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Abstract: In this work, we study the changes in structure during the shear thinning regime using 

Brownian Dynamics with a simple steady-state shear flow of binary charged colloidal 

suspension.  Previous research has analyzed the viscosity, radial distribution, elasticity and 

plasticity of materials with rheo-SANS experimentation; however, less research has been 

conducted to replicate the experiment through computer simulations. With Brownian Dynamic 

Simulation, this study was able to reproduce the results obtained in a recent rheo-SANS 

experiment and it also explored the viscosity, radial distribution, elastic and plastic behavior of a 

system under different parameters. The comparison of simulated data with experimental data 

revealed the computer simulation to successfully generate results indicative of shear thinning 

behavior in both the viscosity versus shear data as well as the radial distribution data. The 

simulated system was also able to successfully generate systems which exhibited plastic behavior 

and elastic behavior. 
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1.1 Introduction to Colloids, BDS, and our Project  

A colloid is a mixture that has particles ranging between 1 and 1000 nanometers in 

diameter, yet are still able to remain evenly distributed throughout the solution. These mixtures 

are homogeneous, and the particles remain dispersed meaning that they will settle in the bottom 

of a container. Examples of colloids include whipped cream, mayonnaise, milk, butter, gelatin 

and some biological systems like blood.  Such examples can begin to explain why studying 

colloids is necessary. Colloidal studies can benefit businesses by helping to improve product 

quality to then improve sales. Colloidal studies can be beneficial for safety purposes, such as 

studying the behavior of oil for the sake of employee safety on oil rigs. And such studies on 

blood can lend obvious contributions to the health sciences. Thus, many industries benefit from 

this colloidal and fluid focused research, such industries in food, cosmetics, pharmaceuticals and 

medicine [1,2]. One type of research used to study colloids is BD simulations which are used to 

simulate such colloidal suspensions under various parameters. In fact, some of the earlier studies 

regarding colloids in light of altering parameters such as particle size, shear rate, viscosity etc.  

were due to interest from industry. Industrial companies were curious to better understand why 

their procedure of coating paper, which increased the coating’s viscosity in the process, was 

resulting in torn papers and ruined machinery [3]. Similar investigations have been conducted 

since then. For example, studies to observe how the viscosity changes as a function of an 

external force (shear) are more common [4,1]. Regardless of the subject of the colloidal studies, 

a major component analyzed is viscosity. 

The focus of this particular research aims to recreate rheological data in a simulated 

manner for the purposes of comparing with experimental data. Other research has revealed that 

various colloids are studied under rheometers and with small angle neutron scattering with the 
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intent to observe shear thinning behavior such as in Lanotte et. al’s rheometric study on red 

blood cell morphology, but few have chosen opted to study the behavior with computer 

simulations [5]. 

 

1.2 Viscosity 

When examining these colloidal systems, viscosity is a key subject analyzed. Viscosity is 

a fluid’s resistance to flow. This tendency is modeled by Newton’s Law of Viscosity which 

describes the relationship between shear stress and shear rate in a fluid [6]. Viscosity is given as 

                                                                  𝜂 =
𝜏

𝛾
                                                    Equation 1 

Where 𝜏is shear stress,𝛾is shear rate, and viscosity is determined in Pascal seconds (𝑃𝑎 ⋅ 𝑠) [7,8].  

Trends of viscosity can be observed as a function of shear rate as seen in Figure 1. 

  
Figure 1: Graph of viscosity as a function of shear rate 

Shearing occurs when internal friction of a fluid increases and the amount of force needed to 

overcome the friction increases [8]. This illustrates why more viscous fluids require more force 

to flow. Figure 2 depicts the process of shearing and is the model that was used to establish 

Newton’s Law of Viscosity (Equation 1) [8]. 
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Figure 2: Diagram of shearing 

Shear is the force applied to the fluid system in a specific direction. As increasing shear is 

applied to the fluid, the response in viscosity separates fluids into two categories: Newtonian 

fluids and Non-Newtonian Fluids [9].  

 

1.3 Newtonian and Non-Newtonian Fluids 

In nature, we can classify liquids in two categories. Newtonian and non-Newtonian. If the 

viscosity does not change as shear increases, then it is a Newtonian fluid as seen in Figure 3 [10]. 

Fluids such as water and alcohol fall into this category. 

 

Figure 3: Graph of Newtonian fluid 
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 In comparison, fluids whose viscosities change are Non-Newtonian fluids as seen in Figure 4 

[11]. 

 
Figure 4: Graph of Non-Newtonian fluids compared to Newtonian fluids 

There are two kinds of Non-Newtonian fluids: shear thinning fluids and shear thickening fluids. 

