
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2021 

Information Architecture for a Chemical Modeling Knowledge Information Architecture for a Chemical Modeling Knowledge 

Graph Graph 

Adam R. Luxon 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Databases and Information Systems Commons, Data Science Commons, Other Chemical 

Engineering Commons, and the Other Chemistry Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/6585 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/250?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/250?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/141?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/6585?utm_source=scholarscompass.vcu.edu%2Fetd%2F6585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


INFORMATION ARCHITECTURE FOR A CHEMICAL MODELING

KNOWLEDGE GRAPH

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Engineering at Virginia Commonwealth University.

by

ADAM RILEY LUXON

Bachelors of Science, University of Richmond, 2017

Advisor: Dr. James K. Ferri, PhD,

Professor, Department of Chemical and Life Science Engineering

Virginia Commonwealth University

Richmond, Virginia

May, 2021



TABLE OF CONTENTS

Chapter Page

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Design-Build-Test Cycle . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Machine Learning in Molecular Disciplines . . . . . . . . . . . . . . 7

1.2.1 Machine Learning Predictions of Chemical Properties . . . . 7
1.2.2 Strengths and Limitations . . . . . . . . . . . . . . . . . . . 8
1.2.3 Machine Learning Workflow . . . . . . . . . . . . . . . . . . 9
1.2.4 Molecular Representations and Featurization . . . . . . . . . 13

1.3 Navigating Design Space (Motivation) . . . . . . . . . . . . . . . . 17
1.4 Graph Databases for Chemistry . . . . . . . . . . . . . . . . . . . 19

1.4.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Chemical Networks . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Statement of Work . . . . . . . . . . . . . . . . . . . . . . . 21

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Machine Learning Pipeline . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Model Generation . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Storage & Export . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Graph Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Python Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



3.2 Graph Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Model Evaluation and Comparison . . . . . . . . . . . . . . . 31
3.2.2 Graph Queries for Molecular Error Analysis . . . . . . . . . . 36

3.3 Lipophilicity Case Study . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Query Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Query Follow-up . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Case Study Conclusion . . . . . . . . . . . . . . . . . . . . . 52

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Appendix B Cypher Graph Queries . . . . . . . . . . . . . . . . . . . . . . 55

B.1 General Graph Queries . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2 Queries for Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.3 Queries For Fragment Error Analysis . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ii



LIST OF TABLES

Table Page

1 Major free energy contributions considered in thermodynamic models
of surfactants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Datasets used to train models. Size is number of unique molecular
observations after processing. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Node labels. For each node label, the count of such nodes and the
number of properties stored on the node are included. . . . . . . . . . . . 32

4 Relationship types. For each relationship type, the count of such re-
lationships and the number of properties stored on that type of rela-
tionship are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Fragment error analysis results for the lipophilicity dataset. Fragments
are sorted by average error of parent molecules. Query parameters:
cutoff=0.9; easy limit=0.003; hard limit=0.03. . . . . . . . . . . . . . . . 41

6 Case study fragment analysis results sorted by number of fragment
parent molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Case study fragment analysis results sorted by average difficulty. . . . . 46

8 Case study results for high error molecules sorted by difficulty. . . . . . . 47

iii



LIST OF FIGURES

Figure Page

1 General relationship between prediction cost and accuracy for chemical
modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General machine learning process flow. . . . . . . . . . . . . . . . . . . . 10

3 Depiction of 3-fold cross validation of model tuning. The training
data set is broken up multiple times and used to train and validate the
model. The model performance is based on the composite of the cross
validation iterations. Figure adapted from [39]. . . . . . . . . . . . . . . 13

4 Images from Picasso’s The Bull shows how an animal can be drawn
with various levels of detail and complexity. Running parallel is the
analogous progression of molecular representations. Each step along
the progression adds more detail, allowing for a more complete and
unique representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 A: Current practice of model evaluation considers models in isolation
and limits model comparison to aggregated performance metrics. B:
The proposed approach connects model inputs and outputs as a de-
scriptive graph. Database queries access the full model information
and context for richer model analyses. . . . . . . . . . . . . . . . . . . . 19

6 Data process flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 The database schema. The ML Model node is the backbone of the
presented information architecture. Nodes represent entities in a ma-
chine learning workflow and relationships describe how those entities
interact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Example path relating a model node (A) to its test set (B) and the
test set to a predicted molecule (C) via their respective prediction
relationships. In the property graph model, properties can be stored
on graph nodes and relationships to further describe and quantify the
structures. Properties can be used for formatting the color and size of
nodes and relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



9 Snapshot of the graph database containing approximately 11,000 nodes
and 20,000 relationships. All node labels and relationship types included. 32

10 Graph structures which enable inter- (A) and intra-model prediction
evaluations (B). The architecture of the graph is such that shifting from
inter-model comparisons to intra-model analysis is just one additional
edge traversal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11 Direct comparisons of two models’ parameters and performance. (A)
Two models share a dataset (light blue node) and molecule featur-
ization (yellow node). (B & C) The models use different learning
algorithms. (E & F) The models’ prediction performances (colored
arrows). (F) Common test set molecules. . . . . . . . . . . . . . . . . . . 35

12 Molecule overlap between ten models’ test sets and the individual
molecular predictions. The graph connects models to their predicted
molecules via test sets, enabling analysis of molecular property predic-
tion difficulty. Prediction relationships are formatted using prediction
error (color) and uncertainty (thickness). . . . . . . . . . . . . . . . . . . 36

13 Fragment error analysis sub-graph and high error sulfonamides. (A,
C, & D) clusters of molecules connected to a set of common fragments,
indicating the fragments are the error origin. (B) Terminal fragments
connected only to a single molecule, suggesting that those fragments
are not the error origin. Molecule nodes are sized based upon their
average prediction error – larger molecules have higher error. . . . . . . . 38

14 Parameter response surface for the fragment error analysis. The frag-
ment error analysis parameters can be adjusted to locate regions con-
taining fragments of interest. Star denotes region examined in previous
figure and table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

15 High error molecule from Lipophilicity fragment analysis. . . . . . . . . . 48

16 Bloom query panel. Custom query for searching nodes by SMILES
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

17 Expansion of macrocycle molecule node and the ML models that use
neural networks to predict it’s lipophilicity. . . . . . . . . . . . . . . . . . 50

v



18 Full expansion of ML models predicting the macrocycle molecule. . . . . . 51

vi



LIST OF SOURCE CODES

1 Code used to run a ML model in the pipeline. . . . . . . . . . . . . . 31

2 Cypher commands to prepare the graph for the fragment analysis. . . 43

3 Cypher commands to run the fragment analysis. . . . . . . . . . . . . 45

4 Cypher commands to delete analysis weights to return graph to

default state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Cypher commands to return high difficulty molecules. . . . . . . . . . 48

vii



Abstract

INFORMATION ARCHITECTURE FOR A CHEMICAL MODELING

KNOWLEDGE GRAPH

By Adam Riley Luxon

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Engineering at Virginia Commonwealth University.

Virginia Commonwealth University, 2021.

Advisor: Dr. James K. Ferri, PhD,

Professor, Department of Chemical and Life Science Engineering

Machine learning models for chemical property predictions are high dimension

design challenges spanning multiple disciplines. Free and open-source software li-

braries have streamlined the model implementation process, but the design complex-

ity remains. In order better navigate and understand the machine learning design

space, model information needs to be organized and contextualized. In this work,

instances of chemical property models and their associated parameters were stored

in a Neo4j property graph database. Machine learning model instances were created

with permutations of dataset, learning algorithm, molecular featurization, data scal-

ing, data splitting, hyperparameters, and hyperparameter optimization techniques.

The resulting graph contains over 83,000 nodes and 4 million edges and can be ex-

plored with interactive visualization software. The structure of the property graph

is centered around models and molecules which enables efficient and intuitive inter-

and intra-model evaluation. We use a curated lipophilicity dataset to demonstrate

viii



graph use cases. Difficult to predict molecules were identified across multiple models

simultaneously. Powerful and expressive graph queries were implemented to identify

molecular fragments that were both prevalent and associated with high lipophilicity

prediction error.

ix



CHAPTER 1

INTRODUCTION

1.1 Design-Build-Test Cycle

In chemical and material engineering, the objective is to create a molecular sys-

tem to meet the needs of an application. In some cases, such as petroleum refinement,

the system is designed around the physical chemistry of the molecules. In other ap-

plications, the molecule or material is designed to fulfill a specific role, such as a drug

or light absorber. Regardless of the specifics or scale of the to-be-engineered system,

the Design-Test-Build paradigm is an iterative means to a solution. This work is

concerned with the rational design of molecules.

Prior to the design cycle, system requirements and criteria must be established

to define the desired performance of the system and provide a target for the optimiza-

tion process. During the design phase, engineers use the information and knowledge

at their disposal to construct an initial molecular system and predict how it will

perform. The system is then built to the design specifications, or in the case of

molecules, synthesized. The performance of the molecule is evaluated against the

system requirements. Performance information is used to inform the next iteration

of design, sometimes referred to as a fourth learning step in the cycle. The design-

test-build sequence is iterated upon until the system performance requirements are

satisfied. Unfortunately, the chemical design space is very large, diverse, and costly

to explore. The rest of this section will use interfacial surfactant systems to illustrate

the challenges associated with the rational design of molecules and techniques used

to improve the efficiency of the prediction process.

1



1.1. DESIGN-BUILD-TEST CYCLE

Given the wealth of chemical knowledge accrued, it is should be possible to pre-

dict new chemical phenomena a priori. There are two major approaches to chemical

predictions. One approach to chemical predictions is the use of quantum mechanics

(QM). Quantum mechanics is a collection of theories and postulates that allows for

the prediction of chemical properties based on first principles. The fundamental pos-

tulate of quantum mechanics is that microscopic systems can be completely described

by a wave function, often given the symbol Ψ [1]. To get a physical observable, such

as energy, one applies a mathematical operator to the wave function.

ĤΨ = EΨ (1.1)

The operator that returns the energy of a system is called the Hamiltonian operator.

Similar operators exist for observables such as kinetic energy, momentum, angular

momentum, spin, and dipole. Theoretically, quantum mechanics is extremely gen-

eral, in that it will accurately describe systems ranging from a single atom to a single

cell. However, the mathematical and physical complexity associated with QM makes

it intractable for all but the smallest systems. Through the use of reducing assump-

tions and approximations, QM can be applied to systems ranging from a half dozen

to several hundred heavy atoms. In order to get experimentally accurate results from

a quantum mechanics calculation, rigorous and computationally intensive algorithms,

such as coupled cluster methods, must be implemented [1]. Since systems of chemical

interest often have multiple molecules with dozens of heavy atoms in the condensed

phase, the most rigorous computational methods are prohibitively expensive. Less

computationally intensive methods, such as density functional theory (DFT), de-

scribe the quantum mechanics well but often lack experimental accuracy [2]. DFT is

frequently employed to make qualitative prediction for systems of interest.

The second prediction approach considers prior experience and data to identify

2



1.1. DESIGN-BUILD-TEST CYCLE

patterns. If the patterns are expressed using mathematical equations, the predictor

is an empirical regression. If the patterns are not framed in mathematics, they are

referred to as heuristics or rules, e.g the Baldwin rules of ring closure or hydrophilic

lipophilic balance (HLB).[3, 4, 5]

Surfactant design exemplifies the challenges of predicting complex chemical phe-

nomena. Formulation chemists desire a way to predict emulsion stability and experi-

mental observables. Predicting emulsion stability is a difficult task due the complex

physics and multiple mechanisms in which emulsions can destabilize. Predictive mod-

els for surfactants often focus on simpler observables than emulsion stability such as

critical micelle concentration (CMC), interfacial tension (IFT) and partition coeffi-

cients (LogP). These simpler surfactant characteristics are not predictive of emulsion

stability. HLB is used industrially as a heuristic tool to predict how surfactants will

behave in complex systems like emulsions. It is especially useful for systems contain-

ing multiple surfactant molecules.

HLB was first introduced by Griffin and Atlas Powder Company. [4, 5]. HLB

is a numerical value assigned to a molecule in order to quantify the balance between

hyrophilic (water-loving) and lipophilic (oil-loving) groups within the same non-ionic

surfactant. This is generally done on a weight basis, i.e HLB = f(Wh,Wl) where Wh

is the total weight of hydrophilic groups and and Wl is the total weight of lipophilic

groups.

For non-ionic surfactants where ethylene oxide units are the hydrophilic groups,

the HLB value is defined by Griffin[5] to be:

HLB =
E

5
(1.2)

where E is the weight percentage (non-decimal) of oxyethylene groups. For polyhydric

3

https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6251279.htm
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6251279.htm


1.1. DESIGN-BUILD-TEST CYCLE

alcohol fatty acid esters, the HLB value is defined as:

HLB = 20 (1 − S

A
) (1.3)

where S is the saponification value of the ester and A is the acid value of the acid

group. For surfactants that contain both polyoxyethylene chains and polyhydric

alcohols, Griffin used the following equation:

HLB =
E + P

5
(1.4)

where P is the weight percent of the polyhydric alcohol. These equations place

limitations of the value of HLB, that is 0 ≤ HLB ≤ 20. HLB is not rigorously

defined and not based on empirical measurements. Instead, HLB, as defined by

Griffin, is a relative scale used as a heuristic to estimate how a non-ionic surfactant

or mixtures of non-ionic surfactants will behave as an emulsifying agent. All of the

above definitions are not explicitly rooted in physics associated with hyrdophilicity

or lipophilicity. Even without a firm foundation in physics, HLB has proven useful

as a predictive system which suggests that HLB is correlated with some molecular

physics that determine a surfactants behavior in multi-phase systems.

