85 (1.21-2.83) 1.14 (0.73-1.79) 
High  1.55 (0.85-2.83) 1.06 (0.60-1.90) 2.57 (1.47-4.51) 1.32 (0.82-2.14) REF 0.76 (0.47-1.24) 1.51 (0.93-2.47) 0.87 (0.51-1.46) 
Nicotine Dependence         

1.06 (1.05-1.07) 1.08 (1.06-1.09) 1.00 (0.99-1.01) 1.05 (1.04-1.06) REF 1.06 (1.05-1.07) 0.97 (0.96-0.98) 1.00 (0.99-1.01) 
Negative Affect 
Severity (ref=low) 

        

Moderate  1.09 (0.72-1.65) 0.99 (0.67-1.47) 0.80 (0.50-1.26) 1.20 (1.03-1.41) 0.85 (0.52-1.38) REF 1.29 (1.07-1.55) 0.82 (0.65-1.04) 
High  1.41 (0.91-2.19) 0.94 (0.66-1.34) 1.10 (0.74-1.64) 1.19 (1.03-1.38) 0.92 (0.58-1.45) REF 1.21 (1.00-1.46) 0.92 (0.73-1.17) 
Externalizing Severity 
(ref=low) 

        

Moderate 1.54 (1.03-2.29) 1.26 (0.88-1.80) 2.47 (1.68-3.64) 1.53 (1.35-1.73) 0.95 (0.63-1.41) REF 1.75 (1.45-2.10) 1.08 (0.89-1.32) 
High  2.03 (1.36-3.02) 1.39 (0.97-2.00) 3.37 (2.18-5.21) 1.73 (1.53-1.97) 1.31 (0.81-2.13) REF 1.98 (1.62-2.42) 1.13 (0.90-1.43) 
Nicotine Dependence         

1.00 (1.00-1.01) 1.02 (1.01-1.03) 0.95 (0.94-0.95) 0.99 (0.99-0.99) 0.95 (0.94-0.96) REF 0.92 (0.92-0.93) 0.95 (0.94-0.95) 
Negative Affect 
Severity (ref=low) 

        

Moderate  0.84 (0.57-1.24) 0.77 (0.51-1.15) 0.62 (0.39-0.98) 0.93 (0.80-1.09) 0.66 (0.41-1.06) 0.78 (0.64-0.94) REF 0.64 (0.51-0.79) 
High  1.17 (0.78-1.75) 0.78 (0.55-1.11) 0.91 (0.61-1.36) 0.98 (0.82-1.18) 0.76 (0.49-1.19) 0.83 (0.69-1.00) REF 0.76 (0.61-0.96) 
Externalizing Severity 
(ref=low) 

        

Moderate 0.88 (0.56-1.37) 0.72 (0.48-1.08) 1.42 (0.94-2.13) 0.87 (0.74-1.03) 0.54 (0.35-0.83) 0.57 (0.48-0.69) REF 0.62 (0.51-0.75) 
High  1.02 (0.67-1.55) 0.70 (0.47-1.05) 1.70 (1.10-2.63) 0.88 (0.72-1.06) 0.66 (0.41-1.08) 0.51 (0.41-0.62) REF 0.57 (0.45-0.73) 
Nicotine Dependence         

1.09 (1.08-1.10) 1.11 (1.10-1.11) 1.03 (1.02-1.04) 1.08 (1.07-1.08) 1.03 (1.02-1.04) 1.09 (1.08-1.09) REF 1.03 (1.02-1.03) 
Negative Affect 
Severity (ref=low) 

        

Moderate  1.33 (0.85-2.07) 1.21 (0.74-1.97) 0.97 (0.61-1.56) 1.47 (1.22-1.77) 1.04 (0.64-1.68) 1.22 (0.96-1.55) 1.58 (1.27-1.96) REF 
High  1.53 (1.00-2.36) 1.02 (0.68-1.53) 1.19 (0.78-1.81) 1.29 (1.03-1.61) 1.00 (0.62-1.60) 1.08 (0.85-1.38) 1.31 (1.05-1.64) REF 
Externalizing Severity 
(ref=low) 

        

Moderate 1.42 (0.93-2.17) 1.16 (0.77-1.74) 2.29 (1.53-3.43) 1.41 (1.16-1.72) 0.87 (0.56-1.37) 0.92 (0.76-1.13) 1.62 (1.33-1.97) REF 
High  1.79 (1.15-2.78) 1.23 (0.82-1.85) 2.97 (1.84-4.81) 1.53 (1.21-1.92) 1.16 (0.69-1.95) 0.88 (0.70-1.11) 1.75 (1.38-2.22) REF 
Nicotine Dependence         

1.06 (1.05-1.07) 1.08 (1.07-1.09) 1.00 (0.99-1.01) 1.05 (1.04-1.05) 1.00 (0.99-1.01) 1.06 (1.05-1.06) 0.97 (0.97-0.98) REF 
Bolded values indicate estimate significant a p < 0.05 
Each model adjusts for sex, age, race, education, and annual household income. 
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APPENDIX B: CHAPTER 3 

 

 
Supplemental Figure 3.1: Cumulative ROC Curve for Substance Use: SUD 0 vs 1,2 
 

 
Supplemental Figure 3.2: Cumulative ROC Curve for Substance Use: SUD 0,1 vs 2 
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Supplemental Figure 3.3: Cumulative ROC Curve for Class Membership: SUD 0 vs 1,2 
 

 
Supplemental Figure 3.4: Cumulative ROC Curve for Class Membership: SUD 0,1 vs 2 
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Supplemental Figure 3.5: Cumulative ROC Curve for Negative Affect: SUD 0 vs 1,2 
 

 
Supplemental Figure 3.6: Cumulative ROC Curve for Negative affect: SUD 0,1 vs 2 
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Supplemental Figure 3.7: Cumulative ROC Curve for Externalizing: SUD 0 vs 1,2 
 

 
Supplemental Figure 3.8: Cumulative ROC Curve for Externalizing: SUD 0,1 vs 2 
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APPENDIX C: CHAPTER 4 

 

 
Supplemental Figure 4.1: Results from Edge-Weight Accuracy Test for the Overall 
Sample Network 
 
The assessment of the accuracy of estimated network connections demonstrated that 
many edge-weights significantly differ from one-another. Supplemental Figure 1 shows 
the bootstrapped confidence intervals of estimated edge-weights for the estimated 
overall network. The red line indicates the sample values and the gray area represent 
the bootstrapped confidence intervals. Each horizontal line represents one edge of the 
network, ordered from the edge with the highest edge-weight to the edge with the 
lowest edge-weight. The y-axis labels have been removed to avoid cluttering. There 
were narrow bootstrapped confidence intervals (narrowest 95% CI = -0.013; 0.013 for 
alcohol—fighting; widest 95% CI = -4.112; -1.211 for ECIG—dual CIG + ECIG) around 
the estimated edge-weights allowing for valid interpretation of edge-weights in the 
network. 
 

edge

−5.0 −2.5 0.0 2.5

Bootstrap mean Sample
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Supplemental Figure 4.2: Results from the Edge-Weights Significant Difference Test for 
the Overall Sample Network 
 
To test for significant difference between edges, a confidence interval was constructed 
on the difference of two edges and the test was deemed significant if zero was not in 
this confidence interval (represented as a black square in the grid). Supplemental 
Figure 2 shows the bootstrapped difference test (alpha = 0.05) between edges weights 
that were non-zero in the estimated network. Gray boxes indicate edges that do not 
differ significantly from one-another and black boxes represent edges that do differ 
significantly from one-another. Colored boxes correspond to the direction of the edge’s 
magnitude (i.e., the negative “Dual CIG + ECIG” and “CIG” edge is red, the positive 
“Attention” and “Listening” edge is blue). The labels have been removed to avoid 
cluttering. 
 
 
 
 
 
 
 
 
 
 
 
 

edge
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Supplemental Table 4.1: Edge Matrix for the Overall Sample 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. CIG 0                 
2. ECIG -4.74 0                

3. Dual CIG + ECIG -4.6 -2.66 0               

4. Alcohol 0 0 0 0              

5. Marijuana 0.78 0.62 0.83 1 0             

6. PDNP 0.54 0.43 0.78 0 0.62 0            

7. Depressed 0.12 0 0 0 0.28 0.11 0           

8. Sleeping 0.16 0.22 0.15 0.04 0 0.53 1.16 0          

9. Anxious 0.17 0 0.27 0 0 0.31 1.5 1.39 0         

10. Distressed/Past 0.24 0 0.25 0 0.17 0.31 1.25 0.77 1.63 0        

11. Lied -0.1 0 -0.14 0.2 0.6 0.21 0.35 0.11 0.25 0.71 0       

12. Attention -0.22 0 0.15 0.18 0.13 0 0.47 0.53 0.49 0.36 0.71 0      

13. Listening 0 0 0 0 0 0 0.13 0.33 0.36 0.2 0.35 3.47 0     

14. Bully 0.23 0 0 0 0.13 0 0.23 0 0.44 0.39 0.91 0.25 0.42 0    

15. Fights 0 0 0 0 0.54 0.36 0 0 0 0.45 0.76 0 0 2.4 0   

16. Restless -0.09 0 0 0.11 0.37 0 0.19 0.37 0.37 0.29 0.33 0.53 0.4 0.3 0.92 0  

17. Answered -0.05 0 0.1 0.48 0.11 0.07 0 0.35 0.27 0.17 0.59 0.69 0.34 0.48 0 1.1 0 
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Supplemental Figure 4.3: Results from Centrality Stability Test for the Overall Sample 
Network 
 
Supplemental Figure 4.3 shows the average correlations between centrality indices of 
networks samples with persons dropped from the original sample to establish the 
stability in the centrality indices. Lines represent the means of the centrality indices and 
shaded areas indicate the range from the 2.5th quantile and the 97.5th quantile.  
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Supplemental Figure 4.4: Results from the Centrality (Node Strength) Significant 
Difference Test for the Overall Sample Network 
 
Significant differences between node strength were also tested. Supplemental Figure 
4.4 shows the bootstrapped difference tests (alpha = 0.05) between node strength of 
the 17 nodes. Gray boxes indicate nodes that did not differ significantly from one-
another and black boxes represent nodes that do differ significantly from one-another 
(e.g., the node strength of sleeping is significantly different from the node strength of 
alcohol use). White boxes show the value of node strength. 
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Supplemental Figure 4.5: Strength and Closeness Centrality Indices as Z-scores for the 
Overall Sample Network 
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Supplemental Figure 4.6: Results from Edge-Weight Accuracy Test for the Men-Only 
Network 
 
The assessment of the accuracy of estimated network connections demonstrated that 
many edge-weights significantly differ from one-another. Supplemental Figure 4.6 
shows the bootstrapped confidence intervals of estimated edge-weights for the 
estimated overall network. The red line indicates the sample values and the gray area 
represent the bootstrapped confidence intervals. Each horizontal line represents one 
edge of the network, ordered from the edge with the highest edge-weight to the edge 
with the lowest edge-weight. The y-axis labels have been removed to avoid cluttering. 
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Supplemental Figure 4.7: Results from the Edge-Weights Significant Difference Test for 
the Men-Only Network 
 
Supplemental Figure 4.7 shows the bootstrapped difference test (alpha = 0.05) between 
edges weights that were non-zero in the estimated network. Gray boxes indicate edges 
that do not differ significantly from one-another and black boxes represent edges that do 
differ significantly from one-another. Colored boxes correspond to the color of the edge 
(i.e., the negative “Dual CIG + ECIG” and “CIG” edge is red, the positive “Attention” and 
“Listening” edge is blue). The labels have been removed to avoid cluttering. 
 
 
 
 
 
 
 
 
 
 

edge
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Supplemental Table 4.2: Edge Matrix for the Men-Only Sample 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. CIG 0                 

2. ECIG -4.16 0                

3. Dual CIG + ECIG -5.31 -1.55 0               

4. Alcohol 0 0 0 0              

5. Marijuana 0.81 0.48 0.76 0.87 0             

6. PDNP 0.52 0 0.74 0 0.66 0            

7. Depressed 0.11 0 0 0 0.22 0 0           

8. Sleeping 0 0 0 0.08 0 0.47 1.16 0          

9. Anxious 0.16 0 0.2 -0.08 0 0.34 1.51 1.39 0         

10. Distressed/Past 0.27 0 0.44 0 0.16 0.27 1.28 0.84 1.69 0        

11. Lied -0.14 0.25 0 0.31 0.47 0.29 0.32 0.07 0.37 0.71 0       

12. Attention -0.25 0 0 0.25 0.12 0 0.38 0.5 0.4 0.35 0.86 0      

13. Listening 0 0 0 -0.11 0 0 0.26 0.34 0.46 0.18 0.27 3.45 0     

14. Bully 0.28 0 0 0 0.11 0 0 0 0.58 0.42 0.88 0 0.38 0    

15. Fights 0 0 0 0 0.4 0.34 0 0 0 0.46 0.58 0 0 2.59 0   

16. Restless 0 0 0 0 0.35 0 0.18 0.29 0.41 0.19 0.4 0.55 0.39 0.36 0.82 0  

17. Answered -0.09 0 0.09 0.46 0.16 0 0 0.31 0.27 0.24 0.61 0.67 0.26 0.52 0 1.13 0 
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Supplemental Figure 4.8: Results from Centrality Stability Test for the Men-Only 
Network 
 
Supplemental Figure 4.8 shows the average correlations between centrality indices of 
networks samples with persons dropped from the original sample to establish the 
stability in the centrality indices.  
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Supplemental Figure 4.9: Results from the Centrality (Node Strength) Significant 
Difference Test for the Men-Only Network 
 
Significant differences between node strength were also tested. Supplemental Figure 
4.9 shows the bootstrapped difference tests (alpha = 0.05) between node strength of 
the 17 nodes. Gray boxes indicate nodes that do not differ significantly from one-
another and black boxes represent nodes that do differ significantly from one-another 
(e.g., the node strength of restless is significantly different from the node strength of 
alcohol use). White boxes show the value of node strength. 
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Supplemental Figure 4.10: Strength and Closeness Centrality Indices as Z-scores for 
the Men-Only Network 
 
Supplemental Figure 4.10 shows the men-only network’s corresponding centrality 
indices. Centrality indices are shown as z-scores. 
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Supplemental Figure 4.11: Results from Edge-Weight Accuracy Test for the Women-
Only Network 
 
The assessment of the accuracy of estimated network connections demonstrated that 
many edge-weights significantly differ from one-another. Supplemental Figure 4.11 
shows the bootstrapped confidence intervals of estimated edge-weights for the 
estimated overall network. The red line indicates the sample values and the gray area 
represent the bootstrapped confidence intervals. Each horizontal line represents one 
edge of the network, ordered from the edge with the highest edge-weight to the edge 
with the lowest edge-weight. The y-axis labels have been removed to avoid cluttering. 
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Supplemental Figure 4.12: Results from the Edge-Weights Significant Difference Test 
for the Women-Only Network 
 
Supplemental Figure 4.12 shows the bootstrapped difference test (alpha = 0.05) 
between edges weights that were non-zero in the estimated network. Gray boxes 
indicate edges that do not differ significantly from one-another and black boxes 
represent edges that do differ significantly from one-another. Colored boxes correspond 
to the color of the edge (i.e., the negative “Dual CIG + ECIG” and “CIG” edge is red, the 
positive “Attention” and “Listening” edge is blue). The labels have been removed to 
avoid cluttering. 
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Supplemental Table 4.3: Edge Matrix for the Women-Only Sample 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. CIG 0                 

2. ECIG -3.48 0                

3. Dual CIG + ECIG -3.98 -
1.96 0               

4. Alcohol 0 0 0 0              

5. Marijuana 0.7 0.51 0.91 1.08 0             

6. PDNP 0.48 0.36 0.73 0 0.57 0            

7. Depressed 0.09 0 0 0 0.32 0.15 0           

8. Sleeping 0.2 0 0 0 0 0.47 1.08 0          

9. Anxious 0.21 0 0.43 0 0.15 0.3 1.48 1.37 0         

10. Distressed/Past 0.21 0 0 0 0.18 0.31 1.21 0.68 1.57 0        

11. Lied 0 0 -0.26 0 0.69 0.12 0.37 0.12 0.19 0.74 0       

12. Attention -0.16 0 0.28 0 0.14 0 0.52 0.52 0.54 0.36 0.56 0      

13. Listening 0 0 0 0 0 0 0 0.29 0.28 0.21 0.43 3.49 0     

14. Bully 0 0 0 0 0 0 0.36 0 0.32 0.3 0.91 0.33 0.42 0    

15. Fights 0 0 0 0 0.59 0.29 0 0 0.47 0.43 0.91 0 0 2.04 0   

16. Restless -0.11 0 0 0.14 0.26 0 0.17 0.41 0.39 0.4 0.17 0.53 0.38 0.14 0.82 0  

17. Answered 0 0 0 0.47 0.05 0.11 0 0.32 0.26 0.09 0.55 0.69 0.4 0.25 0 1.0
1 0 
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Supplemental Figure 4.13: Results from Centrality Stability Test for the Women-Only 
Network 
 
Supplemental Figure 4.13 shows the average correlations between centrality indices of 
networks samples with persons dropped from the original sample to establish the 
stability in the centrality indices. 
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Supplemental Figure 4.14. Results from the Centrality (Node Strength) Significant 
Difference Test for the Women-Only Network 
 
Significant differences between node strength were also tested. Supplemental Figure 
4.14 shows the bootstrapped difference tests (alpha = 0.05) between node strength of 
the 17 nodes. Gray boxes indicate nodes that do not differ significantly from one-
another and black boxes represent nodes that do differ significantly from one-another 
(e.g., the node strength of lied is significantly different from the node strength of alcohol 
use). White boxes show the value of node strength. 
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Supplemental Figure 4.15: Strength and Closeness Centrality as Z-scores for the 
Women-Only Network 
 
Supplemental Figure 4.15 shows the women-only network’s corresponding strength and 
closeness. Strength and closeness are shown as z-scores. 
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APPENDIX D: CHAPTER 5 
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Supplemental Table 5.1: Edge Matrix for the Wave 1 Sample 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. CIG 0                 

2. ECIG -4.74 0                

3. Dual CIG + ECIG -4.6 -2.66 0               

4. Alcohol 0 0 0 0              

5. Marijuana 0.78 0.62 0.83 1 0             

6. PDNP 0.54 0.43 0.78 0 0.62 0            

7. Depressed 0.12 0 0 0 0.28 0.11 0           

8. Sleeping 0.16 0.22 0.15 0.04 0 0.53 1.16 0          

9. Anxious 0.17 0 0.27 0 0 0.31 1.5 1.39 0         

10. Distressed/Past 0.24 0 0.25 0 0.17 0.31 1.25 0.77 1.63 0        

11. Lied -0.1 0 -0.14 0.2 0.6 0.21 0.35 0.11 0.25 0.71 0       

12. Attention -0.22 0 0.15 0.18 0.13 0 0.47 0.53 0.49 0.36 0.71 0      

13. Listening 0 0 0 0 0 0 0.13 0.33 0.36 0.2 0.35 3.47 0     

14. Bully 0.23 0 0 0 0.13 0 0.23 0 0.44 0.39 0.91 0.25 0.42 0    

15. Fights 0 0 0 0 0.54 0.36 0 0 0 0.45 0.76 0 0 2.4 0   

16. Restless -0.09 0 0 0.11 0.37 0 0.19 0.37 0.37 0.29 0.33 0.53 0.4 0.3 0.92 0  

17. Answered -0.05 0 0.1 0.48 0.11 0.07 0 0.35 0.27 0.17 0.59 0.69 0.34 0.48 0 1.1 0 
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Supplemental Table 5.2: Edge Matrix for the Wave 2 Sample 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1. CIG 0                 

2. ECIG -5.41 0                

3. Dual CIG + ECIG -6.17 -3.76 0               

4. Alcohol 0 0 0 0              

5. Marijuana 0.91 0.68 1.01 0.91 0             

6. PDNP 0.6 0.55 0.78 0 0.37 0            

7. Depressed 0.06 0 0 0 0.27 0.12 0           

8. Sleeping 0 0 0 0 0 0.44 1.19 0          

9. Anxious 0.25 0 0.34 0 0.07 0.24 1.51 1.4 0         

10. Distressed/Past 0.33 0.42 0.42 0 0.12 0.17 1.25 0.8 1.72 0        

11. Lied 0 0 0 0 0.54 0.27 0.27 0.08 0.46 0.83 0       

12. Attention -0.16 0 0 0.15 0.09 0 0.51 0.67 0.55 0.25 0.66 0      

13. Listening 0 0 0 0 0 0 0.02 0.31 0.26 0.46 0.35 3.72 0     

14. Bully 0.31 0 0.3 0 0 0 0.23 0 0.29 0.47 0.97 0 0.63 0    

15. Fights 0 0 0 0 0 0 0 0 0 0.58 0.68 0 0 2.8 0   

16. Restless 0 0 0 0 0.48 0 0.14 0.09 0.33 0.43 0.21 0.67 0.42 0.44 0.89 0  

17. Answered -0.13 0.08 0 0.44 0.05 0.22 0.04 0.45 0.28 0.12 0.52 0.69 0.37 0.38 0 1.24 0 
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Supplemental Table 5.3: Edge Matrix for the Wave 3 Sample 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1. CIG 0                 

2. ECIG -4.73 0                

3. Dual CIG + ECIG -5.42 -2.44 0               

4. Alcohol -0.07 0 0 0              

5. Marijuana 0.93 0.88 0.99 0.93 0             

6. PDNP 0.58 0.32 0.81 0 0.32 0            

7. Depressed 0.07 0 0 -0.09 0.28 0 0           

8. Sleeping 0 0 0 0.07 -0.09 0.52 1.19 0          

9. Anxious 0.26 0 0.13 0 0.16 0.36 1.59 1.41 0         

10. Distressed/Past 0.32 0 0.46 -0.1 0.12 0.08 1.37 0.76 1.77 0        

11. Lied 0 0 0 0 0.39 0.11 0.19 0.3 0.34 0.88 0       

12. Attention -0.17 0 0 0.13 0.17 0 0.54 0.69 0.53 0.34 0.68 0      

13. Listening 0 0.2 0.22 0 -0.2 0 0.19 0.27 0.31 0.4 0.42 3.66 0     

14. Bully 0.18 0 0 0 0.16 0 0.35 0 0.32 0.56 0.74 0.2 0.4 0    

15. Fights 0.47 0 0 0 0.36 0 0.27 0 0 0.56 1.02 0 0.4 2.88 0   

16. Restless -0.29 0 0 0.07 0.45 0 0.44 0.14 0.41 0.23 0.22 0.63 0.35 0.36 1.12 0  

17. Answered -0.13 0 0 0.55 0.14 0.09 0 0.39 0.32 0.18 0.57 0.69 0.48 0.65 0 1.24 0 
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Supplemental Table 5.4: Edge Matrix for Wave 1, Wave 2, Wave 3 Network by Wave 1 

 
W1 
CIG 

W1 
ECIG 

W1 
Dual 
CIG + 
ECIG 

W1 
Alcoh
ol 

W1 
Mariju
ana 

W1 
PDNP 

W1 
Depre
ssed 

W1 
Sleepi
ng 

W1 
Anxio
us 

W1 
Distre
ssed/
Past 

W1 
Lied 

W1 
Attent
ion 

W1 
Listen
ing 

W1 
Bully 

W1 
Fights 

W1 
Restl
ess 

W1 
Answ
ered 

W1 
CIG 0.00 -2.28 -2.82 0.00 0.68 0.43 0.00 0.08 0.19 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
ECIG -2.28 0.00 -0.86 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Dual 
CIG + 
ECIG 

-2.82 -0.86 0.00 0.00 0.68 0.58 0.00 0.00 0.21 0.30 0.00 0.16 0.00 0.00 0.00 0.00 0.00 

W1 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.42 

W1 
Mariju
ana 

0.68 0.50 0.68 0.95 0.00 0.59 0.22 0.00 0.00 0.23 0.55 0.11 0.00 0.00 0.47 0.27 0.07 

W1 
PDNP 0.43 0.00 0.58 0.00 0.59 0.00 0.00 0.47 0.28 0.24 0.18 0.00 0.00 0.00 0.34 0.00 0.00 

W1 
Depre
ssed 

0.00 0.00 0.00 0.00 0.22 0.00 0.00 1.06 1.52 1.26 0.31 0.46 0.17 0.20 0.00 0.14 0.00 

W1 
Sleepi
ng 

0.08 0.00 0.00 0.00 0.00 0.47 1.06 0.00 1.42 0.79 0.10 0.51 0.34 0.00 0.00 0.31 0.32 

W1 
Anxio
us 

0.19 0.00 0.21 0.00 0.00 0.28 1.52 1.42 0.00 1.59 0.30 0.52 0.30 0.39 0.24 0.39 0.26 

W1 
Distre
ssed/
Past 

0.17 0.00 0.30 0.00 0.23 0.24 1.26 0.79 1.59 0.00 0.65 0.36 0.18 0.39 0.29 0.28 0.16 

W1 
Lied 0.00 0.00 0.00 0.12 0.55 0.18 0.31 0.10 0.30 0.65 0.00 0.69 0.37 0.95 0.81 0.38 0.55 

W1 
Attent
ion 

0.00 0.00 0.16 0.00 0.11 0.00 0.46 0.51 0.52 0.36 0.69 0.00 3.36 0.22 0.00 0.45 0.67 

W1 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.34 0.30 0.18 0.37 3.36 0.00 0.48 0.00 0.41 0.34 

W1 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.39 0.39 0.95 0.22 0.48 0.00 2.30 0.24 0.27 
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W1 
Fights 0.00 0.00 0.00 0.00 0.47 0.34 0.00 0.00 0.24 0.29 0.81 0.00 0.00 2.30 0.00 0.79 0.00 

W1 
Restl
ess 

0.00 0.00 0.00 0.00 0.27 0.00 0.14 0.31 0.39 0.28 0.38 0.45 0.41 0.24 0.79 0.00 0.98 

W1 
Answ
ered 

0.00 0.00 0.00 0.42 0.07 0.00 0.00 0.32 0.26 0.16 0.55 0.67 0.34 0.27 0.00 0.98 0.00 

W2 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Dual 
CIG + 
ECIG 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Mariju
ana 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Depre
ssed 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Sleepi
ng 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Anxio
us 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Distre
ssed/
Past 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Lied 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Attent
ion 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W2 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Restl
ess 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Answ
ered 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Dual 
CIG + 
ECIG 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Mariju
ana 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Depre
ssed 

0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Sleepi
ng 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Anxio
us 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Distre
ssed/
Past 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Lied 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W3 
Attent
ion 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Restl
ess 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Answ
ered 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Supplemental Table 5.5: Edge Matrix for Wave 1, Wave 2, Wave 3 Network by Wave 2 

 
W2 
CIG 

W2 
ECIG 

W2 
Dual 
CIG + 
ECIG 

W2 
Alcoh
ol 

W2 
Mariju
ana 

W2 
PDNP 

W2 
Depre
ssed 

W2 
Sleepi
ng 

W2 
Anxio
us 

W2 
Distre
ssed/
Past 

W2 
Lied 

W2 
Attent
ion 

W2 
Listen
ing 

W2 
Bully 

W2 
Fights 

W2 
Restl
ess 

W2 
Answ
ered 

W1 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Dual 
CIG + 
ECIG 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Mariju
ana 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Depre
ssed 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Sleepi
ng 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Anxio
us 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Distre
ssed/
Past 

0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Lied 0.00 0.00 0.00 0.00 0.00 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Attent
ion 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W1 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Restl
ess 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W1 
Answ
ered 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
CIG 0.00 -2.58 -3.18 0.00 0.82 0.48 0.00 0.00 0.16 0.31 0.00 -0.09 0.00 0.00 0.00 -0.03 0.00 

W2 
ECIG -2.58 0.00 -1.69 0.00 0.51 0.39 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Dual 
CIG + 
ECIG 

-3.18 -1.69 0.00 0.00 0.90 0.61 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W2 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.08 0.39 

W2 
Mariju
ana 

0.82 0.51 0.90 0.86 0.00 0.31 0.28 0.00 0.00 0.12 0.53 0.10 0.00 0.00 0.00 0.46 0.00 

W2 
PDNP 0.48 0.39 0.61 0.00 0.31 0.00 0.00 0.41 0.15 0.00 0.22 0.10 0.00 0.00 0.00 0.00 0.09 

W2 
Depre
ssed 

0.00 0.00 0.00 0.00 0.28 0.00 0.00 1.17 1.52 1.23 0.23 0.48 0.00 0.00 0.00 0.15 0.00 

W2 
Sleepi
ng 

0.00 0.00 0.00 0.00 0.00 0.41 1.17 0.00 1.36 0.77 0.00 0.71 0.28 0.00 0.00 0.00 0.43 

W2 
Anxio
us 

0.16 0.00 0.00 0.00 0.00 0.15 1.52 1.36 0.00 1.74 0.47 0.60 0.16 0.00 0.00 0.28 0.17 

W2 
Distre
ssed/
Past 

0.31 0.37 0.40 0.00 0.12 0.00 1.23 0.77 1.74 0.00 0.81 0.18 0.55 0.56 0.50 0.40 0.10 

W2 
Lied 0.00 0.00 0.00 0.00 0.53 0.22 0.23 0.00 0.47 0.81 0.00 0.66 0.31 0.93 0.77 0.20 0.51 

W2 
Attent
ion 

-0.09 0.00 0.00 0.13 0.10 0.10 0.48 0.71 0.60 0.18 0.66 0.00 3.69 0.00 0.14 0.70 0.65 
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W2 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.16 0.55 0.31 3.69 0.00 0.59 0.00 0.40 0.38 

W2 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.93 0.00 0.59 0.00 2.65 0.49 0.20 

W2 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.77 0.14 0.00 2.65 0.00 0.93 0.00 

W2 
Restl
ess 

-0.03 0.00 0.00 0.08 0.46 0.00 0.15 0.00 0.28 0.40 0.20 0.70 0.40 0.49 0.93 0.00 1.21 

W2 
Answ
ered 

0.00 0.00 0.00 0.39 0.00 0.09 0.00 0.43 0.17 0.10 0.51 0.65 0.38 0.20 0.00 1.21 0.00 

W3 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Dual 
CIG + 
ECIG 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Alcoh
ol 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Mariju
ana 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Depre
ssed 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Sleepi
ng 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Anxio
us 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Distre
ssed/
Past 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Lied 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W3 
Attent
ion 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Listen
ing 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Restl
ess 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

W3 
Answ
ered 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Supplemental Table 5.6: Edge Matrix for Wave 1, Wave 2, Wave 3 Network by Wave 3 

 
W3 
CIG 

W3 
ECIG 

W3 
Dual 
CIG + 
ECIG 

W3 
Alcoh
ol 

W3 
Mariju
ana 

W3 
PDNP 

W3 
Depre
ssed 

W3 
Sleepi
ng 

W3 
Anxio
us 

W3 
Distre
ssed/
Past 

W3 
Lied 

W3 
Attent
ion 

W3 
Listen
ing 

W3 
Bully 

W3 
Fights 

W3 
Restl
ess 

W3 
Answ
ered 

W1 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Dual 
CIG + 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Alcoh
ol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Mariju
ana 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Depre
ssed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Sleepi
ng 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Anxio
us 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Distre
ssed/
Past 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Lied 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Attent
ion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Listen
ing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W1 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Restl
ess 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W1 
Answ
ered 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
CIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Dual 
CIG + 
ECIG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Alcoh
ol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Mariju
ana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
PDNP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Depre
ssed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Sleepi
ng 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Anxio
us 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Distre
ssed/
Past 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Lied 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Attent
ion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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W2 
Listen
ing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Bully 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Fights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Restl
ess 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W2 
Answ
ered 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W3 
CIG 0.00 -2.79 -3.00 -0.04 0.84 0.51 0.00 0.00 0.19 0.27 0.00 -0.06 0.00 0.00 0.29 -0.14 0.00 
W3 
ECIG -2.79 0.00 -1.33 0.00 0.75 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W3 
Dual 
CIG + 
ECIG -3.00 -1.33 0.00 0.00 0.79 0.75 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
W3 
Alcoh
ol -0.04 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.51 
W3 
Mariju
ana 0.84 0.75 0.79 0.85 0.00 0.28 0.20 0.00 0.11 0.09 0.38 0.07 0.00 0.11 0.21 0.38 0.09 
W3 
PDNP 0.51 0.22 0.75 0.00 0.28 0.00 0.00 0.50 0.31 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.05 
W3 
Depre
ssed 0.00 0.00 0.00 0.00 0.20 0.00 0.00 1.19 1.59 1.37 0.17 0.47 0.16 0.25 0.13 0.43 0.00 
W3 
Sleepi
ng 0.00 0.00 0.00 0.00 0.00 0.50 1.19 0.00 1.38 0.73 0.24 0.69 0.21 0.00 0.00 0.00 0.41 
W3 
Anxio
us 0.19 0.00 0.00 0.00 0.11 0.31 1.59 1.38 0.00 1.72 0.34 0.52 0.35 0.29 0.00 0.36 0.32 
W3 
Distre
ssed/
Past 0.27 0.00 0.30 0.00 0.09 0.09 1.37 0.73 1.72 0.00 0.89 0.32 0.38 0.54 0.48 0.27 0.15 
W3 
Lied 0.00 0.00 0.00 0.00 0.38 0.00 0.17 0.24 0.34 0.89 0.00 0.65 0.41 0.80 0.96 0.19 0.51 
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W3 
Attent
ion -0.06 0.00 0.00 0.08 0.07 0.00 0.47 0.69 0.52 0.32 0.65 0.00 3.63 0.00 0.00 0.67 0.66 
W3 
Listen
ing 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.21 0.35 0.38 0.41 3.63 0.00 0.23 0.22 0.27 0.42 
W3 
Bully 0.00 0.00 0.00 0.00 0.11 0.00 0.25 0.00 0.29 0.54 0.80 0.00 0.23 0.00 2.98 0.37 0.56 
W3 
Fights 0.29 0.00 0.00 0.00 0.21 0.00 0.13 0.00 0.00 0.48 0.96 0.00 0.22 2.98 0.00 1.06 0.00 
W3 
Restl
ess -0.14 0.00 0.00 0.00 0.38 0.00 0.43 0.00 0.36 0.27 0.19 0.67 0.27 0.37 1.06 0.00 1.17 
W3 
Answ
ered 0.00 0.00 0.00 0.51 0.09 0.05 0.00 0.41 0.32 0.15 0.51 0.66 0.42 0.56 0.00 1.17 0.00 
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SAS File name: LCA W1 4132021 
 
*In the ICPSR_36498 folder, select DS1001 and open the data file (36498-1001-Data) which is 
a SAS Cport Transport file. Once this is open, formats are in, and can begin data management; 
 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Data Management"; 
 
*Recoding Missings; 
data LCA.W1; 
set da36498p1001; 
 
 
 *Current User Cigarette; 
 *R01_AC1002: Ever smoked a cigarette, even one or two puffs; 
 *R01_AC1005: Number of cigarettes smoked in your entire life; 
 *R01_AC1003: Now smoke cigarettes; 
  
 if R01_AC1002 = 1 AND R01_AC1005=6 AND R01_AC1003 in (1 2) then acur_cig = 1; 
 else if R01_AC1002 = 2 OR R01_AC1003=3 OR (R01_AC1003 in (1,2,.) AND R01_AC1005 in 
(1,2,3,4,5)) then acur_cig=0; 
 else if R01_AC1002 = . OR R01_AC1003=. OR R01_AC1005=. then acur_cig = .; 
 
 *Current E-cigarette user; 
 *R01_AE1002: Ever used an e-cigarette, even one or two times; 
 *R01_AE1100: Ever smoked e-cigarettes fairly regularly; 
 *R01_AE1003: Now use e-cigarettes; 
 
 if R01_AE1002 = 1 AND R01_AE1100=1 AND R01_AE1003 in (1,2) then acur_ecig = 1; 
 else if R01_AE1001=2 OR R01_AE1002 = 2 OR R01_AE1003 = 3 OR (R01_AE1003 in (1,2,.) AND 
R01_AE1100 = 2) then acur_ecig=0; 
 else if R01_AE1002 = . OR R01_AE1001=. OR R01_AE1003 = . OR R01_AE1100 = . then acur_ecig 
= .; 
 
 ***NOT USING FOR LCA************ 
 ******************************** 
 *Current Traditional cigar user; 
 
 *if R01_AG9003 = 1 AND R01_AG1100TC=1 AND R01_AG1003TC in (1,2) then acur_cigr = 1; 
 *else if R01_AG1001=2 OR R01_AG9002_01 = 2 OR R01_AG9003= 2 OR R01_AG1003TC= 3 OR 
(R01_AG1003TC in 
 *(1,2,.) AND R01_AG1100TC = 2) THEN acur_cigr = 0;  
 *ELSE IF R01_AG1001 = . OR R01_AG9003 = . OR R01_AG1100TC = . OR R01_AG1003TC = . OR 
R01_AG9002_01 = . THEN 
 *acur_cigr = .; 
 
 *Current Cigarillo user; 
 
 *IF R01_AG9004=1 AND (R01_AG9009_01=1 OR R01_AG9009_03=1) AND R01_AG1100CG = 1 AND 
R01_AG1003CG in 
 (1, 2) THEN acur_cigrlo= 1;  
 *ELSE IF R01_AG9004= 2 OR R01_AG1001=2 OR R01_AG9002_02 = 2 OR R01_AG1003CG=3 OR 
R01_AG1100CG=2 OR (R01_AG9009_01=2 AND R01_AG9009_03=2) OR ((R01_AG9009_01=1 
 *OR R01_AG9009_03=1) AND R01_AG1100CG= 2 AND R01_AG1003CG=.) OR ((R01_AG9009_01=1 OR 
 *R01_AG9009_03=1) AND R01_AG1100CG=. AND R01_AG1003CG= 3) THEN acur_cigrlo= 0; 
 *ELSE IF R01_AG1001 = . OR R01_AG9004 = . OR R01_AG9009_03 = . OR R01_AG9009_01 = . OR 
 R01_AG1100CG = . OR R01_AG1003CG = . OR R01_AG9002_02 = . THEN acur_cigrlo = .; 
 
 *Current Filtered Cigar user; 
 
 *IF R01_AG9004=1 AND R01_AG9009_02=1 AND R01_AG1100FC = 1 AND R01_AG1003FC in (1, 2) THEN 
 acur_filcigr= 1;  
 *ELSE IF R01_AG9004= 2 OR R01_AG1001=2 OR R01_AG9002_02 = 2 OR R01_AG1003FC=3 OR 
R01_AG1100FC=2 OR R01_AG9009_02=2  
 OR (R01_AG9009_02=1 AND R01_AG1100FC= 2 AND R01_AG1003FC=.) OR (R01_AG9009_02=1 AND 
R01_AG1100FC=. AND 
 R01_AG1003FC= 3) THEN acur_filcigr=0;  
 *ELSE IF R01_AG9004 = . OR R01_AG9009_02 =. OR R01_AG1100FC = . OR R01_AG1003FC = . OR 
R01_AG1001 = . OR R01_AG9002_02 = . THEN 
 *acur_filcigr = .; 
 
 *Current Use Any Cigar/Cigarillo; 
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 *IF (acur_cigr = 1 OR acur_cigrlo = 1 OR acur_filcigr = 1) THEN acur_fullcigr = 1;  
 *ELSE IF (acur_cigr = 0 AND acur_cigrlo = 0 AND acur_filcigr= 0) THEN acur_fullcigr = 0; 
 *ELSE IF acur_cigr = . OR acur_cigrlo = . OR acur_filcigr = . THEN acur_fullcigr = .; 
 
 *Current Pipe user; 
 
