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ABSTRACT 

 

The main goal of the study is to analyse the possibility of quantifying the loss of biomass in 

burned forest stands using Light Detection and Ranging (LiDAR) data. Since wildfires are not 

uncommon in Mediterranean areas, it is useful to quantify the magnitude of fire damage in 

forests. With the use of remote sensing, it is possible to plan post-fire recovery management 

and to quantify the losses of biomass and carbon stock. Mata Nacional de Leiria (MNL) was 

chosen, because, after the fire in October 2017, it showed areas with low and medium-high 

fire severity. MNL is divided in several rectangular management units (MU). To achieve our 

objective, it was necessary to find a MU with burned and unburned areas. In this selection 

process, we used Sentinel-2 images. The fire severity was estimated by deriving a spectral 

index related with the effects of fire and to compute the temporal difference (pre- minus post-

fire) of this index, the delta normalized burn ratio (DNBR). Forest inventory was carried out in 

four plots installed in the selected MU. Allometric equations were used to estimate values of 

stand aboveground biomass. These values were used to fit a relationship with data extracted 

from LiDAR cloud metrics. The LiDAR data were acquired with a VLP-16 Velodyne LiDAR 

PUCK™ mounted on an Unmanned Aerial Vehicles (UAV) at an altitude of 60 m above the 

ground. The point clouds were then processed with the FUSION software until a cloud metrics 

was generated and then regression models were used to fit equations related to LiDAR-derived 

parameters. Two biomass equations were fit, one with the whole tree metrics having a R² = 

0,95 and a second one only considering the tree crown metrics presenting a R² = 0,93. The 

state of the forest (unburned/burned) was significant on the final equation. 

 

Keywords: Wildfires, Remote Sensing, Fire severity, Biomass loss, Maritime pine 
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ABSTRACT PORTUGUESE 

 

Os impactos dos fogos florestais são alarmantes. Regiões com características 

diferentes são afetadas, verificando-se em algumas o avanço do fogo até às áreas urbanas, 

com prejuízo em residências e infraestruturas. Por outro lado, o fogo também é um fenómeno 

natural, tendo uma função importante nos ecossistemas. Nas áreas florestais não atingidas 

pelo fogo regularmente, a vegetação do sub-bosque acumula-se criando condições propícias 

à propagação de fogos severos. A avaliação dos danos na floresta provocados pelo fogo pode 

ser difícil pois é feita por avaliações no terreno. Esta avaliação é essencial para permitir avaliar 

o grau de severidade dos fogos nos ecossistemas florestais, ou seja, o seu impacte na 

vegetação e solo. Através da deteção remota é possível quantificar a perda de biomassa nos 

provoamentos florestais e planear a gestão da recuperação pós-fogo. O objetivo deste 

trabalho é analisar a possibilidade de quantificar a perda de biomassa em áreas ardidas de 

povoamentos florestais utilizando dados de Light Detection And Ranging (LiDAR). 

A Mata Nacional de Leiria (MNL) foi escolhida pela sua importância a nível nacional 

e pelo facto de ter em ardido cerca de 9000 ha em apenas 2 horas do dia 17 de outubro de 

2017. Os fogos na região apresentaram severidade baixa a média-alta e resultaram em uma 

floresta pós fogo com características particulares. A MNL está dividida em várias unidades de 

gestão (talhões). A seleção do talhão de estudo foi realizada de acordo com o mapa de 

severidade do fogo, obtido a partir de imagens do satélite Sentinel-2. Quatro parcelas de 

inventário de 20 x 20 m (400 m²) foram instaladas, com um total de 148 árvores de pinus 

pinaster, 75 em parcelas não-ardidas e 73 em parcelas ardidas. Foram medidas as posições 

das árvores, bem como a altura e o diâmetro a 1,30 m. Nas áreas não-ardidas a altura da 

base da copa de todas as árvores também foi medida. A biomassa das várias componentes 

da árvore foi estimada com equações alométricas e a biomassa acima do solo por hectare 

resultou na soma das biomassas das árvores das parcelas. 

As utilização de imagens pós e pré-fogo do satélite Sentinel-2 permitiu elaborar a 

cartografia da severidade de fogo, através do cálculo do índice Difference Normalized Burn 

Ratio (DNBR). 

Os dados do LiDAR foram adquiridos com o VLP-16 Velodyne LiDAR PUCK™ 

acoplado num Unmanned Aerial Vehicle (UAV) entre maio e junho de 2018, voando a uma 

altitude de 60 m acima do nível do solo. Durante o voo, o systema LiDAR foi configurado para 

varrer a área com uma abertura de ±35° relativamente ao nadir e armazenar até dois retornos 

por pulso (primeiro e último retorno). A trajetória de voo foi planeada para permitir uma 

sobreposição de 50% da cobertura varrida. Após o voo, os dados foram processados para 

obtenção das métricas do LiDAR. O processamento foi efetuado no programa FUSION 
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v.3.4.2. Foi realizada a filtragem dos pontos do terreno, a geração dos modelos digitais de 

terreno (Digital Terrain Model, DTM), a normalização dos dados em software R, e a extração 

das métricas da nuvem de pontos normalizada. O processamento dos dados do LiDAR 

resultou num conjunto de 102 métricas, que foram utilizadas para estimar a biomassa acima 

do solo. As equações selecionadas com três métricas do LiDAR resultaram de uma 

investigação exaustiva tendo como critério o valor mínimo da raíz quadrada do erro médio 

quadrático (RMSE). Além disso, foi adicionada ao modelo uma variável dummy relacionada 

com o status da parcela, isto é, ardida ou não ardida.  

Os níveis do índice DNBR variaram de áreas não ardidas a severamente ardidas, 

revelando uma elevada variabilidade espacial. Em alguns locais, a distância entre áreas com 

fogo e com fogo não-severo foi inferior a 100 m. A separação entre áreas severamente 

atingidas e pouco atingidas pelo fogo foi claramente visível em campo, o que dá confiabilidade 

ao mapa de severidade baseado no DNBR. Nas áreas classificadas como não-ardidas no 

mapa de severidade não se observaram vestígios de fogos no campo, tanto nos troncos como 

nas copas das árvores. 

Os dados do LiDAR apresentaram poucos pontos na superfície do terreno, 

especialmente nas áreas ardidas. Tal facto é devido à maior penetração dos feixes de laser 

em regiões onde as copas possuíam menos agulhas. Em muito casos, os troncos das árvores 

nas áreas queimadas estavam pretos até a base das copas. Já estas estavam castanhas 

devido à morte das agulhas provocada pelo fogo. O facto dos troncos serem pretos causou, 

possivelmente, interferências na reflectância dos feixes de laser do LiDAR. 