Several studies have developed a rigorous thermodynamic approach to include

more physics in the prediction of surfactant behavior.[6, 7, 8, 9, 10, 11, 12, 13,

14, 15] These studies provide a mathematical regression framework based on Gibbs

free energy contributions for the prediction of bulk, interfacial and disperse phase

properties (Table 1). Many of these studies focus on micelles and use either the mass-

action or phase separation approach to the thermodynamic modelling of micelles. The

mass-action approach treats micelles of different sizes as independent chemical species

which are all in equilibrium with each other and the free monomers in solution. Most

of the research cited above fall under this category. The phase separation approach

4

https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6251279.htm
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB6251279.htm


1.1. DESIGN-BUILD-TEST CYCLE

treats the micelles as separate phases from the bulk solution. Using this approach,

if one assumes homogenous distribution of surfactant molecules in the micelle phase,

the CMC can be predicted using statistical associating fluid theory (SAFT), which

is based on first order perturbation theory. [16, 17] These frameworks are based in

physics, but like all models, make assumptions and concessions to model cost.

Table 1: Major free energy contributions considered in thermodynamic models of

surfactants.

Energy Contribution Description Theory

Transfer Energy associated with transferring
head and tail from bulk phase to dis-
persed phase.

Empirical regression

Deformation Energy associated with loss of de-
grees of freedom in dispersed phase.

Flory lattice approach

Sterics Steric interactions of head groups at
interface.

van der Waals

Interface Creation of high energy interfacial
area.

Bulk phase surface ten-
sion

Dipole Repulsive energy of aligned dipoles
in close proximity. Applies mostly to
Zwitterions.

Capacitor model

Ionic Interactions Interaction energy of charged groups
in close proximity. Applies only to
ionic surfactants.

Corrected Debye-Huckle

Both regression and heuristics, which are not necessarily based on underlying

physical chemistry, are useful within the range of systems from which they were de-

veloped. However, there are frequently exceptions to the “rules” and extrapolation to

new systems is often inaccurate. The prediction techniques discussed so far, heuris-

tics, thermodynamics, density functionals, and quantum mechanical wave functions,

follow a trend of increasing accuracy with an increase in cost (Figure 1). Machine

learning has showed potential to deviate from this trend by producing accurate pre-

dictions with low computational cost [18, 19, 20]. Machine learning for chemical

5



1.1. DESIGN-BUILD-TEST CYCLE

Figure 1: General relationship between prediction cost and accuracy for chemical

modelling.

property prediction is a regression approach. Machine learning models correlate large

sets of observation data and descriptions of each observed system. The process is

“data driven”, in the sense that all information is contained either in the observations

or the descriptors – there are no mathematical frameworks predefined by the modeler.

Another defining feature of machine learning is that the model is only evaluated on

the predictions it makes, not the underlying framework. In other words, as long as

the predictions are correct, the how is unimportant.

Surfactant properties, such as CMC, IFT and HLB, have been the target of

machine learning studies [21, 22, 23, 24, 25]. Surfactant machine learning models

frequently suffer from small data sets and a limited number of descriptors. For ex-

ample, Wang et al. used four descriptors which were selected heuristically, to train

a neural network model to predict the HLB values of 73 anionic surfactants. Due

to these limitations, the majority of quantitative structure property relationships for

6



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

surfactants have not employed machine learning algorithms, but instead have used

simple regression models.[21] While machine learning has yet to revolutionize surfac-

tant design, the technique has demonstrated great potential for aiding in the design

of molecular systems for which more information is available.

1.2 Machine Learning in Molecular Disciplines

1.2.1 Machine Learning Predictions of Chemical Properties

Computational resources and statistical learning algorithms are advanced enough

that computer models can effectively identify patterns given a set of observations.

Machine learning is the use of statistical models to better understand complex data.

There are generally two major classifications of machine learning techniques: unsu-

pervised and supervised. Unsupervised machine learning aims to identify structure

and relationships within a set of inputs but is not guided by a desired output. In

supervised learning, the statistical models are used to predict an output given a set

of inputs. When the target output of supervised learning is a discrete variable it is

referred to as classification; when the output variable is continuous it is known as

regression. Regardless of the type of machine learning, the success and accuracy of

the resulting model depends on the quality of the inputs and known outputs.

For molecular and material engineering applications, the input is frequently a

molecular representation and the output is a property of interest, such as solubility,

reaction yield, or absorbance. The predictive power of machine learned models has

the potential to transform molecular design and engineering by allowing engineers to

efficiently design molecules of value. In the fields of chemistry and materials engi-

neering, machine learning algorithms have successfully been implemented to predict

a variety of properties of interest.[26] Machine learning has been utilized to discover

new materials with desired properties. [27, 28, 29, 30]

7



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

Chemical reactivity is a popular topic of machine learning studies, two of such

studies will be described here. [31, 32, 33, 34, 35, 36] Ahneman et al. used high

throughput experimentation and DFT calculations to predict the yield of Buchwald-

Hartwig cross-coupling reactions.[32] They performed gas phase B3LYP/6-31G* op-

timizations and frequency calculations on all reagents, additives, bases, and catalyst

ligands. They extracted descriptors from their DFT calculations and used them as

input for supervised machine learning where the target output was reaction yield.

Coley et al. represented molecules as graphs and used machine learning to predict

which bonds were most likely to break or be formed.[33] Complex atom and bond

level descriptors, such as partial charges and surface area, were excluded from their

molecular description. They used a neural network algorithm to create their model for

chemical reactivity and benchmarked it against expert chemists. The models devel-

oped by Ahneman et al. and Coley et al. were both successful in predicting chemical

reactivity. However, the manner in which they built their model, specifically how they

chose to represent molecules are quite different. Ahneman et al. chose to use fine de-

tails extracted from electronic structure calculations while Coley et al. used a coarser

graph representation that excluded fine details. Neither molecular representation is

a complete description of the systems being studied. For example, neither included

solvent or temperature in their model – two parameters that all chemists would con-

sider important. This leads to the challenging question: What is the optimal level of

molecular detail to include in a model to answer a specific question?

1.2.2 Strengths and Limitations

One of the most compelling strengths of machine learning is the large amount of

complexity (variables) that can be analyzed. Since machine learning uses statistical

modeling rather than rigorous first principle systems of equations, the complexity

8



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

of a system is not limited to mathematical tractability. This allows for a modeler

to make fewer assumptions about the relationship between inputs and outputs. In

contrast to the thermodynamic frameworks previously described, machine learning

modeling is a top-down approach. A highly complex set of inputs is used to uncover

the relationship between the input variables and the output behavior of the system.

Such an approach should not only capture the leading term, but also the next several

significant terms in a governing relationship.

Of course, the machine learning approach has draw backs as well. Probably

the largest one is the reliance on a large and high quality data set. The second is

interpretability of the model, which depends on the machine learning algorithms used.

For instance, a linear model is much more interpretable than a neural network model,

but also less predictive. It will be more difficult to gain mechanistic insights from a

machine learning model than from a ground-up thermodynamic framework. In other

words, machine learning models can suffer from the proverbial “black box” issue.

1.2.3 Machine Learning Workflow

A machine learning workflow begins after the identification of the challenge. For

this example, consider a researcher interested in creating a supervised machine learn-

ing model capable of predicting lipophilicity as a proxy for drug candidate bioavail-

ablity [37, 38]. The first step in a machine learning workflow is gathering labelled data

relevant to the prediction target, small molecule lipophilicity (Figure 2). Gathering

data is the most important, difficult, and expensive step in machine learning. Data

can be gathered from published sources, simulation, or directly from experimental

observation. Currently, quality chemical datasets are rare because of the high cost of

collecting trustworthy chemical observations on a large number of molecules.

Once collected, the data must be processed to ensure its quality. Duplicate

9



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

Figure 2: General machine learning process flow.

entries and incorrect chemical structure must be removed and target property units

must be reconciled. It is also useful to explore and visualize the data before creating

a model. The model will be limited to information and patterns contained in the

dataset, so it is important to understand the contents and boundaries of the dataset.

To continue the drug design example, if the application requires a molecule with

a negative lipophilicity, then the dataset should contain a significant population of

molecules with negative lipophilicity.

Once the observations are curated, the feature vectors are constructed. Feature

engineering is the process of designing the way in which the molecules are presented

to the machine learning algorithm. This can involve enhancing, transforming, or

removing information. The process can be thought of as deciding what columns

to include from your data table. The objective is to populate the feature vector

with chemical information that is relevant to the target property. It is important

to note that relevant in this context just means that the feature can be positively

or negatively correlated with the target property – it does not have to be related

through causality. For example, the number of rings in a molecule can be correlated

10



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

with water solubility, but the number of rings is not physicochemically causing water

solubility. Domain experts would recognize that the number of rings is likely a proxy

for the amount of non-polar surface area. However, the number of rings is much

easier to calculate than the polar surface area, so the feature engineer is faced with

the cost-accuracy trade off presented in Figure 1. There is also a cost of including too

many features or features with low relevance. Too many features causes the model

to be hyper-flexible and respond too much to noise in the dataset. This is known

as overfitting. Overfitting can be identified during model training when the training

set error continues to decrease but the validation set error increases. For molecular

systems, there are many vetted and standardized ways to represent a molecule which

helps alleviate the feature design complexity. Molecular representations are further

discussed in section 1.2.4.

After featurization, the data is ready to be split into training, test, and validation

data sets. These sets are used during various stages of model development and it is

crucial that no observations are duplicated across sets – a data point should only

be in either the training, test, or validation set. The training set is typically the

largest portion of data and is provided to the statistical learning algorithm for pattern

identification. Training data is what the model “learns” from. Validation data is

typically a small portion of the overall data and is used during training to measure

training progress. The validation data is not explicitly learned from, but instead is

used to make predictions during training or tuning to measure model performance

for a given set of algorithm parameters.

The training data and validation data are passed to the statistical learning al-

gorithm for model training. Generally, the algorithm is approximating the function

11



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

which can predict the target properties given the feature vectors as input.

y = f(X) (1.5)

Here, y is the vector of target properties and X is a matrix of the feature vec-

tors. The target vector y consists of property observations, where yi represents the

measurement for the ith observation. Correspondingly, X is composed of feature

vectors for each observation, xi. The feature vector xi has p components, where p

is the number of features selected. The objective of training is to approximate f to

minimize a prediction error metric such as mean squared error (MSE):

MSE =
1

n

n∑
i=1

(yi − f(xi))
2 (1.6)

During training the algorithm adjusts learnable model weights until a completion

criteria, which varies by algorithm, has been met.

There are also non-learnable algorithm parameters that can be adjusted by the

modeler to increase model performance. These non-learnable parameters are called

hyperparameters and the optimization of them is important to maximizing perfor-

mance, but is a costly operation. Hyperparameter tuning begins with specifying

which alogrithm parameters to adjust and over what range. This is referred to as

the parameter grid. The objective is to find which point in the parameter grid pro-

vides the best model performance. This is a costly operation because the model must

be retrained for each iteration of algorithm parameters. Additionally, this process

requires a validation dataset for assessing the performance of each model iteration.

Setting aside additional data for validation is unfavorable because the data is typi-

cally taken from the training set, reducing the amount of data the algorithm can learn

from. The cross validation (CV) is a clever method for validation for hyperparameter

optimization without reducing the total observations available for learning. Figure 3

12



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

Figure 3: Depiction of 3-fold cross validation of model tuning. The training data set

is broken up multiple times and used to train and validate the model. The model

performance is based on the composite of the cross validation iterations. Figure

adapted from [39].

shows how a dataset is split for 3-fold CV. The training set is split into three equal

folds. During model tuning, for a given set of algorithm parameters, the model will

be trained thrice – each iteration using a two folds for training and the third fold for

predictions (validation). This process is repeated until all folds have been used as

validation folds and the performance of the algorithm is evaluated on the composite

performance of all three iterations.

Trained models are evaluated on how well they can predict previously unseen

observations. During evaluation, the feature vectors from the test set data are passed

to the model. The model makes a prediction for the observable and the predicted

value is compared against the true observed value. The model performance is based

on the error in the test set predictions in the same way as shown in equation 1.6.

1.2.4 Molecular Representations and Featurization

A central challenge of machine learning for chemical property predictions is how

to represent molecules and their physics to a computer. The general challenge of how

to represent molecules has been evolving for the last two centuries and a brief history

of this evolution is provided here for context.

Dalton first published his theory of the atom in 1808[40] and the first molecular

13



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

formula soon followed.[41] At the time, molecules were defined by the ratio of elements

of which they are composed. Nearly 50 years later, theories were established regarding

the connectivity of atoms within a molecule. In 1852, Frankland proposed the ground

work for what would become valance bond theory.[42] The first two dimensional

representations of molecules were produced by Alex Crum Brown in 1864.[43, 44]

Brown represented molecules as circles (atoms) connected by lines (bonds), much the

same way as molecules are drawn today. The reasoning for how and why atoms form

bonds was not well understood until Pauling proposed hybridization in 1931.[45]

The 1950’s ushered in major breakthroughs in molecular representation. Corey

and Pauling developed the first space-filling representations of molecules. [46] They

also used x-ray crystallography to discern the 3D arrangement of atoms in peptide

sequences and identified α-helices and β-sheets. [47, 48] Two years later, Watson,

Crick, and Franklin solved the 3D structure of DNA. [49] These advances brought

molecular representations off of a piece of paper and into 3-dimensional space. 3D

representations convey not only the connectivity of each atom, but also how each

atom is positioned relative to other atoms. This is crucial for large molecules where

atoms may not be bonded to each other, but still interact because they are near in

space.

