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Abstract

In the retail industry, labor costs constitute a big chunk of total operating costs and retailers
are advancing towards process automation to minimize their operating costs and to provide
reliable services to their customers. One such example of technological advancement is self-
service kiosks that are becoming an integral part of our life, whether it be for cashing a cheque,
self-checkout at retail stores, airports, hospitals, or checkout-free stores. Although self-serve
kiosks are cost-e�ective due to low setup and operating costs, the technology is relatively new
and poses new research questions that have not been studied before. This thesis explores and
addresses strategic and operational challenges associated with self-serve kiosk technology.

The �rst part of the thesis is based on a collaboration with MedAvail Technologies Inc., a
Canada-based healthcare technology company, developing self-serve pharmacy kiosk technol-
ogy to dispense over-the-counter and prescription drugs. MedAvail faces several challenges re-
lated to assortment and stocking decisions of medications in the kiosk due to its limited capacity
and the thousands of drugs being ordered in various quantities. We address these challenges by
analyzing pharmaceutical sales data and developing a data-driven stochastic optimization ap-
proach to determine optimized kiosk storage capacity and service levels and recommend assort-
ment and stocking decisions under supplier-driven product substitution. A column-generation
based heuristic approach is also proposed to solve the models e�ciently.

The second part of the thesis extends the self-serve kiosk inventory planning problem to a
robust optimization (RO) framework under �ll rate maximization objective. We propose a data-
driven approach to generate polyhedral uncertainty sets from hierarchical clustering and the
resulting RO model is solved using column-and-constraint generation and conservative approx-
imation solution methodologies. The proposed robust framework is tested on actual pharmacy
sales data and randomly generated instances with 1600 products. The robust solutions outper-
form stochastic solutions with an increase in out-of-sample �ll rate of 5.8%, on average, and of
up to 17%.

Finally, the third part of the thesis deals with an application of pharmacy kiosks to improve
healthcare access in rural regions. We present a mathematical function to model customer
healthcare accessibility as the expected travel distance when multiple pharmacy location (store
and kiosks) choices are available to customers. Customer choice behavior is modelled using
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a multinomial logit (MNL) model where customer utility for a pharmacy location depends on
travel distance which is not exactly known but rather depends on kiosk �ll rate. We model the
problem as a newsvendor problem with �ll-rate dependent demand to decide on kiosk stock
level (or capacity) to minimize the weighted sum of expected travel distance and total cost.
Sensitivity analysis over modelling parameters is carried out to derive insights and to determine
problem settings under which pharmacy kiosks improve customer accessibility.
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Chapter 1

Introduction

In the retail industry, labor costs constitute a big chunk of total operating costs and retailers
are advancing towards process automation to minimize their operating costs and to provide
reliable services to their customers. One such example of technological advancement is self-
service kiosks that are becoming an integral part of our life, whether it be for cashing a cheque,
self-checkout at retail stores, airports, hospitals, and even checkout-free stores. Self-service
kiosks have a global market of $16.9 billion and expect to reach $30.8 billion by 2024 (Ramanath
2019).

Figure 1.1 shows a variety of self-service kiosks sold at one of the largest online retail plat-
forms, Alibaba.com, for pharmaceutical drugs, cell phone accessories, retail items, fruits & veg-
etables, and even adult products (Alibaba.com 2020). Retail prices for these kiosks range from
$2,000 to $6,000 with the capacity to store 180 to 500 stock keeping units (SKUs). Several re-
tail companies have installed self-service kiosks to provide 24/7 service to their customers at
locations like airports. For instance, Best Buy, one of the largest electronics retailers in North
America, has 30 Express Kiosks located across Canada in airports and ferry terminals and o�ers
a variety of products including computer and laptop accessories, power chargers, and head-
phones (BestBuy 2020).

As in the retail industry, skyrocketing healthcare spending is a burden for o�cials in the
health care industry. The total healthcare spending in the United States was $3.65 trillion in
2018 which is higher than the GDPs of U.K. and Canada (Sherman 2019). In Canada, healthcare
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Figure 1.1: Self-service Kiosks available at Alibaba.com (Alibaba.com 2020)

expenditure reached $265 billion in 2019, equivalent to $7,064 per person representing 11.5% of
country’s total gross domestic product (GDP) (Canadian Institute for Health Information 2021).
Healthcare executives are therefore looking for innovations that not only reduce healthcare
costs but also improve patients’ experience. A self-serve pharmacy kiosk is an example of such
a recent innovation in healthcare technology aimed at reducing pharmaceutical operational
costs. Several US and Canada-based companies including MedAvail Technologies, MedifriendRx,
and PharmaBox have developed ATM-style self-dispensing pharmacy kiosks that store and dis-
pense prescription and over-the-counter drugs (MedAvail 2017). When a customer inserts their
prescription into the kiosk, he/she is connected to a remote pharmacist who after a careful
review of the prescription, dispenses the prepackaged drug if it is stocked. Under the recent
COVID-19 outbreak, Las Vegas airport and Greenville-Spartanburg International airport have
installed vending kiosks o�ering personal protective equipment including facemasks, gloves,
and sanitizers to travelers (Kelleher 2020, Lee 2020). Similarly, a retail store in the United States,
Earthly Mist, installed kiosks to make their products available 24/7 during COVID-19 lockdown.
It also o�ers up to 50% discount to customers using self-serve kiosk service (Maras 2020).

Self-serve kiosks are cost-e�ective due to low setup and operating costs. According to Me-
dAvail, their pharmacy kiosk incurs an annual operating cost of $35,000 and can cover its total
�xed and operating costs with as low as 25 dispenses a day (HealthcareConference 2017). Com-
pared to a pharmacy store that has an upfront cost of around $1.5 million, a pharmacy kiosk can
be purchased for only $100,000 (HealthcareConference 2017). Although the kiosk technology
is cost-e�ective, it poses inventory challenges due to a limited storage capacity to stock a wide
range of products. In addition to limited capacity, product demand at kiosks is often low. Anal-
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ysis of pharmaceutical sales in Chapter 2 shows that thousands of distinct drugs are ordered
annually each having low and erratic demand that does not �t any known theoretical probabil-
ity distribution. Sporadic product demand coupled with limited storage capacity makes kiosk
stocking decisions a challenging task resulting in poor service levels which may also a�ect fu-
ture sales. In the case of MedAvail, it turns out that 55% of customer requests failed, mainly due
to stocking issues as shown in Figure 1.2.
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Figure 1.2: The graphs depict the performance of the existing kiosk in meeting customer re-
quests. Plot (a) illustrates daily success and failure rate distributions. Plot (b) summarizes the
main reasons for failed transactions.

Lower service levels could adversely a�ect a �rm’s long-run pro�tability and sustainabil-
ity. As such, during the early stages of the business cycle, �rms often sacri�ce their short-term
business pro�ts to boost customer satisfaction and loyalty, for the sake of business growth and
long-term pro�tability (HBR 2009). One such great example is “Amazon.com" which was so fo-
cussed on customer service and experience that it took Amazon nine years after being founded
in 1994 to make a pro�t (Hendricks 2014). Since self-serve kiosk technology is relatively new, it
is critical that kiosk strategic and operational challenges are addressed from customer satisfac-
tion perspective for long-term growth. This motivates us to make decisions such that customer
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satisfaction is maximized. As opposed to the pro�t maximization objective, this thesis focuses
on the �ll rate maximization objective which is de�ned as the percentage of successful customer
transactions.

To optimize �ll rate, one possible solution is to increase the capacity. For instance, a startup
company, AiFi, has recently introduced its fully autonomous retail nanostore with the ability to
stock a large number of products and comes in various sizes ranging from 160 sq. ft to 300 sq. ft
with the capacity to stock 300 to 720 SKUs (AiFi 2020). Similarly, MedAvail is developing a new
kiosk with a refrigeration system and higher capacity to minimize missed opportunities (failed
transactions). Chapter 3 of the thesis addresses inventory challenges from a capacity planning
perspective for self-serve pharmacy kiosks that have an added complexity of products being
ordered in various quantities. We model the problem as a data-driven stochastic optimization
approach under supplier-driven substitution where the demand for higher quantities could be
met by dispensing multiple packages of lower quantity.

The stochastic optimization approach proposed in Chapter 3 models the expected �ll rate
under the assumption that the empirical distribution is a true representation of the actual de-
mand distribution. For the kiosk inventory planning problem, the demand is sporadic and does
not follow a known theoretical distribution. On top of that, when limited historical data is
available, a stochastic optimization approach may lead to poor out-of-sample performance, re-
ferred to as “Optimizer’s curse" in the Operations Research literature. This motivates us to
follow a robust optimization framework that hedges against the worst-case realization of the
demand within an uncertainty set. In Chapter 4, we present a robust optimization framework
under �ll rate maximization objective that has not been studied before. We construct a data-
driven polyhedral uncertainty set using a hierarchical clustering algorithm to remove overly-
conservative demand scenarios. The �ll rate maximization objective in a robust framework
poses computational challenges due to the non-convex adversarial problem and an exact ro-
bust counterpart does not exist. We therefore present an exact solution approach based on
column-and-constraint generation (C&CG) and a conservative approximation approach where
scenarios from uncertainty sets are generated from an adversarial problem and are dynamically
added to the master problem.

Chapter 5 of the thesis examines the potential role of pharmacy kiosks from the perspective
of improving healthcare accessibility in rural regions. In rural areas, due to low population
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density, pharmacy stores are often located far from customer locations. Self-serve kiosk tech-
nology could be used to address the healthcare accessibility issue by placing multiple kiosks
at various locations that are periodically replenished by a central pharmacy store which could
be far from the customer location. This would allow customers to travel to a nearby kiosk to
purchase their medications. However, in the case of stock-outs, which is likely to happen for
kiosks due to their limited capacity, customers may end up travelling to the pharmacy store. As
such, kiosks may even adversely a�ect customer accessibility if their capacity is limited. Even-
tually, customers may stop visiting kiosks in the long run if service levels are consistently low.
This motivates us to model accessibility as a function of the expected distance which depends
on kiosk �ll rate as well as customer willingness to visit the kiosk. The latter is modelled using
a multinomial logit (MNL) model where customer utility is in turn a function of the expected
distance. The proposed accessibility function is used to model a newsvendor problem with �ll
rate-dependent demand that decides on stock levels for multiple kiosks such that the weighted
sum of expected travel distance and the total cost is minimized.

1.1. Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, we carry out extensive data
analysis over pharmacy sales data to identify the critical factors that need to be considered in
making assortment and stocking decisions. Motivated by the �ndings of the descriptive anal-
ysis, we address the capacity and assortment planning problem for pharmacy kiosks under
one-way supplier driven substitution using a data-driven stochastic optimization approach in
Chapter 3. In Chapter 4, we investigate the kiosk inventory problem in a robust setting under
�ll rate maximization objective. An integrated conservative approximation and column-and-
constraint generation based solution methodology is proposed which is testing on real phar-
macy data to determine problem settings where robust framework outperforms the stochastic
approach. Chapter 5 studies the application of pharmacy kiosks in the context of improving
healthcare accessibility in rural areas. Finally, some concluding remarks and future research
directions are detailed in Chapter 6.
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Chapter 2

Analytics of Demand

This thesis is motivated by an industry project completed in collaboration with MedAvail Tech-
nologies. We were provided with pharmacy store and self-serve pharmacy kiosk, MedCenter,
sales transaction data for the year 2015. As a �rst step, we analyze one-year pharmaceutical
sales data from seven stores with a data size of 18 million customer transactions. Our goal in
this chapter is to derive demand characteristics and identify critical factors to model within an
optimization framework with the ability to handle inventory planning for up to 30,000 drugs.
A relational database was created in MS Access storing pharmacy data which is then linked to
statistical software “R" to carry out extensive data analysis.

Pharmaceutical drugs are manufactured by various companies and are ordered by customers
in various quantities. To evaluate drug demand distribution, it is important to understand how
drugs are classi�ed in general. In the US, each drug is assigned a unique 11-digit 3-segment nu-
meric identi�er called “National Drug Code (NDC)", denoting manufacturer code, product code,
and the package code. Drugs are also assigned a 14-digit hierarchical classi�cation scheme
called “Generic Product Identi�er (GPI)" that classi�es drugs based on their therapeutic use,
dosage form, and strength regardless of the manufacturer or package size. Drugs with same
ingredients, dosage form, and strength but di�erent manufacturers or package sizes share the
same GPI code. At a pharmacy kiosk, drugs are stored in a speci�c quantity in a standardized
package. This makes manufacturer’s package size irrelevant in our context. Similarly, drugs
with the same formula, dosage form, and strength but di�erent manufacturers are pharmaceu-
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Figure 2.1: The graph depicts distribution of the GPIs’ distinct quantities requested in the year
2015.

tically equivalent. We therefore consider GPI as a distinct drug identi�er.

Analysis of pharmacy sales data shows that most of the GPIs are requested in multiple
quantities (QTY). Figure 2.1 illustrates the distribution of GPIs’ distinct quantities requested
in the year 2015 over all stores. On average, each GPI is requested in four distinct quantities,
while 46% of the GPIs are ordered in a single quantity. At a pharmacy kiosk, a medication
is assumed to be in available only if it is stocked in the exact requested quantity. As such, a
successful customer transaction requires the right drug with the right quantity to be in stock
when ordered, so we use GPI-QTY to denote a distinct SKU in the rest of the analysis. We now
analyze the signi�cance of product substitution, demand distribution, and co-ordering of drugs
using historical data and identify the critical factors to be modelled.

2.1. Product Substitution

Since GPIs are ordered in various quantities, multiple packages of the same GPI with di�erent
quantities may need to be stored resulting in higher capacity requirements. One possible so-
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lution is to allow supplier-driven substitution between SKUs that share the same GPI code but
have a di�erent quantity. We explain the supplier-driven substitution e�ect using an illustra-
tive example. Consider a GPI that is ordered in �ve di�erent quantities: {20, 28, 40, 56, 60}. We
may either stock �ve distinct packages, one of each quantity 20, 28, 40, 56, and 60 or, we may
store only packages of 20 and 28 since 40 and 60 are multiples of 20 and 56 is a multiple of 28.
As such, GPI-20 may substitute GPI-40 and GPI-60 while GPI-28 may substitute GPI-56. Opti-
mal substitution decisions, however, depend on the demand for each quantity. For instance, if
GPI-60 is frequently ordered, we should store it in quantities of 60 rather than 20, which would
otherwise result in an increased number of packages. On the other hand, when GPI is rarely or-
dered in quantities of 60, it may be better to stock packages in quantities of 20 to satisfy sales in
quantities of 20 and 60. This motivates us to consider inventory planning under supplier-driven
substitution.

Another categorization of substitution is customer-driven substitution where customers de-
cide on substitution when their preferred product is not available. For instance, if a customer
wanted to buy his/her favorite brand of pain reliever that is not available at the pharmacy store,
he/she may switch to another pain reliever. However, the data reveals that over-the-counter
drugs constitute only 2.5% of the total pharmacy sales. At pharmacy stores, customer orders
predominantly consist of prescribed drugs (97.5% of sales) which cannot be substituted by other
drugs at the request of the customer. As such, customer-driven substitution is more appropriate
in the context of retail items.

2.2. Demand distribution

We attempt to determine if demand follows a distribution that could be used in the modelling
approach to make stocking and supplier-driven substitution decisions. Pharmacy sales data
reveals that demand for the majority of drugs is low as shown in Figure 2.2. The latter illustrates
the distribution of the number of days in a year GPI-QTYs are ordered where 40% of the GPI-
QTYs appeared only one day and on average, the number of days GPI-QTYs are requested
equals 11. Only 20% of the GPI-QTYs are requested in 10 days or more per year. Figure 2.3
plots the cumulative demand distribution and yearly demand of the GPI-QTYs. The top 14%

8
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Figure 2.2: Distribution of the number of days drugs are ordered in a year
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(1404) of the GPI-QTYs capture 80% of the pharmacy sales. So to achieve a service level of 80%,
it is su�cient to stock the top 14% of drugs. However, at higher service levels, the assortment
problem is nontrivial as another 3126 drugs numbered from 1404 to 4530 in Figure 2.3 represent
(31% of drugs) and capture only 15% of the sales. These drugs have yearly demand between
3 and 17 with no particular seasonal trends or patterns throughout the year. As MedAvail’s
target service level exceeds 90%, a large number of drugs with low and erratic demand must
be considered in making the assortment decisions. Moreover, supplier-driven substitution is
expected to have a signi�cant impact on overall stock levels and required kiosk capacity. Due
to such random and low demand, �tting theoretical distributions such as Normal and Poisson
su�er from over or underestimation of the lead time demand leading to sub-optimal stocking
decisions and consequently erroneous service levels. This motivates the use of a data-driven
approach in making stocking decisions.

2.3. Co-ordering of Drugs

While making stocking decisions, one should also consider the possibility of co-ordering of
drugs in a prescription. For prescriptions with multiple medications, a customer transaction
is less likely to be successful if one of the prescribed drugs is not stocked. Figure 2.4(a) shows
the co-ordering distribution of the transactions recorded in the year 2015 where 82% of the
transactions record only one drug, and the average number of drugs in a transaction equals
1.25.

We use the Apriori association rule algorithm (Agrawal et al. 1994) to determine SKUs that
frequently appear together in prescriptions. It proceeds by �rst identifying drugsets that fre-
quently occur in the transactions. A drugset is a set containing one or more drugs. Frequent
drugsets are determined using a minimum threshold known as threshold support. Support,
supp(X) of a drugset X is calculated as the number of times the drugset appears over the
total number of transactions in the year 2015. If the support of a drugset is less than the thresh-
old support, it is excluded from further analysis. We set threshold support to be 15

D
, where D is

the number of transactions recorded in the year 2015. Threshold support of 15
D

allows us to an-
alyze association rules among top 20% of frequently ordered products that capture more than
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Figure 2.4: Figure (a) shows the drug co-ordering distribution and Figure (b) compares sig-
ni�cance of association rules generated from Apriori association algorithm where threshold
support is set to 15 and minimum con�dence is 0.5

80% of the total sales. Once the frequently ordered drugsets are selected based on threshold
support, the con�dence for all pairs of drugsets is computed. The con�dence, conf{X ⇒ Y }
is the probability of purchasing drugset Y when drugset X is purchased. In our case, we select
a minimum con�dence of 0.5 to ensure all rules that are likely to exist are selected i.e., prob-
ability is greater than 50%. The results of the algorithm are presented in Figure 2.4(b) where
Lift(X ⇒ Y ) = conf(X⇒Y )

supp(Y )
measures the signi�cance of a rule. A total of 47 association rules

between di�erent drugs are found. For better decision-making, these association rules should
be taken into account when making assortment and stocking decisions. We do not explicitly
incorporate the e�ect of the association between drugs. However, we detail the justi�cation
in Chapter 3 where we note that at higher service levels, i.e., greater than or equal to 80%, all
SKUs with yearly demand greater than or equal to 15 are selected. As such, all drugsets in 47
association rules found are already stocked.

Based on descriptive analysis of data, the following insights are derived

11



• Drug demand is sporadic and does not �t a known theoretical distribution. A data-driven
optimization approach should therefore be used to make optimal operational decisions.

• Drugs are ordered in various quantities and as such, the substitution e�ect should be con-
sidered where multiple packages of a stocked GPI-QTY could be dispensed to satisfy the
demand of another GPI-QTY as long as they share the same GPI code, and the quantities
match.

• Around 97.5% of customer orders consists of prescription drugs that cannot be substituted
at customer request. As such, modelling customer-driven substitution is not required in
the context of pharmacy kiosks.

• The e�ect of co-ordering of drugs seems to be insigni�cant and therefore we do not model
it to ensure tractability of the optimization model is maintained, allowing us to solve
large-scale instances.

12



Chapter 3

Capacity & Assortment Planning under
Supplier-driven Substitution

3.1. Introduction

MedAvail Technologies launched their �rst self-serve pharmacy kiosk, namely “MedCenter"
(see Figure 3.1) in 2013 that have now been successfully deployed in U.S., Canada, and Switzer-
land where they are installed in pharmacies, retail stores, hospitals, community clinics, univer-
sity campuses, and medical o�ce buildings. MedCenter consists of multiple bins, each divided
into several slots where a single slot can store various packages each containing a speci�c drug
of a particular quantity. A customer is connected to a remote pharmacist who reviews scanned
customer prescription and veri�es if the drug is available in a package with the exact requested
quantity. The customer is then instructed to make the payment and the pharmacist authorizes
the release of the prescription. If medications are not stocked, a customer may request the phar-
macist to call the physician for a substitute, to transfer the prescription to the home pharmacy,
or to just cancel the order request.

MedCenter faces inventory challenges due to its limited storage capacity. The existing kiosk,
developed to complement pharmacy operations, may store up to 1000 packages. In the MedCen-
ter, a package is an SKU containing a speci�c drug of a speci�c quantity. Analysis of historical
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Figure 3.1: MedAvail’s MedCenter Kiosk (MedAvail 2017)

data in Chapter 2 shows that there are thousands of drugs, each ordered in four di�erent quanti-
ties, on average. As such, inventory decisions are crucial in achieving high service levels when
capacity is limited. Past data also shows that 60% of the failed transactions occur for three main
reasons: (1) the drug is not stocked, (2) the drug is stocked but is currently out of stock, and (3)
the drug is stocked but a package with the exact requested quantity is not available.

In this chapter, we address these stocking challenges by developing a modelling framework
that determines the required capacity of the kiosk to achieve a desired level of service. Capacity
is de�ned as the total number of packages stored which equals the sum of stock levels of all
GPI-QTYs and therefore depends on the assortment of drugs to be stocked and corresponding
stock levels. The stock level of a GPI-QTY is determined by its own demand and the demand
of other GPI-QTYs it substitutes as well as the replenishment policy and the target service
level. We develop three scenario-based stochastic optimization models that decide on optimal
assortment, inventory, and supplier-driven substitution decisions. The proposed optimization
models are tractable and CPLEX can solve large-scale instances with 30,000 GPI-QTYs. We also
present a column-generation based heuristic solution approach that allows us to further reduce
computational times by a factor of 3 at the expense of 1.1% optimality gaps, on average.
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The remainder of the chapter is organized as follows. Section 3.2 reviews the related work in
the literature. In particular, we review previous work on vending machine systems, newsven-
dor problems, and assortment problems under product substitution. Optimization models are
formally de�ned in Section 3.3. In Section 3.4, we present a column-generation based heuristic
approach to solve large-scale instances. In Section 3.5, we present model results for the capacity
planning problem faced by MedAvail and analyze the e�ects of supplier-driven drug substitu-
tion and replenishment lead time on kiosk capacity. To further generalize model results, the
product substitution is studied using randomly generated data and managerial insights are de-
rived. We also compare the computational performance of the proposed column generation
approach with CPLEX and Benders decomposition. Finally, some concluding remarks and fu-
ture research directions are presented in Section 3.6.

3.2. Literature Review

The work in this chapter relates to the literature on vending machine systems, capacitated
newsvendor problem, and the assortment problem under one-way substitution. In this section,
we review previous work in each stream and position our work accordingly.

3.2.1 Vending Machine Systems

Internet of Things (IoT) is expected to be the next technological revolution aimed at creating
a smart world through a network of interconnected smart devices (Kim et al. 2017). A smart
vending machine or a self-serve kiosk is one such example of the use of IoT-enabled tech-
nology towards the smart world. Potential business gains from implementing smart vending
machines were �rst studied by Shin et al. (2009) through a Beijing-based case study during the
2008 Olympics. The authors show that a digitized vending machine equipped with providing
real-time information relating to game schedules, weather, and maps signi�cantly improved
revenues. For large-scale deployment of IoT-enabled vending machines, Solano et al. (2017)
present a cost a�ordable solution using free Web services and technologies to minimize the
total cost of ownership (TCO) for vending operators while enhancing customer experience.
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Vending operators are also faced with operational challenges associated with managing vend-
ing machines including inventory planning, assortment problem, and replenishment interval.
Rusdiansyah and Tsao (2005) are the �rst to address the operational planning problem for vend-
ing machines. The authors propose a multi-period inventory-routing problem for a network of
single-product vending machines with constant demand rates. One of the earliest work on
multi-product vending machine operation problem is by Poon et al. (2010). The authors con-
sider a network of IoT-enabled kiosks connected to a cloud with sales and inventory level data
available in real-time. They propose a replenishment index to formulate a simple feasible re-
plenishment plan aimed at minimizing stock-out and transportation costs. Park and Yoo (2013)
incorporate stock-out based product substitution to kiosk inventory management problem to
decide on replenishment point and inventory up-to level for multiple products.