  

1.4 Shear Thickening 

If viscosity increases as shear increases, the fluid experiences shear thickening [3]. Many 

materials incorporate such materials into their products of their ability to dampen and absorb 

shock by dispersing the initial force applied [3]. Other common materials that incorporate shear 

thickening fluids are Kevlar vests. Shear thickening fluids help disperse the force of bullets and 

increase overall rigidity of the vests more efficiently [3]. This material is even incorporated into 

products as simple as sporting equipment. Similar to a Kevlar vest, a tennis racket aims to 

redirect an incoming ball, but the strings of the racket must maintain their rigidity while still 

dispersing the vibrations from the impact [3]. 
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1.5 Shear Thinning 

The other type of Non-Newtonian fluid is shear thinning fluids. Shear thinning fluids are 

the opposite of shear thickening fluids. These fluids will decrease in viscosity as shear force 

increases [12,2]. Ketchup is a prime example of shear thinning behavior. When turned upside 

down, ketchup will not readily flow from its container, so the bottle must be hit on its bottom or 

squeezed and once the action ceases so too does the flow. The force exerted is decreasing the 

viscosity of the ketchup allowing it to flow more easily, and without the added force, the ketchup 

resumes its initial viscosity. Other types of shear thinning materials include paints and blood [5]. 

Paints desire shear thinning for practical reasons.  

Paints will maintain a higher viscosity under no shear while they are in their containers 

which prevents valuable products from accidentally running out of its container. But when a 

product is needed, applying small shear in the form of a squeeze to the bottle for example will 

decrease the product’s viscosity allowing it to be easily dispensed from its bottle.  

On a more serious topic, typical shear thinning fluids can be observed in biological 

systems in the form of blood. Specifically, shear thinning behavior is seen in whole blood 

because of the aggregation and deformability of red blood cells which are a key component of 

whole blood [5]. Understanding this behavior in the flow of blood lends greater understanding of 

what is occurring during times of good health and during times of disease. For example, it is 

understood that without the aggregation of red blood cells, the phenomena of shear thinning 

would continue meaning that without clotting, blood would continue to flow too easily [5]. 

Figure 5 illustrates data from a study that analyzed the deformation of red blood cells in relation 

to the relative viscosity as a function of shear stress [13]. 
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Figure 5: Data from study of red blood cell deformation 

 

1.6 Rheology 

These investigations of colloids, fluids, viscosity are considered rheological studies. 

Rheology is the study of the flow of liquids, gases, or even soft solids. Most materials studied in 

rheology are defined by a constitutive equation that relates the shear exerted (𝜏), the material’s 

strain rate (𝛾), and Newtonian viscosity (𝜇) in the case of Newtonian fluids [14]. In the case of 

Non-newtonian fluids, the Newtonian viscosity is replaced with a ratio of the apparent viscosity 

in the fluid to the normalized viscosity in the fluid [14]. As discussed previously, such studies 

may be conducted using computer simulations like BD simulations, but they can also be 

conducted with Rheometers. Rheometers are instruments that measure physical parameters of a 

material under certain estimated rheological parameters [15]. Rheometers can “measure the 

viscosity, viscoelastic properties… with respect to time, temperature, frequency, and stress-

strain, and transient response” [15]. The cost of such instruments are easily in the range of 
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hundreds of thousands of dollars whereas computer simulations provide a cheaper alternative for 

research. But it should be noted that this particular system does not account for intermolecular 

interactions. If these interactions were to be studied, a different type of simulation would be 

used. 

 

1.7 Elasticity and Plasticity 

Beyond the occurrence of shear thinning and shear thickening in Non-Newtonian liquids, 

the investigation of a fluid’s microstructure may be studied after the effects of an exerted shear. 

The concept of elasticity and plasticity commonly seen in solids may be applied to fluids. In 

solids, objects are composed of atoms in a defined arrangement and held at a certain distance 

from each other with bonds [13]. These bonds can be imagined as a connection akin to a spring 

where the distance between molecules can be stretched, compressed, and twisted to an extent 

even though a solid is considered a rigid body as illustrated in Figure 6 [13]. This behavior is 

referred to as elasticity. 

 

 
Figure 6: Image of atoms and bonds of a metallic solid 
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And while these bonds can move, there is a point for each solid to where the stress imposed on 

the solid is too great for the atoms and bonds to return to their original configuration thus 

resulting in permanent deformation of the solid [13]. This behavior is known as plasticity. This 

point of no return is known as the yield strength. To further push a solid’s limits of endurance to 

a force, if the solid is pushed beyond its ultimate strength then the structure eventually ruptures 

[13]. Yield strength and ultimate strength can be observed in Figure 7. 