 *IF R01_AP1002 = 1 AND R01_AP1100=1 AND R01_AP1003 in (1,2) THEN acur_pipe= 1;  
 *ELSE IF R01_AP1001=2 OR R01_AP1002= 2 OR R01_AP1003= 3 OR (R01_AP1003 in (1,2,.) AND 
R01_AP1100 = 2) 
 THEN acur_pipe=0;  
 *ELSE IF R01_AP1001 = . OR R01_AP1002 = . OR R01_AP1003 = . OR R01_AP1100 = . THEN 
acur_pipe= .; 
 
 *Current Hookah User; 
 
 *IF R01_AH1002 = 1 AND R01_AH1100=1 AND R01_AH1003 in (1, 2) THEN acur_hook= 1;  
 *ELSE IF R01_AH1001=2 OR R01_AH1002= 2 OR R01_AH1003= 3 OR (R01_AH1003 in (1,2,.) AND 
R01_AH1100 = 2) 
 *THEN acur_hook=0;  
 *ELSE IF R01_AH1002=. OR R01_AH1001=. OR R01_AH1003=. OR R01_AH1100=. 
 *THEN acur_hook=.; 
 
 *Current User Smokeless; 
 
 *IF (R01_AS1002_02=1 OR R01_AU1003 in (1,2)) AND R01_AS1100SM = 1 AND R01_AS1003SM in (1, 
2) THEN acur_smls= 1;  
 *ELSE IF R01_AS1001=2 OR R01_AS1002_03=1 OR (R01_AS1002_02=2 AND R01_AU1003 in 
 (2,3,.)) OR R01_AS1003SM= 3 OR (R01_AS1003SM in (1,2,.) AND R01_AS1100SM = 2) THEN 
acur_smls=0; 
 *ELSE IF R01_AS1002_02 = . OR R01_AU1003 = . OR R01_AS1100SM = . OR 
 R01_AS1003SM = . OR R01_AS1001 = . THEN acur_smls = .; 
 
 *Current User Snus; 
 
 *IF R01_AS1002_01=1 AND R01_AU1003 in (2, 3) AND R01_AS1100SU= 1 AND R01_AS1003SU in 
(1,2) THEN acur_snus= 1;  
 *ELSE IF R01_AS1001=2 OR R01_AS1002_03=1 OR (R01_AS1002_01=2 AND R01_AS1002_02=1) 
 OR (R01_AS1002_01=1 AND R01_AU1003=1) OR (R01_AU1003 in (2,3) AND R01_AS1003SU= 3) OR 
(R01_AU1003 in (2,3) AND 
 R01_AS1003SU in (1,2,.) AND R01_AS1100SU = 2) THEN acur_snus= 0;  
 *ELSE IF R01_AS1002_01 = . OR R01_AS1002_02 = . OR R01_AS1002_03 = . OR R01_AU1003 = . OR 
R01_AS1100SU = . OR R01_AS1003SU =.  
 *OR R01_AS1001 = . THEN acur_snus=.; 
 
 *Current Use Any Smokeless/Snus; 
  
 *IF (acur_smls = 1 OR acur_snus = 1) THEN acur_fullsmkls = 1;  
 *ELSE IF (acur_smls = 0 AND acur_snus = 0) THEN acur_fullsmkls = 0; 
 *ELSE IF acur_smls = . OR acur_snus = . THEN acur_fullsmkls = .; 
 
 *Current User Dissolvable; 
 
 *IF R01_AD1002 = 1 AND R01_AD1100=1 AND R01_AD1003 in (1,2) THEN acur_diss= 1;  
 *ELSE IF R01_AD1001=2 OR R01_AD1002= 2 OR R01_AD1003= 3 OR (R01_AD1003 in (1,2,.) AND 
R01_AD1100 = 2) THEN acur_diss=0;  
 *ELSE IF R01_AD1001 = . OR R01_AD1002 = . OR R01_AD1003 = . OR R01_AD1100 = . THEN 
acur_diss = .; 
 
 ******************************* 
 ******************************* 
 NEW SUBSTANCES ADDED; 
 
 *Current Use Alcohol; 
 *R01_AX0084 is ever used alcohol 
 *R01_AX0073 is how long since last used alcohol and 1 is within the past 30 days; 
 if R01_AX0084 = 1 AND R01_AX0073 = 1 then acur_alc=1; 
 else if R01_AX0084 = 2 OR R01_AX0073 in (2,3) then acur_alc=0; 
 else if R01_AX0084= . OR R01_AX0073= . then acur_alc=.; 
 
 *Current User Marijuana; 
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 *R01_AX0085 is ever used marijuana - look at measures spreadsheet in oral dis proposal 
folder; 
 *R01_AX0078 is how long since last used marijuana and 1 is within the past 30 days; 
 if R01_AX0078 = 1 then acur_marijuana=1; 
 else if R01_AX0078 in (-1,2,3) then acur_marijuana=0; 
 else if R01_AX0078= . then acur_marijuana=.; 
 
 *Current User Ritalin or Adderall (prescription drugs not prescribed to you); 
 *R01_AX0089_01 is ever used ritalin or adderal 
 *R01_AX0081_01 is how long since last used ritalin or adderall and 1 is within the past 
30 days; 
 *if R01_AX0089_01 = 1 AND R01_AX0081_01 = 1 then acur_ritadder=1; 
 *else if R01_AX0089_01 = 2 OR R01_AX0081_01 in (2,3) then acur_ritadder=0; 
 *else if R01_AX0089_01 = . OR R01_AX0081_01= . then acur_ritadder=.; 
 
 *Current User Painkillers, Sedatives, or Tranquilizers (prescription drugs not prescribed 
to you); 
 *R01_AX0089_02 is ever used painkillers 
 *R01_AX0081_02 is how long since last used painkillers and 1 is within the past 30 days; 
 if R01_AX0089_02 = 1 AND R01_AX0081_02 = 1 then acur_painkiller=1; 
 else if R01_AX0089_02 = 2 OR R01_AX0081_02 in (2,3) then acur_painkiller=0; 
 else if R01_AX0089_02 = . OR R01_AX0081_02= . then acur_painkiller=.; 
 
 *Current User Cocaine or Crack 
 *R01_AX0220_01 is ever used cocaine or crack 
 *R01_AX0081_03 is how long since last used cocaine or crack and 1 is within the past 30 
days; 
 *if R01_AX0220_01 = 1 AND R01_AX0081_03 = 1 then acur_cocaine=1; 
 *else if R01_AX0220_01 = 2 OR R01_AX0081_03 in (2,3) then acur_cocaine=0; 
 *else if R01_AX0220_01 = . OR R01_AX0081_03= . then acur_cocaine=.; 
 
 *Curent User Meth or Speed 
 *R01_AX0220_02 is ever used meth or speed 
 *R01_AX0081_04 is how long since last used meth or speed and 1 is within the past 30 
days; 
 *if R01_AX0220_02 = 1 AND R01_AX0081_04 = 1 then acur_meth=1; 
 *else if R01_AX0220_02 = 2 OR R01_AX0081_04 in (2,3) then acur_meth=0; 
 *else if R01_AX0220_02 = . OR R01_AX0081_04= . then acur_meth=.; 
 
 
 *Current User Heroin, Inhalents, Solvents, Hallucinogens 
 *R01_AX0220_03 is ever used heroin, inhalents, solvents, hallucinogens 
 *R01_AX0081_05 is how long since last used heroin.... and 1 is within the past 30 days; 
 *if R01_AX0220_03 = 1 AND R01_AX0081_05 = 1 then acur_heroinplus=1; 
 *else if R01_AX0220_03 = 2 OR R01_AX0081_05 in (2,3) then acur_heroinplus=0; 
 *else if R01_AX0220_03 = . OR R01_AX0081_05 = . then acur_heroinplus=.; 
 
 
*RACE; 
*R01R_A_RACECAT3: DERIVED - Race from the interview (3 levels): 1 = white alone, 2 = black alone, 
3 = other; 
*R01R_A_HISP: DERIVED - Hispanic origin from the interview (2 levels): 1 = hispanic, 2 = not 
hispanic; 
NUMRACES = 0 ;  
if R01R_A_RACECAT3 = 1 then NUMRACES = NUMRACES + 1 ;  
if R01R_A_RACECAT3 = 2 then NUMRACES= NUMRACES + 1 ;  
if R01R_A_RACECAT3 = 3 then NUMRACES = NUMRACES + 1 ;  
if R01R_A_HISP = 1 then NUMRACES = NUMRACES + 1; 
if (NUMRACES = 1 and R01R_A_RACECAT3 = 1 AND R01R_A_HISP=2) then R01R_A_ETHRACECAT7= 1 ; *NH 
White; 
if (NUMRACES = 1 and R01R_A_RACECAT3 = 2 AND R01R_A_HISP=2) then R01R_A_ETHRACECAT7= 2 ; *NH AA; 
if (NUMRACES = 1 and R01R_A_RACECAT3 = 3 AND R01R_A_HISP=2) then R01R_A_ETHRACECAT7= 3 ; *NH 
Other;  
if (NUMRACES = 1 and R01R_A_HISP=1) then R01R_A_ETHRACECAT7= 4; *Hispanic Only;  
if (NUMRACES > 1 and R01R_A_HISP=2) then R01R_A_ETHRACECAT7= 5; *NH Multiracial; 
if (NUMRACES > 1 and R01R_A_HISP=1) then R01R_A_ETHRACECAT7= 6; *Hispanic Multiracial; 
ELSE IF R01R_A_HISP=. OR R01R_A_RACECAT3 = . THEN R01R_A_ETHRACECAT7=.;  
 
*AGE; 
if R01R_A_AGECAT7=1 then age=1; *18-24; 
else if R01R_A_AGECAT7=2 then age=2; *25-34; 
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else if R01R_A_AGECAT7=3 then age=3; *35-44; 
else if R01R_A_AGECAT7=4 then age=4; *45-54; 
else if R01R_A_AGECAT7=5 then age=5; *55-64; 
else if R01R_A_AGECAT7 in (6 7) then age=6; *65 and older; 
else age=.; 
 
*EDUCATION; 
if R01R_A_AM0018=1 then education=1; *less than high school; 
else if R01R_A_AM0018 in (2 3) then education=2; *GED/high school graduate; 
else if R01R_A_AM0018=4 then education=3; *Some college (no degree) or associates degree; 
else if R01R_A_AM0018=5 then education=4; *Bachelor's degree; 
else if R01R_A_AM0018=6 then education=5; *Advanced degree; 
else education=.; 
 
*LIMIT ALL MH VARIABLES TO PAST 30 DAYS; 
 
******INTERNALIZING**********; 
 
*R01_AX0161: Last time you had significant problems with: feeling very trapped, lonely, sad, 
blue,  
depressed or hopeless about the future; 
if R01_AX0161 in (2, 3, 4) then depressed=0; 
else if R01_AX0161 in (1) then depressed=1; 
else if R01_AX0161 = . then depressed= .; 
 
*R01_AX0162: Last time you had significant problems with: Sleep trouble - such as bad 
dreams, sleeping restlessly or falling asleep during the day; 
if R01_AX0162 in (2, 3, 4) then sleeping=0; 
else if R01_AX0162 in (1) then sleeping=1; 
else if R01_AX0162 = . then sleeping=.; 
 
*R01_AX0163: Last time you had significant problems with: feeling very anxious, nervous, tense,  
panicked or like something bad was going to happen; 
if R01_AX0163 in (2, 3, 4) then anxious=0; 
else if R01_AX0163 in (1) then anxious=1; 
else if R01_AX0163 = . then anxious=.; 
 
*R01_AX0164: Last time you had significant problems with: Becoming very distressed and 
upset when something reminded you of the past; 
if R01_AX0164 in (2, 3, 4) then ptsd=0; 
else if R01_AX0164 in (1) then ptsd=1; 
else if R01_AX0164 = . then ptsd=.; 
 
******EXTERNALIZING**********; 
 
*R01_AX0165: Last time you lied or conned to get something; 
if R01_AX0165 in (2, 3, 4) then lied=0; 
else if R01_AX0165 in (1) then lied=1; 
else if R01_AX0165 = . then lied=.; 
 
*R01_AX0166: Last time you did the following two or more times:  
had a hard time paying attention at school, work or home; 
if R01_AX0166 in (2, 3, 4) then attention=0; 
else if R01_AX0166 in (1) then attention=1; 
else if R01_AX0166 = . then attention=.; 
 
*R01_AX0167: Last time you did the following two or more times: had a hard 
time listening to instructions at school, work or home; 
if R01_AX0167 in (2, 3, 4) then listening=0; 
else if R01_AX0167 in (1) then listening=1; 
else if R01_AX0167 = . then listening= .; 
 
*R01_AX0168: Last time you did the following two or more times:  
were a bully or threatened other people; 
if R01_AX0168 in (2, 3, 4) then bully=0; 
else if R01_AX0168 in (1) then bully=1; 
else if R01_AX0168 = . then bully= .; 
 
*R01_AX0169: Last time you did the following two or more times:  
started physical fights with other people; 
if R01_AX0169 in (2, 3, 4) then fights=0; 
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else if R01_AX0169 in (1) then fights=1; 
else if R01_AX0169 = . then fights= .; 
 
*R01_AX0250: Last time felt restless/need to climb on things; 
if R01_AX0250 in (2, 3, 4) then restless=0; 
if R01_AX0250 in (1) then restless=1; 
else if R01_AX0250 = . then restless=.; 
 
*R01_AX0251: Last time gave answers before question was finished; 
if R01_AX0251 in (2, 3, 4) then answered=0; 
if R01_AX0251 in (1) then answered=1; 
else if R01_AX0251 = . then answered=.; 
 
******SUBSTANCE USE DISORDERS**********; 
 
*R01_AX0170: Last time used alcohol/drugs weekly or more often; 
if R01_AX0170 in (2, 3, 4) then weeklyuse=0; 
if R01_AX0170 in (1) then weeklyuse=1; 
else if R01_AX0170 = . then weeklyuse=.; 
 
*R01_AX0171: Last time spent a lot of time getting alcohol/drugs; 
if R01_AX0171 in (2, 3, 4) then timegetting=0; 
if R01_AX0171 in (1) then timegetting=1; 
else if R01_AX0171 = . then timegetting=.; 
 
*R01_AX0193: Last time you spent a lot of time using or recovering from alcohol or other drugs; 
if R01_AX0193 in (2, 3, 4) then timeusing=0; 
if R01_AX0193 in (1) then timeusing=1; 
else if R01_AX0193 = . then timeusing=.; 
 
*R01_AX0172: Last time that you kept using alcohol or other drugs even though it was causing 
social problems, leading to fights, or getting you into trouble with other people; 
if R01_AX0172 in (2, 3, 4) then socialprob=0; 
if R01_AX0172 in (1) then socialprob=1; 
else if R01_AX0172 = . then socialprob=.; 
 
*R01_AX0173: Last time that your use of alcohol or other drugs reduced your involvement in 
activities at work, school, home or social events; 
if R01_AX0173 in (2, 3, 4) then reducedact=0; 
if R01_AX0173 in (1) then reducedact=1; 
else if R01_AX0173 = . then reducedact=.; 
 
*R01_AX0174: Last time that you had withdrawal problems such as shaky hands, throwing up, 
having trouble sitting still or sleeping; 
if R01_AX0174 in (2, 3, 4) then withdraw=0; 
if R01_AX0174 in (1) then withdraw=1; 
else if R01_AX0174 = . then withdraw=.; 
 
*R01_AX0194: Use of alcohol/drugs to avoid withdrawal; 
if R01_AX0194 in (2, 3, 4) then usetoavoid=0; 
if R01_AX0194 in (1) then usetoavoid=1; 
else if R01_AX0194 = . then usetoavoid=.; 
 
*ALL PAST 30 DAY; 
sud_score = sum(weeklyuse, timegetting, timeusing, socialprob, reducedact, withdraw, usetoavoid); 
 
*OLD; 
*SUD is 3 levels- no/low, moderate, and high; 
*if sud_score in (0,1) then sud=0; 
*if sud_score in (2,3) then sud=1; 
*if sud_score in (4,5,6,7) then sud=2; 
*if sud_score = . then sud=.; 
 
*NEW = 1/16/20; 
*SUD is 3 levels- no/low, moderate, and high; 
if sud_score in (0) then sud=0; 
if sud_score in (1,2) then sud=1; 
if sud_score in (3,4,5,6,7) then sud=2; 
if sud_score = . then sud=.; 
 
*Dichotomize by 0 = no/low, 1 = moderate/high; 
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*if sud in (0) then sudbin1=0; 
*if sud in (1, 2) then sudbin1=1; 
*if sud = . then sudbin1 = .; 
 
*Dichotomize by 0 = no/low/moderate, 1 = high; 
*if sud in (0,1) then sudbin2=0; 
*if sud in (2) then sudbin2=1; 
*if sud = . then sudbin2 = .; 
 
 
*R01_AX0170 + R01_AX0171 + R01_AX0172 + R01_AX0173 + R01_AX0174 + R01_AX0193 + R01_AX0194; 
*Last time used alcohol/drugs weekly or more often; 
*if R01_AX0170 = 1 then sudcon1=3; 
*if R01_AX0170 = 2 then sudcon1=2; 
*if R01_AX0170 = 3 then sudcon1=1; 
*if R01_AX0170 = 4 then sudcon1=0; 
*else if R01_AX0170 = . then sudcon1=.; 
*Last time spent a lot of time getting alcohol/drugs; 
*if R01_AX0171 = 1 then sudcon2=3; 
*if R01_AX0171 = 2 then sudcon2=2; 
*if R01_AX0171 = 3 then sudcon2=1; 
*if R01_AX0171 = 4 then sudcon2=0; 
*else if R01_AX0171 = . then sudcon2=.; 
*Last time spent a lot of time using or recovering; 
*if R01_AX0172 = 1 then sudcon3=3; 
*if R01_AX0172 = 2 then sudcon3=2; 
*if R01_AX0172 = 3 then sudcon3=1; 
*if R01_AX0172 = 4 then sudcon3=0; 
*else if R01_AX0172 = . then sudcon3=.; 
*Last time alcohol/drugs causing social problems; 
*if R01_AX0173 = 1 then sudcon4=3; 
*if R01_AX0173 = 2 then sudcon4=2; 
*if R01_AX0173 = 3 then sudcon4=1; 
*if R01_AX0173 = 4 then sudcon4=0; 
*else if R01_AX0173 = . then sudcon4=.; 
*Reduced involvement with activities; 
*if R01_AX0174 = 1 then sudcon5=3; 
*if R01_AX0174 = 2 then sudcon5=2; 
*if R01_AX0174 = 3 then sudcon5=1; 
*if R01_AX0174 = 4 then sudcon5=0; 
*else if R01_AX0174 = . then sudcon5=.; 
*Withdrawal problems; 
*if R01_AX0193 = 1 then sudcon6=3; 
*if R01_AX0193 = 2 then sudcon6=2; 
*if R01_AX0193 = 3 then sudcon6=1; 
*if R01_AX0193 = 4 then sudcon6=0; 
*else if R01_AX0193 = . then sudcon6=.; 
*Use of alcohol/drugs to avoid withdrawal; 
*if R01_AX0194 = 1 then sudcon7=3; 
*if R01_AX0194 = 2 then sudcon7=2; 
*if R01_AX0194 = 3 then sudcon7=1; 
*if R01_AX0194 = 4 then sudcon7=0; 
*else if R01_AX0194 = . then sudcon7=.; 
 
*sudconscore = sum(sudcon1, sudcon2, sudcon3, sudcon4, sudcon5, sudcon6, sudcon7); 
 
 
*****DUMMY CODING FOR THE COVARIATES******; 
 
IF R01R_A_SEX=1 THEN SEXMALE_1=1; 
ELSE SEXMALE_1=0; 
 
IF R01R_A_SEX=2 THEN SEXFEMALE_2=1; 
ELSE SEXFEMALE_2=0; 
 
IF age=1 THEN AGE1824_1=1; 
ELSE AGE1824_1=0; 
 
IF age=2 THEN AGE2534_2=1; 
ELSE AGE2534_2=0; 
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IF age=3 THEN AGE3544_3=1; 
ELSE AGE3544_3=0; 
 
IF age=4 THEN AGE4554_4=1; 
ELSE AGE4554_4=0; 
 
IF age=5 THEN AGE5564_5=1; 
ELSE AGE5564_5=0; 
 
IF age=6 THEN AGE65_6=1; 
ELSE AGE65_6=0; 
 
IF R01R_A_ETHRACECAT7=1 THEN RACEWH_1=1; 
ELSE RACEWH_1=0; 
 
IF R01R_A_ETHRACECAT7=2 THEN RACEBL_2=1; 
ELSE RACEBL_2=0; 
 
IF R01R_A_ETHRACECAT7=3 THEN RACEOT_3=1; 
ELSE RACEOT_3=0; 
 
IF R01R_A_ETHRACECAT7=6 THEN RACEHI_6=1; 
ELSE RACEHI_6=0; 
 
IF education=1 THEN EDU_1=1; 
ELSE EDU_1=0; 
 
IF education=2 THEN EDU_2=1; 
ELSE EDU_2=0; 
 
IF education=3 THEN EDU_3=1; 
ELSE EDU_3=0; 
 
IF education=4 THEN EDU_4=1; 
ELSE EDU_4=0; 
 
IF education=5 THEN EDU_5=1; 
ELSE EDU_5=0; 
 
IF R01R_A_AM0030=1 THEN INC_1=1; 
ELSE INC_1=0; 
 
IF R01R_A_AM0030=2 THEN INC_2=1; 
ELSE INC_2=0; 
 
IF R01R_A_AM0030=3 THEN INC_3=1; 
ELSE INC_3=0; 
 
IF R01R_A_AM0030=4 THEN INC_4=1; 
ELSE INC_4=0; 
 
IF R01R_A_AM0030=5 THEN INC_5=1; 
ELSE INC_5=0; 
 
*extremely satisfied =1; 
IF R01_AX0092=1 THEN SOC_1=1; 
ELSE SOC_1=0; 
 
IF R01_AX0092=2 THEN SOC_2=1; 
ELSE SOC_2=0; 
 
IF R01_AX0092=3 THEN SOC_3=1; 
ELSE SOC_3=0; 
 
IF R01_AX0092=4 THEN SOC_4=1; 
ELSE SOC_4=0; 
 
*not at all satisfied =5; 
IF R01_AX0092=5 THEN SOC_5=1; 
ELSE SOC_5=0; 
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 array change _numeric_; 
 do over change; 
 if change=-97777 then change=.; 
 else if change=-99999 then change=.; 
 else if change=-99988 then change=.; 
 else if change=-99977 then change=.; 
 else if change=-99955 then change=.; 
 else if change=-99911 then change=.; 
 else if change=-9 then change=.; 
 else if change=-8 then change=.; 
 else if change=-7 then change=.; 
 else if change=-1 then change=.; 
 else if change=-5 then change=.; 
 end; 
 
 
run; 
 
 
 
*******************NOW CHECK*********************; 
 
 
*check dummies; 
proc freq data=lca.w1; 
table  R01R_A_SEX*SEXMALE_1 
  R01R_A_SEX*SEXFEMALE_2 
  age*AGE1824_1 
  age*AGE2534_2 
  age*AGE3544_3 
  age*AGE4554_4 
  age*AGE5564_5 
  age*AGE65_6 
  R01R_A_ETHRACECAT7*RACEWH_1 
  R01R_A_ETHRACECAT7*RACEBL_2 
  R01R_A_ETHRACECAT7*RACEOT_3 
  R01R_A_ETHRACECAT7*RACEHI_6 
  education*EDU_1 
  education*EDU_2 
  education*EDU_3 
  education*EDU_4 
  education*EDU_5 
  R01R_A_AM0030*INC_1 
  R01R_A_AM0030*INC_2 
  R01R_A_AM0030*INC_3 
  R01R_A_AM0030*INC_4 
  R01R_A_AM0030*INC_5 
  R01_AX0092*SOC_1 
  R01_AX0092*SOC_2 
  R01_AX0092*SOC_3 
  R01_AX0092*SOC_4 
  R01_AX0092*SOC_5; 
run; 
 
*check cig and ecig; 
proc freq data=lca.w1; 
table R01R_A_CUR_ESTD_CIGS*acur_cig; 
table R01R_A_CUR_ESTD_ECIG*acur_ecig; 
run; 
 
proc freq data=lca.w1; 
table R01_AX0078; 
run; 
 
*********************************************** 
*JULY 1 2020 - MAKING CC AND EC EXCLUSIVE VARS; 
data lca.w1july20; 
set lca.w1; 
 
*first do multinomial - 4 levels; 
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if acur_cig=0 and acur_ecig=0 then acur_dual=0; 
else if acur_cig=1 and acur_ecig=0 then acur_dual=1; 
else if acur_cig=0 and acur_ecig=1 then acur_dual=2; 
else if acur_cig=1 and acur_ecig=1 then acur_dual=3; 
else acur_dual=.; 
run; 
 
*check; 
proc freq data=lca.w1july20; 
table acur_cig*acur_dual; 
table acur_ecig*acur_dual; 
run; 
 
*then do the dummies; 
data lca.w1july20b; 
set lca.w1july20; 
if acur_dual = 1 then acur_cignew=1; 
else acur_cignew=0; 
if acur_dual = 2 then acur_ecignew=1; 
else acur_ecignew=0; 
if acur_dual = 3 then acur_dualnew=1; 
else acur_dualnew=0; 
run; 
 
*check; 
proc freq data=lca.w1july20b; 
table acur_cignew*acur_dual; 
table acur_ecignew*acur_dual; 
table acur_dualnew*acur_dual; 
run; 
 
*confirm marijuana is good; 
proc freq data=lca.w1july20b; 
table acur_marijuana; 
run; 
 
 
 
*check all substances; 
proc freq data=lca.w1; 
table acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller; 
run; 
 
 
*check sud; 
proc freq data=lca.w1; 
table sud_score*sud; 
run; 
 
*check int/ext/sud; 
proc freq data=lca.w1; 
table acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller  
   R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030  R01_AX0092 
      depressed sleeping anxious ptsd 
   lied attention listening bully fights restless answered 
      weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid 
   sud; 
run; 
 
 
 
*Identify all variable want to keep; 
 
*Now limit to the main variables that we want to keep; 
data LCA.W1mplus; 
set LCA.W1 (keep = caseid personid R01_A_PWGT 
    acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller  
     R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030  
R01_AX0092 
     SEXMALE_1 SEXFEMALE_2  
        AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
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     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud ); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
*Check frequencies; 
proc contents data=LCA.W1mplus; 
run; 
 
*Maybe later- add weights back in; 
proc surveyfreq data=LCA.W1 varmethod=BRR (fay=0.3);  
table  
acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller  
R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030 
R01_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
*So far so good, let's pull this datset into MPlus and try LCA; 
 
 
 
proc freq data=LCA.W1; 
table acur_painkiller*acur_cig/chisq oddsratio plcorr; 
run; 
 
proc freq data=LCA.W1; 
table acur_painkiller*sleeping/chisq oddsratio plcorr; 
run; 
 
 
proc freq data=LCA.W1; 
table acur_painkiller*attention/chisq oddsratio plcorr; 
run; 
 
 
proc freq data=LCA.W1; 
table acur_painkiller*sleeping*attention/chisq oddsratio plcorr; 
run; 
 
 
proc print data=LCA.W1; 
var SOC_5 depressed; 
run; 
 
proc freq data=LCA.W1; 
table SOC_5*depressed/ chisq oddsratio plcorr; 
run; 
 
 
*current use - conventional cigarette prevalence; 
proc surveyfreq data=LCA.W1 varmethod=BRR (fay=0.3);  
table  
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acur_cig ; 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
 
 
 
*July 2 2020 re-run with new exclusive CC, exclusive EC, and dual variables; 
data LCA.W1mplusJuly2020; 
set LCA.w1july20b (keep = caseid personid R01_A_PWGT 
     acur_cignew acur_ecignew acur_dualnew 
     acur_alc acur_marijuana acur_painkiller  
     R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030  
R01_AX0092 
     SEXMALE_1 SEXFEMALE_2  
        AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud ); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
 
proc freq data=LCA.W1mplusJuly2020; 
table acur_marijuana; 
run; 
 
 
*New summary stats; 
 
 
data LCA.W1mplusJuly2020weights; 
set LCA.w1july20b (keep = caseid personid R01_A_PWGT 
     acur_cignew acur_ecignew acur_dualnew 
     acur_alc acur_marijuana acur_painkiller  
     R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030  
R01_AX0092 
     SEXMALE_1 SEXFEMALE_2  
        AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud  
        R01_A_PWGT1 - R01_A_PWGT100); 
     run; 
*rename missings; 
*array change _numeric_; 
*do over change; 
*if change =. then change = -99999; 
*end; 
*run; 
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proc freq data=LCA.W1mplusJuly2020weights; 
table acur_marijuana; 
run; 
 
proc surveyfreq data= LCA.W1mplusJuly2020weights varmethod=BRR (fay=0.3); 
table acur_marijuana /row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
proc surveyfreq data= LCA.W1mplusJuly2020weights varmethod=BRR (fay=0.3); 
table acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030 
R01_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
 
 
 
proc surveyfreq data= LCA.W1 varmethod=BRR (fay=0.3); 
table acur_marijuana  
/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
*confirm marijuana is good; 
proc surveyfreq data=lca.w1july20b varmethod=BRR (fay=0.3); 
table acur_marijuana 
/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
 
 
proc mi data=lca.w1july20b seed=14832 nimpute=0 simple; 
var acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030 
R01_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud ; 
run; 
 
 
 
****4/13/2021; 
 
data LCA.W1mplusJuly2020weights4132021; 
set LCA.w1july20b (keep = caseid personid R01_A_PWGT 
     acur_cignew acur_ecignew acur_dualnew 
     acur_alc acur_marijuana acur_painkiller  
     R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030  
R01_AX0092 
     SEXMALE_1 SEXFEMALE_2  
        AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
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     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud  
        R01_A_PWGT1 - R01_A_PWGT100); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
proc surveyfreq data=lca.W1mplusJuly2020weights4132021 varmethod=BRR (fay=0.3); 
table  acur_cignew acur_ecignew acur_dualnew 
     acur_alc acur_marijuana acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
*export lca.W1mplusJuly2020weights4132021   
1 - run lca in mplus 
*need to rerun the summary stats for wave 1 from this data set = 
LCA.W1mplusJuly2020weights4132021;!!! 
2 - take results import into sas for prediction 
3 - take that into network?? 
; 
 
 
 
 
***Missing vs nonmissing for W1; 
proc contents data=lca.w1july20b; 
run; 
 
data lca.w1missingtest; 
set lca.w1july20b; 
if (acur_cignew=.) or (acur_ecignew=.) or (acur_dualnew=.) or (acur_alc=.) or 
(acur_marijuana=.) or (acur_painkiller=.) or  
(R01R_A_SEX=.)  or (age=.) or (R01R_A_ETHRACECAT7=.) or (education=.) or (R01R_A_AM0030=.) or 
(R01_AX0092=.) or 
(depressed=.) or (sleeping=.) or (anxious=.) or (ptsd=.) or 
(lied=.) or (attention=.) or (listening=.) or (bully=.) or (fights=.) or 
(restless=.) or (answered=.) or 
(sud=.) then compare=0; 
else compare=1; 
run; 
 
 
ods pdf; 
proc freq data=lca.w1missingtest; 
table compare; 
run; 
*complete data/analytic sample (compare = 1) = 24039; 
*missing (compare = 0) = 8281; 
 
******************************** 
*compare missing and nonmissing; 
*look at column percent; 
proc freq data=lca.w1missingtest; 
table acur_cignew*compare/chisq; 
run; 
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*sig different: analytic sample engages in more cig use , chi sq = <.0001; 
 
proc freq data=lca.w1missingtest; 
table acur_ecignew*compare/chisq; 
run; 
*sig different: analytic sample engages in more ecig use , chi sq = 0.002; 
 
proc freq data=lca.w1missingtest; 
table acur_dualnew*compare/chisq; 
run; 
*sig different: analytic sample engages in more dual use , chi sq = <.0001; 
 
proc freq data=lca.w1missingtest; 
table acur_alc*compare/chisq; 
run; 
*sig different: analytic sample engages in more alcohol use , chi sq = <.0001; 
 
proc freq data=lca.w1missingtest; 
table acur_marijuana*compare/chisq; 
run; 
*sig different: analytic sample engages in more, chi sq =<.0001; 
 
proc freq data=lca.w1missingtest; 
table acur_painkiller*compare/chisq; 
run; 
*sig different: analytic sample engages in more, chi sq=<.0001; 
 
*demos; 
proc freq data=lca.w1missingtest; 
table R01R_A_SEX*compare 
      age*compare 
      R01R_A_ETHRACECAT7*compare 
      education*compare 
      R01R_A_AM0030*compare 
      R01_AX0092*compare/chisq; 
run; 
*sig difference sex: more males, less women in analytic sample; 
*sig difference by age: more in categories 2, 3, 4 (25-54) in analytic sample; 
*sig difference by race: more white, less other cats in analytic sample; 
*sig difference by edu: higher edu levels in analytic sample; 
*sig difference by income: higher income levels in analytic sample; 
*sig difference by social: missing had more extremely and very satisfied; 
 
*internalizing; 
proc freq data=lca.w1missingtest; 
table depressed*compare 
      sleeping*compare 
      anxious*compare 
      ptsd*compare/chisq; 
run; 
*sig diff for all: analytic sample has higher endorsement of all 4 symptoms; 
 
*externalizing; 
proc freq data=lca.w1missingtest; 
table lied*compare 
      attention*compare 
      listening*compare 
      bully*compare 
      fights*compare 
      restless*compare 
      answered*compare/chisq; 
run; 
*sig diff for all except fights: all others - analytic sample has higher endorsement of the other 
6 symptoms; 
 
*sud; 
proc freq data=lca.w1missingtest; 
table sud*compare/chisq; 
run; 
*sig diff: analytic sample has higher endorsement of moderate and high sud severity; 
ods pdf close; 
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MPLUS File name: WAVE 1 RUN 4132021 4 CLASS 
 
TITLE: WAVE 1 MODEL 4-13-2021 with weights added and new tobacco variables : fixing the missing; 
     DATA: FILE IS newwave4132021editnoheader.csv; 
     VARIABLE: NAMES ARE CASEID PERSONID weight 
           acur_cignew acur_ecignew acur_dualnew 
            acur_alc acur_marijuana acur_painkiller  
           R01R_A_ETHRACECAT7 age education 
           depressed sleeping anxious ptsd  
           lied attention listening bully fights restless answered  
           weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid  
            sud  
           SEXMALE_1 SEXFEMALE_2  
           AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6  
           RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6  
           EDU_1 EDU_2 EDU_3 EDU_4 EDU_5  
           INC_1 INC_2 INC_3 INC_4 INC_5  
           SOC_1 SOC_2 SOC_3 SOC_4 SOC_5; 
        USEVARIABLES = acur_cignew acur_ecignew acur_dualnew 
                  acur_alc acur_marijuana acur_painkiller 
               depressed sleeping anxious ptsd  
               lied attention listening bully fights restless answered; 
        IDVARIABLE = CASEID; 
        MISSING ARE ALL (-99999); 
        CLASSES = c(4); 
        CATEGORICAL = acur_cignew acur_ecignew acur_dualnew 
                 acur_alc acur_marijuana acur_painkiller 
               depressed sleeping anxious ptsd  
               lied attention listening bully fights restless answered; 
        AUXILIARY = SEXMALE_1 (R3STEP) 
                    AGE1824_1 (R3STEP) AGE2534_2 (R3STEP) AGE3544_3 (R3STEP) 
                    AGE4554_4 (R3STEP) AGE5564_5 (R3STEP) 
                    RACEBL_2 (R3STEP) RACEOT_3 (R3STEP) RACEHI_6 (R3STEP) 
                    EDU_1 (R3STEP) EDU_2 (R3STEP) EDU_3(R3STEP) 
                   EDU_4 (R3STEP) INC_1 (R3STEP) INC_2 (R3STEP) 
                    INC_3 (R3STEP) INC_4 (R3STEP) 
                 SOC_2 (R3STEP) SOC_3 (R3STEP) SOC_4 (R3STEP) SOC_5 (R3STEP); 
      WEIGHT is weight; 
      ANALYSIS: TYPE = MIXTURE; 
                  STARTS = 100 10; 
                  OPTSEED = 991329; 
                  LRTSTARTS = 0 0 150 40; 
      SAVEDATA: file is w14class4132021.csv; 
               save = Cprob; 
      OUTPUT: TECH1 TECH8 TECH10 TECH11 TECH14; 
 
 
 
SAS File name: Wave 1 4 class prediction 4142021 
 
*Prediction Model - Wave 1 4 Class Solution; 
*Data into Mplus is from LCA W1 4132021 (newwave4132021editnoheader.csv); 
*MPLUS Output = wave 1 run 4132021 4 class; 
*CSV = = w14class4132021; 
 
libname pred "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\Wave 1 Prediction 4142021"; 
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data pred.w14classprob4142021; 
input 
ACUR_CIG       ACUR_ECI       ACUR_DUA      ACUR_ALC       ACUR_MAR       ACUR_PAI        
DEPRESS        SLEEPING       ANXIOUS       PTSD            
LIED           ATTENTIO       LISTENING     BULLY          FIGHTS         RESTLESS       ANSWERED        
SEXMALE_        
AGE1824_        
    AGE2534_        
    AGE3544_        
    AGE4554_        
    AGE5564_        
    RACEBL_2        
    RACEOT_3        
    RACEHI_6        
    EDU_1           
    EDU_2           
    EDU_3          
    EDU_4           
    INC_1          
    INC_2          
    INC_3          
    INC_4          
    SOC_2          
    SOC_3           
    SOC_4           
    SOC_5           
    CPROB1         
    CPROB2         
    CPROB3          
    CPROB4         
    C               
    WEIGHT         
    CASEID; 
datalines; 

******COPY PASTE OUTPUT DATA FROM MPLUS***** 
run; 
 
 
SAS File name: Wave 1 4 class prediction analysis 4142021 
 
*Run analyses; 
 
libname pred "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\Wave 1 Prediction 4142021"; 
 
proc contents data=pred.w14classprob4142021; 
run; 
 
*check freqs; 
proc surveyfreq data=pred.w14classprob4142021; 
table ACUR_MAR/row chisq(secondorder); 
weight weight; 
run; 
*the weighted freqs match with the mplus output; 
 
*now need to merge sud into the dataset using idvariable to get sud outcome in same dataset; 
proc sort data=pred.w14classprob4142021;  
by caseid; 
run; 
 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Data Management"; 
 
proc sort data=LCA.W1mplusJuly2020weights4132021; 
by caseid; 
run; 
 
data pred.w14classprobmerge; 
merge pred.w14classprob4142021 LCA.W1mplusJuly2020weights4132021; 
by caseid; 
array change _numeric_; 
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do over change; 
if change =-99999 then change = .; 
end; 
run; 
 
proc print data= pred.w14classprobmerge (obs=20); 
run; 
 
****confirming data; 
proc contents data=pred.w14classprobmerge; 
run; 
 
proc surveyfreq data=pred.w14classprobmerge; 
table R01R_A_SEX/row chisq(secondorder); 
weight weight; 
run; 
 
proc freq data=pred.w14classprobmerge; 
table acur_cig*acur_cignew; 
*acur_alc; 
table acur_dua*acur_dualnew; 
table acur_eci*acur_ecignew; 
table acur_mar*acur_marijuana; 
table acur_pai*acur_painkiller; 
*table answered*; 
*table anxious; 
table attentio*attention; 
*table bully; 
table depress*depressed; 
run; 
 