A equação selecionada para a estimativa da biomassa incluiu as seguintes variáveis: 

altura máxima dos pontos, a assimetria da distribuição dos pontos e a altura relativa ao 

percentil 80%. Foram consideradas métricas extraídas dos pontos a 1 m acima do solo. A 

equação apresentou um bom ajustamento (R²=0,94). Baseado nos resultados desta primeira 

estimativa da biomassa, foi ajustada outra equação considerando métricas extraídas dos 

pontos acima de 18,5 m do solo, que é a média da altura da base das copas das árvores das 

parcelas não-ardidas. A equação usou as seguintes variáveis: o percentil 80% da intensidade 

de retorno dos pontos e a percentagem de retornos acima de 18,5 m. O coeficiente de 

determinação desta foi R²=0,93. O estado da floresta (ardida/não-ardida), expresso através 

de variáveis dummy, foi significativo para o modelo de regressão na equação. 

Este trabalho mostrou que é possível realizar a estimativa da biomassa de áreas 

afetadas por fogos utilizando dados de deteção remota. A abordagem baseada em dados 

LiDAR permite que se faça a recolha dos dados de maneira mais prática do que os métodos 

de inventário convencionais, os quais exigem muito tempo e recursos para a sua execução. 
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1. Introduction 

 

The tremendous impacts of forests fires that occurred in Portugal in 2017 are alarming. In this 

special case, Portugal’s forests have not been spared and many areas in different locations 

were victims due to wildfires. Portugal’s fires have burnt around 442.418 hectares of forest in 

the year 2017 (ICNF, 2019), 52 times the size of Lisbon and representing nearly 60 percent of 

the total area burnt in the entire European Union in 2017 (RUS-Copernicus, 2017). 

Forest fires are a problematic and recurring issue not only in Mediterranean ecosystems, but 

worldwide (Fernández-Manso et al., 2016). Wildfires commonly burn extensive areas in forests 

and rangelands, which are important to society, wildlife, and the ecosystem in general (Morgan 

et al., 2014). Despite the extensive efforts to prevent, suppress, and mitigate wildfires, they 

continue to cause damage to wildlife and property. These damages include direct losses such 

as deaths, injuries, and structural damage along with business interruption, utility loss, and 

ecosystem impacts. 

Moreover, wildfires frequently move into communities and burn buildings and infrastructures. 

On the other side of this topic, wildfires are naturally occurring and they play an important role 

in the life of a wildland area (Stein et al., 2013), but for planted forests that have an industrial 

purpose, forest fires can be problematic. Many of the environmental impacts are naturally 

recovered as the wildland area returns to its pre-fire state (Stein et al., 2013). These impacts 

do have real costs in the immediate aftermath of a fire and their effects can be exacerbated by 

human activity. Trying to completely avoid forest fires has a negative effect. By not having 

regular sweeps of fire through forested areas, the underbrush can grow to a point where the 

overabundance of fuel results in far more damaging fires (Thomas et al., 2017). 

Measuring the magnitude of the fire damage in forests using remote sensing, could be 

important to plan post-fire recovery management and to quantify the losses of carbon stock 

(Chu and Guo, 2013). To find solutions after the fires, burned areas need to be evaluated 

individually. Due to the extensive areas affected by wildfires, it is hard to manage the post 

recovery actions from the ground only. The possibility of identifying and categorizing burned 

forests in different fire severity classes with the help of satellites or UAVs, where data is able 

to provide operational techniques that can be applied to large areas (Fraser et al., 2017). 

To identify and categorize the consequences, the term fire severity was born (Keeley, 2009), 

with the need to provide a description of how fire intensity affected ecosystems, particularly 

following wildfires where direct information on fire intensity was absent and effects are often 

quite variable within and between different ecosystems. Most studies, that have attempted to 

measure fire severity, have had a common basis that centres on the loss of biomass of organic 
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matter, both aboveground and belowground. Aboveground metrics such as crown volume 

scorch (used in forests) or twig diameter remaining on terminal branches (used in forests and 

shrublands) are indicators of biomass loss (Keeley, 2009). 

Remote sensing studies have found a good correlation between satellite imagery and fire 

severity estimates based on biomass loss (Keeley, 2009). LiDAR is an active remote sensing 

technology that is capable of capturing the three-dimensional (3D) structure of vegetation at 

high resolutions (both vertical and horizontal) and therefore it is now also being integrated into 

the studies of fire severity measurements (Angelo et al., 2010). 

Over the last decades, remote sensing techniques have proven their usefulness to accurately 

estimate fire-affected areas and fire severity (Chuvieco, 2008). In this context, the Europe’s 

Copernicus environmental monitoring programme Sentinel-2 gives continuity to the 

multispectral high-resolution optical observations over global terrestrial surfaces provided by 

the European Space Agency (ESA) through the Satellite for observation of Earth (SPOT) 

series of satellites (Fernández-Manso et al., 2016). 

Fires consume vegetation, alter soil moisture and leave bare soil. The chlorophyll loss lead to 

changes in the visible, the Red-Edge (RE) and the Near-Infra-Red (NIR) wave-lengths (Escuin, 

Navarro, and Fernández, 2008) regarding leaves and branches. Most studies involving fire 

severity and remotely sensed data are based on Red, NIR and Shortwave Infra-Red (SWIR) 

spectral regions (Chuvieco, 2008). Chuvieco et al. (2002) stated that standard indices based 

on red and NIR bands (as Normalized Difference Vegetation Index, NDVI) increase its 

correlation to burn severity when using the upper part of the red band (RE). Korets et al., (2010) 

showed that RE based indices (indicators of chlorophyll content) were useful for quantifying 

and mapping forest damage due to fires in Siberia. The Multi Spectral Instrument (MSI) 

onboard Sentinel-2A records data in the vegetation RE spectral domain that is one of the best 

remote sensing-based descriptors of chlorophyll content (Fernández-Manso et al., 2016), 

providing an opportunity to assess red-edge spectral indices for burn severity discrimination. 

The mapping and analysis of areas affected by fire is not only important to assess the damage 

done physical and ecologically, but it also provides information on the right management 

activities after the fire to build recovery plans. There are different ways to determine the 

severity, one with data taken through fieldwork at the plot level or to do it with remotely sensed 

data (Cocke, 2005). 

The delta normalized burn ratio (DNBR) is widely used to map post-fire effects from 

multispectral satellite imagery, but has not been rigorously validated across the great diversity 

in vegetation types. These data typically quantify spectral change between pre- and post-fire 

satellite images (Parks et al., 2014). The importance of these DNBR maps to fire rehabilitation 
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crews highlights the need for continued assessment of alternative remote sensing approaches 

(Smith et al., 2007). 

The increasing acquisition frequency of airborne LiDAR data over relatively large areas offers 

a potential alternative mode of measuring fire-induced ecological change and calibrating 

reflectance-based spectral indices, such as DNBR, to improve the models that use index-

based products. It has been well demonstrated, in the remote sensing literature, that the 

discrete-return LiDAR collected at high spatial resolution can accurately derive measures for 

the forest mean height or individual tree attributes, and provide three-dimensional canopy 

height and density metrics describing the vertical distribution of canopy material, aerodynamic 

roughness (Hudak, et al., 2009; Lefsky et al., 2002; Smith et al., 2007) and gap size (Hudak et 

al., 2009; Kane et al. 2013). When used with field data, LiDAR returns can also be used to 

predict forest attributes/variables/characteristics/measures such as basal area, volume, 

biomass, and leaf area (García et al. 2010; Hudak et al., 2009; Lefsky et al., 2002). LiDAR has 

been successfully used to quantify the effects of insect outbreaks in forests (Bater et al. 2010; 

Bright et al., 2012), pre-fire fuel loading (Andersen et al., 2005; García et al. 2011; Riaño et al. 