 
Figure 7: Example of yield strength and ultimate strength 

The same principles of elasticity and plasticity can be applied to fluids as well. After a 

fluid’s exposure to shear, the configurations of particles can either resume their original 

configuration or end in a differing configuration that the original. In the former situation, the 

fluid would exhibit elastic behavior. Consider a rubber band. After a force is applied when 

pulling a rubber band, the band will resume its initial structure after the force is removed. This 

notion describes fluids whose final particle configuration resembles its original configuration. 
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When the final particle configuration does not resume the initial configuration, it is reflecting 

plastic behavior. This is similar to applying a force to a plastic bottle. After the force is applied, 

the plastic bottle will not be able to return to its primary particle configuration. Rheological 

studies can be utilized to determine under what conditions fluids exhibit elastic or plastic 

behavior. The most common techniques of studying fluids in general include optical microscopy 

and scattering experiments with light, x-rays, and neutrons [3]. But for the purposes of this 

research project, the rheological study of shear thinning, and elastic/plastic behavior were 

investigated using Brownian Dynamic Simulations. 
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2.1 The Yukawa Potential 

The Yukawa potential, seen in Equation 1, was the first component of the simulation.  

                                     𝑈 =
𝐴𝑒−𝑧𝑘(𝑟−1)

𝑟
                             Equation 1 

In the equation, U describes the intermolecular potential that causes an exponential decay of 

potential from some distance, r is the radius between two particles, A is the coupling parameter, 

and zk is the screening parameter [16]. The radius is measured as the distance between the 

centers between two particles where there is no overlapping of the particle spheres. This equation 

is also referred to as the pairwise repulsive hard-core Yukawa Potential and describes the 

interaction between binary colloidal particles that are charged [1]. Such an interaction was 

chosen as it closely represents the interaction between charged particles of silica, 𝑆𝑖𝑂2, since the 

study would first compare its results to those experimentally obtained from Dr. Luis Sanchez-

Diaz’s study at Oak Ridge National Laboratory [1]. It should be noted that a single silica 

molecule is a neutral molecule, but the charge of these particles refers to the inevitable 

intermolecular charge. Also, this system considers values as unitless for ease of comparison with 

this preliminary code. In future studies with this code, units will be added. 

 

2.2 Radial Distribution Function G(r) 

The radial distribution function G(r) was another equation incorporated to describe our 

system. This function is one that describes the probability of finding a pair of atoms or particles 

some distance (r) apart as seen in Equation 2 [17]. 

                                             𝐺(𝑟) =
𝑉

𝑁2
(∑𝑖 ∑𝑗 ≠ 𝑖 𝛿(𝑟 − 𝑟𝑖𝑗))                                Equation 2 
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Where V is volume, N is the number of molecules, 𝑖 and 𝑗 are the molecule indexes, and 𝛿 is 

Dirac delta function. The radial distribution function explains the relationship between the 

volume of a box and the number or particles within it. The two variables are inversely 

proportional, so as the number of particles within the box increases, the volume within will 

decrease.  

 

2.3 Brownian Dynamics (BD) 

 The simulation of this study was primarily based on Brownian Dynamics (BD) which 

aims to describe motion of particles in a simulation as they would occur in reality. The BD 

simulation performed in this study used an algorithm which was first proposed by Ermak and 

McCammon as seen in Equation 3 with the exception of not including hydrodynamic simulations 

and adding shear flow in the 𝑥 direction [1,18]. 

     𝑟𝑖(𝑡 + 𝛥𝑡) − 𝑟𝑖(𝑡) = (𝛾𝑦𝑖ê𝑥 + 𝛽𝐷0𝐹𝑖(𝑡))𝛥𝑡 + 𝛥𝑋𝑖(𝑡)                     Equation 3 

In this function,  𝛾  is the shear rate, 𝐷0 is the short-time self diffusion of the particles in the 

system, t is time, 𝑖is a particle, 𝑟𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑧𝑖(𝑡)) is the positional vector of a particle, 

ê𝑥 is the unit vector along the x axis, 𝛥𝑋𝑖(𝑡) is random displacement [1]. 

 The simulations were performed in a cubic box under periodic boundary conditions. 

Shearing was incorporated into the boundary conditions using the ‘sliding brick’ boundary 

conditions of Lees and Edwards [19]. The initial configurations were generated by the following 

procedure: first, particles were placed randomly in the simulation box at the desired density, and 

then the overlap between the particles was reduced or eliminated. Once the initial configuration 

was constructed, several thousand cycles were performed to achieve thermal equilibrium, 

followed by at least two million cycles where the data was collected. We found that the results 
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obtained were almost the same for each cycle, and that there is no systematic effect of system 

size in the calculation of these properties. 