The mentioned studies are based on IoT-enabled kiosks and stochasticity in demand is ig-
nored. On the other hand, Grzybowska et al. (2020) study the smart vending machine inventory
planning under stochastic demand along with the optimal allocation of products within the
machine using a simulation-optimization framework. These studies are however based on the
assumption that demand distribution is either known or could be approximated through em-
pirical data. However, analysis of pharmacy data reveals that it is hard to approximate product
demand due to its sporadic nature. On top of that, during the early stages of kiosk operations,
inventory planning has to be based on the limited amount of transactional data. To address
this, Lin et al. (2011) propose a set-covering problem to select a set of products with maximal
attributes to maximize kiosk’s coverage. Later, when transactional data is recorded, a decision-
tree based predictive model is used to decide on products to be stocked. The work by Lin et al.
(2011) is mainly focussed on demand prediction and products are simply stocked in the order
of their expected pro�ts until the vending machine is full. In contrast, we follow a data-driven
optimization approach where demand is not exactly known but is rather represented by the
empirical distribution. To the best of our knowledge, our work is the �rst to address the in-
ventory and assortment planning problem for vending machine systems with supplier-driven
one-way substitution.
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3.2.2 Assortment & Inventory Decisions

MedAvail wants to determine optimal stock levels for GPI-QTYs with stochastic demand to min-
imize kiosk storage capacity while ensuring that desired service level is achieved. This problem
is related to the well-known Constrained Multi-Product Newsvendor Problem (CMPNP) where a
newsvendor wants to determine a single-period optimal stocking policy for multiple products
with stochastic demand and resource or budget constraint(s). The literature that deals with
stochastic modelling approaches for the newsvendor problem assume that the demand distri-
bution is known. In this stream, Hadley and Whitin (1963) are the �rst to study a CMPNP and
propose a Lagrangian-based method to solve the problem. Fractional stock levels are allowed
and to obtain an integer solution, the optimal order quantity is approximated by rounding down
to the nearest integer value. Such an approach, however, performs poorly when the demand
for products is low. To overcome the issue, Hadley and Whitin (1963) propose a dynamic pro-
gramming procedure that is computationally ine�cient when the products size is large and the
largest instance reported in the paper consists of three products only. Nahmias and Schmidt
(1984) extends the work of Hadley and Whitin (1963) and propose multiple heuristic approaches
to solve the problem e�ciently. The approach is however only applicable for moderate-to-high
demand items as the proposed solution methodologies use continuous decision variables. The
authors argue that for low-demand items a discrete model would be more applicable. Lau and
Lau (1996) observe that the methodology proposed by (Hadley and Whitin 1963) may lead to
negative optimal order quantities when the capacity is tight. The authors present an extension
of the procedure in (Hadley and Whitin 1963) to deal with general demand distributions in-
cluding positive lower bounds. Abdel-Malek et al. (2004) propose a closed-form expression of
optimal order quantities when the demand follows a uniform distribution and present a generic
iterative method to �nd near-optimal solutions for other general distributions. To avoid the is-
sue of negative order quantities, Abdel-Malek and Montanari (2005) suggest the use of thresh-
olds to help decision makers remove products with low marginal utilities. A binary search
method applicable to both continuous and discrete demand distribution is proposed by Zhang
et al. (2009). The proposed solution approach, however, does not guarantee optimality for the
discrete distribution. For a comprehensive review on uncapacitated and single newsvendor
problems with known demand distribution, we refer the reader to Turken et al. (2012).
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In stochastic models, the literature assumes a known distribution and could not be applied
in our case where demand is highly erratic and low. Since the demand for each GPI-QTY is
erratic and low, experimentation with �tting Negative binomial, Poisson, and Normal distribu-
tions reveals that demand does not follow any speci�c probability distribution. This is true for
many real-life problems where the exact distribution is rarely known and is generally approx-
imated based on historical data. This explains the issue of poor out-of-sample performance in
stochastic optimization approaches. To address this, robust optimization approaches are pro-
posed in the literature. In this stream, Vairaktarakis (2000) considers a robust CMPNP under the
assumption that the demand distribution for each item is completely unknown and only a set
of discrete demand scenarios are available. The author presents minmax regret formulations
with the objective to minimize expected costs under the worst-case realization of demand. The
scenario-based minmax modelling approach is often criticized for being overly conservative as
outliers in the historical data are not excluded. Such a minmax approach could be used for the
pharmacy kiosk problem but our results show that it performs poorly. The poor performance
is not due to the overly conservative nature of the model but rather it is unable to provide
robust solutions due to the fewer number of scenarios for the kiosk problem with thousands
of SKUs. To deal with the issue of overly conservative solutions in minmax regret formula-
tions, a standard approach is to assume that the demand for each item could deviate from its
nominal demand while the total deviation for all items is controlled by a user-de�ned budget
of uncertainty (see, for example, Bertsimas and Thiele (2006b), Lin and Ng (2011a)). However,
under service level maximization objective, the adversarial problem in robust optimization is
nonlinear and as such, a tractable robust counterpart formulation does not exist. In addition,
mathematical formulations for such models are complex and di�cult to understand for man-
agers. We therefore adopt a scenario-based stochastic optimization framework where all values
of demand for each GPI-QTY recorded in the past data are used. Such an approach does not
require the probability associated with each scenario and is therefore appropriate in our case
where the probability density functions of GPI-QTYs are not known. In order to obtain robust
solutions, we generate robust scenarios using the maximum demand of each GPI-QTY over all
stores data in a given time period.

In CMPNP literature, the objectives considered optimize costs, pro�ts, or the probability
to achieve a target pro�t under di�erent criteria (Khouja 1999). Our objective is to deter-
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mine minimum kiosk capacity under service level constraints. The modelling approaches in
the CMPNP literature do not explicitly model service level constraints and understocking is
penalized through shortage costs that are included in the objective function. Studies that do
consider service levels (see Table 3.1) in CMPNP (Chen and Chuang 2000, Taleizadeh et al. 2008,
2009, Waring 2012, Abdel-Aal et al. 2017) include service level constraints for each item and use
a well-de�ned cumulative distribution function of the demand to de�ne the service level as the
probability of meeting demand with a given stock level. However, such an approach is not ap-
plicable in our case since demand is erratic and low and does not follow a known distribution.
We use �ll rate to de�ne service level as the proportion of successful transactions with given
stock levels of GPI-QTYs over a planning horizon of one year. Moreover, the service level in
our problem is de�ned for the kiosk rather than for each GPI-QTY.

3.2.3 Substitution Decisions

Another challenge is to make substitution decisions along with stocking decisions under stochas-
tic demand. Product substitution, in general, is de�ned as the act of using one product to meet
the demand of another product. In inventory and assortment planning literature, substitution
is categorized as either supplier-driven or customer-driven (Shin et al. 2015). In customer-driven
substitution, customers decide on substitution when their preferred product is not available. In
such problems, customer behavior is modelled within the optimization framework, see, for ex-
ample, (Gaur and Honhon 2006, Kök and Fisher 2007, Aydin and Porteus 2008). In this stream of
literature, Gaur and Honhon (2006) consider an uncapacitated multiproduct assortment plan-
ning problem where the demand follows a known distribution and the goal is to decide on the
stock level for each product such that the expected pro�ts are maximized. A utility-based loca-
tional choice model is used to estimate the customer demand where substitution between the
products is allowed based on the substitution rate. For each customer, the utility it derives from
product j is calculated and it is assumed that a customer prefers the product that maximizes
his/her utility. If such a product is not available, he/she may select the second highest utility
product with a probability de�ned by substitution rates. Kök and Fisher (2007) model the as-
sortment problem using an exogenous demand model where the demand and substitution rates
are precomputed using regression models and are then used to decide on the number of facings
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allocated to each product under a capacity constraint.

These models do not make substitution decisions but rather consider customers’ substitu-
tion behavior to decide on assortment and stock levels. We do not incorporate such customer
behavior in our modelling approach since customer orders at pharmacy stores predominantly
consist of prescribed drugs (97.5% of sales) which cannot be substituted by other drugs at the re-
quest of the customer. However, incorporating customer substitution behavior within a model
making supplier-driven substitution decisions is a promising future research work. We refer
the reader to Kök et al. (2008) and Shin et al. (2015) for a comprehensive review of literature
on customer-driven substitution. From here onward, the term “substitution" refers to supplier-
driven substitution unless explicitly mentioned otherwise.

At a pharmacy kiosk, a pharmacist may dispense multiple packages of one GPI-QTY to
satisfy the demand of another GPI-QTY as long as they share the same GPI code, and the quan-
tities match. This is known as supplier-driven substitution where the supplier makes stocking
decisions while taking into account product substitution (Shin et al. 2015). More speci�cally,
such quantity based substitution is referred to in the literature as one-way substitution and
is common in manufacturing and service industries such as semiconductor industry (Bassok
et al. 1999), computer hardware industry (Leachman and Glassey 1987), and airline industry
(Wollmer 1992). One-way substitution may improve the overall service level due to pooling.
Potential bene�ts of one-way substitution in inventory management are detailed in Fuller et al.
(1993).

The term assortment problem was �rst introduced by Sadowski (1959) who considers a prob-
lem of determining n steel beams of di�erent strengths where the demand of a lesser strength
beam is substitutable by a beam with greater strength. A similar problem in the apparel indus-
try is considered by Tryfos (1985) where the manufacturer has to decide on the set of m sizes.
In these two papers, demand patterns are described by continuous distributions. The modelling
approach in these works only decides on whether a quantity is stocked or not. On the other
hand, Pentico (1974) considers a single product ordered in di�erent quantities following discrete
probability distributions. The goal is to decide on the stock levels for each size while taking into
account one-way substitution where a smaller stocked size can meet the demand of a larger
unstocked size while incurring a substitution cost. The demand for each size is assumed to be
probabilistic and some strong substitution assumptions are made in the paper. The author as-
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sumes that to meet the demand for a larger stocked size, only the smallest stocked size could be
used. It is also assumed that demand is realized in descending order of size. Moreover, capacity
is incorporated implicitly as a �xed charge cost of stocking a given size. A dynamic program-
ming approach is proposed to formulate and solve the problem. These assumptions greatly
limit the applicability of the proposed model. Pentico (1976) relaxes the linear cost functions
and substitution cost assumption in Pentico (1974) but considers deterministic demand. Chand
et al. (1994) generalizes the problem in Pentico (1976) with in�nite planning horizon. A di�erent
variant of demand uncertainty in the assortment problem is studied by Dutta and Chakraborty
(2010) where the demand is fuzzy and lies within an interval data. Bassok et al. (1999), Rao et al.
(2004), and De�em and Van Nieuwenhuyse (2013) study multi-product assortment problem un-
der downward substitution without incorporating storage or resource constraints. Bassok et al.
(1999) present a two-stage pro�t maximization formulation with N products and N demand
classes under full downward substitution. Rao et al. (2004) consider a similar problem but take
into account setup costs while De�em and Van Nieuwenhuyse (2013) derive optimality condi-
tions where substitution outperforms separate stock levels for the two-item case. Ahiska et al.
(2017) and Hsieh and Lai (2019) study one-way substitution for manufacturing industry prob-
lem where high-quality products substitute low-quality ones. Ahiska et al. (2017) formulate the
problem using the Markov decision process while Hsieh and Lai (2019) use a game-theoretical
modelling framework.

Pharmacy kiosk inventory & assortment problem poses new research questions within the
assortment optimization literature that have not been studied before. As such, our work di�ers
from existing literature in the following aspects.

1. Substitution rules considered in our work have not been studied before. The literature
on supplier-driven substitution deals with problems where a high-quality product may
substitute a lower quality one with one-to-one substitution i.e., to meet the demand of
a single unstocked unit, only one unit of a higher quality item is dispatched. On the
other hand, in our case, to meet the demand of a single unit, multiple packages must be
dispensed to ful�ll the demand while ensuring that the quantity dispensed is equal to
the requested quantity. Such requirements are not handled by the models in the litera-
ture. From a modelling perspective, the exact requested quantity requirement leads to
extremely complex mathematical models.
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2. The models in the literature explicitly include substitution costs in the objective function.
For instance, in a computer hardware industry, if a customer order of 4GB memory chip
is not available, an 8GB memory chip may ful�ll the demand with substitution cost equals
to the di�erence between the prices of the two di�erent memory chips. In our case, there
are no explicit substitution costs. The latter is captured implicitly within the service level
expression to avoid over-substitution that may lead to lower service levels. To the best of
our knowledge, our work is the �rst to consider �ll rate in assortment planning problems
with one-way substitution. As shown in Table 3.2, other than (Bagchi and Gutierrez 1992),
no work considers service level. In Bagchi and Gutierrez (1992), however, service level
constraints are added for each item using a well-de�ned cumulative distribution function,
and fractional stock levels are also allowed in the optimal solution.

3. A common assumption in assortment planning problems under one-way substitution is
that demand for all items is realized at the same time. The problem is then formulated as
a two-stage stochastic program. In the �rst stage, when demand is not realized, the for-
mulation decides on the stock levels of each item while taking into account substitution.
In the second stage when the demand is realized for all items, substitution decisions are
made based on the given stock levels to meet the demand for all items. However, for a
pharmacy kiosk, demand is realized in a dynamic fashion where customers arrive one at a
time. Rao et al. (2004) correctly point out that dynamic substitution models are extremely
complex. Such complex models are intractable for the large-scale capacity planning prob-
lem faced by MedAvail with around 30,000 GPI-QTYs. We therefore employ a stationary
substitution policy i.e., the same substitution rules are employed throughout the planning
horizon irrespective of the stock levels at any given time. However, to deal with the prob-
lem of dynamic customer arrivals, our models make robust substitution decisions which
guarantee that the desired service level is always achieved irrespective of the sequence
of demand realization for substitutable products.

4. Our proposed models are tractable for the pharmacy kiosk problem with 30,000 GPI-
QTYs and could be solved using a commercial solver. Other models in the literature are
too complex for the large-scale instances with thousands of GPI-QTYs.
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3.3. Modelling Stocking and Assortment Decisions

The problem is to decide on the single period (replenishment lead time) stock level xi, for each
product i ∈ I using the empirical distribution that is generated from historical data. When
xi = 0, product i is not stocked and the assortment is de�ned by i ∈ I such that xi > 0. We
adopt a scenario-based stochastic optimization model that uses past data to generate T demand
scenarios by dividing the planning horizon into T =

⌈
365
h

⌉
lead time intervals, where h is the

lead time. The demand Ait for i ∈ I , during time period t ∈ Θ = {1, ..., T}, is calculated using
historical sales data. Products are grouped in classes if they only di�er by quantities. In the
presence of substitution, The demand dit, depends on the substitution variable sij , which equals
1 if product i substitutes product j. The latter is only possible if products i and j belong to the
same product class and quantity qj is a multiple of quantity qi. A 0−1 incidence matrixb = [bij]

is computed where bij = 1 if product j is substitutable by i. As such, dit =
∑
j∈I:
bij=1

mijAjtsij , where

mij =
qj
qi

units of product i are required to meet the unit demand for product j. Note that we
employ a stationary substitution policy where it is assumed that the demand is realized at once
during the start of the period and substitution decisions sij do not change over time and stock
level.

Substitution variables may be either predetermined or optimized within a mathematical
model. In the pharmacy kiosk application, each GPI is a product class containing GPI-QTYs
sharing the same GPI code. Multiple packages have to be dispensed to meet the demand for a
higher quantity. Such a substitution arises for a variety of other industrial applications where a
requested quantity could be substituted by multiple packages of smaller quantities. For instance,
in the case of a Bank ATM, customer requests for $100 could be met by dispensing �ve currency
notes of $20. Similarly, for a grocery store/vending machine, a customer may be willing to
accept six 250ml bottles of Coke if a 1.5 liter family pack is not available.

Since there are no backorders, any unsatis�ed demand is a lost sale. The lost sales for
a product i ∈ I during time period t ∈ Θ is max{0, dit − xi}. Lost sales occur either be-
cause the drug is not stocked, i.e., xi = 0, or observed demand in some period t exceeds the
stock level, i.e., xi < dit. At a pharmacy kiosk, unsatis�ed demand is lost because a customer
is most likely going to use another pharmacy and not wait for the medication to be back-
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ordered. The same applies to other kiosk applications such as Bank ATM and vending ma-
chines, etc. Since unsatis�ed demand is lost, we model the problem with no backorders which
also justi�es single-period stock planning. The expected service level or �ll rate is calculated

as 1−

∑
i∈I

∑
t∈Θ

max{0, dit − xi}

D
where D is the total yearly demand. Our goal is to determine

the capacity such that the desired service level α is met.

We develop three optimization models to solve the capacity planning problem and address
management’s questions under three di�erent substitution rules: (1) no substitution, i.e., sii = 1

and all other substitution variables take value 0, (2) management’s substitution rule, (3) opti-
mized substitution. In rules (1) and (2), substitution is prede�ned. We now discuss the models
under prede�ned and optimized substitution.

3.3.1 Prede�ned substitution

The �rst model [M1] decides only on optimal stock levels for products using one of the prede-
�ned substitution rules, and minimizes the capacity under service level constraint. Given the
substitution rule, demand scenarios dit for each product i ∈ I are precomputed and serve as
input data to the model. The formulation is

[M1]: min
∑
i∈I

xi (3.1)

s.t. 1−

∑
i∈I

∑
t∈Θ

max{0, dit − xi}

D
≥ α (3.2)

xi ∈ Z+, ∀ i ∈ I, t ∈ Θ, (3.3)

where the objective function (3.1) minimizes the total number of packages stocked i.e., required
capacity of the kiosk under the assumption that all packages occupy equal space. The latter
could be easily relaxed by replacing objective function coe�cients with products’ space require-

ments. Constraint (3.2) ensures that the expected service level, 1 −

∑
i∈I

∑
t∈Θ

max{0, dit − xi}

D
,

is greater than or equal to the desired service level, α. Finally, constraint (3.3) is the nonneg-
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ative integer requirement on xi. The above formulation is nonlinear due to max functions in
constraint (3.2). The latter may be linearized by introducing auxiliary variables (fit, yit) and
replacing constraint (3.2) with the following set of constraints

1−

∑
i∈I

∑
t∈Θ

fit

D
≥ α, (3.4)

fit ≥ 0, ∀ i ∈ I, t ∈ Θ, (3.5)
fit ≥ dit − xi, ∀ i ∈ I, t ∈ Θ, (3.6)
fit ≤ (dit − xi) +M × yit, ∀ i ∈ I, t ∈ Θ, (3.7)
fit ≤ 0 +M × (1− yit) , ∀ i ∈ I, t ∈ Θ, (3.8)
yit ∈ {0, 1}, ∀ i ∈ I, t ∈ Θ, (3.9)

where M is a signi�cantly large number. If dit > xi, yit must be equal to 0 for the problem
to be feasible. Constraint (3.6) is then fit ≤ dit − xi and constraint (3.7) is fit ≤ M . As such,
fit = dit − xi. On the other hand, if dit < xi, yit = 1 for the problem to be feasible and fit = 0.
The problem, however, becomes challenging to solve due to binary variables yit. We therefore
present a relaxed formulation [R1] where constraints (3.7) and (3.8) are dropped

[R1]: min
∑
i∈I

xi (3.10)

s.t. fit ≥ dit − xi ∀ i ∈ I, t ∈ Θ, (3.11)

1−

∑
i∈I

∑
t∈Θ

fit

D
≥ α, (3.12)

xi ∈ Z+, fit ≥ 0, ∀ i ∈ I, t ∈ Θ, (3.13)

and prove in Lemma 1 that its optimal solution x∗ = [x∗i ] is also optimal to the original model
[M1].

Lemma 1. An optimal solution x∗ for model [R1] is also optimal to the original model [M1].
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Proof. Let (x∗ = [x∗ij], f
∗ = [f ∗it]) be an optimal solution to model [R1]. Rearranging constraint

(3.12), ∑
i∈I

∑
t∈Θ

f ∗it ≤ (1− α)×D

In model [R1], f ∗it may take a value greater than the max term max{0, dit − x∗i } in constraint
(3.2). As such,

∑
i∈I

∑
t∈Θ

f ∗it ≥
∑
i∈I

∑
t∈Θ

max{0, dit − x∗i } and

(1− α)×D ≥
∑
i∈I

∑
t∈Θ

f ∗it ≥
∑
i∈I

∑
t∈Θ

max{0, dit − xi}

This implies
∑
i∈I

∑
t∈Θ

max{0, dit − x∗i } ≤ (1− α)×D and constraint (3.2) holds for x∗. This

proves that solution x∗ is feasible to the original model [M1].

Let z∗M1 and z∗R1 be the optimal objective function values for models [M1] and [R1], respec-
tively. Since [R1] is a relaxed formulation of model [M1], z∗R1 ≤ z∗M1. Since the original model
[M1] can not have a solution superior than z∗R1, x∗ is also optimal for [M1].

Note that fit is simply an analysis variable used to linearize model [M1]. One could adjust
its value after solving the model [R1] by setting f ∗it = max{0, dit − x∗i }. Model [R1] is a new
variant of the well-known single-period newsvendor problem under a service level constraint
and could be applied to any inventory problem where the service level needs to be considered
while making stocking decisions. In addition to the capacity minimization objective, the model
is easily extendable for pro�t maximization or cost minimization objectives.

3.3.2 Optimized substitution

We develop two additional models that extend [M1] to optimize both stocking and substitution
decisions. Model [M2] decides on substitution and stock levels to minimize storage capacity
under a service level constraint. The parameter dit in model [M1] is now a decision variable
in [M2] as the model makes substitution decision sij . As such, model [M2] has two additional
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decision variables : dit and sij . The formulation is then as follows.

[M2]: min
∑
i∈I

xi (3.14)

s.t. dit =
∑
j∈I:
bij=1

mijAjtsij ∀i ∈ I, t ∈ Θ, (3.15)

∑
i∈I:
bij=1

sij = 1 ∀j ∈ I, (3.16)

1−

∑
i∈I

∑
t∈Θ

max{0, dit − xi}

D
≥ α, (3.17)

sij ∈ {0, 1} ∀i ∈ I, j ∈ I, (3.18)
xi ∈ Z+, dit ∈ Z+ ∀i ∈ I, t ∈ Θ, (3.19)

where the objective function (3.14) is the same as (3.1). Constraint (3.15) computes demand dit
of a product i ∈ I in period t ∈ Θ taking into account the demand of products it substitutes.
Constraint (3.16) ensures that each product j ∈ I is substituted by exactly one product. If
sii = 1, it implies that product i ∈ I is not substituted by any other product. Constraint
(3.18) is the binary requirement on variable sij and constraints (3.19) are nonnegative integer
requirements on variables xi and dit. Constraint (3.17) de�nes the service level and is the same
as constraint (3.2) in model [M1]. It may be linearized using the same approach discussed earlier
for model [M1]. Note that substitution variables sij only change dit to a decision variable and
constraints (3.4) - (3.9) are valid for model [M2]. As such, the relaxed formulation [R2] for model
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[M2] is

[R2]: min
∑
i∈I

xi (3.20)

s.t. (3.15), (3.16), (3.18), (3.19)
fit ≥ dit − xi, ∀i ∈ I, t ∈ Θ (3.21)

1−

∑
i∈I

∑
t∈Θ

fit

D
≥ α, (3.22)

fit ≥ 0, ∀i ∈ I, t ∈ Θ. (3.23)

Lemma 1 holds trivially and an optimal solution (x∗, s∗) to model [R2] is also optimal for [M2].

Model [M3] is developed to maximize the expected service level of a kiosk under a capacity
constraint. The decision variables are the same as in [M2], and the mathematical formulation
is as follows:

[M3]: max α = 1−

∑
i∈I

∑
t∈Θ

max{0, dit − xi}

D
(3.24)

s.t. (3.15), (3.16), (3.18), (3.19),∑
i∈I

xi ≤ C, (3.25)

where the objective function (3.24) maximizes the expected service level α and constraint (3.25)
ensures that the total number of packages stored is restricted to capacity, C . As in model [M2],
[M3] is also nonlinear due to the max terms in the objective function. However, to linearize it,
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we only introduce analysis variable fit. The linear formulation is

[R3]: max α = 1−

∑
i∈I

∑
t∈Θ

fit

D
(3.26)

s.t. (3.15), (3.16), (3.18), (3.19), (3.25),
fit ≥ dit − xi, ∀i ∈ I, t ∈ Θ (3.27)
fit ≥ 0, ∀i ∈ I, t ∈ Θ (3.28)

where constraint (3.27) along with nonnegativity constraint (3.28) ensure that fit ≥ max{0, dit−
xi}. At optimality, f ∗it = max{0, d∗it − x∗i } ∀i ∈ I, t ∈ Θ and is proven in Lemma 2.

Lemma 2. For model [R3], given an optimal solution (x∗, f∗, s∗,d∗), f ∗it = max{0, d∗it−x∗i } ∀i ∈
I, t ∈ Θ.

Proof. Note that constraints (3.27) and (3.28) ensure that f ∗it ≥ max{0, d∗it − x∗i } ∀i ∈ I, t ∈ Θ.

We now prove by contradiction that at optimality, f ∗it can not take a value greater than the
max term. Assume that (x∗, f∗, s∗,d∗) is optimal with objective function value z∗ and f ∗it >
max{0, d∗it − x∗i } ∃i ∈ I, t ∈ Θ. Let (x∗, fa, s∗,d∗) be the adjusted solution with objective
function value za where fait = max{0, d∗it − x∗i }. As such,

∑
i∈I

∑
t∈T

f ∗it >
∑
i∈I

∑
t∈T

fait =⇒

1−

∑
i∈I

∑
t∈T

f ∗it

D

 <

1−

∑
i∈I

∑
t∈T

fait

D

 =⇒ z∗ < za

which contradicts the assumption that z∗ is optimal. This proves that if f ∗it > max{0, d∗it −
x∗i } ∃i ∈ I, t ∈ Θ, there always exists a better solution fait = max{0, d∗it − x∗i } for which
za > z∗.

