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Abstract—As the complexity of Internet services, transmission
speed, and data volume increases, current IP flow monitoring
and analysis approaches cease to be sufficient, especially within
high-speed and large-scale networks. Although IP flows consist
only of selected network traffic features, their processing faces
high computational demands, analysis delays, and large storage
requirements. To address these challenges, we propose to improve
the IP flow monitoring workflow by stream-based collection
and analysis of IP flows utilizing a distributed data stream
processing. This approach requires changing the paradigm of IP
flow data monitoring and analysis, which is the main goal of our
research. We analyze distributed stream processing systems, for
which we design a novel performance benchmark to determine
their suitability for stream-based processing of IP flow data. We
define a stream-based workflow of IP flow collection and analysis
based on the benchmark results, which we also implement as
a publicly available and open-source framework Stream4Flow.
Furthermore, we propose new analytical methods that leverage
the stream-based IP flow data processing approach and extend
network monitoring and threat detection capabilities.

Index Terms—Stream Processing, IP Flow, Stream4Flow

I. INTRODUCTION

Computer networks are a fundamental part of modern IT
services and play an important role in our daily work and
personal life. Their failure directly affects us and has conse-
quences to our lives, economy, and cybersecurity. Therefore,
ensuring network reliability and cybersecurity is one of the key
tasks of the network, services, and cloud operators. To provide
network reliability and cybersecurity, operators need to have
an overview of the network and status of provided services.
In high-speed and large-scale networks such as backbone,
enterprise, or cloud networks, IP flow monitoring and analysis
is typically used to provide this overview. IP flow monitoring
is based on an aggregation of packets to connection-like
records, which significantly reduce the amount of data that
needs to be analyzed [22]. Despite the data reduction, this
approach provides sufficient insight into network traffic and
can be used for anomaly and intrusion detection as well as
network monitoring to ensure the quality of provided services.
Nowadays, IP flow monitoring is a de facto standard of the
modern network infrastructure, and the majority of network
operators use it on a daily basis [27].

Recent years have brought not only improvement in network
monitoring but also in data storage and processing — big
data architectures. The improvement has started with the
MapReduce computation concept [17] that enabled the de-
velopment of scalable distributed data storage and processing
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systems with Hadoop [29] at the forefront. Shortly afterward,
other systems and frameworks based on this concept have
appeared, which also lead to the development of new network
traffic data analysis methods [23, 19, 25]. In addition to the
evolution of the batch-based data processing approach, the
MapReduce computation concept has enabled the creation
of novel distributed data stream processing systems. They
emerged in response to the limited performance of conven-
tional persistent databases, which were not designed for the
rapid and continuous updates of individual data items arriving
at high velocities [11]. These systems introduce an entirely
new approach to processing large volumes of data and offer
great potential for network traffic analysis.

The major challenges of contemporary approaches to IP
flow monitoring arise from the fact that network traffic pro-
cessing has become a big data problem, as the volume and
speed of transmitted data continuously increase [15]. Besides,
network monitoring faces demands for advanced analytical
methods able to give results in the shortest possible time while
providing a detailed overview of the network. Our research [1]
addresses these challenges by utilization of the recent develop-
ment of distributed stream processing methods and systems to
enhance the capabilities of the collection and analysis part of
the IP flow monitoring workflow. This enhancement requires
a change not only in the workflow architecture but also in our
perception of IP flow data processing.

II. PROBLEM STATEMENT AND RESEARCH GOALS

The IP flow monitoring workflow consists of several mon-
itoring probes and one or more collectors, where all IP flows
are collected and further analyzed. Most of today’s collectors
are still based on the design pattern proposed by Peter Haag
in nfdump collector architecture [21]. Therefore, IP flow
data are processed in batches, whereas their analysis takes
place only after the data is stored. Due to the increasing
volume and velocity of measured IP flow data, it has become
computationally expensive and impractical to store and then
process IP flow records [11]. Moreover, this architecture does
not allow efficient analysis of IP flows in near real time,
which plays an important role in automated anomaly response
mechanisms [16]. Developers of IP flow monitoring systems
face these challenges by increasing the hardware performance
or using simple master-slave architectures. Nevertheless, the
IP flow collection and analysis stays centralized, scalability is
limited, and analysis time remains relatively high.