 
*Just regression; 
proc surveylogistic data=pred.w14classprobmerge; 
class c (ref='3')/param=ref; 
model sud (descending) = c/ link=glogit; 
*output predprobs=(I) out=pred.probs72220; 
weight weight; 
run; 
 
ods pdf; 
*Trying ordinal regression; 
proc surveylogistic data=pred.w14classprobmerge; 
class c (ref='3')/param=ref order=internal; 
model sud (descending) = c/lackfit; 
*output predprobs=(I) out=pred.probs72220; 
weight weight; 
run; 
 
*use lackfit to test get pvalue for prop odds assumption; 
proc logistic data=pred.w14classprobmerge; 
class c (ref='3')/param=ref order=internal; 
model sud (descending) = c/lackfit; 
*output predprobs=(I) out=pred.probs72220; 
weight weight; 
run; 
ods pdf close; 
 
libname cb "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp"; 
 
/* Mode-selective macro wrapper */ 
%MACRO 
cumRoc3(_yOut,_xPred,_vsLbl,_cutFmt,_dsn,_dir00,_dirOut,_dirPng,_dateOut,_libNm=cb,_propOdds=PO,_
yOrd=A,_macMode=1,_macComp=YES,_outCntnts=YES,_outRtf=NO,_debug0=NO) ; 
    /* Compile supporting macros */ 
    %IF       %UPCASE(&_macComp)= YES %THEN %DO ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\words_MAC.sas"          ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\00_preCheck_MAC.sas"    ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\01_dataPre_MAC.sas"     ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\02_cr3_1Logit_MAC.sas"  ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\03_cr3_2ROC_MAC.sas"    ; 
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        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\04_cut3Base_MAC.sas"    ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\05_cut3Parmx_MAC.sas"   ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\06_parmx95_MAC.sas"     ; 
        %INCLUDE "U:\CourtneyBlondino\PhD Epidemiology\LCA\LizHelp\07_cr3Results_MAC.sas"  ; 
    %END ; 
 
    %GLOBAL _poTitle _fileSfx ; 
 
    /* For portrait with 10pt font */ 
    OPTIONS LINESIZE= 95 
            PAGESIZE= 54 
    ; 
    OPTIONS FORMCHAR='|----|+|---+=|-/\<>*'; 
    ODS ESCAPECHAR= "^" ; 
 
    /* Check ternary ordinal outcome encoding is compatible with macro */ 
    %preCheck ; 
 
    %IF &_yOK EQ PASS %THEN %DO ; 
        %IF       %UPCASE(&_propOdds)= PO %THEN %DO ; 
            %LET _poTitle= %STR(Proportional Odds) ; 
            %LET _fileSfx= &_YOUT._&_XPRED._PO  ; 
        %END ; 
        %ELSE %IF %UPCASE(&_propOdds)= NPO %THEN %DO ; 
            %LET _poTitle= %STR(Non-Proportional Odds) ; 
            %LET _fileSfx= &_YOUT._&_XPRED._NPO ; 
        %END ; 
 
        /* Discard previous temporary datasets */ 
        PROC DATASETS LIBRARY= WORK NOLIST NOPRINT ; 
            DELETE  _inDsn _cutParmx _parmx95 ; 
        RUN ; QUIT ; 
 
        /* Discard previous permanent output datasets */ 
        PROC DATASETS LIBRARY= &_LIBNM NOLIST NOPRINT ; 
            DELETE  PARMS4VAR_&_fileSfx 
                    COVB_&_fileSfx 
                    CUMLOGPARM_&_fileSfx 
                    CUMLOGTABLE_&_fileSfx 
                    CUMLOGPRED_&_fileSfx 
                    ASSOC_&_fileSfx 
                    ROC_&_fileSfx 
                    AUC_&_fileSfx 
                    CUTBASE_&_fileSfx 
                    CUTPARMX_&_fileSfx 
                    CUMROC3_&_fileSfx 
            ; 
        RUN ; QUIT ; 
 
        /*  MACRO MODE 
            1:  Complete procedure: analysis, criteria and parametric cutpoint calculation, 
reporting 
            2:  Analysis and criteria and parametric cutpoint calculation only 
            3:  Reporting only: requires 1 or 2 to have been run previously */ 
        %IF &_macMode= 1 OR &_macMode= 2 %THEN %DO ; 
            %dataPre ; 
            %cr3_1Logit ; 
            %cr3_2ROC ; 
            %cut3Base ; 
            %cut3Parmx ; %parmx95 ; 
        %END ; 
 
        %IF &_macMode= 1 OR &_macMode= 3 
            %THEN %cr3Results(CUTPARMX CUTBASE) ; 
 
        /* Clean up */ 
        %IF %upCase(&_debug0)= NO 
            AND 
            (&_macMode= 1 OR &_macMode= 2) 
            %THEN %DO ; 
                PROC DATASETS library= WORK NOLIST NOPRINT ; 
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                    DELETE  _inDsn _cutParmx _parmx95 ; 
                RUN ; QUIT ; 
            %END ; 
    %END ; 
%MEND cumRoc3 ; 
 
 
*Create dataset for class and SUD to run the cum ROC; 
data cb.macrotestclass4142021; 
set pred.w14classprobmerge (keep = sud c); 
run; 
 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,c,SUD,%STR(BESTD8.3),macrotestclass4142021, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
*Create internal score; 
data pred.internalscore; 
set pred.w14classprobmerge;  
*create our continuous internalizing "predictive variable"; 
int_score = sum (depressed, sleeping, anxious, ptsd); 
run; 
 
proc freq data=pred.internalscore; 
table int_score; 
table sud; 
run; 
 
*Create dataset for internalizing and SUD to run the cum ROC; 
data cb.macrotestintscore4142021; 
set pred.internalscore (keep = sud int_score); 
run; 
 
proc contents data=cb.macrotestintscore4142021; 
run; 
 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,int_score,SUD,%STR(BESTD8.3),macrotestintscore4142021, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
 
*Create external score; 
data pred.externalscore; 
set pred.w14classprobmerge;  
*create our continuous  "predictive variable"; 
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ext_score = sum (lied, attention, listening, bully, fights, restless, answered); 
run; 
 
proc freq data=pred.externalscore; 
table ext_score; 
table sud; 
run; 
 
*Create dataset for externalizing and SUD to run the cum ROC; 
data cb.macrotestextscore4142021; 
set pred.externalscore (keep = sud ext_score); 
run; 
 
proc contents data=cb.macrotestextscore4142021; 
run; 
 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,ext_score,SUD,%STR(BESTD8.3),macrotestextscore4142021, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
proc freq data=pred.w14classprobmerge; 
table acur_marijuana; 
run; 
 
 
*Create substance use score; 
data pred.subsscore; 
set pred.w14classprobmerge;  
*create our continuous  "predictive variable"; 
subs_score = sum (acur_cignew, acur_ecignew, acur_dualnew, acur_alc, acur_marijuana, 
acur_painkiller); 
run; 
 
proc freq data=pred.subsscore; 
table subs_score; 
table sud; 
run; 
 
*Create dataset for substance use and SUD to run the cum ROC; 
data cb.macrotestsubsscore4142021; 
set pred.subsscore (keep = sud subs_score); 
run; 
 
proc contents data=cb.macrotestsubsscore4142021; 
run; 
 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,subs_score,SUD,%STR(BESTD8.3),macrotestsubsscore4142021, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
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    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
 
 
 
 
 
*Now create datasets for IP_2 IP_1 IP_0 to run in macro from pred.probs72220; 
 
*********************************************IP_2; 
data pred.macroip2; 
set pred.probs72220 (keep = sud IP_2); 
run; 
 
*move the dataset into cb; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,IP_2,SUD,%STR(BESTD8.3),macroip2, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
*********************************************IP_1; 
data pred.macroip1; 
set pred.probs72220 (keep = sud IP_1); 
run; 
 
*move the dataset into cb; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,IP_1,SUD,%STR(BESTD8.3),macroip1, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 
 
 
*********************************************IP_0; 
data pred.macroip0; 
set pred.probs72220 (keep = sud IP_0); 
run; 
 
*move the dataset into cb; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF; 
    /* Macro debugging: ENABLED */ 
    OPTIONS MLOGIC MPRINT SYMBOLGEN ; 
    %cumRoc3(sud,IP_0,SUD,%STR(BESTD8.3),macroip0, 
        %STR(C:\Users\blondinoct\Documents\LCA), 
        %STR(C:\Users\blondinoct\Documents\LCA), 
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        %STR(C:\Users\blondinoct\Documents\LCA), 
 
        2019_DEMO,_macMode=1,_macComp=YES, 
        _outCntnts=YES,_outRtf=NO) ; 
    /* Macro debugging: DISABLED */ 
    OPTIONS noMLOGIC noMPRINT noSYMBOLGEN ; 
*ODS HTML Close ; *ODS HTML ; 
ODS PDF CLOSE; 

 
 
 
SAS File name: Network W1 4142021 
 
****SA 2 - Network Analysis 
****Making datasets for overall Wave 1 then by sex 
****NEW!!!! APRIL 14 2021; 
 
 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Data Management"; 
 
 
proc contents data=LCA.W1mplusJuly2020weights4132021; 
run; 
 
data lca.newwave1fornet442021; 
set LCA.W1mplusJuly2020weights4132021 (keep = R01R_A_SEX CASEID PERSONID 
     acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
 array change _numeric_; 
do over change; 
if change =-99999 then change = .; 
end; 
run; 
 
proc contents data=lca.newwave1fornet442021; 
run; 
 
proc freq data=lca.newwave1fornet442021; 
table R01R_A_SEX ; 
run; 
 
proc freq data=lca.newwave1fornet442021; 
table R01R_A_SEX  
acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered; 
run; 
 
 
libname net "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\Network Wave 1 Data Management"; 
 
*OVERALL WAVE 1; 
data net.overallwave14142021; 
set lca.newwave1fornet442021 (keep =  
     acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
     run; 
 
 
************* 
*male wave 1; 
data net.malesubset4142021; 
set lca.newwave1fornet442021; 
if R01R_A_SEX=1 then output; 
run; 
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proc contents data=net.malesubset4142021; 
run; 
 
*use this one; 
data net.malewave14142021; 
set net.malesubset4142021(keep = acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
run; 
 
 
 
 
************** 
*female wave 1; 
data net.femalesubset4142021; 
set lca.newwave1fornet442021; 
if R01R_A_SEX="2" then output; 
run; 
 
proc contents data=net.femalesubset4142021; 
run; 
 
*use this one; 
data net.femalewave14142021; 
set net.femalesubset4142021(keep = acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
run; 
 
 
 
 
 
**correlations;; 
 
proc contents data=net.overallwave14142021; 
run; 
 
proc corr data=net.overallwave14142021; 
var ACUR_CIGNEW  ACUR_ECIGNEW ACUR_DUALNEW ACUR_ALC ACUR_MARIJUANA
 ACUR_PAINKILLER  
DEPRESSED SLEEPING ANXIOUS  PTSD  
LIED ATTENTION LISTENING BULLY FIGHTS RESTLESS ANSWERED; 
run; 
 
 
ods pdf; 
*overall cc*substances; 
proc freq data=net.overallwave14142021; 
table  
ACUR_CIGNEW*ACUR_ECIGNEW 
ACUR_CIGNEW*ACUR_DUALNEW  
ACUR_CIGNEW*ACUR_ALC  
ACUR_CIGNEW*ACUR_MARIJUANA  
ACUR_CIGNEW*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
*overall ec*substances; 
proc freq data=net.overallwave14142021; 
table  
ACUR_ECIGNEW*ACUR_CIGNEW 
ACUR_ECIGNEW*ACUR_DUALNEW  
ACUR_ECIGNEW*ACUR_ALC  
ACUR_ECIGNEW*ACUR_MARIJUANA  
ACUR_ECIGNEW*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
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*overall dual*substances; 
proc freq data=net.overallwave14142021; 
table  
ACUR_DUALNEW*ACUR_CIGNEW 
ACUR_DUALNEW*ACUR_ECIGNEW  
ACUR_DUALNEW*ACUR_ALC  
ACUR_DUALNEW*ACUR_MARIJUANA  
ACUR_DUALNEW*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
*overall alcohol*substances; 
proc freq data=net.overallwave14142021; 
table  
ACUR_ALC*ACUR_CIGNEW 
ACUR_ALC*ACUR_ECIGNEW 
ACUR_ALC*ACUR_DUALNEW 
ACUR_ALC*ACUR_MARIJUANA  
ACUR_ALC*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
*overall marijuana*pain; 
proc freq data=net.overallwave14142021; 
table  
ACUR_MARIJUANA*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
proc freq data=net.overallwave14142021; 
table  
ACUR_CIGNEW*DEPRESSED  
ACUR_ECIGNEW*DEPRESSED  
ACUR_DUALNEW*DEPRESSED  
ACUR_ALC*DEPRESSED  
ACUR_MARIJUANA*DEPRESSED  
ACUR_PAINKILLER*DEPRESSED 
/plcorr chisq; 
run; 
 
 
proc freq data=net.overallwave14142021; 
table  
ACUR_CIGNEW*SLEEPING 
ACUR_ECIGNEW*SLEEPING  
ACUR_DUALNEW*SLEEPING  
ACUR_ALC*SLEEPING  
ACUR_MARIJUANA*SLEEPING  
ACUR_PAINKILLER*SLEEPING 
 
ACUR_CIGNEW*ANXIOUS   
ACUR_ECIGNEW*ANXIOUS   
ACUR_DUALNEW*ANXIOUS   
ACUR_ALC*ANXIOUS   
ACUR_MARIJUANA*ANXIOUS   
ACUR_PAINKILLER*ANXIOUS  
 
ACUR_CIGNEW*PTSD  
ACUR_ECIGNEW*PTSD  
ACUR_DUALNEW*PTSD  
ACUR_ALC*PTSD  
ACUR_MARIJUANA*PTSD  
ACUR_PAINKILLER*PTSD  
/plcorr chisq; 
run; 
 
proc freq data=net.overallwave14142021; 
table SLEEPING*DEPRESSED 
ANXIOUS*DEPRESSED 
ANXIOUS*SLEEPING 
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PTSD*DEPRESSED 
PTSD*SLEEPING 
PTSD*ANXIOUS/plcorr chisq; 
run; 
 
proc freq data=net.overallwave14142021; 
table   
ACUR_CIGNEW*LIED 
ACUR_ECIGNEW*LIED  
ACUR_DUALNEW*LIED  
ACUR_ALC*LIED  
ACUR_MARIJUANA*LIED  
ACUR_PAINKILLER*LIED 
 
ACUR_CIGNEW*ATTENTION 
ACUR_ECIGNEW*ATTENTION  
ACUR_DUALNEW*ATTENTION  
ACUR_ALC*ATTENTION  
ACUR_MARIJUANA*ATTENTION  
ACUR_PAINKILLER*ATTENTION 
 
ACUR_CIGNEW*LISTENING 
ACUR_ECIGNEW*LISTENING  
ACUR_DUALNEW*LISTENING  
ACUR_ALC*LISTENING  
ACUR_MARIJUANA*LISTENING  
ACUR_PAINKILLER*LISTENING 
 
ACUR_CIGNEW*BULLY 
ACUR_ECIGNEW*BULLY  
ACUR_DUALNEW*BULLY  
ACUR_ALC*BULLY  
ACUR_MARIJUANA*BULLY  
ACUR_PAINKILLER*BULLY 
 
ACUR_CIGNEW*FIGHTS 
ACUR_ECIGNEW*FIGHTS  
ACUR_DUALNEW*FIGHTS  
ACUR_ALC*FIGHTS   
ACUR_MARIJUANA*FIGHTS   
ACUR_PAINKILLER*FIGHTS  
 
ACUR_CIGMEW*RESTLESS 
ACUR_ECIGNEW*RESTLESS  
ACUR_DUALNEW*RESTLESS  
ACUR_ALC*RESTLESS  
ACUR_MARIJUANA*RESTLESS  
ACUR_PAINKILLER*RESTLESS 
 
ACUR_CIGNEW*ANSWERED 
ACUR_ECIGNEW*ANSWERED  
ACUR_DUALNEW*ANSWERED  
ACUR_ALC*ANSWERED  
ACUR_MARIJUANA*ANSWERED  
ACUR_PAINKILLER*ANSWERED 
/plcorr chisq; 
run; 
 
 
proc freq data=net.overallwave14142021; 
table  
LIED*DEPRESSED 
LIED*SLEEPING 
LIED*ANXIOUS 
LIED*PTSD 
 
ATTENTION*DEPRESSED 
ATTENTION*SLEEPING 
ATTENTION*ANXIOUS 
ATTENTION*PTSD 
ATTENTION*LIED 
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LISTENING*DEPRESSED 
LISTENING*SLEEPING 
LISTENING*ANXIOUS 
LISTENING*PTSD 
LISTENING*LIED 
LISTENING*ATTENTION 
 
BULLY*DEPRESSED 
BULLY*SLEEPING 
BULLY*ANXIOUS 
BULLY*PTSD 
BULLY*LIED 
BULLY*ATTENTION 
BULLY*LISTENING 
 
FIGHTS*DEPRESSED 
FIGHTS*SLEEPING 
FIGHTS*ANXIOUS 
FIGHTS*PTSD 
FIGHTS*LIED 
FIGHTS*ATTENTION 
FIGHTS*LISTENING 
FIGHTS*BULLY 
 
RESTLESS*DEPRESSED 
RESTLESS*SLEEPING 
RESTLESS*ANXIOUS 
RESTLESS*PTSD 
RESTLESS*LIED 
RESTLESS*ATTENTION 
RESTLESS*LISTENING 
RESTLESS*BULLY 
RESTLESS*FIGHTS 
 
ANSWERED*DEPRESSED 
ANSWERED*SLEEPING 
ANSWERED*ANXIOUS 
ANSWERED*PTSD 
ANSWERED*LIED 
ANSWERED*ATTENTION 
ANSWERED*LISTENING 
ANSWERED*BULLY 
ANSWERED*FIGHTS 
ANSWERED*RESTLESS 
 
/plcorr chisq; 
run; 
ods pdf close; 
 
 
 
**correlations by sex; 
 
ods pdf; 
**male - su; 
proc freq data=net.malewave14142021; 
table  
ACUR_CIGNEW*ACUR_ECIGNEW 
ACUR_CIGNEW*ACUR_DUALNEW  
ACUR_CIGNEW*ACUR_ALC  
ACUR_CIGNEW*ACUR_MARIJUANA  
ACUR_CIGNEW*ACUR_PAINKILLER 
 
ACUR_ECIGNEW*ACUR_CIGNEW 
ACUR_ECIGNEW*ACUR_DUALNEW  
ACUR_ECIGNEW*ACUR_ALC  
ACUR_ECIGNEW*ACUR_MARIJUANA 
ACUR_ECIGNEW*ACUR_PAINKILLER 
 
ACUR_DUALNEW*ACUR_CIGNEW 
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ACUR_DUALNEW*ACUR_ECIGNEW  
ACUR_DUALNEW*ACUR_ALC  
ACUR_DUALNEW*ACUR_MARIJUANA 
ACUR_DUALNEW*ACUR_PAINKILLER 
 
ACUR_ALC*ACUR_CIGNEW 
ACUR_ALC*ACUR_ECIGNEW 
ACUR_ALC*ACUR_DUALNEW 
ACUR_ALC*ACUR_MARIJUANA  
ACUR_ALC*ACUR_PAINKILLER 
 
ACUR_MARIJUANA*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
**male - su and int; 
proc freq data=net.malewave14142021; 
table  
ACUR_CIGNEW*DEPRESSED  
ACUR_ECIGNEW*DEPRESSED  
ACUR_DUALNEW*DEPRESSED  
ACUR_ALC*DEPRESSED  
ACUR_MARIJUANA*DEPRESSED  
ACUR_PAINKILLER*DEPRESSED 
 
ACUR_CIGNEW*SLEEPING 
ACUR_ECIGNEW*SLEEPING  
ACUR_DUALNEW*SLEEPING  
ACUR_ALC*SLEEPING  
ACUR_MARIJUANA*SLEEPING  
ACUR_PAINKILLER*SLEEPING 
 
ACUR_CIGNEW*ANXIOUS   
ACUR_ECIGNEW*ANXIOUS   
ACUR_DUALNEW*ANXIOUS   
ACUR_ALC*ANXIOUS   
ACUR_MARIJUANA*ANXIOUS   
ACUR_PAINKILLER*ANXIOUS  
 
ACUR_CIGNEW*PTSD  
ACUR_ECIGNEW*PTSD  
ACUR_DUALNEW*PTSD  
ACUR_ALC*PTSD  
ACUR_MARIJUANA*PTSD  
ACUR_PAINKILLER*PTSD  
/plcorr chisq; 
run; 
 
*int; 
proc freq data=net.malewave14142021; 
table SLEEPING*DEPRESSED 
ANXIOUS*DEPRESSED 
ANXIOUS*SLEEPING 
PTSD*DEPRESSED 
PTSD*SLEEPING 
PTSD*ANXIOUS/plcorr chisq; 
run; 
 
**male - su and ext; 
proc freq data=net.malewave14142021; 
table   
ACUR_CIGNEW*LIED 
ACUR_ECIGNEW*LIED  
ACUR_DUALNEW*LIED  
ACUR_ALC*LIED  
ACUR_MARIJUANA*LIED  
ACUR_PAINKILLER*LIED 
 
ACUR_CIGNEW*ATTENTION 
ACUR_ECIGNEW*ATTENTION  
ACUR_DUALNEW*ATTENTION  
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ACUR_ALC*ATTENTION  
ACUR_MARIJUANA*ATTENTION  
ACUR_PAINKILLER*ATTENTION 
 
ACUR_CIGNEW*LISTENING 
ACUR_ECIGNEW*LISTENING  
ACUR_DUALNEW*LISTENING  
ACUR_ALC*LISTENING  
ACUR_MARIJUANA*LISTENING  
ACUR_PAINKILLER*LISTENING 
 
ACUR_CIGNEW*BULLY 
ACUR_ECIGNEW*BULLY  
ACUR_DUALNEW*BULLY  
ACUR_ALC*BULLY  
ACUR_MARIJUANA*BULLY  
ACUR_PAINKILLER*BULLY 
 
ACUR_CIGNEW*FIGHTS 
ACUR_ECIGNEW*FIGHTS  
ACUR_DUALNEW*FIGHTS  
ACUR_ALC*FIGHTS   
ACUR_MARIJUANA*FIGHTS   
ACUR_PAINKILLER*FIGHTS  
 
ACUR_CIGNEW*RESTLESS 
ACUR_ECIGNEW*RESTLESS  
ACUR_DUALNEW*RESTLESS  
ACUR_ALC*RESTLESS  
ACUR_MARIJUANA*RESTLESS  
ACUR_PAINKILLER*RESTLESS 
 
ACUR_CIGNEW*ANSWERED 
ACUR_ECIGNEW*ANSWERED  
ACUR_DUALNEW*ANSWERED  
ACUR_ALC*ANSWERED  
ACUR_MARIJUANA*ANSWERED  
ACUR_PAINKILLER*ANSWERED 
/plcorr chisq; 
run; 
 
  
*male int and ext; 
proc freq data=net.malewave14142021; 
table  
LIED*DEPRESSED 
LIED*SLEEPING 
LIED*ANXIOUS 
LIED*PTSD 
 
ATTENTION*DEPRESSED 
ATTENTION*SLEEPING 
ATTENTION*ANXIOUS 
ATTENTION*PTSD 
ATTENTION*LIED 
 
LISTENING*DEPRESSED 
LISTENING*SLEEPING 
LISTENING*ANXIOUS 
LISTENING*PTSD 
LISTENING*LIED 
LISTENING*ATTENTION 
 
BULLY*DEPRESSED 
BULLY*SLEEPING 
BULLY*ANXIOUS 
BULLY*PTSD 
BULLY*LIED 
BULLY*ATTENTION 
BULLY*LISTENING 
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FIGHTS*DEPRESSED 
FIGHTS*SLEEPING 
FIGHTS*ANXIOUS 
FIGHTS*PTSD 
FIGHTS*LIED 
FIGHTS*ATTENTION 
FIGHTS*LISTENING 
FIGHTS*BULLY 
 
RESTLESS*DEPRESSED 
RESTLESS*SLEEPING 
RESTLESS*ANXIOUS 
RESTLESS*PTSD 
RESTLESS*LIED 
RESTLESS*ATTENTION 
RESTLESS*LISTENING 
RESTLESS*BULLY 
RESTLESS*FIGHTS 
 
ANSWERED*DEPRESSED 
ANSWERED*SLEEPING 
ANSWERED*ANXIOUS 
ANSWERED*PTSD 
ANSWERED*LIED 
ANSWERED*ATTENTION 
ANSWERED*LISTENING 
ANSWERED*BULLY 
ANSWERED*FIGHTS 
ANSWERED*RESTLESS 
 
/plcorr chisq; 
run; 
ods pdf close; 
 
****************Female; 
 
ods pdf; 
**female - su; 
proc freq data=net.femalewave14142021; 
table  
ACUR_CIGNEW*ACUR_ECIGNEW 
ACUR_CIGNEW*ACUR_DUALNEW  
ACUR_CIGNEW*ACUR_ALC  
ACUR_CIGNEW*ACUR_MARIJUANA 
ACUR_CIGNEW*ACUR_PAINKILLER 
 
ACUR_ECIGNEW*ACUR_CIGNEW 
ACUR_ECIGNEW*ACUR_DUALNEW 
ACUR_ECIGNEW*ACUR_ALC  
ACUR_ECIGNEW*ACUR_MARIJUANA 
ACUR_ECIGNEW*ACUR_PAINKILLER 
 
ACUR_DUALNEW*ACUR_CIGNEW 
ACUR_DUALNEW*ACUR_ECIGNEW  
ACUR_DUALNEW*ACUR_ALC  
ACUR_DUALNEW*ACUR_MARIJUANA 
ACUR_DUALNEW*ACUR_PAINKILLER 
 
ACUR_ALC*ACUR_CIGNEW 
ACUR_ALC*ACUR_ECIGNEW 
ACUR_ALC*ACUR_DUALNEW 
ACUR_ALC*ACUR_MARIJUANA 
ACUR_ALC*ACUR_PAINKILLER 
 
ACUR_MARIJUANA*ACUR_PAINKILLER 
/plcorr chisq; 
run; 
 
**female - su and int; 
proc freq data=net.femalewave14142021; 
table  



 317 

ACUR_CIGNEW*DEPRESSED  
ACUR_ECIGNEW*DEPRESSED  
ACUR_DUALNEW*DEPRESSED  
ACUR_ALC*DEPRESSED  
ACUR_MARIJUANA*DEPRESSED  
ACUR_PAINKILLER*DEPRESSED 
 
ACUR_CIGNEW*SLEEPING 
ACUR_ECIGNEW*SLEEPING  
ACUR_DUALNEW*SLEEPING  
ACUR_ALC*SLEEPING  
ACUR_MARIJUANA*SLEEPING  
ACUR_PAINKILLER*SLEEPING 
 
ACUR_CIGNEW*ANXIOUS   
ACUR_ECIGNEW*ANXIOUS   
ACUR_DUALNEW*ANXIOUS   
ACUR_ALC*ANXIOUS   
ACUR_MARIJUANA*ANXIOUS   
ACUR_PAINKILLER*ANXIOUS  
 
ACUR_CIGNEW*PTSD  
ACUR_ECIGNEW*PTSD  
ACUR_DUALNEW*PTSD  
ACUR_ALC*PTSD  
ACUR_MARIJUANA*PTSD  
ACUR_PAINKILLER*PTSD  
/plcorr chisq; 
run; 
 
*int; 
proc freq data=net.femalewave14142021; 
table SLEEPING*DEPRESSED 
ANXIOUS*DEPRESSED 
ANXIOUS*SLEEPING 
PTSD*DEPRESSED 
PTSD*SLEEPING 
PTSD*ANXIOUS/plcorr chisq; 
run; 
 
**female - su and ext; 
proc freq data=net.femalewave14142021; 
table   
ACUR_CIGNEW*LIED 
ACUR_ECIGNEW*LIED  
ACUR_DUALNEW*LIED  
ACUR_ALC*LIED  
ACUR_MARIJUANA*LIED  
ACUR_PAINKILLER*LIED 
 
ACUR_CIGNEW*ATTENTION 
ACUR_ECIGNEW*ATTENTION  
ACUR_DUALNEW*ATTENTION  
ACUR_ALC*ATTENTION  
ACUR_MARIJUANA*ATTENTION  
ACUR_PAINKILLER*ATTENTION 
 
ACUR_CIGNEW*LISTENING 
ACUR_ECIGNEW*LISTENING  
ACUR_DUALNEW*LISTENING  
ACUR_ALC*LISTENING  
ACUR_MARIJUANA*LISTENING  
ACUR_PAINKILLER*LISTENING 
 
ACUR_CIGNEW*BULLY 
ACUR_ECIGNEW*BULLY  
ACUR_DUALNEW*BULLY  
ACUR_ALC*BULLY  
ACUR_MARIJUANA*BULLY  
ACUR_PAINKILLER*BULLY 
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ACUR_CIGNEW*FIGHTS 
ACUR_ECIGNEW*FIGHTS  
ACUR_DUALNEW*FIGHTS  
ACUR_ALC*FIGHTS   
ACUR_MARIJUANA*FIGHTS   
ACUR_PAINKILLER*FIGHTS  
 
ACUR_CIGNEW*RESTLESS 
ACUR_ECIGNEW*RESTLESS  
ACUR_DUALNEW*RESTLESS  
ACUR_ALC*RESTLESS  
ACUR_MARIJUANA*RESTLESS  
ACUR_PAINKILLER*RESTLESS 
 
ACUR_CIGNEW*ANSWERED 
ACUR_ECIGNEW*ANSWERED  
ACUR_DUALNEW*ANSWERED  
ACUR_ALC*ANSWERED  
ACUR_MARIJUANA*ANSWERED  
ACUR_PAINKILLER*ANSWERED 
/plcorr chisq; 
run; 
 
  
*female int and ext; 
proc freq data=net.femalewave14142021; 
table  
LIED*DEPRESSED 
LIED*SLEEPING 
LIED*ANXIOUS 
LIED*PTSD 
 
ATTENTION*DEPRESSED 
ATTENTION*SLEEPING 
ATTENTION*ANXIOUS 
ATTENTION*PTSD 
ATTENTION*LIED 
 
LISTENING*DEPRESSED 
LISTENING*SLEEPING 
LISTENING*ANXIOUS 
LISTENING*PTSD 
LISTENING*LIED 
LISTENING*ATTENTION 
 
BULLY*DEPRESSED 
BULLY*SLEEPING 
BULLY*ANXIOUS 
BULLY*PTSD 
BULLY*LIED 
BULLY*ATTENTION 
BULLY*LISTENING 
 
FIGHTS*DEPRESSED 
FIGHTS*SLEEPING 
FIGHTS*ANXIOUS 
FIGHTS*PTSD 
FIGHTS*LIED 
FIGHTS*ATTENTION 
FIGHTS*LISTENING 
FIGHTS*BULLY 
 
RESTLESS*DEPRESSED 
RESTLESS*SLEEPING 
RESTLESS*ANXIOUS 
RESTLESS*PTSD 
RESTLESS*LIED 
RESTLESS*ATTENTION 
RESTLESS*LISTENING 
RESTLESS*BULLY 
RESTLESS*FIGHTS 
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ANSWERED*DEPRESSED 
ANSWERED*SLEEPING 
ANSWERED*ANXIOUS 
ANSWERED*PTSD 
ANSWERED*LIED 
ANSWERED*ATTENTION 
ANSWERED*LISTENING 
ANSWERED*BULLY 
ANSWERED*FIGHTS 
ANSWERED*RESTLESS 
 
/plcorr chisq; 
run; 
ods pdf close; 
      
*tobacco; 
proc freq data=net.overallwave14142021; 
table  
ACUR_CIG*ACUR_ECI 
ACUR_CIG*ACUR_DUA  
ACUR_ECI*ACUR_DUA  
/plcorr chisq; 
run; 
 
ods pdf close; 

 
 
R File name: New W1, M, W Network Analysis 4142021 
 
#PATH WAVE 1 - Network Analysis (Specific Aim 2) 
 
 
######################################## 
# Starting with Overall Wave 1 Sample  # 
######################################## 
 
#OVERALL WAVE 1# 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
overall<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/OverallWave1-4142021.csv", 
header=T, sep=',') 
names(overall) 
 
#checking distributions 
table(overall$acur_cignew) 
table(overall$acur_ecignew) 
table(overall$ACUR_DUA) 
table(overall$ACUR_ALC) 
table(overall$acur_marijuana) 
table(overall$ACUR_PAI) 
table(overall$DEPRESS) 
table(overall$SLEEPING) 
table(overall$ANXIOUS) 
table(overall$PTSD) 
table(overall$LIED) 
table(overall$ATTENTIO) 
table(overall$LISTENING) 
table(overall$BULLY) 
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table(overall$FIGHTS) 
table(overall$RESTLESS) 
table(overall$ANSWERED) 
 
#rename variables so they look nice on the network 
names(overall)[names(overall) == "ACUR_CIG"] <- "CIG" 
names(overall)[names(overall) == "ACUR_ECI"] <- "ECIG" 
names(overall)[names(overall) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(overall)[names(overall) == "ACUR_ALC"] <- "Alcohol" 
names(overall)[names(overall) == "ACUR_MAR"] <- "Marijuana" 
names(overall)[names(overall) == "ACUR_PAI"] <- "PDNP" 
names(overall)[names(overall) == "DEPRESS"] <- "Depressed" 
names(overall)[names(overall) == "SLEEPING"] <- "Sleeping" 
names(overall)[names(overall) == "ANXIOUS"] <- "Anxious" 
names(overall)[names(overall) == "PTSD"] <- "Distressed/Past" 
names(overall)[names(overall) == "LIED"] <- "Lied" 
names(overall)[names(overall) == "ATTENTIO"] <- "Attention" 
names(overall)[names(overall) == "LISTENING"] <- "Listening" 
names(overall)[names(overall) == "BULLY"] <- "Bully" 
names(overall)[names(overall) == "FIGHTS"] <- "Fights" 
names(overall)[names(overall) == "RESTLESS"] <- "Restless" 
names(overall)[names(overall) == "ANSWERED"] <- "Answered" 
 
 
require(ggplot2) 
require(bootnet) 
require(IsingFit) 
require(IsingSampler) 
require(qgraph) 
 
 
######### 
#IsingFit 
OverallNetworkIF <-estimateNetwork(overall, default="IsingFit", missing="listwise") 
#try a network with spring layout 
plot(OverallNetworkIF, layout = "spring", vsize = 10, cex=8) 
 
OverallNetworkIF 
 
######### 
OverallNetworkIF$labels 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
), times=c(6,4,7)) 
 
 
#BLACK EDGES 
#plot(OverallNetworkIF, 
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#     layout="spring", 
#     cut=0, 
#     theme="colorblind", 
#     groups=Traits, 
#     labels=Names, 
     #nodeNames=Names, 
#     edge.color="black", 
#     label.scale.equal=TRUE, 
#     label.cex= 1.2, 
#     legend.cex = 0.4) 
 
layout(1) 
#COLORED EDGES 
plot(OverallNetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     labels=Names, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 3.0, 
     legend.cex = 0.4) 
 
     #title= "Overall Wave 1 Sample") 
 
#edges 
OverallEdges <- OverallNetworkIF$graph 
print(OverallEdges) 
write.csv(OverallEdges, file="Overall_W1_Edges.csv") 
 
View(OverallNetworkIF$graph) 
#write(OverallNetworkIF$graph, file="OverallEdges.csv", sep=" ") 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (OverallNetworkIF) # 
####################################################################### 
 
#First, test accuracy of connections by obtaining confidence interval around 
#estimated edge weight using non-parametric bootstrapping (on original sample and in smaller sample) 
 
 
library(bootnet) 
 
 
#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
OverallBoot <- bootnet(OverallNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(OverallBoot, order="sample") 
plot(OverallBoot, order="sample", plot="interval", split0=TRUE, labels=FALSE) 
plot(OverallBoot, order="sample", labels=FALSE) 
plot(OverallBoot, order="sample", plot="interval", split0=TRUE) 
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OverallBootSummary <- summary(OverallBoot) 
write.csv(OverallBootSummary, file="Overall_Boot_Summary.csv") 
 
OverallInclusion<-bootInclude(OverallBoot, verbose=TRUE) 
plot(OverallInclusion) 
#plot bootstrapped edge CIs 
plot(OverallBoot, labels=FALSE, order="sample") 
#plot significant differences (alpha=0.05) of edges 
plot(OverallBoot, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample") 
 
 
#removing edges (setting them to 0) based on significance alpha=0.05 
# Threshold network: 
OverallNetwork_thresholded <- bootThreshold(OverallBoot) 
# Plot: 
plot(OverallNetwork_thresholded) 
OverallNetwork_thresholded$results 
 
 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
Overall_Ising_threshold <- bootThreshold(OverallBoot, alpha=0.01) 
Overall_Ising_threshold$results 
 
L<- averageLayout(OverallNetworkIF, Overall_Ising_threshold) 
layout(t(1:2)) 
plot(OverallNetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 1.2, 
     legend.cex = 0.4, 
     title="Ising Fit Overall Sample") 
plot(Overall_Ising_threshold, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 1.2, 
     legend.cex = 0.4, 
     title= "Ising Threshold") 
 
OverallNetworkIF$results 
Overall_Ising_threshold$results 
 
#edges 
Edges <- OverallNetworkIF$graph 
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print(Edges) 
write(Edges, file="OverallEdges.csv", sep=" ") 
 
OverallSigDifEdge <- summary(OverallBoot) 
write(OverallSigDifEdge, file="OverallSigDifEdge.csv", sep=" ") 
 
#Second, investigate stability of centrality indices by case-dropping subset bootstrap 
#and get the CS-coefficient 
 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
OverallBoot2 <- bootnet(OverallNetworkIF, nCores=8, type="case", 
                        statistics=c("strength", "closeness", "betweenness")) 
plot(OverallBoot2, statistics = c("strength", "closeness", "betweenness")) 
 
 
plot(OverallBoot2, statistics = c("strength", "closeness")) 
 
 
plot(OverallBoot2, statistics = c("strength", "closeness", "betweenness"), 
     CIstyle="quantiles") 
 
differenceTest(OverallBoot2, "ACUR_CIG", "ACUR_ECIG", "strength") 
 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(OverallBoot2) 
#CS-coefficient for  
#betweenness= 0.206 (below 0.25- not good) - should not interpret betweenness values because CS 
coefficient is not stable 
#closeness= 0.517 this is ok 
#strength= 0.594 this is good, above 0.5 
 
centralityPlot(OverallNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
centralityPlot(OverallNetworkIF, include=c("Strength", "Closeness")) 
 
centralityTable(OverallNetworkIF) 
 
summary(OverallNetworkIF) 
summary(OverallBoot) 
OverallBoot 
summary(OverallBoot2) 
OverallBoot2$type 
 
#Third, test whether network connections (step1) and centrality metrics (step2) 
#for different variables significantly differ from each other using bootstrapped difference test 
#can do the edge weight difference test and the centrality difference test 
 
plot(OverallBoot, "edge", plot="difference", onlyNonZero = TRUE, order="sample", labels=FALSE) 
 
differenceTest(OverallBoot, 3, 17, "strength") 
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differenceTest(OverallBoot, 1, 1, "strength") 
plot(OverallBoot, "strength") 
#plot(OverallBoot, statistics = c("betweenness", "closeness", "strength"), plot = 
#       "difference") 
# ^ only gave me strength 
OverallBoot$bootTable 
 
 
 
 
 
 
###################### 
##WAVE 1 - MALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
male<-read.csv("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter/MaleWave1-4142021.csv", header=T, sep=',') 
dim(male) 
names(male) 
 