 

2.4 Viscosity as a function of Shear 

 With the simulation, data was acquired describing the systems viscosity under different 

shears. Viscosity is a fluid’s resistance to flow and depending on fluid, the viscosity may change 

in response to the altered force. When considering this dynamic viscosity (𝜂), it is calculated as 

seen in Equation 4 in the units of 
𝑁⋅𝑠

𝑚2
 or in the SI unit 𝑃𝑎 ⋅ 𝑠 where F is force, t is time, and a is 

area [18]. 

                                                                  𝜂 =
𝐹 ⋅𝑡

𝑎
                                                         Equation 4 

In other situations, viscosity may also be considered by Newton’s Law of Viscosity, as discussed 

in Chapter 1, which describes the relationship between shear stress and shear rate in a fluid [6]. 

Viscosity is given as 

                                                                     𝜂 =
𝜏

𝛾
                                                          Equation 1 

Where 𝜏 is shear stress, 𝛾 is shear rate, and viscosity is determined in Pascal seconds (𝑃𝑎 ⋅ 𝑠) 

[7,8]. The function describes the proportional relationship between shear and stress within the 

system. 

 This study compared the viscosity vs shear figures with the experimental figure. The 

system was modeled after the experimental parameters by having a density of 0.85, screening 

parameter (zk) of 3.20 and coupling parameter (A) of 3.12 under shears of 0.5, 5.0, 15.0, and 

20.0. Then, the system was examined with a screening parameter (zk) of 8.00, coupling 

parameter (A) of 1.00 × 10
2
at densities of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 under shears of 0.0, 0.5, 
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1.0, 5.0, 15.0, and 20.0. And recall that these values were considered as unitless for the purposes 

of the code. 

 

2.5 Elasticity and Plasticity 

 The system was lastly studied to learn more about its elastic and plastic tendencies under 

differing densities. The system was considered at density 0.5 and 0.3, both under 20.0 and 0.0 

shear. First, the system was observed at the end of a simulation run at maximum shear, 20.0, and 

the positions of each particle in the system was recorded. This configuration of particles was then 

run in a simulation without shear to see if the configuration would return to its initial 

configuration of remain in the configuration established at the end of maximum shear. The same 

process was repeated for the system at 0.3 density. The determination of the changes of 

configuration were made with qualitative inspections. The particles after simulation were judged 

as either being in an ordered state or a disordered state. 
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Chapter 3: Results and Discussion 
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3.1 Comparisons with Experimental Data 

 The first portion of the experiment focused on comparing simulated data with 

experimental data from an experiment conducted at Oak Ridge National laboratory. The results 

from the experiment can be seen in Figure 8. The experiment was studying silica which is 

considered to be a non-newtonian substance. Specifically, silica is a shear thinning material. 

Figure 8 reveals that for the sample, as shear rate is increasing, the viscosity decreases. 

 
Figure 8: Viscosity vs Shear Rate from Oak Ridge Experiment 

 

The experimental parameters were a density of 0.85, screening parameter (zk) of 3.20 and 

coupling parameter (A) of 3.12 under shears of 0.5, 5.0, 15.0, and 20.0 so our own study 

simulated a system under the same parameters. The simulation showed very similar results upon 
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qualitative observations. Figure 9 reflects how the simulated system also experienced shear 

thinning tendencies since the viscosity decreased as the shear increased. 

 
Figure 9: Simulated Viscosity vs Shear Data Under Oak Ridge Experiment Parameters 

 

From the simulation, radial distribution data was also collected. Figure 10 reflects these 

data and it describes the system’s transition to a liquid state.  The smooth curves reveal that, 

under the aforementioned parameters, the system has a smooth transition to the liquid state. By 

smooth meaning that the actual curves on the figure do not have many peaks breaking up the 

lines which can be seen in later radial distribution graphs in this study and that after a 𝑟/𝜎of 2, 

there is not much variation in the G(r). If the curves were less smooth, then the transition could 

experience more abrupt changes during the process. From this figure, it can also be noted that as 



22 

 

the shear on the system increases, there is a better flow in the transition to the liquid phase since 

the y values trend less away from 1. 

 

 
Figure 10: Simulated Radial Distribution Data Under Oak Ridge Experiment Parameters 

 

 Between the simulation results from the Viscosity vs Shear graph and the results from the 

radial distribution graph, both suggest that the code created was able to successfully simulate 

data similar to laboratory experiments. 

 

3.2  Radial Distribution Results 
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 After testing the code to determine if it could adequately simulate experimental data, the 

system was considered under other parameters to further investigate shear thinning behavior in 

simulated systems. The new set of parameters that the system was simulated under was with a 

screening parameter (zk) of 8.00, coupling parameter (A) of 1.00 × 10
2
at densities of 0.1, 0.2, 

0.3, 0.4, 0.5, and 0.6 under shears of 0.0, 0.5, 1.0, 5.0, 15.0, and 20.0. 