We have identified three main open issues of IP flow
monitoring workflow, which directly impact its capabilities of
efficient network monitoring. First, the workflow must change
to handle the continuously growing volume and velocity of
measured IP flows. Second, service outages or intrusions need
to be detected in the shortest possible time in order to avoid
significant damage and financial loss [20]. Last, the IP flow
analysis methods’ capabilities need to reflect new network
monitoring trends and face challenges raised by the rapid
evolution of the cyber threat landscape.

A. Increasing Volume and Velocity of IP Flow Data

Along with the increase in volume and speed of transmitted
data in today’s networks, the number of IP flows that need
to be analyzed grows. Therefore, the IP flow collection and
analysis workflow must be capable of processing up to millions
of IP flows per second to handle regular traffic as well as
peaks that emerge during attacks and other anomalies. Such
data processing puts high demands on computational resources
and storage capacity of used systems and represents the main
challenge of IP flow collection and analysis.

A possible solution to efficient IP flow data processing is
the use of distributed stream processing methods and systems
that, thanks to the scalable distribution of data streams within
a computing cluster, allows us to process large amounts of IP
flow data and respond to their future growth. There are cur-
rently several distributed stream processing systems differing
in architecture, method of data processing, provided analysis
methods, and programming languages. However, none of these
systems are directly designed for IP flow data processing [7].
Therefore, it is necessary to assess and compare these systems’
key features to determine their suitability for the IP flow
collection and analysis.

B. Delays in IP Flow Collection and Analysis

Technologies and data processing approaches currently used
within the IP flow monitoring workflow introduce significant
delays in network traffic processing. The first delay occurs
during the observation and export of IP flows, which is affected
by the setting of used IP flow expiration timeouts. Another
delay occurs during the collection and analysis of IP flow
data. The analysis is performed in batches, and it is, therefore,
necessary to wait until a batch of data has become available.
This approach may cause a network traffic anomaly to be
detected with a delay of up to several minutes that may be
fatal when we try to reduce the harm caused by an attack or
network service disruption.

To overcome the delay caused by batch-based IP flow data
analysis, it is necessary to either process IP flow data in much
smaller batches, which complicate the analysis and correlation
of data, or process them continuously as they arrive at the
collector. A redesign of the IP flow collection and analysis
workflow from batch-based data processing to a new approach
is needed to make this possible. In addition to the deployment
of new technologies, it is necessary to adapt the way IP flow
data are processed and revise current analytical approaches.

C. Limited Methods of IP Flow Data Analysis

When we started our research in 2014, the IP flow monitor-
ing was very limited both in the visibility to the application
layer information and in the capabilities of used technologies
to efficiently compute and store large volumes of IP flow
data. Analytical methods were often based on overall network
state monitoring and in-depth overview (such as collecting
information about individual network hosts and their actions)
were provided only in a limited way. Other issues of IP flow
data analysis were caused by the very nature of batch data
processing, where, for example, aggregation over broader time
windows can hide important information such as anomalies in
the form of short bursts of network traffic. Therefore, it was
necessary to design a new approach to IP flow data processing
and analysis that will overcome these issues and reflect current
analysis trends and network monitoring requirements.

D. Research Goals

The above-described problems of IP flow collection and
analysis can be summarized into the following main objective
of our research:

Research how the IP flow collection and analysis can
be improved by distributed stream data processing
and investigate its capabilities for advanced network
monitoring and threat detection.

Given the main objective, we divide our research into
the following three consecutive research goals (RG) that are
motivated by challenges of stream-based IP flow data analysis
and improvements of the IP flow collection and analysis:
RGI: Evaluate the suitability of distributed stream pro-
cessing for analysis of IP flow data in high-speed
and large-scale networks.

Define an improved IP flow collection and analy-
sis workflow based on distributed stream process-
ing of IP flow data.
Propose advanced IP flow analysis methods for
high-speed and large-scale network monitoring
and threat detection.

The main results of our research on these goals are presented

in the next sections.

RG2:

RG3:

III. DISTRIBUTED DATA STREAM PROCESSING

Stream processing systems (historically referred to as data
stream management systems [13]) emerged in response to the
poor performance of traditional persistent databases. These
databases were not designed for the rapid and continuous
updates of individual data items continuously arriving at high
velocities. Instead of storage of data in secondary memory,
stream processing systems process data immediately after
their arrival. During processing, the data are stored in pri-
mary memory, and only the results of individual analytical
operations or the original filtered data, which are essential
for further processing, are stored on persistent storage. This
approach significantly eliminates the requirements for both
the analytical system’s storage capacity and computational
resources as smaller blocks of data are processed.