#rename variables so they look nice on the network 
names(male)[names(male) == "ACUR_CIG"] <- "CIG" 
names(male)[names(male) == "ACUR_ECI"] <- "ECIG" 
names(male)[names(male) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(male)[names(male) == "ACUR_ALC"] <- "Alcohol" 
names(male)[names(male) == "ACUR_MAR"] <- "Marijuana" 
names(male)[names(male) == "ACUR_PAI"] <- "PDNP" 
names(male)[names(male) == "DEPRESS"] <- "Depressed" 
names(male)[names(male) == "SLEEPING"] <- "Sleeping" 
names(male)[names(male) == "ANXIOUS"] <- "Anxious" 
names(male)[names(male) == "PTSD"] <- "PTSD" 
names(male)[names(male) == "LIED"] <- "Lied" 
names(male)[names(male) == "ATTENTIO"] <- "Attention" 
names(male)[names(male) == "LISTENING"] <- "Listening" 
names(male)[names(male) == "BULLY"] <- "Bully" 
names(male)[names(male) == "FIGHTS"] <- "Fights" 
names(male)[names(male) == "RESTLESS"] <- "Restless" 
names(male)[names(male) == "ANSWERED"] <- "Answered" 
 
 
######### 
#IsingFit 
MaleNetworkIF <-estimateNetwork(male, default="IsingFit", missing="listwise") 
#try a network with spring layout 
plot(MaleNetworkIF, layout = "spring", vsize = 10, cex=8) 
 
 
######### 
MaleNetworkIF$labels 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
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Traits <- rep(c( 
  'Substance Use', 
  'Internalizing', 
  'Externalizing' 
), times=c(6,4,7)) 
 
 
plot(MaleNetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     #title="Wave 1 - Men Only", 
     groups=Traits, 
     labels=Names, 
     #nodeNames=Names, 
     label.scale.equal=TRUE, 
     label.cex= 4, 
     legend.cex = 0.4) 
 
View(MaleNetworkIF$graph) 
MaleNetworkIF$results 
MaleNetworkIF 
 
#edges 
MenEdges <- MaleNetworkIF$graph 
print(MenEdges) 
 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (MaleNetworkIF)    # 
####################################################################### 
library(bootnet) 
#Network <- estimateNetwork(bfiData, default="ggmModSelect", 
#                           stepwise=FALSE, corMethod="cor") 
#plot(Network) 
 
#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
MaleBoot1 <- bootnet(MaleNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(MaleBoot1, order="sample") 
plot(MaleBoot1, order="sample", plot="interval", split0=TRUE) 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
plot(MaleBoot1, order="sample", labels=FALSE) 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
MaleBoot2 <- bootnet(MaleNetworkIF, nCores=8, type="case", 
                 statistics=c("strength", "closeness", "betweenness")) 
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plot(MaleBoot2, statistics = c("strength", "closeness", "betweenness")) 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(MaleBoot2) 
#CS-coefficient for  
#betweenness= 0.128 (below 0.25- not good) 
#closeness= 0.361  (don't think this is good but check) 
#strength= 0.517 this is good, before 0.5 
 
centralityPlot(MaleNetworkIF) 
centralityPlot(MaleNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
 
centralityPlot(MaleNetworkIF, include=c("Strength", "Closeness")) 
centralityPlot(MaleNetworkIF, include=c("Strength")) 
 
centralityTable(MaleNetworkIF) 
summary(MaleNetworkIF) 
 
#plot significant differences (alpha=0.05) of edges 
plot(MaleBoot1, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample", labels=FALSE) 
#plot node strength difference 
plot(MaleBoot1, "strength") 
 
 
 
 
 
######################## 
##WAVE 1 - FEMALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
female<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/FemaleWave1-4142021.csv", 
header=T, sep=',') 
dim(female) 
names(female) 
 
#rename variables so they look nice on the network 
names(female)[names(female) == "ACUR_CIG"] <- "CIG" 
names(female)[names(female) == "ACUR_ECI"] <- "ECIG" 
names(female)[names(female) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(female)[names(female) == "ACUR_ALC"] <- "Alcohol" 
names(female)[names(female) == "ACUR_MAR"] <- "Marijuana" 
names(female)[names(female) == "ACUR_PAI"] <- "PDNP" 
names(female)[names(female) == "DEPRESS"] <- "Depressed" 
names(female)[names(female) == "SLEEPING"] <- "Sleeping" 
names(female)[names(female) == "ANXIOUS"] <- "Anxious" 
names(female)[names(female) == "PTSD"] <- "PTSD" 
names(female)[names(female) == "LIED"] <- "Lied" 
names(female)[names(female) == "ATTENTIO"] <- "Attention" 
names(female)[names(female) == "LISTENING"] <- "Listening" 
names(female)[names(female) == "BULLY"] <- "Bully" 
names(female)[names(female) == "FIGHTS"] <- "Fights" 
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names(female)[names(female) == "RESTLESS"] <- "Restless" 
names(female)[names(female) == "ANSWERED"] <- "Answered" 
 
 
######### 
#IsingFit 
FemaleNetworkIF <-estimateNetwork(female, default="IsingFit", missing="listwise") 
#try a network with spring layout 
plot(FemaleNetworkIF, layout = "spring", vsize = 10, cex=8) 
 
FemaleNetworkIF 
 
######### 
FemaleNetworkIF$labels 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Internalizing', 
  'Externalizing' 
), times=c(6,4,7)) 
 
 
plot(FemaleNetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     #title="Wave 1 - Women Only", 
     groups=Traits, 
     labels=Names, 
     #nodeNames=Names, 
     label.scale.equal=TRUE, 
     label.cex= 4, 
     legend.cex = 0.4) 
 
 
View(FemaleNetworkIF$graph) 
FemaleNetworkIF$results 
 
#edges 
WomenEdges <- FemaleNetworkIF$graph 
print(WomenEdges) 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (FemaleNetworkIF)    # 
####################################################################### 
library(bootnet) 
#Network <- estimateNetwork(bfiData, default="ggmModSelect", 
#                           stepwise=FALSE, corMethod="cor") 
#plot(Network) 
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#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
FemaleBoot1 <- bootnet(FemaleNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(FemaleBoot1, order="sample", labels=FALSE) 
plot(FemaleBoot1, order="sample", plot="interval", split0=TRUE) 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
FemaleBoot2 <- bootnet(FemaleNetworkIF, nCores=8, type="case", 
                       statistics=c("strength", "closeness", "betweenness")) 
plot(FemaleBoot2, statistics = c("strength", "closeness", "betweenness")) 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(FemaleBoot2) 
#CS-coefficient for  
#betweenness= 0.128 (below 0.25- not good) 
#closeness= 0.439 (don't think this is good but check) 
#strength= 0.361 not good - all below 0.5 so not good 
 
centralityPlot(FemaleNetworkIF) 
centralityPlot(FemaleNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
 
centralityPlot(FemaleNetworkIF, include=c("Strength")) 
 
FemaleNetworkIF$graph 
centralityTable(FemaleNetworkIF) 
 
summary(FemaleNetworkIF) 
 
#plot significant differences (alpha=0.05) of edges 
plot(FemaleBoot1, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample", labels=FALSE) 
#plot node strength difference 
plot(FemaleBoot1, "strength") 
 
 
 
 
 
 
#Network Comparisons 
 
 
library("qgraph") 
L<-averageLayout(MaleNetworkIF, FemaleNetworkIF) 
Max<- max(abs(c(getWmat(MaleNetworkIF), getWmat(FemaleNetworkIF)))) 
layout(t(1:2)) 
plot(MaleNetworkIF, layout=L, title="Men", maximum=Max) 
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plot(FemaleNetworkIF, layout=L, title="Women", maximum=Max) 
 
 
library("qgraph") 
L<-averageLayout(MaleNetworkIF, FemaleNetworkIF) 
Max<- max(abs(c(getWmat(MaleNetworkIF), getWmat(FemaleNetworkIF)))) 
layout(t(1:2)) 
plot(MaleNetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     labels=Names, 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex=4.0, 
     legend.cex = 0.4, 
     legend=FALSE, 
     title= "Men", 
     maximum=Max) 
plot(FemaleNetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     labels=Names, 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     legend = FALSE, 
     title= "Women", 
     maximum=Max) 
 
MaleW1Edges <- MaleNetworkIF$graph 
write.csv(MaleW1Edges, file="Male_W1_Edges.csv") 
 
FemaleW1Edges <- FemaleNetworkIF$graph 
write.csv(FemaleW1Edges, file="Female_W1_Edges.csv") 
 
 
 
library("devtools") 
install_github("cvborkulo/NetworkComparisonTest") 
library("NetworkComparisonTest") 
#perform NCT and interpret results 
NCTres<- NCT(MaleNetworkIF, FemaleNetworkIF, test.edges=TRUE, 
             it=100) 
 
#difference in global strength between the networks of the observed data sets 
NCTres$glstrinv.real  
#2.478884 
 
#global strength values of individual networks 
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NCTres$glstrinv.sep 
#53.41989 vs 50.94101 
 
#Difference in global strength p-value 
NCTres$glstrinv.pval 
#0.4554455 - so not significantly different from one another in regard to global strength 
 
#Value of the max difference in edge weights of observed networks 
NCTres$nwinv.real 
#1.327559 
 
#Maximum difference in edge weights 
NCTres$nwinv.pval 
#0.3168317 - so not significantly different from one another in regard to number of edge weights 
 
#Which edges significantly differ? 
NCTres$einv.pvals[which(NCTres$einv.pvals[,3]<0.05),] 
#            Var1           Var2    p-value 
#72        acur_alc acur_marijuana 0.01980198 
#123       acur_alc       sleeping 0.00990099 
#141 acur_marijuana        anxious 0.02970297 
#172   acur_ecignew           lied 0.03960396 
#174       acur_alc           lied 0.00990099 
#191       acur_alc      attention 0.01980198 
#198           lied      attention 0.03960396 
#208       acur_alc      listening 0.04950495 
 
 
 
#NCTresCen<- NCT(MaleNetworkIF, FemaleNetworkIF, test.centrality=TRUE, centrality=c("strength"), 
#                nodes="all",it=20) 
#NCTresCen$diffcen.pvals[which(NCTresCen$diffcen.pvals[,3]<0.05),] 
 
 
centralityTable(OverallNetworkIF) 
centralityTable(MaleNetworkIF) 
centralityTable(FemaleNetworkIF) 
 
 
 
 
 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (OverallNetworkIF) # 
####################################################################### 
 
#First, test accuracy of connections by obtaining confidence interval around 
#estimated edge weight using non-parametric bootstrapping (on original sample and in smaller sample) 
 
 
library(bootnet) 
#Network <- estimateNetwork(bfiData, default="ggmModSelect", 
#                           stepwise=FALSE, corMethod="cor") 
#plot(Network) 
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#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
OverallBoot <- bootnet(OverallNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(OverallBoot, order="sample") 
plot(OverallBoot, order="sample", plot="interval", split0=TRUE, labels=FALSE) 
plot(OverallBoot, order="sample", labels=FALSE) 
plot(OverallBoot, order="sample", plot="interval", split0=TRUE) 
 
summary(OverallBoot) 
OverallInclusion<-bootInclude(OverallBoot, verbose=TRUE) 
plot(OverallInclusion) 
#plot bootstrapped edge CIs 
plot(OverallBoot, labels=FALSE, order="sample") 
#plot significant differences (alpha=0.05) of edges 
plot(OverallBoot, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample") 
 
 
#removing edges (setting them to 0) based on significance alpha=0.05 
# Threshold network: 
OverallNetwork_thresholded <- bootThreshold(OverallBoot) 
# Plot: 
plot(OverallNetwork_thresholded) 
OverallNetwork_thresholded$results 
 
 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
Overall_Ising_threshold <- bootThreshold(OverallBoot, alpha=0.01) 
Overall_Ising_threshold$results 
 
L<- averageLayout(OverallNetworkIF, Overall_Ising_threshold) 
layout(t(1:2)) 
plot(OverallNetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 1.2, 
     legend.cex = 0.4, 
     title="Ising Fit Overall Sample") 
plot(Overall_Ising_threshold, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 1.2, 
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     legend.cex = 0.4, 
     title= "Ising Threshold") 
 
OverallNetworkIF$results 
Overall_Ising_threshold$results 
 
 
 
 
#Second, investigate stability of centrality indices by case-dropping subset bootstrap 
#and get the CS-coefficient 
 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
OverallBoot2 <- bootnet(OverallNetworkIF, nCores=8, type="case", 
                        statistics=c("strength", "closeness", "betweenness")) 
plot(OverallBoot2, statistics = c("strength", "closeness", "betweenness")) 
 
 
plot(OverallBoot2, statistics = c("strength", "closeness")) 
 
 
plot(OverallBoot2, statistics = c("strength", "closeness", "betweenness"), 
     CIstyle="quantiles") 
 
differenceTest(OverallBoot2, "ACUR_CIG", "ACUR_ECIG", "strength") 
 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(OverallBoot2) 
#CS-coefficient for  
#betweenness= 0.128 (below 0.25- not good) - should not interpret betweenness values because CS 
coefficient is not stable 
#closeness= 0.594 this is ok 
#strength= 0.594 this is good, above 0.5 
 
centralityPlot(OverallNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
centralityPlot(OverallNetworkIF, include=c("Strength", "Closeness")) 
 
centralityTable(OverallNetworkIF) 
 
summary(OverallNetworkIF) 
summary(OverallBoot) 
OverallBoot 
summary(OverallBoot2) 
OverallBoot2$type 
 
#Third, test whether network connections (step1) and centrality metrics (step2) 
#for different variables significantly differ from each other using bootstrapped difference test 
#can do the edge weight difference test and the centrality difference test 
 



 333 

plot(OverallBoot, "edge", plot="difference", onlyNonZero = TRUE, order="sample", labels=FALSE) 
 
differenceTest(OverallBoot, 3, 17, "strength") 
differenceTest(OverallBoot, 1, 1, "strength") 
plot(OverallBoot, "strength") 
#plot(OverallBoot, statistics = c("betweenness", "closeness", "strength"), plot = 
#       "difference") 
# ^ only gave me strength 
 
 
 
 
 
#Fifth, compare networks visually AND using network comparison test (NCT) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (MaleNetworkIF)    # 
####################################################################### 
library(bootnet) 
#Network <- estimateNetwork(bfiData, default="ggmModSelect", 
#                           stepwise=FALSE, corMethod="cor") 
#plot(Network) 
 
#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
Boot1 <- bootnet(MaleNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(Boot1, order="sample") 
plot(Boot1, order="sample", plot="interval", split0=TRUE) 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
plot(Boot1, order="sample", labels=FALSE) 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
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#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
Boot2 <- bootnet(MaleNetworkIF, nCores=8, type="case", 
                 statistics=c("strength", "closeness", "betweenness")) 
plot(Boot2, statistics = c("strength", "closeness", "betweenness")) 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(Boot2) 
#CS-coefficient for  
#betweenness= 0.128 (below 0.25- not good) 
#closeness= 0.283 (don't think this is good but check) 
#strength= 0.517 this is good, before 0.5 
 
centralityPlot(MaleNetworkIF) 
centralityPlot(MaleNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
 
centralityPlot(MaleNetworkIF, include=c("Strength", "Closeness")) 
 
centralityTable(MaleNetworkIF) 
summary(MaleNetworkIF) 
 
#plot significant differences (alpha=0.05) of edges 
plot(Boot1, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample", labels=FALSE) 
#plot node strength difference 
plot(Boot1, "strength") 
 
 
 
 
 
####################################################################### 
#Accuracy, Stability, and Replicabiity from PNASS PRACTICALS          # 
#TRY THIS WITH OVERALL SAMPLE using IsingFit Model (FemaleNetworkIF)    # 
####################################################################### 
library(bootnet) 
#Network <- estimateNetwork(bfiData, default="ggmModSelect", 
#                           stepwise=FALSE, corMethod="cor") 
#plot(Network) 
 
#Perform a non-parametric bootstrap on the estimated network, and 
#plot the confidence intervals of the edge-weights 
FemaleBoot1 <- bootnet(FemaleNetworkIF, nCores=8) 
#note that the default is not listed here but in the notes, they are 
plot(FemaleBoot1, order="sample", labels=FALSE) 
plot(FemaleBoot1, order="sample", plot="interval", split0=TRUE) 
#print on PDF so you can read which edge and how many times 
#make sure dimensions are quite long 
#was it included in the bootstrap 
 
#Perform a case-drop bootstrap on the network, and plot the stability 
#of centrality indices. Remember that the default values have now changes 
#and do not automatically include stability estimates of 'closeness' 
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#and 'betweenness'. If you do wish to inspect these, you must include 
#statistics = c("strength", "closeness", "betweenness") 
FemaleBoot2 <- bootnet(FemaleNetworkIF, nCores=8, type="case", 
                       statistics=c("strength", "closeness", "betweenness")) 
plot(FemaleBoot2, statistics = c("strength", "closeness", "betweenness")) 
 
#Give the CS-coefficient of the three centrality indices, and explain how 
#this measure can be interpreted 
corStability(FemaleBoot2) 
#CS-coefficient for  
#betweenness= 0.05 (below 0.25- not good) 
#closeness= 0.05 (don't think this is good but check) 
#strength= 0.439 not good 
 
centralityPlot(FemaleNetworkIF) 
centralityPlot(FemaleNetworkIF, include=c("Strength", "Closeness","Betweenness")) 
 
centralityPlot(FemaleNetworkIF, include=c("Strength")) 
 
FemaleNetworkIF$graph 
centralityTable(FemaleNetworkIF) 
 
summary(FemaleNetworkIF) 
 
#plot significant differences (alpha=0.05) of edges 
plot(FemaleBoot1, "edge", plot="difference", onlyNonZero = TRUE, 
     order="sample", labels=FALSE) 
#plot node strength difference 
plot(FemaleBoot1, "strength") 
 
 
R File name: Nodewise Predictability 4162021 
 
#Nodewise predictability 4162021 
 
#OVERALL WAVE 1# 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
overall<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/OverallWave1-4142021.csv", 
header=T, sep=',') 
names(overall) 
 
#rename variables so they look nice on the network 
names(overall)[names(overall) == "acur_cignew"] <- "CIG" 
names(overall)[names(overall) == "acur_ecignew"] <- "ECIG" 
names(overall)[names(overall) == "acur_dualnew"] <- "Dual CIG + ECIG" 
names(overall)[names(overall) == "acur_alc"] <- "Alcohol" 
names(overall)[names(overall) == "acur_marijuana"] <- "Marijuana" 
names(overall)[names(overall) == "acur_painkiller"] <- "PDNP" 
names(overall)[names(overall) == "depressed"] <- "Depressed" 
names(overall)[names(overall) == "sleeping"] <- "Sleeping" 
names(overall)[names(overall) == "anxious"] <- "Anxious" 
names(overall)[names(overall) == "ptsd"] <- "PTSD" 
names(overall)[names(overall) == "lied"] <- "Lied" 
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names(overall)[names(overall) == "attention"] <- "Attention" 
names(overall)[names(overall) == "listening"] <- "Listening" 
names(overall)[names(overall) == "bully"] <- "Bully" 
names(overall)[names(overall) == "fights"] <- "Fights" 
names(overall)[names(overall) == "restless"] <- "Restless" 
names(overall)[names(overall) == "answered"] <- "Answered" 
 
 
require(ggplot2) 
#require(bootnet) 
require(IsingFit) 
require(IsingSampler) 
require(qgraph) 
require(mgm) 
 
 
#delete obs with missing data 
overall_complete_cases <- overall[complete.cases(overall),] 
 
#make into matrix 
overall_matrix <- data.matrix(overall_complete_cases) 
 
 
OverallNetworkMGM <- mgm (data = overall_matrix,  
                          type =  c("c", "c","c","c","c","c","c","c","c","c", 
                                    "c","c","c","c","c","c","c"), 
                          level = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
                                    2, 2, 2), 
                          ruleReg = "OR", 
                          k = 2, 
                          binarySign = TRUE) 
 
OverallNetworkMGM$pairwise 
 
 
######### 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
), times=c(6,4,7)) 
 
#this won't run... 
plot(OverallNetworkMGM, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     minimum=0, 
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     label.scale.equal=TRUE, 
     label.cex= 2.0, 
     legend.cex = 0.6, 
     title= "Overall Wave 1 Sample") 
 
 
 
########################################################################### 
# Step 2: Predict the given node A by its neighbors - "Making Predictions # 
########################################################################### 
 
 
predModel <- predict(OverallNetworkMGM, overall_matrix, 
                     errorCat = c("CC", "nCC", "CCmarg")) 
 
predModel$errors 
 
#created a columb list with CCmarg values 
error_list_me <- list () 
for(i in 1:17) error_list_me[[i]] <- predModel$errors[i,4] 
error_list_me 
 
#created the beyond marg values 
#beyondmarg_me <- predModel$errors[1:17,2]-predModel$errors[1:17,4] 
#beyondmarg_me 
 
#need to combine ccmarg values with beyond marg values in 2 columns, 1 list 
 
beyondmarg_list_me <- list () 
for(i in 1:17) beyondmarg_list_me[[i]] <- (predModel$errors[i,2]-predModel$errors[i,4]) 
beyondmarg_list_me 
 
 
#for (i in 1:17) error_list_me[[i]] <- c(predModel$errors[4], beyondmarg_me) 
#new_error_list_me  <- c(error_list_me, beyondmarg_list_me) 
#new_error_list_me 
 
new_error_list_me <- Map(c, error_list_me, beyondmarg_list_me) 
new_error_list_me 
 
color_list_me <- list () 
for(i in 1:17) color_list_me[[i]] <- c("#ffa500", "#ff4300") 
color_list_me 
 
 
#error_list_CC <- list() 
#for (i in 1:17) error_list_CC[[i]] <- predModel$errors[i,2] 
 
#error_list_NCC <- list() 
#for (i in 1:17) error_list_NCC[[i]] <- predModel$errors[i,3] 
 
#error_list_CCmarg <- list() 
#for (i in 1:17) error_list_CCmarg[[i]] <- predModel$errors[i,4] 
 
#color_list <- list () 
#for (i in 1:17) color_list[[i]] <- "#90B4D4" 
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#pieColor <- c(rep("#90B4D4", 17), rep("#EB9446", 1)) 
#pieColor 
 
#################################################################### 
# Step 3: Quantify how close predictions are to actual values of A # 
#################################################################### 
OverallNetworkMGM$pairwise 
 
layout(t(1)) 
 
library(qgraph) 
set.seed(1) 
 
OGpred <- qgraph(OverallNetworkMGM$pairwise$wadj, pie = new_error_list_me, 
                 layout="spring", labels = Names, 
                 theme="colorblind", 
                 groups=Traits, 
                 pieColor = color_list_me,     
                 label.scale.equal=TRUE, 
                 label.cex= 4.0, 
                 legend.cex = 0.4, 
                 edge.color = OverallNetworkMGM$pairwise$edgecolor, 
                 curveAll = TRUE, curveDefault = .6, 
                 cut = 0) 
 
 
 
SAS File name: READ in W1 4 CLASS 4142021 
 
*Read in W1; 
*MPLUS Output = wave 1 run 4132021 4 class; 
*CSV = = w14class4132021; 
 
libname aim3 "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\LCA Wave 2 and 3 - 4 class - 
4142021"; 
 
data aim3.w14classprob4142021; 
input 
W1_ACUR_CIG       W1_ACUR_ECI       W1_ACUR_DUA      W1_ACUR_ALC       W1_ACUR_MAR       
W1_ACUR_PAI        
W1_DEPRESS        W1_SLEEPING       W1_ANXIOUS       W1_PTSD            
W1_LIED           W1_ATTENTIO       W1_LISTENING     W1_BULLY          W1_FIGHTS         
W1_RESTLESS       W1_ANSWERED        
W1_SEXMALE_        
W1_AGE1824_        
    W1_AGE2534_        
    W1_AGE3544_        
    W1_AGE4554_        
    W1_AGE5564_        
    W1_RACEBL_2        
    W1_RACEOT_3        
    W1_RACEHI_6        
    W1_EDU_1           
    W1_EDU_2           
    W1_EDU_3          
    W1_EDU_4           
    W1_INC_1          
    W1_INC_2          
    W1_INC_3          
    W1_INC_4          
    W1_SOC_2          
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    W1_SOC_3           
    W1_SOC_4           
    W1_SOC_5           
    W1_CPROB1         
    W1_CPROB2         
    W1_CPROB3          
    W1_CPROB4         
    W1_C               
    W1_WEIGHT         
    CASEID; 
datalines; 

*************COPY AND PASTE OUTPUT FROM MPLUS************ 
RUN; 
 
 
SAS File name: LCA W2 
 
*In the ICPSR_36498 folder, select DS2001 and open the data file (36498-2001-Data) which is 
a SAS Cport Transport file. Once this is open, formats are in, and can begin data management; 
 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Wave 2\Data Management"; 
 
*Recoding Missings; 
data LCA.W2; 
set da36498p2001; 
 
 
 *Current User Cigarette; 
 *R02_AC1002_12M: In past 12 months, smoked a cigarette, even one or two puffs; 
 *R02_AC1005: Number of cigarettes smoked in your entire life; 
 *R02_AC1003: Now smoke cigarettes; 
  
  
 *if R02_AC1002_12M = 1 AND R02_AC1005=6 AND R02_AC1003 in (1 2) then acur_cig = 1; 
 *else if R02_AC1002_12M = 2 OR R02_AC1003=3 OR (R02_AC1003 in (1,2,.) AND R02_AC1005 in 
(1,2,3,4,5)) then acur_cig=0; 
 *else if R02_AC1002_12M = . OR R02_AC1003=. OR R02_AC1005=. then acur_cig = .; 
 
 if R02R_A_CUR_ESTD_CIGS=1 then acur_cig=1; 
 else if R02R_A_CUR_ESTD_CIGS=2 then acur_cig=0; 
 else if R02R_A_CUR_ESTD_CIGS=. then acur_cig=.; 
 
 *Current E-cigarette user; 
 *R02_AO9035_01: Ever used the following electronic nicotine product: E-cigarette; 
 *R02_AE1100: Ever used e-cigarettes fairly regularly; 
 *R02_AO1003C: Now use e-cigarettes; 
 
 *if R02_AO9035_01 = 1 AND R02_AE1100=1 AND R02_AO1003C in (1,2) then acur_ecig = 1; 
 *else if R02_AO9035_01=2 OR R02_AE1100 = 2 OR R02_AO1003C = 3 OR (R02_AE1100 in (1,2,.) 
AND R02_AO1003C = 2) then acur_ecig=0; 
 *else if R02_AO9035_01 = . OR R02_AE1100=. OR R02_AO1003C = . OR R02_AE1100 = . then 
acur_ecig = .; 
 
 if R02R_A_CUR_ESTD_ECIG=1 then acur_ecig=1; 
 else if R02R_A_CUR_ESTD_ECIG=2 then acur_ecig=0; 
 else if R02R_A_CUR_ESTD_ECIG=. then acur_ecig=.; 
 
 ***NOT USING FOR LCA************ 
 ******************************** 
 *Current Traditional cigar user 
 
 if R02_AG9003 = 1 AND R02_AG1100TC=1 AND R02_AG1003TC in (1,2) then acur_cigr = 1 
 else if R02_AG1001=2 OR R02_AG9002_01 = 2 OR R02_AG9003= 2 OR R02_AG1003TC= 3 OR 
(R02_AG1003TC in 
 (1,2,.) AND R02_AG1100TC = 2) THEN acur_cigr = 0 
 ELSE IF R02_AG1001 = . OR R02_AG9003 = . OR R02_AG1100TC = . OR R02_AG1003TC = . OR 
R02_AG9002_01 = . THEN 
 acur_cigr = .; 
 
 *Current Cigarillo user 
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 IF R02_AG9004=1 AND (R02_AG9009_01=1 OR R02_AG9009_03=1) AND R02_AG1100CG = 1 AND 
R02_AG1003CG in 
 (1, 2) THEN acur_cigrlo= 1 
 ELSE IF R02_AG9004= 2 OR R02_AG1001=2 OR R02_AG9002_02 = 2 OR R02_AG1003CG=3 OR 
R02_AG1100CG=2 OR (R02_AG9009_01=2 AND R02_AG9009_03=2) OR ((R02_AG9009_01=1 
 OR R02_AG9009_03=1) AND R02_AG1100CG= 2 AND R02_AG1003CG=.) OR ((R02_AG9009_01=1 OR 
 R02_AG9009_03=1) AND R02_AG1100CG=. AND R02_AG1003CG= 3) THEN acur_cigrlo= 0 
 ELSE IF R02_AG1001 = . OR R02_AG9004 = . OR R02_AG9009_03 = . OR R02_AG9009_01 = . OR 
 R02_AG1100CG = . OR R02_AG1003CG = . OR R02_AG9002_02 = . THEN acur_cigrlo = .; 
 
 *Current Filtered Cigar user 
 
 IF R02_AG9004=1 AND R02_AG9009_02=1 AND R02_AG1100FC = 1 AND R02_AG1003FC in (1, 2) THEN 
 acur_filcigr= 1 
 ELSE IF R02_AG9004= 2 OR R02_AG1001=2 OR R02_AG9002_02 = 2 OR R02_AG1003FC=3 OR 
R02_AG1100FC=2 OR R02_AG9009_02=2  
 OR (R02_AG9009_02=1 AND R02_AG1100FC= 2 AND R02_AG1003FC=.) OR (R02_AG9009_02=1 AND 
R02_AG1100FC=. AND 
 R02_AG1003FC= 3) THEN acur_filcigr=0 
 ELSE IF R02_AG9004 = . OR R02_AG9009_02 =. OR R02_AG1100FC = . OR R02_AG1003FC = . OR 
R02_AG1001 = . OR R02_AG9002_02 = . THEN 
 acur_filcigr = .; 
 
 *Current Use Any Cigar/Cigarillo 
  
 IF (acur_cigr = 1 OR acur_cigrlo = 1 OR acur_filcigr = 1) THEN acur_fullcigr = 1 
 ELSE IF (acur_cigr = 0 AND acur_cigrlo = 0 AND acur_filcigr= 0) THEN acur_fullcigr = 0 
 ELSE IF acur_cigr = . OR acur_cigrlo = . OR acur_filcigr = . THEN acur_fullcigr = .; 
 
 *Current Pipe user 
 
 IF R01_AP1002 = 1 AND R01_AP1100=1 AND R01_AP1003 in (1,2) THEN acur_pipe= 1 
 ELSE IF R01_AP1001=2 OR R01_AP1002= 2 OR R01_AP1003= 3 OR (R01_AP1003 in (1,2,.) AND 
R01_AP1100 = 2) 
 THEN acur_pipe=0 
 ELSE IF R01_AP1001 = . OR R01_AP1002 = . OR R01_AP1003 = . OR R01_AP1100 = . THEN 
acur_pipe= .; 
 
 *Current Hookah User 
 
 IF R02_AH1002 = 1 AND R02_AH1100=1 AND R02_AH1003 in (1, 2) THEN acur_hook= 1 
 ELSE IF R02_AH1001=2 OR R02_AH1002= 2 OR R02_AH1003= 3 OR (R02_AH1003 in (1,2,.) AND 
R02_AH1100 = 2) 
 THEN acur_hook=0 
 ELSE IF R02_AH1002=. OR R02_AH1001=. OR R02_AH1003=. OR R02_AH1100=. 
 THEN acur_hook=.; 
 
 *Current User Smokeless 
 
 IF (R02_AS1002_02=1 OR R02_AU1003 in (1,2)) AND R02_AS1100SM = 1 AND R02_AS1003SM in (1, 
2) THEN acur_smls= 1 
 ELSE IF R02_AS1001=2 OR R02_AS1002_03=1 OR (R02_AS1002_02=2 AND R02_AU1003 in 
 (2,3,.)) OR R02_AS1003SM= 3 OR (R02_AS1003SM in (1,2,.) AND R02_AS1100SM = 2) THEN 
acur_smls=0 
 ELSE IF R02_AS1002_02 = . OR R02_AU1003 = . OR R02_AS1100SM = . OR 
 R02_AS1003SM = . OR R02_AS1001 = . THEN acur_smls = .; 
 
 *Current User Snus 
 
 IF R02_AS1002_01=1 AND R02_AU1003 in (2, 3) AND R02_AS1100SU= 1 AND R02_AS1003SU in (1,2) 
THEN acur_snus= 1 
 ELSE IF R02_AS1001=2 OR R02_AS1002_03=1 OR (R02_AS1002_01=2 AND R02_AS1002_02=1) 
 OR (R02_AS1002_01=1 AND R02_AU1003=1) OR (R02_AU1003 in (2,3) AND R02_AS1003SU= 3) OR 
(R02_AU1003 in (2,3) AND 
 R02_AS1003SU in (1,2,.) AND R02_AS1100SU = 2) THEN acur_snus= 0 
 ELSE IF R02_AS1002_01 = . OR R02_AS1002_02 = . OR R02_AS1002_03 = . OR R02_AU1003 = . OR 
R02_AS1100SU = . OR R02_AS1003SU =.  
 OR R02_AS1001 = . THEN acur_snus=.; 
 
 *Current Use Any Smokeless/Snus 
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 IF (acur_smls = 1 OR acur_snus = 1) THEN acur_fullsmkls = 1 
 ELSE IF (acur_smls = 0 AND acur_snus = 0) THEN acur_fullsmkls = 0 
 ELSE IF acur_smls = . OR acur_snus = . THEN acur_fullsmkls = .; 
 
 *Current User Dissolvable 
 
 IF R02_AD1002 = 1 AND R02_AD1100=1 AND R02_AD1003 in (1,2) THEN acur_diss= 1 
 ELSE IF R02_AD1001=2 OR R02_AD1002= 2 OR R02_AD1003= 3 OR (R02_AD1003 in (1,2,.) AND 
R02_AD1100 = 2) THEN acur_diss=0 
 ELSE IF R02_AD1001 = . OR R02_AD1002 = . OR R02_AD1003 = . OR R02_AD1100 = . THEN 
acur_diss = .; 
 
 
 
 ******************************* 
 ******************************* 
 NEW SUBSTANCES ADDED; 
 
 *Current Use Alcohol; 
 *R02_AX0084_12M: In past 12 months, used alcohol, including small tastes or sips 
 *R02_AX0673: In past 30 days, used alcohol; 
 if R02_AX0084_12M = 1 AND R02_AX0673 = 1 then acur_alc=1; 
 else if R02_AX0084_12M = 2 OR R02_AX0673 = 2 then acur_alc=0; 
 else if R02_AX0084_12M= . OR R02_AX0673= . then acur_alc=.; 
 
 *Current User Marijuana; 
 *R02_AX0085_12M: In past 12 months, used marijuana, hash, THC, grass, pot or weed; 
 *R02_AX0675: In past 30 days, used marijuana, hash, THC, grass, pot or weed; 
 if R02_AX0675 = 1 then acur_marijuana=1; 
 else if  R02_AX0675 in (2  -1) then acur_marijuana=0; 
 else if R02_AX0675= . then acur_marijuana=.; 
 
 *Current User Ritalin or Adderall (prescription drugs not prescribed to you); 
 *R02_AX0089_12M_01: In past 12 months, used prescription drugs not prescribed to you: 
Ritalin or Adderall; 
 *R02_AX0676_01: In past 30 days, used: Ritalin or Adderall; 
 *if R02_AX0089_12M_01 = 1 AND R02_AX0676_01 = 1 then acur_ritadder=1; 
 *else if R02_AX0089_12M_01 = 2 OR R02_AX0676_01 = 2 then acur_ritadder=0; 
 *else if R02_AX0089_12M_01 = . OR R02_AX0676_01= . then acur_ritadder=.; 
 
 *Current User Painkillers, Sedatives, or Tranquilizers (prescription drugs not prescribed 
to you); 
 *R02_AX0089_12M_02: In past 12 months, used prescription drugs not prescribed to you: 
Painkillers, sedatives or tranquilizers; 
 *R02_AX0676_02: In past 30 days, used: Painkillers, sedatives or tranquilizers; 
 if R02_AX0089_12M_02= 1 AND R02_AX0676_02 = 1 then acur_painkiller=1; 
 else if R02_AX0089_12M_02 = 2 OR R02_AX0676_02 = 2 then acur_painkiller=0; 
 else if R02_AX0089_12M_02 = . OR R02_AX0676_02= . then acur_painkiller=.; 
 
 *Current User Cocaine or Crack 
 *R02_AX0220_12M_01: In past 12 months, used substance: Cocaine or crack; 
 *R02_AX0676_03: In past 30 days, used: Cocaine or crack; 
 *if R02_AX0220_12M_01 = 1 AND R02_AX0676_03 = 1 then acur_cocaine=1; 
 *else if R02_AX0220_12M_01 = 2 OR R02_AX0676_03 = 2 then acur_cocaine=0; 
 *else if R02_AX0220_12M_01 = . OR R02_AX0676_03= . then acur_cocaine=.; 
 
 *Curent User Meth or Speed 
 *R02_AX0220_12M_02: In past 12 months, used substance: Stimulants like methamphetamine or 
speed; 
 *R02_AX0676_04: In past 30 days, used Stimulants like methamphetamine or speed; 
 *if R02_AX0220_12M_02 = 1 AND R02_AX0676_04 = 1 then acur_meth=1; 
 *else if R02_AX0220_12M_02 = 2 OR R02_AX0676_04= 2 then acur_meth=0; 
 *else if R02_AX0220_12M_02 = . OR R02_AX0676_04= . then acur_meth=.; 
 
 
 *Current User Heroin, Inhalents, Solvents, Hallucinogens 
 *R02_AX0220_12M_03: In past 12 months, used substance: Any other drugs like heroin, 
inhalants, solvents or hallucinogens; 
 *R02_AX0676_05: In past 30 days, used: Any other drugs like heroin, inhalants, solvents 
or hallucinogens; 
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 *if R02_AX0220_12M_03 = 1 AND R02_AX0676_05 = 1 then acur_heroinplus=1; 
 *else if R02_AX0220_12M_03 = 2 OR R02_AX0676_05 = 2 then acur_heroinplus=0; 
 *else if R02_AX0220_12M_03 = . OR R02_AX0676_05 = . then acur_heroinplus=.; 
 
 
*Create new variables; 
********************** 
********************** 
NEED TO COME BACK AND 
ADD SUBSTANCE USE VARS 
AND SUICIDE QUESTIONS 
TO NEXT DATASET; 
*********************; 
 
*RACE; 
*R02R_A_RACECAT3: DERIVED - Race from the interview (3 levels): 1 = white alone, 2 = black alone, 
3 = other; 
*R02R_A_HISP: DERIVED - Wave 2 Adult Hispanic Origin (2 levels): 1 = hispanic, 2 = not hispanic; 
NUMRACES = 0 ;  
if R02R_A_RACECAT3 = 1 then NUMRACES = NUMRACES + 1 ;  
if R02R_A_RACECAT3 = 2 then NUMRACES= NUMRACES + 1 ;  
if R02R_A_RACECAT3 = 3 then NUMRACES = NUMRACES + 1 ;  
if R02R_A_HISP = 1 then NUMRACES = NUMRACES + 1; 
if (NUMRACES = 1 and R02R_A_RACECAT3 = 1 AND R02R_A_HISP=2) then R02R_A_ETHRACECAT7= 1 ; *NH 
White; 
if (NUMRACES = 1 and R02R_A_RACECAT3 = 2 AND R02R_A_HISP=2) then R02R_A_ETHRACECAT7= 2 ; *NH AA; 
if (NUMRACES = 1 and R02R_A_RACECAT3 = 3 AND R02R_A_HISP=2) then R02R_A_ETHRACECAT7= 3 ; *NH 
Other;  
if (NUMRACES = 1 and R02R_A_HISP=1) then R02R_A_ETHRACECAT7= 4; *Hispanic Only;  
if (NUMRACES > 1 and R02R_A_HISP=2) then R02R_A_ETHRACECAT7= 5; *NH Multiracial; 
if (NUMRACES > 1 and R02R_A_HISP=1) then R02R_A_ETHRACECAT7= 6; *Hispanic Multiracial; 
ELSE IF R02R_A_HISP=. OR R02R_A_RACECAT3 = . THEN R02R_A_ETHRACECAT7=.;  
 