Models [R2] and [R3] are extensions of the capacitated newsvendor problem under supplier-
driven substitution. Since 97.5% of customer orders consist of prescribed drugs that cannot be
substituted by other drugs at the request of the customer, we only model one-way supplier-
driven substitution where a pharmacist may dispense multiple packages of one GPI-QTY to
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meet the demand of another sharing the same GPI code. As such, the proposed models are
speci�c to supplier-driven substitution and do not readily handle customer-driven substitution.

Note that the proposed models are generic and apply to any demand values. However, when
demand is less sporadic, a single period model that uses moments of the demand distribution
may become useful. Under dynamic customer arrivals, our models make substitution decisions
that are robust against the sequence of demand realization for substitutable products i.e., the
desired service level is guaranteed irrespective of the order in which customers arrive. This is
detailed next.

3.3.3 Substitution under dynamic customer arrivals

Models [R2] and [R3] make substitution decisions under the worst-case sequence of demand
for substitutable products. We �rst explain this using an illustrative example and present a
formal proof in Theorem 1. Consider two products i and j, in the same product class and let
qi = 20 and qj = 60. Since qj is a multiple of qi, assume that product i substitutes j, and
mij = 60

20
= 3. In a given period t, let Ait = 10, Ajt = 1, D = 10 + 1 = 11, and stock level

xi = 10. If product j is requested when less than three packages of product i are available,
then the number of failed transactions equals 1 and demand for product i is fully met. As
such, service level α = 1 − 1

11
= 91%. However, if product j is requested when at least

three packages of product, i are available, the demand for product j is ful�lled and there is a
shortage of three packages to meet the demand for product i. In this case, α = 1− 3

11
= 73%.

Depending on the sequence of demand realization, the service level either equals 91% or 73%.
Proposed mathematical models calculate service level as α = 1− fit

D
= 1− 3

11
= 73% if product

i substitutes j. We now show that substitution decisions are robust against the sequence of
demand realization.

Theorem 1. Substitution decisions are robust against the sequence of demand realization for sub-
stitutable products and guarantee that desired service level is achieved.

Proof. We �rst present the exact formula to compute the number of failures fEit . Then, we show
that fit ≥ fEit for any sequence of demand realization.
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Given a solution s, letKi = {1, 2, ..., n−1, n} be the set of products substituted by product
i ∈ I i.e., sij = 1∀j ∈ Ki. Without loss of generality, assume that the set Ki is ordered such
that the sequence of demand realization is

Ant → An−1,t → · · · → A2t → A1t (3.29)

Let f jit be the number of failures and xji be the number of packages available for product j ∈ Ki.
The exact formula for the number of failures is

f jit = dmax{0, Ajt −
xji
mij

}e (3.30)

where xji
mij

computes the demand that could be met for product j using product i. Note that

since xji
mij

can take fractional values, the valuemax{0, Ajt− xji
mij
} needs to be rounded up to the

nearest integer value. Within an optimization model, one may linearize constraint (3.30) as

f jit ≥ 0 (3.31)

f jit ≥ Ajt −
xji
mij

(3.32)

f jit ∈ Z (3.33)

Constraints (3.31) and (3.32) ensure that f jit ≥ max{0, Ajt − xji
mij
} while integer requirement

(3.33) rounds up f jit to the nearest integer value.

Given the demand sequence (3.29), xni = xi and xji = xi −
k=n∑
k=j+1

(
Akt − fkit

)
×mik where
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(
Akt − fkit

)
×mik is the number of packages of product i already used for product k. As such,

fnit ≥ Ant −
xi
min

f jit ≥ Aj,t −

xi −
k=n∑
k=j+1

(
Akt − fkit

)
×mik

mij

∀ j ∈ Ki \ {n} (3.34)

f jit ∈ Z+ ∀ j ∈ Ki

The exact total number of failures is then

fEit =
∑
j∈Ki

f jit (3.35)

Given solution sij = 1 ∀j ∈ Ki, we rewrite constraint (3.15) as dit =
∑
j∈Ki

mijAjt. Con-

straints (3.21) and (3.27) in models [R2] and [R3] are then

fit ≥
∑
j∈Ki

mijAjt − xi (3.36)

We now show that fit ≥ fEit for any sequence of demand realization. Let f̃ jit = mijf
j
it and

rearranging constraints (3.34),

minf
n
it = f̃nit ≥ minAnt − xi

mijf
j
it = f̃ jit ≥ mijAj,t −

(
xi −

k=n∑
k=j+1

(
Akt − fkit

)
×mik

)
∀ j ∈ Ki \ {n} (3.37)

f̃ jit ≥ 0 ∀ j ∈ Ki

Note that since A,m,x are integers, f̃ jit always takes an integer value. The integrality require-
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ment on f̃ jit is therefore dropped. Since mij ≥ 1,∑
j∈Ki

f̃ jit ≥
∑
j∈Ki

f jit. (3.38)

Setting xji = xi −
k=n∑
k=j+1

(
Akt − fkit

)
×mik = 0 ∀j ∈ Ki \ {n}, we have

f
n

it ≥ minAnt − xi,

f
j

it ≥ mijAj,t ∀j ∈ Ki \ {n}, (3.39)

f
j

it ≥ 0 ∀j ∈ Ki,

and ∑
j∈Ki

f
j

it ≥
∑
j∈Ki

f̃ jit (3.40)∑
j∈Ki

f
j

it ≥
∑
j∈Ki

mijAjt − xi (3.41)

Since fit ≥
∑
j∈Ki

mijAjt − xi, then by inequalities (3.35), (3.38), (3.40), and (3.41)

fit =
∑
j∈Ki

f
j

it ≥
∑
j∈Ki

f̃ jit ≥
∑
j∈Ki

f jit = FE
it =⇒ fit ≥ fEit

This shows that for any given sequence of demand realization, fit ≥ fEit . Let zE be the service
level achieved when the exact number of failures are computed while z∗ be the service level
using fit. Then,

∑
i∈I

∑
t∈T

fit ≥
∑
i∈I

∑
t∈T

fEit ⇐⇒

1−

∑
i∈I

∑
t∈T

fit

D

 ≤
1−

∑
i∈I

∑
t∈T

fEit

D

⇐⇒ z∗ ≤ zE

(3.42)
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which proves that desired service level z∗ is always achieved irrespective of the sequence of
demand realization.

3.4. A Column-Generation Based Heuristic Approach

In many practical problems, the optimization models are of large-scale and it may be impossible
to explicitly include all variables in the initial formulation or it may consume too much mem-
ory. Column generation is a well-known procedure to solve such large-scale problems where
columns are added at each iteration of the simplex method. The idea of column generation
was �rst suggested by Ford Jr and Fulkerson (1958) for multicommodity network �ow problem
and have been successfully applied to many real-life problems including cutting stock problems
(Gilmore and Gomory 1961, 1963), crew scheduling (Desaulniers et al. 1997), and vehicle routing
(Agarwal et al. 1989). Oğuz (2002) show that column generation may even be e�cient for some
problems where the number of variables is low enough to be explicitly included in the model.
In our problem, all variables can be explicitly included in the formulation but it consumes too
much memory and thus slowing down CPLEX. In particular, the pharmacy kiosk problem con-
sists of too many GPI-QTYs and only a few could be stocked due to limited capacity. As such,
one may include variables xi and sij only for products that are most likely to be stocked.

We present a column-generation based heuristic approach (CGA) to solve model [R3] to near
optimality by selecting only a subset of products in the initial formulation. Other products are
then added iteratively. The approach is also applicable for the other two models, [R1] and [R2].
Let Ĩ ⊆ I be the set of products selected for the initial formulation. We rewrite model [R3] and
drop integer requirements to formulate the restricted master problem [RMP] as
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[RMP]: max 1− 1

D
×
∑
i∈I

∑
t∈Θ

fit (3.4.43)

s.t.
∑
i∈I

xi ≤ C, [λ] (3.4.44)∑
j∈I:
bij=1

mijAjtsij − xi − fit ≤ 0 ∀i ∈ I, t ∈ Θ, [uit] (3.4.45)

∑
i∈I:
bij=1

sij = 1 ∀j ∈ I, [ωj] (3.4.46)

xi, sij ≥ 0 ∀i ∈ Ĩ , j ∈ I : bij = 1, (3.4.47)
fit ≥ 0, ∀i ∈ I, j ∈ I, t ∈ Θ, (3.4.48)

where [.] are dual variables for each constraint. Constraint (3.4.46) along with nonnegativity
constraint (3.4.48) ensures sij ≤ 1, and we therefore do not include this constraint to the model.
We select a subset of products to initialize the algorithm. A subset should be selected such that
it minimizes the number of iterations required to add the columns. To do so, we sort products
in decreasing order of the number of substitution a product can make, and the yearly demand.
We then select top C

2
products with highest yearly demand and the number of substitutions.

This allows us to start o� with products that are likely to be stocked due to higher demand
and their ability to substitute the demand for other products. Variables xi and sij ∀j ∈ I are
introduced for the selected products. Products that are not selected, we only include variable
sii i.e., either its demand is met using one of the selected products or sii = 1, and the demand
for such product is never met. Once model [RMP] is solved, its dual information is used to

36



determine potential products to be added to the model. Taking the dual,

[RMP-D]: min 1 + Cλ+
∑
j∈I

ωj (3.4.49)

s.t. − uit ≥ −
1

D
i ∈ I, t ∈ Θ, [fit] (3.4.50)

λ−
∑
t∈Θ

uit ≥ 0 ∀i ∈ I, [xi] (3.4.51)∑
t∈Θ

mijAjtuit + ωj ≥ 0 ∀i ∈ I, j ∈ I : bij = 1 [sij] (3.4.52)

λ ≥ 0, uit ≥ 0, ωj → urs ∀i ∈ I, j ∈ I, t ∈ Θ (3.4.53)

Given λ and uit, the reduced cost is RCi = λ −
∑
t∈Θ

uit for product i. Let I be the set of prod-

ucts not included in the initial formulation. The pricing problem min
i∈I
{λ−

∑
t∈Θ

uit} determines

the product with most negative reduced costs which is then added to [RMP]. For most of the
problems in the literature, enumerating over all possible columns is computational impracti-
cal and therefore a pricing subproblem is solved to determine the column to be added. In our
case, however, one could easily calculate reduced costs for all products. Instead of selecting the
product with most negative reduced cost, we select all products with reduced costRCi < 0 and
columns xi and sij ∀j ∈ I are added to [RMP] which is solved again. This procedure terminates
when RCi ≥ 0∀i ∈ I , and the latest [RMP] solution provides a lower bound to the original
model [R3]. The other approach could be to �rst solve model [RMP] with all variables. Then, for
products with positiveRCi, variables xi and sij ∀j ∈ I are removed. However, it turns out that
such an approach is computationally ine�cient compared to the proposed column generation
approach.

To obtain a feasible solution, [RMP] is solved with integrality constraints on xi and sij and
its objective function value is an upper bound to model [R3]. Note that this approach does not
guarantee optimality. To solve to optimality, one needs to apply the CGA at each node of the
branch-and-bound tree. However, we implement CGA only at the root node and computational
results in Section 3.5.3 show that optimality gap is 1.1%, on average.
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3.5. Results

We perform numerical testing over several datasets including seven pharmacy store sales data
and randomly generated instances. In Section 3.5.1, we use the proposed optimization models
to determine the optimized storage capacity for MedAvail’s pharmacy kiosk and recommend
assortment and stocking guidelines using pharmacy sales data. To further generalize model
results, we solve model [R2] using randomly generated instances in Section 3.5.2 and derive
managerial insights. Finally, the proposed column generation solution approach is compared
against CPLEX and Benders decomposition in Section 3.5.3.

3.5.1 The case of MedAvail

In this section, we �rst use models [R1] and [R2] to analyze the e�ects of substitution and
replenishment lead time on the capacity of a kiosk using single pharmacy store data for the year
2015. The data records 2,355 GPIs (or product classes) and 10,145 GPI-QTYs (or products). The
goal is to assess the savings in kiosk capacity through drug substitution and through reducing
replenishment lead time from two days to one day. The management suggested that it is useful
to explore the e�ect of capacity on the service level, as it may not be possible to build a machine
of an optimized capacity. Therefore, we use model [R3] to determine the maximum service
level achieved at di�erent capacity levels as suggested by the management. We then perform
several experiments using multiple datasets generated from seven 24/7 pharmacy store sales
data to provide bounds on the service level that management should expect to achieve at a given
capacity. All optimization models are coded in C++ and solved using CPLEX version 12.6.3 on
a 64-bit Windows 10 with Intel(R) Core i5-5300U 2.30GHz processors and 4.00GB RAM. We
solve all instances to an optimality gap of 0.5% since solving the problem to optimality may
only reduce the required capacity by at most 57 (11, 497 × 0.5%, see Table 3.3) for service
levels of up to 99%. They were of the view that such an exact machine could not be built
and the optimized capacity values be rounded o� to the nearest 100. Finally, we evaluate the
computational e�ciency of the proposed column generation approach against solving model
[R3] directly using CPLEX.
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3.5.1.1 E�ects of substitution

Service level, α [R2] [R1]-MedAvail’s substitution [R1]-no substitution
Capacity, C Capacity, C 4% to [R2] Capacity, C 4% to [R2]

80% 2,542 2,710 6.6% 2,618 3.0%
85% 3,261 3,449 5.8% 3,385 3.8%
90% 4,375 4,606 5.3% 4,583 4.8%
95% 6,485 6,856 5.7% 6,938 7.0%
96% 7,233 7,604 5.1% 7,686 6.3%
97% 7,980 8,506 6.6% 8,690 8.9%
98% 9,460 10,002 5.7% 10,186 7.7%
99% 10,956 11,497 4.9% 11,681 6.6%

Table 3.3: Kiosk storage capacity to achieve desired service level α under di�erent substitution
rules.

The management was inclined towards a prede�ned substitution criterion rather than a
complex mathematical model. So we optimized capacity under various substitution strategies
to see whether substitution plays a role in deciding on the capacity of the kiosk. We generate
a dataset using one pharmacy store sales data for the year 2015 with replenishment lead time,
h = 2. Model [R1] is solved under two distinct substitution rules: (1) MedAvail’s substitution
rule, and (2) no substitution. MedAvail’s substitution rule was suggested by the management
where a GPI-QTY i substitutes GPI-QTY j with the same GPI code if the quantity of j is twice
that of i and its average lead time demand is less than 25% of that of i, or if the quantity of
j is three times that of i and its average lead time demand is less than 15% of that of i. An
iterative procedure is used to assign values to the substitution variables sij based on this rule,
and dit is calculated apriori. Model [R2] is solved to determine optimized substitution. Each
model is solved repeatedly by varying the desired service level α between 80% and 99%. Table
3.3 summarizes the results.

At 95% service level, the capacity under optimized substitution is 6,485. It increases by 5.7%
when MedAvail’s rule is used and by 7.0% when substitution is not allowed. As the service
level decreases, the e�ect of MedAvail’s substitution rule decreases. In fact, the e�ect becomes
negative relative to no substitution when the service level is 90% or lower. This is due to over
substitution by MedAvail’s substitution rule at lower service levels. At lower service levels,
fewer GPI-QTYs should be substituted to optimize the capacity. Optimized substitution, as ex-
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pected, is always better than both no substitution and apriori rules. This comes at the expense
of larger solution times. Given the potential improvements in capacity under optimized substi-
tution, model [R2] is used in subsequent analysis.

3.5.1.2 E�ect of replenishment lead time

Before the start of the project, kiosks were being replenished every other day. MedAvail man-
agement wanted to investigate the e�ect of replenishment lead time on capacity and assortment
decisions. A larger lead time is expected to increase capacity since lead time demand would be
higher, so we experimented with 1 and 2 day lead times. Table 3.4 summarizes the results where
[R2] is solved at eight di�erent service levels. At 90% service level, the capacity is reduced by
14% when the replenishment lead time is reduced from two days to one day. Although a one-
day lead time may increase the operating costs of the kiosk due to frequent replenishment,
management believes that the signi�cant reduction in capacity is much more important when
taking into account the technical challenges in designing a kiosk with higher capacity. Testing
in subsequent sections is based on daily replenishment.

To study the signi�cance of co-ordering, we report the highest yearly demand among all
GPI-QTYs that are not stocked in Table 3.4. For a one-day lead time (h = 1) and service level
α = 80%, every GPI-QTY with a yearly demand greater than 15 is stocked. Recall that in the
Section Co-ordering of drugs, we set threshold support to 15

D
based on the idea to capture asso-

ciation rules among top 20% of drugs capturing more than 80% of total demand. The results in
Table 3.4 show that the demand threshold is always less than or equal to the threshold support
used in the Apriori association rule algorithm. As such, GPI-QTYs that frequently appear to-

Service level, α Capacity Threshold demand
C1 C2 4% h = 1 h = 2

80% 2,093 2,542 18% 14 15
85% 2,743 3,261 16% 11 11
90% 3,769 4,375 14% 6 7
95% 5,745 6,485 11% 3 4
99% 10,161 10,956 7% 2 2

Table 3.4: We compare storage capacity Ch at one day (h = 1) and two day (h = 2) lead time.
Threshold demand is the highest yearly demand among all GPI-QTYs that are not stocked.
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Figure 3.2: The graph plots threshold demand against storage capacity under di�erent lead
times.

gether are already stocked when the service level is α ≥ 80%. As expected, threshold demand
decreases as α increases. Therefore, we do not need to incorporate association rules explicitly
in our modelling framework. Given the lead time and kiosk capacity, Figure 3.2 may be used as
easy-to-use guidelines to decide on which medications to store without solving the assortment
problem. For instance, if MedAvail decides on one day replenishment lead time for a kiosk with
capacity C = 4, 000, threshold demand is 5.6 based on Figure 3.2. As such, MedAvail should
stock all GPI-QTYs with yearly demand greater or equal to 6.

3.5.1.3 Capacity planning over multiple pharmacies

A crucial question we faced in deriving demand distributions from the data is whether to use
individual store data or multiple stores data and whether to use average or maximum observed
demands in the latter case. Each of these approaches may have merits and drawbacks. We
carried several tests to answer this question. At this point, management suggested that it is
useful to explore the e�ect of limited capacity on the service level, as it may not be possible
to build a machine of an optimized capacity. Hence, we modi�ed the objective to service level
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maximization and added a constraint that limits capacity to obtain model [R3]. The results
presented next are based on service level maximization where capacity is varied between 2,000
and 7,000 with an increment of 1,000.

Individual store data (IAS) The IAS approach makes stocking and substitution decisions
for each store individually using its yearly demand data. The expected service levels achieved
at seven pharmacy stores are shown in Table 3.5a. On average, setting the capacity to 5,000
achieves a service level of 92.5%. The drawback of the IAS approach is that it may lead to
overestimation of the service level due to over-�tting, also referred to as optimizer’s curse in
the Operations Research literature. Over�tting leads to stocking decisions that are susceptible
to small changes in demand which could lead to much worse service levels. IAS approach
therefore provides an upper bound on the service level achieved.

Most-active store data (MSD) To avoid over�tting, we make stocking and substitution deci-
sions using the most active store data, i.e., the one with the highest yearly sales. The optimized
decisions are then applied to all other stores to calculate their achieved service levels. The re-
sults in Table 3.5b highlight the problem of over�tting with the IAS approach. The expected
service levels are substantially reduced when the optimal solution from the most active store is
applied to other stores. On average, the service level achieved at capacity C = 5, 000 is 84.3%.

Although the MSD approach addresses the problem of over�tting, it ignores GPI-QTYs or-
dered at other stores. The number of distinct GPIs recorded in the year 2015 at a store varies
between 2,316 and 2,509. However, when the data is aggregated for all stores, the total number
of distinct GPIs equals 3,579. Similarly, the number of distinct GPI-QTYs recorded at the most
active store equals 12,014. This number increases to 29,626 when all store data is analyzed. As
such, an optimal solution derived based on one store may be suboptimal for other stores and
only provides a lower bound on the service level.

Average demand over all stores (ADS) Both IAS and MSD approaches use single-store data
and ignore GPI-QTYs ordered at the other stores. To overcome this, we generate a new dataset
by calculating the average demand of a GPI-QTY in time period t ∈ Θ, over all stores. We use
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Capacity C Store ID AverageS1 S2 S3 S4 S5 S6 S7
2,000 78.9% 78.3% 77.4% 77.1% 75.9% 75.9% 74.5% 76.9%
3,000 86.3% 86.0% 85.2% 85.1% 84.1% 84.0% 83.0% 84.8%
4,000 90.6% 90.4% 89.8% 89.7% 89.0% 88.9% 88.0% 89.5%
5,000 93.4% 93.4% 92.8% 92.7% 92.1% 92.0% 91.3% 92.5%
6,000 95.3% 95.4% 94.7% 94.1% 94.4% 94.2% 93.6% 94.5%
7,000 96.5% 96.5% 96.2% 96.1% 95.8% 95.7% 95.1% 96.0%

(a) Service level achieved at di�erent stores at di�erent capacities (IAS)

Capacity C Store ID
S1 S2 S3 S4 S5 S6 S7

2,000 69.4% 69.6% 71.3% 70.1% 70.3% 71.1% 74.5%
3,000 76.5% 76.6% 78.1% 77.3% 77.8% 78.3% 83.0%
4,000 80.5% 80.7% 82.0% 81.4% 82.1% 82.3% 88.0%
5,000 83.8% 83.4% 84.6% 84.2% 85.0% 85.0% 91.3%
6,000 85.6% 85.1% 86.5% 86.0% 86.9% 86.9% 93.6%
7,000 87.1% 86.6% 88.1% 87.4% 88.6% 88.4% 95.1%

(b) Service level achieved using most-active store data to make stocking decisions (MSD)

Capacity C Store ID AverageS1 S2 S3 S4 S5 S6 S7
2,000 69.5% 69.9% 69.7% 68.7% 67.3% 67.3% 66.0% 68.3%
3,000 75.6% 76.4% 75.9% 75.2% 73.8% 73.7% 72.9% 74.8%
4,000 78.9% 79.7% 79.1% 78.7% 77.3% 77.3% 76.6% 78.2%
5,000 80.6% 81.5% 80.7% 80.8% 79.2% 79.4% 78.7% 80.1%
6,000 82.0% 82.5% 82.0% 82.1% 80.6% 81.2% 80.0% 81.5%
7,000 83.4% 84.1% 83.3% 83.7% 82.1% 82.6% 81.5% 83.0%

(c) Service level achieved using average demand over all stores to make stocking decisions (ADS)

Capacity C Store ID AverageS1 S2 S3 S4 S5 S6 S7
2,000 73.7% 74.6% 74.4% 73.8% 73.1% 71.9% 71.7% 73.3%
3,000 81.6% 82.2% 81.6% 81.5% 81.1% 79.6% 79.9% 81.1%
4,000 85.8% 86.6% 86.1% 85.9% 85.7% 84.4% 84.9% 85.6%
5,000 88.6% 89.1% 88.8% 88.6% 88.6% 87.2% 87.8% 88.4%
6,000 90.5% 91.0% 90.7% 90.6% 90.8% 89.7% 90.1% 90.5%
7,000 92.2% 92.6% 92.3% 92.4% 92.5% 91.6% 91.9% 92.2%

(d) Service level achieved using the highest demand across all stores in a given period t ∈ Θ to make
stocking decisions (HDS)

Table 3.5: Capacity Planning using di�erent demand prediction strategies
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this new dataset containing all GPI-QTYs to make stocking and substitution decisions, which
are then applied to stores data to calculate their achieved service levels. ADS approach results
in poor stocking and substitution decisions as shown in Table 3.5c. When capacity C = 5, 000,
the average service level over all stores is 80.1%. This is due to the aggregation of demand
which leads to reduced uncertainty. Consider a GPI-QTY i, with demand on a speci�c day at
four stores as {0, 1, 0, 3}. If the stock level xi = 1, then the number of failures at store 4 equals
3 − 1 = 2. However, the average demand equals 0+1+0+3

4
= 1, and the calculated number of

failures equals 1− 1 = 0. This example shows that averaging demand over all stores does not
capture variability among stores, leading to suboptimal solutions and lower service levels.

Highest demandover all stores (HDS) Another approach is to use the maximum demand of
each GPI-QTY in a given time period t ∈ Θ across all stores. The HDS approach provides better
stock levels that are robust for all stores by making stocking and substitution decisions under
the worst-case scenario. The results are summarized in Table 3.5d. At capacity C = 5, 000, the
service level achieved is 88.4% on average. The drawback of HDS is that it may overestimate
stock levels for some SKUs as the decisions are made under the worst-case scenario. It is also
possible that demand characteristics may vary from store to store and some GPI-QTYs ordered
at one store may never be ordered at other stores.