Concurrent with the development of 3D crystal structures was the development

of nuclear magnetic resonance (NMR) spectroscopy, a powerful tool for probing the

chemical environment of atoms within molecules. [50] NMR, along with mass and

infrared spectroscopy, allows a researcher to determine the atomic composition of a

molecule, the nature of the bonds between atoms, and the electronic environment

around certain elements within the molecule. For the last 60 years, a full molecular

representation has consisted of a 2D drawing, 3D structure, and a handful of spec-

tra. These molecular puzzle pieces are often requirements for publication in order to

14



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

confirm the identities of the chemicals of interest. As a result, the chemical literature

contains millions of molecular drawings, structures, and spectra.

Figure 4: Images from Picasso’s The Bull shows how an animal can be drawn with

various levels of detail and complexity. Running parallel is the analogous progres-

sion of molecular representations. Each step along the progression adds more detail,

allowing for a more complete and unique representation.

The manner in which molecular information is presented to machine learning al-

gorithms is an ongoing research topic.[28, 51, 52, 53, 54] A molecular representation

should be applicable to all of chemical space and should not be affected by symmetric

operations such as rotation, reflection, translation, etc. Current molecular represen-

tations fall into three broad categories: discrete (e.g., text), continuous (e.g., vectors

and tensors), and weighted graphs.[54]

SMILES is a 1-dimensional text representation of a molecule that is frequenty

used in cheminformatics databases. It contains the atomic composition and connec-

tivity of a molecule. Single, double and triple bonds can be encoded as well as formal

charges. SMILES representation lacks specific electronic or 3D information. SMILES,

15



1.2. MACHINE LEARNING IN MOLECULAR DISCIPLINES

which is a descrete representation, can be converted to a continuous representation

for optimization of molecular properties. [28] There are multiple different formats for

SMILES, not all of which produce a unique string for a given molecule, i.e a single

molecule can be accurately represented by two different SMILES strings.

Graphical representations, where an atom is node and a bond is an edge, are

used along side artificial neural networks (ANN).[33] Graphical representations can

have weight vectors associated with each atom and bond. These weight vectors can

encode the environment around each piece of the molecule by incorporating the types

of atoms or bonds nearby.

Coulomb matricies have also been used as inputs to machine learning algo-

rithms.[51] The are not affected by symmetry operations and require no bond in-

formation; only atomic coordinates and nuclear charges are required to generate a

Coulomb matrix. Coulomb matrices run into issues when molecules with different

numbers of atoms are considered. The dimensionality of the matrix will change based

on the number of atoms in the molecule. Additionally, the are N ! different ways to

express a molecule as a Coulomb matrix, where N is the number of atoms in the

molecule.

A 3D geometry and charge is all that must be specified in order to perform first

principle calculations on a molecule. With that in mind, one might expect a 3D

geometry to peform well as a molecular representation for machine learning. Given

the 3D coordinates and atomic charge of each atom, a machine learning algorithm

could, in principle, learn the fundamentals of quantum mechanics and produce highly

predictive models. Many groups are researching the possibility of using machine

learning to predict the results of first princicple calculations.[55, 52, 19, 56] However,

if the goal of the machine learning study is the prediction of complex properties such

as reactivity, training machine learning to solve the Schrödinger equation is inefficient.

16



1.3. NAVIGATING DESIGN SPACE (MOTIVATION)

Although expensive to obtain, the information available once the Schrödinger

equation is approximated is extremely valuable. As mentioned in section 1.1, the wave

function contains all information about the system. Anheman et al. used molecular

descriptors calculated using gas phase DFT as input to machine learning algorithms to

predict the yield of a cross-coupling reaction.[32] They used an ensemble of energetic,

electronic, and vibrational descriptors to describe the reagents, additives, and catalyst

ligands in their reactive system. The resulting model was highly predictive because it

incorporated much of the underlying physics involved in the phenomena of interest.

1.3 Navigating Design Space (Motivation)

Information is contextualized raw data or facts and knowledge is understanding

how pieces of information are connected. Machine learning is being used to accelerate

chemical knowledge generation by creating models based on perceived patterns in

molecular property datasets. Datasets are collections of information as they contain a

series of measurements contextualized with the measurement label, e.g solubility, and

system label, e.g molecular identity. Model-generated chemical knowledge is leveraged

for designing functional molecules [57, 28, 58, 59, 60], planning chemical syntheses

[61, 62, 34, 63, 64], and predicting material properties [65, 66, 67, 68, 69, 19]. In

addition to the model itself, there is information generated in the process of designing

and applying machine learning models. Model design and meta information is often

neglected, but information architecture can be leveraged to better utilize neglected

information for the exploration chemical property modeling. Machine learning models

for chemical property predictions are high dimension design challenges with many

independent variables and dependent variables[26, 70]. Software libraries, such as

DeepChem[71], RDKit[72], Scikit-Learn[73], and Tensorflow[74] streamline the model

design and implementation process. However, the design space complexity remains.

17



1.3. NAVIGATING DESIGN SPACE (MOTIVATION)

Model design variables are chemical, mathematical, or data science based and

they all have an impact on the performance of the model. Additionally, many inde-

pendent variables depend upon another. For example, the choice of learning algorithm

impacts the data pre-processing and the composition of the dataset influences how it

is split into training, validation, and test sets [71]. Further dependencies exist between

featurization technique, the molecules in the dataset, and their molecular fragments.

These relationships need to be understood in order to gain knowledge about how

design choices and molecular moieties affect model quality. Such modeling subtleties

may be known to model developers, but are likely unknown to the model user and

are lost when models are aggregated from literature for comparison.

Collecting more information about the choices made during model development

can enable richer comparison hypotheses. Comparing the performance of new models

against existing models is common practice in literature and necessary for measuring

progress [75, 71, 76]. Currently, models are examined in isolation (Figure 5A). Work-

flows are distilled to a few headline parameters and a single prediction metric, such

as mean absolute error (MAE) or root mean squared error (RMSE) for regression

and area under the curve (AUC) for classification. The model performances are then

aggregated for comparison, usually in the form of a bar chart. This evaluation ap-

proach reduces a model’s complexity to a single metric, which is practical for quick,

surface level assessment of model performance. However, condensing models discards

rich details that can be used to connect models into a knowledge framework which

can be queried for hypothesis testing. Figure 5B illustrates three machine learning

models and their relationships as a graph. The graph format enables quick identifica-

tion of shared model parameters, such as featurization technique for models 1 and 2,

and different parameters, such as learning algorithm. Performance metrics, such as

RMSE, are also included to enable quantitative evaluations. Information architecture

18



1.4. GRAPH DATABASES FOR CHEMISTRY

can improve the utility of chemical modeling information, but requires information

to be aggregated, standardized, organized, and contextualized.

Figure 5: A: Current practice of model evaluation considers models in isolation and

limits model comparison to aggregated performance metrics. B: The proposed ap-

proach connects model inputs and outputs as a descriptive graph. Database queries

access the full model information and context for richer model analyses.

1.4 Graph Databases for Chemistry

1.4.1 Databases

Significant progress has been made towards the aggregation and standardiza-

tion of chemical information. Public chemical databases, such as PubChem [77, 78],

ZINC[79], ChEMBI [80, 81], GDB[82, 83], the Materials Project [84], and Molecu-

19



1.4. GRAPH DATABASES FOR CHEMISTRY

leNet.ai [71] provide the community with clean and trustworthy chemical datasets.

Hastings et al. developed an standardized ontology for calculated properties (descrip-

tors) of chemical entities on the semantic web. Ruusmann, Sild, and Maran created

a database for quantitative structure activity relationship (QSAR) models called

QSAR-DB [86]. QSAR-DB is a standardized collection of models and their meta-

information accessible via the web (http://qsardb.org/). The database is searchable

and provides functionality for visualizing model metrics. Understandably, QSAR-DB,

like many model-based applications, is focused on individual model performance and

does not readily facilitate connecting and comparing models [87].

1.4.2 Chemical Networks

Graphs are a popular and versatile structure for organizing and contextualizing

chemical information. Molecules have a natural graph structure with atoms as nodes

and bonds as edges, which is leveraged in cheminformatics and molecular featurization

algorithms as a way to represent molecules to computers. [88, 89, 75] The framing

of chemical reaction pathways as networks has been fruitful [90, 91]. Chemical reac-

tion networks have been used to observe the evolution of organic chemistry[92, 93],

identify the most influential synthons [94], and intelligently design synthetic routes

[95, 96, 97, 98, 99]. The use of graphs to represent chemical transformations and

material flows between equipment has enabled autonomous execution of lab-scale

chemical syntheses[100, 101]. Macro-scale chemical networks, such as those involved

in industrial parks and environmental chemistry, have also been modelled using graph

databases [102, 103, 104, 105]. PubChem translated their curated information into

the Resource Description Framework (RDF) format, resulting in the largest biochem-

ical knowledge network which provides important biological context by connecting

molecules, substances, proteins, assays, and diseases [77, 106, 107].

20

http://qsardb.org/


1.4. GRAPH DATABASES FOR CHEMISTRY

Functionally, graph databases can be instantiated as RDF or property graphs.

Both graph technologies have been used for chemical and biological applications and

their merits have been compared [108, 109, 110, 111, 112]. As such, we will briefly

present our reasons for choosing the property graph model implemented via Neo4j and

refer readers to more comprehensive comparisons [108, 109, 110, 111]. In property

graph databases (PGDB), entities are represented as graph nodes and relationships

between entities are represented as graph edges. Both nodes and edges have internal

structure which enables properties to be stored to them. PGDB do not require a rigid

schema or ontology and are therefore very flexible and extensible. The flexibility of

the data structure and the simplicity of the Neo4j graph query language, Cypher,[113]

provide an easy to use and intuitive graph database experience. Additionally, Neo4j

software includes built-in visualization tools and graph data science algorithms. The

property graph model implemented with Neo4j is a ready-to-use solution for rapid

prototyping.

1.4.3 Statement of Work

In this paper, instances of machine learned chemical property models and their

associated parameters are stored in a property graph database. The input molecules,

molecular features, learning algorithm, algorithm parameters, and other inputs are

related to a model instance. Likewise, the outputs of the model (time, predictions,

uncertainty, feature importance, etc.) are also related to a model instance. Model

instances are connected to each other through shared parameters. For example, two

neural network models that use the same dataset would have two similar relationships.

One relationship to the dataset node and the other relationship to the neural network

learning algorithm node. By modeling chemical models as a graph, we can quickly

identify overlap between models or datasets, evaluate models at multiple levels, and

21



1.4. GRAPH DATABASES FOR CHEMISTRY

investigate complex relationships such as molecular fragments that are associated with

high prediction error. Similar to how PubChem connects molecules to the biological

processes in which they participate, the aim of this work is to connect molecules to

the machine learning processes in which they participate.

22



CHAPTER 2

METHODOLOGY

2.1 Machine Learning Pipeline

2.1.1 Datasets

Six physicochemical regression datasets containing small molecules were collected

from the literature (Table 2). All the datasets contain simplified molecular-input line-

entry system (SMILES) molecular identifiers, which were validated with the RDKit

Python package [72]. Molecules that failed to be resolved by RDKit were dropped

from the datasets. This was rare since all datasets had already been curated by others

[71, 114].

Table 2: Datasets used to train models. Size is number of unique molecular observa-

tions after processing.

Dataset Property Task Size Source

Lipophilicity logP Regression 4200 moleculenet.ai
logP14k logP Regression 14176 Github
ESOL logS Regression 1128 moleculenet.ai
FreeSolv Hydration free energy Regression 642 moleculenet.ai
JAK2 IC50 Regression 1911 Github
Flashpoint Flashpoint Regression 9198 Github

2.1.2 Model Generation

The Python pipeline used for model generation is depicted in Figure 6. Machine

learning model instances were created with permutations of dataset, learning algo-

rithm, molecular featurization, data scaling, data splitting, hyperparameters, and

hyperparameter optimization techniques. Permutations expected to produce poor

23

moleculenet.ai
https://github.com/isayev/ReLeaSE/tree/master/data
moleculenet.ai
moleculenet.ai
https://github.com/isayev/ReLeaSE/tree/master/data
https://github.com/uw-cmg/MoleProp/blob/master/data_engineering/flashpoint_test.csv


2.1. MACHINE LEARNING PIPELINE

models, such us under-optimized hyperparameters, as were intentionally included for

comparison purposes. In total, 215 machine learning models were generated and

stored in the property graph.

For speed and simplicity, off-the-shelf Python learning algorithms were used.

Random forest, gradient descent boost, k-nearest neightbor, Adaboost, and support

vector machine were implemented with Scikit-Learn [73]. Dense neural networks were

implemented with Tensorflow using the Keras application programming interfaces

(API) [74, 115].