*AGE; 
*R02R_A_AGECAT7: DERIVED - Age range when interviewed (7 levels); 
if R02R_A_AGECAT7=1 then age=1; *18-24; 
else if R02R_A_AGECAT7=2 then age=2; *25-34; 
else if R02R_A_AGECAT7=3 then age=3; *35-44; 
else if R02R_A_AGECAT7=4 then age=4; *45-54; 
else if R02R_A_AGECAT7=5 then age=5; *55-64; 
else if R02R_A_AGECAT7 in (6 7) then age=6; *65 and older; 
else age=.; 
 
*EDUCATION; 
*R02R_A_AM0018: DERIVED - Highest grade or level of school completed (6 levels); 
if R02R_A_AM0018=1 then education=1; *less than high school; 
else if R02R_A_AM0018 in (2 3) then education=2; *GED/high school graduate; 
else if R02R_A_AM0018=4 then education=3; *Some college (no degree) or associates degree; 
else if R02R_A_AM0018=5 then education=4; *Bachelor's degree; 
else if R02R_A_AM0018=6 then education=5; *Advanced degree; 
else education=.; 
 
*LIMIT ALL MH VARIABLES TO PAST 30 DAYS; 
 
******INTERNALIZING**********; 
 
*R02_AX0161: Last time you had significant problems with: Feeling very trapped, lonely, sad, 
blue, depressed or hopeless about the future; 
if R02_AX0161 in (2, 3, 4) then depressed=0; 
else if R02_AX0161 in (1) then depressed=1; 
else if R02_AX0161 = . then depressed= .; 
 
*R02_AX0162: Last time you had significant problems with: Sleep trouble - such as bad 
dreams, sleeping restlessly or falling asleep during the day; 
if R02_AX0162 in (2, 3, 4) then sleeping=0; 
else if R02_AX0162 in (1) then sleeping=1; 
else if R02_AX0162 = . then sleeping=.; 
 
*R02_AX0163: Last time you had significant problems with: Feeling very anxious, nervous, 
tense, scared, panicked or like something bad was going to happen; 
if R02_AX0163 in (2, 3, 4) then anxious=0; 
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else if R02_AX0163 in (1) then anxious=1; 
else if R02_AX0163 = . then anxious=.; 
 
*R02_AX0164: Last time you had significant problems with: Becoming very distressed and 
upset when something reminded you of the past; 
if R02_AX0164 in (2, 3, 4) then ptsd=0; 
else if R02_AX0164 in (1) then ptsd=1; 
else if R02_AX0164 = . then ptsd=.; 
 
******EXTERNALIZING**********; 
 
*R02_AX0165: Last time you did the following two or more times: Lied or conned to get things 
you wanted or to avoid having to do something; 
if R02_AX0165 in (2, 3, 4) then lied=0; 
else if R02_AX0165 in (1) then lied=1; 
else if R02_AX0165 = . then lied=.; 
 
*R02_AX0166: Last time you did the following two or more times: Had a hard time paying 
attention at school, work or home; 
if R02_AX0166 in (2, 3, 4) then attention=0; 
else if R02_AX0166 in (1) then attention=1; 
else if R02_AX0166 = . then attention=.; 
 
*R02_AX0167: Last time you did the following two or more times: Had a hard time listening to 
instructions at school, work or home; 
if R02_AX0167 in (2, 3, 4) then listening=0; 
else if R02_AX0167 in (1) then listening=1; 
else if R02_AX0167 = . then listening= .; 
 
*R02_AX0168: Last time you did the following two or more times: Were a bully or threatened 
other people; 
if R02_AX0168 in (2, 3, 4) then bully=0; 
else if R02_AX0168 in (1) then bully=1; 
else if R02_AX0168 = . then bully= .; 
 
*R02_AX0169: Last time you did the following two or more times: Started physical fights with 
other people; 
if R02_AX0169 in (2, 3, 4) then fights=0; 
else if R02_AX0169 in (1) then fights=1; 
else if R02_AX0169 = . then fights= .; 
 
*R02_AX0250: Last time you did the following two or more times: Felt restless or the need to 
run around or climb on things; 
if R02_AX0250 in (2, 3, 4) then restless=0; 
if R02_AX0250 in (1) then restless=1; 
else if R02_AX0250 = . then restless=.; 
 
*R02_AX0251: Last time you did the following two or more times: Gave answers before the 
other person finished asking the question; 
if R02_AX0251 in (2, 3, 4) then answered=0; 
if R02_AX0251 in (1) then answered=1; 
else if R02_AX0251 = . then answered=.; 
 
******SUBSTANCE USE DISORDERS**********; 
 
*R02_AX0170: Last time that you used alcohol or other drugs weekly or more often; 
if R02_AX0170 in (2, 3, 4) then weeklyuse=0; 
if R02_AX0170 in (1) then weeklyuse=1; 
else if R02_AX0170 = . then weeklyuse=.; 
 
*R02_AX0171: Last time that you spent a lot of time getting alcohol or other drugs; 
if R02_AX0171 in (2, 3, 4) then timegetting=0; 
if R02_AX0171 in (1) then timegetting=1; 
else if R02_AX0171 = . then timegetting=.; 
 
*R02_AX0193: Last time you spent a lot of time using or recovering from alcohol or other drugs; 
if R02_AX0193 in (2, 3, 4) then timeusing=0; 
if R02_AX0193 in (1) then timeusing=1; 
else if R02_AX0193 = . then timeusing=.; 
 
*R02_AX0172: Last time that you kept using alcohol or other drugs even though it was causing 
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social problems, leading to fights, or getting you into trouble with other people; 
if R02_AX0172 in (2, 3, 4) then socialprob=0; 
if R02_AX0172 in (1) then socialprob=1; 
else if R02_AX0172 = . then socialprob=.; 
 
*R02_AX0173: Last time that your use of alcohol or other drugs reduced your involvement in 
activities at work, school, home or social events; 
if R02_AX0173 in (2, 3, 4) then reducedact=0; 
if R02_AX0173 in (1) then reducedact=1; 
else if R02_AX0173 = . then reducedact=.; 
 
*R02_AX0174: Last time that you had withdrawal problems such as shaky hands, throwing up, 
having trouble sitting still or sleeping; 
if R02_AX0174 in (2, 3, 4) then withdraw=0; 
if R02_AX0174 in (1) then withdraw=1; 
else if R02_AX0174 = . then withdraw=.; 
 
*R02_AX0194: Last time you used any alcohol or other drugs to stop being sick or avoid 
withdrawal problems; 
if R02_AX0194 in (2, 3, 4) then usetoavoid=0; 
if R02_AX0194 in (1) then usetoavoid=1; 
else if R02_AX0194 = . then usetoavoid=.; 
 
*ALL PAST 30 DAY; 
sud_score = sum(weeklyuse, timegetting, timeusing, socialprob, reducedact, withdraw, usetoavoid); 
 
*OLD 
*SUD is 3 levels- no/low, moderate, and high; 
*if sud_score in (0,1) then sud=0; 
*if sud_score in (2,3) then sud=1; 
*if sud_score in (4,5,6,7) then sud=2; 
*if sud_score = . then sud=.; 
 
*NEW = 1/16/20; 
*SUD is 3 levels- no/low, moderate, and high; 
if sud_score in (0) then sud=0; 
if sud_score in (1,2) then sud=1; 
if sud_score in (3,4,5,6,7) then sud=2; 
if sud_score = . then sud=.; 
 
*Dichotomize by 0 = no/low, 1 = moderate/high; 
*if sud in (0) then sudbin1=0; 
*if sud in (1, 2) then sudbin1=1; 
*if sud = . then sudbin1 = .; 
 
*Dichotomize by 0 = no/low/moderate, 1 = high; 
*if sud in (0,1) then sudbin2=0; 
*if sud in (2) then sudbin2=1; 
*if sud = . then sudbin2 = .; 
 
 
*****DUMMY CODING FOR THE COVARIATES******; 
 
IF R02R_A_SEX=1 THEN SEXMALE_1=1; 
ELSE SEXMALE_1=0; 
 
IF R02R_A_SEX=2 THEN SEXFEMALE_2=1; 
ELSE SEXFEMALE_2=0; 
 
IF age=1 THEN AGE1824_1=1; 
ELSE AGE1824_1=0; 
 
IF age=2 THEN AGE2534_2=1; 
ELSE AGE2534_2=0; 
 
IF age=3 THEN AGE3544_3=1; 
ELSE AGE3544_3=0; 
 
IF age=4 THEN AGE4554_4=1; 
ELSE AGE4554_4=0; 
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IF age=5 THEN AGE5564_5=1; 
ELSE AGE5564_5=0; 
 
IF age=6 THEN AGE65_6=1; 
ELSE AGE65_6=0; 
 
IF R02R_A_ETHRACECAT7=1 THEN RACEWH_1=1; 
ELSE RACEWH_1=0; 
 
IF R02R_A_ETHRACECAT7=2 THEN RACEBL_2=1; 
ELSE RACEBL_2=0; 
 
IF R02R_A_ETHRACECAT7=3 THEN RACEOT_3=1; 
ELSE RACEOT_3=0; 
 
IF R02R_A_ETHRACECAT7=6 THEN RACEHI_6=1; 
ELSE RACEHI_6=0; 
 
IF education=1 THEN EDU_1=1; 
ELSE EDU_1=0; 
 
IF education=2 THEN EDU_2=1; 
ELSE EDU_2=0; 
 
IF education=3 THEN EDU_3=1; 
ELSE EDU_3=0; 
 
IF education=4 THEN EDU_4=1; 
ELSE EDU_4=0; 
 
IF education=5 THEN EDU_5=1; 
ELSE EDU_5=0; 
 
IF R02R_A_AM0030=1 THEN INC_1=1; 
ELSE INC_1=0; 
 
IF R02R_A_AM0030=2 THEN INC_2=1; 
ELSE INC_2=0; 
 
IF R02R_A_AM0030=3 THEN INC_3=1; 
ELSE INC_3=0; 
 
IF R02R_A_AM0030=4 THEN INC_4=1; 
ELSE INC_4=0; 
 
IF R02R_A_AM0030=5 THEN INC_5=1; 
ELSE INC_5=0; 
 
*extremely satisfied =1; 
IF R02_AX0092=1 THEN SOC_1=1; 
ELSE SOC_1=0; 
 
IF R02_AX0092=2 THEN SOC_2=1; 
ELSE SOC_2=0; 
 
IF R02_AX0092=3 THEN SOC_3=1; 
ELSE SOC_3=0; 
 
IF R02_AX0092=4 THEN SOC_4=1; 
ELSE SOC_4=0; 
 
*not at all satisfied =5; 
IF R02_AX0092=5 THEN SOC_5=1; 
ELSE SOC_5=0; 
 
 
 
 array change _numeric_; 
 do over change; 
 if change=-97777 then change=.; 
 else if change=-99999 then change=.; 
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 else if change=-99988 then change=.; 
 else if change=-99977 then change=.; 
 else if change=-99955 then change=.; 
 else if change=-99911 then change=.; 
 else if change=-9 then change=.; 
 else if change=-8 then change=.; 
 else if change=-7 then change=.; 
 else if change=-1 then change=.; 
 else if change=-5 then change=.; 
 end; 
 
 
run; 
 
 
*check dummies; 
proc freq data=lca.w2; 
table acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller; 
run; 
 
 
proc freq data=lca.w2; 
table R02R_A_SEX*SEXMALE_1 
  R02R_A_SEX*SEXFEMALE_2 
  age*AGE1824_1 
  age*AGE2534_2 
  age*AGE3544_3 
  age*AGE4554_4 
  age*AGE5564_5 
  age*AGE65_6 
  R02R_A_ETHRACECAT7*RACEWH_1 
  R02R_A_ETHRACECAT7*RACEBL_2 
  R02R_A_ETHRACECAT7*RACEOT_3 
  R02R_A_ETHRACECAT7*RACEHI_6 
  education*EDU_1 
  education*EDU_2 
  education*EDU_3 
  education*EDU_4 
  education*EDU_5 
  R02R_A_AM0030*INC_1 
  R02R_A_AM0030*INC_2 
  R02R_A_AM0030*INC_3 
  R02R_A_AM0030*INC_4 
  R02R_A_AM0030*INC_5 
  R02_AX0092*SOC_1 
  R02_AX0092*SOC_2 
  R02_AX0092*SOC_3 
  R02_AX0092*SOC_4 
  R02_AX0092*SOC_5; 
run; 
 
*check cig/ecig; 
proc freq data=lca.w2; 
table R02R_A_CUR_ESTD_CIGS*acur_cig 
      R02R_A_CUR_ESTD_ECIG*acur_ecig; 
run; 
*derived variables have info from wave 1 so use these not the ones I created; 
 
*check other subs; 
proc freq data=lca.w2; 
table acur_alc acur_marijuana acur_painkiller;; 
run; 
*marijuana is still weird; 
 
*check sud; 
proc freq data=lca.w2; 
table sud_score*sud; 
run; 
 
*check int/ext/sud; 
proc freq data=lca.w2; 



 347 

table  depressed sleeping anxious ptsd 
        lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid 
  sud; 
run; 
 
*only select people from wave 1; 
proc freq data=lca.w2; 
table R02_CONTINUING_ADULT_LD; 
run; 
 
data lca.w2contadult; 
set lca.w2; 
if R02_CONTINUING_ADULT_LD=1; 
run; 
 
proc freq data=lca.w2contadult; 
table R02_CONTINUING_ADULT_LD; 
run; 
 
proc freq data=lca.w2contadult; 
table acur_marijuana; 
run; 
 
*Identify all variable want to keep; 
proc freq data=lca.w2contadult; 
table  
acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller  
     R02R_A_SEX age R02R_A_ETHRACECAT7 education R02R_A_AM0030 
R02_AX0092 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud; 
     run; 
 
 
*Now limit to the main variables that we want to keep; 
data LCA.w2mpluscontadult; 
set LCA.w2contadult (keep = caseid personid acur_cig acur_ecig acur_alc acur_marijuana 
acur_painkiller  
     R02R_A_SEX age R02R_A_ETHRACECAT7 education R02R_A_AM0030 
R02_AX0092 
     SEXMALE_1 SEXFEMALE_2  
     AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
 
*Check frequencies; 
proc contents data=LCA.W2mpluscontadult; 
run; 
 
 
 
*So far so good, let's pull this datset into MPlus and try LCA; 
 



 348 

 
***Missing vs nonmissing for W2; 
***using contadultc data because it has new tobacco vars; 
proc contents data=lca.w2contadultc; 
run; 
 
proc freq data=lca.w2contadultc; 
table acur_cignew acur_ecignew acur_dualnew  
acur_alc acur_marijuana acur_painkiller; 
run; 
 
 
data lca.w2missingtest; 
set lca.w2contadultc; 
if (acur_cignew=.) or (acur_ecignew=.) or (acur_dualnew=.) or (acur_alc=.) or 
(acur_marijuana=.) or (acur_painkiller=.) or  
(R02R_A_SEX=.)  or (age=.) or (R02R_A_ETHRACECAT7=.) or (education=.) or (R02R_A_AM0030=.) or 
(R02_AX0092=.) or 
(depressed=.) or (sleeping=.) or (anxious=.) or (ptsd=.) or 
(lied=.) or (attention=.) or (listening=.) or (bully=.) or (fights=.) or 
(restless=.) or (answered=.) or 
(sud=.) then compare=0; 
else compare=1; 
run; 
 
 
ods pdf; 
proc freq data=lca.w2missingtest; 
table compare; 
run; 
*complete data/analytic sample (compare = 1) = 21508; 
*missing (compare = 0) = 4936; 
 
******************************** 
*compare missing and nonmissing; 
*look at column percent; 
 
*subs; 
proc freq data=lca.w2missingtest; 
table acur_cignew*compare 
      acur_ecignew*compare 
      acur_dualnew*compare 
      acur_alc*compare 
      acur_marijuana*compare 
      acur_painkiller*compare/chisq; 
run; 
*sig diff for all: analytic sample has higher endorsement of all subs; 
 
*demos; 
proc freq data=lca.w2missingtest; 
table R02R_A_SEX*compare 
      age*compare 
      R02R_A_ETHRACECAT7*compare 
      education*compare 
      R02R_A_AM0030*compare 
      R02_AX0092*compare/chisq; 
run; 
*sig difference sex: more males, less women in analytic sample; 
*sig difference by age: more in categories 2, 3, 4 (25-54) in analytic sample; 
*sig difference by race: more white, less other cats in analytic sample; 
*sig difference by edu: higher edu levels in analytic sample; 
*sig difference by income: higher income levels in analytic sample; 
*sig difference by social: missing had slightly more extremely and very satisfied and also not at 
all satisfied; 
 
*internalizing; 
proc freq data=lca.w2missingtest; 
table depressed*compare 
      sleeping*compare 
      anxious*compare 
      ptsd*compare/chisq; 
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run; 
*sig diff for all: analytic sample has higher endorsement of all 4 symptoms; 
 
*externalizing; 
proc freq data=lca.w2missingtest; 
table lied*compare 
      attention*compare 
      listening*compare 
      bully*compare 
      fights*compare 
      restless*compare 
      answered*compare/chisq; 
run; 
*sig diff for all except bully and fights: all others - analytic sample has higher endorsement of 
the other 5 symptoms; 
*no sig diff for bully or fights; 
 
*sud; 
proc freq data=lca.w2missingtest; 
table sud*compare/chisq; 
run; 
*sig diff: analytic sample has higher endorsement of moderate and high sud severity; 
ods pdf close; 

 
 
MPLUS File name: w2 4 class 4142021 
 
   TITLE: WAVE 2 MODEL 4 CLASS -- APRIL 14 2021; 
         DATA: FILE IS w2dataformplus232021_noheader.csv; 
         VARIABLE: NAMES ARE CASEID PERSONID weight 
               acur_cignew acur_ecignew acur_dualnew 
                  acur_alc acur_marijuana acur_painkiller  
               R02R_A_ETHRACECAT7 age education 
               depressed sleeping anxious ptsd  
               lied attention listening bully fights restless answered  
               weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid  
                sud  
               SEXMALE_1 SEXFEMALE_2  
               AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6  
               RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6  
               EDU_1 EDU_2 EDU_3 EDU_4 EDU_5  
               INC_1 INC_2 INC_3 INC_4 INC_5  
               SOC_1 SOC_2 SOC_3 SOC_4 SOC_5; 
            USEVARIABLES = acur_cignew acur_ecignew acur_dualnew 
                      acur_alc acur_marijuana acur_painkiller 
                   depressed sleeping anxious ptsd  
                   lied attention listening bully fights restless answered; 
            IDVARIABLE = CASEID; 
            MISSING ARE ALL (-99999); 
            CLASSES = c(4); 
            CATEGORICAL = acur_cignew acur_ecignew acur_dualnew 
                      acur_alc acur_marijuana acur_painkiller 
                   depressed sleeping anxious ptsd  
                   lied attention listening bully fights restless answered; 
            AUXILIARY = SEXMALE_1 (R3STEP) 
                        AGE1824_1 (R3STEP) AGE2534_2 (R3STEP) AGE3544_3 (R3STEP) 
                        AGE4554_4 (R3STEP) AGE5564_5 (R3STEP) 
                        RACEBL_2 (R3STEP) RACEOT_3 (R3STEP) RACEHI_6 (R3STEP) 
                        EDU_1 (R3STEP) EDU_2 (R3STEP) EDU_3(R3STEP) 
                     EDU_4 (R3STEP) INC_1 (R3STEP) INC_2 (R3STEP) 
                        INC_3 (R3STEP) INC_4 (R3STEP) 
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                     SOC_2 (R3STEP) SOC_3 (R3STEP) SOC_4 (R3STEP) SOC_5 (R3STEP); 
          WEIGHT is weight; 
          ANALYSIS: TYPE = MIXTURE; 
                      STARTS = 100 10; 
                      OPTSEED = 991329; 
                      LRTSTARTS = 0 0 150 40; 
          SAVEDATA: file is w24classweight414.csv; 
                    save = Cprob; 
          OUTPUT: TECH1 TECH8 TECH10 TECH11 TECH14; 
 
 
SAS File name: Read in W2 4 CLASS 4142021 
 
*WAVE 2 4 CLASS SOLUTION - import to compare with W1 and W3; 
*MPLUS OUTPUT = w2 4 class 4142021; 
*CSV = w24classweight414; 
 
libname aim3 "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\LCA Wave 2 and 3 - 4 class - 
4142021"; 
 
data aim3.w24classprob4142021; 
input 
 W2_ACUR_CIG        
    W2_ACUR_ECI        
    W2_ACUR_DUA       
    W2_ACUR_ALC        
    W2_ACUR_MAR       
    W2_ACUR_PAI       
    W2_DEPRESS        
    W2_SLEEPING       
    W2_ANXIOUS         
    W2_PTSD           
    W2_LIED           
    W2_ATTENTIO        
    W2_LISTENIN        
    W2_BULLY           
    W2_FIGHTS         
    W2_RESTLESS        
    W2_ANSWERED        
    W2_SEXMALE_        
    W2_AGE1824_        
    W2_AGE2534_        
    W2_AGE3544_        
    W2_AGE4554_        
    W2_AGE5564_       
    W2_RACEBL_2        
    W2_RACEOT_3        
    W2_RACEHI_6      
    W2_EDU_1           
    W2_EDU_2          
    W2_EDU_3           
    W2_EDU_4           
    W2_INC_1           
    W2_INC_2          
    W2_INC_3           
    W2_INC_4           
    W2_SOC_2           
    W2_SOC_3           
    W2_SOC_4           
    W2_SOC_5           
    W2_CPROB1          
    W2_CPROB2          
    W2_CPROB3          
    W2_CPROB4          
    W2_C               
    W2_WEIGHT          
    CASEID; 
datalines; 
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************COPY AND PASTE OUTPUT FROM MPLUS********* 
run; 
 
 
SAS File name: LCA W3 
 
*In the ICPSR_36498 folder, select DS3001 and open the data file (36498-3001-Data) which is 
a SAS Cport Transport file. Once this is open, formats are in, and can begin data management; 
 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Wave 3\Data Management"; 
 
*Recoding Missings; 
data LCA.W3; 
set da36498p3001; 
 
 
 *Current User Cigarette; 
 *R03_AC1002_12M: In past 12 months, smoked a cigarette, even one or two puffs; 
 *R03_AC1005: Number of cigarettes smoked in your entire life; 
 *R03_AC1003: Now smoke cigarettes; 
  
 *if R03_AC1002_12M = 1 AND R03_AC1005=6 AND R03_AC1003 in (1 2) then acur_cig = 1; 
 *else if R03_AC1002_12M = 2 OR R03_AC1003=3 OR (R03_AC1003 in (1,2,.) AND R03_AC1005 in 
(1,2,3,4,5)) then acur_cig=0; 
 *else if R03_AC1002_12M = . OR R03_AC1003=. OR R03_AC1005=. then acur_cig = .; 
 
 if R03R_A_CUR_ESTD_CIGS=1 then acur_cig=1; 
 else if R03R_A_CUR_ESTD_CIGS=2 then acur_cig=0; 
 else if R03R_A_CUR_ESTD_CIGS=. then acur_cig=.; 
 
 *Current E-cigarette user; 
 *R03_AV1002_12M: Ever used the following electronic nicotine product: E-cigarette; 
 *R03_AV1100: Ever used e-cigarettes fairly regularly; 
 *R03_AV1003EC: Now use e-cigarettes; 
 
 *if R03_AV1002_12M = 1 AND R03_AV1100=1 AND R03_AV1003EC in (1,2) then acur_ecig = 1; 
 *else if R03_AV1002_12M=2 OR R03_AV1100 = 2 OR R03_AV1003EC = 3 OR (R03_AV1100 in (1,2,.) 
AND R03_AV1003EC = 2) then acur_ecig=0; 
 *else if R03_AV1002_12M= . OR R03_AV1100=. OR R03_AV1003EC = . OR R03_AV1100 = . then 
acur_ecig = .; 
 
 if R03R_A_CUR_ESTD_EPRODS=1 then acur_ecig=1; 
 else if R03R_A_CUR_ESTD_EPRODS=2 then acur_ecig=0; 
 else if R03R_A_CUR_ESTD_EPRODS=. then acur_ecig=.; 
 
 *Current Use Alcohol; 
 *R03_AX0084_12M: In past 12 months, used alcohol, including small tastes or sips 
 *R03_AX0673: In past 30 days, used alcohol; 
 
 if R03_AX0084_12M = 1 AND R03_AX0673 = 1 then acur_alc=1; 
 else if R03_AX0084_12M = 2 OR R03_AX0673 = 2 then acur_alc=0; 
 else if R03_AX0084_12M = . OR R03_AX0673 = . then acur_alc=.; 
 
 *Current User Marijuana; 
 *R03_AX0085_12M: In past 12 months, used marijuana, hash, THC, grass, pot or weed; 
 *R03_AX0675: In past 30 days, used marijuana, hash, THC, grass, pot or weed; 
 
 if R03_AX0675 = 1 then acur_marijuana=1; 
 else if R03_AX0675 in (-1, 2) then acur_marijuana=0; 
 else if R03_AX0675 = . then acur_marijuana=.; 
 
 *Current User Painkillers, Sedatives, or Tranquilizers (prescription drugs not prescribed 
to you); 
 *R03_AX0089_12M_02: In past 12 months, used prescription drugs not prescribed to you: 
Painkillers, sedatives or tranquilizers; 
 *R03_AX0676_02: In past 30 days, used: Painkillers, sedatives or tranquilizers; 
 
 if R03_AX0089_12M_02 = 1 AND R03_AX0676_02 = 1 then acur_painkiller=1; 
 else if R03_AX0089_12M_02 = 2 OR R03_AX0676_02 = 2 then acur_painkiller=0; 
 else if R03_AX0089_12M_02 = . OR R03_AX0676_02 = . then acur_painkiller=.; 
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*RACE; 
*R03R_A_RACECAT3: DERIVED - Race from the interview (3 levels): 1 = white alone, 2 = black alone, 
3 = other; 
*R03R_A_HISP: DERIVED - Wave 2 Adult Hispanic Origin (2 levels): 1 = hispanic, 2 = not hispanic; 
NUMRACES = 0 ;  
if R03R_A_RACECAT3 = 1 then NUMRACES = NUMRACES + 1 ;  
if R03R_A_RACECAT3 = 2 then NUMRACES= NUMRACES + 1 ;  
if R03R_A_RACECAT3 = 3 then NUMRACES = NUMRACES + 1 ;  
if R03R_A_HISP = 1 then NUMRACES = NUMRACES + 1; 
if (NUMRACES = 1 and R03R_A_RACECAT3 = 1 AND R03R_A_HISP=2) then R03R_A_ETHRACECAT7= 1 ; *NH 
White; 
if (NUMRACES = 1 and R03R_A_RACECAT3 = 2 AND R03R_A_HISP=2) then R03R_A_ETHRACECAT7= 2 ; *NH AA; 
if (NUMRACES = 1 and R03R_A_RACECAT3 = 3 AND R03R_A_HISP=2) then R03R_A_ETHRACECAT7= 3 ; *NH 
Other;  
if (NUMRACES = 1 and R03R_A_HISP=1) then R03R_A_ETHRACECAT7= 4; *Hispanic Only;  
if (NUMRACES > 1 and R03R_A_HISP=2) then R03R_A_ETHRACECAT7= 5; *NH Multiracial; 
if (NUMRACES > 1 and R03R_A_HISP=1) then R03R_A_ETHRACECAT7= 6; *Hispanic Multiracial; 
ELSE IF R03R_A_HISP=. OR R03R_A_RACECAT3 = . THEN R03R_A_ETHRACECAT7=.;  
 
*AGE; 
*R03R_A_AGECAT7: DERIVED - Age range when interviewed (7 levels); 
if R03R_A_AGECAT7=1 then age=1; *18-24; 
else if R03R_A_AGECAT7=2 then age=2; *25-34; 
else if R03R_A_AGECAT7=3 then age=3; *35-44; 
else if R03R_A_AGECAT7=4 then age=4; *45-54; 
else if R03R_A_AGECAT7=5 then age=5; *55-64; 
else if R03R_A_AGECAT7 in (6 7) then age=6; *65 and older; 
else age=.; 
 
*EDUCATION; 
*R03R_A_AM0018: DERIVED - Highest grade or level of school completed (6 levels); 
if R03R_A_AM0018=1 then education=1; *less than high school; 
else if R03R_A_AM0018 in (2 3) then education=2; *GED/high school graduate; 
else if R03R_A_AM0018=4 then education=3; *Some college (no degree) or associates degree; 
else if R03R_A_AM0018=5 then education=4; *Bachelor's degree; 
else if R03R_A_AM0018=6 then education=5; *Advanced degree; 
else education=.; 
 
******INTERNALIZING**********; 
 
*R03_AX0161: Last time you had significant problems with: Feeling very trapped, lonely, sad, 
blue, depressed or hopeless about the future; 
if R03_AX0161 in (2, 3, 4) then depressed=0; 
else if R03_AX0161 in (1) then depressed=1; 
else if R03_AX0161 = . then depressed= .; 
 
*R03_AX0162: Last time you had significant problems with: Sleep trouble - such as bad 
dreams, sleeping restlessly or falling asleep during the day; 
if R03_AX0162 in (2, 3, 4) then sleeping=0; 
else if R03_AX0162 in (1) then sleeping=1; 
else if R03_AX0162 = . then sleeping=.; 
 
*R03_AX0163: Last time you had significant problems with: Feeling very anxious, nervous, 
tense, scared, panicked or like something bad was going to happen; 
if R03_AX0163 in (2, 3, 4) then anxious=0; 
else if R03_AX0163 in (1) then anxious=1; 
else if R03_AX0163 = . then anxious=.; 
 
*R03_AX0164: Last time you had significant problems with: Becoming very distressed and 
upset when something reminded you of the past; 
if R03_AX0164 in (2, 3, 4) then ptsd=0; 
else if R03_AX0164 in (1) then ptsd=1; 
else if R03_AX0164 = . then ptsd=.; 
 
 
******EXTERNALIZING**********; 
 
*R03_AX0165: Last time you did the following two or more times: Lied or conned to get things 
you wanted or to avoid having to do something; 
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if R03_AX0165 in (2, 3, 4) then lied=0; 
else if R03_AX0165 in (1) then lied=1; 
else if R03_AX0165 = . then lied=.; 
 
*R03_AX0166: Last time you did the following two or more times: Had a hard time paying 
attention at school, work or home; 
if R03_AX0166 in (2, 3, 4) then attention=0; 
else if R03_AX0166 in (1) then attention=1; 
else if R03_AX0166 = . then attention=.; 
 
*R03_AX0167: Last time you did the following two or more times: Had a hard time listening to 
instructions at school, work or home; 
if R03_AX0167 in (2, 3, 4) then listening=0; 
else if R03_AX0167 in (1) then listening=1; 
else if R03_AX0167 = . then listening= .; 
 
*R03_AX0168: Last time you did the following two or more times: Were a bully or threatened 
other people; 
if R03_AX0168 in (2, 3, 4) then bully=0; 
else if R03_AX0168 in (1) then bully=1; 
else if R03_AX0168 = . then bully= .; 
 
*R03_AX0169: Last time you did the following two or more times: Started physical fights with 
other people; 
if R03_AX0169 in (2, 3, 4) then fights=0; 
else if R03_AX0169 in (1) then fights=1; 
else if R03_AX0169 = . then fights= .; 
 
*R03_AX0250: Last time you did the following two or more times: Felt restless or the need to 
run around or climb on things; 
if R03_AX0250 in (2, 3, 4) then restless=0; 
if R03_AX0250 in (1) then restless=1; 
else if R03_AX0250 = . then restless=.; 
 
*R03_AX0251: Last time you did the following two or more times: Gave answers before the 
other person finished asking the question; 
if R03_AX0251 in (2, 3, 4) then answered=0; 
if R03_AX0251 in (1) then answered=1; 
else if R03_AX0251 = . then answered=.; 
 
 
******SUBSTANCE USE DISORDERS**********; 
 
*R03_AX0170: Last time that you used alcohol or other drugs weekly or more often; 
if R03_AX0170 in (2, 3, 4) then weeklyuse=0; 
if R03_AX0170 in (1) then weeklyuse=1; 
else if R03_AX0170 = . then weeklyuse=.; 
 
*R03_AX0171: Last time that you spent a lot of time getting alcohol or other drugs; 
if R03_AX0171 in (2, 3, 4) then timegetting=0; 
if R03_AX0171 in (1) then timegetting=1; 
else if R03_AX0171 = . then timegetting=.; 
 
*R03_AX0193: Last time you spent a lot of time using or recovering from alcohol or other drugs; 
if R03_AX0193 in (2, 3, 4) then timeusing=0; 
if R03_AX0193 in (1) then timeusing=1; 
else if R03_AX0193 = . then timeusing=.; 
 
*R03_AX0172: Last time that you kept using alcohol or other drugs even though it was causing 
social problems, leading to fights, or getting you into trouble with other people; 
if R03_AX0172 in (2, 3, 4) then socialprob=0; 
if R03_AX0172 in (1) then socialprob=1; 
else if R03_AX0172 = . then socialprob=.; 
 
*R03_AX0173: Last time that your use of alcohol or other drugs reduced your involvement in 
activities at work, school, home or social events; 
if R03_AX0173 in (2, 3, 4) then reducedact=0; 
if R03_AX0173 in (1) then reducedact=1; 
else if R03_AX0173 = . then reducedact=.; 
 
*R03_AX0174: Last time that you had withdrawal problems such as shaky hands, throwing up, 
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having trouble sitting still or sleeping; 
if R03_AX0174 in (2, 3, 4) then withdraw=0; 
if R03_AX0174 in (1) then withdraw=1; 
else if R03_AX0174 = . then withdraw=.; 
 
*R03_AX0194: Last time you used any alcohol or other drugs to stop being sick or avoid 
withdrawal problems; 
if R03_AX0194 in (2, 3, 4) then usetoavoid=0; 
if R03_AX0194 in (1) then usetoavoid=1; 
else if R03_AX0194 = . then usetoavoid=.; 
 
*ALL PAST 30 DAY; 
sud_score = sum(weeklyuse, timegetting, timeusing, socialprob, reducedact, withdraw, usetoavoid); 
 
*SUD is 3 levels- no/low, moderate, and high; 
if sud_score in (0) then sud=0; 
if sud_score in (1,2) then sud=1; 
if sud_score in (3,4,5,6,7) then sud=2; 
if sud_score = . then sud=.; 
 
*****DUMMY CODING FOR THE COVARIATES******; 
 
IF R03R_A_SEX=1 THEN SEXMALE_1=1; 
ELSE SEXMALE_1=0; 
 
IF R03R_A_SEX=2 THEN SEXFEMALE_2=1; 
ELSE SEXFEMALE_2=0; 
 
IF age=1 THEN AGE1824_1=1; 
ELSE AGE1824_1=0; 
 
IF age=2 THEN AGE2534_2=1; 
ELSE AGE2534_2=0; 
 
IF age=3 THEN AGE3544_3=1; 
ELSE AGE3544_3=0; 
 
IF age=4 THEN AGE4554_4=1; 
ELSE AGE4554_4=0; 
 
IF age=5 THEN AGE5564_5=1; 
ELSE AGE5564_5=0; 
 
IF age=6 THEN AGE65_6=1; 
ELSE AGE65_6=0; 
 
IF R03R_A_ETHRACECAT7=1 THEN RACEWH_1=1; 
ELSE RACEWH_1=0; 
 
IF R03R_A_ETHRACECAT7=2 THEN RACEBL_2=1; 
ELSE RACEBL_2=0; 
 
IF R03R_A_ETHRACECAT7=3 THEN RACEOT_3=1; 
ELSE RACEOT_3=0; 
 
IF R03R_A_ETHRACECAT7=6 THEN RACEHI_6=1; 
ELSE RACEHI_6=0; 
 
IF education=1 THEN EDU_1=1; 
ELSE EDU_1=0; 
 
IF education=2 THEN EDU_2=1; 
ELSE EDU_2=0; 
 
IF education=3 THEN EDU_3=1; 
ELSE EDU_3=0; 
 
IF education=4 THEN EDU_4=1; 
ELSE EDU_4=0; 
 
IF education=5 THEN EDU_5=1; 
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ELSE EDU_5=0; 
 
IF R03R_A_AM0030=1 THEN INC_1=1; 
ELSE INC_1=0; 
 
IF R03R_A_AM0030=2 THEN INC_2=1; 
ELSE INC_2=0; 
 
IF R03R_A_AM0030=3 THEN INC_3=1; 
ELSE INC_3=0; 
 
IF R03R_A_AM0030=4 THEN INC_4=1; 
ELSE INC_4=0; 
 
IF R03R_A_AM0030=5 THEN INC_5=1; 
ELSE INC_5=0; 
 
*extremely satisfied =1; 
IF R03_AX0092=1 THEN SOC_1=1; 
ELSE SOC_1=0; 
 
IF R03_AX0092=2 THEN SOC_2=1; 
ELSE SOC_2=0; 
 
IF R03_AX0092=3 THEN SOC_3=1; 
ELSE SOC_3=0; 
 
IF R03_AX0092=4 THEN SOC_4=1; 
ELSE SOC_4=0; 
 
*not at all satisfied =5; 
IF R03_AX0092=5 THEN SOC_5=1; 
ELSE SOC_5=0; 
 
 
 array change _numeric_; 
 do over change; 
 if change=-97777 then change=.; 
 else if change=-99999 then change=.; 
 else if change=-99988 then change=.; 
 else if change=-99977 then change=.; 
 else if change=-99955 then change=.; 
 else if change=-99911 then change=.; 
 else if change=-9 then change=.; 
 else if change=-8 then change=.; 
 else if change=-7 then change=.; 
 else if change=-1 then change=.; 
 else if change=-5 then change=.; 
 end; 
 
run; 
 
 
 
*********confirming recodes worked; 
 
*check dummies; 
proc freq data=lca.w3; 
table R03R_A_SEX*SEXMALE_1 
  R03R_A_SEX*SEXFEMALE_2 
  age*AGE1824_1 
  age*AGE2534_2 
  age*AGE3544_3 
  age*AGE4554_4 
  age*AGE5564_5 
  age*AGE65_6 
  R03R_A_ETHRACECAT7*RACEWH_1 
  R03R_A_ETHRACECAT7*RACEBL_2 
  R03R_A_ETHRACECAT7*RACEOT_3 
  R03R_A_ETHRACECAT7*RACEHI_6 
  education*EDU_1 
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  education*EDU_2 
  education*EDU_3 
  education*EDU_4 
  education*EDU_5 
  R03R_A_AM0030*INC_1 
  R03R_A_AM0030*INC_2 
  R03R_A_AM0030*INC_3 
  R03R_A_AM0030*INC_4 
  R03R_A_AM0030*INC_5 
  R03_AX0092*SOC_1 
  R03_AX0092*SOC_2 
  R03_AX0092*SOC_3 
  R03_AX0092*SOC_4 
  R03_AX0092*SOC_5; 
run; 
 
*check sud; 
proc freq data=lca.w3; 
table sud_score*sud; 
run; 
 
*int/ext/sud; 
proc freq data=lca.w3; 
table  acur_alc acur_marijuana acur_painkiller 
  depressed sleeping anxious ptsd 
  lied attention listening bully fights restless answered 
  weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid 
  sud; 
run; 
 
proc freq data=lca.w3; 
table R03R_A_CUR_ESTD_CIGS*acur_cig 
      R03R_A_CUR_ESTD_EPRODS*acur_ecig; 
run; 
 
proc freq data=lca.w3; 
table acur_alc acur_marijuana acur_painkiller; 
run; 
*marijuana is weird again for past 30 day--  
because R03_AX0675 is either smoked traditional cigar, cigarillo, or filtered cigar with 
marijuana in the past 12 months 
OR 
have you used marijuana in the past 12 months; 
 