A. Performance Benchmark Definition

Distributed stream processing frameworks differ in system
architecture, data processing approaches, provided analysis
methods, and programming languages. As a result, each of
these frameworks is suited to a different type of data and
analysis purpose. However, none of them was designed for
IP flow data analysis, which means processing a large volume
of small structured messages. To determine which system has
the best performance, we proposed a novel benchmark [7] for
measuring the performance of these frameworks.

Contrary to universal benchmark StreamBench, proposed by
Lu et al. [24], our proposed benchmark is primarily inspired by
common cybersecurity analysis methods of IP flow data [26].
Based on the exploration of these methods, we identified four
basic operations that are included in the majority of them:
Filtering, Count, Aggregation and Top N. We transformed
these operations into standalone programs publicly available
in the benchmark archive [7] to compare the tested systems’
performance over the basic processing of IP flow data. These
four operations are preceded by an Identity operation, used to
determine the system’s performance baseline. We have also
added a SYN DoS (Denial of Service) operation representing
an example of a real network attack detection method.

The benchmark utilizes a dataset based on real network
traffic to simulate realistic computations. The dataset’s basis
is formed by a network traffic sample from the CAIDA
dataset [14] transformed to IP flows represented in JSON
format. The architecture of the benchmark corresponds to
a typical pipeline of the distributed data stream processing.
The input stream of data is provided by the Apache Katka
messaging system, fed by a dataset using multiple writing
threads such that its processing speed exceeds the speed of
the tested system. The dataset is obtained from Kafka through
multiple partitions corresponding to the number of cores
available in the testing environment or their multiples, which
optimally utilizes the tested system. Another Kafka instance is
connected to the tested system’s output, but a different instance
is used, so it does not affect input Kafka’s speed.

B. Benchmark of Distributed Stream Processing Systems

For our research’s, we have selected the three frameworks
that were widespread at that time (2016) and represented the
most significant potential for further development — Apache
Samza, Storm, and Spark. To identify the most suitable
framework, we compared the throughput of these frameworks
using the proposed benchmark that we deployed on a cluster
of 7 nodes. The configuration of this cluster corresponds to
commonly used setup, making the benchmark more realistic.
A detailed specification of the used hardware and software can
be found in the thesis [1].

We performed the benchmark using four different settings
of the nodes used. Figure 1 shows the benchmark results when
four nodes with 4 virtual CPUs were used. The benchmark re-
sults and corresponding discussion of all testing environments
(4 nodes with 8 vCPUs and 4 vCPUs, 1 node with 32 and 16
vCPUs) can be found in the thesis.
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Fig. 1. Performance benchmark using 4 vim_small nodes (16 vCPUs in total).
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The benchmark results show that each tested distributed
stream processing framework can process at least 500k IP
flows/second. This result fulfills the minimal requirement of
300k IP flows/second throughput derived from our observa-
tions to handle normal traffic and peaks, which emerge during
attacks and other anomalies. Although Samza has the best
throughput results, we cannot say that it is optimal for IP
flow data processing and analysis due to its strict requirement
for a number of data partitions corresponding to available
processor cores. If partitioning cannot be performed on data
before, the analysis utilizes multiple partitions, which requires
a shared state, causing a throughput decrease. Thus, in select-
ing the best working system for IP flow analysis, the decision
needs to consider the advantages and disadvantages of the
system and the deployment environment.

IV. STREAM-BASED IP FLOW ANALYSIS

The transformation of the traditional workflow of network
IP flow monitoring into a stream-based one raises new chal-
lenges and requirements that must be addressed. The stream-
based IP flow data analysis approach must enable the IP
flow data to be processed in a similar way as batch-based
approaches. This means that it should provide at least the
same basic set of data processing operations. The stream-
based approach should also enable applying these operations
to larger data units; thus, the window functionality is necessary
to supply batch-based approaches. In addition to the supported
operations, stream-based data processing must also ensure that
each IP flow is processed just once to avoid skewed results.
Thus, the recoverability and durability options of the data
processing system should be considered too.

A. Workflow Design

A generic interconnection of the stream-based IP flow
collection and analysis and common IP flow monitoring work-
flow is shown in Figure 2. To allow such interconnection,
the collector must provide the functionality to transform IP
flow records into a suitable data serialization format (DSF).
Alternatively, the collector can be omitted from the workflow
if the IP flow exporter can provide IP flow records in such
a format. The typical format for distributed stream processing



frameworks is the JavaScript Object Notation (JSON) format,
enabling to represent any data records suitably. It is also
possible to utilize a more space-efficient data serialization
format, such as binary JSON (BSON) or MessagePack, to
avoid network overload if many IP flows are processed.
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Fig. 2. Stream-based IP flow collection and analysis workflow.

