
Deep Reinforcement Learning Models for Real-Time Traffic Signal
Optimization with Big Traffic Data

by
Matthew Muresan

A Thesis
presented to the University Of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Civil Engineering

Waterloo, Ontario, Canada, 2021

© Matthew Muresan 2021



E X A M I N I N G C O M M I T T E E M E M B E R S H I P

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

• External Examiner: Dr. Henry Liu, Professor, Civil and Environmental Engineer-
ing, University of Michigan

• Supervisor: Dr. Liping Fu, Professor, Civil and Environmental Engineering, Uni-
versity of Waterloo

• Internal Member: Dr. Bruce Hellinga, Professor, Civil and Environmental Engi-
neering, University of Waterloo

• Internal Member: Dr. John Quilty, Professor, Civil and Environmental Engineer-
ing, University of Waterloo

• Internal-External Member: Dr. Jun Liu, Professor, Applied Mathematics, Univer-
sity of Waterloo

ii



D E C L A R AT I O N

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.”

iii



A B S T R A C T

One of the most significant changes that the globe has faced in recent years is the
changes brought about by the COVID19 pandemic. While this research was started
before the pandemic began, the pandemic has exposed the value that data and in-
formation can have in modern society. During the pandemic traffic volumes changed
substantially, leaving the inefficiencies of existing methods exposed. This research has
focussed on exploring two key ideas that will become increasingly relevant as societies
adapt to these changes: Big Data and Artificial Intelligence.

For many municipalities, traffic signals are still re-timed using traditional approaches
and there is still significant reliance on static timing plans designed with data collected
from static field studies. This research explored the possibility of using travel-time
data obtained from Bluetooth and WiFi sniffing. Bluetooth and WiFi sniffing is an
emerging Big Data approach that takes advantage of the ability to track and monitor
unique devices as they move from location to location. An approach to re-time signals
using an adaptive system was developed, analysed, and tested under varying condi-
tions. The results of this work showed that this data could be used to improve delays
by as much as 10% when compared to traditional approaches. More importantly, this
approach demonstrated that it is possible to re-time signals using a readily available
and dynamic data source without the need for field volume studies.

In addition to Big Data technologies, Artificial Intelligence (AI) is increasingly play-
ing an important role in modern technologies. AI is already being used to make com-
plex decisions, categorise images, and can best humans in complex strategy games.
While AI shows promise, applications to Traffic Engineering have been limtied. This
research has advanced the state-of-the art by conducting a systematic sensitivity study
on an AI technique, Deep Reinforcement Learning. This thesis investigated and iden-
tified optimal settings for key parameters such as the discount factor, learning rate,
and reward functions. This thesis also developed and tested a complete framework
that could potentially be applied to evaluate AI techniques in field settings. This in-
cludes applications of AI techniques such as transfer learning to reduce training times.
Finally, this thesis also examined framings for multi-intersection control, including
comparisons to existing state-of-the art approaches such as SCOOT.

iv



A C K N O W L E D G E M E N T S

I would like to express sincere thanks and appreciation to my supervisor, Dr. Liping
Fu, who has provided guidance, motivation and substantial help in the development
of my research and research ideas. Dr. Fu’s guidance and advice has been invaluable
in this endeavour, and this thesis would not have been possible without his support.

I would also like to thank the members of my family, including my wife Tiffany,
parents Radu and Ngamta, siblings Joel, John-Luke, Heman Neginoth and Julia. I
have always cherished the advice and help that my family has provided throughout
my studies.

I am also grateful for the friendship, advice and support of my current and former
colleagues at the iTSS lab, especially Kamal Hossain, who helped me become famil-
iar with academic life and the requirements for successful research during both my
Master’s and PhD studies.

Academic studies are challenging, and life brings many uncertainties. I thank God
every day for all the accomplishments He has helped me complete, both with my
academic and non-academic life.

v



In every thing give thanks:
for this is the will of God in Christ Jesus concerning you.

— 1 Thesselonians 5:18

For my wife, Tiffany, who has always supported me throughout my studies. I love
you.

For my children, Elizabeth and Iulian, who have brought joy as I move to the next
phase of life.

vi



C O N T E N T S

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

i introduction and literature review . . . . . . . . . . . . . . . . . 1

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Traffic Signal Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Traditional Traffic Control Systems . . . . . . . . . . . . . . . . . 3

1.2.2 Adaptive Signal Control . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Big Data and Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Big Traffic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 The Development of Modern Signal Controllers . . . . . . . . . . . . . . 14

2.1.1 Adaptive Signal Control . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Traffic Modelling and Prediction for Signal Control . . . . . . . . . . . . 21

2.2.1 Queueing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Platoon Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 The Highway Capacity Manual and Canadian Capacity Guide . 25

2.2.4 Cell Transmission Models . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.5 Micro-Simulation Approaches . . . . . . . . . . . . . . . . . . . . 29

2.3 Big Data Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Data from Connected Vehicles . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Bluetooth and WiFi Data . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Data from Smart Traffic Cameras . . . . . . . . . . . . . . . . . . . 35

2.3.4 Other Analytical Signal Control Strategies . . . . . . . . . . . . . 35

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.5 Traffic Control Applications . . . . . . . . . . . . . . . . . . . . . . 41

ii alternative traffic signal control methodologies . . . . . . . 46

3 using travel time to re-time signals . . . . . . . . . . . . . . . . . . . 47

vii



3.1 System Settings and Problem Description . . . . . . . . . . . . . . . . . . 47

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Estimation of Saturation Flow and Flow Ratio . . . . . . . . . . . 49

3.2.2 Determination of the Optimal Signal Timing Adjustment . . . . 51

3.2.3 Determination of the Optimal Offset Adjustment . . . . . . . . . 52

3.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 deep reinforcement learning : signal control of isolated in-
tersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 System Settings and Problem Description . . . . . . . . . . . . . . . . . . 68

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Deep Reinforcement Learning Model . . . . . . . . . . . . . . . . 71

4.3.2 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Scenario Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Detectable Queue Length . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Effect of Reward Function Parameters . . . . . . . . . . . . . . . . 80

4.6.3 Effect of Model Training Settings . . . . . . . . . . . . . . . . . . . 80

4.6.4 Effect of Time of Day . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Model Transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Comparison to Traditional Signal Control and Timing Methods . . . . . 85

4.9 Full Ring and Barrier Controller . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 deep reinforcement learning : signal control of multiple in-
tersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Problem Description and Overview of Methodology . . . . . . . . . . . 99

5.1.1 Observation Matrix Changes . . . . . . . . . . . . . . . . . . . . . 100

5.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 SCOOT Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Case Study Network . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Effectiveness of Transfer Learning . . . . . . . . . . . . . . . . . . 105

5.3.2 Coordinated Control: A Comparison to SCOOT . . . . . . . . . . 110

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

iii conclusions and contributions . . . . . . . . . . . . . . . . . . . . 114

6 conclusions and contributions . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Summary of Research Findings . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



6.1.1 Traffic Signal Re-timing Using Travel Time Data . . . . . . . . . . 115

6.2 Deep Reinforcement Learning for Adaptive Traffic Signal Control . . . . 117

6.2.1 State Space Configurations . . . . . . . . . . . . . . . . . . . . . . 117

6.2.2 Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.3 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.4 Transfer Learning and Full Ring-and-Barrier Designs . . . . . . . 119

6.2.5 Deep Reinforcement Learning (DRL) Model for Multi-Intersection
and Corridor Control . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Contributions on Applying Travel Time for Signal Retiming . . . 121

6.3.2 Contributions on Applying DRL for Adaptive Traffic Signal Con-
trol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Limitations and Areas for Future Research . . . . . . . . . . . . . . . . . 122

6.4.1 Travel-Time Based Signal Optimisation . . . . . . . . . . . . . . . 122

6.4.2 Deep Reinforcement Learning (DRL) for Adaptive Traffic Signal
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ix



iv appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

a code implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

a.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

a.2 Simulator API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

a.3 Bluetooth and WiFi Platform . . . . . . . . . . . . . . . . . . . . . . . . . 137

a.3.1 Monte Carlo Simulator . . . . . . . . . . . . . . . . . . . . . . . . 137

a.4 Learning Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 139

a.4.1 DRL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

a.4.2 Split Cycle Offset Optimization Technique (SCOOT) Emulator . . 141

x



L I S T O F F I G U R E S

Figure 1.1 Signal Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 SCOOT Traffic Control System . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 Sample Intersection Layout (City of Toronto) and Ring-and-
Barrier Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.2 SCOOT Traffic Control System . . . . . . . . . . . . . . . . . . . 44

Figure 2.3 Cell Model of a Simple Network . . . . . . . . . . . . . . . . . . 45

Figure 2.4 Car-Following in the Wiedemann 74 Model . . . . . . . . . . . . 45

Figure 3.1 Signalised Intersection: Layout, Movements, and Signal Timing 47

Figure 3.2 Overview of Split and Cycle Adjustment Procedure . . . . . . . 49

Figure 3.3 Overview of Offset Adjustment Procedure . . . . . . . . . . . . 54

Figure 3.4 Monte Carlo Simulator Volume . . . . . . . . . . . . . . . . . . . 54

Figure 3.5 Effect of Volume by Error Applied . . . . . . . . . . . . . . . . . 56

Figure 3.6 Reaction Speed by Error Applied . . . . . . . . . . . . . . . . . . 56

Figure 3.7 Cycle and Split Adjustments . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.8 Split Decisions across 10,000 runs (decisions with no error shown
in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.9 Microsimulation Network . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.10 Aggregated volumes by time stamp . . . . . . . . . . . . . . . . 60

Figure 3.11 Delay Reduction per 15 minute Compared to Control . . . . . . 63

Figure 3.12 Split Allocations and Cycle Lengths (per Cycle) . . . . . . . . . 64

Figure 3.13 Offset Changes per Cycle . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.1 The Relationship Between States (St), Observations (Ot), and
Rewards (Ot) in an MDP . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.2 Framing the Traffic Problem as a Partially Observable Markov
Decision Process (POMDP) . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.3 Overall Design Architecture . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.4 Deep Learning Model Structure . . . . . . . . . . . . . . . . . . . 72

Figure 4.5 Matrix Representation of Observations of the State Space . . . . 73

Figure 4.6 Actions Available to the Controller . . . . . . . . . . . . . . . . . 74

Figure 4.7 SUMO Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.8 Default Volume Scenario . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.9 Evaluation Results by Queue Length Observation Limit . . . . . 88

Figure 4.10 Evaluation Results by Reward Function Parameters . . . . . . . 90

Figure 4.11 Evaluation Results by Reward Function Parameters . . . . . . . 92

Figure 4.11 Evaluation Results by Reward Function Parameters . . . . . . . 93

Figure 4.12 Evaluation Results by Time of Day Parameters . . . . . . . . . . 94

Figure 4.13 VISSIM Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.15 Evaluation Results from a Full Ring-and-Barrier Controller . . . 97

Figure 5.1 Extended State Space . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



Figure 5.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.3 Simulation of Urban Mobility (SUMO) Simulated Corridor . . . 104

Figure 5.4 Evaluation Results for the Two-Phase Scenario . . . . . . . . . . 107

Figure 5.6 Evaluation Results for the Full Ring-and-Barrier Scenario . . . . 108

Figure 5.7 Evaluation Results for the Full Ring-and-Barrier Scenario . . . . 109

Figure 5.8 Eastbound Trajectory Results for Each Model Scenario . . . . . 111

Figure 5.9 Westbound Trajectory Results for Each Model Scenario . . . . . 112

Figure A.1 SUMO Simulated Corridor . . . . . . . . . . . . . . . . . . . . . . 136

xii



L I S T O F TA B L E S

Table 3.1 Average Delay Reductions . . . . . . . . . . . . . . . . . . . . . . 62

Table 3.2 Performance improvement of the Re-timing Method Compared
to Actuated Controller . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 4.1 Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 4.2 Comparative Results based on Limited Queue Length . . . . . . 79

Table 4.3 Comparative Results based on Rewards . . . . . . . . . . . . . . 81

Table 4.4 Comparative Results based on Model Settings . . . . . . . . . . 82

Table 4.5 Comparative Results based on Observation Space Configura-
tion. Results for time period between 3×106 and 4×106 timesteps 84

Table 4.6 Comparative Results to Traditional Control Methods . . . . . . 85

Table 5.1 Summary of Volumes at Each Intersection . . . . . . . . . . . . . 106

Table 5.2 Comparative Results to Traditional Control Methods and SCOOT110

Table 5.3 Comparative Results to Traditional Control Methods and SCOOT112

xiii



L I S T O F A B B R E V I AT I O N S

AI Artificial Intelligence

ANN Artificial Neural Networks

ANOVA Analysis of Variance

API Application Programming Interface

BIC Bayesian Information Criterion

CV Connected Vehicles

CAV Connected and Autonomous Vehicles

CCG Canadian Capacity Guide

CFP Cyclic Flow Profiles

CNN Convolutional Neural Networks

COM Component Object Model

CTM Cell Transmission Model

DQN Deep Q Networks

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

FHWA United States Federal Highway Administration

FIFO First-in-First-Out

GTHA Greater Toronto and Hamilton Area

HCM Highway Capacity Manual

IP Internet Protocol

I2V Infrastructure to Vehicle

LWR Lighthill, Whitham, and Richards

MAC Media Access Control

MDP Markov Decision Process

NN Neural Networks

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

RHODES Real Time Hierarchical Optimized Distributed Effective System

ReLU Rectified Linear Unit

SCOOT Split Cycle Offset Optimization Technique

xiv



SCATS Sydney Coordinated Adaptive Traffic System

SUMO Simulation of Urban Mobility

TMC Turning Movement Counts

UTCS Urban Traffic Control System

V2V Vehicle to Vehicle

V2I Vehicle to Infrastructure

xv



Part I

I N T R O D U C T I O N A N D L I T E R AT U R E R E V I E W

This part is divided into two chapters. The first gives a broad overview
of the key topics and literature related to this work while the second pro-
vides an in-depth literature review on previous research that has been
done related to the topics of signal control, traffic modelling, big data, and
machine learning.

1



1
I N T R O D U C T I O N

1.1 background

Traffic congestion is a major concern in many cities, and is estimated to cost nearly
$4 billion in major Canadian urban centers (Transport Canada et al., 2006). A recent
study done in the Greater Toronto Area for Metrolinx revealed that commuters in the
Greater Toronto and Hamilton Area (GTHA) spend an average of 1,494 hours in traf-
fic per 1000 vehicle kilometres travelled. When compared to free-flow travel speeds,
during peak hours, commuters in the GTHA can expect to spend 63% longer on their
commute (HDR Corporation, 2008). These congestion problems are the norm in many
cities worldwide, and are consistently considered as one of the most significant prob-
lems facing urban centres as they grow. The negative effects of congestion extend
beyond the inconvenience of additional commuting time, and include environmental
damage and risks to health, lost productivity from reduced economic output, and
higher vehicle operating costs. In the GTHA, these effects are estimated to cost the
economy $2.7 billion each year.