 
*only select people from wave 1 and wave 2; 
proc freq data=lca.w3; 
table R03_ADULTTYPE; 
run; 
 
data lca.w3contadult; 
set lca.w3; 
if R03_ADULTTYPE=1; 
run; 
 
proc freq data=lca.w3contadult; 
table R03_ADULTTYPE; 
run; 
 
proc freq data=lca.w3contadult; 
table acur_cig acur_ecig acur_alc acur_marijuana acur_painkiller  
   R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 R03_AX0092 
   depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     sud; 
     run; 
 
 
 
*Identify all variable want to keep; 
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*Now limit to the main variables that we want to keep; 
data LCA.W3mpluscontadult; 
set LCA.W3contadult (keep = caseid personid acur_cig acur_ecig acur_alc acur_marijuana 
acur_painkiller  
     R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 
R03_AX0092 
     SEXMALE_1 SEXFEMALE_2  
                 AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
*Check frequencies; 
proc contents data=LCA.W3mpluscontadult; 
run; 
 
 
 
 
 
 
***Missing vs nonmissing for W3; 
***using contadultc data because it has new tobacco vars; 
proc contents data=lca.w3contadultc; 
run; 
 
proc freq data=lca.w3contadultc; 
table acur_cignew acur_ecignew acur_dualnew  
acur_alc acur_marijuana acur_painkiller; 
run; 
 
 
data lca.w3missingtest; 
set lca.w3contadultc; 
if (acur_cignew=.) or (acur_ecignew=.) or (acur_dualnew=.) or (acur_alc=.) or 
(acur_marijuana=.) or (acur_painkiller=.) or  
(R03R_A_SEX=.)  or (age=.) or (R03R_A_ETHRACECAT7=.) or (education=.) or (R03R_A_AM0030=.) or 
(R03_AX0092=.) or 
(depressed=.) or (sleeping=.) or (anxious=.) or (ptsd=.) or 
(lied=.) or (attention=.) or (listening=.) or (bully=.) or (fights=.) or 
(restless=.) or (answered=.) or 
(sud=.) then compare=0; 
else compare=1; 
run; 
 
 
ods pdf; 
proc freq data=lca.w3missingtest; 
table compare; 
run; 
*complete data/analytic sample (compare = 1) = 21628; 
*missing (compare = 0) = 4611; 
 
******************************** 
*compare missing and nonmissing; 
*look at column percent; 
 
*subs; 
proc freq data=lca.w3missingtest; 
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table acur_cignew*compare 
      acur_ecignew*compare 
      acur_dualnew*compare 
      acur_alc*compare 
      acur_marijuana*compare 
      acur_painkiller*compare/chisq; 
run; 
*sig diff for all: analytic sample has higher endorsement of all subs; 
 
*demos; 
proc freq data=lca.w3missingtest; 
table R03R_A_SEX*compare 
      age*compare 
      R03R_A_ETHRACECAT7*compare 
      education*compare 
      R03R_A_AM0030*compare 
      R03_AX0092*compare/chisq; 
run; 
*sig difference sex: more males, less women in analytic sample; 
*sig difference by age: more in categories 2, 3, 4 (25-54) in analytic sample; 
*sig difference by race: more white, less other cats in analytic sample; 
*sig difference by edu: higher edu levels in analytic sample; 
*sig difference by income: higher income levels in analytic sample; 
*sig difference by social: missing had more extremely and also not at all satisfied; 
 
*internalizing; 
proc freq data=lca.w3missingtest; 
table depressed*compare 
      sleeping*compare 
      anxious*compare 
      ptsd*compare/chisq; 
run; 
*sig diff for all: analytic sample has higher endorsement of all 4 symptoms; 
 
*externalizing; 
proc freq data=lca.w3missingtest; 
table lied*compare 
      attention*compare 
      listening*compare 
      bully*compare 
      fights*compare 
      restless*compare 
      answered*compare/chisq; 
run; 
*sig diff for all except bully and fights: all others - analytic sample has higher endorsement of 
the other 5 symptoms; 
*no sig diff for bully or fights; 
 
*sud; 
proc freq data=lca.w3missingtest; 
table sud*compare/chisq; 
run; 
*sig diff: analytic sample has higher endorsement of moderate and high sud severity; 
ods pdf close; 
 
 
 
 

MPLUS File name: w3 4 class 4142021 
 
TITLE: WAVE 3 MODEL 4 CLASS -- APRIL 14 2021; 
         DATA: FILE IS w3dataformplus332021_noheader.csv; 
         VARIABLE: NAMES ARE CASEID PERSONID weight 
               acur_cignew acur_ecignew acur_dualnew 
                  acur_alc acur_marijuana acur_painkiller  
               R03R_A_ETHRACECAT7 age education 
               depressed sleeping anxious ptsd  
               lied attention listening bully fights restless answered  
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               weeklyuse timegetting timeusing socialprob reducedact withdraw usetoavoid  
                sud  
               SEXMALE_1 SEXFEMALE_2  
               AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6  
               RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6  
               EDU_1 EDU_2 EDU_3 EDU_4 EDU_5  
               INC_1 INC_2 INC_3 INC_4 INC_5  
               SOC_1 SOC_2 SOC_3 SOC_4 SOC_5; 
            USEVARIABLES = acur_cignew acur_ecignew acur_dualnew 
                      acur_alc acur_marijuana acur_painkiller 
                   depressed sleeping anxious ptsd  
                   lied attention listening bully fights restless answered; 
            IDVARIABLE = CASEID; 
            MISSING ARE ALL (-99999); 
            CLASSES = c(5); 
            CATEGORICAL = acur_cignew acur_ecignew acur_dualnew 
                     acur_alc acur_marijuana acur_painkiller 
                   depressed sleeping anxious ptsd  
                   lied attention listening bully fights restless answered; 
            AUXILIARY = SEXMALE_1 (R3STEP) 
                        AGE1824_1 (R3STEP) AGE2534_2 (R3STEP) AGE3544_3 (R3STEP) 
                        AGE4554_4 (R3STEP) AGE5564_5 (R3STEP) 
                        RACEBL_2 (R3STEP) RACEOT_3 (R3STEP) RACEHI_6 (R3STEP) 
                        EDU_1 (R3STEP) EDU_2 (R3STEP) EDU_3(R3STEP) 
                       EDU_4 (R3STEP) INC_1 (R3STEP) INC_2 (R3STEP) 
                        INC_3 (R3STEP) INC_4 (R3STEP) 
                     SOC_2 (R3STEP) SOC_3 (R3STEP) SOC_4 (R3STEP) SOC_5 (R3STEP); 
          WEIGHT is weight; 
          ANALYSIS: TYPE = MIXTURE; 
                      STARTS = 100 10; 
                      OPTSEED = 991329; 
                      LRTSTARTS = 0 0 150 40; 
          SAVEDATA: file is w34classweight414.csv; 
                   save = Cprob; 
          OUTPUT: TECH1 TECH8 TECH10 TECH11 TECH14; 
 
 
 
 
 
SAS File name: Read in W3 4 CLASS 4142021 
 
*WAVE 3 4 CLASS SOLUTION - import to compare with W1 and W2; 
*MPLUS OUTPUT = w3 4 class 4152021; 
*CSV = w34classweight415; 
 
libname aim3 "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\LCA Wave 2 and 3 - 4 class - 
4142021"; 
 
data aim3.w34classprob4152021; 
input 
   W3_ACUR_CIG        
    W3_ACUR_ECI      
    W3_ACUR_DUA        
    W3_ACUR_ALC        
    W3_ACUR_MAR        
    W3_ACUR_PAI        
    W3_DEPRESS       
    W3_SLEEPING       
    W3_ANXIOUS       
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    W3_PTSD           
    W3_LIED            
    W3_ATTENTIO       
    W3_LISTENIN      
    W3_BULLY           
    W3_FIGHTS        
    W3_RESTLESS        
    W3_ANSWERED       
    W3_SEXMALE_        
    W3_AGE1824_        
    W3_AGE2534_       
    W3_AGE3544_        
    W3_AGE4554_        
    W3_AGE5564_        
    W3_RACEBL_2        
    W3_RACEOT_3        
    W3_RACEHI_6        
    W3_EDU_1           
    W3_EDU_2           
    W3_EDU_3           
    W3_EDU_4           
    W3_INC_1          
    W3_INC_2           
    W3_INC_3           
    W3_INC_4           
    W3_SOC_2          
    W3_SOC_3          
    W3_SOC_4           
    W3_SOC_5           
    W3_CPROB1         
    W3_CPROB2          
    W3_CPROB3          
    W3_CPROB4         
    W3_C               
    W3_WEIGHT          
    CASEID; 
datalines; 

******************COPY AND PASTE OUTPUT FROM MPLUS*********** 
run; 
 
 
SAS File name: LCA Comparisons, Transition Tables 4142021 
 
*Merge the datasets to look at transition tables; 
 
libname aim3 "U:\CourtneyBlondino\PhD Epidemiology\April Re Run\LCA Wave 2 and 3 - 4 class - 
4142021"; 
 
*start by checking freqs; 
 
*Wave 1; 
proc surveyfreq data=aim3.w14classprob4142021; 
table  
W1_ACUR_CIG      W1_ACUR_ECI       W1_ACUR_DUA       W1_ACUR_ALC       W1_ACUR_MAR       
W1_ACUR_PAI        
W1_DEPRESS       W1_SLEEPING       W1_ANXIOUS        W1_PTSD            
W1_LIED          W1_ATTENTIO       W1_LISTENING      W1_BULLY          W1_FIGHTS         
W1_RESTLESS        W1_ANSWERED  / row chisq (secondorder); 
weight W1_weight; 
run; 
 
*Wave 2; 
proc surveyfreq data=aim3.w24classprob4142021; 
table       
W2_ACUR_CIG      W2_ACUR_ECI      W2_ACUR_DUA       W2_ACUR_ALC       W2_ACUR_MAR       
W2_ACUR_PAI        
W2_DEPRESS       W2_SLEEPING      W2_ANXIOUS        W2_PTSD          
W2_LIED          W2_ATTENTIO      W2_LISTENIN      W2_BULLY        W2_FIGHTS      W2_RESTLESS       
W2_ANSWERED / row chisq (secondorder); 
weight W2_weight; 
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run; 
 
*Wave 3; 
proc surveyfreq data=aim3.W34classprob4152021; 
table  
W3_ACUR_CIG      W3_ACUR_ECI      W3_ACUR_DUA       W3_ACUR_ALC     W3_ACUR_MAR    W3_ACUR_PAI        
W3_DEPRESS       W3_SLEEPING      W3_ANXIOUS        W3_PTSD          
W3_LIED          W3_ATTENTIO      W3_LISTENIN      W3_BULLY        W3_FIGHTS      W3_RESTLESS       
W3_ANSWERED        
/ row chisq (secondorder); 
weight W3_weight; 
run; 
 
proc surveyfreq data=aim3.W34classprob4152021; 
table  
w3_C      
/ row chisq (secondorder); 
weight W3_weight; 
run; 
 
*then sort by caseid; 
proc sort data=aim3.w14classprob4142021;  
by caseid; 
run; 
 
proc sort data=aim3.w24classprob4142021;  
by caseid; 
run; 
 
proc sort data=aim3.W34classprob4152021;  
by caseid; 
run; 
 
********************need to add in R03_A_AWGT to use when running weighted transition tables; 
proc contents data=work.Da36498p3101; 
*table R03_A_AWGT; 
run; 
data aim3.w3allweights; 
set WORK.DA36498P3101 
(keep = caseid R03_A_AWGT); 
run; 
proc sort data=aim3.w3allweights; 
by caseid; 
run; 
 
 
 
*then merge; 
data aim3.master; 
merge aim3.w14classprob4142021 aim3.w24classprob4142021 aim3.W34classprob4152021 
aim3.w3allweights; 
by caseid; 
*array change _numeric_; 
*do over change; 
*if change =-99999 then change = .; 
*end; 
run; 
 
proc contents data=aim3.master; 
run; 
 
proc print data=aim3.master (obs=20); 
run; 
 
*make transition tables; 
 
ods pdf; 
*W1 vs W2; 
proc freq data=aim3.master; 
table w1_c*w2_c; 
run; 
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*W2 vs W3; 
proc freq data=aim3.master; 
table w2_c*w3_c; 
run; 
 
*W1 vs W3; 
proc freq data=aim3.master; 
table w1_c*w3_c; 
run; 
ods pdf close; 
 
 
*make transition tables - with wave 3 all weights; 
 
ods pdf; 
*W1 vs W2; 
proc surveyfreq data=aim3.master; 
table w1_c*w2_c 
/ row chisq (secondorder); 
weight R03_A_AWGT; 
run; 
 
*W2 vs W3; 
proc surveyfreq data=aim3.master; 
table w2_c*w3_c 
/ row chisq (secondorder); 
weight R03_A_AWGT; 
run; 
 
*W1 vs W3; 
proc surveyfreq data=aim3.master; 
table w1_c*w3_c 
/ row chisq (secondorder); 
weight R03_A_AWGT; 
run; 
ods pdf close; 
 
 
 
*Try to get item response pattern for each comorbidity class for each wave; 
*Table 3.7 in Nylund dissertation; 
 
 
 
 
 
 
*tetrachoric correlations by wave; 
*4/28/2021; 
ods pdf; 
proc contents data=aim3.master; 
run; 
 
******W1 VS W2; 
proc freq data=aim3.master; 
table 
W1_ACUR_CIG*W2_ACUR_CIG 
W1_ACUR_CIG*W2_ACUR_ECI 
W1_ACUR_CIG*W2_ACUR_DUA   
W1_ACUR_CIG*W2_ACUR_ALC  
W1_ACUR_CIG*W2_ACUR_MAR  
W1_ACUR_CIG*W2_ACUR_PAI 
W1_ACUR_CIG*W2_DEPRESS  
W1_ACUR_CIG*W2_SLEEPING  
W1_ACUR_CIG*W2_ANXIOUS  
W1_ACUR_CIG*W2_PTSD 
W1_ACUR_CIG*W2_LIED 
W1_ACUR_CIG*W2_ATTENTIO 
W1_ACUR_CIG*W2_LISTENIN 
W1_ACUR_CIG*W2_BULLY 
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W1_ACUR_CIG*W2_FIGHTS 
W1_ACUR_CIG*W2_RESTLESS 
W1_ACUR_CIG*W2_ANSWERED 
 
 
W1_ACUR_ECI*W2_ACUR_CIG  
W1_ACUR_ECI*W2_ACUR_ECI 
W1_ACUR_ECI*W2_ACUR_DUA  
W1_ACUR_ECI*W2_ACUR_ALC 
W1_ACUR_ECI*W2_ACUR_MAR 
W1_ACUR_ECI*W2_ACUR_PAI 
W1_ACUR_ECI*W2_DEPRESS  
W1_ACUR_ECI*W2_SLEEPING 
W1_ACUR_ECI*W2_ANXIOUS 
W1_ACUR_ECI*W2_PTSD  
W1_ACUR_ECI*W2_LIED 
W1_ACUR_ECI*W2_ATTENTIO 
W1_ACUR_ECI*W2_LISTENIN 
W1_ACUR_ECI*W2_BULLY 
W1_ACUR_ECI*W2_FIGHTS 
W1_ACUR_ECI*W2_RESTLESS  
W1_ACUR_ECI*W2_ANSWERED 
  
 
W1_ACUR_DUA*W2_ACUR_CIG 
W1_ACUR_DUA*W2_ACUR_ECI 
W1_ACUR_DUA*W2_ACUR_DUA 
W1_ACUR_DUA*W2_ACUR_ALC 
W1_ACUR_DUA*W2_ACUR_MAR 
W1_ACUR_DUA*W2_ACUR_PAI 
W1_ACUR_DUA*W2_DEPRESS 
W1_ACUR_DUA*W2_SLEEPING 
W1_ACUR_DUA*W2_ANXIOUS 
W1_ACUR_DUA*W2_PTSD 
W1_ACUR_DUA*W2_LIED 
W1_ACUR_DUA*W2_ATTENTIO 
W1_ACUR_DUA*W2_LISTENIN 
W1_ACUR_DUA*W2_BULLY 
W1_ACUR_DUA*W2_FIGHTS 
W1_ACUR_DUA*W2_RESTLESS 
W1_ACUR_DUA*W2_ANSWERED 
 
 
W1_ACUR_ALC*W2_ACUR_CIG 
W1_ACUR_ALC*W2_ACUR_ECI 
W1_ACUR_ALC*W2_ACUR_DUA  
W1_ACUR_ALC*W2_ACUR_ALC  
W1_ACUR_ALC*W2_ACUR_MAR 
W1_ACUR_ALC*W2_ACUR_PAI 
W1_ACUR_ALC*W2_DEPRESS 
W1_ACUR_ALC*W2_SLEEPING 
W1_ACUR_ALC*W2_ANXIOUS 
W1_ACUR_ALC*W2_PTSD 
W1_ACUR_ALC*W2_LIED  
W1_ACUR_ALC*W2_ATTENTIO  
W1_ACUR_ALC*W2_LISTENIN  
W1_ACUR_ALC*W2_BULLY  
W1_ACUR_ALC*W2_FIGHTS  
W1_ACUR_ALC*W2_RESTLESS  
W1_ACUR_ALC*W2_ANSWERED 
  
 
W1_ACUR_MAR*W2_ACUR_CIG 
W1_ACUR_MAR*W2_ACUR_ECI 
W1_ACUR_MAR*W2_ACUR_DUA 
W1_ACUR_MAR*W2_ACUR_ALC 
W1_ACUR_MAR*W2_ACUR_MAR 
W1_ACUR_MAR*W2_ACUR_PAI 
W1_ACUR_MAR*W2_DEPRESS 
W1_ACUR_MAR*W2_SLEEPING 
W1_ACUR_MAR*W2_ANXIOUS 
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W1_ACUR_MAR*W2_PTSD 
W1_ACUR_MAR*W2_LIED 
W1_ACUR_MAR*W2_ATTENTIO 
W1_ACUR_MAR*W2_LISTENIN 
W1_ACUR_MAR*W2_BULLY 
W1_ACUR_MAR*W2_FIGHTS 
W1_ACUR_MAR*W2_RESTLESS 
W1_ACUR_MAR*W2_ANSWERED 
 
  
W1_ACUR_PAI*W2_ACUR_CIG 
W1_ACUR_PAI*W2_ACUR_ECI  
W1_ACUR_PAI*W2_ACUR_DUA 
W1_ACUR_PAI*W2_ACUR_ALC 
W1_ACUR_PAI*W2_ACUR_MAR 
W1_ACUR_PAI*W2_ACUR_PAI 
W1_ACUR_PAI*W2_DEPRESS 
W1_ACUR_PAI*W2_SLEEPING 
W1_ACUR_PAI*W2_ANXIOUS 
W1_ACUR_PAI*W2_PTSD 
W1_ACUR_PAI*W2_LIED   
W1_ACUR_PAI*W2_ATTENTIO 
W1_ACUR_PAI*W2_LISTENIN 
W1_ACUR_PAI*W2_BULLY 
W1_ACUR_PAI*W2_FIGHTS 
W1_ACUR_PAI*W2_RESTLESS 
W1_ACUR_PAI*W2_ANSWERED 
 
 
W1_DEPRESS*W2_ACUR_CIG 
W1_DEPRESS*W2_ACUR_ECI 
W1_DEPRESS*W2_ACUR_DUA 
W1_DEPRESS*W2_ACUR_ALC 
W1_DEPRESS*W2_ACUR_MAR 
W1_DEPRESS*W2_ACUR_PAI 
W1_DEPRESS*W2_DEPRESS 
W1_DEPRESS*W2_SLEEPING  
W1_DEPRESS*W2_ANXIOUS 
W1_DEPRESS*W2_PTSD 
W1_DEPRESS*W2_LIED 
W1_DEPRESS*W2_ATTENTIO 
W1_DEPRESS*W2_LISTENIN 
W1_DEPRESS*W2_BULLY 
W1_DEPRESS*W2_FIGHTS 
W1_DEPRESS*W2_RESTLESS 
W1_DEPRESS*W2_ANSWERED 
 
  
W1_SLEEPING*W2_ACUR_CIG   
W1_SLEEPING*W2_ACUR_ECI   
W1_SLEEPING*W2_ACUR_DUA  
W1_SLEEPING*W2_ACUR_ALC 
W1_SLEEPING*W2_ACUR_MAR 
W1_SLEEPING*W2_ACUR_PAI  
W1_SLEEPING*W2_DEPRESS 
W1_SLEEPING*W2_SLEEPING 
W1_SLEEPING*W2_ANXIOUS   
W1_SLEEPING*W2_PTSD  
W1_SLEEPING*W2_LIED  
W1_SLEEPING*W2_ATTENTIO 
W1_SLEEPING*W2_LISTENIN 
W1_SLEEPING*W2_BULLY 
W1_SLEEPING*W2_FIGHTS 
W1_SLEEPING*W2_RESTLESS 
W1_SLEEPING*W2_ANSWERED  
 
  
W1_ANXIOUS*W2_ACUR_CIG 
W1_ANXIOUS*W2_ACUR_ECI 
W1_ANXIOUS*W2_ACUR_DUA 
W1_ANXIOUS*W2_ACUR_ALC 
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W1_ANXIOUS*W2_ACUR_MAR 
W1_ANXIOUS*W2_ACUR_PAI 
W1_ANXIOUS*W2_DEPRESS 
W1_ANXIOUS*W2_SLEEPING 
W1_ANXIOUS*W2_ANXIOUS 
W1_ANXIOUS*W2_PTSD 
W1_ANXIOUS*W2_LIED 
W1_ANXIOUS*W2_ATTENTIO 
W1_ANXIOUS*W2_LISTENIN 
W1_ANXIOUS*W2_BULLY 
W1_ANXIOUS*W2_FIGHTS 
W1_ANXIOUS*W2_RESTLESS 
W1_ANXIOUS*W2_ANSWERED 
 
  
W1_PTSD*W2_ACUR_CIG  
W1_PTSD*W2_ACUR_ECI  
W1_PTSD*W2_ACUR_DUA 
W1_PTSD*W2_ACUR_ALC 
W1_PTSD*W2_ACUR_MAR  
W1_PTSD*W2_ACUR_PAI 
W1_PTSD*W2_DEPRESS 
W1_PTSD*W2_SLEEPING  
W1_PTSD*W2_ANXIOUS  
W1_PTSD*W2_PTSD  
W1_PTSD*W2_LIED  
W1_PTSD*W2_ATTENTIO  
W1_PTSD*W2_LISTENIN  
W1_PTSD*W2_BULLY  
W1_PTSD*W2_FIGHTS  
W1_PTSD*W2_RESTLESS  
W1_PTSD*W2_ANSWERED   
 
  
W1_LIED*W2_ACUR_CIG           
W1_LIED*W2_ACUR_ECI 
W1_LIED*W2_ACUR_DUA 
W1_LIED*W2_ACUR_ALC 
W1_LIED*W2_ACUR_MAR 
W1_LIED*W2_ACUR_PAI  
W1_LIED*W2_DEPRESS 
W1_LIED*W2_SLEEPING 
W1_LIED*W2_ANXIOUS 
W1_LIED*W2_PTSD 
W1_LIED*W2_LIED 
W1_LIED*W2_ATTENTIO 
W1_LIED*W2_LISTENIN 
W1_LIED*W2_BULLY 
W1_LIED*W2_FIGHTS 
W1_LIED*W2_RESTLESS 
W1_LIED*W2_ANSWERED  
 
 
W1_ATTENTIO*W2_ACUR_CIG  
W1_ATTENTIO*W2_ACUR_ECI  
W1_ATTENTIO*W2_ACUR_DUA  
W1_ATTENTIO*W2_ACUR_ALC 
W1_ATTENTIO*W2_ACUR_MAR 
W1_ATTENTIO*W2_ACUR_PAI 
W1_ATTENTIO*W2_DEPRESS 
W1_ATTENTIO*W2_SLEEPING  
W1_ATTENTIO*W2_ANXIOUS 
W1_ATTENTIO*W2_PTSD 
W1_ATTENTIO*W2_LIED 
W1_ATTENTIO*W2_ATTENTIO 
W1_ATTENTIO*W2_LISTENIN 
W1_ATTENTIO*W2_BULLY 
W1_ATTENTIO*W2_FIGHTS 
W1_ATTENTIO*W2_RESTLESS 
W1_ATTENTIO*W2_ANSWERED 
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W1_LISTENING*W2_ACUR_CIG 
W1_LISTENING*W2_ACUR_ECI 
W1_LISTENING*W2_ACUR_DUA  
W1_LISTENING*W2_ACUR_ALC 
W1_LISTENING*W2_ACUR_MAR 
W1_LISTENING*W2_ACUR_PAI 
W1_LISTENING*W2_DEPRESS 
W1_LISTENING*W2_SLEEPING   
W1_LISTENING*W2_ANXIOUS 
W1_LISTENING*W2_PTSD  
W1_LISTENING*W2_LIED 
W1_LISTENING*W2_ATTENTIO  
W1_LISTENING*W2_LISTENIN 
W1_LISTENING*W2_BULLY 
W1_LISTENING*W2_FIGHTS 
W1_LISTENING*W2_RESTLESS 
W1_LISTENING*W2_ANSWERED 
 
  
W1_BULLY*W2_ACUR_CIG 
W1_BULLY*W2_ACUR_ECI 
W1_BULLY*W2_ACUR_DUA 
W1_BULLY*W2_ACUR_ALC 
W1_BULLY*W2_ACUR_MAR 
W1_BULLY*W2_ACUR_PAI 
W1_BULLY*W2_DEPRESS 
W1_BULLY*W2_SLEEPING 
W1_BULLY*W2_ANXIOUS  
W1_BULLY*W2_PTSD  
W1_BULLY*W2_LIED  
W1_BULLY*W2_ATTENTIO 
W1_BULLY*W2_LISTENIN 
W1_BULLY*W2_BULLY 
W1_BULLY*W2_FIGHTS 
W1_BULLY*W2_RESTLESS 
W1_BULLY*W2_ANSWERED 
 
  
W1_FIGHTS*W2_ACUR_CIG  
W1_FIGHTS*W2_ACUR_ECI 
W1_FIGHTS*W2_ACUR_DUA  
W1_FIGHTS*W2_ACUR_ALC 
W1_FIGHTS*W2_ACUR_MAR  
W1_FIGHTS*W2_ACUR_PAI 
W1_FIGHTS*W2_DEPRESS 
W1_FIGHTS*W2_SLEEPING 
W1_FIGHTS*W2_ANXIOUS  
W1_FIGHTS*W2_PTSD  
W1_FIGHTS*W2_LIED 
W1_FIGHTS*W2_ATTENTIO 
W1_FIGHTS*W2_LISTENIN 
W1_FIGHTS*W2_BULLY 
W1_FIGHTS*W2_FIGHTS 
W1_FIGHTS*W2_RESTLESS 
W1_FIGHTS*W2_ANSWERED  
 
  
W1_RESTLESS*W2_ACUR_CIG 
W1_RESTLESS*W2_ACUR_ECI 
W1_RESTLESS*W2_ACUR_DUA 
W1_RESTLESS*W2_ACUR_ALC 
W1_RESTLESS*W2_ACUR_MAR 
W1_RESTLESS*W2_ACUR_PAI 
W1_RESTLESS*W2_DEPRESS 
W1_RESTLESS*W2_SLEEPING 
W1_RESTLESS*W2_ANXIOUS 
W1_RESTLESS*W2_PTSD 
W1_RESTLESS*W2_LIED  
W1_RESTLESS*W2_ATTENTIO 
W1_RESTLESS*W2_LISTENIN 
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W1_RESTLESS*W2_BULLY  
W1_RESTLESS*W2_FIGHTS 
W1_RESTLESS*W2_RESTLESS 
W1_RESTLESS*W2_ANSWERED   
 
  
W1_ANSWERED*W2_ACUR_CIG 
W1_ANSWERED*W2_ACUR_ECI 
W1_ANSWERED*W2_ACUR_DUA 
W1_ANSWERED*W2_ACUR_ALC 
W1_ANSWERED*W2_ACUR_MAR 
W1_ANSWERED*W2_ACUR_PAI 
W1_ANSWERED*W2_DEPRESS 
W1_ANSWERED*W2_SLEEPING 
W1_ANSWERED*W2_ANXIOUS 
W1_ANSWERED*W2_PTSD 
W1_ANSWERED*W2_LIED 
W1_ANSWERED*W2_ATTENTIO 
W1_ANSWERED*W2_LISTENIN 
W1_ANSWERED*W2_BULLY 
W1_ANSWERED*W2_FIGHTS 
W1_ANSWERED*W2_RESTLESS  
W1_ANSWERED*W2_ANSWERED  
 
/plcorr chisq; 
run; 
ods pdf close; 
 
   
ods pdf; 
******W1 VS W3; 
proc freq data=aim3.master; 
table 
W1_ACUR_CIG*W3_ACUR_CIG 
W1_ACUR_CIG*W3_ACUR_ECI 
W1_ACUR_CIG*W3_ACUR_DUA   
W1_ACUR_CIG*W3_ACUR_ALC  
W1_ACUR_CIG*W3_ACUR_MAR  
W1_ACUR_CIG*W3_ACUR_PAI 
W1_ACUR_CIG*W3_DEPRESS  
W1_ACUR_CIG*W3_SLEEPING  
W1_ACUR_CIG*W3_ANXIOUS  
W1_ACUR_CIG*W3_PTSD 
W1_ACUR_CIG*W3_LIED 
W1_ACUR_CIG*W3_ATTENTIO 
W1_ACUR_CIG*W3_LISTENIN 
W1_ACUR_CIG*W3_BULLY 
W1_ACUR_CIG*W3_FIGHTS 
W1_ACUR_CIG*W3_RESTLESS 
W1_ACUR_CIG*W3_ANSWERED 
 
 
W1_ACUR_ECI*W3_ACUR_CIG  
W1_ACUR_ECI*W3_ACUR_ECI 
W1_ACUR_ECI*W3_ACUR_DUA  
W1_ACUR_ECI*W3_ACUR_ALC 
W1_ACUR_ECI*W3_ACUR_MAR 
W1_ACUR_ECI*W3_ACUR_PAI 
W1_ACUR_ECI*W3_DEPRESS  
W1_ACUR_ECI*W3_SLEEPING 
W1_ACUR_ECI*W3_ANXIOUS 
W1_ACUR_ECI*W3_PTSD  
W1_ACUR_ECI*W3_LIED 
W1_ACUR_ECI*W3_ATTENTIO 
W1_ACUR_ECI*W3_LISTENIN 
W1_ACUR_ECI*W3_BULLY 
W1_ACUR_ECI*W3_FIGHTS 
W1_ACUR_ECI*W3_RESTLESS  
W1_ACUR_ECI*W3_ANSWERED 
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W1_ACUR_DUA*W3_ACUR_CIG 
W1_ACUR_DUA*W3_ACUR_ECI 
W1_ACUR_DUA*W3_ACUR_DUA 
W1_ACUR_DUA*W3_ACUR_ALC 
W1_ACUR_DUA*W3_ACUR_MAR 
W1_ACUR_DUA*W3_ACUR_PAI 
W1_ACUR_DUA*W3_DEPRESS 
W1_ACUR_DUA*W3_SLEEPING 
W1_ACUR_DUA*W3_ANXIOUS 
W1_ACUR_DUA*W3_PTSD 
W1_ACUR_DUA*W3_LIED 
W1_ACUR_DUA*W3_ATTENTIO 
W1_ACUR_DUA*W3_LISTENIN 
W1_ACUR_DUA*W3_BULLY 
W1_ACUR_DUA*W3_FIGHTS 
W1_ACUR_DUA*W3_RESTLESS 
W1_ACUR_DUA*W3_ANSWERED 
 
 
W1_ACUR_ALC*W3_ACUR_CIG 
W1_ACUR_ALC*W3_ACUR_ECI 
W1_ACUR_ALC*W3_ACUR_DUA  
W1_ACUR_ALC*W3_ACUR_ALC  
W1_ACUR_ALC*W3_ACUR_MAR 
W1_ACUR_ALC*W3_ACUR_PAI 
W1_ACUR_ALC*W3_DEPRESS 
W1_ACUR_ALC*W3_SLEEPING 
W1_ACUR_ALC*W3_ANXIOUS 
W1_ACUR_ALC*W3_PTSD 
W1_ACUR_ALC*W3_LIED  
W1_ACUR_ALC*W3_ATTENTIO  
W1_ACUR_ALC*W3_LISTENIN  
W1_ACUR_ALC*W3_BULLY  
W1_ACUR_ALC*W3_FIGHTS  
W1_ACUR_ALC*W3_RESTLESS  
W1_ACUR_ALC*W3_ANSWERED 
  
 
W1_ACUR_MAR*W3_ACUR_CIG 
W1_ACUR_MAR*W3_ACUR_ECI 
W1_ACUR_MAR*W3_ACUR_DUA 
W1_ACUR_MAR*W3_ACUR_ALC 
W1_ACUR_MAR*W3_ACUR_MAR 
W1_ACUR_MAR*W3_ACUR_PAI 
W1_ACUR_MAR*W3_DEPRESS 
W1_ACUR_MAR*W3_SLEEPING 
W1_ACUR_MAR*W3_ANXIOUS 
W1_ACUR_MAR*W3_PTSD 
W1_ACUR_MAR*W3_LIED 
W1_ACUR_MAR*W3_ATTENTIO 
W1_ACUR_MAR*W3_LISTENIN 
W1_ACUR_MAR*W3_BULLY 
W1_ACUR_MAR*W3_FIGHTS 
W1_ACUR_MAR*W3_RESTLESS 
W1_ACUR_MAR*W3_ANSWERED 
 
  
W1_ACUR_PAI*W3_ACUR_CIG 
W1_ACUR_PAI*W3_ACUR_ECI  
W1_ACUR_PAI*W3_ACUR_DUA 
W1_ACUR_PAI*W3_ACUR_ALC 
W1_ACUR_PAI*W3_ACUR_MAR 
W1_ACUR_PAI*W3_ACUR_PAI 
W1_ACUR_PAI*W3_DEPRESS 
W1_ACUR_PAI*W3_SLEEPING 
W1_ACUR_PAI*W3_ANXIOUS 
W1_ACUR_PAI*W3_PTSD 
W1_ACUR_PAI*W3_LIED   
W1_ACUR_PAI*W3_ATTENTIO 
W1_ACUR_PAI*W3_LISTENIN 
W1_ACUR_PAI*W3_BULLY 
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W1_ACUR_PAI*W3_FIGHTS 
W1_ACUR_PAI*W3_RESTLESS 
W1_ACUR_PAI*W3_ANSWERED 
 
 
W1_DEPRESS*W3_ACUR_CIG 
W1_DEPRESS*W3_ACUR_ECI 
W1_DEPRESS*W3_ACUR_DUA 
W1_DEPRESS*W3_ACUR_ALC 
W1_DEPRESS*W3_ACUR_MAR 
W1_DEPRESS*W3_ACUR_PAI 
W1_DEPRESS*W3_DEPRESS 
W1_DEPRESS*W3_SLEEPING  
W1_DEPRESS*W3_ANXIOUS 
W1_DEPRESS*W3_PTSD 
W1_DEPRESS*W3_LIED 
W1_DEPRESS*W3_ATTENTIO 
W1_DEPRESS*W3_LISTENIN 
W1_DEPRESS*W3_BULLY 
W1_DEPRESS*W3_FIGHTS 
W1_DEPRESS*W3_RESTLESS 
W1_DEPRESS*W3_ANSWERED 
 
  
W1_SLEEPING*W3_ACUR_CIG   
W1_SLEEPING*W3_ACUR_ECI   
W1_SLEEPING*W3_ACUR_DUA  
W1_SLEEPING*W3_ACUR_ALC 
W1_SLEEPING*W3_ACUR_MAR 
W1_SLEEPING*W3_ACUR_PAI  
W1_SLEEPING*W3_DEPRESS 
W1_SLEEPING*W3_SLEEPING 
W1_SLEEPING*W3_ANXIOUS   
W1_SLEEPING*W3_PTSD  
W1_SLEEPING*W3_LIED  
W1_SLEEPING*W3_ATTENTIO 
W1_SLEEPING*W3_LISTENIN 
W1_SLEEPING*W3_BULLY 
W1_SLEEPING*W3_FIGHTS 
W1_SLEEPING*W3_RESTLESS 
W1_SLEEPING*W3_ANSWERED  
 
  
W1_ANXIOUS*W3_ACUR_CIG 
W1_ANXIOUS*W3_ACUR_ECI 
W1_ANXIOUS*W3_ACUR_DUA 
W1_ANXIOUS*W3_ACUR_ALC 
W1_ANXIOUS*W3_ACUR_MAR 
W1_ANXIOUS*W3_ACUR_PAI 
W1_ANXIOUS*W3_DEPRESS 
W1_ANXIOUS*W3_SLEEPING 
W1_ANXIOUS*W3_ANXIOUS 
W1_ANXIOUS*W3_PTSD 
W1_ANXIOUS*W3_LIED 
W1_ANXIOUS*W3_ATTENTIO 
W1_ANXIOUS*W3_LISTENIN 
W1_ANXIOUS*W3_BULLY 
W1_ANXIOUS*W3_FIGHTS 
W1_ANXIOUS*W3_RESTLESS 
W1_ANXIOUS*W3_ANSWERED 
 
  
W1_PTSD*W3_ACUR_CIG  
W1_PTSD*W3_ACUR_ECI  
W1_PTSD*W3_ACUR_DUA 
W1_PTSD*W3_ACUR_ALC 
W1_PTSD*W3_ACUR_MAR  
W1_PTSD*W3_ACUR_PAI 
W1_PTSD*W3_DEPRESS 
W1_PTSD*W3_SLEEPING  
W1_PTSD*W3_ANXIOUS  
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W1_PTSD*W3_PTSD  
W1_PTSD*W3_LIED  
W1_PTSD*W3_ATTENTIO  
W1_PTSD*W3_LISTENIN  
W1_PTSD*W3_BULLY  
W1_PTSD*W3_FIGHTS  
W1_PTSD*W3_RESTLESS  
W1_PTSD*W3_ANSWERED   
 
  
W1_LIED*W3_ACUR_CIG           
W1_LIED*W3_ACUR_ECI 
W1_LIED*W3_ACUR_DUA 
W1_LIED*W3_ACUR_ALC 
W1_LIED*W3_ACUR_MAR 
W1_LIED*W3_ACUR_PAI  
W1_LIED*W3_DEPRESS 
W1_LIED*W3_SLEEPING 
W1_LIED*W3_ANXIOUS 
W1_LIED*W3_PTSD 
W1_LIED*W3_LIED 
W1_LIED*W3_ATTENTIO 
W1_LIED*W3_LISTENIN 
W1_LIED*W3_BULLY 
W1_LIED*W3_FIGHTS 
W1_LIED*W3_RESTLESS 
W1_LIED*W3_ANSWERED  
 
 
W1_ATTENTIO*W3_ACUR_CIG  
W1_ATTENTIO*W3_ACUR_ECI  
W1_ATTENTIO*W3_ACUR_DUA  
W1_ATTENTIO*W3_ACUR_ALC 
W1_ATTENTIO*W3_ACUR_MAR 
W1_ATTENTIO*W3_ACUR_PAI 
W1_ATTENTIO*W3_DEPRESS 
W1_ATTENTIO*W3_SLEEPING  
W1_ATTENTIO*W3_ANXIOUS 
W1_ATTENTIO*W3_PTSD 
W1_ATTENTIO*W3_LIED 
W1_ATTENTIO*W3_ATTENTIO 
W1_ATTENTIO*W3_LISTENIN 
W1_ATTENTIO*W3_BULLY 
W1_ATTENTIO*W3_FIGHTS 
W1_ATTENTIO*W3_RESTLESS 
W1_ATTENTIO*W3_ANSWERED 
 