2003; Seielstad and Queen 2003), and structural measurements of the post-fire environment 

(Bishop et al. 2014; Kane et al., 2013; Kwak et al. 2010; Wulder et al. 2009). 

Airborne and satellite LiDAR measurements have allowed the development of novel 

techniques to accurately quantify the vertical and horizontal structures and the aboveground 

biomass (AGB) over a wide variety of forest ecosystems (Garcia et al., 2017). As most LiDAR 

data are currently acquired from airborne platforms, the data are often limited in terms of spatial 

and temporal coverage. Integration of airborne LiDAR with optical or Radar satellite 

observations provides a convenient alternative to overcome the shortcomings of LiDAR data 

availability, allowing for more accurate representation of the fuel load and the biomass 

dynamics, thus improving fire severity estimates. With airborne LiDAR, data as pre- and post-

fire Canopy Height Models (CHM) can be related to fire severity (Alonzo et al., 2017). 

LiDAR measures distances between a sensor and objects, based on the time lags between 

transmitting light amplification by stimulated emission of radiation (laser) beams from the 

sensor and receiving signals reflected from the illuminated objects (Chen, 2013). The 

distances derived from LiDAR, combined with the position of the sensor and the direction of 

the laser beam, uniquely determine the 3D coordinates of the objects illuminated. The errors 

of 3D coordinates vary with a myriad of factors, such as laser range sampling interval, global 

positioning system (GPS) positioning, inertial measurement unit, flying altitude, and surface 

reflectivity. But, in general, the vertical precision of position is on the order of decimetres for 

airborne and satellite LiDAR (Zwally et al. 2002; Chen, 2010). LiDAR remote sensing systems 

can be distinguished based on the way in which returned signals are recorded (discrete return 
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or waveform), scanning patterns (profiling or scanning), platforms (airborne, spaceborne or 

ground based), and footprint sizes (small-footprint: ~1 m or smaller, medium-footprint: ~10–30 

m, or large-footprint: ~50 m or larger) (Lu et al., 2012). The most common configurations of 

LiDAR systems are airborne small-footprint discrete-return scanning LiDAR, airborne small-

footprint discrete-return pro-filing LiDAR, airborne medium-footprint waveform LiDAR, and 

satellite large-footprint waveform systems. Ground-based systems and airborne small-footprint 

waveform systems are also emerging (Chen, 2013). Finally, with a more advancing payload 

on small UAV’s (wings, multi-copter), which can operate at a much lower altitude compared to 

satellite and airborne plane acquisition, the scans get more detailed and therefore give more 

insight, in this example on the biomass loss due to fire. 

Small-footprint LiDAR systems have proven to successfully correlate to AGB estimates in 

boreal and temperate forests (Kronseder et al., 2012). The remote sensing–based approach 

is appealing because it can provide spatially explicit estimates of the actual biomass at each 

pixel location, instead of only the average/total biomass within a given inventory unit (such as 

county, state, and country) (Jenkins et al., 2001). 

The main goal of this thesis is to analyse the use of LiDAR techniques to quantify losses of 

biomass due to fire. To achieve that, MNL was chosen, because it was affected by the fire in 

October of 2017. The fire severity was estimated by pre- and post-fire images from satellites 

like Sentinel-2, which supported the selection of the plots to carry out the study. Because MNL 

has areas with low and medium to high fire severity, we chose a management unit (MU), which 

has both severity classes. Both burned and unburned areas were scanned by flying an UAV 

with LiDAR sensors. We intended to test whether there were significant differences between 

the AGB of both areas and, if so, to quantify the loss of AGB associated with fire. For the 

estimation of the AGB also a dummy variable (burned/unburned) is going to be used to find 

out if the state of the forest has an impact on the linear regression model. 
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2. Mata Nacional de Leiria – History 

 

The National Forest of Leiria (Mata Nacional de Leiria – MNL) is an example of fixation of soil 

and land due to what would be lost by continuous dune spreading (Pinto, 1939). To implement 

norms for fixing the sand dunes for the conservation a former king of Portugal already setup 

management plans. The maritime pine (Pinus pinaster Aiton) is fixing the sands to stop the 

advancing dune growth towards the inland and the burying of agricultural lands. The MNL 

planning has always aimed at preserving this ecosystem created over the years. Any more 

"daring" intervention in the MNL, destroying or altering its vegetation cover (maritime pine), 

would destabilize this ecosystem, causing the disappearance of the soil, which is being formed 

on the wind sands, exposing agricultural crops from the periphery to the advancement of sands 

and sea winds (André and Cordeiro, 2016). Therefore, it is important to protect this forest and 

in case of natural or human disturbances (windthrows, forest fires, pests, and diseases) trying 

to find the best possible management options to keep the ecosystem in a balance. 

The MNL, located at Marinha Grande county, represents Portugal first planned area of 

maritime pine (Marques, 2010). This species is one of the main species in the national forest 

landscape and it is of great economic and social importance, especially in Central and Northern 

regions. The studied area has a humid temperate climate (mesothermal), with a dry, long and 

cool summer, according to Köppen classification. The geological substratum is largely 

dominated by Quaternary formations, which include mainly sand dunes and Pliocene 

sediments consisting of dunes and sand dunes. The relief is plain/flat to undulating, depending 

on the expression of the dunes, which form three main strands which roughly follow the 

direction of the coast. In addition to the pine, the shrubby and herbaceous species more 

abundant are the heather (Calluna vulgaris (L.) Hull), Yellow Rock Rose (Halimium calycinum 

(L.) K. Koch), Sage leaf rock rose (Cistus salvifolius L.), Braken (Pteridium aquilinum (L.) 

Kuhn), and Gorse (Ulex europaeus subsp. latebracteatus L.) (Marques, 2010). 
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3. Data and Methods 

3.1 Study area 

 

MNL is located on the coast of Portugal, approximately, 140 kilometres north of Lisbon 

(39°46’18.30’’N; 8°58’05.35’’ W) and covers around 11,080 ha (Figure 1). This number 

corresponds to about 60% of the area of the municipality of Marinha Grande (Alcarva, 2011). 

The site is covered mainly by pure stands of maritime pine with different age classes. MNL is 

divided in 342 rectangular management units with, approximately, 35 ha each. It has a 

maximum width of 8,394 m and a maximum length of 18,549 m. 

 

Figure 1: Plan of the management units in MNL 
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3.2 Site selection 

 

With the goal of distinguishing differences in the LiDAR metrics between burned and unburned 

areas of the forest, we localized spots in the forest where both burned and unburned occurred 

close to each other, in the same management unit. While the fire on the 15th and 16th October 

2017 ran over the MNL with a high speed, there were still isolated parts that were not burned. 