When faced with the prospect of increasing travel demand, city planners and policy
makers have two approaches that they can consider: expanding the capacity of the
network, or increasing the network’s efficiency. While the first approach is the simplest
and most straightforward, it is often expensive, ineffective, and may not be possible
in older, established cities. In contrast, the second approach aims to optimise the
operation and effectiveness of existing infrastructure, which can often be a more cost-
effective way of alleviating congestion. This research focuses specifically on one of
the major tools for improving the efficiency of a traffic network, namely, traffic signal
control.

1.2 traffic signal control theory

Traffic signals were developed in response to increasing demand for transportation,
in turn, caused by growth in cities and auto ownership and the need to manage these
systems to ensure safety and efficiency. The first control systems were developed in
the late 1800’s and were manually operated semaphores. Since then, traffic signals
have come to play an integral role in the modern transportation system, and today’s
networks could not function without them. It is estimated that in the United States
alone, over 270,000 traffic signals are in operation (Federal Highway Administration,
2017b). Large cities often manage thousands of traffic lights; for example, the City of
Toronto had 2334 active traffic lights in 2017 (City of Toronto, 2017). The United States

2



1 introduction

Federal Highway Administration (FHWA) outlines the purpose of traffic signals as the
following (Federal Highway Administration, 2017b):

• Provide for the orderly and efficient movement of traffic

• Maximise the traffic served at the intersection

• Reduce the frequency and severity of certain crashes

• Provide appropriate accessibility to pedestrians and minor streets

While seemingly straightforward, modern traffic signals have a number of param-
eters that govern their operations and performance. The important aspects of these
systems are outlined in the following sections.

1.2.1 Traditional Traffic Control Systems

While technological advances have resulted in the development of a number of ad-
vanced signal control systems, adoption of advanced systems has been slow. As such,
many municipalities and regions are still operating traditional signal control systems,
which account for nearly 95% of traffic signals in the United States (Zhao and Tian,
2012). In these systems, signal controllers could operate either locally with signal
timing plans being stored in the controller or in a network connected to centralised
computers so that their timing plans can be set remotely. These timing plans can be
described based on their cycle length, which is the total time required for a complete
sequence of signal indications, and the green time allocated to each phase. In coordi-
nated signals operating on the same corridor, the offset, which is the difference in time
between the master clock and the start of the controller’s first phase, is also specified.
Figure 1.1 illustrates the signal timing of a corridor and the underlying relationship.

In many municipalities, signal timing plans are created based on field data collected
at different times of the day. These plans are usually designed with the aid of software,
such as TRANSYT or SYNCHRO, which solve for optimal timing plans based on a set
of assumptions. For traditional methods, it is often assumed that traffic is unsaturated
(i.e. does not exceed the intersection capacity), that traffic flows at a constant speed,
and that traffic is in a steady state. This last assumption means that a repeatable set of
signal timing plans can be created for a particular time of day (Lo, 1999). While special
timing plans could be created for abnormal weather conditions or other situations
where traffic behaviour is expected to change, the fundamental assumptions remain
the same.

The most commonly employed method in the United States and Canada is the pro-
cess outlined in the Highway Capacity Manual (HCM). The crux of this approach is
based on determining a signal timing plan that ensures that the capacity provided to
each movement is sufficient and meets all the minimum requirements for the intersec-
tion’s safe operation (e.g. providing enough green time for pedestrians). For example,
the City of Toronto expects that the volume-to-capacity ratio (v/c) for all approaches
to be less than 1.0 (City of Toronto ITS Operations, 2016). This v/c ratio is also known

3



1 introduction

Figure 1.1: Signal Timing Diagram Highlighting Key Signal Timing Parameters

as the degree of saturation and obtained from the demand, green time for that move-
ment, cycle length, and the saturation flow rate. Although the HCM contains a number
of instructions and factors that can be used to calculate and estimate the saturation
flow rate and effective green times for a variety situations, timing plans are often only
developed using the demands and requirements of peak periods, and the timing plan
is assumed to be adequate for non-peak periods. Under this method, coordinated cor-
ridors are timed to maximise the bandwidth of the corridor, which is the maximum
number of vehicles that can pass from signal-to-signal without stopping if they travel
at the corridor design speed (Kamarajugadda and Park, 2003).

These traditional systems require accurate field data before timing plans can be
calculated. This creates a further limitation: if the field data are not updated the sys-
tem will not be able to respond to changes in traffic. Studies have also shown that
these timing plans are not generated in a consistent manner, and many agencies do
not have defined policies concerning how signals are timed (Federal Highway Ad-
ministration, 2017b). Various studies and surveys have shown that poor signal timing
can be a significant contributor to traffic delay. In the United States, it is estimated
that poor timing causes 10% of all delay on major roadways. One strategy commonly
employed to address these shortcomings is the addition of vehicle detectors to tradi-
tional signal controllers, which are usually induction loops that detect when vehicles
are waiting for a signal. These devices are commonly used on minor approaches, and
can be used to trigger special movements (such as advanced left turns) and allow the
signal controller to continue serving green to the major approach when no vehicles
are waiting on the minor street or skip unneeded phases. These control strategies in-
clude "semi-actuated" configurations where only the minor movements have detectors,

4



1 introduction

and "fully-actuated" where all approaches have detectors. On coordinated corridors,
fully actuated controls can also be configured to extend the green time to support
progression and allow vehicle platoons to pass easily (see Figure 1.1)

1.2.2 Adaptive Signal Control

While the actuated signal control systems decribed previously provide some respon-
siveness to changing travel conditions, these responses are made in a reactive way,
limiting their ability to account for some predictable traffic patterns and optimise the
performance of the traffic system as a whole. As such, they have limited applicability
in unusual circumstances (such as a sudden increase in traffic due to a sporting event
ending nearby). Furthermore, as these plans are created based on field data collected
at a particular point in time, their efficiency decreases as traffic patterns change. The
limitations of this approach were recognised in early studies, which led to the devel-
opment of adaptive traffic control systems. The first adaptive system was proposed by
Miller in 1963 (Miller, 1963; Friedrich, 2002). Since then, a number of adaptive systems
have been developed, including Split Cycle Offset Optimization Technique (SCOOT),
Sydney Coordinated Adaptive Traffic System (SCATS), Real Time Hierarchical Opti-
mized Distributed Effective System (RHODES), and InSync (Federal Highway Admin-
istration, 2011). These systems differ in the methods used to adjust signal timings, and
are described in greater detail in Section 2.1. For example, SCOOT, one of the first suc-
cessful systems, developed in the 1980’s by the Transportation Research Laboratory
in the UK (Stevanovic, Kergaye, and Martin, 2009), adjusts the green ratios (splits)
assigned to each phase incrementally over time.

Although these systems use different methods to adjust the signal timing, most of
them rely on traditional technologies like loop detectors to determine current condi-
tions. The SCOOT system, for example, typically requires detectors to be placed up-
stream of the traffic signal (see Figure 1.2)(SCOOT Systems, 2014). This design means
that these systems are also heavily dependant on the predictability of traffic patterns
downstream, which may not be possible in situations with highly variable traffic, such
as cases with major disruptions occurring mid-block.

Due to these limitations and high implementation costs, these systems have failed
to gain traction in cities, especially in small and medium-sized cities. A recent study
has shown that only 30 system deployments have been made in the United States,
due primarily to concerns about the system’s performance, benefits, deployment and
maintenance costs, and the requirement of additional personnel (Zhao and Tian, 2012).
These systems have seen even lower rates of adoption outside of North America and
Europe, where traffic is less predictable and the infrastructure requirements exceed
the benefits they could provide.

The limited adoption of traditional adaptive signal control suggests that improve-
ments are still required before such systems can be seen as viable replacements to
traditional technologies. Adoption of these systems has been promoted by many dif-
ferent governmental bodies. For example, FHWA’s Every Day Counts program was cre-

5



1 introduction

Figure 1.2: SCOOT Traffic Control System, Reproduced from Hunt, 1982 (Hunt et al., 1982)

ated to promote the use of innovative technologies in transportation, including the
promotion of adaptive signal control in its first round (2011-2012). The results of these
programs have already resulted in the development of newer and more advanced
controls, such as InSync. Unlike traditional adaptive systems, InSync uses an Internet
Protocol (IP) camera to collect data at intersections (but it can also use existing loop
detectors). The camera’s images are processed in real-time to generate estimates of
demands, which are then used to prioritise which intersection approaches are served
green. The system dynamically chooses from a library of user-defined sequences, but
has the ability to change the order and length of phases as well as adjust the timings
of other signals. While this facilitates customisation by deploying agencies, it limits
its flexibility to adapt to new situations. This system has the advantage of being com-
patible with existing hardware, which has translated to many new deployments in
recent years (Fontaine, Ma, and Hu, 2015; Rhythm Engineering, 2017). Municipalities
have also reported positive experiences with the system, making it one of the most
popular choices for adaptive control. As a proprietary system, agencies that have de-
ployed the system have indicated that it is a black box, being overly dependant on
the manufacturer for support (Centennial FDOT, 2016). Despite this shortcoming, the

6



1 introduction

success InSync highlights the potential of such systems that take advantage of new
technologies and available data.

Current methods in common use largely rely on limited data sources and employ
heuristic and model-based approaches. While these approaches may deliver good per-
formance in many situations, there is still abundant room for further improvements by
considering alternative approaches, paradigms, and data sources. Machine learning
presents an opportunity to capitalise on these changes and develop the next genera-
tion of traffic controllers. While some research and work has been done on such meth-
ods, research in this area is still very much in its infancy and many questions remain
unsolved. In particular, existing research has focussed primarily on small problems
and proofs-of-concept and few have looked at the complex cases involving a network
of intersections with complex real-world road, traffic, and environmental variations.

1.3 big data and machine learning

Since the development of the first adaptive traffic control systems (e.g. SCOOT), sub-
stantial technological changes have occurred. In particular, the emergence of the Big
Data paradigm and advancements in artificial intelligence and machine learning have
presented new opportunities for improved traffic control.

1.3.1 Big Traffic Data

One of the most prominent developments in recent years is an increase in the methods
available to monitor traffic conditions. These methods use new data sources made
available by the increasing presence of technology in every-day life. In popular media,
these data sources are often called "Big Data". The most popular definition of this term
has been described with three V’s: Volume, Velocity and Variety (Laney, 2001). The
ubiquity of portable devices, computers and the Internet has created an environment
with a high volume of data infusing in real time (high velocity). For example, the rise
of contact-less smart-card payment systems gives transit agencies a wealth of data
when compared to traditional cash fares. With these systems, transit agencies can
collect information on the boardings and alighting of each customer in real-time. A
number of other sources also exist, and the following sections highlight some the ones
most relevant to this research.

1.3.1.1 Crowd-Sourced GPS Data

In this context, it can be said that Big Data as a term describes a new paradigm that
has manifested itself over the past decade. It has resulted in the development of new
technologies that alter how society makes decisions. In transportation, perhaps one
of the strongest examples of this is Google Maps, specifically Google Traffic. Developed
in 2007, Google Traffic uses crowd-sourced data collected from people who use en-
able location services in their smartphone. Data are collected anonymously from such

7



1 introduction

users in real time, including time-stamped position data and speed. These data are
then analysed to estimate current roadway conditions and travel time (Barth, 2009).
The technique used to arrive at these estimates is called floating car data, and is also
used by other providers such as TomTom (TomTom, 2017).

Besides Google, a number of other companies also collect crowd-sourced data. One
prominent example is INRIX, which uses a propriety system to aggregate traffic in-
formation from GPS-enabled sources, primarily vehicle fleets, such as delivery vans,
taxicabs, trucks, mobile devices with road sensors, and other data sources (INRIX
Traffic, 2017; Kim and Coifman, 2014; Kim et al., 2014). Through this data, INRIX pro-
vides information on historical and real-time speeds, travel times, and demand. These
data are sold to private companies and municipalities alike, and have been used to
replace traditional loop-detector based monitoring systems. One chief concern with
these systems is their accuracy. While previous studies have found that accuracy levels
are comparable to those provided by loop detectors (Haghani, Hamedi, and Sadabadi,
2009; Kim and Coifman, 2014), some studies have also demonstrated cases where
these systems have failed to detect traffic jams (Kim et al., 2014) and have latencies
associated with the real-time values they report, sometimes in excess of 10 minutes
(Kim and Coifman, 2014).

1.3.1.2 Bluetooth and WiFi Data

In addition to GPS data, recent research has also focussed on using Bluetooth and
WiFi data. The principles employed in these approaches is to capitalize on the fact
that devices such as cellphones continuously broadcast a unique identifier as they
search for networks. One of the first proposals to use this data to estimate travel times
was made by Wasson et al (Wasson, Sturdevant, and Bullock, 2008), who proposed
and tested a system to estimate travel times on a freeway. These devices work by
tracking connected devices as they pass by various tracking devices in the network.
Since their development, these devices have found applications in many cities and
regions worldwide as a roadway performance indicator. For example, the City of
Calgary currently uses Bluetooth detectors to provide real-time travel time estimations
to commuters through its variable message signs and online through its website (City
of Calgary, 2017). Despite the some use of these devices in such situations, their use
is currently restricted to condition monitoring and performance measurements.

Besides travel time estimates, Bluetooth and WiFi detection has found applications
in monitoring pedestrian and individual behaviour. These applications are commonly
proposed for use in the retail sector, where the technology can be used to track shop-
per behaviour (e.g. how long they stay in the store, how often they return, etc. (Phua,
Page, and Bogomolova, 2015; Yoshimura, Krebs, and Ratti, 2016)). Some of these ap-
proaches are notable in that their analysis is based on single devices. For example,
Malinovskiy et al. (Malinovskiy, Saunier, and Wang, 2012) evaluate the use of Blue-
tooth detectors to study pedestrian behaviour. Besides using these devices to estimate
volume, the study is notable in that the collected data was used to estimate dwell
time around the site. This was estimated by tracking devices that were continuously

8



1 introduction

present, defined as successive detections within 60 seconds. Their study used a high
powered detector with an estimated range of 50 metres mounted on a pole, and evalu-
ated travel behaviour on a busy section of a university campus. Their results indicated
that in situations with low volume, some of the metrics were difficult to estimate, how-
ever the technology is suitable to obtain estimations of these quantities.

A significant limitation of this technology in traffic situations is its inability to dis-
tinguish signals from vehicles and those from other agents, such as pedestrians or
cyclists. The accuracy of the estimates provided by this technology may also limit its
applicability to certain scenarios. For example, a recent study by Moghaddam and
Hellinga evaluated the accuracy of Bluetooth detectors in detecting travel times on
a 1.5km arterial through a simulation approach. They found that in all the scenarios
tested, the 95% confidence interval of the measurement error exceeded the 5% of the
true mean travel time. Additionally, in situations with poor coordination, long cycle
lengths, or high volume-to-capacity ratios this error approached 25% of the true mean
(Moghaddam and Hellinga, 2013). Furthermore, when using these measurements for
real-time travel time detection, a time lag exists in the data as vehicle times cannot be
measured until they pass a downstream detector (Moghaddam and Hellinga, 2014).