  
W1_LISTENING*W3_ACUR_CIG 
W1_LISTENING*W3_ACUR_ECI 
W1_LISTENING*W3_ACUR_DUA  
W1_LISTENING*W3_ACUR_ALC 
W1_LISTENING*W3_ACUR_MAR 
W1_LISTENING*W3_ACUR_PAI 
W1_LISTENING*W3_DEPRESS 
W1_LISTENING*W3_SLEEPING   
W1_LISTENING*W3_ANXIOUS 
W1_LISTENING*W3_PTSD  
W1_LISTENING*W3_LIED 
W1_LISTENING*W3_ATTENTIO  
W1_LISTENING*W3_LISTENIN 
W1_LISTENING*W3_BULLY 
W1_LISTENING*W3_FIGHTS 
W1_LISTENING*W3_RESTLESS 
W1_LISTENING*W3_ANSWERED 
 
  
W1_BULLY*W3_ACUR_CIG 
W1_BULLY*W3_ACUR_ECI 
W1_BULLY*W3_ACUR_DUA 
W1_BULLY*W3_ACUR_ALC 
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W1_BULLY*W3_ACUR_MAR 
W1_BULLY*W3_ACUR_PAI 
W1_BULLY*W3_DEPRESS 
W1_BULLY*W3_SLEEPING 
W1_BULLY*W3_ANXIOUS  
W1_BULLY*W3_PTSD  
W1_BULLY*W3_LIED  
W1_BULLY*W3_ATTENTIO 
W1_BULLY*W3_LISTENIN 
W1_BULLY*W3_BULLY 
W1_BULLY*W3_FIGHTS 
W1_BULLY*W3_RESTLESS 
W1_BULLY*W3_ANSWERED 
 
  
W1_FIGHTS*W3_ACUR_CIG  
W1_FIGHTS*W3_ACUR_ECI 
W1_FIGHTS*W3_ACUR_DUA  
W1_FIGHTS*W3_ACUR_ALC 
W1_FIGHTS*W3_ACUR_MAR  
W1_FIGHTS*W3_ACUR_PAI 
W1_FIGHTS*W3_DEPRESS 
W1_FIGHTS*W3_SLEEPING 
W1_FIGHTS*W3_ANXIOUS  
W1_FIGHTS*W3_PTSD  
W1_FIGHTS*W3_LIED 
W1_FIGHTS*W3_ATTENTIO 
W1_FIGHTS*W3_LISTENIN 
W1_FIGHTS*W3_BULLY 
W1_FIGHTS*W3_FIGHTS 
W1_FIGHTS*W3_RESTLESS 
W1_FIGHTS*W3_ANSWERED  
 
  
W1_RESTLESS*W3_ACUR_CIG 
W1_RESTLESS*W3_ACUR_ECI 
W1_RESTLESS*W3_ACUR_DUA 
W1_RESTLESS*W3_ACUR_ALC 
W1_RESTLESS*W3_ACUR_MAR 
W1_RESTLESS*W3_ACUR_PAI 
W1_RESTLESS*W3_DEPRESS 
W1_RESTLESS*W3_SLEEPING 
W1_RESTLESS*W3_ANXIOUS 
W1_RESTLESS*W3_PTSD 
W1_RESTLESS*W3_LIED  
W1_RESTLESS*W3_ATTENTIO 
W1_RESTLESS*W3_LISTENIN 
W1_RESTLESS*W3_BULLY  
W1_RESTLESS*W3_FIGHTS 
W1_RESTLESS*W3_RESTLESS 
W1_RESTLESS*W3_ANSWERED   
 
  
W1_ANSWERED*W3_ACUR_CIG 
W1_ANSWERED*W3_ACUR_ECI 
W1_ANSWERED*W3_ACUR_DUA 
W1_ANSWERED*W3_ACUR_ALC 
W1_ANSWERED*W3_ACUR_MAR 
W1_ANSWERED*W3_ACUR_PAI 
W1_ANSWERED*W3_DEPRESS 
W1_ANSWERED*W3_SLEEPING 
W1_ANSWERED*W3_ANXIOUS 
W1_ANSWERED*W3_PTSD 
W1_ANSWERED*W3_LIED 
W1_ANSWERED*W3_ATTENTIO 
W1_ANSWERED*W3_LISTENIN 
W1_ANSWERED*W3_BULLY 
W1_ANSWERED*W3_FIGHTS 
W1_ANSWERED*W3_RESTLESS  
W1_ANSWERED*W3_ANSWERED  
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/plcorr chisq; 
run; 
ods pdf close; 
 
 
ods pdf; 
******W2 VS W3; 
proc freq data=aim3.master; 
table 
W2_ACUR_CIG*W3_ACUR_CIG 
W2_ACUR_CIG*W3_ACUR_ECI 
W2_ACUR_CIG*W3_ACUR_DUA   
W2_ACUR_CIG*W3_ACUR_ALC  
W2_ACUR_CIG*W3_ACUR_MAR  
W2_ACUR_CIG*W3_ACUR_PAI 
W2_ACUR_CIG*W3_DEPRESS  
W2_ACUR_CIG*W3_SLEEPING  
W2_ACUR_CIG*W3_ANXIOUS  
W2_ACUR_CIG*W3_PTSD 
W2_ACUR_CIG*W3_LIED 
W2_ACUR_CIG*W3_ATTENTIO 
W2_ACUR_CIG*W3_LISTENIN 
W2_ACUR_CIG*W3_BULLY 
W2_ACUR_CIG*W3_FIGHTS 
W2_ACUR_CIG*W3_RESTLESS 
W2_ACUR_CIG*W3_ANSWERED 
 
 
W2_ACUR_ECI*W3_ACUR_CIG  
W2_ACUR_ECI*W3_ACUR_ECI 
W2_ACUR_ECI*W3_ACUR_DUA  
W2_ACUR_ECI*W3_ACUR_ALC 
W2_ACUR_ECI*W3_ACUR_MAR 
W2_ACUR_ECI*W3_ACUR_PAI 
W2_ACUR_ECI*W3_DEPRESS  
W2_ACUR_ECI*W3_SLEEPING 
W2_ACUR_ECI*W3_ANXIOUS 
W2_ACUR_ECI*W3_PTSD  
W2_ACUR_ECI*W3_LIED 
W2_ACUR_ECI*W3_ATTENTIO 
W2_ACUR_ECI*W3_LISTENIN 
W2_ACUR_ECI*W3_BULLY 
W2_ACUR_ECI*W3_FIGHTS 
W2_ACUR_ECI*W3_RESTLESS  
W2_ACUR_ECI*W3_ANSWERED 
  
 
W2_ACUR_DUA*W3_ACUR_CIG 
W2_ACUR_DUA*W3_ACUR_ECI 
W2_ACUR_DUA*W3_ACUR_DUA 
W2_ACUR_DUA*W3_ACUR_ALC 
W2_ACUR_DUA*W3_ACUR_MAR 
W2_ACUR_DUA*W3_ACUR_PAI 
W2_ACUR_DUA*W3_DEPRESS 
W2_ACUR_DUA*W3_SLEEPING 
W2_ACUR_DUA*W3_ANXIOUS 
W2_ACUR_DUA*W3_PTSD 
W2_ACUR_DUA*W3_LIED 
W2_ACUR_DUA*W3_ATTENTIO 
W2_ACUR_DUA*W3_LISTENIN 
W2_ACUR_DUA*W3_BULLY 
W2_ACUR_DUA*W3_FIGHTS 
W2_ACUR_DUA*W3_RESTLESS 
W2_ACUR_DUA*W3_ANSWERED 
 
 
W2_ACUR_ALC*W3_ACUR_CIG 
W2_ACUR_ALC*W3_ACUR_ECI 
W2_ACUR_ALC*W3_ACUR_DUA  
W2_ACUR_ALC*W3_ACUR_ALC  
W2_ACUR_ALC*W3_ACUR_MAR 
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W2_ACUR_ALC*W3_ACUR_PAI 
W2_ACUR_ALC*W3_DEPRESS 
W2_ACUR_ALC*W3_SLEEPING 
W2_ACUR_ALC*W3_ANXIOUS 
W2_ACUR_ALC*W3_PTSD 
W2_ACUR_ALC*W3_LIED  
W2_ACUR_ALC*W3_ATTENTIO  
W2_ACUR_ALC*W3_LISTENIN  
W2_ACUR_ALC*W3_BULLY  
W2_ACUR_ALC*W3_FIGHTS  
W2_ACUR_ALC*W3_RESTLESS  
W2_ACUR_ALC*W3_ANSWERED 
  
 
W2_ACUR_MAR*W3_ACUR_CIG 
W2_ACUR_MAR*W3_ACUR_ECI 
W2_ACUR_MAR*W3_ACUR_DUA 
W2_ACUR_MAR*W3_ACUR_ALC 
W2_ACUR_MAR*W3_ACUR_MAR 
W2_ACUR_MAR*W3_ACUR_PAI 
W2_ACUR_MAR*W3_DEPRESS 
W2_ACUR_MAR*W3_SLEEPING 
W2_ACUR_MAR*W3_ANXIOUS 
W2_ACUR_MAR*W3_PTSD 
W2_ACUR_MAR*W3_LIED 
W2_ACUR_MAR*W3_ATTENTIO 
W2_ACUR_MAR*W3_LISTENIN 
W2_ACUR_MAR*W3_BULLY 
W2_ACUR_MAR*W3_FIGHTS 
W2_ACUR_MAR*W3_RESTLESS 
W2_ACUR_MAR*W3_ANSWERED 
 
  
W2_ACUR_PAI*W3_ACUR_CIG 
W2_ACUR_PAI*W3_ACUR_ECI  
W2_ACUR_PAI*W3_ACUR_DUA 
W2_ACUR_PAI*W3_ACUR_ALC 
W2_ACUR_PAI*W3_ACUR_MAR 
W2_ACUR_PAI*W3_ACUR_PAI 
W2_ACUR_PAI*W3_DEPRESS 
W2_ACUR_PAI*W3_SLEEPING 
W2_ACUR_PAI*W3_ANXIOUS 
W2_ACUR_PAI*W3_PTSD 
W2_ACUR_PAI*W3_LIED   
W2_ACUR_PAI*W3_ATTENTIO 
W2_ACUR_PAI*W3_LISTENIN 
W2_ACUR_PAI*W3_BULLY 
W2_ACUR_PAI*W3_FIGHTS 
W2_ACUR_PAI*W3_RESTLESS 
W2_ACUR_PAI*W3_ANSWERED 
 
 
W2_DEPRESS*W3_ACUR_CIG 
W2_DEPRESS*W3_ACUR_ECI 
W2_DEPRESS*W3_ACUR_DUA 
W2_DEPRESS*W3_ACUR_ALC 
W2_DEPRESS*W3_ACUR_MAR 
W2_DEPRESS*W3_ACUR_PAI 
W2_DEPRESS*W3_DEPRESS 
W2_DEPRESS*W3_SLEEPING  
W2_DEPRESS*W3_ANXIOUS 
W2_DEPRESS*W3_PTSD 
W2_DEPRESS*W3_LIED 
W2_DEPRESS*W3_ATTENTIO 
W2_DEPRESS*W3_LISTENIN 
W2_DEPRESS*W3_BULLY 
W2_DEPRESS*W3_FIGHTS 
W2_DEPRESS*W3_RESTLESS 
W2_DEPRESS*W3_ANSWERED 
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W2_SLEEPING*W3_ACUR_CIG   
W2_SLEEPING*W3_ACUR_ECI   
W2_SLEEPING*W3_ACUR_DUA  
W2_SLEEPING*W3_ACUR_ALC 
W2_SLEEPING*W3_ACUR_MAR 
W2_SLEEPING*W3_ACUR_PAI  
W2_SLEEPING*W3_DEPRESS 
W2_SLEEPING*W3_SLEEPING 
W2_SLEEPING*W3_ANXIOUS   
W2_SLEEPING*W3_PTSD  
W2_SLEEPING*W3_LIED  
W2_SLEEPING*W3_ATTENTIO 
W2_SLEEPING*W3_LISTENIN 
W2_SLEEPING*W3_BULLY 
W2_SLEEPING*W3_FIGHTS 
W2_SLEEPING*W3_RESTLESS 
W2_SLEEPING*W3_ANSWERED  
 
  
W2_ANXIOUS*W3_ACUR_CIG 
W2_ANXIOUS*W3_ACUR_ECI 
W2_ANXIOUS*W3_ACUR_DUA 
W2_ANXIOUS*W3_ACUR_ALC 
W2_ANXIOUS*W3_ACUR_MAR 
W2_ANXIOUS*W3_ACUR_PAI 
W2_ANXIOUS*W3_DEPRESS 
W2_ANXIOUS*W3_SLEEPING 
W2_ANXIOUS*W3_ANXIOUS 
W2_ANXIOUS*W3_PTSD 
W2_ANXIOUS*W3_LIED 
W2_ANXIOUS*W3_ATTENTIO 
W2_ANXIOUS*W3_LISTENIN 
W2_ANXIOUS*W3_BULLY 
W2_ANXIOUS*W3_FIGHTS 
W2_ANXIOUS*W3_RESTLESS 
W2_ANXIOUS*W3_ANSWERED 
 
  
W2_PTSD*W3_ACUR_CIG  
W2_PTSD*W3_ACUR_ECI  
W2_PTSD*W3_ACUR_DUA 
W2_PTSD*W3_ACUR_ALC 
W2_PTSD*W3_ACUR_MAR  
W2_PTSD*W3_ACUR_PAI 
W2_PTSD*W3_DEPRESS 
W2_PTSD*W3_SLEEPING  
W2_PTSD*W3_ANXIOUS  
W2_PTSD*W3_PTSD  
W2_PTSD*W3_LIED  
W2_PTSD*W3_ATTENTIO  
W2_PTSD*W3_LISTENIN  
W2_PTSD*W3_BULLY  
W2_PTSD*W3_FIGHTS  
W2_PTSD*W3_RESTLESS  
W2_PTSD*W3_ANSWERED   
 
  
W2_LIED*W3_ACUR_CIG           
W2_LIED*W3_ACUR_ECI 
W2_LIED*W3_ACUR_DUA 
W2_LIED*W3_ACUR_ALC 
W2_LIED*W3_ACUR_MAR 
W2_LIED*W3_ACUR_PAI  
W2_LIED*W3_DEPRESS 
W2_LIED*W3_SLEEPING 
W2_LIED*W3_ANXIOUS 
W2_LIED*W3_PTSD 
W2_LIED*W3_LIED 
W2_LIED*W3_ATTENTIO 
W2_LIED*W3_LISTENIN 
W2_LIED*W3_BULLY 
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W2_LIED*W3_FIGHTS 
W2_LIED*W3_RESTLESS 
W2_LIED*W3_ANSWERED  
 
 
W2_ATTENTIO*W3_ACUR_CIG  
W2_ATTENTIO*W3_ACUR_ECI  
W2_ATTENTIO*W3_ACUR_DUA  
W2_ATTENTIO*W3_ACUR_ALC 
W2_ATTENTIO*W3_ACUR_MAR 
W2_ATTENTIO*W3_ACUR_PAI 
W2_ATTENTIO*W3_DEPRESS 
W2_ATTENTIO*W3_SLEEPING  
W2_ATTENTIO*W3_ANXIOUS 
W2_ATTENTIO*W3_PTSD 
W2_ATTENTIO*W3_LIED 
W2_ATTENTIO*W3_ATTENTIO 
W2_ATTENTIO*W3_LISTENIN 
W2_ATTENTIO*W3_BULLY 
W2_ATTENTIO*W3_FIGHTS 
W2_ATTENTIO*W3_RESTLESS 
W2_ATTENTIO*W3_ANSWERED 
 
  
W2_LISTENIN*W3_ACUR_CIG 
W2_LISTENIN*W3_ACUR_ECI 
W2_LISTENIN*W3_ACUR_DUA  
W2_LISTENIN*W3_ACUR_ALC 
W2_LISTENIN*W3_ACUR_MAR 
W2_LISTENIN*W3_ACUR_PAI 
W2_LISTENIN*W3_DEPRESS 
W2_LISTENIN*W3_SLEEPING   
W2_LISTENIN*W3_ANXIOUS 
W2_LISTENIN*W3_PTSD  
W2_LISTENIN*W3_LIED 
W2_LISTENIN*W3_ATTENTIO  
W2_LISTENIN*W3_LISTENIN 
W2_LISTENIN*W3_BULLY 
W2_LISTENIN*W3_FIGHTS 
W2_LISTENIN*W3_RESTLESS 
W2_LISTENIN*W3_ANSWERED 
 
  
W2_BULLY*W3_ACUR_CIG 
W2_BULLY*W3_ACUR_ECI 
W2_BULLY*W3_ACUR_DUA 
W2_BULLY*W3_ACUR_ALC 
W2_BULLY*W3_ACUR_MAR 
W2_BULLY*W3_ACUR_PAI 
W2_BULLY*W3_DEPRESS 
W2_BULLY*W3_SLEEPING 
W2_BULLY*W3_ANXIOUS  
W2_BULLY*W3_PTSD  
W2_BULLY*W3_LIED  
W2_BULLY*W3_ATTENTIO 
W2_BULLY*W3_LISTENIN 
W2_BULLY*W3_BULLY 
W2_BULLY*W3_FIGHTS 
W2_BULLY*W3_RESTLESS 
W2_BULLY*W3_ANSWERED 
 
  
W2_FIGHTS*W3_ACUR_CIG  
W2_FIGHTS*W3_ACUR_ECI 
W2_FIGHTS*W3_ACUR_DUA  
W2_FIGHTS*W3_ACUR_ALC 
W2_FIGHTS*W3_ACUR_MAR  
W2_FIGHTS*W3_ACUR_PAI 
W2_FIGHTS*W3_DEPRESS 
W2_FIGHTS*W3_SLEEPING 
W2_FIGHTS*W3_ANXIOUS  
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W2_FIGHTS*W3_PTSD  
W2_FIGHTS*W3_LIED 
W2_FIGHTS*W3_ATTENTIO 
W2_FIGHTS*W3_LISTENIN 
W2_FIGHTS*W3_BULLY 
W2_FIGHTS*W3_FIGHTS 
W2_FIGHTS*W3_RESTLESS 
W2_FIGHTS*W3_ANSWERED  
 
  
W2_RESTLESS*W3_ACUR_CIG 
W2_RESTLESS*W3_ACUR_ECI 
W2_RESTLESS*W3_ACUR_DUA 
W2_RESTLESS*W3_ACUR_ALC 
W2_RESTLESS*W3_ACUR_MAR 
W2_RESTLESS*W3_ACUR_PAI 
W2_RESTLESS*W3_DEPRESS 
W2_RESTLESS*W3_SLEEPING 
W2_RESTLESS*W3_ANXIOUS 
W2_RESTLESS*W3_PTSD 
W2_RESTLESS*W3_LIED  
W2_RESTLESS*W3_ATTENTIO 
W2_RESTLESS*W3_LISTENIN 
W2_RESTLESS*W3_BULLY  
W2_RESTLESS*W3_FIGHTS 
W2_RESTLESS*W3_RESTLESS 
W2_RESTLESS*W3_ANSWERED   
 
  
W2_ANSWERED*W3_ACUR_CIG 
W2_ANSWERED*W3_ACUR_ECI 
W2_ANSWERED*W3_ACUR_DUA 
W2_ANSWERED*W3_ACUR_ALC 
W2_ANSWERED*W3_ACUR_MAR 
W2_ANSWERED*W3_ACUR_PAI 
W2_ANSWERED*W3_DEPRESS 
W2_ANSWERED*W3_SLEEPING 
W2_ANSWERED*W3_ANXIOUS 
W2_ANSWERED*W3_PTSD 
W2_ANSWERED*W3_LIED 
W2_ANSWERED*W3_ATTENTIO 
W2_ANSWERED*W3_LISTENIN 
W2_ANSWERED*W3_BULLY 
W2_ANSWERED*W3_FIGHTS 
W2_ANSWERED*W3_RESTLESS  
W2_ANSWERED*W3_ANSWERED  
 
/plcorr chisq; 
run; 
ods pdf close; 
 
 
 

SAS File name: Making W2 and W3 for Network Comparisons 
 
****SA 3 - Network Comparisons for W1 vs W2 vs W3 
****W1 already generated for SA2 (can be found in PNASS\\Data Management\\CSVs to use in 
R\\overallwave1.csv) 
****Making datasets for SA3 including overall W2 and W3 
    Need to make dual CC + EC variables for W2 and W3 
    Keep only adults who have continued from W1 (contadult datasets) 
    Change . to -99999 
    Export as CSV to R 
    ONLY KEEPING 17 NODES FOR NETWORK COMPARISON SECTION OF SA 3 
****February 1, 2021; 
 
 
********************* 
*Starting with Wave 2 
********************* 
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 Pull most recent version of W2 data created in LCA W2 SAS Program (lca.w2contadult) 
 Need to download formats for W2; 
libname LCA "C:\Users\blondinoct\Documents\LCA\Wave 2\Data Management"; 
 
proc contents data=lca.w2contadult; 
run; 
 
*Making new tobacco vars; 
data lca.w2contadultb; 
set lca.w2contadult; 
 
*first do multinomial - 4 levels; 
if acur_cig=0 and acur_ecig=0 then acur_dual=0; 
else if acur_cig=1 and acur_ecig=0 then acur_dual=1; 
else if acur_cig=0 and acur_ecig=1 then acur_dual=2; 
else if acur_cig=1 and acur_ecig=1 then acur_dual=3; 
else acur_dual=.; 
run; 
 
*check; 
proc freq data=lca.w2contadultb; 
table acur_cig*acur_dual; 
table acur_ecig*acur_dual; 
run; 
 
*then do the dummies; 
data lca.w2contadultc; 
set lca.w2contadultb; 
if acur_dual = 1 then acur_cignew=1; 
else acur_cignew=0; 
if acur_dual = 2 then acur_ecignew=1; 
else acur_ecignew=0; 
if acur_dual = 3 then acur_dualnew=1; 
else acur_dualnew=0; 
run; 
 
*check; 
proc freq data=lca.w2contadultc; 
table acur_cignew*acur_dual; 
table acur_ecignew*acur_dual; 
table acur_dualnew*acur_dual; 
run; 
 
*confirm marijuana is good; 
proc freq data=lca.w2contadultc; 
table acur_marijuana; 
run; 
 
*************************** 
**SUMMARY STATS FOR WAVE 2; 
proc surveyfreq data= LCA.w2contadultc varmethod=BRR (fay=0.3); 
table acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
 R02R_A_SEX age R02R_A_ETHRACECAT7 education R02R_A_AM0030 R02_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
/row chisq(secondorder); 
weight R02_A_PWGT; 
 repweights R02_A_PWGT1 - R02_A_PWGT100; 
 run; 
 quit; 
run; 
 
****************************************** 
**data kept to run LCA again then compare; 
data LCA.w2contadultd; 
set LCA.w2contadultc (keep = caseid personid R02_A_PWGT 
     acur_cignew acur_ecignew acur_dualnew 
                 acur_alc acur_marijuana acur_painkiller  
     R02R_A_SEX age R02R_A_ETHRACECAT7 education R02R_A_AM0030 
R02_AX0092 
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     SEXMALE_1 SEXFEMALE_2  
     AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
*Check frequencies; 
proc contents data=LCA.w2contadultd; 
run; 
proc freq data=LCA.w2contadultd; 
table 
acur_cignew acur_ecignew acur_dualnew 
acur_alc acur_marijuana acur_painkiller 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w2dataformplus232021; 
 
 
**data kept for network comparisons; 
data LCA.w2contadulte; 
set LCA.w2contadultc (keep =  
     acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
proc contents data=LCA.w2contadulte; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w2datafornetcomp232021; 
 
 
 
 
 
*************** 
*Now to Wave 3 
*************** 
 Pull most recent version of W3 data created in LCA W3 SAS Program (lca.w3contadult) 
 Need to download formats for W3; 
libname LCA "U:\CourtneyBlondino\PhD Epidemiology\LCA\Wave 3\Data Management"; 
 
*single w3 weights; 
proc contents data=work.Da36498p3102; 
*table R03_A_SWGT; 
run; 
 
*all waves weights; 
proc contents data=work.Da36498p3101; 
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*table R03_A_AWGT; 
run; 
 
 
proc contents data=lca.w3; 
run; 
*proc sort data=lca.w3; 
*by personid; 
*run; 
 
************************************************************************************* 
NEED TO MERGE THIS DATASET WITH WEIGHTS DATASET DS3101 (all) and DS3102 BY PERSONID * 
************************************************************************************; 
 
*all weights; 
data lca.w3allweights; 
set WORK.DA36498P3101; 
run; 
proc sort data=lca.w3allweights; 
by personid; 
run; 
 
*w3 single weights; 
data lca.w3singleweights; 
set WORK.DA36498P3102; 
run; 
proc sort data=lca.w3singleweights; 
by personid; 
run; 
 
*merge weights; 
*data lca.w3newweights; 
*merge lca.w3allweights lca.w3singleweights; 
*by personid; 
*run; 
*proc contents data = lca.w3newweights 
run; 
 
 
data lca.w3contadultweights; 
merge lca.w3contalladultweights lca.w3singleweights lca.w3allweights; 
by personid; 
run; 
proc contents data = lca.w3contadultweights; 
run; 
 
*Then limit the sample to only people from Wave 1; 
proc freq data=lca.w3contadultweights; 
table R03_ADULTTYPE; 
run; 
 
data lca.w3contadult; 
set lca.w3contadultweights; 
if R03_ADULTTYPE=1; 
run; 
 
proc contents data=lca.w3contadult; 
run; 
 
proc freq data=lca.w3contadult; 
table R03_ADULTTYPE; 
run; 
 
*Making new tobacco vars; 
data lca.w3contadultb; 
set lca.w3contadult; 
 
*first do multinomial - 4 levels; 
if acur_cig=0 and acur_ecig=0 then acur_dual=0; 
else if acur_cig=1 and acur_ecig=0 then acur_dual=1; 
else if acur_cig=0 and acur_ecig=1 then acur_dual=2; 
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else if acur_cig=1 and acur_ecig=1 then acur_dual=3; 
else acur_dual=.; 
run; 
 
*check; 
proc freq data=lca.w3contadultb; 
table acur_cig*acur_dual; 
table acur_ecig*acur_dual; 
run; 
 
*then do the dummies; 
data lca.w3contadultc; 
set lca.w3contadultb; 
if acur_dual = 1 then acur_cignew=1; 
else acur_cignew=0; 
if acur_dual = 2 then acur_ecignew=1; 
else acur_ecignew=0; 
if acur_dual = 3 then acur_dualnew=1; 
else acur_dualnew=0; 
run; 
 
*check; 
proc freq data=lca.w3contadultc; 
table acur_cignew*acur_dual; 
table acur_ecignew*acur_dual; 
table acur_dualnew*acur_dual; 
run; 
 
*confirm marijuana is good; 
proc freq data=lca.w3contadultc; 
table acur_marijuana; 
run; 
 
proc contents data=lca.w3contadultc; 
run; 
 
*proc print data=lca.w3contadultc; 
*var R03_A_SWGT R03_ADULTTYPE; 
*run; 
 
*proc freq data=lca.w3contadultc; 
*table R03_A_SWGT; 
*run; 
 
*************************** 
**SUMMARY STATS FOR WAVE 3; 
ods pdf; 
proc surveyfreq data= LCA.w3contadultc varmethod=BRR (fay=0.3); 
table acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 R03_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
/row chisq(secondorder); 
weight R03_A_SWGT; 
 repweights R03_A_SWGT1 - R03_A_SWGT100; 
 run; 
 quit; 
run; 
ods pdf close; 
 
****************************************** 
**data kept to run LCA again then compare; 
data LCA.w3contadultd; 
set LCA.w3contadultc (keep = caseid personid R03_A_SWGT 
     acur_cignew acur_ecignew acur_dualnew 
                 acur_alc acur_marijuana acur_painkiller  
     R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 
R03_AX0092 
     SEXMALE_1 SEXFEMALE_2  
     AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
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     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
*Check frequencies; 
proc contents data=LCA.w3contadultd; 
run; 
proc freq data=LCA.w3contadultd; 
table 
acur_cignew acur_ecignew acur_dualnew 
acur_alc acur_marijuana acur_painkiller 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w3dataformplus332021; 
 
 
**data kept for network comparisons; 
data LCA.w3contadulte; 
set LCA.w3contadultc (keep =  
     acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
proc contents data=LCA.w3contadulte; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w3datafornetcomp332021; 
 
 
 
 
 
*THIS IS THE WRONG ONE; 
*LOOK AT LCA W1 4132021; 
*************************** 
**SUMMARY STATS FOR WAVE 1; 
*Overall W1 with new exclusive CC and EC, and dual variables for Table 1 Network Paper; 
 
libname LCA "C:\Users\blondinoct\Documents\LCA\Wave 1\Data Management"; 
 
proc surveyfreq data= LCA.W1mplusJuly2020weights varmethod=BRR (fay=0.3); 
table  
R01R_A_SEX age R01R_A_ETHRACECAT7 education R01R_A_AM0030 
R01_AX0092 
acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
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/row chisq(secondorder); 
weight R01_A_PWGT; 
 repweights R01_A_PWGT1 - R01_A_PWGT100; 
 run; 
 quit; 
run; 
 
 
 
 
************************************************************************************** 
*Wave 3 - merging weights with diff dataset to try to figure out missing on R03_A_AWGT 
************************************************************************************** 
 Pull most recent version of W3 data created in LCA W3 SAS Program (lca.w3contadult) 
 Need to download formats for W3; 
libname LCA "C:\Users\blondinoct\Documents\LCA\Wave 3\Data Management"; 
 
proc freq data=work.Da36498p3101; 
table R03_A_AWGT; 
run; 
 
 
proc contents data=lca.w3contadult; 
run; 
*N = 26239; 
proc sort data=lca.w3contadult; 
by personid; 
run; 
 
******************************************************************** 
NEED TO MERGE THIS DATASET WITH WEIGHTS DATASET DS3101 BY PERSONID * 
********************************************************************; 
 
data lca.w3weights; 
set WORK.DA36498P3101; 
run; 
proc sort data=lca.w3weights; 
by personid; 
run; 
 
 
data lca.w3contadultweights; 
merge lca.w3contadult lca.w3weights; 
by personid; 
run; 
proc contents data = lca.w3contadultweights; 
run; 
 
proc print data = lca.w3contadultweights (obs=20); 
var R03_A_AWGT R03_ADULTTYPE; 
run; 
 
 
*Then limit the sample to only people from Wave 1 that have weight info; 
proc freq data=lca.w3contadultweights; 
table R03_ADULTTYPE; 
run; 
 
proc freq data=lca.w3contadultweights; 
table R03_A_AWGT; 
run; 
 
data lca.w3contadult217; 
set lca.w3contadultweights; 
if R03_ADULTTYPE=1 and R03_A_AWGT^=.; 
run; 
 
proc freq data=lca.w3contadult217; 
table R03_ADULTTYPE; 
run; 
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proc freq data=lca.w3contadult217; 
table R03_A_AWGT; 
run; 
 
*Making new tobacco vars; 
data lca.w3contadultb; 
set lca.w3contadult217; 
 
*first do multinomial - 4 levels; 
if acur_cig=0 and acur_ecig=0 then acur_dual=0; 
else if acur_cig=1 and acur_ecig=0 then acur_dual=1; 
else if acur_cig=0 and acur_ecig=1 then acur_dual=2; 
else if acur_cig=1 and acur_ecig=1 then acur_dual=3; 
else acur_dual=.; 
run; 
 
*check; 
proc freq data=lca.w3contadultb; 
table acur_cig*acur_dual; 
table acur_ecig*acur_dual; 
run; 
 
*then do the dummies; 
data lca.w3contadultc; 
set lca.w3contadultb; 
if acur_dual = 1 then acur_cignew=1; 
else acur_cignew=0; 
if acur_dual = 2 then acur_ecignew=1; 
else acur_ecignew=0; 
if acur_dual = 3 then acur_dualnew=1; 
else acur_dualnew=0; 
run; 
 
*check; 
proc freq data=lca.w3contadultc; 
table acur_cignew*acur_dual; 
table acur_ecignew*acur_dual; 
table acur_dualnew*acur_dual; 
run; 
 
*confirm marijuana is good; 
proc freq data=lca.w3contadultc; 
table acur_marijuana; 
run; 
 
proc print data=lca.w3contadultc; 
var R03_A_AWGT R03_ADULTTYPE; 
run; 
 
proc freq data=lca.w3contadultc; 
table R03_A_AWGT; 
run; 
 
*************************** 
**SUMMARY STATS FOR WAVE 3; 
proc surveyfreq data= LCA.w3contadultc varmethod=BRR (fay=0.3); 
table acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana acur_painkiller  
R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 R03_AX0092 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered 
sud  
/row chisq(secondorder); 
weight R03_A_AWGT; 
 repweights R03_A_AWGT1 - R03_A_AWGT100; 
 run; 
 quit; 
run; 
 
****************************************** 
**data kept to run LCA again then compare; 
data LCA.w3contadultd; 
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set LCA.w3contadultc (keep = caseid personid R03_A_AWGT 
     acur_cignew acur_ecignew acur_dualnew 
                 acur_alc acur_marijuana acur_painkiller  
     R03R_A_SEX age R03R_A_ETHRACECAT7 education R03R_A_AM0030 
R03_AX0092 
     SEXMALE_1 SEXFEMALE_2  
     AGE1824_1 AGE2534_2 AGE3544_3 AGE4554_4 AGE5564_5 AGE65_6 
     RACEWH_1 RACEBL_2 RACEOT_3 RACEHI_6 
     EDU_1 EDU_2 EDU_3 EDU_4 EDU_5 
     INC_1 INC_2 INC_3 INC_4 INC_5 
     SOC_1 SOC_2 SOC_3 SOC_4 SOC_5 
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered 
     weeklyuse timegetting timeusing socialprob reducedact withdraw 
usetoavoid 
     sud); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
*Check frequencies; 
proc contents data=LCA.w3contadultd; 
run; 
proc freq data=LCA.w3contadultd; 
table 
acur_cignew acur_ecignew acur_dualnew 
acur_alc acur_marijuana acur_painkiller 
depressed sleeping anxious ptsd 
lied attention listening bully fights restless answered; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w3dataformplus2172021; 
 
 
**data kept for network comparisons; 
data LCA.w3contadulte; 
set LCA.w3contadultc (keep =  
     acur_cignew acur_ecignew acur_dualnew acur_alc acur_marijuana 
acur_painkiller  
     depressed sleeping anxious ptsd 
     lied attention listening bully fights restless answered); 
*rename missings; 
array change _numeric_; 
do over change; 
if change =. then change = -99999; 
end; 
run; 
 
proc contents data=LCA.w3contadulte; 
run; 
 
*These look good: 
*Exported to Aim 3 - Comparisons -> Data Sets as w3datafornetcomp2172021; 

 
 
R File name: Aim 3 – Network Comparisons Waves 1, 2, 3 – 4152021 
 
#PATH Waves 1, 2, 3 - Network Comparisons (Specific Aim 3) 
 
 
######################################## 
#    READ IN WAVE 1 DATA               # 
######################################## 
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setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
overall<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/OverallWave1-4142021.csv", 
header=T, sep=',') 
names(overall) 
dim(overall) 
 
#rename variables so they look nice on the network 
names(overall)[names(overall) == "acur_cignew"] <- "CIG" 
names(overall)[names(overall) == "acur_ecignew"] <- "ECIG" 
names(overall)[names(overall) == "acur_dualnew"] <- "Dual CIG + ECIG" 
names(overall)[names(overall) == "acur_alc"] <- "Alcohol" 
names(overall)[names(overall) == "acur_marijuana"] <- "Marijuana" 
names(overall)[names(overall) == "acur_painkiller"] <- "PDNP" 
names(overall)[names(overall) == "depressed"] <- "Depressed" 
names(overall)[names(overall) == "sleeping"] <- "Sleeping" 
names(overall)[names(overall) == "anxious"] <- "Anxious" 
names(overall)[names(overall) == "PTSD"] <- "Distressed/Past" 
names(overall)[names(overall) == "lied"] <- "Lied" 
names(overall)[names(overall) == "attention"] <- "Attention" 
names(overall)[names(overall) == "listening"] <- "Listening" 
names(overall)[names(overall) == "bully"] <- "Bully" 
names(overall)[names(overall) == "fights"] <- "Fights" 
names(overall)[names(overall) == "restless"] <- "Restless" 
names(overall)[names(overall) == "answered"] <- "Answered" 
names(overall) 
 
require(ggplot2) 
require(bootnet) 
require(IsingFit) 
require(IsingSampler) 
require(qgraph) 
 
 
######################################## 
# Estimate the Network Model  - W1     # 
######################################## 
 
######### 
#IsingFit 
Wave1NetworkIF <-estimateNetwork(overall, default="IsingFit", missing="listwise") 
 
 
Wave1NetworkIF$labels 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
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), times=c(6,4,7)) 
 
layout(t(1)) 
plot(Wave1NetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     minimum=0, 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     title= "Wave 1") 
 
#Results 
Wave1NetworkIF$results 
 
#Edges 
Edges <- Wave1NetworkIF$graph 
print(Edges) 
write(Edges, file="OverallEdges.csv", sep=" ") 
 
 
#Centrality (need to run bootstrap to do accuracy/stability) 
centralityTable(Wave1NetworkIF) 
 
 
 
######################################## 
#    READ IN WAVE 2 DATA               # 
######################################## 
 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Wave Comparison Chapter") 
getwd() 
Wave2<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Wave Comparison 
Chapter/w2datafornetcomp232021.csv", header=T, sep=',') 
dim(Wave2) 
names(Wave2) 
 
#Have to tell R what missing means 
Wave2$acur_cignew[Wave2$acur_cignew==-99999] <- NA 
Wave2$acur_ecignew[Wave2$acur_ecignew==-99999] <- NA 
Wave2$acur_dualnew[Wave2$acur_dualnew==-99999] <- NA 
Wave2$acur_alc[Wave2$acur_alc==-99999] <- NA 
Wave2$acur_marijuana[Wave2$acur_marijuana==-99999] <- NA 
Wave2$acur_painkiller[Wave2$acur_painkiller==-99999] <- NA 
Wave2$depressed[Wave2$depressed==-99999] <- NA 
Wave2$sleeping[Wave2$sleeping==-99999] <- NA 
Wave2$anxious[Wave2$anxious==-99999] <- NA 
Wave2$ptsd[Wave2$ptsd==-99999] <- NA 
Wave2$lied[Wave2$lied==-99999] <- NA 
Wave2$attention[Wave2$attention==-99999] <- NA 
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Wave2$listening[Wave2$listening==-99999] <- NA 
Wave2$bully[Wave2$bully==-99999] <- NA 
Wave2$fights[Wave2$fights==-99999] <- NA 
Wave2$restless[Wave2$restless==-99999] <- NA 
Wave2$answered[Wave2$answered==-99999] <- NA 
 