With the guidance of the fire severity map and the requirements for the UAV flights, the 

management unit 220 (Figure 2) was chosen. 

Two areas with the size of 60x120 m (7200 m²), one part was unburned and one was burned, 

were established for the field inventory and the UAV flights (Figure 2, Area 1 and Area 2). In 

each of these areas, two inventory plots of 1600 m² of area (40 m x 40 m) were installed: 

- P1B and P2B, burned plots with moderate to high fire severity, and 

- P1U and P2U, unburned or burned plots with low fire severity. 

The area of each plot – 1600 m2 – corresponds to the area of 4 pixels of Sentinel-2 images.  

To increase the number of degrees of freedom of the regression equations, each plot was 

subdivided into four subplots, with a size of 20 x 20 m (400 m²) (Figure 2).  

 

 

Figure 2: Map of management unit 220 with the two areas for the UAV flights and the 16 subplots 

 

Area 1 

Area 2 

Burned Unburned 

P1B P1U 

P2B 

P2U 
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3.3 Field inventory and methods 

 

In May-June 2018, field inventory was carried out on the four square plots (P1B, P1U, P2B, 

P2U, Figure 2). Most of the trees had a straight stem, only few of the trees in the field plot had 

forked stems (Figure 3). At the end, a total of 148 maritime pine trees were measured – 75 in 

unburnt plots (P1U+P2U) and 73 in burnt plots (P1B+P2B). The total height and the diameter 

at 1,30 m height (dbh) were measured in all trees. In the unburnt plots, the height of the crown 

base of all trees was measured. Tree coordinates were also registered, with a sub-metric 

precision GPS (Trimble, with a GPS ProXH receiver) 

Table 1 presents the main characteristics of the 4 plots. Plots located in the same area (P1U 

and P1B in Area 1, P2U and P2B in Area 2) are very similar, as intended. Area 2 has a higher 

site index than Area 1 (in this case, site index is the dominant height at 50 years and it is a 

measure of productivity), associated to higher number of trees per hectare, quadratic mean 

dbh, and stand basal area. 

 

Table 1: Main characteristics of the 4 plots used in this study 

 P1U P1B P2U P2B 

N (ha-1) 225 225 244 231 

t (yrs) 68 68 68 68 

hdom (m) 24,6 24,3 29,1 28,2 

hm (m) 24,1 24,1 27,9 27,4 

dg (cm) 36,4 35,8 38,7 38,2 

G (m2/ha) 23,5 22,6 28,6 26,5 

where N is the number of trees per hectare; t is the stand age; 
hdom is the dominant height defined as the mean height of the 
100 largest trees per hectare; hm is the mean height; dg is the 
quadratic mean dbh, and G is the stand basal area; P1U and P2U 
are the unburned plots, and P1B and P2B are the burnt plots. 
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Figure 3: Left: The burned forest, Right: Field data collection 

Data from inventory were used to estimate tree AGB (Formulas 1 - 6) (Faias, 2009), that was 

expressed as the sum of the tree biomass components: wood (w), bark (b), branches (br), and 

leaves (l). The stand AGB was defined as the sum of the aboveground biomass (Formula 6) 

of all trees in each plot expanded for the hectare. For the unburned and burned plots were 

used total aboveground biomass and aboveground biomass without the needles component, 

respectively (Figure 4). 

 

ύύ πȟππφςτω ὸ ȟ  Ὠ ȟ  Ὤ ȟ  (1) 
 

ύὦ πȟππψ ὸ ȟ  Ὠ ȟ    (2) 
 

ύὦὶ πȟππσσχς Ὠ ȟ     (3) 
 

ύὰ πȟπφρψτσ Ὠ ȟ  ȟ    (4) 

 
ύί ύύ ύὦ     (5) 

 
ύὥ ύύ ύὦ ύὦὶ ύὰ    (6) 

ww, wood biomass (kg); wb, bark biomass (kg); wbr, branches 
biomass (kg); wl, leaves biomass (kg); ws, stem biomass (kg); 
wa, aboveground biomass (kg); t, age (yrs); d, diameter at 1,30 
m height (cm); h, total height (m) 
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Figure 4: Left side: unburnt or low fire severity burnt area; right side: high fire severity burnt area. 
These photos are from a MU next to the one used in this work (credits: P. Soares) 
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3.4 Sentinel-2 data and fire severity 

 

With remote sensing, the standard procedure to estimate fire severity is to use two satellite 

images (one pre-fire and post-fire), to derive a spectral index related with the effects of fire 

(e.g. Normalized Burnt Ratio - NBR) and to compute the temporal difference (pre- minus post-

fire) of the index (e.g. DNBR). Satellite imagery used in this study was chosen such that pre- 

and post-fire dates were as close to the dates of the fire as possible, to reduce all influence 

that is not connected to the fire. All pre- and post-fire images were acquired with cloud and 

smoke-free sight on the plot (Miller and Thode, 2007).  

The NBR (Formula 7) was designed to highlight burned areas and estimate fire severity. The 

formula is similar to NDVI, except that it uses NIR and SWIR wavelengths, instead of the NIR 

and the visible radiation (Lutes et al., 2006). 

 

ὔὄὙ   (7) 

 

Unburned healthy vegetation has very high NIR reflectance and low reflectance in the 

shortwave infrared portion of the spectrum. Recently burned areas have relatively low 

reflectance in the NIR and high reflectance in the shortwave infrared band. A high NBR value 

generally indicates healthy vegetation while a low value indicates bare ground and recently 

burned areas (Humboldt State Geospatial Online, 2014). 

Higher DNBR (Formula 8) indicate more severe fire damage. Areas with negative DNBR 

values may indicate vegetation re-growth following a fire. 

 

$."2 ὖὶὩὪὭὶὩὔὄὙ ὖέίὸὪὭὶὩὔὄὙ  (8) 

 

The meaning of the DNBR values can vary from image to image, and for best results 

interpretation in specific instances should always be based on field assessment. These 

guidelines are then used to create a thematic burn severity layer depicting severity as low, 

moderate and high (Humboldt State Geospatial Online, 2014). 

For the categorization of the different levels of fire severity with the Landsat-2 data, at least, 

three levels should be stablished (low, medium and high). In this study, seven levels were 

defined, using Sentinel-2 images (Table 2). 



Biomass forest modelling using UAV LiDAR data under fire effect 

12 

Table 2: Fire Severity classification 

 

 

 

 

 

 

  

DNBR Fire Severity 

< -0,25 High post-fire regrowth 

-0,25 to -0,1 Low post-fire regrowth 

-0,1 to +0,1 Unburned 

0,1 to 0,27 Low-severity burn 

0,27 to 0,44 Moderate-low severity burn 

0,44 to 0,66 Moderate-high severity burn 

> 0,66 High-severity burn 
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3.5 LiDAR data acquisition and processing 

 

The LiDAR data were acquired with a VLP-16 Velodyne LiDAR PUCK™ mounted on a 

multicopter in early May/June 2018 from an average altitude of 60 m above the ground level. 