Molecules were featurized using Descriptastorus, an API for generating RDKit

molecular descriptors and fingerprints [116, 72]. We implemented all descriptors sup-

ported by Descriptastorus except for the normalized RDKit 2D descriptors. Global

molecular features, e.g RDKit molecular descriptors, and local molecular features,

e.g fingerprints, were applied separately and in combination. The scaling of the fea-

turized datasets was varied by different Scikit-Learn built-in scaling functions. The

DeepChem python package was used for implementing random, scaffold, and strati-

fied data splitting techniques. The portion of the dataset used for training, validation,

and testing was also varied with the default being 70:10:20.

Cross validation (CV) hyperparameter tuning was performed using exhaustive

grid and random search from the Scikit-Learn package[73] and Bayesian optimization

from the skopt package [117]. The number of CV folds was set between 2 and 10.

For a given learning algorithm, the same parameter search space was used across all

optimization methods and the number of optimization iterations ranged from 5 to

100.

An ensemble approach was implemented for model predictions. All models were

trained five times and the property predictions for individual molecules were averaged.

Prediction uncertainty was calculated as the standard deviation of the five predictions.

24



2.1. MACHINE LEARNING PIPELINE

Figure 6: Data process flow diagram.

25



2.2. GRAPH DATABASE

All models were evaluated using RMSE, but MSE and R2 were also calculated and

included in the graph.

2.1.3 Storage & Export

All trained models were saved to local files, enabling them to be re-used without

having to be retrained. Additionally, extensive model parameter and performance

data was exported to Neo4j using the py2neo Python library. The information ex-

ported to Neo4j was also written to local JSON files. These JSON act as schema

agnostic backup files which can be used to import models into the Neo4j database.

2.2 Graph Database

2.2.1 Software

The Neo4j software platform (version 4.1.0 Community edition) was used for cre-

ating the property graph database. Graph queries and visualization were carried out

using Neo4j Browser and Neo4j Bloom, respectively. Model instance data was directly

imported into the PGDB using the py2neo Python package. During the import pro-

cess, each molecule was processed by RDKit to generate molecular fragments. These

fragments were solely used in the graph and were not used in any property prediction

model. Molecular fragments were included as nodes in the graph with a relationship

to the parent molecule node.

2.2.2 Architecture

The graph schema was designed to preserve the uniqueness of model instances and

to facilitate potential end-user queries (Figure 7). Each model instance is represented

as a MLModel node and is connected to its major input and output entities. When

a new model was run and imported to the graph, the necessary nodes were created

26



2.2. GRAPH DATABASE

Figure 7: The database schema. TheML Model node is the backbone of the presented

information architecture. Nodes represent entities in a machine learning workflow and

relationships describe how those entities interact.

if they did already exist. A new model always created a unique MLModel, training

set, test set, and if applicable, validation set nodes. Entities such as dataset, learning

algorithm, or molecules only needed to be created once, and new models created

new relationships to such nodes. Figure 7 shows multiple relationships between the

molecule nodes and set nodes, but a molecule will only be related to either a training,

test, or validation set node for a single given model.

The ability to store properties on both nodes and relationships was extensively

used (Figure 8). Storing properties on relationships enabled tracability of model

instance’s specific values to global entities. For example, two unique model instances

may predict the same molecule and property but with different predicted values.

If the predictions were stored on the molecule node, two molecule nodes would be

needed to capture the difference between the two model instances. However, this

approach violated our design principle that a unique entity, the molecule, should

appear only once in the graph. Instead, we stored the property predictions on the

27



2.2. GRAPH DATABASE

CONTAINS_PREDICTED_MOLECULE relationship between the unique model’s

test set and a single molecule node. Further details on the Neo4j graph design and

import process are discussed in the supplemental information.

Figure 8: Example path relating a model node (A) to its test set (B) and the test

set to a predicted molecule (C) via their respective prediction relationships. In the

property graph model, properties can be stored on graph nodes and relationships to

further describe and quantify the structures. Properties can be used for formatting

the color and size of nodes and relationships.

2.2.3 Queries

Neo4j’s Cypher language is used to execute all graph queries in Neo4j Desktop

Browser. All figures containing sub-graphs are accompanied by Cypher commands

for gathering the respective quantitative results.

For a given dataset, each molecule node’s property prediction errors were av-

eraged across incoming CONTAINS_PREDICTED_MOLECULE relationships and

stored to the molecule node as a new difficulty property. The difficulty property was

also propagated to outgoing HAS_FRAGMENT relationships between the molecule

and its fragment nodes. The average of the difficulty property of the incoming rela-

28



2.2. GRAPH DATABASE

tionships was used as a measure of a fragment’s impact on error.

Fragment prevalence within the dataset can be determined by counting the

number of distinct incoming relationships. Certain molecular motifs, such as aro-

matic rings, are extremely common and appear in both difficult and easy to predict

molecules. To identify fragments that play a significant role in prediction errors, we

first distinguish high error molecules and low error molecules. Using Cypher queries,

we categorized molecules above a cutoff percentile of property prediction error as high

error molecules and the lower percentile group as low error molecules. We then col-

lected the fragments associated with each group of molecules and subtracted the most

frequent fragments found in low error molecules from the most frequent fragments

found in high error molecules.

This analysis has three parameters: cutoff, hard limit, and easy limit. The cutoff

is the percentile threshold separating easy and hard molecules. Hard limit is a per-

centile value that adjusts the prevalence threshold for fragments associated with high

error molecules. Increasing hard limit will include more uncommon fragments in the

analysis results. Easy limit is a percentile value that adjusts prevalence threshold for

fragments associated with low error molecules. Increasing easy limit will increase the

number of fragments considered to be part of the background population.

29



CHAPTER 3

RESULTS

3.1 Python Pipeline

The developed machine learning pipeline automates the process of parameter-

izing, training, optimizing, and evaluating off-the-shelf machine learning models for

chemical property prediction. The pipeline is efficient and easy to implement. List-

ing 3 shows example python code for running a gradient decent boost model with

hyperparameter tuning. In only 8 lines of code and a few keyword arguments, a user

can create a machine learning model and export it to a running Neo4j database. The

feature vectors for each combination of dataset and featurization are stored in an SQL

database. When required, the feature vectors are loaded from disk instead of gener-

ating them on the fly. The pipeline supports parallel computing across multiple CPU

threads for Scikit-Learn algorithms and GPU computing for neural network models.

The model inputs and outputs are automatically stored in a Neo4j graph database.

3.2 Graph Database

The graph database contains 83,000 nodes with 14 different node labels (Table 3)

and 4 million relationships with 22 different relationship types (Table 4). There are 56

properties stored on the nodes and 55 properties stored on the relationships. Figure

9 shows a representative sample of the graph database; the full graph is too large to

be visualized in Neo4j Bloom. The bulk of the nodes are molecules and fragments.

The bulk of the relationships are between molecules and their fragments and between

molecules and their calculated descriptors. Adding a single machine learning model

to the graph will typically create three or four new unique nodes and thousands of

30



3.2. GRAPH DATABASE

# initialize model with major parameters
model = MlModel(algorithm='gdb', dataset='Lipophilicity-ID.csv',

target='exp', feat_meth=[0],
tune=True, cv=10, opt_iter=25)

model.featurize()
model.data_split(split="random", test=0.1, scaler="standard")

with cd('output'): # Have files write to output/ dir
model.reg()
model.run(tuner="bayes") # train and tune model
model.store() # gather and write outputs
model.org_files(zip_only=True) # compress outputs

# export to Neo4j
model.to_neo4j(port="bolt://localhost:7687",

username="neo4j", password="password")

Listing 1: Code used to run a ML model in the pipeline.

new relationships.

3.2.1 Model Evaluation and Comparison

The structure of the machine learning knowledge graph enables efficient and

simple inter- and intra-model evaluation. Inter-model comparison is fundamental to

identifying improvements in model development. Figure 10 shows a sub-graph of

models which used the MoleculeNet lipophilicity dataset and their test sets [71]. This

sub-graph provides a visual, semi-quantitative comparison of models through rela-

tionship color and weight. One can quickly identify top performing models by thick

green arrows (A). A model’s test set node can be expanded to display any number of

the predicted molecules contained within (B). This intra-model evaluation is visually

represented with a predicted versus actual parity plot. The graph architecture pre-

sented here contains the information typically used by researchers to evaluate their

models and determine how they perform compared to others. The property graph

31



3.2. GRAPH DATABASE

Table 3: Node labels. For each node label, the count of such nodes and the number

of properties stored on the node are included.

Node Label Count Properties

Fragment 56,083 1
Molecule 25,940 6
MLModel 215 9
TestSet 215 3
TrainSet 215 3
Feature 110 1
SplitMethod 110 6
RandomSplit 105 6
ValSet 35 3
FeatureList 7 3
DataSet 6 6
FeatureMethod 6 1
Algorithm 6 2
Tuning 3 1

Figure 9: Snapshot of the graph database containing approximately 11,000 nodes and

20,000 relationships. All node labels and relationship types included.

32



3.2. GRAPH DATABASE

Table 4: Relationship types. For each relationship type, the count of such relation-

ships and the number of properties stored on that type of relationship are included.

Relationship Type Count Properties

HAS_DESCRIPTOR 1,888,897 1
HAS_FRAGMENT 1,374,420 0
CONTAINS_TRAINED_MOLECULE 521,981 1
CONTAINS_PREDICTED_MOLECULE 162,053 7
CONTAINS_MOLECULE 29,802 0
CONTAINS_VALIDATED_MOLECULE 15,170 1
MAKES_SPLIT 465 0
USES_FEATURE_METHOD 236 0
TRAINS 215 1
PREDICTS 215 13
USES_FEATURE_LIST 215 0
USES_ALGORITHM 215 6
USES_DATASET 215 0
USES_SPLIT 215 0
SPLITS_DATASET 215 0
SPLITS_INTO_TEST 215 0
SPLITS_INTO_TRAIN 215 0
CALCULATES 110 0
USES_TUNING 52 24
SPLITS_INTO_VAL 35 0
VALIDATES 35 1
USED_BY_FEATURE_LIST 8 0

provides the capability to query all models that have predicted a certain dataset,

evaluate their performances, and determine the state of the art. Further information

about interesting models and their predictions are just one graph edge away, which is

easily accessed via the interactive graph interface or additional Cypher statements.

Models of interest can be further analyzed and compared in detail by expand-

ing the MLModel node. This expansion produces the dataset, featurization method,

learning algorithm, and data splits nodes connected to the model. Figure 11 demon-

strates a head-to-head comparison enabled by the expansion of two model nodes.

Both models use the same dataset and molecular featurization method (A), but differ

33



3.2. GRAPH DATABASE

Figure 10: Graph structures which enable inter- (A) and intra-model prediction eval-

uations (B). The architecture of the graph is such that shifting from inter-model

comparisons to intra-model analysis is just one additional edge traversal.

in their learning algorithm (B & C) and predictive performance (D & E). In this spe-

cific case, the model that uses a neural network (B) predicts its test set well, as shown

by the green arrow (D). It also consistently performs well on individual molecules.

In contrast, the model that uses Adaboost (C) has mediocre prediction performance

on its test set and scattered performance on individual molecules, as shown by the

variations in arrow colors (E). There are molecules in both test sets and the visual-

ization shows specific prediction comparison at the molecular level (F). Direct model

comparisons are enabled by the centrality of the MLModel node in the graph schema.

A model’s most important parameters and prediction results are connected directly

to the MLModel node and molecular details are just two edges away from the central

MLModel node.

34



3.2. GRAPH DATABASE

Figure 11: Direct comparisons of two models’ parameters and performance. (A) Two

models share a dataset (light blue node) and molecule featurization (yellow node). (B

& C) The models use different learning algorithms. (E & F) The models’ prediction

performances (colored arrows). (F) Common test set molecules.

The knowledge graph can be used to investigate molecular property prediction

difficulty and causality. Figure 12 shows a sub-graph containing 10 models’ test set

nodes and a subset of the overlapping predicted molecules. The visualization can be

used to identify troublesome molecules, both by prediction error, shown by the arrow

color, and by prediction uncertainty, shown by arrow thickness. In Figure 12 the

inset on the left identifies a difficult to predict molecule based on all incoming arrows

being red and the majority being thin, indicating high error and high deviations in

the predictions. The opposite pattern is illustrated in the right inset for an easy to

predict molecule. Once nodes of interest are identified, their chemical structures can

be access by means of the SMILES stored as a property on the molecule nodes. The

natural follow-up to identifying which molecules are difficult to predict is investigating

35



3.2. GRAPH DATABASE

Figure 12: Molecule overlap between ten models’ test sets and the individual molecu-

lar predictions. The graph connects models to their predicted molecules via test sets,

enabling analysis of molecular property prediction difficulty. Prediction relationships

are formatted using prediction error (color) and uncertainty (thickness).

why molecules are difficult to predict. The graph database schema was designed with

this query as a priority. The graph structure connects models’ property predictions

to molecules and molecules to their sub-molecular fragments. The prediction values

and errors are stored on the prediction relationships, which enables queries to target

specific portions of the graph based upon not only holistic model metrics, such as

RMSE, but also molecular predictions.

3.2.2 Graph Queries for Molecular Error Analysis

The analyses thus far demonstrate that the graph database developed in this

work is capable of facilitating visual evaluations of chemical property models at both

the model level and the molecular level. Graph queries are a powerful and expres-

sive means filter the graph to the user’s specific interests and retrieve quantitative

36



3.2. GRAPH DATABASE

values. Figures 9-12 are accompanied by Cypher query statements for each respec-

tive analysis. The Cypher queries can be manually executed in Neo4j Browser or

programmatically executed via one of Neo4j’s APIs.