 The first part of the data acquired from these simulations was in the form of radial 

distribution data. Figures 11-16 express the radial distribution data for the system under different 

shears at differing densities. Similar to the radial distribution figure for the simulated under 

experimental parameters, all of these figures also show the trend of better flow into the liquid 

state as the shear is increased within the system. However, at each density there is no set 

proportion between how much better the transition into the liquid state becomes as shear is 

increasing. For example, the first curves at the density of 0.1 at the five different shears is much 

shallower than the first curves at the density of 0.6. These figures also reflect that the smooth 

transition to the liquid state becomes less fluid as the density increases as seen most prominently 

in Figure 14, 15, and 16. In these cases, the system will not  become a liquid, but instead 

crystallize. When double peaks emerge at the second and third peak of each of the figures, it 

indicates a transition to a crystalline form. Such trends are reasonable since the increased density 

of the system would hinder the ease of movement of the particles to a liquid state and more likely 

to form crystal structures. 
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Figure 11: Radial Distribution at Density 0.1 
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Figure 12: Radial Distribution at Density 0.2 
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Figure 13: Radial Distribution at Density 0.3 



27 

 

 
Figure 14: Radial Distribution at Density 0.4 
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Figure 15: Radial Distribution at Density 0.5 
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Figure 16: Radial Distribution at Density 0.6 

 

3.3 Viscosity vs Shear Results 

 After considering the radial distribution data, the viscosities of the various simulations 

were collected and analyzed where viscosity is a function of shear. This system simulated 

another substance that would be considered having shear thinning behavior at densities 0.1, 0.2, 

and 0.3 since decreasing viscosities are seen as shears increase as seen in Figure 17. The figure 

also reveals that the degree of viscosity decreases is not uniform across all densities. At higher 

densities, the system will still exhibit lower viscosity as the shear increases, but it will be at a 

much slower decrease than the lower density counterparts. Such behavior is reasonable since the 

increasing density would minimize the free space in the system available for movement. 
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 Figure 17 also reveals conflicting information about the system at densities 0.4, 0.5 and 

0.6 from the analysis of their radial distribution data. From Figures 14- 16 the graphs indicate 

that the system is transitioning to a crystalline state so their viscosities should be increasing as 

the shears are increasing; however, Figure 17 shows densities 0.4, 0.5 and 0.6 to have decreasing 

viscosities in response to the increasing shears. This conflict may be partially due to the missing 

hydrodynamic term in the systems code, which was not a primary focus in this study [3,19]. 

 
Figure 17: Viscosity vs Shear of Varying Densities 

 

3.4 Elasticity vs Plasticity Results 

 The last information gathered from these simulations were the positions of the particles 

after each simulation was run for the purposes of studying elasticity and plasticity within the 
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system. This study is based on the concept of applying what is known about elasticity and 

plasticity in solids to fluids. If the system returns to its initial configuration after shear is 

removed then it exhibits elastic behavior. If the system does not return to its initial configuration 

then it is exhibiting plastic behavior. Finding the conditions under which a system moves from 

elastic behavior to plastic can lend better insight to the limits of substances. 

 In Figure 18, the system was run at density of 0.5 and a maximum shear of 20.0. The 

system appears to be in an ordered state as seen in the layer formations.  

 
Figure 18: System at Density 0.5 and Shear 20.0 

 Figure 19 reveals the system at a density of 0.5 with shear removed. The system appears 

to still be in an ordered state, evident by the persistent layering, which would suggest that the 

system is exhibiting plastic behavior since there was no change in the particle configuration with 

shear and after shear was removed. This determination is a qualitative one meaning that there 

were no set measurements or calculations involved in determining the level of orderliness or 

disorderliness.  
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Figure 19: System at Density 0.5 and Shear 0.0 

 

The same process was conducted when considering the system at a density of 0.4 as seen in 

Figures 20 and 21. Figure 20 shows the system at a density of 0.3 under a maximum shear of 

20.0. The particles at the end of the simulation show a relatively ordered state since some layer 

formation is seen.  

 
Figure 20: System at Density 0.3 and Shear 20.0 

Figure 21 shows the particles in the system after the shear had been removed. However, unlike 

Figure 20, in Figure 21 a relatively disordered state is observed which would suggest that the 
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system had begun to exhibit elastic behavior since the particles were resuming the random 

configuration they had prior to any shearing.  

 
Figure 21: System at Density 0.3 and Shear 20.0 

In all substances, there is a point at which the force exerted on it is so great that the substance 

can no longer resume its original configuration. This threshold can vary depending on density, 

temperature, number of particles etc. This study specifically looked at varying density. 
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Conclusion  

 The purpose of this study was to develop a program that could sufficiently simulate 

results comparable to experimental data with the intent of a studying shear thinning colloid. This 

study was successful in developing such a program and compared simulated results to 

experimental results from an experiment on silica [3]. The data compared was a qualitative 

inspection of viscosity as a function of shear. Figure 11 compared to the experimental data from 

Figure 10 confirmed the system was exhibiting shear thinning behavior.  