In this flight campaign the LiDAR system was configured to record up to two returns per laser 

pulse, i.e., first and last. The reported horizontal and vertical accuracies are ±3 cm, 

respectively, according to the technical information of the producer. The flight path was 

designed to have 50% swath overlap to cover all the area with a necessary number of scans. 

The flightpaths were oriented according to a lawnmower pattern, flying from north to south 

across the plots (Figures 5-6). The GPS precision of the flying drone was not sufficient to match 

different scan lines into a 100% matching image. Therefore, the scan angle of each flight line 

was reduced to ±35° (nadir) to not let the overlap/double vison of shapes disturb the whole 

point cloud. 

 

Figure 5: Lawn moaner-pattern of the UAV in Area1- P1U and P1B plots 

 

 

Figure 6: Lawn moaner-pattern of the UAV in Area2 – P2U and P2B plots 
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In Table 3, technical details of the laser scanner used are described. 

 

Table 3: Technical details of the laser scanner/Laser system parameters for LiDAR data collection 

Parameter Value 

Model VLP-16 Velodyne LiDAR PUCK™ 

Channels 16 

Measurement Range Up to 100 m 

Accuracy ±3 cm (Typical) 

Returns Single and Dual Returns (Strongest, Last) 

Field of View (Vertical)  +15,0 to -15,0 (30) 

Angular Resolution (Vertical) 2,0 

Field of View (Horizontal) 360 

Angular Resolution (Horizontal/Azimuth) 0,1 – 0,4 

Rotation Rate 5 Hz – 20 Hz 

Point Density [Points/m²] ±150 

Pulse duration [ns] (Duration) 6 

Repetition Rate [KHz] (repetition) 21,7 

Measurement Rate [pts/s] ~300.000 

Power consumption [W] 8 

Net weight [kg] 0,83 

 

Regression models were used to develop equations to relate LiDAR-derived parameters with 

stand AGB. 

For processing the point clouds, the FUSION software V.3.4.2 (McGaughey, 2018) was used 

for filtering and interpolating data and generating: 

- the Digital Terrain Model (DTM), 

- the Canopy Height Model (CHM), and  

- the Normalized Height (NH) of the Airborne Laser Scanning (ALS) point cloud, 

which were necessary as input data for generating the cloud metrics. These were used to fit 

equations to estimate stand AGB. 

The FUSION software v3.8 (McGaughey, 2018) was run on R environment (RStudio Team, 

2016) and the lidR package (Roussel, 2019) was applied for LiDAR data manipulation. The 

following processing steps were carried out: 

 1. The acquired point clouds were cut, using the PolyClipData tool, into the size that 

contain all the subplots, to save work doing the further tooling in a big cloud and then in the 

end separating into the smaller parcels. 
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 2. Outliers were removed using the FilterData tool, considering a window size of 35m 

and a factor of 2.5. These parameters were selected after several tests to be proven good and 

giving appropriate results to clean the cloud from unnecessary points. 

 3. The GroundFilter tool, which implements a filtering algorithm based on linear 

prediction, was used to extract ground returns from all the ALS points with a cell size of 1 m. 

The following parameters were also used to extract the bare earth points: gparam=-2,0; 

wparam=2,5; and using 5 interactions. 

 4. A DTM grid, with 1 m cell size, was created with the GridSurfaceCreate tool, which 

estimates the elevation of each grid cell from the lowest elevation of all points within the cell; 

if the cell does not contain any points, it is filled by interpolation from the neighbouring cells. 

 5. Following, the ClipData tool was used to obtain the normalized heights by subtraction 

of the ellipsoidal height of the DTM from the ellipsoidal height of each ALS return (Magdon et 

al., 2018). 

 6. Finally, the extraction of metric from the point cloud was carried out by using the 

CloundMetrics command. The CloudMetrics command generates a csv (.txt) file with 102 

metric key values about the properties of the point cloud.  
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3.6 Modelling approach 

 

After extracting the cloud metrics values for each of the subplots with the Fusion software 

package, the values were used to fit stand AGB equations.  

An exhaustive search was applied to select the best independent variables for the equations. 

An all-possible regression algorithm was used to select the best model with three predictors, 

out of a large set of variables. Multiple linear models fitted through ordinary least square (OLS) 

regression were applied, where the response variable has been square rooted to avoid 

problems of heteroscedasticity (Sheridan et al., 2015). The presence of collinearity in the 

models was analysed through the values of the variance inflation factors (VIF), using the value 

10 as the upper limit (Steinhorst and Myers, 1988). 

The selection of the best model was based on measures of prediction ability, and the root 

mean square error (RMSE, Formula 9) was used. 

 

ὙὓὛὉ Ϸ ρππ ᶻ ύ
В

  (9) 

 

Where n is the number of plots (n=16); ύ  and ύ  are the observed and estimated stand AGB 

(t/ha) for the subplots i=1…16, respectively; ύ is the observed mean stand AGB. 

A dummy variable related to the plot status (burned/unburned) was added to the best model 

and it was fitted through OLS. All the fitted parameters were tested (t-test, α=5%) and the non-

significant ones were removed, and the model was refitted. 

  



Biomass forest modelling using UAV LiDAR data under fire effect 

17 

4 Results 

4.1 Fire severity map 

 

In this study, Sentinel 2A and 2B images (acquired on 15th and 17th October 2017) were used 

to derive the DNBR. The fire in MNL occurred on the 17th October and lasted only one day. 

The derived DNBR values ranged from unburned to high severity burned areas (Figure 10). 

The distance from unburned to high severity patches is in some cases smaller than 100 meters, 

revealing the spatial variability of fire severity. When analysing the severity map in the field, 

different effects were observed. First, the small slopes and hills inside the forest had an effect 

on fire severity. In the smaller valley-like areas, the severity was not as high as on the hilly 

areas. Because the fire was burning the area in a short time (two days), in the large majority 

of the area only stems and crowns of the trees have been affected. This was clearly visible 

while distinguishing the different severity levels. The stems of the trees of the burned areas 

were completely black, nearly to crown height. The crowns of most of these trees were brown 

because they dried out due to fire. In the areas classified as unburned on the fire severity map, 

no traces of fire, neither on the stems, nor on the crowns were observed in the field. 

In the picture (Figure 7 and also Figure 4), the separation between lower and higher severity 

is visible. The right side of the picture has no visible intact crowns, all needles were either burnt 

completely or dried and fell off. Compared to the right bottom where the top crowns of the trees 

are still alive. 

 

Figure 7: Border between unburned (left) and burned areas (right) 
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With Formula 8 the DNBR image was produced, by subtracting the pre- (Figure 8) from the 

post-fire (Figure 9) image. In Figure 10 there are mentionable differences. The dark red 

coloured plots are mostly young stands or only areas with shrub vegetation. The parts with 

dark and light green parts on the right side of the image are the unburned parts, where the 

forest ends and the nearby city starts. Also, some green lines cross the burned areas, which 

are sometimes caused by rivers that flow through MNL. 