1.3.1.3 Connected Vehicle Technologies

In addition to increased data availability, the relationship between infrastructure and
vehicles themselves is changing. In particular, substantial research in the area of au-
tonomous vehicles and connected vehicles is being done. These technologies can be
divided into four categories (Federal Highway Administration, 2017a):

1. Connected Drivers, which are drivers who use technology to communicate and
alert each other of traffic incidents and alternate routes. Smart-phone applica-
tions that use crowd-sourced data such as Waze, Google Traffic or INRIX are
examples of these.

2. Connected Vehicles are vehicles that are able to communicate with each other or
with infrastructure through embedded technology. These vehicles could broad-
cast information about their speed, location, and other actions the driver may be
taking (such as braking).

3. Automated Vehicles, where computers manage driving tasks in place of a human
driver. Basic implementations of this technology are already present in many
modern vehicles, including adaptive cruise control which allows the vehicle to
automatically adjust its speed based on its surroundings without human input.

4. Autonomous Vehicles, which are vehicles that are able to operate without any
human assistance.

To support the development of these technologies, regulatory agencies are develop-
ing guidelines to mandate the inclusion of Vehicle to Infrastructure (V2I) and Vehicle
to Vehicle (V2V) devices on new vehicles. Research is still needed to determine the

9



1 introduction

best methods by which V2I technologies can be incorporated to improve traffic signal
control.

1.3.2 Machine Learning

In addition to the emergence of a data-rich environment, substantial strides have
also been made in the areas of artificial intelligence and machine learning. These
techniques aim to replicate the decision-making capabilities of human beings, and
many unsolved challenges remain. In particular, the development of Deep learning
has shown exceptional promise, and has already been implemented in many high-
profile applications, such as the AlphaGo algorithm that was the first computer pro-
gram to defeat the best human players in the game of Go. AlphaGo uses a tree search
algorithm to find the best move based on training obtained through its deep learning
model (Google Deep Mind, 2017). Deep learning models are a special type of Neural
Networks (NN) model that are larger (deeper) than traditional implementations. These
models use a collection of simple interconnected elements called neurons. The struc-
ture is modelled after an abstraction of the human brain, where neurons activate and
connect to each other depending on the action a person is doing. Likewise, in response
to specific inputs, various neurons in the NN will activate. Neurons in NN are usually
organised into layers, and neurons in successive layers are connected to those of previ-
ous layers and will activate based on a weighted relationship to them. By comparing
the final output of the NN, given a specific stimuli, to the desired output, adjustments
are made until the model consistently produces the expected results. This process of
finding weights that produce desired behaviour is called learning or credit assignment
(Schmidhuber, 2015). A fundamental limitation of NN models is that the training dif-
ficulty increases substantially as the network grows. Deep Learning therefore refers to
the collection of techniques developed to deal with this problem.

Traditional NN learn by using a technique called backpropagation, which is based on
determining the difference between the final output of the model and the correct out-
put, and then propagating them backwards through the model. A chief limitation of
this approach is that in larger networks, it becomes difficult to update the weights as
the signal propagating backwards becomes weaker. This effect is often called vanishing
gradient, which describes the phenomena where the contribution of each weight to the
error becomes harder to determine as the model size increases. In addition, local min-
ima values in the error function can lead to the identification of incorrect values. To
address these issues, researchers have developed a number of techniques to improve
the training process which has enabled deeper networks such as those used by Al-
phaGo to function. The first approaches, proposed by Hinton et al. (Hinton, Osindero,
and Teh, 2006), were Deep Belief Networks that used dense networks trained one layer at
a time in a bottom-up approach by constraining the weights of layers above. After the
layer-by-layer training is complete, backpropagation is used to fine-tune the weights.
Hinton et al. applied this scheme to demonstrate that their model had high accuracy
on a version of the MNIST handwritten digit recognition problem commonly used to

10



1 introduction

benchmark models (Hinton and Salakhutdinov, 2006). Other methods developed to
address these problems include the use of Convolutional Neural Networks (CNN) to
reduce the complexity of the data. In CNN, a smaller filter or convolutional layer contain-
ing a few weights is shifted step-by-step across the input data. The output from this
filter layer is then used as input in subsequent layers. The advantage of this structure
is a reduction in the total number of weights required.

In contrast to simpler models, the additional complexity of deep networks allow
them to produce better and more accurate results and find patterns in noisier data.
This feature makes them an attractive choice in the world of Big Data. One of the
most prominent areas where they have been applied is that of image classification.
For example, Google Photos allows users to search for a term and will find all photos
in a user’s library related to that term. The system employs an unsupervised feature
learning technique called DistBelieve, which uses large-scale clusters of machines to
distribute training and inference in a deep learning method (Dean et al., 2012; Rosen-
berg, 2013). While these techniques have seen extensive application in these types of
situations, real-world applications of machine learning in traffic signal control has yet
to be done, and significant challenges still remain un-addressed. These challenges and
the work currently done in this area are explored in greater detail in Section 2.4.

1.4 problem statement

While the problem of optimal traffic signal control has been explored extensively in
the past, much of the past work has focussed on traditional sources of data and opti-
mization methods. To date, few traffic signal control systems have been developed that
capitalise on the availability of crowd-sourced big data and the power of deep learn-
ing based optimization strategies. Specifically, as more high-granular traffic data be-
comes available, such as travel time from Bluetooth and WiFi detectors, queue length
from traffic cameras, and trajectory and route information from connected and au-
tonomous vehicles, so is the significant opportunity to develop new control strategies
that address some of the shortcomings of the traditional adaptive control systems..
However, despite the rapidly growing popularity of Big Data and machine learning,
research on their applications in traffic signal control is largely scarce with few signif-
icant progresses reported in literature. Many open questions are still remaining:

• How should various new data sources such as Bluetooth and WiFi probe data
be formally characterized and what is their relation to traffic signal operations?

• How should the traffic signal control problem be formulated so that it can be
solved in a most effective way using a deep reinforcement learning algorithm?
What variables should be used for defining system states and what reward or
penalty functions should be adopted in accordance to technological settings and
data availability? Few methods using these data sources to create an adaptive
signal timing system have been proposed in the literature. Furthermore, existing
methods in the literature have assumptions that will only be valid in the distant

11



1 introduction

future or are too narrowly defined. For example, Feng et al. (Feng et al., 2015)
evaluate a system that uses data from connected vehicles only, and do not con-
sider common elements of signal operations. A need exists for a system that is
able to capture and use data from multiple sources.

• How effective is a deep learning based signal control system as compared to
the traditional traffic signal optimization methods? What is the capacity for a
deep reinforcement learning based signal control model for addressing some
typical traffic variation patterns in time (e.g., time of day and day of week vari-
ation), over space (e.g., directional, by movement, and network-wide), and by
environment (e.g. accidents, road closures, and weather)?

• What are the limitations of and requirements for the various data sources to
be effectively applied for signal optimization using machine learning? Specific
issues could be related to the minimum market penetration rate, measurement
errors of a particular sensor technology, and spatial and temporal coverage, un-
der various traffic situations (e.g. uncongested, congested, or during a sudden
increase of traffic).

1.5 research objectives

This research seeks to investigate the application of machine learning based strategies
for traffic signal control with a specific focus on their ability to take advantage of new
traffic data from various emerging technologies such as video cameras, Bluetooth/wifi
detectors, and connected vehicles. The following specific objectives are expected to be
achieved:

• To examine different ways in which various data sources can be used and to
propose an approach to utilise these data in a real-time or near-real-time appli-
cation.

• To develop deep learning based models and other adaptive models for optimis-
ing traffic signal operations of varying complexity, from single intersections to
a network of multiple intersections along a corridor. The proposed models will
assume a combination of multiple traffic data sources, including Bluetooth and
Wifi detector data, video data, or data from connected vehicles.

• To investigate the performance of alternative deep learning models as compared
to various traditional traffic signal control methods, including popular adaptive
approaches, and to assess their relative performance with regard to state repre-
sentation, reward functions, and training settings.

• To examine how deep learning models may be trained and applied to field
settings, including questions of transferability, generality, and requirements.

12



1 introduction

1.6 thesis organisation

This thesis is organised into three parts. The first part contains this introductory chap-
ter and a second chapter that provides a detailed overview on relevant literature. The
second part outlines the methodology and results of three major studies, each being
covered in one chapter. The first study details an approach to use Bluetooth and WiFi
probe data for signal optimisation while the second is a sensitivity analysis on a DRL

model. The third study covers an application of the DRL model to a corridor and a
comparison against adaptive control. Finally, the last part provides the conclusion,
including the major findings, contributions, and limitations of the work.

13



2
L I T E R AT U R E R E V I E W

Modern traffic signals are the product of many years of research and development.
This chapter briefly traces the development of different traffic signal control methods
and strategies, starting with traditional ones commonly in use today. Substantial re-
search has been done in this area, but as a continually evolving field there are always
new developments. This chapter therefore also highlights research done on the use
of more advanced control strategies, such as adaptive signal control, as well as those
capitalising on emerging technologies.

2.1 the development of modern signal controllers

The development of traditional traffic signals can be traced back to railways. In the
late 1800’s, mechanical semaphore signals were created to control rail traffic using oil
lamps placed behind coloured discs. In 1866, similar devices were adapted to create
the first mechanical traffic signal to guide roadway traffic at a busy intersection near
London’s parliament buildings. In the period following this, the growth of automo-
bile traffic led to the development of a number of similar devices across Europe and
North America. In the 1920’s, traffic signals with the design commonly seen today
first appeared in Detroit and New York (Mueller, 1970). Since then, developments
and improvements continued to be made, and by the 1930’s the need to improve the
responsiveness of traffic control to different situations was identified. Without vehicle
detection, signals were timed with fixed schedules and intervals, or were manually
controlled. This approach, however, is ineffective as green may be served to directions
that have little or no demand. The earliest methods used to address these limitations
were time-of-day based scheduling, including variable split times and cycle lengths.
However, these methods still did not address the issues of green being shown to mi-
nor streets even when no vehicles were waiting (Tyack, 1938). To address these needs,
vehicle detectors were developed for busy intersections, with early devices making
use of microphones and pneumatic mats to detect vehicles and call the signal to serve
a direction (Tyack, 1938). The advantages of signal progression in signal timing were
recognised early, and actuated systems were designed such that the main road would
be served until vehicle platoons were fully served (Tyack, 1938). By the late 1970’s and
early 1980’s, induction loop detectors were developed for roadway use (e.g. (Koerner,
1976), and quickly became one of the most common vehicle detection methods in use.
Today’s typical intersections in North America and Europe use induction detectors
often placed directly at the stop bar. Vehicle detectors may also be located upstream
of the intersection to enable detection of vehicle platooning, to facilitate green time
extension, or to address dilemma zones caused by the signal changing to amber.

14



2 literature review

In addition to advancements in vehicle detection and signal control technology, the
methods employed in traffic control have also changed since the first traffic signals,
and the current generation of traffic controllers are capable of employing a number
of strategies to manage traffic demand. Modern practice mostly divides traffic control
into continuous loops (called rings) which serve signal phases in sequence. Phases
are signal aspects that indicate which movements (e.g. through, left, right) at the
intersection are to be served. Signal plans are typically described using ring barrier
diagrams, the sequence of phases that time in each ring. Phases that do not conflict
and can time concurrently are placed in separate rings, while those that do conflict are
placed in sequence. The diagram can then be read as a kind of film-strip progressing
from left to right and looping back at to the start. Barriers indicate reference points in
the cycle that must be served at the same time for all phases, and are used to define
the relationships between compatible movements (Federal Highway Administration,
2017b). An example ring-and-barrier diagram and typical intersection layout is shown
in figure 2.1.

(a) Sample Intersection Layout (City of Toronto,
2012)

(b) Sample Ring-and-Barrier Diagram (Federal
Highway Administration, 2017b)

Figure 2.1: Sample Intersection Layout (City of Toronto) and Ring-and-Barrier Diagram

15



2 literature review

Modern signal controllers also have special considerations for left-turn phasing,
which must cross a conflicting traffic movement. These include permissive left turn
phasing, which requires drivers to yield to the oncoming movement, and protected
phasing, which gives left turns a separate phase for exclusive movement. In many con-
figurations, traffic signals are configured to provide a combination of protected left
turns at the start of the phase, followed by permissive left turns during the through
movement’s green phase. Many signal controllers also serve these movements on-
demand, using loop detectors to call the protected left turn phase when needed. These
detectors may also be set back behind the stop bar, functioning as a form of queue de-
tector that requests a protected phase only if a certain number of vehicles are waiting
(see figure 2.1).

Vehicle detection at traditional intersections is most often facilitated through the
use of loop-detectors. Traditional detectors use induction coils to detect metal objects
passing over them, and can operate in two modes depending on their purpose. In
pulse mode, the detector sends a short pulse after detecting the arrival of a vehicle. The
pulse is usually timed to last 0.1 to 0.15 seconds regardless of the length of the vehicle.
These detectors are usually used in traffic counters or in upstream detectors, which
are used to extend the green phase and mitigate dillemma zone issues. In presence
mode the detector is continuously activated as long as a vehicle is present and waiting
over it. These detectors are usually used to detect if vehicles are waiting at a traffic
light and call the appropriate signal. They are often placed at the stop-bar (Federal
Highway Administration, 2017b).

Detectors at intersections are usually laid out in two configurations: semi-actuated
control and fully-actuated control. In semi-actuated control, detectors are placed on
the minor street approaches only. The detectors are used to request calls to the signal
controller for green, which serves these movements only when needed. The controller
attempts to sustain green for the maximum time possible on the main street. In con-
trast, fully actuated signals have detectors on all approaches, and serves movements
as they are requested. The requirement for detectors on all approaches makes this
configuration more expensive than the semi-actuated approach.

Over the years, a number of rules have been developed for signal controllers to
follow when serving phases. When a signal phase is served, the signal must show
green for a period long enough to allow all waiting vehicles to clear the signal and to
give pedestrians sufficient time to cross. Modern controllers can also be configured to
permit pedestrian movements only if requested by pedestrians pushing a button. Ad-
ditionally, modern actuated controllers have the ability to extend or shorten the green
time served to a particular approach, within the confines of pre-specified maximum
and minimum greens. To accomplish this, passage time is normally used to find gaps
in traffic to terminate phases. With this configuration, the time between successive
vehicle actuations on the movement being served green is recorded, and if it exceeds
a threshold value, the signal changes (i.e. gaps out) to red to serve the next phase. The
configuration of these threshold values is important to the efficient operation of the
signal, and substantial research has been done in this area. The values are ideally set

16



2 literature review

such that the system serves the entire queue, but the values are dependant on the
design of the detector (i.e. its length) (Gordon et al., 2010).