Cypher queries were developed which identify high error molecules for a given

dataset (see Supplemental Info). The fragments associated with these high error

molecules are collected and ubiquitous “background” fragments are removed from

this population. The cutoff parameter was set to 0.9, designating the molecules in

the top 10 percentile of prediction error as hard. Both the hard limit and easy limit

were set to use the 1000 most frequent fragments from each population. Executing

the analysis for the lipophilicty dataset produces the sub-graph shown in Figure

13. The sub-graph contains the difficult fragments and their parent molecules,

which are sized based upon their average lipophilicity prediction errors. The graph

visualization can help explore the causality of prediction error. That is to ask, is

the molecule present in the analysis results because it contains difficult fragments

or because the molecule presents challenges that are greater than the sum of its

parts? By visual inspection, one can identify clusters within the graph where many

molecules are connected to a group of common fragments (Figure 13 A, C, D). These

clusters suggest that the central fragments are the source of the prediction challenge

for the connected molecules. On the other hand, there are fragments that are only

connected to one or a few molecules (Figure 13 B). This moiety indicates that the

terminal fragments are not the source of the error and the molecule as a whole is

difficult or contains other highly influential fragments. It is interesting to observe

that there are no isolated populations of molecules and fragments in the results –

there is a path that can connect any node to any other node.

Table 5 shows the top ten fragments returned by the Cypher queries sorted by

the fragment’s average parent molecules’ error. The analysis reveals that sulfon-

37



3.2. GRAPH DATABASE

Figure 13: Fragment error analysis sub-graph and high error sulfonamides. (A, C,

& D) clusters of molecules connected to a set of common fragments, indicating the

fragments are the error origin. (B) Terminal fragments connected only to a single

molecule, suggesting that those fragments are not the error origin. Molecule nodes

are sized based upon their average prediction error – larger molecules have higher

error.

amide groups are troublesome fragments. Sulfonamide containing compounds and

their properties have been the subject of theoretical studies due to their use in anti-

glaucoma therapies, an application in which balanced aqueous and lipid solubility is

critical [118, 119, 120]. The pKa of sulfanomides typically ranges from 7-10 [119, 121]

and the experimental values for the lipophilicity dataset were collected at a pH of

7.4 [71]. At experimental conditions, there would be a mixture of protonation states

for a low pKa sulfonamide while a high pKa molecule would have a homogeneous

population. The variation in protonation states would affect the partitioning of the

molecule and is not communicated by the SMILES. This chemical challenge captured

38



3.2. GRAPH DATABASE

by the knowledge graph is inherent to the dataset and the way in which molecules

are digitally represented.

The fragment analysis queries were automated via Python and the py2neo API,

enabling the query parameter space to be explored (Figure 14). The objective of

the analysis was to find fragments that were both prevalent and difficult. The large

plateau in Figure 14 is caused by fragments related to a single high error molecule. In

this region, the hard limit parameter is too loose – the analysis is including infrequent

fragments. Decreasing the value of the hard limit parameter removes the infrequent

fragments and returns fragments that are both moderately prevalent and related

to difficult molecules. However, if the hard limit and cutoff parameters are too

restrictive, no results will be returned. The easy limit parameter, which dictates how

prevalent fragment must be to be considered background, must be non-zero to exclude

extremely common fragments but has little affect the analysis except for at very high

values.

Figure 14: Parameter response surface for the fragment error analysis. The fragment

error analysis parameters can be adjusted to locate regions containing fragments of

interest. Star denotes region examined in previous figure and table.

The queries for analyzing molecular fragment impact on chemical property pre-

39



3.2. GRAPH DATABASE

diction error demonstrate the capabilities of the property graph for investigating

complex hypotheses. The queries traverse four relationship types between four node

labels. To apply filters and gather quantitative values, the queries access three node

properties and two relationship properties. Despite the complexity of the hypothe-

sis, the query execution is fast (96 ms), and the query commands are intuitive to a

human reader (see Supplemental Info). The query parameters are easily tuned and

additional filters can be applied to target specific molecular featurization methods or

learning algorithms.

40



3.2. GRAPH DATABASE

Table 5: Fragment error analysis results for the lipophilicity dataset. Fragments are

sorted by average error of parent molecules. Query parameters: cutoff=0.9; easy

limit=0.003; hard limit=0.03.

Fragment Parent Molecules Mean Error

ccc(c<-OMe>)S(<=O>)<=O> 15 1.275

ccN(C)S(<=O>)<=O> 21 1.230

CCN(c)S(<=O>)<=O> 16 1.225

CC<=O>OC 27 1.212

CC<=O>O 30 1.205

c<-O>cc(c)c 21 1.205

cNC<=O>Nc 16 1.159

c<-OMe>cS(<=O>)<=O> 20 1.131

cc<-OMe>cS(<=O>)<=O> 20 1.131

c<-OMe>cS(<=O>)<=O>N 20 1.131

41



3.3. LIPOPHILICITY CASE STUDY

3.3 Lipophilicity Case Study

This case study is meant to demonstrate and further explicate how the property

graph database is actually used for an fragment analysis. Recall that it is desirable to

avoid contributions from ubiquitous fragments such as ccc. Because the investigation

is only for a single molecular property the unscaled property and predictions values

can be used in the analysis. However, care must be taken not to have any other

molecular properties leak into the analysis, which can happen if a molecule has pre-

dictions for both lipophilicity and other properties. The methods used in this study

is the same approach described in section 3.2.2 and is summarized by the following

steps.

1. Remove all difficulty weights

2. Make new difficulty weights for the property of interest

3. Run the fragment analysis

4. Remove the difficulty weights

3.3.1 Query Setup

Cypher commands can be run in Batch using ‘;‘ to separate the commands, but

the outputs will be suppressed. So the command that returns your results should be

run by itself. With this in mind, the fragment analysis was broken into three sets of

Cypher commands.

The first step in the analysis is to create a difficulty property based on

molecule predictions. This will be used to categorize molecules as hard to predict. It

is important to clear any prior difficulty properties from the nodes so that there is

no contamination from other datasets. In Listing 2, the first code block removes any

42



3.3. LIPOPHILICITY CASE STUDY

existing difficulty properties. The second code block creates a Cypher parameter

for storing the dataset name. This parameter is similar to object oriented program-

ming languages’ variables in that it is globally accessible, which enables the dataset

of interest to be changed in one place and have it mirrored throughout the rest of the

analysis. The third code block in Listing 2 creates new difficulty weights based on

the predicted values for the property of interest. This difficulty value is stored on

the molecule nodes and the CONTAINS_PREDICTED_MOLECULE relationships.

// Delete old weights
MATCH (M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)
REMOVE M.difficulty, f.difficulty
RETURN M, F, f;

// Set a parameter for the Dataset you are interested in
// so you change it in one place only.
:param data => "Lipophilicity-ID.csv";

// Make new weights for Dataset
MATCH (D:DataSet{data: $data})-[:SPLITS_INTO_TEST]->
(T:TestSet)-[p:CONTAINS_PREDICTED_MOLECULE]->
(M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)
WITH avg(p.average_error) as difficulty, f, M, F
SET M.difficulty = difficulty
SET f.difficulty = difficulty
RETURN M, F, f;

Listing 2: Cypher commands to prepare the graph for the fragment analysis.

Once the weights have been created, the analysis is ready to be executed. Listing

3 contains the Cypher commands for executing the anlaysis. The first analysis step

finds the molecules in the dataset above the 90th percentile for difficulty. In other

words, the 10% of molecules with the highest average error. The second code block

in Listing 3 collects the “easy” molecules and their fragments. It then orders the

fragments based upon their relationship count, which is a proxy for prevalence in the

43



3.3. LIPOPHILICITY CASE STUDY

dataset. The third block performs the same actions but for the “hard” molecules.

The fourth block uses the APOC library to subtract the easy fragments from the

hard fragments. Block five takes the fragment results of the subtraction and finds the

parent molecules in the dataset. The final code block in Listing 3 calculates statistics

for the resulting fragments and parent molecules for reporting in a results table.

The final set of Cypher commands, shown in Listing 4, should be run after the

analysis to remove the difficulty weights used in the analysis. This procedure is

redundant with the deletion in the first set of commands, but a necessary precaution.

3.3.2 Query Results

Upon running the fragment analysis, the Cypher results were saved as a CSV. The

Cypher query sorts the fragments first by the number of incoming relationships, i.e

how many molecules have that fragment and then by the average prediction difficulty.

The results are shown in Table 6. The results look pretty normal except for a single

fragment that has huge difficulty values.

Table 6: Case study fragment analysis results sorted by number of fragment parent

molecules.

fragment number_of_rel sum_difficulty avg_difficulty

0 cc<-X>cNC 68 5.230488e+01 0.769189
1 ccnc[nH] 67 5.157731e+01 0.769811
2 c<=O>nCc 67 4.938120e+01 0.737033
3 ccC<=O>C 65 4.125765e+06 63473.300050
4 CCCC<-O> 65 4.937961e+01 0.759686
5 c<-X>cC<=O>NC 65 4.860527e+01 0.747773
6 ccCnc<=O> 65 4.744537e+01 0.729929
7 cc-c(c)s 65 4.620461e+01 0.710840
8 c<-O>c 64 6.609076e+01 1.032668
9 ncc[nH] 64 5.058815e+01 0.790440

Table 7 shows the same results sorted by average difficulty as the primary sort

44



3.3. LIPOPHILICITY CASE STUDY

// Remove Common Fragments
MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->(M:Molecule)
WITH percentileCont(M.difficulty, 0.90) as cutoff

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->
(eM:Molecule)-[ef:HAS_FRAGMENT]->(eF:Fragment)
// easy molecules
WHERE eM.difficulty < cutoff
// gath frags and frequency
WITH eF, count(ef) as efreq, cutoff
// limit to top n
ORDER BY efreq DESC LIMIT 1000
WITH collect(eF) as easyFrags, cutoff

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->
(hM:Molecule)-[hf:HAS_FRAGMENT]->(hF:Fragment)
// hard molecules
WHERE hM.difficulty > cutoff
WITH hF, count(hf) as hfreq, easyFrags
ORDER BY hfreq DESC LIMIT 1000
WITH collect(hF) as hardFrags, easyFrags

// use APOC to do list intersect & subtraction
WITH apoc.coll.intersection(easyFrags, hardFrags) as overlap,
apoc.coll.subtract(hardFrags, easyFrags) as remain

// Find Mol-Frag pairs that have remaining fragments and in dataset
UNWIND remain as rFrags
MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->
(M:Molecule)-[f:HAS_FRAGMENT]->(rFrags)
WITH M, rFrags
MATCH (M)-[f:HAS_FRAGMENT]->(rFrags)

// Get Difficulty Stats for Remaining Fragments
WITH rFrags.name as fragment, count(f) as number_of_rel,
sum(f.difficulty) as sum_difficulty,
sum(f.difficulty)/count(f) as avg_difficulty
RETURN fragment, number_of_rel, sum_difficulty, avg_difficulty
ORDER BY number_of_rel DESC, avg_difficulty DESC

Listing 3: Cypher commands to run the fragment analysis.

45



3.3. LIPOPHILICITY CASE STUDY

// Delete weights again
MATCH (D:DataSet{data: $data})-[:SPLITS_INTO_TEST]->
(T:TestSet)-[p:CONTAINS_PREDICTED_MOLECULE]->
(M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)
WITH avg(p.average_error) as difficulty, f, M, F
REMOVE M.difficulty = difficulty
REMOVE f.difficulty = difficulty
RETURN M, F, f LIMIT 20;

Listing 4: Cypher commands to delete analysis weights to return graph to default

state.

key. This view shows astronomical difficulty values and then sharp drop off. This

indicates that a small number of molecule(s) were the culprit and likely the large

errors were caused by some models that were totally haywire. The next step is to

track the errors to the source.

Table 7: Case study fragment analysis results sorted by average difficulty.

fragment number_of_rel sum_difficulty avg_difficulty

176 CC<=O>OC 27 4.125751e+06 152805.587743
165 CC<=O>O 30 4.125754e+06 137525.143215
139 C<=O>NC(C)C<=O> 37 4.125748e+06 111506.693103
128 CC[C@@H](C<=O>)N 39 4.125749e+06 105788.431380
114 CCCCC<=O> 41 4.125754e+06 100628.138366
106 CCC<-N> 43 4.125756e+06 95947.815838
107 CCC<-C(=O)O> 43 4.125746e+06 95947.589936
62 c<-N>cC<=O> 54 4.125763e+06 76403.011438
48 CC<-N> 57 4.125768e+06 72381.886109
12 cccC<=O>C 63 4.125763e+06 65488.298270
3 ccC<=O>C 65 4.125765e+06 63473.300050
199 ccc(c<-OMe>)S(<=O>)<=O> 15 1.913052e+01 1.275368
186 ccN(C)S(<=O>)<=O> 21 2.582229e+01 1.229633
196 CCN(c)S(<=O>)<=O> 16 1.959603e+01 1.224752
187 c<-O>cc(c)c 21 2.530094e+01 1.204807

46



3.3. LIPOPHILICITY CASE STUDY

3.3.3 Query Follow-up

The previous tables show results for fragments, but fragments inherit their difficulty

from the parent molecules. Listing 5 contains a Cypher query to rank molecules by

their difficulty.

The results are displayed in Table 8. The results show that a single molecule

is responsible for the huge fragment difficulty. With the SMILES and Node ID

in hand, it is easy to visualize the molecule and find it in the graph to explore its

connections.