3.5.1.4 Recommendations

Computational results show that substitution and daily replenishment guidelines signi�cantly
reduce the capacity required to achieve the desired service level. We observe that MedAvail’s
substitution rule is not as e�ective as optimized substitution which may save up to 9% of capac-
ity. On the other hand, daily replenishment saves up to 18% of capacity compared to two-day
replenishment. The results also show that the marginal bene�t of additional capacity decreases
at higher capacities as illustrated in Figure 3.3(a) where the service level increases at a decreas-
ing rate as the capacity increases. We also observe that the service level achieved at a �xed
capacity is roughly the same across all stores as shown by the boxplots in Figure 3.3(a).

To present robust results, we perform several experiments at di�erent service levels us-
ing four di�erent demand prediction strategies. Other than ADS which results in suboptimal
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(a) Comparative analysis of the stocking decision approaches
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(b) Capacity planning using top 3 approaches (IAS,MSD,HDS)

Figure 3.3: Capacity Planning using di�erent approaches

solutions, management may use any of the other three approaches discussed earlier. The ap-
proaches IAS and MSD provide upper and lower bounds on the service level, respectively. On
the other hand, the HDS approach o�ers a more realistic expectation of the service level and
gives stock levels that are robust against small changes in demand. Management may also make
capacity decisions using a combination of the three approaches as illustrated in Figure 3.3(b).
The boxplot represents the uncertainty in the service level achieved at a �xed capacity. For
instance, when the capacity is set to 5,000, MedAvail should expect a service level between
84% and 93% depending on the store under consideration and the level of conservatism when
making stocking decisions.
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3.5.2 Numerical Analysis over Randomly Generated Instances

In this section, we solve model [R2] using randomly generated data instances to generalize the
�ndings of the case study. Section 3.5.2.1 details the procedure employed to generate random
data and in Section 3.5.2.2, we discuss model results and derive managerial insights.

3.5.2.1 Data Generation

To generate data instances, we consider 200 distinct product classes and randomly generate
products for each class from a uniform distribution, Unif [1, 10]. To study the e�ect of substi-
tution, three distinct substitution patterns are de�ned: (1) “None", QTYs = {2, 3, 5, 7, ...}, where
product substitution is not possible as no product quantity is a multiple of another, (2) “Single",
QTYs = {1, 2, 3, 5, ...} , where only the smallest quantity product is able to substitute all other
quantities, and (3) “All", QTYs = {1, 2, 4, 8, ...} , where all smaller quantity products can substi-
tute larger quantity product. To generate demand values, we randomly generate yearly demand
for each product from an exponential distribution Exp( 1

µ
) where µ is varied between 10 and

50 with increments of 10. Mean daily demand µi for product i is calculated as µi =
Exp( 1

µ
)

365

which is used to generate 200 demand scenarios from Poisson distribution, Poi(µi). Figure 3.4
plots the cumulative distribution of yearly demand for di�erent values of µ. As µ increases, the
product’s probability of having high yearly demand increases. As such, increasing µ reduces
the number of products with low yearly demand. Sensitivity analysis over µ allows us to study
the e�ect of substitution under di�erent demand settings where low values of µ imply low and
erratic demand while setting higher values for µ implies less sporadic demand. Service level α
is also set at eight di�erent levels between 80% to 99%. For a given µ, substitution pattern, and
service level, 5 random instances are generated, resulting in a total of 600 instances.

3.5.2.2 Results on Random Instances

Tables 3.6 and 3.7 summarize computational results for substitution patterns “Single" and “All",
respectively. Average values over 5 randomly generated instances are reported in the tables.
Column “None" under “Capacity" records the minimum capacity required to achieve desired
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Mean Service Capacity Product Substitution Product Coverage
Demand level None Optimal ∆% imp Possible Optimized % Substituted NbProducts Covered % Covered

10

80% 463 461 0.3% 872 21 2.4% 1072 460 42.9%
85% 534 532 0.4% 872 30 3.4% 1072 529 49.4%
90% 626 623 0.5% 872 42 4.9% 1072 616 57.4%
95% 757 751 0.7% 872 71 8.2% 1072 730 68.1%
96% 789 781 1.1% 872 73 8.3% 1072 760 70.8%
97% 846 833 1.6% 872 113 13.0% 1072 796 74.2%
98% 904 891 1.5% 872 121 13.9% 1072 819 76.4%
99% 962 949 1.4% 872 115 13.2% 1072 849 79.1%

Average 734 728 0.9% 872 73 8.4% 1072 695 64.8%

20

80% 510 508 0.3% 872 15 1.7% 1072 502 46.8%
85% 593 590 0.5% 872 25 2.9% 1072 580 54.1%
90% 701 696 0.7% 872 36 4.1% 1072 676 63.0%
95% 867 856 1.3% 872 69 7.9% 1072 796 74.2%
96% 918 902 1.8% 872 80 9.2% 1072 834 77.8%
97% 977 960 1.7% 872 93 10.6% 1072 860 80.2%
98% 1047 1022 2.4% 872 99 11.3% 1072 904 84.3%
99% 1164 1136 2.4% 872 128 14.7% 1072 942 87.8%

Average 846 834 1.4% 872 68 7.8% 1072 762 71.0%

30

80% 562 559 0.5% 872 18 2.0% 1072 546 50.9%
85% 653 648 0.7% 872 25 2.9% 1072 626 58.3%
90% 774 766 1.1% 872 37 4.2% 1072 725 67.6%
95% 958 944 1.5% 872 58 6.6% 1072 846 78.9%
96% 1016 999 1.7% 872 74 8.5% 1072 869 81.1%
97% 1086 1063 2.1% 872 79 9.0% 1072 907 84.6%
98% 1174 1151 2.0% 872 91 10.5% 1072 948 88.5%
99% 1317 1283 2.6% 872 119 13.7% 1072 977 91.1%

Average 941 927 1.5% 872 63 7.2% 1072 806 75.1%

40

80% 590 587 0.5% 872 16 1.9% 1072 565 52.7%
85% 690 685 0.7% 872 24 2.7% 1072 647 60.3%
90% 823 815 1.0% 872 39 4.5% 1072 746 69.5%
95% 1030 1013 1.6% 872 60 6.9% 1072 871 81.2%
96% 1090 1073 1.7% 872 68 7.8% 1072 897 83.6%
97% 1168 1146 1.9% 872 74 8.5% 1072 924 86.1%
98% 1269 1241 2.2% 872 90 10.3% 1072 955 89.1%
99% 1422 1381 3.0% 872 118 13.5% 1072 989 92.2%

Average 1008 993 1.6% 872 61 7.0% 1072 824 76.9%

50

80% 621 619 0.3% 872 14 1.7% 1072 583 54.4%
85% 726 723 0.5% 872 19 2.2% 1072 666 62.1%
90% 866 860 0.7% 872 32 3.7% 1072 762 71.0%
95% 1087 1075 1.1% 872 51 5.9% 1072 877 81.8%
96% 1154 1139 1.3% 872 58 6.7% 1072 909 84.8%
97% 1240 1221 1.6% 872 69 7.9% 1072 939 87.6%
98% 1353 1327 1.9% 872 80 9.2% 1072 970 90.4%
99% 1519 1481 2.6% 872 94 10.8% 1072 999 93.2%

Average 1069 1056 1.3% 872 52 6.0% 1072 838 78.2%

Table 3.6: Numerical results for Random Instances under Substitution Pattern “Single"

47



Mean Service Capacity Product Substitution Product Coverage
Demand level None Optimal ∆% imp Possible Optimized % Substituted NbProducts Covered % Covered

10

80% 463 457 1.4% 872 59 6.8% 1072 456 42.5%
85% 534 525 1.6% 872 87 10.0% 1072 524 48.9%
90% 626 612 2.3% 872 110 12.6% 1072 610 56.9%
95% 757 732 3.3% 872 154 17.6% 1072 725 67.6%
96% 789 761 3.7% 872 159 18.3% 1072 752 70.1%
97% 846 796 6.3% 872 159 18.3% 1072 781 72.9%
98% 904 853 6.0% 872 153 17.6% 1072 822 76.7%
99% 962 911 5.6% 872 154 17.6% 1072 866 80.8%

Average 733 706 3.8% 872 129 14.8% 1072 692 64.5%

20

80% 510 501 1.7% 872 55 6.3% 1072 499 46.5%
85% 593 579 2.4% 872 79 9.0% 1072 576 53.7%
90% 701 678 3.3% 872 106 12.2% 1072 672 62.6%
95% 867 826 5.0% 872 158 18.1% 1072 802 74.8%
96% 918 865 6.1% 872 160 18.4% 1072 828 77.2%
97% 977 920 6.1% 872 185 21.2% 1072 865 80.7%
98% 1047 979 6.9% 872 202 23.2% 1072 902 84.1%
99% 1164 1075 8.3% 872 186 21.3% 1072 939 87.6%

Average 843 803 5.0% 872 141 16.2% 1072 760 70.9%

30

80% 562 552 1.8% 872 59 6.7% 1072 546 50.9%
85% 653 637 2.5% 872 79 9.0% 1072 625 58.3%
90% 774 747 3.6% 872 109 12.5% 1072 724 67.5%
95% 958 910 5.4% 872 147 16.8% 1072 849 79.1%
96% 1016 955 6.4% 872 160 18.4% 1072 878 81.9%
97% 1086 1014 7.1% 872 179 20.5% 1072 914 85.3%
98% 1174 1095 7.2% 872 177 20.3% 1072 946 88.3%
99% 1317 1207 9.1% 872 182 20.9% 1072 974 90.8%

Average 937 889 5.4% 872 136 15.6% 1072 807 75.3%

40

80% 590 580 1.7% 872 58 6.6% 1072 566 52.8%
85% 690 672 2.6% 872 78 8.9% 1072 649 60.5%
90% 823 794 3.6% 872 112 12.9% 1072 750 69.9%
95% 1030 978 5.3% 872 162 18.5% 1072 876 81.7%
96% 1090 1033 5.6% 872 163 18.7% 1072 905 84.4%
97% 1168 1098 6.3% 872 183 21.0% 1072 932 86.9%
98% 1269 1180 7.5% 872 180 20.6% 1072 961 89.6%
99% 1422 1301 9.3% 872 190 21.8% 1072 988 92.2%

Average 1005 955 5.2% 872 141 16.1% 1072 828 77.3%

50

80% 621 610 1.8% 872 58 6.6% 1072 589 55.0%
85% 726 707 2.7% 872 82 9.4% 1072 674 62.8%
90% 866 836 3.6% 872 117 13.4% 1072 777 72.4%
95% 1087 1035 5.0% 872 156 17.8% 1072 894 83.4%
96% 1154 1094 5.5% 872 162 18.6% 1072 920 85.8%
97% 1240 1167 6.2% 872 176 20.2% 1072 951 88.7%
98% 1353 1262 7.2% 872 185 21.2% 1072 978 91.2%
99% 1519 1403 8.3% 872 202 23.2% 1072 1005 93.7%

Average 1066 1014 5.1% 872 142 16.3% 1072 848 79.1%

Table 3.7: Numerical results for Random Instances under Subsitution Pattern: “ALL"
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Figure 3.4: The graph plots exponential distribution under di�erent mean values.

service level α without substitution and column “optimal" refers to the required capacity with
substitution (“Single" or “All"). Column “∆% imp" denotes percentage reduction in required
capacity due to substitution. The latter is calculated as the percentage di�erence in optimal
capacity under a given substitution pattern (“Single" or “All") and substitution pattern “None".
Column “Possible" counts the total number of products that can be substituted by other prod-
ucts, while Column “Optimized" counts the number of products substituted by other products
in the optimal solution, i.e.,

∑
i∈I:
bij=1

∑
j∈I:
i 6=j

sij . Column “% Substituted" is the ratio of “Optimized" to

“Possible". The total number of products considered are given in column “Nb. Products" out of
which, “Nb. Covered" number of products are stocked or substituted by stocked products in the
optimal solution. Column “%. Covered" is the percentage of products covered in each instance.

Results in Tables 3.6 and 3.7 show that substitution plays an important role in reducing
the storage capacity at higher service levels. For instance, under substitution pattern “All" and
µ = 40, substitution is able to reduce the storage capacity by 9.3% when desired service level
α = 99%. On the other hand, when α = 80%, the capacity is reduced by only 1.7%. This
is further illustrated in Figure 3.5(a)(i) that plots a boxplot for the percentage reduction in ca-
pacity (PRC) at given a service level under each substitution pattern. At higher service levels,
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more products are substituted as shown in Figure 3.5(a)(ii). We observe that the e�ect of sub-
stitution is signi�cant when more products are able to substitute. As shown in Figure 3.5(a)(ii),
the percentage of products substituted is higher under substitution pattern “All" compared to
“Single", and as such, PRC is signi�cantly higher for “All". For instance, when µ = 30, the
average PRCs under patterns “Single and “All" are 1.5% and 5.4%, respectively. However, when
product demand is generated from an exponential distribution with µ = 10, PRC starts de-
creasing at higher service levels. Under substitution pattern “All" and α = 97%, PRC is 6.3%
which decreases to 5.6% for α = 99%. This is because substitution negatively impacts the
service level of the products substituting other products and at higher service levels, the neg-
ative e�ect outweighs the positive e�ect of substitution in improving the service level of the
unstocked products. As such, product substitution is less preferred as shown in Table 3.7 where
the number of products substituted decreases from 159 to 154 when the desired service level is
increased from 97% to 99%.

Sensitivity analysis over mean demand µ shows that when the number of products with
low demand is high, the e�ect of substitution on PRC is low. The e�ect of product demand is
illustrated in Figure 3.5(b)(i) where PRC increases at a decreasing rate as the product demand
increases. Under pattern “All" and µ = 10, the average PRC is 3.8% which increases to 5.0%
when µ = 20. When all or most of the products have low demand, products’ stock levels
are low and cannot substitute higher quantity products that require multiple packages to be
dispensed. In contrast, when µ changes from 30 to 40, PRC decreases from 5.4% to 5.2%. This is
due to the fact at higher values ofµ, product demand is high and it is preferred to stock a product
rather than substituting it which would result in multiple packages to be dispensed, whenever
it is ordered. This is illustrated in Figure 3.5(b)(ii) where product substitution does not increase
with increasing µ. Figures 3.5(a)(iii) and 3.5(b)(iii) illustrate how product coverage is a�ected by
service level and mean demand µ under each substitution pattern, respectively. The plots show
that the e�ect of substitution in improving product coverage is not signi�cant. For µ = 30, the
percentage of products covered is 75.1%, on average, under pattern “Single" which increases
slightly to 75.3% under pattern “All". Analysis over demand shows that product substitution is
preferred when there is a right balance between the number of products with low demand and
the ones with high demand. Product substitution does not have a signi�cant e�ect when most
of the products have either high or low demand.
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Figure 3.5: Figures (a) and (b) illustrate the e�ect of service level and product demand on per-
centage reduction in capacity (PRC), products substituted, and product coverage, respectively.
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Figure 3.6: Figures (a) and (b) plot the percentage of products substituted with multiples mij

under substitution pattern “Single" and “All", respectively.

We also study the e�ect of multiplies on product substitution as shown in Figures 3.6(a)
and 3.6(b). Under substitution pattern “Single", the smallest quantity product only substitutes
products with multiples mij less than or equal 7, where 5.3% of the products substituted have
multiplies mij = 2 only 0.01% of the products are substituted with mij = 7. For pattern
“All", where all smaller quantity products are able to substitute higher quantity products, only
the products with mij ≤ 4 are substituted. The results show that the cost of substitution is
implicitly captured by mij and the product substitution is less preferred when mij increases.
This is due to multiple packages being dispensed for the substituted products which would lead
to fewer packages available for substituting product.

3.5.3 Analysis of Solution Approach: CGA

To test the computational e�ciency of the column generation approach, we generate �ve in-
stances using HDS data with 29,626 products by varying the kiosk capacity between 1,000 and
7,000. For each instance, we solve model [R3] using CPLEX and Benders decomposition, and
compare their performances against the CGA approach. Column generation and Benders de-
composition algorithms are coded in C++ Visual Studio 2013 and all optimization problems are
solved using CPLEX version 12.6.1 on a 64-bit Windows 10 with Intel(R) core i7-4790 3.60GHz
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processors and 8.00 GB RAM. For CPLEX and CGA, all optimization models are executed to an
optimality gap of 1e-09 with no time limit.

Computational results are summarized in Table 3.8a where the column generation is com-
pared against the CPLEX solution. Column “RMP linear Sol" is the optimal objective function
value to model [RMP] and column “Best found Sol" denotes the objective function value for
the best integer solution found by adding integer constraint to [RMP]. Gap is calculated as
RMP linear Sol-Best found Sol

Best found Sol . Column “CG time" is the time spent to generate all columns while “RMP-
MIP time" denotes the time spent to solve model [RMP] with integer constraint. The total CPU
time (in seconds) spent by column generation approach and CPLEX are denoted by “TCGA
time" and “CPLEX time", respectively. Finally, Time Ratio in Table 3.8a is calculated as CPLEX time

TCGA time .
Overall, CGA is able to solve all instances in less than one hour with optimality gaps of less
than 2%. At capacity C = 7, 000, the gap value shows that the best solution obtained from
CGA can only be improved by at most 1.94% if the original model [R3] is solved to optimality.
In fact, for all instances, optimal solutions obtained by directly solving model [R3] equals the
solution obtained by CGA. This signi�es the e�ectiveness of the CGA in obtaining solutions
that are close to optimal while reducing the computational e�ort by a factor of three.

We also compare our proposed column generation approach against the L-shaped Benders
decomposition approach generally applied in stochastic programming where the master prob-
lem decides on �rst stage decision variables while the subproblem decides on second-stage
decision variables. The overall Benders procedure is based on the general framework in Carøe
and Tind (1998) and is detailed in A.1. All instances are solved with a time limit of 3600 seconds.
Computational results are summarized in Table 3.8b where Columns "UB" and "LB" denote up-
per bound and lower bound obtained from respective solution approaches, respectively, while
column "Iterations" refers to the number of iterations between the master problem and sub-
problems in Benders decomposition. Computational results show that the proposed column
generation approach outperforms Benders decomposition. The latter fails to solve any instance
to optimality within a one-hour time window and reports an average optimality gap of 97.6%.
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Capacity Column Generation Approach Time Comparison
C [RMP] linear

Sol
Best found
Integer Sol

Gap CG time RMP-MIP
time

TCGA
time(s)

CPLEX
time (s)

Time
ratio

1000 38.85% 38.84% 0.02% 82.92 568.35 651.27 3651.55 5.61
2000 58.68% 58.41% 0.47% 143.35 1162.32 1304.67 3968.64 3.04
3000 70.45% 69.63% 1.18% 143.77 1728.56 1872.33 4300.48 2.30
5000 82.95% 81.39% 1.91% 195.48 1754.58 1949.62 4906.26 2.52
7000 89.06% 87.36% 1.94% 268.98 2854.92 3123.90 5880.13 1.88

Avg 1.10% Avg 3.07

(a) Column Generation Approach vs CPLEX

Capacity, C
Benders Column Generation Approach

UB LB Gap Iterations UB LB Gap Time(s)
1000 41.16% 26.00% 58.31% 71 38.85% 38.84% 0.02% 651.27
2000 67.78% 36.70% 84.67% 52 58.68% 58.41% 0.47% 1304.67
3000 88.17% 42.47% 107.60% 38 70.45% 69.63% 1.18% 1872.33
5000 114.67% 53.13% 115.83% 31 82.95% 81.39% 1.91% 1949.62
7000 1.33629 60.31% 121.56% 28 89.06% 87.36% 1.94% 3123.9

Average 97.59% Average 1.10%

(b) Column Generation Approach vs L-shaped Benders decomposition

Table 3.8: Computational e�ciency of the proposed column generation against CPLEX and
L-shaped Benders Decomposition
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3.6. Conclusions

In this chapter, we addressed the strategic capacity and assortment planning problem faced by
MedAvail through extensive descriptive and prescriptive analytics. We developed three opti-
mization models that decide on stock levels and product substitution. In addition, we developed
a column-generation based heuristic solution methodology that is able to obtain near-optimal
solutions within 1.1% of the optimality gap while reducing computational times by a factor of 3.
Computational experiments over real and randomly generated data show that product substitu-
tion reduces kiosk’s capacity requirements by up to 9%. We also show that the e�ect of product
substitution depends on desired service level and the nature of demand data. As an outcome of
this work, MedAvail expects to improve its service levels by 30% using a larger capacity kiosk.
MedAvail also expects a 10% improvement in service levels of the existing kiosks by optimizing
assortment and stocking decisions using the suggested optimization models.

A possible extension could be to model exact substitution. As discussed earlier in Theorem
1, the proposed model obtains a lower bound on the service level due to conservative approxi-
mation of the number of failures. As such, some of the substitution rules that could improve the
solution are not selected. Also, the model allows only one substitute for each quantity. Mod-
elling the problem with exact substitution and multiple substitutes would be computationally
di�cult to solve, and developing an e�cient solution methodology for such a model is another
promising future work.
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Chapter 4

Robust Inventory Planning

4.1. Introduction & Literature Review

Analysis of pharmacy data shows that product demand for self-serve kiosks is sporadic in na-
ture and may not follow a known distribution. On top of that, historical data is available only
after a kiosk is operational. As such, during the early stage of kiosk operations, we may not
have access to enough data points to make good stocking decisions. In such circumstances, a
data-driven stochastic approach as used in the previous chapter may fail to obtain good stock-
ing decisions. This motivates us to model the problem under a robust framework. We extend
the modelling approach presented in Chapter 3 to a robust setting. Unlike existing newsvendor
problem literature, we use a �ll rate maximization objective that has not been studied before.
We propose a RO framework that aims to maximize the worst-case �ll rate over all demand
scenarios in a polyhedral uncertainty set. The latter is constructed using a hierarchical clus-
tering algorithm and is based on the idea that cluster demand has less variability compared to
individual product demand. We propose an integrated column-and-constraint generation and
conservative approximation approach to optimally solve the nonlinear RO formulation where
nonlinearity arises due to the �ll rate objective. The main contributions of our work are as
follows

• First, our work is the �rst to study a robust inventory planning problem for self-serve
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kiosks with rare product demand under �ll rate maximization objective. We numerically
show that the �ll rate objective is preferred over the more commonly used pro�t objective
function for self-serve kiosks when products have similar pro�t margins and capacity is
limited.

• Second, we show that robust optimization modelling with a single budgeted uncertainty
constraint fails to distinguish between stocking decisions. It leads to a case where every
feasible solution is optimal. To address this, we propose a novel approach to de�ne the
uncertainty set using clustering. The variability in demand for each cluster is relatively
low compared to individual product demand variability and the bounds are therefore
tighter. Clusters of negatively correlated products are generated using an agglomerative
hierarchical clustering algorithm. This removes demand scenarios that are highly un-
likely and avoids the issue of overly conservative solutions. In contrast to the literature,
where a level of conservatism (or budget of uncertainty) has to be set by the practitioner,
the proposed uncertainty set in this work does not require any user-de�ned threshold.

• Third, we propose an exact solution methodology that integrates both conservative ap-
proximation and column-and-constraint generation approaches. Under �ll rate maxi-
mization objective, the adversarial problem of the robust model is nonconvex. We propose
a fast iterative approach that solves the nonlinear adversarial problem in a few iterations.
Our computational results show that the model with �ll rate objective is inherently di�-
cult to solve. Our proposed methodology is however generalizable and could be applied
to other objectives, for instance, pro�t or weighted �ll rate. Testing with the pro�t objec-
tive shows that the proposed solution methodology is able to solve it exactly within few
seconds.

• Fourth, we test the proposed robust modelling approach using real pharmacy data with
around 1600 drugs. Computational testing shows that our approach improves �ll rates
by 5.8%, on average, and up to 17% compared to other benchmark approaches in the
literature. Compared to the pro�t objective, the �ll rate objective function yields a 17%
higher �ll rate by compromising 20% in pro�ts, on average.

From a modelling perspective, our work relates to Capacitated Multiproduct Newsvendor
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Problem (CMPNP) where a newsvendor determines optimal single-period stock levels for mul-
tiple products with stochastic demand under a budget constraint. One way to deal with demand
uncertainty is to employ a stochastic optimization framework as discussed in Chapter 3 to
maximize the expected performance under the assumption that demand distribution is exactly
known. In situations where true distribution is not known, data-driven solution approaches
such as sample average approximation (SAA), could be employed where empirical data is used
as input to the optimization model. Huber et al. (2019) show superiority of data-driven SAA
approach over standard stochastic models for service levels of up to 90%. At higher service
level requirements, empirical data fed to SAA need to grow exponentially. Our computational
results also con�rm this phenomenon where we observe that SAA performance improves only
when the size of the training dataset is increased. Under limited transactional data, both SAA
and standard stochastic optimization approach may lead to poor out-of-sample performance.
This motivates us to follow a robust optimization (RO) framework that attempts to maximize
the worst-case expected performance over an uncertainty set which we construct using hier-
archical clustering algorithm. We now review related work on CMPNP where stochasticity in
demand is incorporated via robust optimization.