The second portion of this study continued to observe shear thinning behavior under 

different parameters. These parameters showed that the system was still presenting shear 

thinning behavior at the densities of 0.1, 0.2, and 0.3. This portion of the study also observed the 

radial distribution results at various densities. The results displayed transitions to a crystalline 

phase in the systems with the densities of 0.4, 0.5, and 0.6 which reveals that increasing density 

of the system causes a shift to a crystalline form.  

The last phenomenon investigated was the elasticity and plasticity of the system under 

shear. Similar to the viscosity analysis, the elasticity and plasticity study was a qualitative one 

based on the arrangement of particles in the box. This portion of the study revealed the system at 

a density of 0.3 to exhibit elastic behavior and the system at a density of 0.5 to exhibit plastic 

behavior. 

Investigating shear thinning behavior from the perspective of radial distributions, 

viscosity as a function of shear, plasticity, and elasticity in the form of simulations is beneficial. 

Simulations may serve as alternatives to other rheological studies or as a supplementary tool. 

Simulations may also be used to study other behaviors of colloids such as shear thickening rather 

than the shear thinning. Rheological simulations present a less costly option for studying 
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colloids. Simulated studies such as this are just the beginning and hold numerous possibilities for 

future studies such as considering the system under different parameters; altering temperature, 

number of particles, and/ or volume; or even more studies of elasticity and plasticity at different 

densities. 
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Supporting Materials: The Code 

 

program boundary  

 

implicit real (A-H,O-Z) 

 

integer it, Iseed,ISEED1,ISEED2,np,n,i 

Dimension CX(10000,10000), CY(10000,10000),CZ(10000,10000), strain(10000) 

Common /pos1/  x(10000),y(10000),z(10000) 

Common /pos2/  xr(10000),yr(10000),zr(10000) 

Common /forces/  fx(10000),fy(10000),fz(10000) 

Common /consitanits/  zk,A,dens,np,xl,delrx 

common/semillas/iseed3,iseed2,iseed1 

!assigned vaxlue]] 

!do it=1,3 

!prinit*, rand() 

!time to run simulation 

NTR=3000000 

!time to start save configuration 

NS=100000 

 

 

NSTEPS=500 

dt=0.000001 

np=800       !number of particles 

dens=0.85    !we change density and measure the change in energy, pressure 

pe=5.0   !Shear 

zk=3.2      !a constant 

A=3.12 

pres=0       !starting pressure  

energy=0     !starting energy 

VAR=SQRT(2.D0*DT) 

tau=0    !starting stress 

xl=(REAL(np)/dens)**(1./3.)  !dimensions of box 

vol=xl**3                    !volume of box 

 

 

 

print*, xl, vol 

iseed=3568 
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ISEED1=34564 

ISEED2=46665 

ISEED3=46448 

!!!!!!!!Initial Configuration!!!!!! 

print*,'im here' 

 

 

     DO 10 I=1,NP 

2     R=zran(iseed)-0.5d0 

 

       S=zran(iseed)-0.5D0 

 

      T=zran(iseed)-0.5D0 

 

      X(I)=R*XL 

 

      Y(I)=S*XL 

 

      Z(I)=T*XL 

 

      XR(I)=X(I) 

 

      YR(I)=Y(I) 

 

      ZR(I)=Z(I) 

 

        DO 9 J=1,I-1 

 

        xij=X(I)-X(J) 

 

        yij=Y(I)-Y(J) 

 

        zij=Z(I)-Z(J) 

 

        RO=(xij)**2+(yij)**2+(zij)**2 

 

        IF (RO.LE.1.D0) THEN 

           WRITE(*,*)'traslapess',I,J 

        GO TO 2 
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        ENDIF 

 

9       CONTINUE 

 

10      CONTINUE 

print*,'I am still alive' 

 

 

it=1 

 ks=0 

 delrx=0 

 Call force(it,en,vr,stress) 

  

 nn=0 

print*,'almost there' 

open (10, file= 'positionxyz1rho0.85sh5.0CHECKdat', status= 'unknown')    !we view the 

positionxyz1.dat in VMD 

  open (20, file= 'pressureandenergyrho0.85sh5.0CHECKdat', status= 'unknown') 

 write (10,*)np 

 write (10,400) 

 Do it= 1,ntr 

  

  Do n=1,np 

   

  call AZARG(ISEED, ax) 

  call AZARG(ISEED, ay) 

  call AZARG(ISEED, az) 