Efficient operation of actuated signal control depends heavily on regular evalua-
tions of the intersection’s performance and adjustments in signal timing as needed.
Previous studies have shown that signal timings should be reviewed every 30 to 36

months, but many regions do not meet this standard due to budget constraints (Gor-
don et al., 2010). Regular re-timing has been shown to have significant benefits. For
example a project in Texas demonstrated reductions of 9.1% in fuel consumption and
24% in delay after signals were re-timed (US Department of Transportation, 2007). A
cost benefit analysis of signal re-timing done on New Jersey Route 23 examined the
benefits of re-timing the signals and found that the cost benefit ratio is approximately
24 to 1. The study also provided some recommended re-timing intervals based on
the analysis for different traffic growth scenarios. A recommendation of 3 years was
given for 0.5% annual growth in traffic, and 1 year for 1% and 1.5% growth in traffic
(Chien, Kim, and Daniel, 2006). Many other studies have shown significant benefits to
regular re-timing in terms of reduced emissions (fuel consumption) and reduced de-
lays. Despite these benefits, many agencies fail to regularly re-time their signals due
to the significant costs of re-timing, which is generally estimated at between $2500 to
$3100 (Federal Highway Administration, 2017b; Gordon et al., 2010). The total cost can
quickly add up for cities with large networks. Additionally, intersections in rapidly
changing neighbourhoods may require more frequent re-timing.

2.1.1 Adaptive Signal Control

To address the limitations of traditional signal control, a number of adaptive traf-
fic control systems have been developed. The most popular systems include SCOOT,
SCATS, RHODES and InSync. Of these, the first three rely solely on traditional loop
detector technology. The following sections provide an overview of each system.

2.1.1.1 SCOOT

SCOOT is a centralised traffic control system developed in the 1980’s by the Trans-
port Research Laboratory in the UK (Stevanovic, Kergaye, and Martin, 2009). SCOOT

is designed to work with Urban Traffic Control System (UTCS) controllers, which is
the most common traffic control system deployed worldwide (Chiu and Chand, 1993;
Robertson and Bretherton, 1991). The primary control objective of SCOOT is the min-
imization of the sum of the average queues in the area. In the ideal scenario, there
are no queues and all vehicles see green when they reach the signal. To support this
objective, SCOOT uses a traffic model to estimate the queue size based on its Cyclic
Flow Profiles (CFP). The CFP is obtained from a point upstream of the signal to be
optimised and represents the flow of vehicles passing that point over a predefined
time increment (see figure 2.2). Typically, this time increment is set for 4s, and periods
where platoons of vehicles pass-by can be visualised as periods with successive high
flow.

17



2 literature review

The CFP is generated in real-time for all approaches by using flow data from de-
tectors placed upstream of the stop-line; as a result, the method is dependant on the
installation of additional detectors, often beyond those typically used for actuated
control (Hunt et al., 1982; Chiu and Chand, 1993; Robertson and Bretherton, 1991;
SCOOT Systems, 2014). Following the calculation of the CFP, the algorithm estimates
when the vehicles will arrive at the downstream signals. Using deterministic equa-
tions, the size of the queue and the time it takes to clear can be calculated, and signal
timing changes can be predicted. The method requires the assumption that platoons
travel at a known cruising speed, and that discharging queues reach the saturation
flow rate at the intersection (Robertson and Bretherton, 1991; SCOOT Systems, 2014;
Hunt et al., 1982).

Optimisation in SCOOT is done incrementally, which results in a more predictable
and non-erratic response. As per its name, this incremental optimisation is done by
adjusting the split, cycle, and offset times. Each of these is optimised in a different way
by a separate part of the algorithm. The split optimiser is run a few seconds before a
phase change is set to occur, deciding whether the current split should be extended
or shorted by 4 seconds, or if it should remain unaltered. The cycle optimiser and
offset optimiser also make the same decision for their respective parameters. The
cycle length optimisation is reactive in nature, and is usually configured to keep the
busiest intersection at a predefined saturation level (usually 90%). If the saturation
level increases beyond this value, the cycle length is increased, and conversely if it
decreases below this level, the cycle length is decreased. The result is illustrated in
Figure 2.2 where the decisions shift, extend, and shrink the phase (Robertson and
Bretherton, 1991; SCOOT Systems, 2014; Hunt et al., 1982).

2.1.1.2 SCATS

Development of the SCATS system first began in the 1980’s in Australia, and remains
popular in its namesake city, Sydney. Since its development, it has seen applications
in many major cities worldwide. Unlike SCOOT, SCATS is a hierarchical platform that
organises intersections into groups (called subsystems) which guide the actions it
takes. Like SCOOT, optimisation is done on the split, cycle, and offset times (SCATS,
2000; Stevanovic, Kergaye, and Martin, 2009; Wilson, Millar, and Tudge, 2006; Sims
and Dobinson, 1980). Three types of controllers exist in the system, each defined by
their responsibilities. At the lowest level, each intersection is controlled by an individ-
ual computer which is responsible for processing data collected from its intersection
and to make tactical decisions on the signal’s operation. At the next level, a regional
controller is responsible for the real-time operation of up to 200 sets of signals (Sims
and Dobinson, 1980). Within a region, individual intersections are grouped into sub-
systems that consist of a critical intersection whose timings can be adjusted by the
regional controller directly (SCATS, 2000; Chiu and Chand, 1993). Subsystems do not
need to contain multiple intersections, they can be defined from only a single in-
tersection. Intersections in the subsystem are always coordinated together, including
sharing a common cycle length and possessing inter-related phase splits and offsets.

18



2 literature review

Their phase splits are allocated such that they are compatible with those at the critical
intersection (based on calculations and assumptions about the flow of traffic). Subsys-
tems may also be temporarily linked to other subsystems, depending on prevailing
conditions. When linked these systems will all share a common cycle length (SCATS,
2000; Chiu and Chand, 1993). Finally, at the highest level, a supervisory computer
links all the regional controllers together and provides information on the system’s
current status (Sims and Dobinson, 1980)

Unlike SCOOT, optimisation in SCATS is conducted on the basis of Degree of Saturation,
which is the ratio of the effectively used green time to the total available green time. In
a typical installation, SCATS requires loop detectors located in each lane at the stop line
to facilitate the estimation of the degree of saturation. These detectors are required at
the critical intersections, but are optional at non-critical intersections in the subsystem.
Within a subsystem, the cycle length is optimised such that busiest lane of the critical
intersection maintains a degree of saturation of 0.9 (90%). To support coordination,
large cycle lengths are sometimes used, as smaller cycle lengths do not always support
progression. Offsets are selected to minimise stops in the direction with greater flow.
Individual phases are adjusted with the goal of equalising the degree of saturation
across all competing approaches.

2.1.1.3 RHODES

Like SCATS, RHODES approaches the problem of signal control as a hierarchical prob-
lem with decisions made at different levels. At a fundamental level, RHODES is mod-
elled as a dynamic network loading model that captures the slowly varying nature of
traffic. The system works by estimating the load (or demand) on constituent links in
the network in vehicles per hour. At the local level, these demand estimates are then
used to allocate green time to competing movements.

At the middle level, the system also makes decisions to support traffic flow through
the network. Here, specific travel flow characteristics are estimated, such as the speeds
of platoons of vehicles and their expected arrivals and the queues they will create.
These aspects culminate in the final selection of phase change times at the intersec-
tion level, based on the predicted times that vehicles arrive at the intersection. In
contrast to SCATS or SCOOT, the decision logic of RHODES is more complicated, and
requires upstream detectors placed just after the previous traffic light for each in-
tersection. Based on detections at the upstream detector, the system predicts when
and at what rate vehicles will arrive at the subsequent downstream detector. Because
of its design, the system’s prediction model is dependant on estimations of the link
free-flow speed, queue discharge rates, and turning probabilities. Based on the accu-
racy of its predictions, the system is able to adjust its estimation of these parameters,
though initial parameters are determined based on default functions. The result of
this model is the ability to predict queues at all approaches. Unlike traditional imple-
mentations, the RHODES model was designed to function without pre-specified timing
plans and phase sequences (though these can be provided), and instead it responds
pro-actively by setting phases and phase durations based on predicted traffic condi-

19



2 literature review

tions (Mirchandani and Head, 2001). Despite its ambitious design, the system has not
seen widespread deployment on the same scale as SCOOT and SCATS.

2.1.1.4 InSync

InSync is a proprietary adaptive control system developed by Rhythm Industries, and
has seen strong popularity in the United States in recent years. As of 2017, the com-
pany reported deployments in over 30 states and 1 Canadian province. While systems
like SCATS and SCOOT can be deployed with other forms of vehicle detection outside
of traditional loop detectors, existing implementations have largely been confined to
traditional technologies. In contrast, InSync is designed to use IP cameras positioned
at intersections. Video detection can also be augmented with existing loop detectors.
The cameras process real-time images of the traffic, and proprietary software is used
to process the images and extract information on demand levels. These demand levels
are in turn used to choose which movements will be served green and for how long.
The system is customizable to some extent, and allows agencies to choose preferences
surrounding phasing and timing (Fontaine, Ma, and Hu, 2015). Despite its popularity,
the system is sometimes criticised due to its black-box nature, and agencies using the
systems must go liaise with system’s manufacturer when changes are necessary to the
system (Centennial FDOT, 2016). Another limitation the system is its reliance on high-
quality communications, which however come with the benefit of being able to view
camera feeds at all controlled intersections (Fontaine, Ma, and Hu, 2015; Centennial
FDOT, 2016)

2.1.1.5 Evaluations of Adaptive Traffic Control Systems

The performance of SCATS and SCOOT on networks have been studied extensively. For
example Kergaye et al. conducted an extensive set of simulation-based tests compar-
ing SCATS, SCOOT and traditional actuated signals (Kergaye, Stevanovic, and Martin,
2008). Their research demonstrated that both SCATS and SCOOT reduced delays, travel
time, and total stops by at least 10%. When compared to each other SCATS and SCOOT

performed similarly across a high range of test scenarios, and no substantial differ-
ences were observed in their effectiveness.

Field testing of a RHODES system was done at an intersection of highway US60

and a rural road (Mirchandani and Lucas, 2001) and compared to a traditional ac-
tuated controller. The system tested was modified to accommodate placement at a
parclo-interchange with two traffic lights. The results of the field tests showed that
the RHODES system performed as well as the actuated controller. The field tests were
limited by restrictions on the RHODES system, which did not allow phase skipping or
adjustment of maximum and minimum green times. Despite this, the system demon-
strated the ability to provide signal phasing equal to that of an optimised actuated
controller "on-the-fly".

A field evaluation was conducted of the SCATS system on a deployment in Park
City, Utah. The deployment consisted of 14 signals, and evaluation was conducted by

20



2 literature review

collecting data while the SCATS system was running and comparing it to previously
deployed actuated signals. The results showed that SCATS consistently reduced travel
times and delays, and generally lowered the number of stops and stopped delay for
both major and minor movements in the system (Stevanovic, Kergaye, and Martin,
2008). Similarly, a field evaluation of the SCOOT system was conducted in Anaheim.
The results of this study highlighted the limitations of these systems, and the expected
benefits were not realised when compared to the previously deployed adaptive con-
trol system (Moore et al., 2005). The results of the study highlighted the need for
proper training and configuration of these systems, as institutional challenges were
reported in the study that limited the expected performance of the system. The evalua-
tion was done as part of a large project that received funding from the US Department
of Transportation, but unanticipated costs caused a breakdown in the project manage-
ment used to deliver the SCOOT contract.

To promote its product, the manufacturer of InSync has conducted a number of case
studies evaluating the effectiveness of its system. An independent study conducted
by the Virginia Centre for Transportation Innovation and Research to evaluate the ef-
fectiveness of the system across a wide range of deployments (Fontaine, Ma, and Hu,
2015). The results of the study showed that the system generally improved the perfor-
mance of the main street if it was not operating over capacity, did not have unusual
geometric designs, and was not already operating at a good level of service. In over-
saturated conditions, no benefits were observed as green time cannot be effectively
allocated. The study also reported that high volume unsignalised accesses, high truck
volumes, and sparsely separated signals all reduce the benefits of the system when
compared to traditional control methods. Of note is that the study found that side
street delays were generally increased after deployment of these systems, but were
offset by delay decreases on the main streets. This study was extensive, using data
from floating cars, Bluetooth detectors, and INRIX GPS. The study highlighted that
the largest reductions in travel time were observed during the midday and afternoon
periods on weekdays, suggesting that the system is most effective when demand is
highly variable. An average reduction of 4.6% was observed in the 95th percentile
travel time across all testing periods and sites after the system was deployed.

2.2 traffic modelling and prediction for signal control

A critical component of modern signal design processes is traffic modelling. The High-
way Capacity Manual (HCM)’s method is commonly applied when re-timing signals
and included in software packages such as Synchro (HCM2000 and HCM2010). Its ba-
sis includes analytical and experimentally generated models. Beyond the HCM, many
models have been formulated to replicate different aspects of the traffic system, de-
pending on the level of detail required. This section highlights some critical modelling
approaches commonly used by researchers: queueing models, dispersion models, cell
transmission models, and micro-simulation approaches. Simulation itself is a collec-

21



2 literature review

tion of individual models that replicate specific aspects of driver behaviour, such as
car-following and gap acceptance.

2.2.1 Queueing Models

Queueing is one of the most elementary processes that influence the performance
of an intersection. Queueing processes, however, exist in many other applications
such as computing, telecommunication, and industrial settings. Many general pur-
pose mathematical models have been developed to predict queue behaviour based
on concepts such as the arrival pattern, departure pattern, and number of servers. In
traffic settings, all queues are fundamentally First-in-First-Out (FIFO) queues. In terms
of arrival and departure patterns, queueing models can be deterministic or stochas-
tic. Typical notation uses an abbreviation for the arrival, departure, and server count,
such as D/D/1 which refers to deterministic arrivals, deterministic departures, and
one server. The following section gives a basic overview of the differences between
deterministic approaches and stochastic approaches.