Robust Optimization

To address the issue of poor out-of-sample performance in stochastic optimization, the RO
modelling framework hedges against the worst-case realization of the demand within an “un-
certainty set". The concept of RO was �rst introduced by Soyster (1973) and has been an ac-
tive research area since the work of Ben-Tal and Nemirovski (1999). In the last two decades,
RO gained a lot of attention due to its simplicity in modelling and tractability of the robust
counterpart formulations. RO is used in a broad spectrum of applications including portfo-
lio optimization (Ghaoui et al. 2003, Tütüncü and Koenig 2004, Olivares-Nadal and DeMiguel
2018), statistics and machine learning, e.g., regression (El Ghaoui and Lebret 1997) and classi-
�cation (Xu et al. 2009), logistics and supply chain management such as routing (Montemanni
et al. 2007), schedulling (Hazır et al. 2010), facility location (Baron et al. 2011), inventory man-
agement (Bertsimas and Thiele 2006b, See and Sim 2010), and revenue management(Gao et al.
2009, Rusmevichientong and Topaloglu 2012). The construction of uncertainty set is however
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critical which if not properly de�ned, may lead to overly conservative solutions. The latter is
addressed either by restricting the total deviation from nominal demand (Bertsimas and Sim
2004) or a distributionally robust optimization (DRO) framework (Scarf 1958) is used where the
expected performance is maximized against the worst-case distribution within a set of distribu-
tions, referred to as ambiguity set. Ambiguity set could be de�ned either using moment-based
distributional information such as mean, variance, and covariance (Gallego and Moon 1993,
Gallego et al. 2001, Alfares and Elmorra 2005, Roels 2006, Yue et al. 2006, Perakis and Roels
2008), or by using statistical distance measures (phi-divergence, Wasserstein-distance) control-
ling the deviation from nominal distribution, for instance, empirical distribution (Ben-Tal et al.
2013, Gao and Kleywegt 2016). DRO approaches are however computationally di�cult to solve
for large-scale instances as considered in this thesis with thousands of products. For instance,
Gao and Kleywegt (2016) and Ben-Tal et al. (2013) were able to solve instances with up to 12
products only.

In this chapter, we address the conservatism issue by constructing a polyhedral uncertainty
set using hierarchical clustering algorithm to remove overly-conservative demand scenarios.
In the literature, several types of uncertainty sets are used including the scenario-based, box,
polyhedral, and ellipsoidal sets. Vairaktarakis (2000) presents a scenario-based RO formulation
where a set of discrete demand scenarios are used to make stocking decisions such that the ex-
pected cost under the worst-case realization of demand is minimized. Computational results in
Section 4.4 show that such a scenario-based RO approach fails to present robust solutions due
to the limited number of scenarios relative to a large number of products. RO with box uncer-
tainty set was introduced by Soyster (1973) where the uncertain parameter may take any value
between interval data. This leads to overly conservative solutions as all uncertain parameters
take worst-case values. To control the level of conservatism, Bertsimas and Sim (2004) propose
a polyhedral uncertainty set and introduce the concept of budgeted uncertainty constraint to
control scaled-deviation from a nominal value using a user-de�ned budget of uncertainty. Bert-
simas and Thiele (2006a) extends the uncertainty set proposed by (Bertsimas and Sim 2004) in
a multi-period setting where budgeted uncertainty constraint is de�ned for each period k. As
opposed to scaled-deviations, we restrict variations in total demand by using a set of linear in-
equalities similar to ones used by Simchi-Levi et al. (2018) based on central limit theorem (CLT)
proposed by Bandi and Bertsimas (2012). The main di�erence however lies in the fact that we
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do not explicitly de�ne the linear inequalities in the uncertainty set but rather use hierarchical
clustering algorithm to derive them purely from data. The clustering algorithm creates clusters
of negatively correlated products and does not require covariance-based uncertainty sets as
used commonly in the literature (Pachamanova 2002). A similar approach is employed by Qiu
et al. (2019) who use support vector clustering (SVC) to construct a data-driven uncertainty set
for CMPNP under the pro�t maximization objective. We also show that under �ll rate objective,
an uncertainty set with a single budgeted uncertainty set fails to distinguish between stocking
decisions and every solution is optimal when product demand is low.

Our work also di�ers from existing literature due to the �ll rate maximization objective
which is a function of piece-wise linear max functions. The resulting inner maximization ad-
versarial problem is non-convex which when linearized, results in a mixed-integer linear op-
timization problem. This issue frequently appears in robust newsvendor problems where the
robust counterpart based on the duality of the adversarial problem is a conservative approxima-
tion approach and does not guarantee the optimality of the original robust problem. Ardestani-
Jaafari and Delage (2016) are the �rst to present an exact linear formulation for the robust (and
distributionally robust) multi-product newsvendor problem under the pro�t objective based on
the total unimodularity of the adversarial problem where the demand lies in a polyhedral un-
certainty set de�ned by interval data and a budget of uncertainty. Unfortunately, the totally
unimodular property does not hold under the �ll rate objective. We therefore present an ex-
act solution approach based on column-and-constraint generation (C&CG) and conservative
approximation approaches where scenarios from uncertainty sets are generated from an adver-
sarial problem and are dynamically added to the master problems. C&CG solution methodology
for RO problems was �rst examined by Zeng and Zhao (2013) and have been applied in various
RO settings such as location-transportation problem (Ardestani-Jaafari and Delage 2020), regret
minimization problems (Poursoltani and Delage 2019), and facility location problems (An et al.
2014). Our solution approach di�ers from Zeng and Zhao (2013) due to the non-linear adver-
sarial problem and we propose a fast iterative approach to solve the adversarial problem. In
addition, we show that under �ll rate objective, the C&CG algorithm fails to close the gap and
requires integration of conservative approximation which is used to warm-start the algorithm.

The rest of the chapter is organized as follows. We formally de�ne the self-serve kiosk
inventory planning problem with �ll rate maximization and rare demand in Section 4.2, We
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develop an exact solution methodology based on the column-and-constraint generation and
approximation approaches in Section 4.3. Section 4.4 details numerical results on a test case for
pharmacy kiosks and on randomly generated data. Concluding remarks and future research
directions are given in Section 4.5.

4.2. Self-serve Kiosk Inventory Planning Problem

In this section, we propose a robust optimization framework for the inventory planning problem
faced at self-serve kiosks. Speci�cally, we model this problem as a newsvendor problem with
�ll rate objective where the demand for each product is low and sporadic. Formally, we de�ne
low demand product as

De�nition 1. Let P be the true demand distribution of a product and S = (s1, s2, ..., sm) be
a set of m demand values sampled iid from P . The demand for an item k is de�ned as low if
1
m
|{i : si = 0}| > 1

2
.

Let I be the set of products and di be the demand for product i ∈ I . We assume the replen-
ishment lead time for all products to be the same and �xed. Product demand d = [di] is not
exactly known and lies within a polyhedral uncertainty set D. We present a modelling frame-
work to decide on the lead time stock level xi for each product i ∈ I under a resource constraint
C , such that the �ll rate α is maximized over all possible realizations of demand d ∈ D. We
de�ne the �ll rate α as the percentage of successful transactions during the replenishment lead
time.

The lost sales for a product i is max{0, di−xi}. Lost sales occur either because the product
is not stocked, i.e., xi = 0, or observed demand exceeds the stock level, i.e., xi < di. The �ll
rate is then calculated as α =1-

∑
i∈I max{0,di−xi}∑

i∈I di
, where

∑
i∈I di denotes the total number of

customer requests during the replenishment lead time and
∑

i∈I max{0, di − xi} is the total
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number of failed transactions. The robust problem [RO] is

[RO]: max α (4.2.1)

s.t.
∑
i∈I

xi ≤ C (4.2.2)

α ≤ 1−

∑
i∈I

max {0, di − xi}∑
i∈I

di
∀d ∈ D (4.2.3)

α ∈ [0, 1], xi ∈ Z+ ∀i ∈ I, (4.2.4)

where constraint (4.2.2) limits the total stock to available capacity, C . The objective function
(4.2.1), along with constraint (4.2.3), maximizes the �ll rate α for all demand realizations d ∈ D.
Constraint (4.2.4) enforces nonnegativity and integer requirement on the stock level xi and
bounds �ll rate α between 0 and 1.

Robust optimization is often criticized for its conservative solutions. Our goal is to use
robust optimization framework such that the expected �ll rate is maximized and as such, con-
servative solutions cannot be a�orded. It is therefore critical to construct a well-de�ned uncer-
tainty set that does not allow conservative solutions. In the literature, several types of uncer-
tainty sets are used including scenario-based (Vairaktarakis 2000), box (Ben-Tal and Nemirovski
1999, Lin and Ng 2011b), polyhedral (Bertsimas and Thiele 2006b, Simchi-Levi et al. 2018), and
ellipsoidal sets (Pachamanova 2002). We �rst show that under a mild assumption, robust opti-
mization with box or polyhedral uncertainty sets with single budgeted uncertainty constraint
fail to make good stocking decisions under the problem setting being studied in this chapter.
For model [RO] with single budgeted constraint, the uncertainty set is de�ned as

Dsingle =

d :

li ≤ di ≤ ui ∀i ∈ I,

N ≤
∑
i∈I

di ≤ N,

di ∈ Z+

(4.2.5)

where the �rst inequality denotes that demand di lies within interval [li, ui] while the second
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inequality de�nes the budget of uncertainty as an interval that lies between [N,N ]. The un-
certainty set (4.2.5) is similar to the partial-sum uncertainty set introduced by Mamani et al.
(2017) that allows asymmetric uncertainty as opposed to symmetric uncertainty in (Bertsimas
and Thiele 2006b) where demand di ∈ [di− d̂i, di− d̂i]. We show that when demand is low and
capacity is limited, every feasible solution to [RO] with uncertainty set Dsingle is optimal.

Theorem 2. Let H = {x1,x2, ...,xn} be the set of all feasible solutions i.e.
∑
i∈I

xhi ≤ C, ∀h ∈

[H]= {1, 2, ..., n}. If li = 0, ui ≥ 1 ∀i ∈ I , and N + C ≤ |I|, every solution h ∈ [H] is optimal
to [RO] with D = Dsingle.

Proof. For h ∈ [H], let Sh1 and Sh0 be sets of stocked and unstocked products, respectively. Since
∀h ∈ [H],

∑
i∈I

xhi ≤ C ,

|Sh1 | ≤ C, ∀h ∈ [H], (4.2.6)
|Sh0 | = |I| − |Sh1 | ∀h ∈ [H], (4.2.7)

which implies

|Sh0 | ≥ |I| − C ∀h ∈ [H]. (4.2.8)

Since N ≤ |I| − C ,

N ≤ |Sh0 | ∀h ∈ [H]. (4.2.9)

Let Sh0 be the set of any N products in Sh0 , and dh : di = 1∀ i ∈ Sh0 , di = 0∀ i /∈ Sh0 . Since
Sh0 ⊆ Sh0 and Sh1 ∩ Sh0 = ∅, it implies that Sh1 ∩ Sh0 = ∅. This shows that ∀h ∈ [H], there exists
dh ∈ Dsingle such that α = 0 and therefore every h is optimal.

Remark 1. Theorem 2 is based on three conditions. First, lower bound li = 0 for all products which
is an appropriate assumption for self-serve kiosks where most of the products have low demand as
de�ned in De�nition 1. It is trivial to observe that the median and mode of a low-demand product
sample is 0 which is also the lower bound on demand. In the context of robust optimization, our
problem could be thought of as the case where the demand lies between a nominal value (which
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equals the lower bound) and an upper bound. Second, ui ≥ 1 because if ui < 1, product is not
ordered at all and its stock level is set to 0. Third,N +C ≤ |I| holds in problem settings where the
number of products o�ered |I| is su�ciently large compared to capacity C , and N . Intuitively, N
is the lower bound on lead time demand. The latter assumption holds in several problem settings
such as vending machines, pharmacy kiosks, and online shopping constrained by the number of
products.

4.2.1 Clustering-based Uncertainty Set

We address the issue of every feasible solution being optimal under single-budgeted uncer-
tainty set by using the idea of product clustering to de�ne a data-driven uncertainty set. In-
tuitively, the budgeted uncertainty constraint in Dsingle (4.2.5) adds bounds to the joint distri-
bution of demand for a cluster of all products while intervals [li, ui] provide bounds obtained
based on the marginal distribution of clusters containing a single product. The motivation is
to see how demand for products behaves jointly and separately. Our methodology is moti-
vated by the fact that such behavior could be incorporated for di�erent clusters of products
instead of just considering clusters with single or all products. Let B be the set of all clus-
ters of products where each cluster b ⊆ I . The total possible number of clusters one may
consider equals |B| = 2|I|. However, solving a robust problem with 2|I| clusters to de�ne
an uncertainty set could be computationally intractable. We present an illustrative exam-
ple in Figure 4.1 to show that for some clusters, interval uncertainty is su�cient to capture
bounds on the clusters’ demand distribution. Consider case 1 in Figure 4.1(a) where demand
d = (d1, d2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. As such, the total demand d1 + d2 lies in interval
[0, 2] and budgeted uncertainty is de�ned as 0 ≤ d1 + d2 ≤ 2 and is denoted by dotted lines.
Note that budgeted uncertainty constraint is redundant and interval constraints (illustrated by
solid lines) on each product’s demand are su�cient to capture the joint distribution. In contrast,
under case 2, d = (d1, d2) ∈ {(0, 0), (0, 1), (1, 0)} and total demand d1+d2 lies in interval [0, 1],
the budgeted uncertainty constraints for cluster containing product 1 and 2 reduce the size of
uncertainty region D by half.

We propose the use of clustering algorithms to derive such relevant clusters. We focus
on problem settings where replenishment lead time demand is su�ciently low compared to
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Figure 4.1: The �gure illustrates the e�ect of bounds on joint demand under two cases.

the total number of products, i.e., N,N << |I|. When demand is low, most of the products
do not appear together and the likelihood of positive correlation is low. As such, our focus
is on the formation of clusters of products that infrequently occur together. Speci�cally, we
cluster products with negatively correlated demand, i.e., when one product is ordered, it is
unlikely that the other products in the cluster are ordered. We de�ne a polyhedral uncertainty
set D consisting of budgeted constraint for each cluster formed such that the distributional
information derived from historical data is preserved. The uncertainty set D is de�ned in a
generalized fashion as

D =


d :

li ≤ di ≤ ui ∀i ∈ I,

N ≤
∑
i∈I

di ≤ N,

Γb ≤
∑
i∈b

di ≤ Γb ∀b ∈ B,

di ∈ Z+

(4.2.10)

where the �rst two sets of constraints de�ne Dsingle and the third set denotes budgeted uncer-
tainty constraint for each cluster b ∈ B.

To generate clustersB to preserve distributional information and avoid overly conservative
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solutions, we consider two types of clusters: (1) clusters based on ordering frequency, and (2)
clusters based on demand correlation. The �rst two sets of constraints in D do not distinguish
products based on their ordering frequencies. Consider two products j and k with lead time
demand between [0,1]. Let us assume that the yearly demand for j and k equals 100 and 10,
respectively. Clearly, while making stocking decisions, j should be preferred over k due to the
higher ordering frequency. This crucial information is not captured by the �rst two constraints.
To incorporate the ordering frequency, one possible solution could be to include the time di-
mension within the uncertainty set and add bounds to the total demand for each product over
the planning horizon. The problem could then be setup as to maximize the worst expected �ll
rate over the planning horizon. This results in a distributionally robust optimization problem
that is complex to solve for real-life instances. Instead, we use a novel approach by clustering
products based on their total demand Y = [Yi] over the training sample. Several heuristic ap-
proaches could be used to obtain product clusters. For cluster analysis, k-means clustering is
widely used and several heuristic approaches have been proposed to obtain clusters quickly.
However, optimal clusters could be obtained for one-dimensional data using the dynamic pro-
gramming algorithm proposed by Wang and Song (2011). Since in our case clusters need to
be obtained using one-dimensional total demand vector Y, we use the dynamic programming
algorithm in Wang and Song (2011) to cluster products based on ordering frequency.

In addition, we propose a hierarchical clustering-based approach to derive additional clus-
ters in B for products with high (negative) correlation. Speci�cally, we cluster products with
negative correlations, i.e., when one product is ordered, it is unlikely that other products in the
cluster are ordered. Let [m] = {1, 2, ...,m} be the set of indices for a training sample of size m.
we �rst calculate a simple matching matrix to determine the association between two products
i and j as

dist(i, j) =
|∀t ∈ [m] : dit = djt|

m
, ∀i, j ∈ I, (4.2.11)

and use it as a distance matrix which is fed to an agglomerative hierarchical clustering algo-
rithm (Kaufman and Rousseeuw 2009) to generate a set of clusters. Agglomerative hierarchical
clustering starts with each product as a cluster. In subsequent steps, clusters are merged until
one big cluster containing all products is created. Set B in uncertainty set D refers to clusters
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both from ordering frequency and hierarchical clustering. Once clusters are obtained, we re-
strict lead time demand for each cluster b ∈ B between [Γb,Γb] derived from data. Parameters
Γb and Γb are calculated using training sample as

Γb = min
t∈[m]

{∑
i∈b dit

}
, Γb = max

t∈[m]

{∑
i∈b dit

}
(4.2.12)

4.3. Solution Approach

Solving model [RO] is computationally challenging. Constraint (4.2.3) is de�ned for all demand
realizations in D and as such, the model may contain in�nitely many constraints. Secondly,
constraint (4.2.3) is de�ned by sums of piece-wise linear functions due to the max term. Al-
though these challenges are quite common in inventory problems and have been extensively
studied in the literature, our problem has an added complexity of fractional objective function
due to the �ll rate maximization objective.

To solve the nonlinear model, we propose an exact column-and-constraint generation so-
lution approach and extend it to develop a conservative approximation model. The two ap-
proaches are then integrated where conservative approximation solution is used to generate
demand scenarios to warm start the column-and-constraint generation approach and to pro-
vide tight bounds on the best found solution.

4.3.1 An Exact Column and Constraint Generation Approach

Since there could be in�nitely many demand scenarios d ∈ D, we use a column-and-constraint
generation (CCG) approach to solve the problem by generating demand scenarios iteratively.
Let dk, k ∈ K be a subset of demand scenarios from the uncertainty set D. We de�ne the
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master problem [MP]RO as a relaxation of [RO]

[MPRO] : max α (4.3.1)
s.t. (4.2.2), (4.2.4),

α ≤ 1−

∑
i∈I

max{0, dki − xi}∑
i∈I

dki
∀ k ∈ K (4.3.2)

[MP]RO decides on stock levels x = [xi] to maximize the �ll rate α given demand scenarios dk,
k ∈ K . Model [MP]RO is nonlinear due to the max function in constraint (4.3.2). However, it
may be linearized by introducing a new decision variable fki as the number of failed transactions
for product i ∈ I . The linearized formulation [LMP]RO is

[LMPRO] : max α (4.3.3)
s.t. (4.2.2), (4.2.4),

fki ≥ dki − xi ∀ i ∈ I, k ∈ K, (4.3.4)

α ≤ 1−

∑
i∈I

fki∑
i∈I

dki
∀ k ∈ K, (4.3.5)

fki ≥ 0 ∀ i ∈ I, k ∈ K, (4.3.6)

An optimal solution to model [LMPRO] is also optimal for [MP]RO. This is proven in Lemma 3.
Each demand scenario results in a nonlinear constraint (4.3.2) and to linearize it, constraints
(4.3.4) and (4.3.5) and variables (or columns) fki need to be introduced. Hence, our solution
approach is a column and constraint generation approach.

Lemma3. An optimal solution to linearizedmodel [LMPRO] is also optimal for the original problem
[MP]RO.

Proof. Proof. Let (x, f) be an optimal solution to [LMPRO] with objective value α. For solution
(x, f) to be optimal for model [MP]RO, fki must be equal to the max term max{0, dki − xi}. We
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prove that fki always equals the max term.

Constraints (4.3.5) and (4.3.6) ensure that fki ≥ max{0, dki − x∗i } which proves that at opti-
mality, fki cannot take a value less than the max term. We now show by contradiction that
f
k

i cannot take a value greater than the max term. Assume that ∃ k ∈ K, i ∈ I , fki >

max{0, dki − x∗i }. Let (x, fa, αa) be the adjusted solution where fai = max{0, dki − xi}. Then,

∑
i∈I

f
k

i ≥
∑
i∈I

fai ⇐⇒

(
1−

∑
i∈I f

k

i∑
i∈I d

k
i

)
<

(
1−

∑
i∈I f

a
i∑

i∈I d
k
i

)
(4.3.7)

Since the objective is to maximize the �ll rate, constraints (4.3.2) and (4.3.5) are always
binding at optimality and as such, α = 1−

∑
i∈I f

k
i∑

i∈I d
k
i

and αa = 1−
∑
i∈I f

a
i∑

i∈I d
k
i

. Then by (4.3.7),

(
1−

∑
i∈I f

k

i∑
i∈I d

k
i

)
<

1−
∑

i∈I f
a
i∑

i∈I

dki

⇐⇒ α < αa (4.3.8)

which contradicts the assumption that α is optimal.

4.3.1.1 Adversarial Problem

The master problem solution (α,x) provides an upper bound to the original problem [RO] and
is optimal if and only if

α ≤ 1−
∑

i∈I max{0, di − xi}∑
i∈I di

∀d ∈ D.

Since the master problem [LMP]RO considers only a subset of demand scenarios in D, we solve
an adversarial problem to �nd a vector d ∈ D that minimizes the �ll rate α for a given solution
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x. The adversarial problem [APRO] is

[APRO] : min αmin (4.3.9)
s.t. Rd ≤ r (4.3.10)

αmin ≥ 1−
∑

i∈I max{0, di − xi}∑
i∈I

di
, (4.3.11)

αmin ≥ 0, di ∈ Z+ i ∈ I, (4.3.12)

Constraint (4.3.10) de�nes the uncertainty setD where the coe�cient matrix R and right hand
side vector r describe inequality constraints in set (4.2.10). Constraint (4.3.11) de�nes the mini-
mum �ll rate αmin while constraint (4.3.12) enforces the nonnegativity and integer requirement
on αmin and di, respectively. Note that [APRO] aims to �nd a vector d ∈ D that minimizes the �ll
rateαmin achieved for the current master problem solution x. Ifαmin ≥ α, the current master so-
lution x is optimal to the original problem (4.2.1). On the other hand, if αmin < α, this con�rms
that there exists a demand scenario d for which the current master problem solution (x, α) is
infeasible to the original problem. If such a scenario exists, it is added to the set of scenariosK .
This procedure continues until αmin = α, and an optimal solution to the original problem [RO]
is obtained. We now detail the procedure to solve the nonlinear adversarial problem [APRO].

Rearranging Constraint (4.3.11)∑
i∈I

(max {0, di − xi} − (1− αmin)di) ≥ 0 (4.3.13)

Constraint (4.3.13) is nonlinear due to the max function and quadratic term αmindi. We propose
an iterative procedure to deal with the quadratic term by �xing αmin = α and maximizing the
slack of Constraint (4.3.13). We refer to this problem as master adversarial problem [MAPRO]

[MAPRO] : max
∑
i∈I

(max {0, di − xi} − (1− αmin)di) (4.3.14)

s.t. Hd ≤ h, (4.3.15)
dij ∈ Z+ i ∈ I, (4.3.16)
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The master adversarial problem solution d is then used to minimize αmin in the sub-adversarial
problem [SAPRO] as

[SAPRO] : min αmin (4.3.17)

s.t. αmin ≥ 1−

∑
i∈I

max{0, di − xi}∑
i∈I

di
. (4.3.18)

which is trivial to solve and the optimal solution is calculated asα∗min = 1−

∑
i∈I

max{0, di − xi}∑
i∈I

di
.

We updateαmin = α∗min in model MAPRO and resolve. This procedure continues until the optimal
objective function value of MAPRO z

∗
MAP = 0 which implies that the surplus of constraint (4.3.13)

cannot increase further. Proof of optimality to the original model [AP] is given in Lemma 4.

Lemma 4. The solution obtained from the iterative procedure is an optimal solution to the original
problem [AP].

Proof. Proof. Let (d, αmin) be the solution obtained in the last iteration where z∗MAP = 0. We
�rst prove that (d, αmin) is a feasible solution to the original model [AP]

z∗MAP =
∑
i∈I

(
max

{
0, di − xi

}
− (1− αmin)di

)
= 0 (4.3.19)

Rearranging equation (4.3.19)

αmin = 1−

∑
i∈I

max{0, di − xi}∑
i∈I

di
(4.3.20)

which does not violate constraint (4.3.11) while Constraint (4.3.10) is already contained in mas-
ter adversarial problem [MAPRO]. This proves that solution (d, αmin) is feasible for model [AP].
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We prove by contradiction that solution (d, αmin) is optimal to the original model [AP]. Let
(d∗, α∗min) be the optimal solution to the original model [AP] where α∗min < αmin. This implies

αmin > 1−

∑
i∈I

max{0, d∗i − xi}∑
i∈I

d∗i
= α∗min. (4.3.21)

Rearranging inequality (4.3.21)∑
i∈I

(max {0, d∗i − xi} − (1− αmin)di) > 0. (4.3.22)

Using αmin, model [MAP] maximized the left hand side of equation (4.3.22) with optimal objec-
tive value z∗MAP = 0. This con�rms that there does not exist any solution d for which inequality
(4.3.22) holds and contradicts the assumption that (d∗, α∗min) is an optimal solution to the orig-
inal model [AP].