Table 8: Case study results for high error molecules sorted by difficulty.

SMILES Difficulty Node_ID

0 CCCCCCCCCC(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N... 4.125720e+06 11205
1 CC(N)(COP(=O)(O)O)C(=O)O 3.334416e+00 9995
2 Cc1oc(CN2CCNCC2)cc1C(=O)NCC12CC3CC(CC(C3)C1)C2 3.242000e+00 11514
3 CN(C)c1ccc2nc3ccc(=[N+](C)C)cc-3sc2c1 3.177085e+00 10507
4 N#Cc1ccc(-c2csc(Nc3ccc(O)cc3)n2)cc1 3.148000e+00 9108
5 NCc1ccc(NC(=O)c2cc(Nc3ncccn3)c3cc(/C(N)=N/O)cc... 3.143136e+00 9616
6 COCCCOc1ccnc(C[S+]([O-])c2nc3ccccc3[nH]2)c1C 3.141442e+00 11022
7 COCCNCc1ccc(CCNC[C@H](O)c2ccc(O)c3[nH]c(=O)sc2... 3.049231e+00 8433
8 COc1ccc(-c2nc3c(NCCCNC(=O)c4ccccc4)c(Br)cnc3[n... 2.943623e+00 10397
9 O=C(O)c1ccc2cccc(O)c2n1 2.890912e+00 9533

Figure 15 show the molecule that causes massive errors. Chemical intuition is

satisfied that this complex molecule might cause prediction challenges. Next is to

find it in the graph and explore its context. This could be done with either Bloom or

the Browser, but I prefer exploring in Bloom when I can.

Figure 16 shows a query for Bloom to execute which will find molecules by their

SMILES. This search enables simple searching in Neo4j Bloom by simply typing

Molecule has "<your_SMILES>". The search yielded the singular molecule node,

which is then expanded to show all related TestSet nodes, which enables one to see

47



3.3. LIPOPHILICITY CASE STUDY

MATCH (D:DataSet{data: $data})-[:CONTAINS_MOLECULE]->(M:Molecule)
WHERE EXISTS (M.difficulty)
WITH M.smiles as SMILES, M.difficulty as Difficulty, id(M) as Node_ID
RETURN DISTINCT SMILES, Difficulty, Node_ID
ORDER BY Difficulty DESC LIMIT 100

Listing 5: Cypher commands to return high difficulty molecules.

Figure 15: High error molecule from Lipophilicity fragment analysis.

48



3.3. LIPOPHILICITY CASE STUDY

the CONTAINS_PREDICTED_MOLECULE relationships, where the prediction values and

errors are stored (Figure 17).

Figure 16: Bloom query panel. Custom query for searching nodes by SMILES shown.

This view allows one to see how many models have predicted lipophilicity for this

49



3.3. LIPOPHILICITY CASE STUDY

Figure 17: Expansion of macrocycle molecule node and the ML models that use

neural networks to predict it’s lipophilicity.

molecule (10) and how well each model performed. It turns out that two models had

the astronomical values, had bad but relatively reasonable predictions, and a single

model did okay. I was interested in the two terrible models and the alright model,

so I expanded the those nodes to show what Algorithm and FeaturizationMethod

they used. As can be seen in Figure 17, all three models of interest were neural

networks. The two horrid models used rdkit2d featurization and one of them also

used morgan3counts. The good model used atompaircounts featurization method.

Figure 18 shows further expansion of the models that predict the troublesome

macro-cycle. This view shows that the one model that predicts it well is not only

unique in its performance but also in its combination of algorithm and featuriza-

tion method. The performant model is the only model to use a neural network and

atompaircounts. Models that use a neural network but a different featurization

method do not perform as well. Similarly, models that use atompaircounts and

other learning algorithms do not perform well.

50



3.3. LIPOPHILICITY CASE STUDY

Figure 18: Full expansion of ML models predicting the macrocycle molecule.

51



3.3. LIPOPHILICITY CASE STUDY

3.3.4 Case Study Conclusion

In this case study, the graph is queried to investigate what molecular fragments

cause error when predicting lipophilicity. The graph database is leveraged to design

and execute a rather complex query to rank molecular fragments based upon their

frequency in tough-to-predict molecules. The query returned anomalous results. The

graph was then queried to find the source of the anomaly. Once the source, a struc-

turally complex molecule, was identified, a simple graph query was used to locate the

molecule in the graph visualization tool (Bloom). Bloom was then used to further

explore the context around the anomaly which revealed potentially promising model

parameters for improving prediction performance.

This whole process, from recognizing the issue in the fragment analysis to ex-

ploring the graph around the problematic molecule was quick – approximately 25

minutes. Moreover, only Python and Neo4j were used for the entire process. The

efficiency is possible because of the connected structure of the graph database. The

same analysis is possible with other relational databases structures, but would lack

the speed, ease, visualizations possible by Neo4j’s property graph database.

52



CHAPTER 4

CONCLUSION

The property graph database presented in this work organizes and contextualizes

machine learning models for chemical property predictions. A portion of the chemical

modeling design space is interrogated by implementing models with permutations in

design parameters and storing the model inputs and outputs to the Neo4j property

graph. Entities such as models, learning algorithms, molecular featurization methods,

molecules, and fragments are represented as nodes in the graph and connected by

relationships. Detailed information about the entities and their connections are stored

as properties on the nodes and relationships, creating a rich information architecture.

Explicit inclusion of molecules and model predictions of their chemical properties

extends analytical capabilities to the molecular level. The structured information

facilitates visual and quantitative evaluation of model performance. The interactive

user interface enables intuitive exploration and manipulation of the graph.

Graph queries are implemented to test the hypothesis that the property graph

architecture can be used to investigate which parts of a molecule are associated with

high prediction error. The approach is validated by query results indicating that

sulfonamide groups are associated with high lipophilicity prediction error. The graph

queries, written in the Cypher language, are performant and human accessible. The

current property graph uses off-the-shelf models to demonstrate utility. Moving for-

ward, the flexible database schema can be extended to include state-of-the art learning

and featurization approaches.

53



Appendix A

ABBREVIATIONS

ML Machine Learning

API Application Programming Interface

SMILES Simplified Molecular Input Line Entry System

MSE Mean Squared Error

RMSE Root Mean Squared Error

PGDB Property Graph DataBase

CV Cross Validation

RDF Resource Description Framework

QSAR Quantitative Structure Activity Relationship

MAE Mean Absolute Error

AUC Area Under the Curve

DFT Density Functional Theory

QM Quantum Mechanics

ANN Artificial Neural Network

NMR Nuclear Magnetic Resonance

HLB Hydrophilic Lipophilic Balance

CMC Critical Micelle Concentration

IFT Interfacial Tension

SAFT Statistical Associating Fluid Theory

SQL Structured Query Language

JSON JavaScript Object Notation

54



Appendix B

CYPHER GRAPH QUERIES

B.1 General Graph Queries

Display all nodes and relationships within limit

MATCH (n)-[r]-()

RETURN n, r LIMIT 1000

Search by node label

MATCH (model:MLModel)

RETURN model

Search by label and property

MATCH (algo:Algorithm)<-[:USES_ALGORITHM]-(model:MLModel)

WHERE algo.name = "nn"

RETURN model

Find molecules in multiple datasets

MATCH (m:Molecule)<-[r:CONTAINS_MOLECULE]-(d:DataSet)

WITH m, count(r) as rel_count, collect(d.data) as datasets

WHERE rel_count > 1

RETURN m.smiles, rel_count, datasets

ORDER BY rel_count DESC

55



B.2. QUERIES FOR FIGURES

Find molecules in specific datasets

MATCH (d1:DataSet)-[:CONTAINS_MOLECULE]->(mol:Molecule)<-[:CONTAINS_MOLECULE]-

(d2:DataSet)

WHERE d1.data = "water-energy.csv" AND d2.data = "ESOL.csv"

RETURN mol.smiles, d1.data, d2.data

Sort molecules by prediction error

MATCH (testset:TestSet)-[error:CONTAINS_PREDICTED_MOLECULE]->(molecule:Molecule)

RETURN molecule.smiles, error.scaled_average_error

ORDER BY error.scaled_average_error DESC

B.2 Queries for Figures

The images used in the figures were created with Neo4j Bloom and were not

the direct result of Cypher Queries. Below, we provide Cypher queries for accessing

analogous results. The Cypher statements will provide more results than shown in the

figures. Additionally, the underlying quantitative data is better accessed via Cypher

than Bloom.

Full Graph

MATCH (n)-[r]-()

RETURN n, r LIMIT 1000

Inter- Intra Model Comparisons

MATCH path =(:Molecule)<-[:CONTAINS_PREDICTED_MOLECULE]-(:TestSet)

<-[:PREDICTS]-(:MLModel)-[:USES_DATASET]->(d:DataSet)

WHERE d.data = "Lipophilicity-ID.csv"

RETURN path

56



B.3. QUERIES FOR FRAGMENT ERROR ANALYSIS

Comprehensive Model Compares

MATCH (d:Dataset)<-[:USES_DATASET]-(m:MLModel)-[:USES_FEATURE_METHOD]->

(f:FeatureMethod)

WITH d, m, f

MATCH (a:Algorithm)<-[:USES_ALGORITHM]-(m)-[:PREDICTS]->

(t:TestSet)-[:CONTAINS_PREDICTED_MOLECULE]->(mol:Molecule)

RETURN d, m, f, t, mol, a

Molecule Difficulty

MATCH (d:Dataset)<-[:USES_DATASET]-(:MLModel)-[p:PREDICTS]->

(t:TestSet)-[:CONTAINS_PREDICTED_MOLECULE]->(m:Molecule)

WHERE d.data = "Lipophilicity-ID.csv"

RETURN t, m

B.3 Queries For Fragment Error Analysis

These queries make use of Cypher parameters, which are like storing variables

for later use. This makes it easy to change the variable by only having to set it on

place instead of many. In this case, the dataset name is stored as a parameter and

later recalled using $data.

Prepare the Graph

// Delete old weights

MATCH (M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)

REMOVE M.difficulty, f.difficulty

RETURN M, F, f;

57



B.3. QUERIES FOR FRAGMENT ERROR ANALYSIS

// Set a parameter for the Dataset you are interested in

// so you change it in one place only.

:param data => "Lipophilicity-ID.csv";

// Make new weights for Dataset

MATCH (D:DataSet{data: $data})-[:SPLITS_INTO_TEST]->

(T:TestSet)-[p:CONTAINS_PREDICTED_MOLECULE]->

(M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)

WITH avg(p.average_error) as difficulty, f, M, F

SET M.difficulty = difficulty

SET f.difficulty = difficulty

RETURN M, F, f;

Run Fragment Analysis

The command below produces the fragment analysis and returns the number of

relationships, the sum of their errors and the average error.

// Remove Common Fragments

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->(M:Molecule)

WITH percentileCont(M.difficulty, $cutoff) as cutoff

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->

(eM:Molecule)-[ef:HAS_FRAGMENT]->(eF:Fragment)

WHERE eM.difficulty < cutoff

WITH eF, count(ef) as efreq, cutoff

ORDER BY efreq DESC LIMIT $final_easy_frag

WITH collect(eF) as easyFrags, cutoff

58



B.3. QUERIES FOR FRAGMENT ERROR ANALYSIS

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->

(hM:Molecule)-[hf:HAS_FRAGMENT]->(hF:Fragment)

WHERE hM.difficulty > cutoff

WITH hF, count(hf) as hfreq, easyFrags

ORDER BY hfreq DESC LIMIT $final_hard_frag

WITH collect(hF) as hardFrags, easyFrags

// use APOC to do list intersect & subtraction

WITH apoc.coll.intersection(easyFrags, hardFrags) as overlap,

apoc.coll.subtract(hardFrags, easyFrags) as remain

// Find Molecule-Fragment pairs that have the remaining fragments

UNWIND remain as rFrags

MATCH (D:DataSet{data: $data})-[c:CONTAINS_MOLECULE]->

(M:Molecule)-[f:HAS_FRAGMENT]->(rFrags)

WITH M, rFrags

MATCH (M)-[f:HAS_FRAGMENT]->(rFrags)

// Get Difficulty Stats for Remaining Fragments

WITH rFrags.name as fragment, count(f) as number_of_rel,

sum(f.difficulty) as sum_difficulty,sum(f.difficulty)/count(f) as avg_difficulty

RETURN fragment, number_of_rel, sum_difficulty, avg_difficulty

ORDER BY number_of_rel DESC, avg_difficulty DESC

59



B.3. QUERIES FOR FRAGMENT ERROR ANALYSIS

Clean Up Graph

Run this at the end to clean up after yourself!

// Delete weights again

MATCH (D:DataSet{data: $data})-[:SPLITS_INTO_TEST]->

(T:TestSet)-[p:CONTAINS_PREDICTED_MOLECULE]->

(M:Molecule)-[f:HAS_FRAGMENT]->(F:Fragment)

WITH avg(p.average_error) as difficulty, f, M, F

REMOVE M.difficulty = difficulty

REMOVE f.difficulty = difficulty

RETURN M, F, f LIMIT 20;

Fragment Analysis Graph

Figure 8 is the results of the above analysis, but visualized in Bloom. The Cypher

commands above were slightly modified to return the node IDs of all the fragments

and molecules found in the analysis. Then Bloom was used to search for nodes by

those IDs.