 

Figure 8: Pre-NBR image taken on the 15th of October 

Figure 9: Post-NBR image taken on the 17th of October 

Figure 10: DNBR map of the study area 
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The classification was divided into seven categories (Table 2), starting with a high regrowth of 

vegetation and ending with the highest severity possible.  

In Figure 11, the four forest inventory plots are visible, and the severity of the fire is classified. 

The division of the border between the more fire severe areas and the less harmed areas is 

clear. For this work two of each, unburned and burned, have been used and selected. The 

subplots for each of the plots were numerated, following the Figure 12. 

 

 

Figure 11: Final DNBR image of the study area with the field inventory plots 

 

The first number is the general division between the first drone flight areas, the second position 

stands for either burned (B) or unburned (U) and the last position gives the number of the 

subplot. 

Figure 12: Division of the four plots into the 16 subplots  
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4.2 LiDAR point clouds 

 

The cleaned and normalized clouds, taken from one flight, are displayed in Figures 13, 14, and 

15, and they have some noticeable specific details. 

The more severe burned areas, visible on the left side of the scans, have a lower point number 

in the bottom part of the scans. It is expected that the laser beams could penetrate more in 

regions where the canopies have less needles, so that more points would be present in the 

bottom of the cloud. In the side view of the first scanned area, on the left-side, the high severity 

and on the right-side unburned area, it is noticeable that the trunks were almost completely 

missing. However, as presented in the Figure 16, the trunks on the high severity plots were 

burnt till a height of approximately sixteen meters, so that the stems till the crown were fully 

black, probably causing the absorption of the laser light. 

 

Figure 13: Side view of a cleaned and normalized point cloud without ground 

 

Figure 14: ISO view of a cleaned and normalized point cloud without ground 
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Figure 15: Nadir view of a cleaned and normalized point cloud without ground 

 

 

Figure 16: Picture of the burned (moderate-high severity) area with half burned (low severity) trunks 
of trees 

 

From the LiDAR data processing, as mentioned in chapter 3.5, resulted a set of 102 metrics 

that characterize each subplot point cloud (see Appendix). Metrics were extracted from points 

laid above 1 meter from the ground. 
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4.3 Estimates of aboveground Biomass using data from inventory 

In all the plots, the stand AGB ranges from 105 to 186 t/ha, approximately, except the subplot 

2U4 (Table 4), which has a larger number of higher trees. This subplot has the highest mean 

tree aboveground biomass with 921,2 kg. 

 

Table 4: Characterization of the 16 subplots 

Plot Subplot Wa (t/ha) wa (kg) wam (kg) hm (m) ntrees 

P1B 

1B1 124,99 4999,59 555,5 25,3 9 

1B2 170,26 6810,21 619,1 24,0 11 

1B3 133,93 5357,11 595,2 23,8 9 

1B4 105,14 4205,43 600,8 23,3 7 

P1U 

1U1 178,89 7155,63 596,3 23,6 12 

1U2 135,74 5429,67 678,7 24,4 8 

1U3 136,25 5450,14 681,3 24,3 8 

1U4 128,91 5156,46 644,6 24,2 8 

P2B 

2B1 186,15 7446,08 744,6 27,7 10 

2B2 141,58 5663,31 707,9 27,0 8 

2B3 178,58 7143,23 793,7 27,3 9 

2B4 179,13 7165,19 716,5 27,3 10 

P2U 

2U1 161,23 6449,16 716,6 26,8 9 

2U2 146,78 5871,03 838,7 28,0 7 

2U3 148,77 5950,81 661,2 27,4 9 

2U4 322,41 12896,52 921,2 28,9 14 

where Wa is the aboveground biomass (t/ha); wa is the subplot 
aboveground biomass (kg/400 m2); wam is the mean tree biomass 
(kg); hm is the mean tree height (m); ntrees is the subplot number 
of trees. 
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4.4 Estimates of aboveground biomass using LiDAR metrics 

 

The final selection of the aboveground biomass equation for maritime pine (Formula 10; Table 

5) is a function of the highest point height value, the kurtosis of the point height values and the 

height correspondent to the 80th percentile of the point heights. The minimum, average and 

maximum values for these variables, at subplot level, are presented in the Appendix. 

The final equation is: 

 

ὡ υτȟχωφσχ πȟτσπυσ ὌὝάὥὼ πȟςπυσς ὌὝὯόὶὸ σȟςρυψρ ὖψπ υχȟψχφχχ $ÕÍȢ5

πȟφχσχφ ὌὝὯόὶὸȡ $ÕÍȢ5 ςȟτφςτρ 0ψπȡ $ÕÍȢ5  (10) 

 

where ὡ is the predicted aboveground biomass (t/ha); HTmax is the maximum height (m); 

HTkurt is the kurtosis of the distribution of all return heights; P80 is the 80th percentile of height 

(m); $ÕÍȢ5 is the dummy variable being 0 for burned plots and 1 for unburned plots. The 

variable HTmax was not tested in connection with the dummy variable, because the height of 

trees wouldn’t change from burned to unburned plots. 

 

Table 5: Statistical analysis of the results above 1 meter, including testing for fire effect through the 
incorporation of a dummy variable concerning the status (burnt vs unburnt) 

Regressor variable Coefficient Standard dev. t value p-value 

Intercept -54,79637 13,99 -3,918 ≤ 0,01 

HTmax -0,43053 0,10 -4,104 ≤ 0,01 

HTkurt 0,20532 0,06 3,366 ≤ 0,01 

P80 3,21581 0,59 5,463 ≤ 0,01 

Dum.U 57,87677 14,57 3,973 ≤ 0,01 

HTkurt: Dum.U 0,67376 0,12 5,802 ≤ 0,01 

P80: Dum.U -2,46241 0,58 -4,219 ≤ 0,01 

 

The relation between AGB estimated with allometric equations and LiDAR variables is depicted 

in the Figure 17. It is possible to note a point standing out, which corresponds to subplot 2U4, 

previously described closer in chapter 4.3. It is not a statistical outlier since it matches to the 

regression line and the data behind it is not false or wrongly measured. It is a special 

characteristic of the subplot. Furthermore, the R² value of the equation is 0,94 and the adjusted 

R²=0.89, showing a good accuracy of the model (Figure 17). 
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Figure 17: Comparison of estimated allometric-biomass and estimated ALS-biomass with the 
regression line (height threshold 1 m) 

For Formula 10, the total AGB and the LiDAR metrics of one meter above ground level was 

used. It shows a good correlation and takes into account mostly metrics values, that are 

connected to tree height and tree crown characteristics (HTmax; HTkurt; P80). 

Despite the small number of observations, the residues of the linear regression model (Figure 

18) are well distributed with no atypical tendency of heteroscedasticity, which indicates a good 

behaviour of the linear model. 

 

Figure 18: Distribution of the residuals of Formula 10 
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Based on the results of the first biomass estimation, another equation (Formula 11, Table 6) 

was fit. This one takes into account the full AGB, as in Formula 10, but only the LiDAR metrics 

above the height of 18.5 meter, which is the threshold of the average crown base height. 