Solution αmin obtained in the last iteration is a lower bound to the original problem [RO].
The proposed iterative procedure adds multiple demand scenarios in a single iteration between
the master and adversarial problem. If α∗min < α for some d, it is added to the set of demand
scenarios K .

Solving the nonconvex master adversarial problem (MAP) The master adversarial
problem [MAPRO] is a nonconvex optimization problem due to the max max objective func-
tion. We linearize it by introducing auxilary binary variables zi and continuous variables ∆i.
The complete linearized version of [MAPRO] is

[MAP-L]: max
∑
i∈I

(∆i − xizi − (1− αmin)di) (4.3.23)

s.t. Hd ≤ h, (4.3.24)
∆i ≤ uizi ∀ i ∈ I, (4.3.25)
∆i ≤ di ∀ i ∈ I, (4.3.26)
∆i ≥ 0, zi ∈ {0, 1}, di ∈ Z+ ∀ i ∈ I, (4.3.27)
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where max {0, di − xi} = 0 if zi = 0, else max {0, di − xi} = di − xi ≥ 0.

The column and constraint generation algorithm iterates between the master problem [MPRO]

and the adversarial problem [APRO]. Model [MPRO] provides an upper bound to the original prob-
lem [RO] given a set of demand scenarios K . Using the master solution (α,x), model [APRO]

attempts to �nd a demand scenario d ∈ D that minimizes the �ll rate αmin achieved for the
current master solution x and provides a lower bound to [RO].

4.3.2 A Conservative Approximation Approach

Computational results show that the column and constraint generation (CCG) approach pro-
posed earlier fails to converge in reasonable time due to weak lower bounds. To improve the
solution obtained from CCG, we suggest an approximation model that provides a tighter lower
bound and set of demand scenarios to warm-start CCG algorithm. Recall Constraint (4.2.3) in
model [DRO]

α ≤ 1−
∑

i∈I max{0, di − xi}∑
i∈I di

∀ d ∈ D

which is equivalent to

max
d∈D

{∑
i∈I

(max {0, di − xi} − (1− α)di)

}
≤ 0 (4.3.28)

The inner maximization problem in Constraint (4.3.28) is equivalent to the master adversarial
problem [MAPRO]. As such, one may replace the right hand side in Constraint (4.3.28) with dual
of [MAPRO] to develop the robust counterpart for [RO]. Unfortunately, [MAPRO] is a nonconvex
optimization problem and its linear version [MAP-LRO] consists of binary variables. As such, an
exact robust counterpart does not exist for [RO]. However, we relax the integer requirement in
[MAP-LRO] to develop a conservative approximation robust counterpart. Consider the relaxed
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primal problem

[MAP-LR]: max
∑
i∈I

(∆i − xizi − (1− αmin)di) (4.3.29)

s.t. ∆i − di ≤ 0 i ∈ I, [λi] (4.3.30)
∆i − uizi ≤ 0 i ∈ I, [ηi] (4.3.31)
zi ≤ 1 i ∈ I, [πi] (4.3.32)
di ≤ ui i ∈ I, [γui ] (4.3.33)
−di ≤ −li i ∈ I,

[
γli
]

(4.3.34)∑
i∈I

di ≤ N [νu] (4.3.35)

−
∑
i∈I

di ≤ −N
[
νl
]

(4.3.36)∑
i∈b

di ≤ Γb b ∈ B, [ωub ] (4.3.37)

−
∑
i∈b

di ≤ −Γb b ∈ B,
[
ωlb
]

(4.3.38)

∆i ≥ 0, zi ≥ 0, di ≥ 0 i ∈ I, (4.3.39)

where [·] are the dual variables for each constraint. Model [MAP-LR] is a linear relaxation of
[MAP-L] as the integrality requirement is dropped. Taking the dual of [MAP-LR]

min
∑
i∈I

(
πi + uiγ

u
i − γli

)
+Nνu −Nνl +

∑
b∈B

(
Γbω

u
b − Γbω

u
b

)
(4.3.40)

s.t. λi + ηi ≥ 1 ∀ i ∈ I,[∆i] (4.3.41)
πi − uiηi ≥ −xi ∀ i ∈ I, [zi] (4.3.42)

− λi + γui − γli + νu − νl +
∑

b∈B:i∈b

(
ωub − ωlb

)
≥ −(1− α) ∀ i ∈ I, [di] (4.3.43)

λi, ηi, πi, γ
u
i , γ

l
i, ν

u, νl, ωub , ω
l
b ≥ 0 ∀ i ∈ I, (4.3.44)

Let Z∗model be the optimal objective function value to problem “model". Since the integrality
constraint is dropped, Z∗dual ≥ Z∗MAP-L. Replacing the right hand side of Constraint (4.3.28) with
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the dual of [MAP-LR]

min
s.t.(4.3.41)−(4.3.44)

∑
i∈I

(
πi + uiγ

u
i − γli

)
+
∑
i∈I

+Nνu −Nνl +
∑
b∈B

(
Γbω

u
b − Γbω

u
b

)
≤ 0 (4.3.45)

The resulting robust counterpart [RC] is

[RC]: max α (4.3.46)

s.t.
∑
i∈I

(
πi + uiγ

u
i − γli

)
+Nνu −Nνl +

∑
b∈B

(
Γbω

u
b − Γbω

u
b

)
≤ 0 (4.3.47)

λi + ηi ≥ 1 ∀ i ∈ I, (4.3.48)

πi − uiηi ≥ −xi ∀ i ∈ I, (4.3.49)

γui − γli + δui − δli + νu − νl − λi +
∑
b∈B:
i∈b

(
ωub − ωlb

)
≥ α− 1 ∀ i ∈ I, (4.3.50)

∑
i∈I

xi ≤ C, (4.3.51)

λi, ηi, πi, γ
u
i , γ

l
i, ν

u, νl, ωub , ω
l
b ≥ 0, xi ∈ Z+ ∀ i ∈ I, b ∈ B. (4.3.52)

Model [RC] is a conservative approximation of the original problem [RO] since Z∗dual ≥ Z∗MAP-L

which results in an underestimation of the �ll rate α.

4.3.3 An Integrated Approach

We propose an integrated approach that makes use of both column-and-constraint generation
and conservative approximation methodologies. The overall integrated column-and-constraint
generation and conservative approximation approach is detailed in Algorithm 1. The algorithm
starts by solving the approximate model [RC] to obtain stock levels xCA. Since the solution to
[RC] is a conservative approximation of the original model [RO] and underestimates the �ll
rate, we use xCA to solve the adversarial problem [APRO]. The solution to [APRO] is the �ll rate
α∗CA achieved for the stock levels xCA under the worst-case realization of the demand. This
serves as the initial lower bound LB = α∗CA to original model [RO] with upper bound UB = 1.
The adversarial problem [APRO] generates multiple demand scenarios KCA which we use to
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initialize the column-and-constraint generation.

The master problem [MP]RO is a mixed integer program and it is computationally expensive
to solve it to optimality at each iteration. Therefore, we drop integrality constraint from [MP]RO

(refer to line 6 in Algorithm 1) and column-and-constraint generation is initialized. At each
iteration of the algorithm, [MP]RO solution serves as input to the adversarial problem [APRO].
Master problem [MP]RO provides an upper bound to the original problem [RO] while [APRO]

obtains the worst-case �ll rate for the current master problem solution αmin. Demand Scenarios
d generated from [APRO] are added to [MP]RO and the procedure repeats. Note that when {x ∈
Z} /∈ [MPRO], the adversarial problem solution αmin is a lower bound to the relaxed original
problem and LB is updated only if {x ∈ Z} ∈ [MPRO] as conditioned by line 25 in Algorithm
1. When αmin = UB for the �rst time, the original problem without the integrality constraint
has been solved to optimality. Therefore, we add integrality constraint to [MP]RO (see line 27,
Algorithm 1) and the algorithm continues. We terminate the algorithm when UB = LB and
the latest master problem solution x is optimal to original problem [RO].

4.4. Computational Results

In this section, we present computational results using actual pharmacy sales data and gen-
eralized randomly generated instances. In Section 4.4.1, we use pharmacy sales data to com-
pare our proposed RO approach against other benchmark approaches including stochastic and
maxmin approaches. Section 4.4.2 compares the �ll rate objective against the conventional
pro�t objective while Section 4.4.3 extends testing to show e�ectiveness of the proposed ap-
proach over randomly generated instances. Finally, in Section 4.4.4, we detail discussion on
computational e�ciency of the integrated column-and-constraint generation and conservative
approximation solution methodology. Statistical software R is used to split data into training
and testing datasets, and to generate clusters using hierarchical clustering algorithm. The opti-
mization models are coded in C++ and solved using CPLEX version 12.6.3 on a 64-bit Windows
10 with Intel(R) Core i7-4790 3.60 GHz processors and 8.00GB RAM. The conservative approxi-
mation model [RC] is solved to an optimality gap of 1e-09 with a time limit of 3600 seconds. For
column-and-constraint generation, a time limit of 7200 seconds is used where at each iteration,
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Algorithm1 Pseudo code for Integrated Column-and-Constraint Generation and Conservative
Approximation Approach

Require: Uncertainty Set D parameters, Capacity C

Initialization
1: Solve Conservative robust counterpart [RC] to obtain (α∗CA,xCA)
2: Use xCA solve Adversarial Problem [APRO] and obtain demand scenarios KCA
3: K ←KCA . initial set of demand scenarios
4: UB ← 1 . upper bound
5: LB ← α∗CA . lower bound
6: [MPRO]← [MPRO]− {x ∈ Z} . drop integrality constraint from master problem

Main Loop
7: while UB 6= LB do
8: Solve [MPRO] given K . obtain solution (α,x)
9: UB ← α . update upper bound

10:
11: Adversarial Problem [APRO] Starts...
12: αmin ← α . αmin could be set to any value
13: zMAP←∞ . Obj. Value of master adversarial problem [MAPRO]
14: while zMAP 6= 0 do
15: Solve [MAPRO] given αmin,x . obtain solution d
16: Update zMAP
17: Solve [SAPRO] given d,x . obtain α∗min
18: if α∗min < α then . current [MPRO] solution is infeasible for d
19: K ←K ∪ d
20: end if
21: Update αmin ← α∗min
22: end while
23: Adversarial Problem [APRO] Ends...
24:
25: if LB < αmin & {x ∈ Z} ∈ [MPRO] then
26: LB ← αmin . Update lower bound
27: end if
28: if αmin = UB then
29: [MPRO]← [MPRO] ∪ {x ∈ Z} . Add integrality constraint to [MPRO]
30: end if
31: end while

return stock levels x
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master problem [MP] is solved to an optimality gap of 0.01 while the adversarial problem [AP]
is solved to optimality.

4.4.1 The Case of Pharmacy Kiosks

In this section, we consider pharmacy sales datasets with around 2,000 distinct drugs (GPI)
are ordered annually with the majority of drugs having low and erratic demand. In contrast
to Chapter 3 where GPI-QTY is used as an SKU, in this chapter, we consider GPI as an SKU.
We run computational experiments over 70% of the drugs with low demand to exclude stable
demand drugs. Figure 4.2(a) illustrates yearly demand distribution for one of the pharmacy
stores data with 1650 low demand products. On average, drugs have yearly demand of 9 units
with a maximum daily demand of 3. Around 17% of drugs appear once in the year and 33% of the
drugs have yearly demand of 10 or more. Figure 4.2(b) illustrates the daily demand distribution
where daily customer arrivals vary between 12 and 77 with average arrivals equal 41.
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Figure 4.2: Demand Distribution

We assume that a pharmacy kiosk is replenished daily which results in a total of 365 time
periods. We split one-year data into training and testing datasets by randomly selecting a frac-
tion of the days as a training dataset. From here onward, we refer to the percentage of training
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data as SplitRatio. We use the training dataset to decide on stock levels x. The testing dataset
is used to determine out-of-sample (test) average �ll rate αtest. For each dataset, we generate
training datasets at three levels of SplitRatio ∈ {0.1, 0.2, 0.3}. Each instance is then solved at
�ve capacity levels, Cap = {50%, 60%, 70%, 80%, 90%}, de�ned as a percentage of the total
number of drugs.

Note that Cap < 100% is set to ensure that there is limited capacity and not all drugs could
be stocked. Recall Theorem 2 where we show that conventional robust optimization with single
budgeted uncertainty constraint results in every feasible solution being optimal with α = 0,
if N + C ≤ |I|. Since capacity C ≤ 0.9 × |I|, inequality N + C ≤ |I| holds as long as
N ≤ |I| − 0.9|I| ⇒ N ≤ 0.1× |I|. For pharmacy sales data discussed earlier, |I| = 1650 and
Theorem 2 holds when N ≤ 165. On the other hand, daily customer arrivals vary between
12 and 77 and therefore N cannot take a value greater than 77. This shows that conventional
robust approach fails for problem settings considered in this thesis.

We compare our proposed RO approach with stochastic and maxmin models along with the
expected value of perfection information. The formulation for stochastic model [SO] is given
in Appendix A.2.1, it maximizes the expected �ll rate α given demand scenarios in the training
dataset. Maxmin model [Maxmin] is detailed in Appendix A.2.2 and it maximizes the minimum
�ll rate over all demand scenarios in the training dataset. For each instance, we estimate the
expected value of perfect information (EVPI) de�ned as the �ll rate achieved if the demand
distribution is exactly known. To estimate EVPI, we solve the stochastic model using complete
data (training + testing) to decide on stock levels which are then tested on the testing dataset.

Table 4.1 compares out-of-sample �ll rate αtest obtained from the proposed robust approach
with [SO], [Maxmin], and EVPI. On average, RO solutions outperform stochastic and maxmin
solutions by 5.75% and 5.84%, respectively. As shown in Figure 4.3, RO outperforms the stochas-
tic model by up to 16.63% at higher capacity levels and when there is limited data available. For
SplitRatio = 0.1, only 36 days of data are available, RO approach improves average out-of-
sample �ll rate αtest by 8.36% , on average. When SplitRatio = 0.3, average improvement is
2.78%. As training data size SplitRatio increases, the empirical distribution is a good approxi-
mation of the true demand distribution, and therefore improvements over the stochastic model
decrease. Surprisingly, the maxmin model, which is quite often used in the literature to obtain
robust solutions performs poorly. This is because the model has access to only a few demand
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Split Cap, Testing Fill Rate, αtest Di�erence from RO

Ratio % Drugs Robust Stochastic MaxMin EVPI Stochastic Maxmin EVPI

0.1

50% 66.19 65.30 65.30 83.99 0.89 0.89 -17.81
60% 69.64 66.68 66.68 89.42 2.95 2.95 -19.79
70% 78.56 69.64 69.64 93.55 8.92 8.92 -15.00
80% 90.89 74.26 74.26 96.16 16.63 16.63 -5.28
90% 94.84 82.42 82.42 97.66 12.42 12.42 -2.82

Average 8.36 8.36 -12.14

0.2

50% 70.11 66.79 66.63 83.16 3.33 3.49 -13.05
60% 77.27 75.11 76.11 89.30 2.17 1.16 -12.03
70% 79.51 79.12 79.12 93.28 0.40 0.40 -13.76
80% 95.37 81.49 81.49 96.00 13.87 13.87 -0.64
90% 97.01 86.31 86.31 97.87 10.70 10.70 -0.86

Average 6.09 5.92 -8.07

0.3

50% 72.67 73.24 71.27 83.44 -0.58 1.39 -10.77
60% 79.61 78.23 77.53 89.43 1.38 2.08 -9.82
70% 87.59 84.03 84.50 93.75 3.57 3.09 -6.15
80% 91.34 87.88 87.88 96.13 3.47 3.47 -4.79
90% 96.66 90.58 90.58 98.29 6.08 6.08 -1.62

Average 2.78 3.22 -6.63

Average 5.75 5.84 -8.95

Table 4.1: Comparing out-of-sample �ll rate αtest achieved from proposed robust approach
against other approaches

scenarios in the training dataset, which does not provide su�cient information relating to the
worst case demand scenario for the large number of drugs. As shown in Table 4.1 and illus-
trated in Figure 4.3(b), our solutions are on average, only 8.95% inferior to EVPI which implies
that if any other modelling framework is used, it can not outperform our model by more than
8.95%, on average. Note that no modelling approach can ever achieve EVPI as it assumes that
the demand distribution is exactly known.

Our results suggest that the RO approach is preferred when pharmacy kiosks are installed
at new locations and there is limited data available. Once su�cient demand data is collected,
the decision-maker may switch to a stochastic model. Our modelling approach is generalizable
and may be useful for new products in the retail and clothing industries.
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(a) Out-of-sample Fill rate αtest

(b) Di�erence from RO

Figure 4.3: Out-of-sample Performance of Robust Approach against Stochastic, Maxmin, and
EVPI

4.4.2 Fill rate under Pro�t Objective

In this section, we compare the proposed �ll rate objective against the more commonly used
pro�t maximization approach using a pharmacy store data with 1650 drugs. Let pi be the pro�t
margin for product i ∈ I and the pro�t objective is

maxZ =
∑
i∈I

(pi (di −max{0, di − xi})) (4.4.1)

where di − max{0, di − xi} denotes the number of successful transactions. Our proposed
solution methodology is generalizable allowing us to solve the problem under the pro�t maxi-
mization objective as well.

We randomly generate product pro�t margins p = [pi] between 1 and M from a uniform
distribution unif [1,M ], where M ≥ 1. For split ratio 0.1, we solve each instance at three
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values of M ∈ {1, 5, 10}, to examine how out-of-sample �ll rate αtest and pro�t change with
increasing variability in pro�t margins for the two objective functions. Results are illustrated
in Figure 4.4. Figure 4.4(a) compares out-of-sample �ll rate αtest achieved under the �ll rate
objective denoted by blue bars and that achieved under the pro�t objective shown by red bars.
As expected, the pro�t maximization approach leads to a lower out-of-sample �ll rate compared
to the �ll rate objective. On average, the �ll rate objective yields a 17% higher out-of-sample
�ll rate. The Pro�t function with M = 1 is equivalent to maximizing the number of successful
transactions. The latter leads to a 7% reduction in �ll rate, on average, compared to the �ll rate
objective. This di�erence increases to 21% for unif [1, 10].
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(a) E�ect on out-of-sample �ll rate
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Figure 4.4: Comparative Analysis of Fill Rate vs Pro�t Objectives
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We now examine the e�ect of �ll rate objective on pro�ts. Figure 4.4(b) plots out-of-sample
pro�ts achieved under both objectives. On average, the �ll rate objective results in 20% decrease
in pro�ts. However, for instances with M = 1, the �ll rate objective outperforms the pro�t
maximization approach by 6%, on average. This suggests that when products have comparable
pro�t margins, the �ll rate maximization objective is preferable as it would not only result
in a higher �ll rate but also leads to higher pro�ts. In contrast, when product pro�t margins
vary signi�cantly, for instance when pro�t margins are generated from unif [1, 10], the �ll rate
objective leads to a 34% decrease in pro�ts, on average. We also observe these di�erences to be
large when capacity is high. For instance, for Cap = 50%, pro�ts under �ll rate objective are
27% lower and the di�erence is ampli�ed to 38% for capacity Cap = 90%.

Our analysis shows that maximizing �ll rate objective as opposed to the traditional pro�t
maximization approach is preferred for settings where capacity is limited and products have
similar pro�t margins. Self-serve Kiosks are a great example of such a setting as it has limited
capacity and it stocks similar products with roughly the same pro�t margins. The �ll rate objec-
tive is even more appropriate during the early stages of kiosk deployment when the decision-
maker is willing to compromise short-run pro�ts to build long-run customer con�dence.

4.4.3 Testing on Random Instances

We carry out comparative analysis over randomly generated instances to identify settings under
which the RO approach would lead to better decisions compared to the stochastic approach.
We consider a total of 2000 products and 365 time periods. We consider low-demand products
satisfying De�nition 1. It follows that the lower bound li on daily demand is set to 0. To generate
random demand d = [dit], we �rst de�ne interval [0, µi] by randomly generating upper bound
µi for each product i from probability distribution P µ. Demand values dit for Ti number of days
are then randomly generated from interval [1, ui] using probability distribution PD

i where Ti is
randomly generated from distribution P T . We assume that dit > 0 on Ti days and dit = 0 for
the remaining days.

As such, we require to generate two random parameters: (1) upper bound µi on daily de-
mand, and number of days Ti when daily demand dit > 0 for each product i. The two ran-
dom parameters are generated from probability distributions P µ and P T , respectively. Func-
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tion fr(y) = 1/(βr)
y is used to de�ne probability density function for distribution P r as

pr(y) = fr(y)/
∑

y fr(y) ∀y ∈ {1, ...,maxr} where r = {µ, T }, βr is a nonnegative constant
parameter and maxr is the maximum value that random parameter r can take.

For the base case, we consider maxµ = 3 i.e., upper bound µi ≤ 3 ∀i ∈ I , and βµ = 7.5. We
consider three distinct values of βµ ∈ {0.1, 1.0, 7.5} and resulting distributions when maxµ = 3

are illustrated in Figure 4.5. When βµ = 0.1, most of the products have upper bound valueµ = 3

while for βµ = 7.5, the probability shifts towards upper bound value 1. To randomly generate
the number of days Ti, we use probability distribution P T with base case values maxT = 36

i.e., Ti ≤ 36 ∀i ∈ I , and βT = 1.2. Figure 4.6 plots di�erent probability distributions derived
by varying βT at three levels {0.8, 1.0, 1.2}. Once Ti is generated, we randomly generate Ti
demand values in interval [1, µi] for each product i using probability distribution PD

i which
is de�ned in a similar fashion as P r with parameters βD and maxD = µi. We consider three
di�erent values of βD ∈ {0.5, 1.0, 1.5} with 0.5 being the base case value. Each generated
demand value is then randomly assigned to a time period between 1 and 365 while for all other
time periods, demand dit is set to 0.
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Figure 4.5: E�ect of constant parameter βµ on upper bound probability distribution P µ

Note that the base case values are tuned to match actual store data distribution. Once de-
mand data d = [dit] is generated, we divide it into training and testing data based on SplitRatio
at two levels {0.1, 0.2} with 0.1 being the base case value. Training data is used to make stock-
ing decisions using robust and stochastic models while testing data is used to estimate out-of-
sample performance. A total of 12 demand instances are generated, each solved at 5 di�erent
capacity levels resulting in 60 distinct instances. Capacity is set as Cap ×

∑i=2000
i=1 µi where
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Figure 4.6: E�ect of constant parameter βT on nonzero demand days probability distribution
P T

Cap is varied between 0.4 and 0.8. All parameter values used for random data generation are
summarized in Table 4.2 where the �rst value denoting the base case instance.

Parameter Description Values
NbProducts Nb. of products {2000}
NbPeriods Nb. of time periods {365}
Cap Capacity as percentage of

∑
UB {0.4, 0.5, 0.6, 0.7, 0.8}

SplitRatio Training data size (%) {0.1, 0.2}
maxµ Maximum upper bound value {3, 5, 7}
βµ Constant parameter to de�ne probability distribution Pµ {7.5, 1.0, 0.5}

maxT Maximum nonzero demand days {36, 72, 182}
βT Constant parameter to de�ne probability distribution P T {1.2, 1.0, 0.8}
βD Constant parameter to de�ne probability distributions PDi {0.5, 1.0, 1.5}

Table 4.2: Testing Parameters

Results are summarized in Table 4.3 where we report the di�erence between out-of-sample
�ll rate αtest achieved through robust approach and stochastic approach. Our proposed RO
approach improves the �ll rate by up to 10.59%, and on average, �ll rates are 4.02% higher
compared to the stochastic approach. However, there are instances where the RO approach
does not perform well. Our results indicate that RO outperforms stochastic approach when βµ,
βT , and βD are high as shown in Figure 4.7. Note that βµ a�ects upper bound µi while βD
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Parameters Value
Capacity Level, Cap Stats

0.4 0.5 0.6 0.7 0.8 Min Max Avg

SplitRatio
0.1 0.33 2.17 2.90 9.89 10.10 0.10 10.10 5.08
0.2 -1.85 -0.65 -0.07 0.38 -2.50 -2.50 0.38 -0.94

βµ
0.5 1.52 4.20 0.28 4.74 7.94 0.28 7.94 3.74
1 0.21 4.89 5.34 1.47 4.12 0.21 5.34 3.21

7.5 0.33 2.17 2.90 9.89 10.10 0.33 10.10 5.08

maxµ
3 0.33 2.17 2.90 9.89 10.10 0.33 10.10 5.08
5 0.31 3.15 3.49 9.82 10.06 0.31 10.06 5.37
7 0.12 2.67 3.26 9.82 10.06 0.12 10.06 5.19

βT
0.8 -0.29 -0.75 0.06 -2.00 -1.08 -2.00 0.06 -0.81
1 1.36 -0.24 -1.26 0.15 2.87 -1.26 2.87 0.58

1.2 0.33 2.17 2.90 9.89 10.10 0.33 10.10 5.08

maxT
36 0.33 2.17 2.90 9.89 10.10 0.10 10.10 5.08
72 0.27 3.70 3.41 9.48 10.29 0.20 10.29 5.43
182 0.18 2.40 3.37 9.48 10.29 0.18 10.29 5.14

βD
0.5 0.33 2.17 2.90 9.89 10.10 0.33 10.10 5.08
1 0.59 3.48 2.67 9.88 10.33 0.59 10.33 5.39

1.5 0.81 3.31 2.74 10.04 10.59 0.81 10.59 5.50
Average 0.31 2.30 2.39 7.21 7.86 -0.09 8.17 4.02

Table 4.3: Di�erence in out-of-sample �ll rates αtest between Robust and stochastic approach
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determines daily demand between 1 and upper bound µi. When these parameters are set at
higher values, the magnitude of demand gets smaller, suggesting that RO performs well when
demand is low. On the other hand, βT e�ects the number of days when dit > 0. As βT increases,
the number of days with nonzero demand decreases which suggests that RO performs well
when demand is rare. On the other hand, as the size of training data increases, the stochastic
approach outperforms RO.