   

x(n)= x(n) + fx(n)*dt+ax*var + 6.*Pe*y(n)*dt 

y(n)= y(n) + fy(n)*dt+ay*var 

z(n)= z(n) + fz(n)*dt+az*var 

 

xr(n)= xr(n) + fx(n)*dt+ax*var+6.*Pe*yr(n)*dt !Add equation from sheet 

yr(n)= yr(n) + fy(n)*dt+ay*var 

zr(n)= zr(n) + fz(n)*dt+az*var 

 

!Modified Boundary Condition 

CORY= ANINT(y(n)/ xl) 

x(n)= x(n)-CORY* DELRX 

x(n)= x(n)-ANINT(x(n)/xl)*xl 
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y(n)= y(n)-CORY*xl 

z(n)= z(n)-ANINT(z(n)/xl)*xl 

 

!x(n)= x(n)-xl*anint(x(n)/xl) 

!y(n)= y(n)-xl*anint(y(n)/xl) 

!z(n)= z(n)-xl*anint(z(n)/xl) 

 

end do ! PARTICLES 

 

nn=nn+1 

delrx=pe*dt*real(nn) 

 

if(delrx>1.)nn=0 

 

xmod=mod(it,nsteps) 

if(xmod.eq.0.0.and. it.gt.Ns) then 

 

 if(it.LE.Ntr)then 

  

ks=ks+1 

 

print*,'i am still here', ks 

 un=en/real(np) 

 p=1.+vr/(3.*vol)/dens 

 tau=tau+stress/(2.*vol)  !These are what print the averages at the end of running the 

program 

 pres=pres+p 

 energy=energy+un 

  

 strain(ks)=delrx 

 Do i=1,np 

  

 cx(i,ks)=xr(i) 

 cy(i,ks)=yr(i) 

 cz(i,ks)=zr(i) 

 write (10,401) x(i),y(i),z(i) 

 end do 

  

 

 400 format ('Configuration snapshot-XYZ format') 
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 401 format ('O',2x, 3(1x, g18.12)) 

403 format (2x, 3(1x, g18.12)) 

!  

end if 

end if 

 call force(it,en,vr,stress) 

  

   end do !TIME  

  

 presure=pres/real(ks)        !!ks is the number of configurations 

 einternal=energy/real(ks) 

 tauxy=-tau/real(ks) 

 viscosity=tauxy/pe 

  

 print*, 'pressure=',presure, 'energy=',einternal, 'stress=', tauxy, 'viscosity', viscosity 

 write(20,*)dens,presure, einternal, viscosity 

  

 call GTRT(CX,cy,cz,Ks, strain) 

   

end program 

 

FUNCtION ZRAN(ISEED) 

 

 

 

 

      implicit real*4 (a-h,o-z) 

 

      common/semillas/iseed3,iseed2,iseed1 

 

 

      mzran=iseed3-iseed1 

 

      if(mzran.lt.0) mzran=mzran+2147483579 

 

      iseed3=iseed2 

 

      iseed2=iseed1 

 

      iseed1=mzran 
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      iseed=ishft(3533*ishft(iseed,-16)+iand(iseed,65535),16) +3533*iand(iseed,65535) 

 

      mzran=mzran+iseed 

 

      zran=.5+.2328306d-9*mzran 

 

      return 

 

      end 

 

 

 

      SUBROUtINE AZARG( ISEED,X ) 

 

 

      IMPlICIt REAl (A-H,O-Z) 

 

      external zran 

 

      common/semillas/iseed3,iseed2,iseed1 

      pi=4.0*atan(1.0) 

 

      R=zran(iseed) 

 

      S=zran(iseed) 

 

      X=SQRt(-2.0*lOG(R))*COS(2.0*PI*S) 

 

      REtURN 

 

      END 

       

       

       

            SUBROUtINE force(it,en,vr, stress) 

            implicit real (A-H,O-Z) 

            Common /pos1/  x(10000),y(10000),z(10000) 

            Common /forces/  fx(10000),fy(10000),fz(10000) 

            Common /consitanits/  zk,A,dens,np,xl,delrx 
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            en=0 

            vr=0 

            stress=0   !starting stress 

            rc2=xl/2. 

            do i=1,np 

            fx(i)=0 

            fy(i)=0 

            fz(i)=0 

            end do 

             

            do i=1, np-1 

            fxi=fx(i) 

            fyi=fy(i) 

            fzi=fz(i) 

            do j=i+1, np 

             

            xr=x(i)-x(j) 

            yr=y(i)-y(j) 

            zr=z(i)-z(j) 

             

!Modified Boundary Condition 

CORY= ANINT (yr/ xl) 

xr= xr- CORY* DELRX 

xr= xr- ANINT(xr/ xl) *xl 

yr= yr- CORY* xl 

zr= zr- ANINT(zr/ xl) *xl 

 

 

            !xr=xr-xl*anint(xr/xl) 

            !yr=yr-xl*anint(yr/xl) 

            !zr=zr-xl*anint(zr/xl) 

 

 

             

             

             

            r=sqrt(xr**2+yr**2+zr**2) 

             

            if ((r.lt.rc2)) then 
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    u=(A*exp(-zk*(r-1.)))/r 

 

     

    !f=derivaitive of u(r) 

     

    ff=((A*exp(-zk*(r-1.)))/r**3)*(zk*r+1.) 