 

ὡ ρρȟπςρχυ ρȟστυπρ ὍὔὝὖχυ ρȟστφφφ ὍὔὝὖψπ πȟρςρρχ ὖὩὶὧὃὃὒ

ρυȟπςψωτ $ÕÍȢ5 ρȟππωωφ ὍὔὝὖψπȡ$ÕÍȢ5 πȟρυχφυὖὩὶὧὃὃὒȡ $ÕÍȢ5  (11) 

 

where ὡ is the predicted aboveground biomass (t/ha); INTP75 is the 75th percentile connected 

to the metrics intensity; INTP80 is the 80th percentile connected to the metrics intensity; 

PercAAL is the percentage of all returns above the threshold of 18,5 meter; $ÕÍȢ5 is the 

dummy variable being 0 for burned plots and 1 for unburned plots. The variable INTP75 was 

not connected to the dummy variable for the equation, because it was not significant enough. 

 

Table 6: Statistical analysis of the results above 18,5 meters, including testing for fire effect through 
the incorporation of a dummy variable concerning the status (burnt vs unburnt) 

Regressor variable Coefficient Standard dev. t value p-value 

(Intercept) 11,02175 4,75036 2,32 0,04547 

INTP75 1,34501 0,37683 3,569 0,00603 

INTP80 -1,34666 0,36412 -3,698 0,00493 

PercAAL 0,12117 0,05126 2,364 0,04233 

Dum.U 15,02894 6,53933 2,298 0,04714 

INTP80:Dum.U -1,00996 0,26374 -3,829 0,00403 

PercAAL:Dum.U 0,15765 0,05873 2,684 0,02503 

 

The R² value of the equation (Formula 11) is 0,93 and the adjusted R² equals 0.88, displayed 

in Figure 19. This model is closely as good as the previous showed model around Formula 10. 

The relationship between the estimated and the calculated AGB through the fitted equation 

(11) has a linear correlation, also with one point being more far away from the main group of 

points. Moreover, the variables used in this second equation show that the tree crowns alone 

give insight into the overall AGB and the status (burned/unburned) of the forest. 
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Figure 19: Graph comparing estimated allometric-biomass and estimated ALS-biomass with the 
regression line (height threshold 18,5 m) 

Similar results for the distribution of the residues, compared to Formula 10 (Figure 18), were 

obtained for the second linear regression model (Formula 11, Figure 20). The graph shows no 

clear pattern in the distribution of points, which also indicates a good fit of the model. 

 

Figure 20: Distribution of the residuals of Formula 11 
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5 Discussion 

 

In this study different data and methods were used and combined to analyse the effect of forest 

fires on the loss of biomass in the MNL. The results of the DNBR severity mapping of the 

affected area were precise and accurate to the scale that the Sentinel-2 imagery made it 

possible (1 pixel=400 m2). The calculated severity map showed the status of the forest 

successfully, as proven through the FIREMON - Fire Effects Monitoring and Inventory System 

(Lutes et al., 2006). Since the fire was moving very fast through the MNL, it did not have an 

impact correlated with massive biomass loss; instead, it showed scorched stems and dried out 

crowns. The severity classification is based on NIR and SWIR reflectance of the crowns and it 

gave precise correlations, because the unburned areas still had healthy/green tree crowns 

(high NIR, low SWIR) and the burned/dried tree crowns (low NIR/, high SWIR) showed a 

reversed spectral pattern. 

The following LiDAR scans with a UAV flying at low altitude (sixty meters aboveground) gave 

sufficient data for the following analysis. Also, mentionable differences between low and 

moderate burned areas were found as described in chapter 4.2. The missing reflectance 

characteristics of the burned stems were not foreseen, but the two models were derived, one 

with data using a height threshold 1 m and other with a height threshold 18.5 m, to gain insight 

in the impact of losing the laser data of the stems. 

The estimated AGB values with the fitted regression model were accurate to a correlation of 

R²=0,94. Even with the point cloud characteristics showed in chapter 4.2, that resulted in an 

absence of the trunks in the point cloud, the equation 10 shows results, which could be useful 

for further research. Additionally, also the second equation (Formula 11) had a good correlation 

with a R² value of 0,93. The residues of the two fitted linear regression models show no 

patterns and are well distributed, which states a good fit of model. By looking at the influence 

of the dummy variable on the models, both have one thing in common. When the dummy alone 

is used for unburned plots (1 = unburned, 0 = burned), it increases the intercept, resulting in a 

higher biomass value. For the equation 10 the variable P80 connected to the dummy has a 

negative and HTkurt, also in connection with the dummy, has a positive influence on the slope 

of the model. In equation 11 there is a negative influence of INTP80 and a positive effect of 

PercAAL on the slope connected with the dummy variable. 

Comparable studies, done with a lower resolution of LiDAR scans, came to accuracies of 

determining the biomass based on scans with an R²=0,88 (Popescu, 2007). These were done 

with an equation based on dbh and canopy height. Most studies and tests were done at an 

acquisition altitude of the point clouds higher than 60 meters and therefore have a much lower 



Biomass forest modelling using UAV LiDAR data under fire effect 

28 

point density per m². The studies of Lu et al (2012) come to results of an R² of 0,75–0,77 with 

a logarithmic transformed equation. A study done by Sato et al. (2016) came also to AGB 

estimations based on LiDAR metrics, that explain 69% of the total variance across forest types. 

The equation was based on these LIDAR metrics variables: mean of height, the third quartile 

of height, the tenth percentile of height, and the kurtosis of the distribution of all return heights 

(Sato et al., 2016), which are based on a research of Longo et al. (2016). Though the equation 

of Sato et al. (2016) was based on an exponential approach it still shows similarities, in the 

LiDAR metrics values used, to the equation built with this study. The most significant variables 

taken from the point cloud metrics to fit the equations are mostly height and tree crown 

connected. Nevertheless, it needs to be mentioned that it is not a simple task to compare the 

accuracies between different approaches to estimate biomass. Each work uses a particular 

approach to model the dataset and so to assess the model’s accuracy. 

By comparing the estimated-allometric biomass with the estimated ALS-biomass, good 

correlations were found in this study. With the dummy variable, the equation also considered 

the state of the forest (burned or unburned). As the dummy was significant, which gives 

stronger evidence that it is possible to distinct between the two states of the forest and 

calculate the corresponding/respective biomass.  
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6 Conclusions 

 

The analysis of the fire severity through remote sensing techniques, like the DNBR calculated 

with pre- and post-images of the burned area, gave satisfying results. In this study, the DNBR 

classification was necessary to decide which sample areas to choose for the more detailed 

analysis of the burned and unburned areas. Nevertheless, this type of severity analysis 

showed medium high to low/unburned severity levels. The most obvious changes, also the 

most crucial, were that the understory shrubs got burned, the stems were nearly fully burned 

on the outside and the needles got dried out. These characteristics can be analysed with the 

DNBR technique. However, others like volume or biomass cannot. 