B. Stream4Flow Analysis Framework

Following the definition of stream-based IP flow collec-
tion and analysis workflow, we have developed an open-
source framework Stream4Flow [11]. This framework, among
others, interconnects contemporary systems for IP flow data
processing, provides simple administration and deployment
of all components, and enables fast prototyping of stream-
based IP flow analysis applications. Developed framework
Stream4Flow allows to explore the advantages and disadvan-
tages of IP flow analysis using distributed stream processing
systems when deployed in a real network environment. The
framework facilitates the development of new stream-based
IP flow analysis algorithms, their verification using both
simulated and real-world data, and experimental evaluation.

The architecture of the Stream4Flow framework reflects the
workflow defined in Figure 2. Based on the systems evaluation,
our experience, and consideration of requirements on IP flow
analysis, we have implemented the Stream4Flow framework
using the IPFIXcol collector, Kafka messaging system, Apache
Spark, and Elastic Stack. The collector enables incoming IP
flow records to be transformed into the JSON format pro-
vided to the Kafka messaging system. The framework’s core
consists of Apache Spark distributed stream processing system
with custom applications for near real-time IP flow analysis.
Analysis results are sent back to Kafka and stored in the Elastic
Stack that also offers basic visualizations using the Kibana
framework. The last part of the framework is an additional
web interface capable of customized results visualization.

C. Lessons Learned

We experimentally deployed the Stream4Flow framework
within the Masaryk University campus network with 24 000
active IP addresses and 12 000 IP flows/second observed on av-
erage. Thanks to this experimental deployment, we evaluated
the stream-based data processing’s specifics and compared
existing analytical methods with new methods utilizing stream-
based analysis. One of the key features that we observed
during the evaluation is that we could transform the most
commonly used methods for the analysis of IP flows into

a stream-based approach. However, it is necessary to consider
stream data processing’s specific properties, which partially
limits this transformation. Our experience shows that stream-
based IP flows analysis cannot fully replace the common
batch-based methods for network traffic analysis, but it can
suitably complement and expand their capabilities.

It is important to stress that stream data processing changes
the nature of the data analysis itself since the data are
processed on the fly, and the analysis must be performed in
a certain fashion. The batch-based approach allows to query
historical data or search back through raw data for additional
information after anomaly or attack detection. In stream-based
IP flow analysis, the data cannot be analyzed retrospectively
(i.e., perform ex-post analysis). For example, in collecting
statistics on individual hosts in the network and creating
their profiles, it is not possible to consider any data other
than the one defined initially. Since such an ex-post analysis
may be needed, we recommend combining the stream-based
workflow with a suitable primary data retention store to make
the optional ex-post analysis possible.

V. NETWORK MONITORING AND THREAT DETECTION

We have evaluated the concept of stream-based IP flow
analysis and Stream4Flow framework using two common use-
cases of network traffic analysis: cyber situational awareness
and intrusion detection. Evaluation results are provided in the
thesis [1], where we introduce challenges related to use-cases
and discuss the benefits of the stream-based analysis approach.
The following subsections introduce new methods for large-
scale and high-speed network monitoring and threat detection
that follow the initial evaluation and utilize the stream-based
IP flow analysis benefits.

A. Detection of DNS Traffic Anomalies

Since both the DNS query and response transferred via
UDP are represented by one IP flow record, it is possible to
extend the standard IP flow record by DNS application data.
This information does not disrupt the IP flow record and does
not excessively increase the IP flow record size. As a result,
we could analyze DNS traffic with other IP flows that can
reveal traffic anomalies which otherwise would only have been
detectable by a deep packet inspection. Based on the manual
analysis of the DNS data and common analysis methods, we
identified that only four DNS packet fields are useful for
the most of methods: queried domain name, queried record
type, response return code, response itself, and time to live
of the response. The other fields may unnecessarily increase
the size of the IP flow record without providing additional
value. Because the DNS response may contain more than one
answer, we recommend storing only the first answer with the
same record type as a query or authoritative name server.

One of the easiest ways to monitor and detect network traffic
anomalies is a computation and analysis of Top N statistics of
DNS traffic. These statistics can reveal misconfigured servers
or hosts, and indicate a cybersecurity threat based on a signifi-
cant statistics change. Among the most important statistics are



DNS Record Types, DNS Response Codes, Queried Domains,
Queried External DNS Resolvers, and Hosts With the Most
Queries or Responses. These statistics, along with the anoma-
lies they may detect, are discussed in the thesis. In addition to
the network overview, these statistics can also be incorporated
into network hosts’ behavior profiles, thanks to which it is
possible to expand the possibilities of anomaly detection.