2.2.1.1 Deterministic Queueing

In deterministic queueing systems vehicle arrivals and departures are assumed to be
known exactly. The system states and inputs can be specified by four key functions,
including the arrival rate λ(t), departure rate µ(t), cumulative arrivalsA(t), and cumu-
lative departures D(t). The cumulative arrivals and departures represent the number
of vehicles that have entered or left the queueing system since the start of the model
(t = 0) and so the following relationships are also true:∫t

0

λ(t) = A(t) (2.1)∫t
0

µ(t) = D(t) (2.2)

Q(t) = Q(0) +A(t) −D(t) (2.3)

where:
t is the time examined (usually in seconds)
λ(t) is a function describing the arrival rate (usually in vehicles per second)
Q(t) is a function describing the number of vehicles queued (entered but have
not yet departed) in the system at time t
A(t) is a function describing the total number of vehicles that have arrived by
time t (in vehicles)
D(t) is a function describing the total number of vehicles that have departed by
time t (in vehicles)

22



2 literature review

If vehicles are assumed to instantaneously stop and accelerate when entering or
leaving the queue, then the total delay Td for vehicles can also be calculated as follows:∫N

0

A−1(n) −

∫N
0

D−1(n) = Td (2.4)

where:
Td is the total delay (in vehicle-seconds)
N is total number of vehicles that have arrived during the analysis period
A−1(n) is the inverse of the arrival function A(t) that provides the time it takes
for n vehicles to arrive (usually in seconds)
D−1(n) is the inverse of the arrival function D(t) that provides the time it takes
for n vehicles to depart (usually in seconds)

The maximum queue is the largest difference between A(t) and D(t), which occurs
just when the light changes. The maximum queue reach occurs at the moment the
queue dissipates (when A(t) and D(t) meet). The degree of saturation (or volume-to-
capacity ratio) of an intersection is called X in the HCM and can easily be observed
when looking at queueing diagrams. In under-saturated conditions, the Q(t) will al-
ways be 0 before the end of the green period. If Q(t) becomes 0 as the green ends, the
intersection is saturated, and if Q(t) is not 0 before the end of the green period then
the intersection is over-saturated. In over-saturated conditions, a residual queue will
be present at the start of the next cycle, and if over-saturated conditions persist this
residual queue will continually grow cycle after cycle.

2.2.1.2 Stochastic Queueing

While deterministic systems can be useful in understanding some patterns and trends,
there may be uncertainty in both the arrival pattern and departure pattern (Tong et al.,
2015). Stochastic processes can be modelled using the same principles discussed pre-
viously, but by replacing the λ(t) and µ(t) functions with random functions. The key
processes modelled in stochastic approaches are the arrival and departure headways.
In some situations only arrival rates are modelled stochastically while a deterministic
approach is used for the departures (Tong et al., 2015). Distributions for arrival and
departure headways are normally obtained empirically. For example, some studies
have shown that departure headways follow log-normal distributions (Jin et al., 2009)
and arrivals follow Poisson processes (Adams, 1937).

Stochastic models can also be used to derive estimations of average waiting time
and average queue length through steady-state analysis. Various methods have been
studied by researchers in both transportation and other disciplines. Steady-state analy-
ses can use both numerical methods and approximations to characterise the queueing
system (Van Houdt and Blondia, 2005) (Bekker et al., 2011).

23



2 literature review

2.2.2 Platoon Dispersion

When a platoon of vehicles travel depart from a signalised intersection, there is a
tendency for them to separate and spread out as some vehicles move faster than
others (Shen et al., 2018). This is commonly referred to as platoon dispersion. The
Robertson model, or variants of it, is one of the most common and simplest models
employed to model platoon dispersion dynamics. This model was first included in
TRANSYT and was developed in the late 1960s (Robertson, 1969). Fundamentally, the
Robertson model is a geometric model that applies smoothing factors to upstream
volumes and takes the following form:

q ′(n+ t) = F× q(n) + (1− F)× q ′(n+ t− 1) (2.5)

F =
1

1+αt
, t = βT (2.6)

where:
n is the time interval bin being examined (e.g. ten seconds)
q(n) is the arrival flow at interval n (in vehicles)
q ′(n+ t) is the downstream volume (in vehicles) after t seconds since the start
of interval n
F is a smoothing factor (dimensionless)
t is typically set to the fastest expected travel time (typically in seconds)
T is the average travel time between the upstream and downstream intersections
(typically in seconds)
α is a calibration parameter for the platoon dispersion rate with respect to time
(dimensionless)
β is a calibration parameter representing how much faster than the average the
front of the platoon will travel (dimensionless)

α and β typically take on values between 0 and 1, and are provided separately so that
individual effects can be isolated as both parameters are ultimately used to scale the
travel time between intersections in the basic form of the model. These parameters are
usually determined empirically in reference to the natural dispersion of the platoon
and ratio of the leading vehicle’s travel time to the average travel time of the platoon.
Research has also been done to recommend values for these parameters or different
functional forms for F. Typically, the value of β is left at 0.8 and α is calibrated for
local conditions. Typical values include 0.5 in very urban and busy environments and
0.25 in less urban settings (Manar and Baass, 1996). As part of the development of the
HCM, the calculation for the smoothing factor F uses the following (Bonneson, Pratt,
and Vanderhey, 2008):

F =
1

1+ 0.138T ′R +
0.315
dt

(2.7)

where T ′R is the segment running time and dt is the step duration.
In recent years, many researchers have looked to improve on the Robertson model,

though most of the current state-of-the art still relies on the construct. Many modi-

24



2 literature review

fications to the calculation of the smoothing factor and have been proposed recently,
and many researchers have focussed on using it to capture the dynamism present in
traffic. For example, Beess et al. (Beess, 1988) propose a quadratic form to model the
volumes at coordinated intersections while Shen et al. (Shen et al., 2018) develop a
dynamic speed-based model to model changes in the t parameter and F.

2.2.3 The Highway Capacity Manual and Canadian Capacity Guide

The HCM (Manual, 2010) provides the most common set of tools and approaches used
when designing and characterising intersections and roadways based on their vol-
umes. In Canada, the Canadian Capacity Guide (CCG) (Teply et al., 2008) contains a
similar set of approaches as the HCM but contextualised for Canada.

2.2.3.1 Traffic Signal Timing

The HCM and CCG provide a comprehensive and multi-step process to determine opti-
mal signal timings based on known volume inputs. At any given time, a signal can be
timing green to a phase and red to others, timing amber, or timing red to all phases.
Amber and all-red times are frequently referred to as inter-green time, and the remain-
ing green time gt must be allocated to each movement j requiring service. In the HCM

green time is allocated on the basis of the movement’s flow ratio yj in relation to the
total sum of all flow ratios Y for critical movements. Critical movements are the move-
ments with the highest flow ratio for each phase. The calculation proceeds according
to the equation below:

gj = gt ×
yj

Y
(2.8)

where:
gj is the green assigned to movement j (in seconds)
gt is the total green available to be allocated (in seconds), which is equal to the
cycle time less the total lost time.
yj is the flow ratio calculated for phase j according to Equation 2.9 (unit-less)
Y is the sum of all flow ratios for critical movements (unit-less)

The flow ratio yj of a particular movement j can be calculated as shown below:

yj =
qj,adj

Sj
(2.9)

where:
qj,adj is the flow rate through phase group j adjusted for any effects (in vehicles
per hour), such as removing right turns on red or turns during the inter-green
Sj is the saturation flow rate for movement j (in vehicles per hour)

The saturation flow is typically calculated in reference to some base saturation rate
value but adjusted for the specific conditions of that lane and intersection. The HCM

has a comprehensive guide covering most major configurations and a calculation pro-
cess to adjust these values (Manual, 2010).

25



2 literature review

The total sum of all greens and inter-greens is the cycle time and can also be calcu-
lated on the basis of the total flow ratio according to the following equation:

copt =
1.5L+ 5
1− Y

(2.10)

cmin =
L

1− Y
(2.11)

where L is the total lost time and Y is the sum of all critical flow ratios. Equation 2.10

is commonly referred to as Webster’s formula for the optimal cycle length and would
minimise the total intersection delay while Equation 2.11 ensures that the intersection
remains in an under-saturated state.

2.2.3.2 Intersection Performance

For any given signal timing plan and intersection layout, the HCM has a process that
allows the delay at the intersection to be estimated. The calculation is divided into two
components, the uniform delay d1 which is based on deterministic queueing theory
and the overflow delay d2 which captures both random effects and over-saturation
effects. These equations are based on extensive reasearch done in this area but all
rely on some key constants and assumptions. The basic formulation of these values is
shown below as given in the CCG as shown below (Teply et al., 2008):

d1 = c×
(1− ge

c )
2

2× (1−X1 × gec )
(2.12)

d2 =

(
(X− 1) +

√(
((X− 1)2) +

240×X
C× te

))
× 15× te (2.13)

dt = kf × d1 + d2 (2.14)

where:
d1 is the deterministic delay (in seconds)
c is the cycle time (in seconds)
ge is the effective green time (in seconds), which is expected amount of time
that vehicles can discharge
X1 is the lesser of the actual degree of saturation, X, or 1 (unit-less)
d2 is the overflow delay (in seconds)
X is the degree of saturation (unit-less)
C is the capacity (in vehicles per hour)
te is the evaluation time (in minutes)
kf is the progression factor (unit-less, between 0 and 1)

The capacity of an approach is calculated as the sum of the individual capacities of all
the lanes in the approach. For each lane, the capacity can be determined in reference
to the saturation flow, cycle time, and the amount of green time that can actually be
used to discharge vehicles, according to the equation below:

C =
Sge

c
(2.15)

26



2 literature review

where S is the saturation flow rate and ge is the effective green. ge is present in both
the delay and capacity equations and is derived from the actual green time assigned
to the approach. Past research has shown that there is a delay when vehicles respond
to the light’s change to green and that vehicles are also able to use a portion of the
inter-green time to discharge. The HCM provides a process to calculate the effective
green time, but a common value recommended by the CCG is to add one second to
the actual displayed green time and take that as the effective green.

Given the capacity and flow rate, the degree of saturation X can be calculated as
the ratio between the flow rate q and the capacity C. The equations from determin-
istic queueing do not permit the volume-to-capacity ratio to exceed one, so d1 caps
the value of X to 1. Further, in practise uneven arrivals can result in temporary flows
above the capacity of the approach for a few cycles, causing some vehicles to experi-
ence additional delay (as they must wait multiple cycles). The d2 equation provides
a mechanism to capture these effects. The observation time is used to limit the scope
of the delay and is particularly relevant when X exceeds 1 as queues will grow indefi-
nitely in such cases.

2.2.3.3 Software Packages Implementing the HCM

Off-line generation of signal timing plans based on the HCM is usually facilitated with
the use of software, such as TRANSYT or Synchro. The latest version of TRANSYT,
7F, has been updated substantially since its first proposal to include new techniques
and advances in traffic signal optimisation and uses a macroscopic model to simulate
traffic. The model simulates platoons of vehicles, rather than individual vehicles, and
uses a platoon dispersion model simulate their behaviour as they leave intersections
and travel through the network. Simulation is done in a step-wise manner for smaller
time increments (typically one second in length). By simulating the platoon, the arrival
time of the constituent vehicles can be determined at downstream intersections. A
critical limitation of this approach is its assumption that traffic behaves according to
the platoon dispersion model, which may not be the case if disruptions occur mid-
block.

TRANSYT 7F is defined to optimise an objective function (called the performance
index), which can be customised according to the user’s needs. Typical performance
indexes include optimisation on the basis of delay, progression, stops or fuel consump-
tion. An algorithm is used to find the best cycle length and green split configuration
(Ratrout and Reza, 2014; Wallace et al., 1984). The traditional optimisation technique
available is the hill-climbing technique, which is an iterative gradient search technique.
This method optimises the offset and split times separately. It incrementally modi-
fies these parameters at each intersection and calculates the value of the performance
index, then chooses subsequent modifications with the goal of finding the optimum
value of this function. To avoid being trapped in a local minimum, the algorithm tries
larger step-sizes after finding a local-minimum, but there is no guarantee that the
final solution will be optimal. Newer versions of TRANSYT also include other optimi-

27



2 literature review

sation algorithms, such as genetic algorithms, but the fundamental assumptions used
to obtain the performance index values do not change.

Like TRANSYT, Synchro functions similarly in the sense that it use macro-scale
deterministic traffic modelling and does an exhaustive search to find an optimal cy-
cle length. It differs from TRANSYT in that it is delay-based and calculates its cycle
lengths and green splits based on the method prescribed by the HCM (Ratrout and
Reza, 2014).

2.2.4 Cell Transmission Models

The Cell Transmission Model (CTM) is a macroscopic traffic simulation model pro-
posed by Daganzo et al. (Daganzo, 1994) to operationalise the Lighthill, Whitham,
and Richards (LWR)’s macroscopic traffic models while still maintaining the simplicity
present in those models. In CTM the roadway is divided into smaller equally sized ho-
mogeneous sections (called cells). Typically cells are defined so that vehicles are able
traverse the cell in one model calculation cycle (tick) under ordinary conditions but
can queue in the cell if they are unable to leave it. Thus, each cell can be described by
three functions, the number of vehicles in the cell at time t (ni(t)), the capacity flow
into the cell i during time t (Qi(t)), and the maximum number of vehicles that can be
housed in a cell at time t (Ni(t)). The traffic state of each cell can be described using
basic traffic flow conservation laws and fundamental relationships, and the output
from each cell is propagated to the next connected cell for each time stamp. The con-
ditions of this model are normally stated using the following two equations (Lighthill
and Whitham, 1955; Richards, 1956; Lo, 1999):

∂q

∂x
+
∂k

∂t
= 0 (2.16)

q = F(k, x, t) (2.17)

where:
q is the traffic flow (in vehicles per hour)
k is the density (e.g. in vehicles per km)
x is the position in the cell
t is the time
F is a function relating q and k.

The partial derivative ensures conservation of traffic flow, namely that if the density
changes with respect to time, the flow must also increase with respect to space. This
model is often called the kinematic wave model, and a common solution to the model is
given as follows (Lo, 1999):

q = min(Vk,Q,W(kjam − k)) (2.18)

where:
kjam is the jam density
Q is the capacity

28



2 literature review

V is the free-flow speed
W is the speed at which a backwards shock wave would propagate in congested
traffic.

This equation is a piece-wise linear function that models flow as equal to the linear
product of free-flow speed and density in uncongested conditions, and then decreases
the capacity linearly according to the propagation speed of the shock wave W as
density approaches the jam density.

Like traditional traffic theory, CTM models can also be used to understand and
model traffic behaviour including shockwaves and flow-density-speed relationships.The
cell-based approach allows manageable calculation of the effects occurring in each cell,
and by relating the effects of surrounding cells to each other, the overall effect on a
network can be examined. A representation of the cell structure for a simple network
is shown in Figure 2.3.

2.2.5 Micro-Simulation Approaches

The HCM and its principles (such as queueing theory) focus on modelling the be-
haviour of traffic in aggregate. An alternative approach that has gained popularity
in recent decades is to model individual driver behaviours and replicate their inter-
actions at a large scale. The underlying approach is commonly called microsimulation
and has been implemented in many platforms, including VISSIM, Paramics, SUMO,
and Aimsun. The following sections focus specifically on car-following models, which
are significant contributors to the overall behaviour of microsimulation.

2.2.5.1 Wiedemann Car-Following Model

The Wiedemann model is the fundamental model applied in the PTV VISSIM mi-
crosimulation platform. The Wiedemann model uses varying thresholds to govern
drivers responses to the separation distance and velocity difference between them and
the lead vehicle (Higgs, Abbas, and Medina, 2011; Group et al., 2014). This response
is shown in Figure 2.4.