In general, the fitting of the equation with the six variables compared to the field-measured 

biomass showed accurate results with a R² of 0.94 (Formula 10) and a R² of 0,93 (Formula 

11). The first equation takes into account 4 different main key values. First the maximum height 

(HTmax) of the point cloud, which didn’t change through the burned and unburned areas, but 

gives more predictability power to the equation. Secondly, the variable HTkurt, which gives 

insight in the probability distribution shape and the vertical distribution of the points. More 

important is the variable P80 that describes the 80th percentile of the point cloud and is 

connected to the crowns of the trees. By means of an additional significant dummy test, that 

shows an influence of the state of the forest (burned or unburned), this equation predicted the 

referenced biomass more accurately. The second equation consists of three lidar metrics 

variables: INTP75, INTP80, PercAAL. Most of the variables used in the equations are either 

connected to the height or some tree crown related parameters. 

The not reflected tree trunks of the burned area did in the end not influence the analysis. Still 

it is notable that this behaviour of the reflectance gives some restrictions to the way burned 

and coaled surfaces and objects can be scanned with LiDAR technology. 

With the lawnmower pattern of the scanning flights and a 50% overlap of the scan swath some 

parts of the scan had some inaccuracies. The overlap of the clouds at some point need to be 

solved by a better GPS positioning of the UAV. This could be achieved with integrating a 

simultaneous localization and mapping system (SLAM). 
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The potential connection between fire severity and a detected change in biomass was 

successful in this case. Even though the biomass loss was only related to needles, the fitting 

of the equation showed results, which can be helpful in further studies regarding the severity 

of fires and their biomass loss. With more advanced LiDAR scanning the results may be even 

improved. 

For further studies it could be useful to generate DNBR maps of the forest area in Leiria to 

access data about the regeneration, the vegetation survival and possible delayed mortality. 
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Equation fitting output 

Equation 10 

 

lm(formula = sqrt (Biomass) ~ HTmax + (HTkurt + P80) * state   

       
Residuals:  Min 1Q Median 3Q Max  

 -0.70964 -0.31463 0.08692 0.20087 0.71297  

       
Coefficients:  Estimate Std. Error t value       Pr(>|t|)  
(Intercept) -54.7964 13.98712 -3.918  0.003524 **  
HTmax -0.43053 0.10491 -4.104  0.002661 **  
HTkurt 0.20532 0.06099 3.366  0.008305 **  
P80 3.21581 0.5887 5.463  0.000399 ***  

stateU 57.87677 14.56921 3.973  0.003242 **  
HTkurt:stateU 0.67376 0.11613 5.802  0.000259 ***  

P80:stateU -2.46241 0.5836 -4.219  0.002242 **  

       
Residual standard error: 0.5537 on 9 degrees of freedom   
Multiple R-squared: 0.9381      
Adjusted R-squared: 0.8968      
F-statistic: 22.72 on 6 and 9 DF    
p-value: 5.896e-05     

 

Plot Subplot HTmax HTkurt P80 

P1B 

1B1 28.01 10.77 23.74 

1B2 25.33 29.86 22.52 

1B3 25.95 18.41 23.02 

1B4 24.85 21.11 22.15 

P1U 

1U1 31.26 7.20 22.96 

1U2 26.86 2.84 24.02 

1U3 26.37 3.01 23.01 

1U4 28.40 1.14 24.94 

P2B 

2B1 29.64 1.41 25.04 

2B2 31.25 1.08 25.07 

2B3 30.56 1.12 25.20 

2B4 28.91 1.10 24.80 

P2U 

2U1 29.05 2.43 26.53 

2U2 33.69 3.74 26.60 

2U3 29.84 3.21 26.35 

2U4 30.06 7.77 27.66 

 Minimum 24.85 1.08 22.15 

 Maximum 33.69 29.86 27.66 

 Mean 28.98 3.11 24.87 
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Equation 11 

 

lm(formula = sqrt (Biomass) ~ INTP75 + (INTP80 + PercAAL) * state 

       
Residuals: Min 1Q Median 3Q Max  

 -0.78836 -0.26395 0.06378 0.20134 0.7994  

       
Coefficients: Estimate Std. Error t value Pr(>|t|)   
(Intercept) 11.02175 4.75036 2.32 0.04547 *  
INTP75 1.34501 0.37683 3.569 0.00603 **  
INTP80 -1.34666 0.36412 -3.698 0.00493 **  
PercAAL 0.12117 0.05126 2.364 0.04233 *  
stateU 15.02894 6.53933 2.298 0.04714 *  
INTP80:stateU -1.00996 0.26374 -3.829 0.00403 **  
PercAAL:stateU 0.15765 0.05873 2.684 0.02503 *  

       
Residual standard error: 0.5764 on 9 degrees of freedom   
Multiple R-squared: 0.9329      
Adjusted R-squared: 0.8882      
F-statistic: 20.85 on 6 and 9 DF    
p-value: 8.39E-05      

 

Plot Subplot INTP75 INTP80 PercAAL 

P1B 

1B1 25.00 26.00 14.85 

1B2 22.00 23.00 21.54 

1B3 23.00 24.00 17.55 

1B4 21.00 23.00 18.62 

P1U 

1U1 25.00 26.00 55.79 

1U2 24.00 25.00 44.70 

1U3 25.00 26.00 46.97 

1U4 23.00 24.00 36.67 

P2B 

2B1 20.00 21.00 31.67 

2B2 22.00 24.00 29.60 

2B3 18.00 19.00 35.04 

2B4 19.00 20.00 28.52 

P2U 

2U1 23.00 25.00 51.86 

2U2 26.00 28.00 60.87 

2U3 23.00 24.00 45.04 

2U4 24.00 25.00 64.89 

 Minimum 18.00 19.00 14.85 

 Maximum 26.00 28.00 64.89 

 Mean 23.00 24.00 35.86 
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Biomass estimates based on inventory data  

 
Weight complete 
[kg/400m²] 

Weight minus stem 
[kg/400m²] 

Complete [t/ha] 
(>1m) 

Without stem [t/ha] 
(>18,5m) 

1B1 4999,59 609,83 124,99 15,25 

1B2 6810,21 920,68 170,26 23,02 

1B3 5357,11 724,46 133,93 18,11 

1B4 4205,43 582,09 105,14 14,55 

1U1 7155,63 1195,47 178,89 29,89 

1U2 5429,67 932,36 135,74 23,31 

1U3 5450,14 939,74 136,25 23,49 

1U4 5156,46 873,61 128,91 21,84 

2B1 7446,08 933,74 186,15 23,34 

2B2 5663,31 720,47 141,58 18,01 

2B3 7143,23 932,36 178,58 23,31 

2B4 7165,19 905,59 179,13 22,64 

2U1 6449,16 1010,58 161,23 25,26 

2U2 5871,03 940,98 146,78 23,52 

2U3 5950,81 876,54 148,77 21,91 

2U4 12896,52 2048,35 322,41 51,21 

 

 