In addition to the statistics computation, we proposed novel
detection methods focusing on malware domain queries, open
resolvers, and non-local DNS resolver usage to show the
advantages of combining DNS traffic information with other
IP flow data. These methods are independent of the version
of the IP protocol, and thus it is possible to deploy them
also in IPv6 networks. In malware domain queries detection,
we utilize the data combination feature of the stream-based
analysis allowing us to combine IP flows data with predefined
blacklist and detect malicious queries in near real time.

The main challenge of open DNS resolver detection is
to distinguish an open DNS resolver from a regular one
responding to local domain queries. For this purpose, the
proposed method analyzes all DNS responses observed at
the network edge and checks if the domain is assigned to
the monitored network. This check is done by whitelisting
the local domain and network address. If the result does
not contain at least one record with an IP address from the
monitored network or network domain, the DNS server is
reported as an open DNS resolver. Our evaluation shows that
this approach allows to detect an open DNS resolver as soon
as it answers the first query and overcome the limitations of
open scanning projects.

The crucial part of the external DNS resolver usage detec-
tion is distinguishing between a host and a local DNS resolver.
Our approach utilizes the fact that the DNS resolver performs
only queries, whereas the host visits the queried domain.
The visit is checked by finding IP flows with communication
between the host and the queried domain, which starts within
approximately five seconds of the query. If the host did not
visit queried domains, then it is marked as a local DNS server.
This check can be performed very efficiently using stream-
based analysis, allowing to combine DNS data with other
IP flows within a sliding time window. Using the proposed
approach, we found several hosts infected by malware that
update the host settings to use malicious DNS resolvers, which
returned forged IP addresses of popular web pages.

B. Near Real-Time Patterns Detection

A significant portion of deployed network cybersecurity
mechanisms is based on pattern (signature) matching, where
malicious traffic is identified based on an exact match with
a predefined attack pattern [28]. Pattern matching detection
methods ensure high accuracy but lower coverage as they can
be easily evaded. A minor modification of an attack, e.g., an
attack frequency, generates a new attack pattern that does not
match the detection anymore. Further, the network patterns
outdate quickly as network communication and attack tools

evolve. Another challenge is detection delay that may cause
irreversible damage, especially in critical network services.

We face these requirements by proposing a novel approach
for near real-time pattern detection in IP flow data. Our
pattern matching approach allows specifying various distance
functions [18] and pattern definitions to enable detection of
previously unknown variations of network attacks. The pattern
matching approach is proposed in the context of the stream-
based IP flow analysis framework Stream4Flow [11] using
Apache Spark. We prototyped this approach as PatternFinder
application that enables flexible patterns definition utilizing
a set of distance functions, weights, and thresholds. Its func-
tionality is demonstrated in the thesis on SSH dictionary at-
tacks detection to facilitate understanding of the approach and
its capabilities. We create and provide a dataset for the SSH
attack pattern identification, define detection patterns for well-
known attack tools, and describe the results of experimental
deployment in the real-world network.

The most exciting feature of PatternFinder is its ability to
distinguish some tools used for the attack based on provided
patterns. During the concept evaluation, we were able to
identify attacking tools for the third of all detected attacks,
as shown in Figure 3. Besides, the evaluation showed that the
application could detect not only known variants of network
attacks but also their unknown variations, such as stealthy or
long-lasting attacks.
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Fig. 3. Distribution of observed SSH dictionary attack tools.

VI. CONCLUSIONS

We defined the thesis’s main objective to research how the
IP flow collection and analysis can be improved by distributed
stream data processing and investigate its capabilities for
advanced network monitoring and threat detection. To the best
of our knowledge, we were one of the first who verified the
suitability of distributed data stream processing systems for
IP flow data analysis and proposed integrating this data pro-
cessing approach into the monitoring and analytical workflow.
We also proposed new analytical methods and investigated
how it is possible to use IP flows extended by application
data from DNS traffic to enhance network monitoring and
threat detection capabilities. Next, we have shown that these
methods can utilize the benefits of stream-based processing.
This approach facilitates their implementation and overcomes
the limitations of batch data processing, and allows these
detections to be performed in high-speed and large-scale
networks in near real time.
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