A vehicle pair with a positive velocity difference will reduce the distance between
them until the distance and velocity difference combination crosses the SDV threshold.
This threshold triggers a response in the modelled vehicle to gradually reduce speed
(akin to lifting a foot off the pedal) and represents a perception threshold where the
driver would recognise that a conflict may happen if they do not slow down. If the
distance continues to decrease and passes the CLDV threshold, the modelled vehicle
slows down even more reacting to the lead vehicle. The BX and AX thresholds are
typically only crossed in collision states, and crossing BX means the vehicle would be
applying maximum braking to avoid a collision.

29



2 literature review

2.2.5.2 Krauß Model

The Krauß model is a gap-based model used in the SUMO platform (Krajzewicz et al.,
2012). This model was first formulated by Stefan Krauß (Krauß, 1998) and is based on
the gap, acceleration/braking and reaction time of drivers. The functional form of the
model is shown below:

vn(t+∆t) = min


vn,des

vn(t) + an(v)∆t

vn,safe(t) = vl(t) +
g(t)−vl(t)∆t
vl(t)+vn(t)

2b(t) +∆t

(2.19)

where:
∆t is the simulation resolution (typically 1s)
t is the time of the calculation (in seconds)
vn(t) is the speed of vehicle n at time t (typically in metres per second)
vn,des is the desired speed of vehicle n (typically in metres per second)
an(v) is a function relating the speed of vehicle n to its acceleration (typically
in m
s2

)
vn,safe(t) is a function returning the safe speed of a vehicle (typically in metres
per second)
vl(t) is a function for the speed of the vehicle l in front of vehicle n (typically
in metres per second)
g(t) is a function providing the gap between vehicle l and vehicle n (typically
in metres)
b(t) is a function relating the speed of vehicle n to its maximum acceptable
braking (typically in m

s2
)

In simple terms, this function selects the minimum of the desired speed of a vehicle,
the safe speed considering the lead vehicle in front of it, or the maximum speed it
could accelerate to in the next time step.

2.2.5.3 Model Calibration

Calibration can be an important but time consuming step when working with mi-
crosimulation data. Car-following models are often calibrated using trajectory data,
such as data from naturalistic driving studies, and many researchers have also de-
veloped modifications or alternative models to better fit specific data. For example,
Higgs et al. (Higgs, Abbas, and Medina, 2011) use naturalistic driving data to recom-
mend values for the Wiedemann model’s thresholds. Their result found that varying
the thresholds with the speeds produced better results than using a single constant.
Hoogendoorn et al. (Hoogendoorn, Hoogendoorn, and Daamen, 2011) proposed a
stochastic car-following model based on the principles used in the Wiedemann model
and calibrated it using trajectory data collected from a Dutch freeway.

30



2 literature review

2.3 big data technologies

Although the term Big Data can be applied to a number of different data sources, this
research will focus on a few specific sources. In particular, this research will focus on
emerging technologies, such as connected vehicles, crowd-sourced data sources, Blue-
tooth and WiFi detectors, and new detection methods, such as smart traffic cameras.
In the near future, modern vehicles will come equipped with devices that broad-
cast basic information about the vehicle, including its operating parameters. The data
provided by these Infrastructure to Vehicle (I2V) communications will open new pos-
sibilities to signal control systems, and leveraging their deployment is an important
part of the next generation of traffic controllers. In addition to connected vehicle tech-
nologies, passive tracking of vehicles using crowd-sourced data and video detectors is
already possible, but research is still needed to determine the best ways to use these
data sources. The following sections highlight work already done in this area. Devel-
opment in this area is ongoing, and many companies have developed products that
use some of these data sources to produce traffic analytics. One example is Miovision,
which provides real-time traffic analytics using existing loop detector data, video data,
and WiFi detection (Miovision, 2017).

2.3.1 Data from Connected Vehicles

The use of Connected Vehicle technologies in signal control is an emerging area of
research in transportation. A number of testbeds are currently in development to eval-
uate these technologies in field settings. One such project is the ACTIVE-AURORA
project, led by teams at the University of Alberta and University of British Columbia
(University of Alberta, 2016; Transport Canada, 2016). The system is designed to test
connected vehicle technologies, including safety notifications such as collision risks,
as well as speed recommendations based on prevailing traffic conditions. The test bed
was activated in 2014, and includes infrastructure instalments in both Edmonton and
Vancouver. Many other testbeds are in progress in other regions of the world, and the
field has seen a lot of interest from researchers.

In addition to field testbeds, many researchers have conducted simulation-based
studies to test the use of I2V and V2V communications for the purposes of signal
optimisation. One such study was by Goodall et al. (Goodall, Smith, and Park, 2013).
Researchers in the study developed a decentralised adaptive traffic control algorithm
optimising the signals based on a rolling-horizon approach. This approach involved
predicting the value of the algorithm’s objective function a short distance into the
future and selecting actions that minimised it. The researchers tried this approach
using a single variable formulation based on cumulative vehicle delay and a multi-
variable approach based on a weighted sum of the delay per second per vehicle, their
deceleration rate, and the number of stops each vehicle is expected to make. The
study was tested at varying penetration rates on a four signal corridor based on US-
50 in Chantilly, Virginia. The researchers found that the system is able to improve the

31



2 literature review

performance when compared to coordinated actuated systems in a penetration rate of
at least 50%. Despite its limited performance at low penetration rates, the system was
better able to accommodate unexpected demands.

Another study by Yang et al. (Yang, Feng, and Liu, 2021) examined how Connected
and Autonomous Vehicles (CAV) technologies could be used to implement signal con-
trol. Their study considered mixed penetration rates and proposed a hierarchical
framework to allow ordinary vehicles, Connected Vehicles (CV), and CAVs to coop-
erate together. Their study examined these interactions on a corridor level and used a
system whereby the intersection controller estimates and predicts the traffic state and
then makes adjustments to the signal timing. Their approach found potential reduc-
tions of up to 14% for the delay, a 6.8% reduction in fuel use when connected vehicle
technology was used to implement an adaptive systems. With CAV, their study found
that delays could be reduced by 33% and fuel consumption by 7.4%.

Similarly, a study by Guler et al. (Guler, Menendez, and Meier, 2014) conducted a
limited simulation-based test on two one-way streets. The researchers tested a number
of penetration rates, as well as scenarios where traditional signal control parameters
(such as minimum green and amber time) were relaxed. The researchers reported
that the highest delay reductions were observed for scenarios with low and medium
volumes, where the position information gained can be better used to react to unex-
pected demand changes. Another study by Feng et al. (Feng et al., 2015) developed
and tested an adaptive control system based on connected vehicle technologies. The
system solves a two-level optimisation problem using two objective functions to select
the best phase allocation. At the first level, a dynamic programming approach is used
to calculate a performance measure with forward and backward recursion. For each
ring-barrier group, in the forward stage the algorithm determines the optimal length
of that phase within a certain range for each phase group in the ring, and then passes
its results to the lower level optimisation. In the backward stage, the algorithm then
retrieves the final optimised allocations for each phase group. In the lower level, opti-
misation for the specific phase is conducted by minimising an objective function. The
researchers evaluate the use of vehicle delay and minimisation of the queue length
based on a table of predicted arrivals. Although the positions of connected vehicles
are known, the algorithm overcomes the lack of information from unequipped vehi-
cles in lower penetration scenarios by estimating their status using the data available.
Their method divided the approach to a signal into three regions: a queueing region,
slow-down region, and free-flow region. In the queueing region, the length of the
queue for all vehicle types is estimated based on the locations and stopping times of
the first and last stopped connected vehicles. They calculate the queue progression
speed, vq, according to the following equation:

vq =
D1 −D2
T1 − T2

(2.20)

Where Di and Ti are the times and distances of the first and and second connected
vehicles. The queue length, l, is then estimated using the following equation:

l = D1 + vq(Tc − T1) (2.21)

32



2 literature review

Where Tc is the current time. The count of vehicles in the queue can then be ob-
tained by dividing this length by an assumed average vehicle length. In the slow-
down region, the researchers characterise the system on the basis of the Wiedemann
car-following model and use the behaviours of the connected vehicles to infer the
locations of the unconnected vehicles. Finally, in the free-flow region, the system is
unable to make an accurate estimation on the locations of unequipped vehicles, and
simply divided the number of connected vehicles by an assumed penetration rate. The
results of their proposed algorithm demonstrated delay reductions of up to 16.55% in
high penetration cases when compared to actuated control, and similar performance
to actuated control in lower penetration situations. The objective functions each func-
tion differently, with optimisation based on total delay producing lower overall delays,
and optimisation based on queue lengths serving approaches in a more balanced way.

CV technologies have also shown promise in estimating key parameters required for
the calibration of signal timing. A study by Bagheri et al. (Bagheri2015) focussed on
estimating the time-varying saturation flow rates for use in adaptive signal control. In
their work data from CVs was used to estimate saturation flow rate with reasonable
accuracy even in cases where market penetration rate was limited to 20%. In addition
to saturation flow, their method also covered queue estimation and turning movement
ratios.

As an emerging technology, connected vehicles will increasingly play a role in the
modern traffic system. While much research has been done on situations with high
market penetration rate, low penetration rates can still be leveraged for adaptive sig-
nal control. One application of CV technology is estimation of vehicle delay. Feng et
al. (Feng, Zheng, and Liu, 2018) demonstrated a method by which delay can be esti-
mated using penetration rates as low as 10%. Their method relied on the identification
of critical CVs such as the last CV that stopped at a traffic light and the first CV that did
not stop to generate vehicle arrival and departure times. This approach is then used
to develop an adaptive signal control algorithm. Their results showed that even when
the penetration rate is 10% the delay is reduced by 16%.

2.3.2 Bluetooth and WiFi Data

Although connected vehicles are expected to eventually provide position and speed
information, in the interim researchers have also studied the use of other data sources
to obtain this information. One such method is based on the detection of Bluetooth
and WiFi devices. Smartphones are one of the most common devices that can be
detected with these methods and have seen increasing use in recent decades. For
example, in 2015 it was estimated that 81% of Americans owned a smartphone, more
than double the usage rate of 35% in 2011 (Pew Research Center, 2015). Similarly, in
Canada in 2017 it was estimated that 76% of people owned a smartphone (Statistics
Canada, 2017), and in 2015 was estimated at 58% in China, and 41% in Brazil (Pew
Research Center, 2016).

33



2 literature review

A cellphone or other device equipped with a Bluetooth or WiFi module has a unique
48-bit electronic address called a Media Access Control address that identifies it and
allows it to communicate with other devices. Media Access Control (MAC) addresses
are usually represented with a hexadecmial string divided into six groups (octets),
such as 00:15:5D:15:9E:00, and by tracking the movement of these addresses through
a network of detectors, information about the performance of the traffic system can
be obtained. This approach is made possible due to the fact that equipped devices
constantly send out requests to connect to other devices or networks; requests include
the address of the device (Haghani et al., 2010). The range of communication depends
on the power rating of the device and the detector, but previous studies have shown
ranges of between 150 metres to 200 metres (e.g (Abbott-Jard, Shah, and Bhaskar,
2013; Haghani et al., 2010)). This range can be increased or decreased by increasing
the power of the scanner or by filtering on the basis of signal strength (Tong et al.,
2017).

Each protocol has different methods that can be used to find devices to connect to,
but the scanner does not need to connect to any other device to obtain its MAC address.
For example, the Bluetooth protocol provides two stages that can be used to detect
devices, an inquiry stage (which is typically the only stage used) and paging stage
(Chakraborty et al., 2010). The method and protocol used affects how often a device is
detected, which in turn will have implications on the accuracy of any measurements
derived. For example, for Bluetooth the time to discover a device may be as high as
10s, but for WiFi the time may be as low as 1s (Abedi, Bhaskar, and Chung, 2013;
Wang, Zhu, and Miao, 2017). However, the frequency of detection will depend on
the device’s current connectivity and power state, and past research has also shown
that some smartphones broadcast probes identifying the device less than one time a
minute over all WiFi channels (Freudiger, 2015)

As devices can be captured multiple times by a detector, a method needs to be used
to select a detection time when attempting to estimate travel time between successive
detectors. Common approaches include using first-to-first detection times or last-to-
last detection times (Abbott-Jard, Shah, and Bhaskar, 2013).

Recent studies have also begun exploring the use of travel-times and dwell-times
obtained for these devices to improve signal timing. For example, a preliminary study
by Hart-Bishop et al. (Hart-Bishop, Hellinga, and Zarinbal, 2016) developed metrics
that can be used evaluate traffic conditions on an arterial corridor using Bluetooth and
WiFi data. The study proposes the use of Bluetooth detected travel times and dwell
times within a single detector to identify when a signal timing plan change would
be beneficial. Limited work has been done in using this technology for signal timing
control, and more research is still needed to identify ways in which these technologies
can be incorporated into the next generation of signal control methods.

34



2 literature review

2.3.3 Data from Smart Traffic Cameras

A chief limitation identified in existing adaptive methods is the reliance on loop detec-
tor data. Although other detection methods can be used, the benefits of systems such
as SCOOT and SCATS depend on accurate data. One alternative to loop detectors is
the use of video-based detection systems. While such systems can be used to provide
the locations of vehicles at intersections, it is often simpler to provide metrics such
as queue length. This approach has been proposed by researchers such as Zanin et
al., who evaluated an image-recognition approach to estimating queue lengths (Zanin,
Messelodi, and Modena, 2003). The system was tested over a 6-month period in a sub-
urban area in Italy, and used presence based detection (in terms of pixels on the image)
to count vehicles. The system was also able to detect situations where traffic move-
ments slowed beyond a certain speed (e.g. 25 kph). The system performed quickly,
and was able to identify queue lengths in real time for each monitored lane, and
performed well under a variety of conditions (e.g. severe weather and night-time).

In addition to queue length data, researchers have also proposed algorithms capa-
ble of tracking vehicle movements at intersections using video data. For example, Bas
et al. (Bas, Tekalp, and Salman, 2007) propose and evaluate a video detection system
that uses background subtraction to detect and track vehicles as they travel on a road-
way. Their proposed system also functions at night using the same principle. During
evaluation of their system it was found that counts are generally under-estimated due
to the fact that vehicles are sometimes occluded from the camera (e.g. if a large vehicle
blocks a smaller one) and fail to be counted.