                W=A*(exp(-ZK*(R-1.)))*(ZK*R+1.)/r 

 

    !Pressure equation  

     

     fxi=fxi+ff*xr 

     fyi=fyi+ff*yr 

     fzi=fzi+ff*zr 

      

     fx(j)=fx(j)-ff*xr 

     fy(j)=fy(j)-ff*yr 

     fz(j)=fz(j)-ff*zr 

      

     en=en+u 

    !!! STRESS !!! 

     stress= stress+ ff*(xr*yr)  !ex of summation  

     

     vr=vr+w 

      

   !This is the pressure for each particle 

      

   end if 

   end do 

    

   fx(i)=fxi 

   fy(i)=fyi 

   fz(i)=fzi 

   end do 

   !write(20,*)it, en, w 

   return 

   end 

  SUBROUTINE GTRT(CX,cy,cz,Ks, strain)  !strain returns the box to the original position so 

that it doesn't shift when a force is applied 
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       IMPLICIT real (A-H,O-Z) 

       PARAMETER(NN3=4500) 

 

      INTEGER NHIST(NN3) 

Dimension CX(10000,10000), CY(10000,10000), CZ(10000,10000), strain(10000)   

Common /consitanits/  zk,A,dens,np,xl, delrx 

 

      DO 5 I=1,NN3 

 

      NHIST(I)=0 

 

5     CONTINUE     

 

!C DELTA R,  

      DELTAR=0.050 

 

!C MAXIMO VAlue histogram 

      MAXBIN=AINT(XL/2.0/DELTAR) 

 

      PI=4.D0*ATAN(1.0) 

 

!C Number of  configurations 

      NTMAX=Ks 

      print*, maxbin, ks, xl 

 

      DO 20 L=1,NP-1 

 

      DO 25 M=L+1,NP 

 

!C time 

      DO 40 J=1,NTMAX 

 

 

      XL0=CX(L,J) 

 

      XLT=CX(M,J) 

 

      XL0T=XL0-XLT 
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      YL0=CY(L,J) 

 

      YLT=CY(M,J) 

 

      YL0T=YL0-YLT 

 

 

      ZL0=CZ(L,J) 

 

      ZLT=CZ(M,J) 

 

      ZL0T=ZL0-ZLT 

 

 

!Modify below with book one 

   CORY= ANINT(YL0T/ XL) 

   XL0T= XL0T- CORY* strain(j) 

   XL0T= XL0T- ANINT(XL0T/XL)*XL 

   YL0T= YL0T- CORY* XL 

   ZL0T= ZL0T- ANINT(ZL0T/XL)* XL 

    

!      XL0T=XL0T-XL*ANINT(XL0T/XL) 

!      YL0T=YL0T-XL*ANINT(YL0T/XL) 

!      ZL0T=ZL0T-XL*aNINT(ZL0T/XL) 

 

      R0T=SQRT(XL0T**2+YL0T**2+ZL0T**2) 

 

      NBIN=INT(R0T/DELTAR)+1 

 

         IF(NBIN.LE.MAXBIN)THEN 

 

         NHIST(NBIN)=NHIST(NBIN)+2 

 

         ENDIF 

 

40    CONTINUE 

 

25    CONTINUE 

 

20    CONTINUE    



46 

 

 

!C gr 

 

       vol=xl**3 

        

        

       

       C1=4.00*PI*(dens)/3.00 

      

 

!save gr 

      OPEN(50,FILE='grrho0.85sh5.0CHECKdat',STATUS='UNKNOWN') 

 

!C  

 

 

      DO 30 NBIN=1,MAXBIN 

 

        RL=REAL(NBIN-1)*DELTAR 

 

        RU=RL+DELTAR 

 

        RT=RL+DELTAR/2.D0 

 

        C2=C1*(RU**3-RL**3) 

 

        GDRTA=REAL(NHIST(NBIN))/REAL(NTMAX)/REAL(NP)/C2 

 

        WRITE(50,*)SNGL(RT),SNGL(GDRTA) 

 

30    CONTINUE 

 

 

      CLOSE (50) 

!  

!  

      RETURN 

!  

       END 

!  
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