#rename variables so they look nice on the network 
names(Wave2)[names(Wave2) == "acur_cignew"] <- "CIG" 
names(Wave2)[names(Wave2) == "acur_ecignew"] <- "ECIG" 
names(Wave2)[names(Wave2) == "acur_dualnew"] <- "Dual CIG + ECIG" 
names(Wave2)[names(Wave2) == "acur_alc"] <- "Alcohol" 
names(Wave2)[names(Wave2) == "acur_marijuana"] <- "Marijuana" 
names(Wave2)[names(Wave2) == "acur_painkiller"] <- "PDNP" 
names(Wave2)[names(Wave2) == "depressed"] <- "Depressed" 
names(Wave2)[names(Wave2) == "sleeping"] <- "Sleeping" 
names(Wave2)[names(Wave2) == "anxious"] <- "Anxious" 
names(Wave2)[names(Wave2) == "ptsd"] <- "Distressed/Past" 
names(Wave2)[names(Wave2) == "lied"] <- "Lied" 
names(Wave2)[names(Wave2) == "attention"] <- "Attention" 
names(Wave2)[names(Wave2) == "listening"] <- "Listening" 
names(Wave2)[names(Wave2) == "bully"] <- "Bully" 
names(Wave2)[names(Wave2) == "fights"] <- "Fights" 
names(Wave2)[names(Wave2) == "restless"] <- "Restless" 
names(Wave2)[names(Wave2) == "answered"] <- "Answered" 
 
######################################## 
# Estimate the Network Model  - W2     # 
######################################## 
 
######### 
#IsingFit 
Wave2NetworkIF <-estimateNetwork(Wave2, default="IsingFit", missing="listwise") 
 
Wave2NetworkIF 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
), times=c(6,4,7)) 
 
plot(Wave2NetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     minimum=0, 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
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     legend.cex = 0.4) 
 
#Results 
W2Results <- Wave2NetworkIF$results 
#write.csv(W2Results, file="W2Results.csv", sep=" ") 
#write(Edges, file="OverallEdges.csv", sep=" ") 
 
 
#Edges 
Edges <- Wave2NetworkIF$graph 
print(Edges) 
 
#Centrality (need to run bootstrap to do accuracy/stability) 
centralityTable(Wave2NetworkIF) 
 
 
######################################## 
#    READ IN WAVE 3 DATA               # 
######################################## 
 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Wave Comparison Chapter") 
getwd() 
#Wave3<-read.csv("C:\\Users\\blondinoct\\Documents\\Aim 3 - Comparisons\\Data 
Sets\\w3datafornetcomp232021.csv", header=T, sep=',') 
#dim(Wave3) 
#names(Wave3) 
############NEW WAVE 3 , N = 25382 ################ 
#Wave3<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Wave Comparison 
Chapter/w3datafornetcomp2172021.csv", header=T, sep=',') 
#dim(Wave3) 
#names(Wave3) 
 
Wave3<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Wave Comparison 
Chapter/w3datafornetcomp332021.csv", header=T, sep=',') 
dim(Wave3) 
names(Wave3) 
 
#Have to tell R what missing means 
Wave3$acur_cignew[Wave3$acur_cignew==-99999] <- NA 
Wave3$acur_ecignew[Wave3$acur_ecignew==-99999] <- NA 
Wave3$acur_dualnew[Wave3$acur_dualnew==-99999] <- NA 
Wave3$acur_alc[Wave3$acur_alc==-99999] <- NA 
Wave3$acur_marijuana[Wave3$acur_marijuana==-99999] <- NA 
Wave3$acur_painkiller[Wave3$acur_painkiller==-99999] <- NA 
Wave3$depressed[Wave3$depressed==-99999] <- NA 
Wave3$sleeping[Wave3$sleeping==-99999] <- NA 
Wave3$anxious[Wave3$anxious==-99999] <- NA 
Wave3$ptsd[Wave3$ptsd==-99999] <- NA 
Wave3$lied[Wave3$lied==-99999] <- NA 
Wave3$attention[Wave3$attention==-99999] <- NA 
Wave3$listening[Wave3$listening==-99999] <- NA 
Wave3$bully[Wave3$bully==-99999] <- NA 
Wave3$fights[Wave3$fights==-99999] <- NA 
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Wave3$restless[Wave3$restless==-99999] <- NA 
Wave3$answered[Wave3$answered==-99999] <- NA 
 
#rename variables so they look nice on the network 
names(Wave3)[names(Wave3) == "acur_cignew"] <- "CIG" 
names(Wave3)[names(Wave3) == "acur_ecignew"] <- "ECIG" 
names(Wave3)[names(Wave3) == "acur_dualnew"] <- "Dual CIG + ECIG" 
names(Wave3)[names(Wave3) == "acur_alc"] <- "Alcohol" 
names(Wave3)[names(Wave3) == "acur_marijuana"] <- "Marijuana" 
names(Wave3)[names(Wave3) == "acur_painkiller"] <- "PDNP" 
names(Wave3)[names(Wave3) == "depressed"] <- "Depressed" 
names(Wave3)[names(Wave3) == "sleeping"] <- "Sleeping" 
names(Wave3)[names(Wave3) == "anxious"] <- "Anxious" 
names(Wave3)[names(Wave3) == "ptsd"] <- "Distressed/Past" 
names(Wave3)[names(Wave3) == "lied"] <- "Lied" 
names(Wave3)[names(Wave3) == "attention"] <- "Attention" 
names(Wave3)[names(Wave3) == "listening"] <- "Listening" 
names(Wave3)[names(Wave3) == "bully"] <- "Bully" 
names(Wave3)[names(Wave3) == "fights"] <- "Fights" 
names(Wave3)[names(Wave3) == "restless"] <- "Restless" 
names(Wave3)[names(Wave3) == "answered"] <- "Answered" 
 
######################################## 
# Estimate the Network Model  - W3     # 
######################################## 
 
######### 
#IsingFit 
Wave3NetworkIF <-estimateNetwork(Wave3, default="IsingFit", missing="listwise") 
 
Wave3NetworkIF 
 
Names<- c("CIG", "ECIG" , "Dual CIG + ECIG", "Alcohol", "Marijuana",  "PDNP",        
          "Depressed", "Sleeping" , "Anxious", "Distressed/Past" , "Lied",        
          "Attention" , "Listening" , "Bully" ,"Fights"  , "Restless",    
          "Answered") 
 
Traits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
), times=c(6,4,7)) 
 
plot(Wave3NetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     minimum=0, 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     title= "Wave 3") 
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#Results 
Wave3NetworkIF$results 
 
#Edges 
Wave3Edges <- Wave3NetworkIF$graph 
print(Wave3Edges) 
write(Wave3Edges, file="Wave3Edges.csv", sep=" ") 
 
#Centrality (need to run bootstrap to do accuracy/stability) 
centralityTable(Wave3NetworkIF) 
 
 
 
############################################ 
# Visually Compare using Average Layout    # 
############################################ 
 
L<-averageLayout(Wave1NetworkIF, Wave2NetworkIF, Wave3NetworkIF) 
Max<- max(abs(c(getWmat(Wave1NetworkIF),getWmat(Wave2NetworkIF), 
getWmat(Wave3NetworkIF)))) 
layout(t(1:3)) 
plot(Wave1NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     #label.scale.equal=TRUE, 
     legend=FALSE, 
     label.cex= 2.0, 
     legend.cex = 0.4, 
     title= "Wave 1", 
     maximum=Max) 
plot(Wave2NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     #label.scale.equal=TRUE, 
     label.cex= 2.0, 
     legend.cex = 0.4, 
     legend=FALSE, 
     title= "Wave 2", 
     maximum=Max) 
plot(Wave3NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     #label.scale.equal=TRUE, 
     label.cex= 2.0, 
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     legend.cex = 0.4, 
     title= "Wave 3", 
     maximum=Max) 
 
 
############################################ 
#      Compare W1 AND W2                   # 
############################################ 
 
L<-averageLayout(Wave1NetworkIF, Wave2NetworkIF) 
Max<- max(abs(c(getWmat(Wave1NetworkIF),getWmat(Wave2NetworkIF)))) 
layout(t(1:2)) 
plot(Wave1NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     labels=Names, 
     legend=FALSE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     title= "Wave 1", 
     maximum=Max) 
plot(Wave2NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     legend=FALSE, 
     title= "Wave 2", 
     maximum=Max) 
 
library("devtools") 
install_github("cvborkulo/NetworkComparisonTest") 
library("NetworkComparisonTest") 
#perform NCT and interpret results 
 
NCTW1vsW2<- NCT(Wave1NetworkIF, Wave2NetworkIF, test.edges=TRUE, 
                it=100) 
 
 
#difference in global strength between the networks of the observed data sets 
NCTW1vsW2$glstrinv.real  
#3.307481 
 
#global strength values of individual networks 
NCTW1vsW2$glstrinv.sep 
#55.99086 VS 59.29835 
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NCTW1vsW2$glstrinv.perm  
#there's 100 since we did 100 permutations 
 
#Difference in global strength p-value 
NCTW1vsW2$glstrinv.pval 
#0.2673267- so not significantly different from one another in regard to global strength 
 
#Value of the max difference in edge weights of observed networks 
NCTW1vsW2$nwinv.real 
#1.563746 
 
NCTW1vsW2$nwinv.perm 
#there's 100 since we did 100 permutations 
 
#Maximum difference in edge weights 
NCTW1vsW2$nwinv.pval 
#0.2277228 - so not significantly different from one another in regard to number of edge weights 
 
#Which edges significantly differ? 
NCTW1vsW2$einv.pvals[which(NCTW1vsW2$einv.pvals[,3]<0.05),] 
#         Var1      Var2 p-value 
#69        CIG Marijuana 0.00990099 
#90  Marijuana      PDNP 0.00990099 
#120       CIG  Sleeping 0.03960396 
#155      ECIG      PTSD 0.02970297 
#179   Anxious      Lied 0.02970297 
#214      PTSD Listening 0.00990099 
#216 Attention Listening 0.01980198 
#252     Bully    Fights 0.03960396 
#263  Sleeping  Restless 0.00990099 
 
 
############################################ 
#      Compare W1 AND W3                   # 
############################################ 
L<-averageLayout(Wave1NetworkIF, Wave3NetworkIF) 
Max<- max(abs(c(getWmat(Wave1NetworkIF),getWmat(Wave3NetworkIF)))) 
layout(t(1:2)) 
plot(Wave1NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     labels=Names, 
     legend=FALSE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     title= "Wave 1", 
     maximum=Max) 
plot(Wave3NetworkIF, 
     layout=L, 
     cut=0, 
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     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     legend=FALSE, 
     title= "Wave 3", 
     maximum=Max) 
 
 
NCTW1vsW3<- NCT(Wave1NetworkIF, Wave3NetworkIF, test.edges=TRUE, 
                it=100) 
 
 
#difference in global strength between the networks of the observed data sets 
NCTW1vsW3$glstrinv.real  
#4.009107 
 
#global strength values of individual networks 
NCTW1vsW3$glstrinv.sep 
#55.99086 vs 59.99997 
 
NCTW1vsW3$glstrinv.perm  
#there's 100 since we did 100 permutations 
 
#Difference in global strength p-value 
NCTW1vsW3$glstrinv.pval 
#0.2376238 - so not significantly different from one another in regard to global strength 
 
#Value of the max difference in edge weights of observed networks 
NCTW1vsW3$nwinv.real 
#0.8183753 
 
NCTW1vsW3$nwinv.perm 
#there's 100 since we did 100 permutations 
 
#Maximum difference in edge weights 
NCTW1vsW3$nwinv.pval 
#0.6039604 - so not significantly different from one another in regard to number of edge weights 
 
#Which edges significantly differ? 
NCTW1vsW3$einv.pvals[which(NCTW1vsW3$einv.pvals[,3]<0.05),] 
#                Var1      Var2 p-value 
#52              CIG   Alcohol 0.00990099 
#69              CIG Marijuana 0.00990099 
#90        Marijuana      PDNP 0.00990099 
#106         Alcohol Depressed 0.02970297 
#120             CIG  Sleeping 0.03960396 
#121            ECIG  Sleeping 0.03960396 
#159            PDNP      PTSD 0.03960396 
#162         Anxious      PTSD 0.04950495 
#174         Alcohol      Lied 0.00990099 
#175       Marijuana      Lied 0.01980198 
#178        Sleeping      Lied 0.02970297 
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#195        Sleeping Attention 0.03960396 
#207 Dual CIG + ECIG Listening 0.03960396 
#209       Marijuana Listening 0.01980198 
#214            PTSD Listening 0.04950495 
#216       Attention Listening 0.02970297 
#251       Listening    Fights 0.02970297 
#252           Bully    Fights 0.02970297 
#256             CIG  Restless 0.03960396 
#262       Depressed  Restless 0.00990099 
#263        Sleeping  Restless 0.01980198 
#285       Listening  Answered 0.04950495 
 
 
 
 
 
 
############################################ 
#      Compare W2 AND W3                   # 
############################################ 
L<-averageLayout(Wave2NetworkIF, Wave3NetworkIF) 
Max<- max(abs(c(getWmat(Wave2NetworkIF),getWmat(Wave3NetworkIF)))) 
layout(t(1:2)) 
plot(Wave2NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     labels=Names, 
     legend=FALSE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     title= "Wave 2", 
     maximum=Max) 
plot(Wave3NetworkIF, 
     layout=L, 
     cut=0, 
     theme="colorblind", 
     groups=Traits, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 4.0, 
     legend.cex = 0.4, 
     legend=FALSE, 
     title= "Wave 3", 
     maximum=Max) 
 
NCTW2vsW3<- NCT(Wave2NetworkIF, Wave3NetworkIF, test.edges=TRUE,  
                it=100) 
 
 
#difference in global strength between the networks of the observed data sets 
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NCTW2vsW3$glstrinv.real  
#0.7016259 
 
#global strength values of individual networks 
NCTW2vsW3$glstrinv.sep 
#59.29835 vs 59.99997 
 
NCTW2vsW3$glstrinv.perm  
#there's 100 since we did 100 permutations 
 
#Difference in global strength p-value 
NCTW2vsW3$glstrinv.pval 
#0.7524752 - so not significantly different from one another in regard to global strength 
 
#Value of the max difference in edge weights of observed networks 
NCTW2vsW3$nwinv.real 
#1.322886 
 
NCTW2vsW3$nwinv.perm 
#there's 100 since we did 100 permutations 
 
#Maximum difference in edge weights 
NCTW2vsW3$nwinv.pval 
#0.2277228 - so not significantly different from one another in regard to number of edge weights 
 
#Which edges significantly differ? 
NCTW2vsW3$einv.pvals[which(NCTW2vsW3$einv.pvals[,3]<0.05),] 
#              Var1      Var2 p-value 
#155            ECIG      PTSD 0.02970297 
#207 Dual CIG + ECIG Listening 0.01980198 
#209       Marijuana Listening 0.01980198 
#251       Listening    Fights 0.01980198 
#256             CIG  Restless 0.01980198 
#262       Depressed  Restless 0.01980198 
#265            PTSD  Restless 0.03960396 
#276         Alcohol  Answered 0.02970297 
#286           Bully  Answered 0.04950495 
 
 
 
R File name: W1W2W3 Merged Network 
 
#PATH WAVE 1, WAVE 2, WAVE 3 - SA 3 
#Merge all data and develop network 
 
 
########################### 
# Read in merged dataset  # 
########################### 
 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
master<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/w1w2w3master.csv", header=T, sep=',') 
names(master) 
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#how many complete data 
master_complete_cases <- master[complete.cases(master),] 
## MASTER TOTAL          = 33106 
## MASTER COMPLETE CASES = 21353 
## MASTER MISSING        = 11753 
 
 
#select vars to keep for network modeling 
myvars <- c("W1_ACUR_CIG" , "W1_ACUR_ECI" , "W1_ACUR_DUA" , "W1_ACUR_ALC" , 
            "W1_ACUR_MAR" , "W1_ACUR_PAI" , 
            "W1_DEPRESS" ,  "W1_SLEEPING" , "W1_ANXIOUS"  , "W1_PTSD"  ,     
            "W1_LIED"   ,   "W1_ATTENTIO" , "W1_LISTENING" , "W1_BULLY" ,    
            "W1_FIGHTS"  ,  "W1_RESTLESS" , "W1_ANSWERED", 
             
            "W2_ACUR_CIG" , "W2_ACUR_ECI" , "W2_ACUR_DUA" , "W2_ACUR_ALC" , 
            "W2_ACUR_MAR" , "W2_ACUR_PAI" ,  
            "W2_DEPRESS" ,  "W2_SLEEPING" ,  "W2_ANXIOUS" , "W2_PTSD" , 
            "W2_LIED"    ,  "W2_ATTENTIO" , "W2_LISTENIN" , "W2_BULLY"   , 
            "W2_FIGHTS" ,   "W2_RESTLESS",  "W2_ANSWERED", 
             
            "W3_ACUR_CIG" , "W3_ACUR_ECI" , "W3_ACUR_DUA", "W3_ACUR_ALC" , 
            "W3_ACUR_MAR" , "W3_ACUR_PAI" , 
            "W3_DEPRESS",   "W3_SLEEPING" , "W3_ANXIOUS" ,  "W3_PTSD",  
            "W3_LIED" ,     "W3_ATTENTIO" , "W3_LISTENIN" , "W3_BULLY" , 
            "W3_FIGHTS"  ,  "W3_RESTLESS"  ,"W3_ANSWERED") 
new_master <- master[myvars] 
 
 
#check distributions 
table(new_master$W1_ACUR_PAI) 
 
#rename variables so they look nice on the network 
names(new_master)[names(new_master) == "W1_ACUR_CIG"] <- "W1 CIG" 
names(new_master)[names(new_master) == "W1_ACUR_ECI"] <- "W1 ECIG" 
names(new_master)[names(new_master) == "W1_ACUR_DUA"] <- "W1 Dual CIG + ECIG" 
names(new_master)[names(new_master) == "W1_ACUR_ALC"] <- "W1 Alcohol" 
names(new_master)[names(new_master) == "W1_ACUR_MAR"] <- "W1 Marijuana" 
names(new_master)[names(new_master) == "W1_ACUR_PAI"] <- "W1 PDNP" 
names(new_master)[names(new_master) == "W1_DEPRESS"] <- "W1 Depressed" 
names(new_master)[names(new_master) == "W1_SLEEPING"] <- "W1 Sleeping" 
names(new_master)[names(new_master) == "W1_ANXIOUS"] <- "W1 Anxious" 
names(new_master)[names(new_master) == "W1_PTSD"] <- "W1 Distressed/Past" 
names(new_master)[names(new_master) == "W1_LIED"] <- "W1 Lied" 
names(new_master)[names(new_master) == "W1_ATTENTIO"] <- "W1 Attention" 
names(new_master)[names(new_master) == "W1_LISTENING"] <- "W1 Listening" 
names(new_master)[names(new_master) == "W1_BULLY"] <- "W1 Bully" 
names(new_master)[names(new_master) == "W1_FIGHTS"] <- "W1 Fights" 
names(new_master)[names(new_master) == "W1_RESTLESS"] <- "W1 Restless" 
names(new_master)[names(new_master) == "W1_ANSWERED"] <- "W1 Answered" 
 
names(new_master)[names(new_master) == "W2_ACUR_CIG"] <- "W2 CIG" 
names(new_master)[names(new_master) == "W2_ACUR_ECI"] <- "W2 ECIG" 
names(new_master)[names(new_master) == "W2_ACUR_DUA"] <- "W2 Dual CIG + ECIG" 
names(new_master)[names(new_master) == "W2_ACUR_ALC"] <- "W2 Alcohol" 
names(new_master)[names(new_master) == "W2_ACUR_MAR"] <- "W2 Marijuana" 
names(new_master)[names(new_master) == "W2_ACUR_PAI"] <- "W2 PDNP" 
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names(new_master)[names(new_master) == "W2_DEPRESS"] <- "W2 Depressed" 
names(new_master)[names(new_master) == "W2_SLEEPING"] <- "W2 Sleeping" 
names(new_master)[names(new_master) == "W2_ANXIOUS"] <- "W2 Anxious" 
names(new_master)[names(new_master) == "W2_PTSD"] <- "W2 Distressed/Past" 
names(new_master)[names(new_master) == "W2_LIED"] <- "W2 Lied" 
names(new_master)[names(new_master) == "W2_ATTENTIO"] <- "W2 Attention" 
names(new_master)[names(new_master) == "W2_LISTENIN"] <- "W2 Listening" 
names(new_master)[names(new_master) == "W2_BULLY"] <- "W2 Bully" 
names(new_master)[names(new_master) == "W2_FIGHTS"] <- "W2 Fights" 
names(new_master)[names(new_master) == "W2_RESTLESS"] <- "W2 Restless" 
names(new_master)[names(new_master) == "W2_ANSWERED"] <- "W2 Answered" 
 
names(new_master)[names(new_master) == "W3_ACUR_CIG"] <- "W3 CIG" 
names(new_master)[names(new_master) == "W3_ACUR_ECI"] <- "W3 ECIG" 
names(new_master)[names(new_master) == "W3_ACUR_DUA"] <- "W3 Dual CIG + ECIG" 
names(new_master)[names(new_master) == "W3_ACUR_ALC"] <- "W3 Alcohol" 
names(new_master)[names(new_master) == "W3_ACUR_MAR"] <- "W3 Marijuana" 
names(new_master)[names(new_master) == "W3_ACUR_PAI"] <- "W3 PDNP" 
names(new_master)[names(new_master) == "W3_DEPRESS"] <- "W3 Depressed" 
names(new_master)[names(new_master) == "W3_SLEEPING"] <- "W3 Sleeping" 
names(new_master)[names(new_master) == "W3_ANXIOUS"] <- "W3 Anxious" 
names(new_master)[names(new_master) == "W3_PTSD"] <- "W3 Distressed/Past" 
names(new_master)[names(new_master) == "W3_LIED"] <- "W3 Lied" 
names(new_master)[names(new_master) == "W3_ATTENTIO"] <- "W3 Attention" 
names(new_master)[names(new_master) == "W3_LISTENIN"] <- "W3 Listening" 
names(new_master)[names(new_master) == "W3_BULLY"] <- "W3 Bully" 
names(new_master)[names(new_master) == "W3_FIGHTS"] <- "W3 Fights" 
names(new_master)[names(new_master) == "W3_RESTLESS"] <- "W3 Restless" 
names(new_master)[names(new_master) == "W3_ANSWERED"] <- "W3 Answered" 
 
 
names(new_master) 
 
 
require(ggplot2) 
require(bootnet) 
require(IsingFit) 
require(IsingSampler) 
require(qgraph) 
 
 
######### 
#IsingFit 
MasterNetworkIF <-estimateNetwork(new_master, default="IsingFit", missing="listwise") 
plot(MasterNetworkIF, layout = "spring", vsize = 10, cex=8) 
 
MasterTraits <- rep(c( 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing', 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing', 
  'Substance Use', 
  'Negative Affect', 
  'Externalizing' 
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), times=c(6,4,7,6,4,7,6,4,7)) 
 
#COLORED EDGES 
layout(t(1)) 
plot(MasterNetworkIF, 
     layout="spring", 
     cut=0, 
     theme="colorblind", 
     groups=MasterTraits, 
     #labels=Names, 
     #nodeNames=Names, 
     #edge.color="black", 
     label.scale.equal=TRUE, 
     label.cex= 3, 
     legend.cex = 0.4, 
     title= "Wave 1, Wave 2, and Wave 3") 
 
MasterNetworkIF 
 
#edges 
MasterEdges <- MasterNetworkIF$graph 
write.csv(MasterEdges, file="MasterEdges.csv") 
#this worked! 
#(do this for all other edge matrices) 
 
#Very little overlap across the waves, edges within the waves are weaker 
 
 
R File name: Checking for missing data from network 
 
## Checking for missing data from network analyses ## 
 
 
################ 
#OVERALL WAVE 1# 
#setwd("C:\Users\blondinoct\\Documents\\PNASS\\Data Management\\CSVs to use in R") 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
overall<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/overallwave1.csv", header=T, sep=',') 
 
 
#rename variables so they look nice on the network 
names(overall)[names(overall) == "ACUR_CIG"] <- "CC" 
names(overall)[names(overall) == "ACUR_ECI"] <- "EC" 
names(overall)[names(overall) == "ACUR_DUA"] <- "Dual CC + EC" 
names(overall)[names(overall) == "ACUR_ALC"] <- "Alcohol" 
names(overall)[names(overall) == "ACUR_MAR"] <- "Marijuana" 
names(overall)[names(overall) == "ACUR_PAI"] <- "PDNP" 
names(overall)[names(overall) == "DEPRESS"] <- "Depressed" 
names(overall)[names(overall) == "SLEEPING"] <- "Sleeping" 
names(overall)[names(overall) == "ANXIOUS"] <- "Anxious" 
names(overall)[names(overall) == "PTSD"] <- "PTSD" 
names(overall)[names(overall) == "LIED"] <- "Lied" 
names(overall)[names(overall) == "ATTENTIO"] <- "Attention" 
names(overall)[names(overall) == "LISTENING"] <- "Listening" 
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names(overall)[names(overall) == "BULLY"] <- "Bully" 
names(overall)[names(overall) == "FIGHTS"] <- "Fights" 
names(overall)[names(overall) == "RESTLESS"] <- "Restless" 
names(overall)[names(overall) == "ANSWERED"] <- "Answered" 
 
 
#delete obs with missing data 
overall_complete_cases <- overall[complete.cases(overall),] 
 
## W1 OVERALL TOTAL  = 32,320 
## W1 COMPLETE CASES = 15,299 
## W1 MISSING        = 17,021 
 
 
###################### 
##WAVE 1 - MALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
male<-read.csv("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/malewave1.csv", header=T, sep=',') 
dim(male) 
names(male) 
 
#rename variables so they look nice on the network 
names(male)[names(male) == "ACUR_CIG"] <- "CC" 
names(male)[names(male) == "ACUR_ECI"] <- "EC" 
names(male)[names(male) == "ACUR_DUA"] <- "Dual CC + EC" 
names(male)[names(male) == "ACUR_ALC"] <- "Alcohol" 
names(male)[names(male) == "ACUR_MAR"] <- "Marijuana" 
names(male)[names(male) == "ACUR_PAI"] <- "PDNP" 
names(male)[names(male) == "DEPRESS"] <- "Depressed" 
names(male)[names(male) == "SLEEPING"] <- "Sleeping" 
names(male)[names(male) == "ANXIOUS"] <- "Anxious" 
names(male)[names(male) == "PTSD"] <- "PTSD" 
names(male)[names(male) == "LIED"] <- "Lied" 
names(male)[names(male) == "ATTENTIO"] <- "Attention" 
names(male)[names(male) == "LISTENING"] <- "Listening" 
names(male)[names(male) == "BULLY"] <- "Bully" 
names(male)[names(male) == "FIGHTS"] <- "Fights" 
names(male)[names(male) == "RESTLESS"] <- "Restless" 
names(male)[names(male) == "ANSWERED"] <- "Answered" 
 
 
#delete obs with missing data 
malew1_complete_cases <- male[complete.cases(male),] 
 
## W1 MALE OVERALL TOTAL  = 16,306 
## W1 MALE COMPLETE CASES = 8,406 
## W1 MALE MISSING        = 7,900 
 
 
######################## 
##WAVE 1 - FEMALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
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female<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/femalewave1.csv", header=T, sep=',') 
dim(female) 
names(female) 
 
#rename variables so they look nice on the network 
names(female)[names(female) == "ACUR_CIG"] <- "CC" 
names(female)[names(female) == "ACUR_ECI"] <- "EC" 
names(female)[names(female) == "ACUR_DUA"] <- "Dual CC + EC" 
names(female)[names(female) == "ACUR_ALC"] <- "Alcohol" 
names(female)[names(female) == "ACUR_MAR"] <- "Marijuana" 
names(female)[names(female) == "ACUR_PAI"] <- "PDNP" 
names(female)[names(female) == "DEPRESS"] <- "Depressed" 
names(female)[names(female) == "SLEEPING"] <- "Sleeping" 
names(female)[names(female) == "ANXIOUS"] <- "Anxious" 
names(female)[names(female) == "PTSD"] <- "PTSD" 
names(female)[names(female) == "LIED"] <- "Lied" 
names(female)[names(female) == "ATTENTIO"] <- "Attention" 
names(female)[names(female) == "LISTENING"] <- "Listening" 
names(female)[names(female) == "BULLY"] <- "Bully" 
names(female)[names(female) == "FIGHTS"] <- "Fights" 
names(female)[names(female) == "RESTLESS"] <- "Restless" 
names(female)[names(female) == "ANSWERED"] <- "Answered" 
 
#delete obs with missing data 
femalew1_complete_cases <- female[complete.cases(female),] 
 
 
## W1 FEMALE OVERALL TOTAL  = 15,980 
## W1 FEMALE COMPLETE CASES = 6,888 
## W1 FEMALE MISSING        = 9,092 
 
 
######## 
## W2 ## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
Wave2<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/w2datafornetcomp232021.csv", header=T, sep=',') 
dim(Wave2) 
names(Wave2) 
 
#Have to tell R what missing means 
Wave2$acur_cignew[Wave2$acur_cignew==-99999] <- NA 
Wave2$acur_ecignew[Wave2$acur_ecignew==-99999] <- NA 
Wave2$acur_dualnew[Wave2$acur_dualnew==-99999] <- NA 
Wave2$acur_alc[Wave2$acur_alc==-99999] <- NA 
Wave2$acur_marijuana[Wave2$acur_marijuana==-99999] <- NA 
Wave2$acur_painkiller[Wave2$acur_painkiller==-99999] <- NA 
Wave2$depressed[Wave2$depressed==-99999] <- NA 
Wave2$sleeping[Wave2$sleeping==-99999] <- NA 
Wave2$anxious[Wave2$anxious==-99999] <- NA 
Wave2$ptsd[Wave2$ptsd==-99999] <- NA 
Wave2$lied[Wave2$lied==-99999] <- NA 
Wave2$attention[Wave2$attention==-99999] <- NA 
Wave2$listening[Wave2$listening==-99999] <- NA 
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Wave2$bully[Wave2$bully==-99999] <- NA 
Wave2$fights[Wave2$fights==-99999] <- NA 
Wave2$restless[Wave2$restless==-99999] <- NA 
Wave2$answered[Wave2$answered==-99999] <- NA 
 
#rename variables so they look nice on the network 
names(Wave2)[names(Wave2) == "acur_cignew"] <- "CC" 
names(Wave2)[names(Wave2) == "acur_ecignew"] <- "EC" 
names(Wave2)[names(Wave2) == "acur_dualnew"] <- "Dual CC + EC" 
names(Wave2)[names(Wave2) == "acur_alc"] <- "Alcohol" 
names(Wave2)[names(Wave2) == "acur_marijuana"] <- "Marijuana" 
names(Wave2)[names(Wave2) == "acur_painkiller"] <- "PDNP" 
names(Wave2)[names(Wave2) == "depressed"] <- "Depressed" 
names(Wave2)[names(Wave2) == "sleeping"] <- "Sleeping" 
names(Wave2)[names(Wave2) == "anxious"] <- "Anxious" 
names(Wave2)[names(Wave2) == "ptsd"] <- "PTSD" 
names(Wave2)[names(Wave2) == "lied"] <- "Lied" 
names(Wave2)[names(Wave2) == "attention"] <- "Attention" 
names(Wave2)[names(Wave2) == "listening"] <- "Listening" 
names(Wave2)[names(Wave2) == "bully"] <- "Bully" 
names(Wave2)[names(Wave2) == "fights"] <- "Fights" 
names(Wave2)[names(Wave2) == "restless"] <- "Restless" 
names(Wave2)[names(Wave2) == "answered"] <- "Answered" 
 
#delete obs with missing data 
w2_complete_cases <- Wave2[complete.cases(Wave2),] 
 
 
## W2 TOTAL          = 26,444 
## W2 COMPLETE CASES = 25,592 
## W2 MISSING        = 852 
 
 
######## 
## W3 ## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation Files") 
getwd() 
Wave3<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/w3datafornetcomp332021.csv", header=T, sep=',') 
dim(Wave3) 
names(Wave3) 
 
#Have to tell R what missing means 
Wave3$acur_cignew[Wave3$acur_cignew==-99999] <- NA 
Wave3$acur_ecignew[Wave3$acur_ecignew==-99999] <- NA 
Wave3$acur_dualnew[Wave3$acur_dualnew==-99999] <- NA 
Wave3$acur_alc[Wave3$acur_alc==-99999] <- NA 
Wave3$acur_marijuana[Wave3$acur_marijuana==-99999] <- NA 
Wave3$acur_painkiller[Wave3$acur_painkiller==-99999] <- NA 
Wave3$depressed[Wave3$depressed==-99999] <- NA 
Wave3$sleeping[Wave3$sleeping==-99999] <- NA 
Wave3$anxious[Wave3$anxious==-99999] <- NA 
Wave3$ptsd[Wave3$ptsd==-99999] <- NA 
Wave3$lied[Wave3$lied==-99999] <- NA 
Wave3$attention[Wave3$attention==-99999] <- NA 
Wave3$listening[Wave3$listening==-99999] <- NA 
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Wave3$bully[Wave3$bully==-99999] <- NA 
Wave3$fights[Wave3$fights==-99999] <- NA 
Wave3$restless[Wave3$restless==-99999] <- NA 
Wave3$answered[Wave3$answered==-99999] <- NA 
 
#rename variables so they look nice on the network 
names(Wave3)[names(Wave3) == "acur_cignew"] <- "CC" 
names(Wave3)[names(Wave3) == "acur_ecignew"] <- "EC" 
names(Wave3)[names(Wave3) == "acur_dualnew"] <- "Dual CC + EC" 
names(Wave3)[names(Wave3) == "acur_alc"] <- "Alcohol" 
names(Wave3)[names(Wave3) == "acur_marijuana"] <- "Marijuana" 
names(Wave3)[names(Wave3) == "acur_painkiller"] <- "PDNP" 
names(Wave3)[names(Wave3) == "depressed"] <- "Depressed" 
names(Wave3)[names(Wave3) == "sleeping"] <- "Sleeping" 
names(Wave3)[names(Wave3) == "anxious"] <- "Anxious" 
names(Wave3)[names(Wave3) == "ptsd"] <- "PTSD" 
names(Wave3)[names(Wave3) == "lied"] <- "Lied" 
names(Wave3)[names(Wave3) == "attention"] <- "Attention" 
names(Wave3)[names(Wave3) == "listening"] <- "Listening" 
names(Wave3)[names(Wave3) == "bully"] <- "Bully" 
names(Wave3)[names(Wave3) == "fights"] <- "Fights" 
names(Wave3)[names(Wave3) == "restless"] <- "Restless" 
names(Wave3)[names(Wave3) == "answered"] <- "Answered" 
 
 
#delete obs with missing data 
w3_complete_cases <- Wave3[complete.cases(Wave3),] 
 
 
## W3 TOTAL          = 26,239 
## W3 COMPLETE CASES = 25,359 
## W3 MISSING        = 880 
 
 
 
 
###NEW DATA 
###APRIL 14 
################ 
#OVERALL WAVE 1# 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
overall<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/OverallWave1-4142021.csv", 
header=T, sep=',') 
 
 
#rename variables so they look nice on the network 
names(overall)[names(overall) == "ACUR_CIG"] <- "CIG" 
names(overall)[names(overall) == "ACUR_ECI"] <- "ECIG" 
names(overall)[names(overall) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(overall)[names(overall) == "ACUR_ALC"] <- "Alcohol" 
names(overall)[names(overall) == "ACUR_MAR"] <- "Marijuana" 
names(overall)[names(overall) == "ACUR_PAI"] <- "PDNP" 
names(overall)[names(overall) == "DEPRESS"] <- "Depressed" 
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names(overall)[names(overall) == "SLEEPING"] <- "Sleeping" 
names(overall)[names(overall) == "ANXIOUS"] <- "Anxious" 
names(overall)[names(overall) == "PTSD"] <- "PTSD" 
names(overall)[names(overall) == "LIED"] <- "Lied" 
names(overall)[names(overall) == "ATTENTIO"] <- "Attention" 
names(overall)[names(overall) == "LISTENING"] <- "Listening" 
names(overall)[names(overall) == "BULLY"] <- "Bully" 
names(overall)[names(overall) == "FIGHTS"] <- "Fights" 
names(overall)[names(overall) == "RESTLESS"] <- "Restless" 
names(overall)[names(overall) == "ANSWERED"] <- "Answered" 
 
 
#delete obs with missing data 
overall_complete_cases <- overall[complete.cases(overall),] 
 
## W1 OVERALL TOTAL  = 32,320 
## W1 COMPLETE CASES = 30,211 
## W1 MISSING        = 2,109 
 
 
###################### 
##WAVE 1 - MALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
male<-read.csv("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter/MaleWave1-4142021.csv", header=T, sep=',') 
dim(male) 
names(male) 
 
#rename variables so they look nice on the network 
names(male)[names(male) == "ACUR_CIG"] <- "CIG" 
names(male)[names(male) == "ACUR_ECI"] <- "ECIG" 
names(male)[names(male) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(male)[names(male) == "ACUR_ALC"] <- "Alcohol" 
names(male)[names(male) == "ACUR_MAR"] <- "Marijuana" 
names(male)[names(male) == "ACUR_PAI"] <- "PDNP" 
names(male)[names(male) == "DEPRESS"] <- "Depressed" 
names(male)[names(male) == "SLEEPING"] <- "Sleeping" 
names(male)[names(male) == "ANXIOUS"] <- "Anxious" 
names(male)[names(male) == "PTSD"] <- "PTSD" 
names(male)[names(male) == "LIED"] <- "Lied" 
names(male)[names(male) == "ATTENTIO"] <- "Attention" 
names(male)[names(male) == "LISTENING"] <- "Listening" 
names(male)[names(male) == "BULLY"] <- "Bully" 
names(male)[names(male) == "FIGHTS"] <- "Fights" 
names(male)[names(male) == "RESTLESS"] <- "Restless" 
names(male)[names(male) == "ANSWERED"] <- "Answered" 
 
 
#delete obs with missing data 
malew1_complete_cases <- male[complete.cases(male),] 
 
## W1 MALE OVERALL TOTAL  = 16,306 
## W1 MALE COMPLETE CASES = 15,268 
## W1 MALE MISSING        = 1,038 
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######################## 
##WAVE 1 - FEMALE ONLY## 
setwd("/Users/courtneyblondino/Library/Mobile Documents/com~apple~CloudDocs/Dissertation 
Files/Network Chapter") 
getwd() 
female<-read.csv("/Users/courtneyblondino/Library/Mobile 
Documents/com~apple~CloudDocs/Dissertation Files/Network Chapter/FemaleWave1-4142021.csv", 
header=T, sep=',') 
dim(female) 
names(female) 
 
#rename variables so they look nice on the network 
names(female)[names(female) == "ACUR_CIG"] <- "CIG" 
names(female)[names(female) == "ACUR_ECI"] <- "ECIG" 
names(female)[names(female) == "ACUR_DUA"] <- "Dual CIG + ECIG" 
names(female)[names(female) == "ACUR_ALC"] <- "Alcohol" 
names(female)[names(female) == "ACUR_MAR"] <- "Marijuana" 
names(female)[names(female) == "ACUR_PAI"] <- "PDNP" 
names(female)[names(female) == "DEPRESS"] <- "Depressed" 
names(female)[names(female) == "SLEEPING"] <- "Sleeping" 
names(female)[names(female) == "ANXIOUS"] <- "Anxious" 
names(female)[names(female) == "PTSD"] <- "PTSD" 
names(female)[names(female) == "LIED"] <- "Lied" 
names(female)[names(female) == "ATTENTIO"] <- "Attention" 
names(female)[names(female) == "LISTENING"] <- "Listening" 
names(female)[names(female) == "BULLY"] <- "Bully" 
names(female)[names(female) == "FIGHTS"] <- "Fights" 
names(female)[names(female) == "RESTLESS"] <- "Restless" 
names(female)[names(female) == "ANSWERED"] <- "Answered" 
 
#delete obs with missing data 
femalew1_complete_cases <- female[complete.cases(female),] 
 
 
## W1 FEMALE OVERALL TOTAL  = 15,980 
## W1 FEMALE COMPLETE CASES = 14,925 
## W1 FEMALE MISSING        = 1,055 
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