2.3.4 Other Analytical Signal Control Strategies

Wey (Wey, 2000) proposed an analytical approach incorporating platoon dispersion
without assuming fixed cycle lengths or phase sequences. The model’s objective is to
minimise total delay on the network, which is framed as the sum of delays on all
phases. These delays are calculated based on the queues at each intersection in the
network, and their discharge pattern. A key component that limits the model is the re-
quirement of a model that accurately captures the movement of vehicles through the
network. The author applies a platoon dispersion model to replicate the behaviour of
traffic after it discharges from a green signal. This creates a limitation similar to that
present in other systems such as TRANSYT or SCOOT which requires the assumption
of constant travel time and may be unable to capture unusual disruptions in traffic
mid-block. The model also requires full information on external inputs, but can be
configured to function using a rolling horizon with flow detectors similar to other
systems such as SCOOT. The author formulated the problem as a mixed integer linear
programming problem and solved it using a modified network simplex algorithm.
The idea framed the signal timing problem as a transportation problem with the goal
of minimising the total cost (i.e. delay of all movements) through a time-expanded net-
work according to the platoon dispersion model. Rather than goods flowing through

35



2 literature review

a network, arcs to represent the vehicles that discharge at a particular time. Vehicle
flows are then assigned a "time" to flow through to the next node, and the amount
of flow to assign at each node is calculated using the platoon dispersion model. This
approach allows quick convergence of the model to an optimal solution.

By creating a model of the traffic network, the effect of signal timing on the network
can be understood in terms of the macro behaviour of traffic. Since queues propagate
back through the cell structure, the effect of the signal timing on traffic is known for a
particular volume input (even if it changes over time), and does not depend on steady-
state assumptions. Optimal solutions to the problem can then be obtained by framing
the problem of signal control using an objective function. For example, Lo defines
delay in a cell as the time beyond what would normally be incurred from free-flow
conditions, and frames the objective function as the minimisation of total delay (Lo,
1999).

A key limitation of this approach is the computational effort required to arrive
at optimal solutions, even for small intersections. While such approaches can find
optimal solutions even in grid-lock conditions, the computational time required to
obtain these solutions grows as more networks are added (Lo, 1999). Assumptions are
often made to reduce the complexity of the problem (e.g. fixed cycle times), though
proposals for situations with dynamic cycle lengths exist (Lin and Wang, 2004). The
validity of the solutions obtained is also dependant on the model’s ability to capture
real-world traffic behaviour, and the model must still assume an input O-D flow that
is deterministic.

2.4 machine learning

In recent decades, machine learning applications have demonstrated exceptional per-
formance in solving many tasks that were once too complex for computers to solve
efficiently. A variety of techniques fall under the umbrella of Machine Learning, includ-
ing data analysis techniques such as clustering, reinforcement learning, and neural
networks.

2.4.1 Data Clustering

One of the most significant challenges that arises when working with large amounts
of data is the need to efficiently group it. Data Clustering is a set of unsupervised
machine learning techniques that can be applied to group data together based on their
innate characteristics. There are many techniques in common use, such as k-means
clustering, density clustering, hierarchical clustering, and probabilistic model-based
clustering (Kotu and Deshpande, 2019; Hartigan, 1975).

36



2 literature review

2.4.1.1 K-means

K-means is an old technique that was first proposed by Lloyd in the 1950’s (Kotu and
Deshpande, 2019) and was further refined and popularised by MacQueen et al. in the
1960’s (MacQueen et al., 1967). The fundamental basis of the algorithm is to divide
data into k clusters by first seeding them with some initial value and then placing
each data point in the cluster that is closest to it. After adding all data points, the
average of the k groups is then re-calculated and used as the next value to match data.
The process continues iteratively until the cluster values do not change significantly
or some maximum iteration count is reached. Importantly, while k means will find a
solution, the solution is not guaranteed to be the global optimum even if the algorithm
converges and will only be optimal relative to the initial seeding. Various techniques
have been devised in recent years to improve this performance: optimal seedings,
dynamic estimation of the optimal k value, and other algorithmic changes (MacQueen
et al., 1967; Hartigan and Wong, 1979; Hartigan, 1975; Kotu and Deshpande, 2019).

Selection of an appropriate seeding point is the simplest way to improve the op-
timality of solutions generated from k-means. Optimal seedings will depend on the
dataset being used, but traditional approaches include selecting the first x sequential
points or evenly spacing them throughout the data (Hartigan and Wong, 1979). Other
approaches select groups randomly (Hartigan and Wong, 1979; Kotu and Deshpande,
2019) and repeat them selecting the best performing seeding (Kotu and Deshpande,
2019).

Selection of a value for k is also critical to the usefulness of the clustering results.
Early suggestions focussed on ad-hoc rules of thumb such as using k =

√
n/2 (Mar-

dia, 1979). More recently, some researchers have proposed heuristic methods for this
process such as the elbow method (Ketchen and Shook, 1996). In this approach an indi-
cator of performance is used and is plotted across a range of values for k. The point
of inflection where higher values of k do not produce meaningful improvements is
then selected. Similarly Pelleg et al. (Pelleg, Moore, et al., 2000) proposed the use of
the Bayesian Information Criterion (BIC) as a scoring method and select the value of
k that maximises this criteria. Hamerly et al. (Hamerly and Elkan, 2003) proposed a
dynamic process beginning with some smaller value of k and splitting clusters with
data that do not follow the Gaussian distribution.

2.4.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are designed to replicate biological processing units
in an algorithmic setting. They operate using a network of individual nodes (called
neurons) that have weights w0,w1, ...wn that take input from other sources and gener-
ate output based on an activation function. These nodes are typically grouped together
into layers that share similar sources of output and input. For a particular neuron j’s
output oj, the output can be calculated based on an aggregation of the inputs vi ac-
cording to the following process for a given activation function: oj = f(

∑
iwjivi). One

of the most common activation functions is the Rectified Linear Unit (ReLU) function,

37



2 literature review

which is a truncated linear function that outputs only positive values. Functionally, it
can be represented as below:

g(z) = max(0, z) (2.22)

where z is the weighted aggregate sum of the neuron’s input. Other functions are also
commonly used, depending on the output desired and training process. For example,
the softmax function gives a normalised probability for each individual output in the
layer and is commonly used as the activation function in the final layer of a neural
network(Agarap, 2018; Basheer and Hajmeer, 2000).

The process of tuning the weights in a neural network is called training. A number
of algorithms can be used for this process, but the most common approach is called
backpropagation. Backpropagation relies on a stochastic gradient descent process to
update the weights by estimating the contribution of each weight to the observed
error according to the following equation:

wi ← wi −
η(δE(E,w)
δwi

(2.23)

where:
wi is a particular weight
η is the learning rate
E is the error

The learning rate η controls how large the change in weight value will be at the update
step. Although high learning rates can allow faster weight updates, if the learning rate
is too large the model may oscillate and fail to converge. Similarly, if the learning rate
is too small the model may also fail to converge as weight updates may be too small,
especially on deeper layers. One strategy to address this is the use of variable rates
where a larger learning rate is used initially and then a smaller one is used to fine-tune
the model (Krizhevsky, Sutskever, and Hinton, 2012).

2.4.2.1 Deep Neural Networks

Due to the difficulty in training, early ANNs typically had 2 or fewer layers. While back-
propagation allows training of deep models in theory, in practise the algorithm suf-
fered from a vanishing gradient problem as adjustments become exponentially smaller
on layers further away from the output. Various strategies were developed to com-
bat these problems and improve the performance of deep networks, including pro-
gressively pre-training lower layers as feature detectors and the use of Convolutional
Neural Networks (CNN) (LeCun, Bengio, and Hinton, 2015; Schmidhuber, 2015). Con-
volutional neural networks use smaller groups of weights than would be required in
traditional settings. These smaller groups of weights are scanned over the input pro-
gressively to generate output in successive layers and have shown excellent ability in
learning feature identification in unsupervised settings (LeCun, Bengio, and Hinton,
2015). Another technique commonly applied in CNNs is pooling, which down-samples

38



2 literature review

an input and reduces the number of inputs into the next layer. Pooling layers work sim-
ilarly to convolutional layers in that they are smaller than the input and progressively
scan it to generate the output. Pooling layers apply a function, such as outputting the
maximum, minimum, or average value.

2.4.3 Reinforcement Learning

Reinforcement learning is a technique used to train an agent experientially to interact
with an environment with reference to some rewarding system. The environment and
problem the agent must solve are framed in the wider context of Markov Decision
Process (MDP). All MDPs consist of four key aspects that an agent can interact with
over a time period: a set of definable states St, a set of possible actions At, a transition
function that defines how states change between successive time periods t and t+ 1
based on actions taken by the agent (P(St+1|St,AT )), and rewards that can be mea-
sured based on these (R(St,At,St+1)) (Szepesvari, 2010; Watkins and Dayan, 1992). In
many applications, a further extension can be taken that limits the agent’s ability to
observe the true state St and the agent instead has to act based on its observations Ot.
This extension is called a POMDP (Astrom, 1965; Hoey and Poupart, 2005).

Using the reward function and states, the agent’s goal is to then learn a policy π(S)
that maximises the accumulated reward. In indefinite problems, a time horizon is
defined by discounting the rewards by some factor γ ∈ [0, 1]. The value of a partic-
ular state V can then be calculated in reference to this factor and the future rewards
possible from it according to Equation 2.24:

V = R1 + γR2 + γ
2R3... =

T∑
j=0

yjrj+1 (2.24)

Where V is the value of the state, γ is the discount factor, and R1, R2, etc. are the
rewards from state 1, 2, 3, etc. Setting γ to 0 will result in the states only being valued
on their immediate reward while setting γ to 1 results in an unbounded value for
V since the summation is calculated over an infinite time period. A function Vπ can
be defined that quantifies the value of rewards expected if the agent acts according
to policy π. For each choice that an agent has at time t, an additional quantity can
be defined, Qπ(S,A), which is the expected value of choosing any specific action A
in state S that leads to state S ′ and then following policy π afterwards. Q can be
calculated according to Equation 2.26 (Mnih et al., 2015; Szepesvari, 2010; Watkins
and Dayan, 1992):

Qπ(S,A) =
∑
S ′

P(S ′|A,S)(R(S,A,S ′) + γVπ(S ′)) (2.25)

Vπ(S) = Qπ(S,π(S)) (2.26)

When the policy π learned is the optimal policy π∗, the agent maximises these func-
tions and chooses the action that yields the highest Q value. Traditionally, such agents

39



2 literature review

have trained through a process called Q-learning that uses a value-iteration approach
to estimate theQ values for each state-action pair according to the process in Equation
2.27 (Szepesvari, 2010; Yau et al., 2017).

Q(S,A)← Q(S,A)︸ ︷︷ ︸
previous Q

+α (R+ γ max
A ′∈A

Q(S ′,A ′) −Q(S,A)︸ ︷︷ ︸
error

) (2.27)

where:
S is a particular state
A is a particular action
α is the learning rate
γ is the discount factor
S ′ is the successor state from S

A ′ is the optimal action in state S ′

In this approach, the estimated Q value for a state-action combination is progressively
refined by computing the difference between the Q value and reward R obtained in
the subsequent state S ′ if the optimal actionA ′ is chosen next compared to theQ value
predicted in state S ′. As with neural networks, a learning rate α can be specified to
control how large these updates are.

If the agent is able to visit every state-action pair enough times, traditional Q-
learning is guaranteed to converge to an optimal policy. The critical issue is ensuring
the agent is sufficiently able to try all states and avoids the trap of a local minima.

One key approach used to mitigate this is called ε-greedy which has the agent select
a random action with probability ε but allows it exploit its learned knowledge and
choose optimal actions otherwise. In this approach the value of ε is typically annealed
to some final low value with the agent transitioning from a high number of random
actions to exploiting the learned policy.

Another key approach used is to replace the function Q(S,A) with an approxima-
tion. This is particularly relevant in large problems where the combinations of states
and actions is very large. One common model used to approximate Q is through
neural network that predicts the Q value and has its weights updated based on the
difference calculated in Equation 2.27. However, since the approach is an approxima-
tion, convergence issues can arise and the agent can make erroneous decisions when
states and actions produce very similar outcomes. To regularise training, Experience
Replay is often used. Experience Replay maintains a batch of past experiences and
samples them randomly for the agent to re-experience during training (Mnih et al.,
2015).

2.4.4 Transfer Learning

In ordinary applications, machine learning models are trained to solve a particular
problem using a training dataset and then applied by handling different but related
data. However, in many cases it may not be feasible to collect enough data to fully
train a model, or the time to fully train a model makes it undesirable. One strategy

40



2 literature review

that can be used to overcome this is called transfer learning. Transfer learning leverages
the existing knowledge of a particular agent to reduce the amount of training required
for a new agent by jumpstarting the agent’s initial performance (Da Silva and Costa,
2019; Pan and Yang, 2009).

Transfer learning is a broad term that encompasses many techniques. Examples
include teacher-student style methods where another agent (or human) demonstrates
to or advises the agent on optimal choices, and reward shaping where modifications
are made to the reward function to guide learning (Da Silva and Costa, 2019). Other
approaches include pre-training the model on a specific dataset and then fine tuning
it by freezing lower layers or reducing the learning rate (Chronopoulou, Baziotis, and
Potamianos, 2019).

Transfer learning can also be used to apply a trained model on a related but dif-
ferent problem. A simple example of this comes from image classification problems.
A model pre-trained on a broad set of images can be further fine-tuned to classify
images into more categories by extending the training or to a domain-specific set of
image categories (Pan et al., 2018)

2.4.5 Traffic Control Applications

All current traditional adaptive control systems share one common element: a model
of the traffic system is generally required for the system to function. For example, the
SCATS, SCOOT, and RHODES models discussed earlier all contain models that prescribe
a relationship between the observations made by the vehicle detectors and traffic pa-
rameters such as expected queue length or arrival time. This approach necessitates the
use of assumptions that may not be universally valid, and are often highly generalised,
such as platoon dispersion models.

In their study, Arel et al. (Arel et al., 2010) evaluate their proposed model on a
network with 5 intersections. In their network the central intersection is controlled by
a Q-learning based Reinforcement Learning (RL) controller, and the four surrounding
intersections are governed by an algorithm that serves the longest queue first. The
system state in their algorithm was represented as an 8 dimensional feature vector
where each element represents the relative flow in the system’s lanes (two lanes on
each approach were used). The action set was defined with a two-ring structure, but
is free to choose any phase order. The reward function divides time into steps, and
penalises or rewards the controller based on a comparison between the delay in the
current time step and the previous time step. The proposed controller performed
better than the controller based on longest queue first, but the study is limited in that
it does not compare its system to various existing controllers.