The RO approach is preferred over the stochastic approach when there is limited informa-
tion available relating to demand distribution and under problem settings where demand is low
and sporadic. Analysis over capacity reveals that the RO approach performs well when capac-
ity is high as shown in Figure 4.8. This is because when capacity is low, the decision is more
straightforward where high-demand products with relatively stable demand are stocked.

4.4.4 Solution Quality

Computational results for the pharmacy case are summarized in Table 4.4 where the �rst col-
umn “# Iter" denotes the total number of iterations between the master problem and the adver-
sarial problem, column “RC" is the time spent to solve the conservative approximation model
[RC], and the total time spent during column-and-constraint generation is denoted by “CCG".
Column “Gap(%)" reports optimality gap to the original problem [RO] for each instance and is
calculated as UB − LB. On average, model [RO] is solved to an optimality gap of 40.3% under
the �ll rate objective. We observe that optimality gaps decrease at higher capacity and lower
training data. When we set SplitRatio = 0.1, i.e., 36 days are used as training data, the average
gap is 23.6% which increases to 62.1% for SplitRatio = 0.3 or 110 days of training data. The
results indicate that our proposed solution methodology is unable to prove optimality of the
solution for real-life instances, this is mainly due to the upper bound which fails to converge
in most cases. However, under the pro�t objective with M ∈ {1, 5, 10}, the proposed solution
approach is able to solve each instance to optimality within 22 seconds, on average. In fact, un-
der the pro�t objective, the conservative approximation solution is optimal. For all instances,
we �nd the adversarial problem solution to be the same as conservative approximation. This
suggests that the RO model with �ll rate objective is inherently di�cult to solve compared to
the pro�t objective function.
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Figure 4.8: RO improvements at di�erent capacity levels

Split Cap,
Fill Rate Objective Pro�t Objective Robust vs Stochastic

# Iter
CPU time (s) Gap CPU time (s) Gap Out-of-sample �ll rateαtest (%)

Ratio % Drugs RC CCG Total (%) RC CCG Total (%) Robust Stochastic Di�erence

0.1

50% 71 186.2 7251.7 7437.8 25.35 11.6 11.6 23.2 0.00 66.19 65.30 0.89
60% 80 2098.5 7213.6 9312.0 23.68 11.3 11.3 22.6 0.00 69.64 66.68 2.96
70% 81 3601.5 7211.1 10812.6 19.76 11.1 11.1 22.2 0.00 78.56 69.64 8.92
80% 81 3600.9 7179.0 10779.8 30.21 10.1 10.1 20.2 0.00 90.89 74.26 16.63
90% 80 3600.9 7181.7 10782.7 19.04 10.4 10.4 20.8 0.00 94.84 82.42 12.42

Average 79 2617.6 7207.4 9825.0 23.61 10.9 10.9 21.8 0.00 80.02 71.66 8.36

0.2

50% 15 3600.6 7203.5 10804.1 47.05 14.0 14.0 28.0 0.00 70.11 66.79 3.32
60% 28 583.3 7201.5 7784.7 35.88 12.1 12.1 24.1 0.00 77.27 75.11 2.16
70% 81 3601.0 7200.1 10801.1 35.24 14.7 14.7 29.3 0.00 79.51 79.12 0.39
80% 83 3600.8 7249.6 10850.4 32.70 10.2 10.2 20.4 0.00 95.37 81.49 13.88
90% 86 3600.9 7207.6 10808.5 22.03 8.5 8.5 17.0 0.00 97.01 86.31 10.70

Average 59 2997.3 7212.4 10209.8 34.58 11.9 11.9 23.8 0.00 83.86 77.76 6.09

0.3

50% 76 3601.4 7200.3 10801.7 73.68 11.8 11.8 23.6 0.00 72.67 73.24 -0.57
60% 90 3601.1 7234.9 10836.0 69.05 10.4 10.4 20.9 0.00 79.61 78.23 1.38
70% 76 3600.9 7195.2 10796.1 61.11 10.1 10.1 20.2 0.00 87.59 84.03 3.56
80% 47 3603.1 7201.2 10804.3 53.90 9.8 9.8 19.7 0.00 91.34 87.88 3.46
90% 60 3602.1 7297.8 10899.9 56.00 8.5 8.5 17.1 0.00 96.66 90.58 6.08

Average 70 3601.7 7225.9 10827.6 62.75 10.1 10.1 20.3 0.00 85.58 82.79 2.78

Table 4.4: Summary of Computational Results for Integrated Conservative Approximation &
Column-and-Constraint Generation Appraoch using pharmacy data

89



In Section 4.4.1, the best found solution from RO approach is often superior compared to
other models. We now show statistically that there there is no evidence that the optimality gap
has an e�ect on RO improvements over the stochastic approach. We conduct bivariate analysis
to determine statistical relationships between RO improvements and optimality gap, capacity
level Cap, and SplitRatio as shown in Figure 4.9. We observe statistically signi�cant negative
relationship between RO improvements and optimality gap with P − value = 0.046 < 0.05.
Note however that bivariate analysis in Figure 4.9 does not accurately depict the relationship
as suggested by low R2 = 0.27. One should consider “clustered" linear regression as shown
in Figure 4.10 where we cluster data points into two clusters and �t linear line for each set of
points separately. Clustered regression improves R2 to 0.88 and shows no negative relation-
ship between RO improvements and gap. Further analysis of clusters reveals that cluster A
consists of data points where SplitRatio ≤ 0.2 and Cap ≥ 0.7. This suggests RO improve-
ments not only depend on the optimality gap but it is also a�ected by capacity level Cap and
SplitRatio. Figure 4.9(b) illustrates a strong positive correlation between RO improvements and
cap. We observe no statistically signi�cant relationship between RO improvements and Spli-
tRatio. Bivariate analysis shows that RO improvements depend on multiple variables and as

Figure 4.9: RO improvements as a function of optimality gap, cap, and SplitRatio

such, multivariate regression analysis should be carried out to con�rm correlation between im-
provements and optimality gap. To do so, we use RO improvement as predictor variable and
optimality gap, cap, and SplitRatio are used as independent variables. Table 4.5 summarizes re-
gression results where independent variable gap has P − value = 0.184 which is signi�cantly
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Figure 4.10: E�ect of Gap revisited

high. As such, there is no statistically signi�cant evidence even at 90% con�dence level to claim
that RO improvements decrease as gap increases.

Variable Coe�cients Standard Error t Stat P-value
Intercept -12.18 5.82 -2.091 0.061

Cap 33.26 7.59 4.384 0.00109*
Gap 0.193 0.14 1.418 0.184

Split Ratio -65.66 28.40 -2.312 0.0411*
(*) signi�cant at 95% con�dence level
R2 = 0.737

Table 4.5: Mulitvariate regression analysis

Statistical analysis suggests that high gaps do not e�ect RO improvements which may be
due to best found solutions being close to optimality. We now explain it using an illustrative
example. Consider three products with uncertainty set de�ned as di ∈ [0, 2] and total demand
1 ≤ d1+d2+d3 ≤ 4. Assume that capacityC = 5 and we start with conservative approximation
solution x = (x1, x2, x3) = (2, 2, 1) which is optimal to the original problem. The adversarial
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problem [AP] outputs demand d that minimizes α for given solution x. In iteration 1, �ll rate
is minimized when d3 = 2 while d1 = d2 = 0 and α = 0.5. In the second iteration, an optimal
master problem [MP] solution is (1, 2, 2) with α = 1 and AP outputs solution d = [2, 0, 0] with
α = 0.5. Note that this procedure continues providing optimal solutions by assigning the same
stock levels but for di�erent products resulting in no change in gap.

Iteration Master Problem Solution Adversarial Problem Solution
Gap

# x1 x2 x3 UB d1 d2 d3 LB
1 2 2 1 1 0 0 2 0.5 0.5
2 1 2 2 1 2 0 0 0.5 0.5
3 2 1 2 1 0 2 0 0.5 0.5
4 2 2 1 0.5 0 0 2 0.5 0

Table 4.6: A Small Illustrative Example

4.5. Conclusions

We studied a multiproduct capacitated newsvendor problem with �ll rate maximization ob-
jective and presented a robust optimization framework to deal with low and sporadic product
demand. We proposed a novel approach to de�ne the uncertainty set for robust optimization
using a hierarchical clustering algorithm where negatively correlated products are clustered
together. We presented an exact solution methodology to deal with nonlinear �ll rate objec-
tive using an integrated column-and-constraint generation and conservative approximation ap-
proach. We showed that our solution approach is able to solve 20% of the small-sized problem
instances to optimality, and on average, the optimality gap is 21%. Numerical testing for the
case of pharmacy kiosks con�rmed the e�ectiveness of the proposed modelling approach, re-
sulting in a 5.8% improvement in average daily �ll rate, compared to stochastic and maxmin
approaches. In addition, we carried out comparative analysis between our proposed robust ap-
proach and stochastic modelling through randomly generated instances. The results suggested
that the RO approach outperforms the stochastic approach when product demand is low and
rare, and limited demand information is available. The proposed RO approach could be used
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for newly installed pharmacy kiosks with no or little demand information. Our work lay the
foundation for further exploration of robust newsvendor problems under �ll rate objective. One
future research direction is to incorporate supplier-driven product substitution where similar
products can substitute each other. Another future research area worth exploring is to build a
machine learning model e.g., support vector regression and quantile regression, to construct a
minimum-sized uncertainty set that may allow us to solve real-life instances to optimality.
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Chapter 5

Kiosk Location-Inventory Problem with
Accessibility Considerations

5.1. Introduction

Accessibility refers to people’s access to services and commodities that are essential in improv-
ing their quality of life (Kwan 2013). In the context of healthcare, accessibility is an important
subject as it directly relates to the overall health of a population. According to a report by Na-
tional Quality Forum, the problem of accessibility in healthcare services arises mainly due to
long distances to care sites and lack of transportation (HealthLeaders 2018). Self-serve phar-
macy kiosks may partially address the issue of healthcare accessibility by not only providing
medications in close proximity to customers but it can also be used for other health-related
clinical services that do not require in-person visits.

In this chapter, we study the potential role of self-serve pharmacy technology in improv-
ing accessibility, particularly in rural regions. Our goal is to model accessibility as a function of
spatial locations of pharmacy kiosks that would provide foundations for optimally placing mul-
tiple kiosks in a given region. However, placing kiosks in close proximity to customers does
not completely address the issue of accessibility. In fact, accessibility is also a�ected by the
unavailability of healthservices and customer acceptability to these services (Cabrera-Barona
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et al. 2017).

In order to improve healthcare accessibility, one must therefore consider spatial accessi-
bility (Guagliardo 2004) which refers to the combination of both accessibility and availability.
Accessibility dimension refers to the travel distance or travel time to a healthcare facility while
the availability dimension captures the number of healthcare facilities that an individual may
choose from as well as whether services are actually available (Penchansky and Thomas 1981).
As such, individual access to healthcare is a function of four distinct factors, (1) number of
healthcare facilities, (2) distances to these facilities, (3) customer willingness to visit each facil-
ity, and (4) availability of services.

We model accessibility as a function of these factors by considering a multi-kiosk inventory
problem where each kiosk is periodically replenished by a central pharmacy store that is farther
away. We model the problem as a newsvendor problem with �ll-rate dependent demand where
the goal is to decide on the stock level or capacity at the kiosks such that the weighted sum of
total cost and expected travel distance is minimized. The latter depends on the kiosk �ll rate as
well as customer willingness to visit kiosks. Kiosk �ll rate is a function of its capacity as well
as customer demand (willingness) which is modelled using a multinomial logit (MNL) model
where the utility derived from a pharmacy location is, in turn, a function of the expected dis-
tance. Locational decisions are not explicitly modelled and are captured by capacity decisions.
Kiosks with an optimal capacity greater than zero are located.

The resulting multi-kiosk inventory problem is computationally di�cult to solve and we
therefore approximate it as a dynamic multi-stage game that is solved using a simple iterative
heuristic procedure. Sensitivity analysis is carried over modelling parameters using an illustra-
tive example to derive insights.

The rest of this chapter is organized as well follows. In Section 5.2, we review related work
on modelling competition, inventory models with endogenous demand, and inventory-location
problems. In Section 5.3, we formally de�ne the accessibility function and model it within a
multi-kiosk inventory problem. The latter is approximated by a dynamic multi-stage game in
Section 5.4. Sensitivity analysis over modelling parameters are presented in Section 5.5 and
some concluding remarks are given in Section 5.6.
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5.2. Literature Review

Our work essentially relates to inventory problems with endogenous demand, location-inventory
problems under stochastic demand, and competitive location problems. We now review litera-
ture under each stream and position our work accordingly.

5.2.1 Inventory Planning with Endogenous Demand

Retailers’ future demand and long-term sustainability are likely to depend on customer past
experience. For kiosks with limited capacity, poor service levels may eventually lead to cus-
tomers switching to traditional in-store shopping. To address this, researchers have suggested
adding service level constraints or stock-out costs (Chen and Chuang 2000, Taleizadeh et al.
2008, 2009, Waring 2012, Abdel-Aal et al. 2017). These approaches are based on exogenous de-
mand assumption and stock-out cost in terms of customer goodwill loss is often di�cult to
measure (Schwartz 1966). Rather than explicitly incorporating stock-out costs, we model de-
mand as an endogenous variable of the �ll rate which is determined by inventory decisions.

In the literature, endogenous demand is modelled as a function of inventory and service
levels. For models with inventory-dependent demand, two types of modelling frameworks are
used: (1) “initial", where demand is a function of initial inventory level (Gerchak and Wang 1994,
Dana Jr and Petruzzi 2001, Wang and Gerchak 2001), and (2) “instantaneous", where demand at
a given time is a function of the inventory level at that time (Baker and Urban 1988, Datta and
Pal 1990, Balkhi and Benkherouf 2004, Goyal and Chang 2009)

Schwartz (1966) introduced the idea of perturbed demand where the demand rate λ = λ0
1+γI

is modelled as a function of disappointment factor γ which is the proportion of the demand
backlogged and I is a penalty parameter. Initial results of Schwartz (1966) are extended by
Schwartz (1970) and Caine and Plaut (1976) to stochastic demand case. Ernst and Cohen (1992)
extends the modelling approach to a coordinated distribution system where the demand is a
function of �ll rate and is modelled as D(X) = (1 + v(α− α0))D0 where α0 is the current �ll
rate with demand D0 while v captures the rate of change in demand per unit deviation from
the current �ll rate α0.
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These essentially model future demand as a function of �ll rate and are more appropriate
under a single-�rm setting. Our problem deals with a competitive environment where the to-
tal demand is �xed and is allocated to multiple �rms/locations based on customer preference.
The competitive setting makes the problem much more complicated. In this stream, Wang and
Gerchak (2001) use an initial-inventory dependent demand model in the context of competition
between two retailers where demand is a function of shelf space allocated. Balakrishnan et al.
(2004) evaluate the �nite horizon inventory model under instantaneous inventory-dependent
demand. The authors show that applying the EOQ model iteratively by updating the demand
rate leads to a unique equilibrium solution that may not necessarily be optimal. We use a similar
iterative heuristic approach to solve the optimization model proposed in this chapter. Our com-
putational results show that optimality gaps obtained from the proposed heuristic approach are
small for most of the instances.

The assumption that customers can observe �rm’s inventory level is more applicable in the
context of in-store shopping where items are displayed. In other settings, customers do not
have access to actual inventory levels but rather perceive it based on their past experience. In
this stream, Hall and Porteus (2000) considers a multi-period dynamic model with two �rms
competing based on the capacity that measures customer service level. The authors allow ser-
vice level (measured in terms of capacity) to vary over time. Customer behavior is modelled
such that a service failure leads to an immediate response to switch �rms. In addition, Hall
and Porteus (2000) assume that a customer switches its �rst-choice �rm based on an exogenous
loyalty factor. In contrast, we consider the change in customer choice based on a utility model.
A similar approach is followed by Gans (2002) and extended by Gaur and Park (2007). Gans
(2002) models customer choice in response to random variation in quality o�ered by compet-
ing �rms. A customer picks a �rm that maximizes his/her expected utility in each period. We
use a multinomial logit (MNL) market share model similar to the one used by Gaur and Park
(2007). The authors model asymmetric learning where customers’ perceived �ll rate may di�er
from the actual �ll rate o�ered by the �rm. Dana Jr and Petruzzi (2001) extends the newsvendor
problem where demand is a function of both �ll rate and price, and customers decide to visit the
retailer or an outside option based on maximizing their utility. Bernstein and Federgruen (2004)
develop a general inventory model in an oligopoly setting with aggregate demand. The latter
is divided among competing �rms based on price and target �ll rates using an MNL model.
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Netessine et al. (2006) considers a multi-period inventory model where two �rms compete on
product availability under the assumption that a �rm’s demand is its �rst choice customers as
well as the �rst choice customers from the second �rm who may switch due to unavailability
of product at the second �rm. The authors evaluate various situations including lost sales and
backlogging.

The proposed multi-kiosk inventory problem could be easily extended to a location problem
and it is one of our future research works. We therefore present a brief review of the literature
on competitive location problems.

5.2.2 Competitive Facility Location

Competition in location models is considered in three ways: (1) static competition, (2) dynamic
competition, and (3) competition with foresight. The static competition focuses on locating
facilities in a competitive market under the assumption that existing competitors’ features do
not change. There have been several research publications on static competition but none of
them considers inventory decisions (Wu and Lin 2003, Fernández et al. 2007, Aboolian et al.
2007, Baloch and Gzara 2020b, Lin et al. 2020). In competition with foresight, where leader’s
entrance to market result in new competitors entering the market. (Drezner and Drezner 1998,
Rhim et al. 2003, Aboolian et al. 2009).

We study a dynamic competition where competition between kiosks arises due to customer
choice behavior and change in the �ll rate at given kiosk a�ects the demand for all other kiosks.
Under dynamic competition, competitor’s operational features may change when a �rm enters
the market such as pricing and service level (Tsay and Agrawal 2000, Boyaci and Gallego 2004,
Bernstein and Federgruen 2004, Boyaci and Gallego 2004, Meng et al. 2009). Such models mainly
deal with inventory decisions with customer utility de�ned as a function of operational features
with no consideration of location decisions. Meng et al. (2009) is, however, an exception that
considers a competitive facility location with pricing as a decision variable. We refer the reader
to Farahani et al. (2014) and Wang et al. (2015) for a comprehensive review on competitive
facility location problems. The existing literature on dynamic competition however does not
study the location-inventory problem.
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Paper Location Inventory Objective
Operational Features Fill

Capacity Distance
Competition Customer Demand Max. Problem size

Price Service level Rate Type Choice Type Location Products

Wu and Lin (2003) * max FC * Static MNL Deterministic 20 1
Fernández et al. (2007) * max P * Static MNL Deterministic 2 1
Baloch and Gzara (2020b) * max P * Static MNL Deterministic 50 1
Aboolian et al. (2007) * max MS * Static MNL Deterministic 320 1
Lin et al. (2020) * max MS * Static MNL Deterministic 400 1
Drezner and Drezner (1998) * max MS * Foresight MNL Deterministic 7 1
Rhim et al. (2003) * max P * * Foresight Linear Deterministic 2 1
Aboolian et al. (2009) * max P * * Foresight max utility Poisson 100 1
Tsay and Agrawal (2000) * max P * * Dynamic Linear Deterministic 2 1
Boyaci and Gallego (2004) * max P * * Dynamic MNL (α) General Cont. 2 1
Bernstein and Federgruen (2004) * max P * * * Dynamic MNL (α) General Cont. 2 1
Meng et al. (2009) * Max P * * Dynamic Linear Deterministic 10 1

C - cost, P - Pro�t, MS - market share, FC - �ow capture

Table 5.1: Literature on Competitive models in location and inventory problems

5.2.3 Location-Inventory Models

Location-inventory problems (LIP) are widely studied with little attention given to customer
choice. Table 5.2 provides a summary of location-inventory problems explored in the litera-
ture. Shen et al. (2003) consider a location-inventory problem for a single supplier with multiple
retailers under the assumption that demand for each retailer is random and follows a normal
distribution. The objective is to minimize �xed location costs and inventory costs which is a
function of mean demand and variance for retailers. To hedge against variability in demand,
a safety stock level be maintained to ensure the given service level is achieved under the as-
sumption that demand is normally distributed. Shen and Daskin (2005) extends the cost-based
location-inventory problem in Shen et al. (2003) to customer service using a (Q, r) inventory
model with type I service level requirement. Atamtürk et al. (2012) considers several extensions
of the work by Shen et al. (2003) to incorporate capacity constraints, multiple products, corre-
lated demand, and stochastic lead times. The authors present conic quadratic mixed-integer
reformulations for nonlinear optimization problems arising from location-inventory problems.
Benjaafar et al. (2008) study a location-inventory problem with random Poisson demand and ex-
ponential production times with �xed capacity constraints while Gzara et al. (2014) and Wheat-
ley et al. (2015) consider location-inventory problems with time-based service level constraints.

All of the above papers assume direct assignment of customers to the facility by �rms such
that pro�ts are maximized without taking into account customer choice. In contrast, Berman
et al. (2016) study how customer choice in selecting their favorable facility result in deviation
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in optimal costs. The authors assume an assignment rule that assigns each customer to the
facility maximizing his/her utility. As opposed to incorporate assignment rules, we allow each
customer demand to be allocated among various pharmacy locations based on customer choice
behavior.

Paper Objective Service level Capacity
Customer Demand Max. Problem size

Choice Distribution Location Products

Shen et al. (2003) min. C * Normal 150 1
Atamtürk et al. (2012) min C * * Normal 25 15
Shen and Daskin (2005) min C * Poisson 263 1
Berman et al. (2016) min C/UD max Utility Normal 50 1
Benjaafar et al. (2008) min C * Poisson 50 1
Gzara et al. (2014) min C * Poisson 100 1
Wheatley et al. (2015) min C * Poisson 120 20
Berman et al. (2016) min C * Poisson 100 1

C - Cost, UD - uncovered demand

Table 5.2: Literature on Location-Inventory Problems

5.3. Multi-kiosk Inventory Planning

Our goal is to model accessibility to pharmacy services as a function of distance customers have
to travel to buy medications. Let j ∈ J be kiosk locations and let 0 be a single pharmacy store
located in the region. Demand for products p ∈ P originates from a set of customer zones l ∈ L.
When customers have to buy medications, they may drive to the pharmacy store or to one of
the pharmacy kiosks. To model accessibility, it is important to understand customer behavior. If
a customer travels to the store, the distance travelled is δ0l as shown in Figure 5.1. On the other
hand, if a customer in zone l decides to travel to a kiosk j, the distance travelled may equal
δjl with probability equal to kiosk’s �ll rate αj . However, in previous chapters, we showed
that kiosks do not enjoy high service levels and as such, the product may not be available. If
the product is not available, the customer travels to a store that is located at distance δj0 from
kiosk j. The total distance travelled then equals δjl + δj0 with probability 1 − αj . Due to the
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uncertainty in product availability, it is unclear whether a customer would prefer a store or a
nearby pharmacy kiosk to make a purchase.