60



REFERENCES

REFERENCES

[1] Christopher J Cramer. Essentials of computational chemistry: theories and

models. John Wiley & Sons, 2013.

[2] Wolfram Koch and Max C Holthausen. A chemist’s guide to density functional

theory. John Wiley & Sons, 2015.

[3] Jack E Baldwin. “Rules for ring closure”. In: Journal of the Chemical Society,

Chemical Communications 18 (1976), pp. 734–736.

[4] William G Griffin. “Classification of surface-active agents by" HLB"”. In: J.

Soc. Cosmet. Chem. (1949).

[5] William C Griffin. “Calculation of HLB values of non-ionic surfactants”. In:

J. Soc. Cosmet. Chem. 5 (1954), pp. 249–256.

[6] R Nagarajan and E Ruckenstein. “Theory of surfactant self-assembly: a pre-

dictive molecular thermodynamic approach”. In: Langmuir (1991). issn: 0743-

7463. doi: 10.1021/la00060a012.

[7] R Nagarajan. “Micellization, mixed micellization and solubilization: the role

of interfacial interactions”. In: 26 (1986), pp. 205–264.

[8] R Nagarajan and E Ruckenstein. “Critical micelle concentration: A transition

point for micellar size distribution A statistical thermodynamical approach”.

In: J Colloid Interf Sci 60.2 (1977), pp. 221–231. issn: 0021-9797. doi: 10.

1016/0021-9797(77)90282-X.

[9] R Nagarajan and E Ruckenstein. “Aggregation of amphiphiles as micelles or

vesicles in aqueous media”. In: Journal of Colloid and Interface Science 71.3

(1979), pp. 580–604. issn: 0021-9797. doi: 10.1016/0021-9797(79)90331-X.

61

https://doi.org/10.1021/la00060a012
https://doi.org/10.1016/0021-9797(77)90282-X
https://doi.org/10.1016/0021-9797(77)90282-X
https://doi.org/10.1016/0021-9797(79)90331-X


REFERENCES

[10] E Ruckenstein and R Nagarajan. “Aggregation of amphiphiles in nonaque-

ous media”. In: The Journal of Physical Chemistry (1980). doi: 10.1021/

j100448a013.

[11] C Tanford. “The hydrophobic effect and the organization of living matter”.

In: Science (1978). doi: 10.1126/science.653353.

[12] C Tanford. “Theory of micelle formation in aqueous solutions”. In: The Journal

of Physical Chemistry 78.24 (1974), pp. 2469–2479. issn: 0022-3654. doi:

10.1021/j100617a012.

[13] John W Cahn and John E Hilliard. “Free Energy of a Nonuniform System. I.

Interfacial Free Energy”. In: 28.2 (1958), pp. 258–267. issn: 0021-9606. doi:

10.1063/1.1744102.

[14] Sudhakar Puvvada and Daniel Blankschtein. “Molecular-thermodynamic ap-

proach to predict micellization, phase behavior and phase separation of micel-

lar solutions. I. Application to nonionic surfactants”. In: 92.6 (1990), pp. 3710–

3724. issn: 0021-9606. doi: 10.1063/1.457829.

[15] Sudhakar Puvvada and Daniel Blankschtein. “Theoretical and experimental

investigations of micellar properties of aqueous solutions containing binary

mixtures of nonionic surfactants”. In: 96.13 (1992), pp. 5579–5592. doi: 10.

1021/j100192a071.

[16] Le Wang et al. “Modeling micelle formation and interfacial properties with

iSAFT classical density functional theory”. In: 146.12 (2017), p. 124705. issn:

0021-9606. doi: 10.1063/1.4978503.

62

https://doi.org/10.1021/j100448a013
https://doi.org/10.1021/j100448a013
https://doi.org/10.1126/science.653353
https://doi.org/10.1021/j100617a012
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.457829
https://doi.org/10.1021/j100192a071
https://doi.org/10.1021/j100192a071
https://doi.org/10.1063/1.4978503


REFERENCES

[17] Jianzhong Wu. “Density functional theory for chemical engineering: From

capillarity to soft materials”. In: Aiche J 52.3 (2006), pp. 1169–1193. issn:

1547-5905. doi: 10.1002/aic.10713.

[18] Justin S Smith et al. “Approaching coupled cluster accuracy with a general-

purpose neural network potential through transfer learning”. In: Nature com-

munications 10.1 (2019), pp. 1–8.

[19] Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. “ANI-1: an extensi-

ble neural network potential with DFT accuracy at force field computational

cost”. In: Chemical science 8.4 (2017), pp. 3192–3203.

[20] Abe Stern. AI in Chemistry. url: https://ssl.lvl3.on24.com/event/20/

69/14/3/rt/1/documents/resourceList1568691609246/hpcngcaiinquantumchemistrydeck1568696791748.

pdf.

[21] B Creton and Nieto-Draghi C. “Prediction of surfactants’ properties using

multiscale molecular modeling tools: A review”. In: Oil & Gas Science . . .

(2012). issn: 1294-4475. doi: 10.2516/ogst/2012040.

[22] Jiwei Hu, Xiaoyi Zhang, and Zhengwu Wang. “A review on progress in QSPR

studies for surfactants.” In: Int J Mol Sci 11.3 (2010), pp. 1020–47. issn:

1422-0067. doi: 10.3390/ijms11031020.

[23] ZW Wang, DY Huang, and SP Gong. “Prediction on Critical Micelle Concen-

tration of Nonionic Surfactants in Aqueous Solution: Quantitative Structure-

Property Relationship Approach”. In: Chinese Journal of . . . (2003).

[24] Zhengwu Wang et al. “A quantitative structure-property relationship study

for the prediction of critical micelle concentration of nonionic surfactants”. In:

63

https://doi.org/10.1002/aic.10713
https://ssl.lvl3.on24.com/event/20/69/14/3/rt/1/documents/resourceList1568691609246/hpcngcaiinquantumchemistrydeck1568696791748.pdf
https://ssl.lvl3.on24.com/event/20/69/14/3/rt/1/documents/resourceList1568691609246/hpcngcaiinquantumchemistrydeck1568696791748.pdf
https://ssl.lvl3.on24.com/event/20/69/14/3/rt/1/documents/resourceList1568691609246/hpcngcaiinquantumchemistrydeck1568696791748.pdf
https://doi.org/10.2516/ogst/2012040
https://doi.org/10.3390/ijms11031020


REFERENCES

197.1-3 (2002), pp. 37–45. issn: 0927-7757. doi: 10.1016/S0927-7757(01)

00812-3.

[25] Zheng-Wu Wang et al. “Prediction on critical micelle concentration of anionic

surfactants in aqueous solution: quantitative structure-property relationship

approach”. In: ACTA CHIMICA SINICA-CHINESE EDITION- 60.9 (2002),

pp. 1548–1552.

[26] Keith T Butler et al. “Machine learning for molecular and materials science”.

In: Nature 559.7715 (2018), pp. 547–555.

[27] Seyed Mohamad Moosavi et al. “Capturing chemical intuition in synthesis of

metal-organic frameworks”. In: Nature communications 10.1 (2019), p. 539.

[28] Rafael Gómez-Bombarelli et al. “Automatic chemical design using a data-

driven continuous representation of molecules”. In: ACS central science 4.2

(2018), pp. 268–276.

[29] Kyoungmin Min et al. “Machine learning assisted optimization of electro-

chemical properties for Ni-rich cathode materials”. In: Scientific reports 8.1

(2018), p. 15778.

[30] Paul Raccuglia et al. “Machine-learning-assisted materials discovery using

failed experiments”. In: Nature 533.7601 (2016), p. 73.

[31] Wiktor Beker et al. “Prediction of Major Regio-, Site-, and Diastereoisomers in

Diels–Alder Reactions by Using Machine-Learning: The Importance of Phys-

ically Meaningful Descriptors”. In: Angewandte Chemie International Edition

58.14 (2019), pp. 4515–4519.

[32] Derek T Ahneman et al. “Predicting reaction performance in C–N cross-

coupling using machine learning”. In: Science 360.6385 (2018), pp. 186–190.

64

https://doi.org/10.1016/S0927-7757(01)00812-3
https://doi.org/10.1016/S0927-7757(01)00812-3


REFERENCES

[33] Connor W Coley et al. “A graph-convolutional neural network model for the

prediction of chemical reactivity”. In: Chemical science 10.2 (2019), pp. 370–

377.

[34] Connor W Coley et al. “Prediction of organic reaction outcomes using machine

learning”. In: ACS central science 3.5 (2017), pp. 434–443.

[35] Anna Tomberg, Magnus J Johansson, and Per-Ola Norrby. “A Predictive

Tool for Electrophilic Aromatic Substitutions Using Machine Learning”. In:

The Journal of organic chemistry (2018).

[36] Sara Szymkuć et al. “Computer-Assisted Synthetic Planning: The End of

the Beginning”. In: Angewandte Chemie International Edition 55.20 (2016),

pp. 5904–5937.

[37] Paul D Leeson and Brian Springthorpe. “The influence of drug-like concepts

on decision-making in medicinal chemistry”. In: Nature reviews Drug discovery

6.11 (2007), pp. 881–890.

[38] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. “Deep reinforce-

ment learning for de novo drug design”. In: Science advances 4.7 (2018),

eaap7885.

[39] Laurent Gatto. An Introduction to Machine Learning with R. url: https:

//lgatto.github.io/IntroMachineLearningWithR/.

[40] John Dalton. A New System of Chemical Philosophy: Pt. 1/2. Dawson, 1808.

[41] Jöns Jacob Berzelius. “On the Nature of Muriatic Acid”. In: Annals of Phi-

losophy 2.10 (1813), pp. 254–259.

65

https://lgatto.github.io/IntroMachineLearningWithR/
https://lgatto.github.io/IntroMachineLearningWithR/


REFERENCES

[42] Edward Frankland. “XIX. On a new series of organic bodies containing met-

als”. In: Philosophical Transactions of the Royal Society of London 142 (1852),

pp. 417–444.

[43] A. Crum Brown. “XLIV.—On the Theory of Isomeric Compounds”. In: Trans-

actions of the Royal Society of Edinburgh 23.3 (1864), pp. 707–719. doi:

10.1017/S0080456800020007.

[44] Alexander Crum Brown. “2. On the Classification of Chemical Substances by

Means of Generic Radicals”. In: Proceedings of the Royal Society of Edinburgh

5 (1866), pp. 561–562.

[45] Linus Pauling. “The nature of the chemical bond. Application of results ob-

tained from the quantum mechanics and from a theory of paramagnetic sus-

ceptibility to the structure of molecules”. In: Journal of the American Chem-

ical Society 53.4 (1931), pp. 1367–1400.

[46] Robert B Corey and Linus Pauling. “Molecular models of amino acids, pep-

tides, and proteins”. In: Review of Scientific Instruments 24.8 (1953), pp. 621–

627.

[47] Linus Pauling, Robert B Corey, and Herman R Branson. “The structure

of proteins: two hydrogen-bonded helical configurations of the polypeptide

chain”. In: Proceedings of the National Academy of Sciences 37.4 (1951),

pp. 205–211.

[48] Linus Pauling and Robert B Corey. “The pleated sheet, a new layer config-

uration of polypeptide chains”. In: Proceedings of the National Academy of

Sciences of the United States of America 37.5 (1951), p. 251.

66

https://doi.org/10.1017/S0080456800020007


REFERENCES

[49] James D Watson and Francis HC Crick. “Molecular structure of nucleic acids”.

In: Nature 171.4356 (1953), pp. 737–738.

[50] JT Arnold and ME Packard. “Variations in absolute chemical shift of nuclear

induction signals of hydroxyl groups of methyl and ethyl alcohol”. In: The

Journal of Chemical Physics 19.12 (1951), pp. 1608–1609.

[51] Katja Hansen et al. “Assessment and validation of machine learning methods

for predicting molecular atomization energies”. In: Journal of Chemical Theory

and Computation 9.8 (2013), pp. 3404–3419.

[52] Felix A Faber et al. “Prediction errors of molecular machine learning models

lower than hybrid DFT error”. In: Journal of chemical theory and computation

13.11 (2017), pp. 5255–5264.

[53] G Skoraczyński et al. “Predicting the outcomes of organic reactions via ma-

chine learning: are current descriptors sufficient?” In: Scientific reports 7.1

(2017), p. 3582.

[54] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. “Inverse molecular de-

sign using machine learning: Generative models for matter engineering”. In:

Science 361.6400 (2018), pp. 360–365.

[55] O Anatole Von Lilienfeld. “First principles view on chemical compound space:

Gaining rigorous atomistic control of molecular properties”. In: International

Journal of Quantum Chemistry 113.12 (2013), pp. 1676–1689.

[56] Chenru Duan et al. “Learning from Failure: Predicting Electronic Structure

Calculation Outcomes with Machine Learning Models”. In: Journal of chem-

ical theory and computation (2019).

67



REFERENCES

[57] Gisbert Schneider and David E Clark. “Automated de novo drug design: are

we nearly there yet?” In: Angewandte Chemie International Edition 58.32

(2019), pp. 10792–10803.

[58] Marcus Olivecrona et al. “Molecular de-novo design through deep reinforce-

ment learning”. In: Journal of cheminformatics 9.1 (2017), p. 48.

[59] Marwin HS Segler et al. “Generating focused molecule libraries for drug dis-

covery with recurrent neural networks”. In: ACS central science 4.1 (2018),

pp. 120–131.

[60] Niek van Hilten, Florent Chevillard, and Peter Kolb. “Virtual compound li-

braries in computer-assisted drug discovery”. In: Journal of chemical infor-

mation and modeling 59.2 (2019), pp. 644–651.

[61] Connor W Coley et al. “A robotic platform for flow synthesis of organic com-

pounds informed by AI planning”. In: Science 365.6453 (2019), eaax1566.

[62] Connor W Coley et al. “Computer-assisted retrosynthesis based on molecular

similarity”. In: ACS central science 3.12 (2017), pp. 1237–1245.

[63] Thomas J Struble et al. “Current and Future Roles of Artificial Intelligence in

Medicinal Chemistry Synthesis”. In: Journal of Medicinal Chemistry (2020).

[64] Hanyu Gao et al. “Combining retrosynthesis and mixed-integer optimization

for minimizing the chemical inventory needed to realize a WHO essential

medicines list”. In: Reaction Chemistry & Engineering 5.2 (2020), pp. 367–

376.

[65] Zach Jensen et al. “A machine learning approach to zeolite synthesis enabled

by automatic literature data extraction”. In: ACS central science 5.5 (2019),

pp. 892–899.

68



REFERENCES

[66] Olexandr Isayev et al. “Universal fragment descriptors for predicting proper-

ties of inorganic crystals”. In: Nature communications 8.1 (2017), pp. 1–12.

[67] Kirstin Alberi et al. “The 2019 materials by design roadmap”. In: Journal of

Physics D: Applied Physics 52.1 (2018), p. 013001.

[68] Rafał Roszak et al. “Rapid and Accurate Prediction of p K a Values of C–

H Acids Using Graph Convolutional Neural Networks”. In: Journal of the

American Chemical Society 141.43 (2019), pp. 17142–17149.

[69] Rafael Gómez-Bombarelli et al. “Design of efficient molecular organic light-

emitting diodes by a high-throughput virtual screening and experimental ap-

proach”. In: Nature materials 15.10 (2016), pp. 1120–1127.

[70] Artem Cherkasov et al. “QSAR modeling: where have you been? Where are

you going to?” In: Journal of medicinal chemistry 57.12 (2014), pp. 4977–

5010.

[71] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learn-

ing”. In: Chemical science 9.2 (2018), pp. 513–530.

[72] RDKit: Open-source cheminformatics. url: http://www.rdkit.org (visited

on 05/26/2019).

[73] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[74] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org. 2015. url: https:

//www.tensorflow.org/.

69

http://www.rdkit.org
https://www.tensorflow.org/
https://www.tensorflow.org/


REFERENCES

[75] Connor W Coley et al. “Convolutional embedding of attributed molecular

graphs for physical property prediction”. In: Journal of chemical information

and modeling 57.8 (2017), pp. 1757–1772.

[76] Kevin Yang et al. “Analyzing learned molecular representations for property

prediction”. In: Journal of chemical information and modeling 59.8 (2019),

pp. 3370–3388.

[77] Sunghwan Kim et al. “PubChem substance and compound databases”. In:

Nucleic acids research 44.D1 (2016), pp. D1202–D1213.

[78] Maho Nakata et al. “PubChemQC PM6: A dataset of 221 million molecules

with optimized molecular geometries and electronic properties”. In: arXiv

preprint arXiv:1904.06046 (2019).

[79] John J Irwin et al. “ZINC: a free tool to discover chemistry for biology”. In:

Journal of chemical information and modeling 52.7 (2012), pp. 1757–1768.

[80] Janna Hastings et al. “The ChEBI reference database and ontology for biolog-

ically relevant chemistry: enhancements for 2013”. In: Nucleic acids research

41.D1 (2012), pp. D456–D463.

[81] Janna Hastings et al. “ChEBI in 2016: Improved services and an expanding

collection of metabolites”. In: Nucleic acids research 44.D1 (2016), pp. D1214–

D1219.

[82] Lorenz C Blum and Jean-Louis Reymond. “970 million druglike small molecules

for virtual screening in the chemical universe database GDB-13”. In: Journal

of the American Chemical Society 131.25 (2009), pp. 8732–8733.

70



REFERENCES

[83] Lars Ruddigkeit et al. “Enumeration of 166 billion organic small molecules in

the chemical universe database GDB-17”. In: Journal of chemical information

and modeling 52.11 (2012), pp. 2864–2875.

[84] Anubhav Jain et al. “Commentary: The Materials Project: A materials genome

approach to accelerating materials innovation”. In: Apl Materials 1.1 (2013),

p. 011002.

[85] Janna Hastings et al. “The chemical information ontology: provenance and

disambiguation for chemical data on the biological semantic web”. In: PloS

one 6.10 (2011), e25513.

[86] Villu Ruusmann, Sulev Sild, and Uko Maran. “QSAR DataBank repository:

open and linked qualitative and quantitative structure–activity relationship

models”. In: Journal of Cheminformatics 7.1 (2015), pp. 1–11.

[87] Igor V Tetko, Uko Maran, and Alexander Tropsha. “Public (Q) SAR services,

integrated modeling environments, and model repositories on the web: state

of the art and perspectives for future development”. In: Molecular Informatics

36.3 (2017), p. 1600082.

[88] Steven Kearnes et al. “Molecular graph convolutions: moving beyond finger-

prints”. In: Journal of computer-aided molecular design 30.8 (2016), pp. 595–

608.

[89] Matthias Rupp and Gisbert Schneider. “Graph kernels for molecular similar-

ity”. In: Molecular Informatics 29.4 (2010), pp. 266–273.

[90] R. Frederick Ludlow and Sijbren Otto. “Systems chemistry”. In: Chem. Soc.

Rev. 37 (1 2008), pp. 101–108. doi: 10.1039/B611921M. url: http://dx.

doi.org/10.1039/B611921M.

71

https://doi.org/10.1039/B611921M
http://dx.doi.org/10.1039/B611921M
http://dx.doi.org/10.1039/B611921M


REFERENCES

[91] Bartosz A Grzybowski et al. “The’wired’universe of organic chemistry”. In:

Nature Chemistry 1.1 (2009), pp. 31–36.

[92] Marcin Fialkowski et al. “Architecture and evolution of organic chemistry”.

In: Angewandte Chemie 117.44 (2005), pp. 7429–7435.

[93] AgnieszkaWołos et al. “Synthetic connectivity, emergence, and self-regeneration

in the network of prebiotic chemistry”. In: Science 369.6511 (2020). issn:

0036-8075. doi: 10.1126/science.aaw1955. eprint: https://science.

sciencemag.org/content/369/6511/eaaw1955.full.pdf. url: https:

//science.sciencemag.org/content/369/6511/eaaw1955.

[94] Kyle JM Bishop, Rafal Klajn, and Bartosz A Grzybowski. “The core and most

useful molecules in organic chemistry”. In: Angewandte Chemie International

Edition 45.32 (2006), pp. 5348–5354.

[95] Sara Szymkuć et al. “Computer-Assisted Synthetic Planning: The End of

the Beginning”. In: Angewandte Chemie International Edition 55.20 (2016),

pp. 5904–5937.

[96] Tomasz Badowski et al. “Synergy Between Expert and Machine-Learning

Approaches Allows for Improved Retrosynthetic Planning”. In: Angewandte

Chemie International Edition 59.2 (2020), pp. 725–730.

[97] Mikołaj Kowalik et al. “Parallel optimization of synthetic pathways within the

network of organic chemistry”. In: Angewandte Chemie International Edition

51.32 (2012), pp. 7928–7932.

[98] Chris M Gothard et al. “Rewiring chemistry: Algorithmic discovery and exper-

imental validation of one-pot reactions in the network of organic chemistry”.

In: Angewandte Chemie International Edition 51.32 (2012), pp. 7922–7927.

72

https://doi.org/10.1126/science.aaw1955
https://science.sciencemag.org/content/369/6511/eaaw1955.full.pdf
https://science.sciencemag.org/content/369/6511/eaaw1955.full.pdf
https://science.sciencemag.org/content/369/6511/eaaw1955
https://science.sciencemag.org/content/369/6511/eaaw1955


REFERENCES

[99] Karol Molga, Piotr Dittwald, and Bartosz A Grzybowski. “Navigating around

patented routes by preserving specific motifs along computer-planned ret-

rosynthetic pathways”. In: Chem 5.2 (2019), pp. 460–473.

[100] Sebastian Steiner et al. “Organic synthesis in a modular robotic system driven

by a chemical programming language”. In: Science 363.6423 (2019).

[101] Luzian Porwol et al. “An Autonomous Chemical Robot Discovers the Rules of

Inorganic Coordination Chemistry without Prior Knowledge”. In: Angewandte

Chemie International Edition (2020).

[102] Ming Pan et al. “Design technologies for eco-industrial parks: From unit op-

erations to processes, plants and industrial networks”. In: Applied Energy 175

(2016), pp. 305–323.

[103] Li Zhou et al. “An ontology framework towards decentralized information

management for eco-industrial parks”. In: Computers & Chemical Engineering

118 (2018), pp. 49–63.

[104] Feroz Farazi et al. “OntoKin: An ontology for chemical kinetic reaction mecha-

nisms”. In: Journal of Chemical Information and Modeling 60.1 (2019), pp. 108–

120.

[105] Andreas Eibeck, Mei Qi Lim, and Markus Kraft. “J-Park Simulator: An

ontology-based platform for cross-domain scenarios in process industry”. In:

Computers & Chemical Engineering 131 (2019), p. 106586.

[106] Evan E Bolton et al. “PubChem: integrated platform of small molecules and

biological activities”. In: Annual reports in computational chemistry. Vol. 4.

Elsevier, 2008, pp. 217–241.

73



REFERENCES

[107] Sunghwan Kim et al. “PubChem 2019 update: improved access to chemical

data”. In: Nucleic acids research 47.D1 (2019), pp. D1102–D1109.

[108] Davide Alocci et al. “Property graph vs RDF triple store: A comparison on

glycan substructure search”. In: PloS one 10.12 (2015), e0144578.

[109] Neil Swainston et al. “biochem4j: Integrated and extensible biochemical knowl-

edge through graph databases”. In: PloS one 12.7 (2017), e0179130.

[110] Faming Gong et al. “Neo4j graph database realizes efficient storage perfor-

mance of oilfield ontology”. In: PloS one 13.11 (2018), e0207595.

[111] Vasundra Touré et al. “STON: exploring biological pathways using the SBGN

standard and graph databases”. In: BMC bioinformatics 17.1 (2016), pp. 1–9.

[112] Angiras Menon, Nenad B Krdzavac, and Markus Kraft. “From database to

knowledge graph—using data in chemistry”. In: Current Opinion in Chemical

Engineering 26 (2019), pp. 33–37.

[113] Nadime Francis et al. “Cypher: An evolving query language for property

graphs”. In: Proceedings of the 2018 International Conference on Management

of Data. 2018, pp. 1433–1445.

[114] Xiaoyu Sun et al. “Assessing Graph-based Deep Learning Models for Predict-

ing Flash Point”. In: Molecular informatics 39.6 (2020), p. 1900101.

[115] François Chollet et al. Keras. https://keras.io. 2020.

[116] Descriptor computation(chemistry) and (optional) storage for machine learn-

ing. Dec. 11, 2020. url: https://github.com/bp-kelley/descriptastorus

(visited on 12/11/2020).

74

https://keras.io
https://github.com/bp-kelley/descriptastorus


REFERENCES

[117] scikit-optimize: Sequential model-based optimization with a ‘scipy.optimize‘

interface. Dec. 11, 2020. url: https://github.com/scikit-optimize/

scikit-optimize (visited on 12/11/2020).

[118] Milan Remko. “Theoretical study of molecular structure and gas-phase acidity

of some biologically active sulfonamides”. In: The Journal of Physical Chem-

istry A 107.5 (2003), pp. 720–725.

[119] Milan Remko and Claus-Wilhelm von der Lieth. “Theoretical study of gas-

phase acidity, pKa, lipophilicity, and solubility of some biologically active

sulfonamides”. In: Bioorganic & medicinal chemistry 12.20 (2004), pp. 5395–

5403.

[120] Michael F Sugrue. “New approaches to antiglaucoma therapy”. In: Journal of

medicinal chemistry 40.18 (1997), pp. 2793–2809.

[121] Nicholas J Baxter et al. “Reactivity and mechanism in the hydrolysis of

β-sultams”. In: Journal of the American Chemical Society 122.14 (2000),

pp. 3375–3385.

75

https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize

	Information Architecture for a Chemical Modeling Knowledge Graph
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Design-Build-Test Cycle
	Machine Learning in Molecular Disciplines
	Machine Learning Predictions of Chemical Properties
	Strengths and Limitations
	Machine Learning Workflow
	Molecular Representations and Featurization

	Navigating Design Space (Motivation)
	Graph Databases for Chemistry
	Databases
	Chemical Networks
	Statement of Work


	 Methodology
	Machine Learning Pipeline
	Datasets
	Model Generation
	Storage & Export

	Graph Database
	Software
	Architecture
	Queries


	 Results
	Python Pipeline
	Graph Database
	Model Evaluation and Comparison
	Graph Queries for Molecular Error Analysis

	Lipophilicity Case Study
	Query Setup
	Query Results
	Query Follow-up
	Case Study Conclusion


	 Conclusion
	Appendix  Abbreviations
	Appendix  Cypher Graph Queries
	General Graph Queries
	Queries for Figures
	Queries For Fragment Error Analysis

	References