𝑙

0
𝑗

𝛿𝑗𝑙𝛿0𝑙

𝛿𝑗𝑙 + 𝛿𝑗0

Figure 5.1: Modelling Customer choice behavior

This motivates us to incorporate customer choice behavior in our modelling framework.
We use a multinomial logit (MNL) model to estimate the probability of a customer visiting a
given pharmacy location (store/kiosk). Let δjl be the expected distance a customer in zone l has
to travel if he/she decides to visit a pharmacy location. We de�ne δjl as

δjl = αjδjl + (1− αj)(δjl + δj0) (5.3.1)

We de�ne customer utility for a particular location j as Ujl = υjl + ξjl, where υjl refers to
intrinsic utility while ξjl is a random term that takes into account variations among various
customers. The intrinsic utility υjl = −βδjl(αj) is de�ned as a function of customer sensitivity
parameter β and expected travel distance δjl(αj) which depends on �ll rate o�ered by kiosk
j. Under standard MNL model, it is assumed that ξjl’s are i.i.d random variables following a
Gumbel distribution (Wang and Wang 2017). Based on random utility maximization scheme,
the probability that a customer in zone l decides to visit pharmacy j ∈ Jl is then estimated as

pjl = Pr(Ujl > Uj′l,∀j′ ∈ Jl \ {j}) =
exp[−βδjl(αj)]∑

j′∈Jl exp[−βδj′l(αj′)]
(5.3.2)

Using customer choice behavior, customer accessibility is measured in terms of the expected
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distance travelled to make a purchase and is modelled as

Al =
∑
j∈Jl

pjlδjl (5.3.3)

=
∑
j∈Jl

exp[−βδjl(αj)]∑
j′∈Jl exp[−βδj′l(αj′)]

× δjl (5.3.4)

Given that the demand originating from zone l is Dl, our goal is to decide on kiosks’ stock
levels cj such that the weighted sum of the total expected distance de�ned by

∑
l∈LAlDl and

the stocking cost is minimized. LetK be the unit cost per stock level and θ be scaling parameter.
The optimization problem is

min
cj≥0

∑
l∈L

∑
j∈Jl

exp[−βδjl(αj)]∑
j′∈Jl exp[−βδj′l(αj′)]

× δjl(αj)E[Dl] + θK
∑
j∈J

cj (5.3.5)

where αj is de�ned as

αj = 1−
E[(
∑

l∈L pjl(αj)Dl − cj)+]∑
l∈L pjl(αj)E[Dl]

(5.3.6)

It is worth noting that equation (5.3.6) does not have a closed-form solution but rather it needs
to be derived numerically.

5.4. Solution Approach

Due to the inherent di�culty of solving the proposed optimization model, we reformulate it as
a multi-stage dynamic game. Let t = 0, 1, 2, ... be the index for game stages and let αtj be the
�ll rate observed in period t at kiosk j. Customer choice behavior in period t + 1 depends on
the �ll rate achieved in the previous period t. Initially, customers have no information relating
to the kiosk service level at t = 0 and perceive it to be equal to 1.0. As time progresses, �ll rate
is realized and customer choice changes based on �ll rate observed in the past. Let υtjl be the
utility customer expects to derive if he/she decides to visit pharmacy j ∈ Jl. Since customer
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utility changes over time, the probability of visiting a kiosk is also time dependent

ptjl =
υtjl∑

j′∈Jl υ
t
j′l

(5.4.1)

=
exp(−β(δ

t−1

jl ))∑
j′∈Jl exp(−β(δ

t−1

j′l ))
(5.4.2)

where δt−1

jl is the expected distance travelled by customers during stage t− 1. The demand qtj
for kiosk j is then given by

qtj =
∑
l∈L

ptjl ×Dl (5.4.3)

with probability density function f tj (qtj) and a non-decreasing continuous cumulative function
F t
j (q

t
j). The expected �ll rate αtj achieved is de�ned as

αtj = 1−
E[(qtj − ctj)+]

E[qtj]
(5.4.4)

where E[(qtj − ctj)+] is the expected unful�lled demand and E[qtj] = µtj =
∑

l∈L p
t
jl ×E[D1] is

the expected total demand at kiosk j in stage t. The �ll rate is

αtj = 1− 1

µtj

∫ ∞
qtj=c

t
j

(qtj − ctj)f tj (qtj)dqtj (5.4.5)

The expected distance travelled by a customer in zone l in order to make a purchase is

Atl =
∑
j∈Jl

ptjlδ
t

jl (5.4.6)

=
∑
j∈Jl

exp[−βδt−1

jl ]∑
j′∈Jl exp[−βδt−1

j′l ]
× δtjl (5.4.7)
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Our objective is then

min
ctj≥0

lim
t→∞

∑
l∈L

∑
j∈Jl

E[Dl]× e−βδ
t−1
jl∑

j′∈Jl e
−βδt−1

j′l
× δtjl + θK

∑
j∈J

ctj (5.4.8)

where the capacity for each kiosk j is c∗j = limt→∞ c
t
j . Our numerical results show that the pro-

posed iterative procedure converges to a steady equilibrium solution. However, we are unable
to theoretically prove its convergence and is left for future research.

Given pharmacy locations J0 = J ∪ {0} we need to decide on capacity ctj that minimizes
the expected travel distance at each stage t until a steady equilibrium state is achieved. At each
stage t, the subproblem is

min
ctj≥0

πt =
∑
l∈L

∑
j∈Jl

E[Dl]× e−βδ
t−1
jl∑

j′∈Jl e
−βδt−1

j′l
× δtjl(ctj) + θK

∑
j∈J

ctj (5.4.9)

Note that the capacity not only e�ects the total cost but also the �ll rate αtj based on which δtjl
is calculated. Simplifying equation (5.4.9),

min
ctj≥0

πt =
∑
l∈L

∑
j∈Jl

ptjlE[Dl]× (δjl + δ0j)−
∑
l∈L

∑
j∈Jl

ptjlE[Dl]× (αtjδ0j) + θK
∑
j∈J

ctj

(5.4.10)

Taking �rst derivative with respect to ctj

∂πt

∂ctj
=−

∂αtj
∂ctj

(
δ0j

∑
l∈L

ptjlE[Dl]

)
+ θK = 0 (5.4.11)

⇒− 1

µtj
(1− Fjt(ctj))

(
δ0j

∑
l∈L

ptjlE[Dl]

)
+ θK = 0 (5.4.12)

⇒ctj = F−1
j

(
1− θK

δ0j

)
(5.4.13)

Given the stock level ctj , we estimate αtj and this procedure continues until a steady state is
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achieved.

Initialize t = 0, set α0
j = 1.0

Compute δt−1
jl , ptjl

Making stocking
decisions ctj ,
compute αtj

|αtj − αt−1
j | < ε?

Stop, ctj
is optimal

yes

Go to stage
t++, update

customer choice

no

αt−1
j

Figure 5.2: Multi-stage Iterative Heuristic Solution Approach

The overall iterative heuristic procedure is summarized in Figure 5.2 where given αt−1
j ,

the algorithm makes stocking decisions ctj and calculates αtj . This procedure continues until
|αtj −αt−1

j | < ε ∀j ∈ J0 where ε is a user-de�ned error tolerance. The latter could be set based
on the level of accuracy a manager is interested to achieve. Numerical testing however shows
that our proposed algorithm is quite fast even for ε=1e-09 and a manager may therefore choose
highest level accuracy.

5.5. An Illustrative Example

In this section, we present numerical results for an illustrative example with a single product
and single customer zone where customers can either go to the kiosk or pharmacy store. Base
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case network is illustrated in Figure 5.3 and data used to carry out the analysis is summarized in
Table 5.3. The demand originates from a single customer zone and follows a normal distribution
with mean µ = 100 and standard deviation σ = 10. For customer choice behavior, sensitivity
to distance β is set to 0.90. The pharmacy store and kiosk are located at distances of δ0l = 1.0

km and δjl = 0.1 km from the customer zone, respectively. The distance between the store and
the kiosk is δ0j = 1.1. Finally, the multi-stage game continues until |αtj − αt−1

j | < ε where ε is
set to 1e-09.

Customer Zone
𝑵(𝟏𝟎𝟎, 𝟏𝟎𝟐)
𝜷 = 𝟎. 𝟗

𝛿0𝑙=1.0
𝛿𝑗𝑙=0.1

𝛿0𝑗=1.1

Figure 5.3: Base Case Network

Parameters Values

Demand characteristics: µ = 100, σ = 10
Customer Choice Behavior: β = 0.90, γ = 0.9
Distances:
Customer-Store Distance δ0l = 1.0
Customer-Kiosk Distance δjl = 0.1
Kiosk-Store Distance δ0j = 1.1
Allowable Error ε = 1e− 09

Table 5.3: Base case Data

5.5.1 Analysis of the Iterative Solution Approach

As discussed in previous sections, the recursive function (5.3.5) could be solved by playing
a multi-stage game. We �rst consider the case where capacity cj is �xed and the remaining
problem is to solve the recursive function (5.3.6) such that the left-hand side of the equation
equals the right-hand side. We consider four distinct capacity levels C ∈ {1, 10, 30, 90} while
initial �ll rate α0

j is varied between 0.0 and 1.0. The results are summarized in Figure 5.4 where
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we observe that irrespective of the initial value α0
j , the function converges to the same value.

We also note that the convergence rate is fast and all instances are solved within 15 iterations.
Figure 5.4 also illustrates how average expected travel distance changes as the game progresses.
Note that for capacity C = 1, locating a kiosk leads to worse travel distances. This is because
some customers may take a chance expecting that the product may be available. However, due
to limited stock, the �ll rate is low and they often have to travel further to purchase the item
from the store. This signi�es that the bene�ts of a kiosk may be realized if there is su�ciently
high capacity. For C = 90, the kiosk stocks su�cient inventory to achieve an expected �ll rate
of 100%. Even then, the expected travel distance does not decrease to δjl = 0.1. This is because
some customers may still prefer to visit the store over the kiosk as a result of the market share
model. This is one of the drawbacks of the multinomial market share model (5.4.2) where even
when the kiosk dominates the store, some demand is still allocated to the store. To address
this, one possible solution could be to add dominance rules using a threshold Luce model (Luce
2012) where a kiosk with signi�cantly low �ll rate is dominated by other customer choices.
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Figure 5.4: Fill rate & travel distance at various capacities during di�erent game stages
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5.5.2 Iterative Approach under Optimized Capacity

In this section, we analyze the multi-stage game when capacity cj is not �xed, but rather up-
dated iteratively as the game progresses. We consider three distinct values of θK ∈ {0.2, 0.5, 1.09}
and the results are shown in Figure 5.5. As θK increases, the cost of increasing capacity out-
weighs the reduction in expected travel distance. As such, the capacity decreases with increas-
ing θK . Similar to the earlier case with �xed capacity, the algorithm is fast and converges to a
steady-state within a few iterations.
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Figure 5.5: Game progression under optimized capacity

108



It is however in unclear whether the solutions obtained are in fact optimal. We now analyze
solution quality by varying model parameters including θK ∈ {0.2, 0.5, 1}, σ ∈ {10, 30, 50},
and β ∈ {0.1, 0.9, 3.0}. To �nd the optimal solution under each instance, we enumerate over
all possible capacity levels. Results are summarized in Table 5.4 where columns “Optimal" and
“Heuristic" report optimal and iterative procedure solutions, respectively. It turns out that the
iterative solution approach leads to sub-optimal solutions with optimality gaps of 1.50%, on
average, and up to 5.70%. These gaps increase as variability in demand increases. As the stan-
dard deviation, σ is increased from 10 to 50, the average optimality gap increases from 0.69%
to 2.21%. Customer sensitivity to travel distance β also a�ects solution quality. For instance,
when β = 0.1 , average gap is 1.8% which increases to 2.8% for β = 3.0. It turns out that gaps
are high when θK is set too small or too large.
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σ θK β
Optimal Heuristic Optimality

Obj Value xj Obj Value xj Gap(%)

10

0.2
0.1 65.8 61 66.4 57 0.87
0.9 54.4 79 54.8 75 0.67
3 37.4 103 37.5 102 0.08

0.5
0.1 83.4 56 83.5 53 0.12
0.9 77.0 71 77.1 69 0.11
3 67.2 95 67.2 94 0.03

1
0.1 106.5 40 107.0 45 0.44
0.9 108.0 50 108.4 57 0.35
3 107.1 0 110.8 78 3.50

Average 0.69

30

0.2
0.1 70.6 80 72.3 66 2.46
0.9 60.1 100 61.3 86 1.90
3 43.5 123 43.6 118 0.27

0.5
0.1 92.1 63 92.4 53 0.35
0.9 86.5 76 86.8 68 0.39
3 76.5 98 76.7 94 0.14

1
0.1 109.0 16 110.5 31 1.35
0.9 109.1 0 111.3 35 2.00
3 107.1 0 113.2 47 5.73

Average 1.62

50

0.2
0.1 75.4 98 78.3 75 3.86
0.9 65.8 120 67.8 97 3.03
3 49.6 143 49.8 134 0.46

0.5
0.1 100.7 70 101.3 54 0.55
0.9 96.0 81 96.7 66 0.73
3 86.1 102 86.4 94 0.35

1
0.1 111.6 0 114.0 17 2.15
0.9 110.8 0 114.1 17 3.03
3 108.3 0 114.5 18 5.70

Average 2.21

Table 5.4: Iterative Heuristic Procedure Solution Quality
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5.5.3 E�ect of Demand Variability

In this section, we evaluate the e�ect of capacity on �ll rate and expected travel distance at dif-
ferent levels of demand variability. Demand variability is captured through standard deviation
σ which is varied between σ ∈ [10, 50]. Results are summarized in Figure 5.6 where �ll rate
increases at a decreasing rate as capacity is increased. A higher �ll rate leads to lower expected
travel distances as shown by the right panel in Figure 5.6. Results show that locating a kiosk
with low capacity may result in customer travel distances being even greater than their distance
from the store.
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Figure 5.6: E�ect of standard deviation σ

5.5.4 E�ect of Customer Sensitivity to Travel Distance β

We analyze the e�ect of customer sensitivity to travel distance by varying parameter β between
0.2 and 3.0 as shown in Figure 5.7. At higher capacities, travel distance decreases exponentially
with increasing sensitivity β. In contrast, when capacity is limited, the e�ect of sensitivity
parameter β on the expected travel distance is not signi�cant. As such, accessibility not only
depends on kiosk capacity but is also a function of customer sensitivity to travel distance. Kiosk
bene�ts are maximized for distance-sensitive customers. The top dotted line on the right panel
of Figure 5.7 denotes customer distance to the central store. Note that when customer sensitivity
is low, placing a kiosk with limited capacity may lead to adverse e�ects. This is shown by the
region above the top dotted line where the expected travel distance is higher than customer
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distance from the store. This suggests that for customers with low sensitivity to distance, one
should place a kiosk with higher capacity to ensure higher �ll rates. If such a kiosk is not
available, then customers are better o� in terms of accessibility when the kiosk is not located.
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Figure 5.7: E�ect of customer sensitivity to travel distance, β

5.5.5 E�ect of Distances

Finally, we analyze the e�ects of distances between kiosk, store, and customer location on
travel distances at di�erent capacity levels. Figure 5.8(a) plots expected travel distance as a
function of distance between kiosk and customer location δjl. As expected, the expected travel
distance increases as the kiosk is located farther from the customer location. Accessibility could
be improved by placing kiosks closer to the customer location only if there is su�cient kiosk
capacity. Figure 5.8(b) plots expected travel distance against customer distance from store. In
contrast to the kiosk where the expected distance increases almost linearly with δjl, the store
distance δ0l increases expected travel distances at a decreasing rate. Finally, Figure 5.8 examines
the e�ect of distance between store and kiosk δ0j that does not impact travel distances at higher
capacity levels. At lower levels, increasing δ0j leads to higher travel distances for customers due
to low �ll rates.
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Figure 5.8: E�ect of distances

5.6. Conclusions

In this chapter, we proposed a function to model spatial accessibility that accounts for both ac-
cessibility and availability dimensions in the context of pharmacy kiosks. The proposed acces-
sibility function is then extended to a multi-kiosk newsvendor problem to optimally decide on
the capacity for each kiosk to minimize both stocking cost and the expected distance travelled
by the customers. The problem is approximated as a multi-stage game that provides solutions
within reasonable optimality gaps of 1.5%, on average. Our results showed that spatial accessi-
bility is only improved if kiosks have su�cient capacity. In fact, in some settings, kiosk service
may adversely a�ect customer accessibility due to limited availability.

For future research, we plan to extend the multi-kiosk inventory problem to a location-
inventory problem where one needs to optimally locate p kiosks at potential locations j ∈ J and
to decide on their capacities. We plan to devise a Logic-based Benders decomposition solution
methodology that could solve the location-inventory problem optimally. Another promising
future research direction is to consider a threshold Luce MNL model to exclude dominated
choices for customers.
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Chapter 6

Conclusions and Future Research

Self-serve kiosk technology is expected to grow and will play an important role in futuristic
smart city logistics, bringing commodities in close proximity to customers. This thesis extends
the traditional work on inventory and assortment planning in the context of large retail stores
to self-serve kiosks with limited capacity and rare demand.

Motivated by an industry project, this thesis began with addressing the strategic capacity
planning problem for pharmacy kiosks through a comprehensive analysis of pharmaceutical
sales data which was used to build computationally tractable optimization models. Data anal-
ysis revealed that product demand for pharmacy kiosks is low and erratic in nature. As such, a
data-driven stochastic optimization approach is used to make stocking and assortment decisions
to determine optimized capacity. The issue of limited capacity is partially addressed through
supplier-driven substitution where drug demand for higher quantities could be ful�lled by dis-
pensing multiple packages of lower quantities only if it is a multiple of higher quantity. Such a
substitution rule has not been previously studied in the literature. A mathematical formulation
is proposed that is not only computationally fast to solve large-scale instances but also guaran-
tees robustness against the sequence of demand realization. The proposed modelling approach
however allows only one substitute for each quantity. This limits the potential of substitution
to improve �ll rate as many potential substitution rules that could improve service level can-
not be selected. In the future, one may model the exact substitution that would also require
developing a sophisticated solution approach to solve the complex problem.
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The second part of the thesis addressed the issue of stochasticity of demand using a ro-
bust optimization framework under �ll rate maximization objective. The proposed framework
posed additional challenges in terms of its computational performance and overly-conservative
solutions produced by traditional uncertainty sets. In this thesis, the issue of conservative so-
lutions is addressed by constructing a data-driven uncertainty set that is derived purely based
on data using a hierarchical clustering algorithm. The resulting RO formulation is solved using
an exact solution approach based on the column-and-constraint generation and conservative
approximation. A possible future research direction could be to use a constrained version of
the support vector regression or quantile regression to estimate bounds on constraints in the
polyhedral set such that the size of a polyhedral set is compact while percentage deviation from
empirical distribution or training sample is controlled by user-de�ned threshold.

Finally, an application of self-serve kiosks in the context of improving healthcare accessibil-
ity is examined. Accessibility is modelled as a function of the expected distance and customer
demand, both of which are �ll-rate dependent. A multi-kiosk inventory planning problem is
proposed which is solved using an iterative heuristic approach. The latter approximates the in-
ventory problem with �ll rate-dependent demand to a dynamic multi-stage game that provides
solutions within optimality gaps of 1.5%, on average.

In the context of smart city logistics, one possible extension of the work could be to design
an integrated drone-kiosk network where drones are used to replenish pharmacy kiosks that
are placed at designated locations. The modelling framework is to decide on the location of
pharmacy kiosks, which drugs to stock and in what quantities, and where a pharmacy ware-
house be established from where drones make direct deliveries to kiosks. Another promising
future research direction could be to consider a network of IoT-enabled kiosks, remote pharma-
cists, and customers, all connected through a cloud. Customers will have real-time inventory
information based upon which they decide whether to visit the kiosk or the traditional brick-
and-mortar store.
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Appendix A

APPENDICES

A.1. L-shaped Benders Decomposition

In this section, we solve model [M3] using L-shaped Benders decomposition based on the gen-
eral framework by Carøe and Tind (1998) where the master problem decides on �rst stage de-
cision variables while the subproblem decides on second stage decision variables. For model
[M3], x = [xi] and s = [sij] are the �rst-stage variables, and second stage consists of variables
f = [fit]. The master problem [MP] is

[MP]: max 0 + z(x, s) (A.1.1)
s.t. Benders Optimality Cuts∑

i∈I:
bij=1

sij = 1 ∀j ∈ I, (A.1.2)

∑
i∈I

xi ≤ C (A.1.3)

xi ∈ Z+, sij ∈ {0, 1} ∀i ∈ I, j ∈ I (A.1.4)
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The optimal solution to [MP] is an upper bound to the original problem [M3] and z(x, s) is the
optimal solution to the subproblem [SP] given (x, s)

[SP]: max 1−

∑
i∈I

∑
t∈Θ

fit

D
(A.1.5)

s.t. fit ≥
∑
j∈I:
bij=1

mijAjtsij − xi i ∈ I, t ∈ Θ, [µit] (A.1.6)

fit ≥ 0, ∀i ∈ I, t ∈ Θ. (A.1.7)

where [.] corresponds to dual variable for constraint (A.1.6). The optimal solution to [SP] pro-
vides an upper bound to the lower bound to the original problem [M3]. Note that subproblem
[SP] further into sub subproblems for each GPI-QTY i ∈ I and scenario t ∈ Θ as

[SP]it min fit (A.1.8)

s.t. fit ≥
∑
j∈I:
bij=1

mijAjtsij − xi [µit] (A.1.9)

fit ≥ 0, (A.1.10)

Let f ∗it be the optimal solution to [SP]it, then the optimal solution to [SP] is 1−

∑
i∈I

∑
t∈Θ

f ∗it

D
. To

solve sub subproblem [SP]it, we take its dual

[DSP]it max

∑
j∈I:
bij=1

mijAjtsij − xi

µit (A.1.11)

s.t. µijt ≤ 1, (A.1.12)
µit ≥ 0 (A.1.13)

which is trivial to solve. The optimal solution µ∗it = 1 if
∑

j∈I:
bij=1

mijAjtsij−xi > 0, else µ∗it = 0.

Note that since the subproblem [SP] is always feasible for a given (x, s), we do not need to add
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feasibility cuts (extreme rays) to the master problem [MP]. Let Eit be the set of the extreme
points to [DSP]it. The master problem could be written as

[MP]: max 1−

∑
i∈I

∑
t∈Θ

zit

D
(A.1.14)

s.t. zit ≥

∑
j∈I:
bij=1

mijAjtsij − xi

µeit i ∈ I, t ∈ Θ, e ∈ Eit,

(A.1.15)∑
i∈I:
bij=1

sij = 1 ∀j ∈ I, (A.1.16)

∑
i∈I

xi ≤ C (A.1.17)

xi ∈ Z+, sij ∈ {0, 1} ∀i ∈ I, j ∈ I (A.1.18)

Note that the set of extreme points Eit = {0, 1}. For e = 0, µijt = 0, and Constraint (A.1.15)
is zit ≥ 0 which corresponds to the nonnegativity constraint (3.28) in the original formulation
[M3]. On the other hand, when e = 1, µijt = 1 and Constraint (A.1.15) is zijt ≥

∑
k∈Ji:
bijk=1

mijkAiktsijk − xij

corresponding to constraint (3.27). The approach is equivalent to a cutting plane algorithm
where constraints (3.27) and (3.28) in the original model [M3] are dropped and added itera-
tively.

To warm-start the algorithm, nonnegativity constraints (A.1.15) corresponding to e = 0 are
included in [MP]. To tighten the relaxation, we also add a set of valid inequality constraints

xi ≤
∑
i∈I:
bij=1

dmax
j sij ∀ i ∈ I (A.1.19)

where dmax
j is the maximum daily demand recorded for GPI j in the sales data. Constraint

(A.1.19) ensures that GPI-QTY i is not stocked if sij = 0∀j ∈ I .
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A.2. Benchmark Models

A.2.1 Stochastic Model

The stochastic model is

[SO]: max α (A.2.1)

s.t.
∑
i∈I

xi ≤ C (A.2.2)

α ≤ 1−

∑
i∈I

∑
t∈T

max
{

0, dti − xi
}

∑
i∈I

∑
t∈T

dti
(A.2.3)

xi ∈ Z+ ∀i ∈ I, (A.2.4)
0 ≤ α ≤ 1 (A.2.5)

where dti is the demand for product i in training sample t ∈ T . Constraint (A.2.2) is the capacity
constraint while constraint (A.2.3) computes �ll rate α. The resulting formulation is, however,
nonlinear due to max function in Constraint (A.2.3). To linearize, we add auxiliary variables f ti
to the model as

[SO-LR]: max α (A.2.6)

s.t.
∑
i∈I

xi ≤ C, (A.2.7)

α ≤ 1−

∑
i∈I

∑
t∈T

f ti∑
i∈I

∑
t∈T

dti
, (A.2.8)

f ti ≥ dti − xi, ∀i ∈ I, t ∈ T, (A.2.9)
xij ∈ Z+, f

t
i ≥ 0, ∀i ∈ I, t ∈ T, (A.2.10)

0 ≤ α ≤ 1 (A.2.11)
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A.2.2 Maxmin Model

Maxmin model maximizes the minimum �ll rate over all demand scenarios T and is

[Maxmin]: max α (A.2.12)
s.t. (A.2.2), (A.2.4), (A.2.5)

α ≤ 1−

∑
i∈I

max
{

0, dti − xi
}

∑
i∈I

∑
t∈T

dti
∀t ∈ T, (A.2.13)

where constraint (A.2.13) de�nes α as the minimum �ll rate achieved for all demand scenarios
in T . Model [Maxmin] can also be linearized as model [SO].
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