Abdulhai et al. also evaluated the use of a Q-learning model, and compared its ef-
fectiveness over time (Abdulhai, Pringle, and Karakoulas, 2003). Test scenarios were
conducted using three different traffic profiles, and were compared to a pre-timed sig-
nal plan. In their study, the Q-learning controller performed on par with, or slightly
better than the pretimed controller. The Q-learning agent was able to produce signif-

41



2 literature review

icantly lower delays (between 38 to 44%) in cases with highly variable traffic flows.
This work was extended by Samah El-Tantawy et al. (El-Tantawy, Abdulhai, and Ab-
delgawad, 2013) who proposed a multi-agent reinforcement learning strategy (called
MARLIN). Their approach proposes two possible modes of operation: an independent
mode where each controller works without cooperating with its neighbours, and an
integrated mode where controllers coordinate their actions with surrounding neigh-
bours. The proposal addresses the issue with dimensionality by introducing a coor-
dination mechanism that considers the actions, states, and rewards of neighbouring
intersections. In their system, the state s of the system is characterised in terms of
queue length, with a vector of 2+ P components, with P being the number of phases.
The first two components are the index of the phase currently showing green and
the time since the phase started, respectively. The remaining P components are the
maximum queue lengths associated with each phase. The controller can choose be-
tween two actions, extending the current phase or switch to any other phase based on
traffic fluctuations (skipping phases is permitted). The system is rewarded based on
the difference in delay between two successive decision points, with positive rewards
corresponding to reductions in delay, and negative rewards to increases in delay. The
system is notable in that it was compared to an extensive simulation of the City of
Toronto’s network for the morning rush hour. The results of their simulation showed
intersection delay reductions on the busiest routes in Downtown Toronto of 27% in the
independant mode and 39% in the integrated mode, corresponding to a travel-time
savings of 15% and 26% respectively.

In addition, recent research has also sought to take advantage of the possibilities
enabled by autonomous vehicles. For example, a study by Dresner et al. (Dresner
and Stone, 2008) proposes a system where each vehicle is an autonomous agent and
traditional traffic lights are not used to time signals. In their system, approaching
agents contact a signal controller and attempt to reserve a block of space-time to
pass through the intersection. The intersection manager then decides if the request is
granted or not based on a control policy. The system is compared to a hotel reservation
system, where an agent attempts to book rooms in a hotel, occupying a certain amount
of space (number of rooms) for a certain length of time.

Recent developments in Machine Learning (especially deep learning) have led to
extensions to the basic Q-learning framework. Typically called deep learning, it differ-
entiates itself from ordinary learning models by inserting a number of hidden layers
with weights between the input and output layers. Hidden layers use non-linear trans-
formations to generate the values of successive hidden layers based on the original
input. Typical functions employed are logistic, tanh, or ReLU, which are applied to the
input of each previous layer to obtain the current layer’s representation of the input.
In this sense, deep learning can be thought of as a filtering process, whereby impor-
tant information from each layer is gleaned until finally arriving at the output. After
reaching the output, the error is estimated, and backpropagation is used to adjust the
weights of the hidden layers.

Research in the area of using deep learning to learn the Q-function of RL systems
is a new field, and research continues to be done in this area. Applications of these

42



2 literature review

techniques to traffic signal control have been limited, but some work has already been
done in this area. A recent study by Li et al. in 2016 used deep Q-learning to train
a signal controller at an isolated intersection (Li, Lv, and Wang, 2016). The authors
compared the training speed of their deep Q model to that of an ordinary Q-learning
implementation and found that deep Q model performed better, reducing average
delays by about 14%. Improvements were also found in queue lengths and stopped
vehicles. Another study by Genders and Razavi developed a deep reinforcement learn-
ing model and evaluated it on a single intersection using SUMO (Genders and Razavi,
2016). In their study, the state space was represented as three vectors discretising traf-
fic approaching the intersection. Their method divides the approach into cells, with
the first two vectors indicating if a vehicle is present in the cell and its speed, and the
last vector indicating the current signal state. The controller could then choose from
four actions, giving 2 seconds of green to the North-South Through, North-South
Left, East-West Through, or East-West Left. If the controller’s choice results in a phase
change, then 5 seconds of transition time was added before the controller could make
a new choice. Their study compared their agent to a one-layer neural network con-
troller, and found that it reduced delays by 82%, queue lengths by 66% and travel
times by 20%. Despite this, these studies have only considered one type of restricted
DRL model as applied to single isolated intersections with simplified traffic patterns.
Furthermore, no studies have been conducted on developing and evaluating alterna-
tive DRL models for traffic signal control at various levels of network scale. Research
on this subject has also not taken into account the increasing availability of various
new big data sources, as described in the previous section.

43



2 literature review

Figure 2.2: SCOOT Traffic Control System, Reproduced from Robertson, 1991 (Robertson and
Bretherton, 1991)

44



2 literature review

Figure 2.3: Cell Model of a Simple Network, Reproduced from (Lo, 1999)

Figure 2.4: Car-Following in the Wiedemann 74 Model, Reproduced from (Fellendorf and Vor-
tisch, 2000)

45



Part II

A LT E R N AT I V E T R A F F I C S I G N A L C O N T R O L
M E T H O D O L O G I E S

This part is divided into three chapters. Each chapter covers a major com-
ponent of the research done. The first focusses on a Big Data application
outlines a method to re-time signals with travel time data. The second and
third chapters both detail the development of a deep reinforcement learn-
ing algorithm for traffic signal control, with the one chapter focussing on
the case of isolated intersections and the other on multiple intersections.

46



3
U S I N G T R AV E L T I M E T O R E - T I M E S I G N A L S

The Big Data environment created by recent technological advances gives new op-
portunities for traffic engineers and system operators to improve their operations. As
discussed in Section 2.3.2, one of these Big Data sources is travel time data collected
through Bluetooth and WiFi monitoring. Presently, these data are often collected as a
metric to evaluate the performance of intersections. This section proposes a method by
which travel time data can be used to re-time signals. The method draws on the HCM

process for re-timing signals and could be applied in near real-time or on a periodic
re-timing schedule. Two scenarios are then explored to consider the possibility of a
travel-time based near-real-time adaptive signal controller. In the first scenario errors
are applied to hypothetical measurements and a Monte Carlo simulation approach is
used to assess the impact. In the second scenario virtual detectors are simulated in a
microsimulation platform and travel times and delays are estimated directly.

3.1 system settings and problem description

Consider the operation of a typical signalized intersection controlled by a fixed timing
plan, as shown in Figure 3.1. Without loss of generality, it is assumed that the current
signal plan consists of J phases (Φj for Phase j, j ∈ J) with a cycle time of c. For each
phase Φj, the total green duration, amber and all-red are also known, denoted by gj,
aj, arj respectively. Each phase is assigned to a given number of movements, with (i,
j) representing the movement i in Phase j. Movements include through, right, and left
and a phase may have any combination of movements assigned to it.

Figure 3.1: Signalised Intersection: Layout, Movements, and Signal Timing

In the traditional approach, signal timing plans are generated and updated on the
basis of intersection layout and Turning Movement Counts (TMC), following the pro-
cedure specified in HCM (Manual, 2010) and CCG (Teply et al., 2008). TMCs are often

47



3 using travel time to re-time signals

obtained periodically through field studies, which could also include delay study for
the purpose of evaluating the performance of the existing signal timing plan. In the
typical workflow, information on intersection layout (e.g., approach, lane grouping
and movements) and TMCs are first used to determine the optimal phasing plan, cy-
cle time and green split. Note that the phasing plan may include elements such as
protected left turn phases where only left turning traffic discharges or mixed through
and right movements where multiple movements and lanes will discharge. As dis-
cussed previously, this process of signal timing or re-timing is time-consuming and
the resulting plans may become suboptimal quickly due to constant changes in traffic
demand and the road network (e.g., accidents and construction).

In this research, the problem of signal re-timing using a new data source is con-
sidered, specifically, data from Bluetooth and WiFi detectors, which can be deployed
at multiple locations for measuring the times that individual vehicles with Bluetooth
and WiFi devices pass each location. These detected times can then be used to estimate
travel time and delay between specific locations. For the purpose of signal optimiza-
tion at an isolated intersection, it is assumed that Bluetooth and WiFi detectors are
deployed at the entry of each intersection leg so that travel time data and then delay
can be collected for all individual movements at the intersection. The arrangement as-
sumed is for detectors at mid-blocks, but any arrangement that allows per-movement
travel times to be collected would be suitable. Let dt,i,j be the sample mean and st,i,j
be the sample standard deviation of the measured delay for vehicles of movement i
in phase j, in seconds, estimated from Bluetooth/WiFi data collected over the current
time interval t (note that t could cover multiple cycles). With these data, the first prob-
lem of interest is to determine the optimal adjustments on the current signal timing
plan on a rolling horizon basis, that is, determining the optimal cycle length and green
split that can be implemented in the next time interval, based on the observed travel
time and delay of individual movements over the past periods.

In addition to signal timing for isolated intersections, this research also considers
the problem of how to make use of travel time data for improving signal coordination
of multiple intersections. In a multi-intersection configuration, detectors are placed at
the mid-block points between each intersection. It is assumed that each approach leg
must have an upstream detector before it can be considered for optimisation. Similarly
to the case with the isolated intersection, the signal timing can be optimised at each
intersection k for each phase j (Φi,j,k). An additional decision variable is considered in
multi-intersection configurations, the offset ok at each intersection k, which is the time
difference between the start of green at intersection k and a reference clock. Detectors
upstream on each approach leg can then also be used to obtain dt,i,j,k, the sample
mean of the delay over time interval t for movement i of phase j at intersection k.

3.2 methodology

As delay is typically a performance measure and may be subject to error, a process
was designed to mitigate the effects of random variation. This process relies on incre-

48



3 using travel time to re-time signals

mental changes to the signal timing where the measured delay values are first used to
estimate a new signal timing plan. Then, following the estimation of this plan an incre-
mental change is made towards this plan. The following sections provide an overview
of the critical steps that are used to implement this approach.

Section 2.2.3 gives an overview of the HCM process used to time signals. One of
the key metrics discussed is Equation 2.14 that allows estimation of the total delay
from the signal timing parameters and Degree of Saturation, Xi,j for each movement
i in phase j. Xi,j is the volume-to-capacity ratio and is calculated using the demand
for the approach and the parameters of the signal timing and design. The Degree
of Saturation is a critical component of the HCM process to signal timing and is an
intermediary value that is part of several key steps of the signal timing process. The
proposed method adopts the approach shown in Figure 3.2 to use estimates of Xi,j
obtained by using the HCM’s delay equations. The following subsections provide addi-
tional details on each step of the process for each approach. Psuedocode for the model
developed is provided in the appendix in Section A.3.

Figure 3.2: Overview of Split and Cycle Adjustment Procedure

3.2.1 Estimation of Saturation Flow and Flow Ratio

The HCM delay equations are used to estimate the value of Xi,j for any given delay
value. These equations are discussed in Section 2.2.3.1. Equations 2.14 and the con-
stituent Equations 2.12 and 2.13 are primarily used in this analysis. These equations
are also listed below, contextualised for a particular movement i in phase j, as Equa-
tions 3.1, 3.2, and 3.3 respectively.

d1,i,j = c×
(1−

ge,j
c )2

2× (1−X1,i,j ×
ge,j
c )

(3.1)

d2,i,j =

(
(Xi,j − 1) +

√((
(Xi,j − 1)2

)
+
240×Xi,j
Ci,j × te

))
× 15× te (3.2)

dt,i,j = kf,j × d1,i,j + d2,i,j (3.3)

In this work, the equation inputs are obtained for each movement and phase and
include the total delay (dt,i,j), cycle time (c), and effective green time (ge,j), which
is the amount of time actually used by vehicles when discharging. Estimation of the
capacity (Ci,j) of a particular movement is also required when calculating overflow

49



3 using travel time to re-time signals

delay (d2,i,j) using the HCM process. In under-saturated conditions d1,i,j as calculated
in Equation 3.1 dominates and is the most important quantity. Importantly, for this
equation, estimation of Xi,j only requires a further assumption on the relationship
between the effective green ge,j and the displayed green gj. The effective green is the
actual amount of green time used, and in the CCG is taken as gj+ 1 (Teply et al., 2008).
This is the assumption used in this research as well. d2,i,j becomes important as the
calculated value of Xi,j approaches 1 and dominates for higher values of Xi,j. For this
equation, a further two assumptions are required: an evaluation time te must be cho-
sen and a saturation flow rate, Si,j, must be assumed to calculate the capacity Ci,j. In
this research assume a value of te = 15 and use a base saturation of 1800 to calcu-
late the adjusted saturation according to the HCM process for each approach. These
assumptions are used in the calculation of the capacity of each movement, which is an
input parameter when calculating the overflow delay (d2,i,j), but not required to esti-
mate the uniform delay (d1,i,j). Consequently, the assumption on the base saturation
flow rate is generally not significant for Xi,j < 0.7, but care should be taken to en-
sure that the evaluation time and base saturation are appropriate for higher capacity
situations..

Due to the non-linearity of d1,i,j and d2,i,j, a golden section method is used to back-
calculate the value of Xi,j from Equation 3.3. This method is suited for this approach
since dt,i,j always increases as Xi,j increases if all other values remain constant. The
search is conducted with an initial bound of Xi,j ∈ (0, 2) and if the delay value ex-
ceeds these bounds the corresponding bound is assigned as the Xi,j value. In all other
cases, the search proceeds by iteratively decreasing the search window based on the
equations below.

Xi,j,upper,new = Xi,j,lower +
Xi,j,upper −Xi,j,lower

G
(3.4)

Xi,j,lower,new = Xi,j,lower −
Xi,j,lower −Xi,j,upper

G
(3.5)

where G is the golden ratio (≈ 0.618). Iterations continue until Xi,j is within 0.0001

seconds of the measured delay.
With the estimated value of Xi,j, the flow ratio yi,j can be estimated. Using the

equations in the HCM, it is possible to convert between the degree of saturation Xi,j
and flow ratio Yi,j using the following equation:

yi,j = Xi,j ×
ge,j

c
(3.6)

where:
yi,j is the flow ratio for a particular lane (unit-less)
Xi, j is the degree of saturation (unit-less)
ge,j is effective green time (in seconds)
c is the cycle time (in seconds)

In this process an assumption is made that the flow ratio of all lanes in the movement
have the same delay and degree of saturation, and therefore the flow ratio value cal-
culated for a particular lane is representative of all lanes in that movement (so long

50



3 using travel time to re-time signals

as they are not shared). In situations with shared lanes an assumption on the propor-
tion of flow going in each direction is required. Where relevant in this research prior
volumes are used to inform this allocation. yi,j can then be used to re-time signals
according to the HCM process described in Section 2.2.3.1. For situations where d2,i,j

is insignificant this means that signals can be re-timed without requiring knowledge
of or an assumption on the saturation flow-rate of the intersection.

3.2.2 Determination of the Optimal Signal Timing Adjustment

Using the HCM process, signals can be re-timed based on the estimated Yi,j values.
Equations 2.8, 2.10, and 2.11 discussed previously in Section 2.2.3 can be used to
determine a new cycle time (copt) and green splits once Yi,j has been calculated.

Although the new timing plan could be readily adopted, this can cause an overre-
action to a high-burst of traffic on one approach that is not sustained. A step-wise
approach similar to methods employed in SCOOT is therefore proposed. In this ap-
proach signal timing is adjusted subject to some maximum adjustment γ for each
cycle. In the proposed method a sigmoid function is used to restrict the adjustment
proportionally, as given in the following equations:

cnew = cold +∆c (3.7)

∆c = ROUND

(
Fc√
βc + F2c

× γc

)
(3.8)

Fc =
max(cmin, copt) − cold

γc
(3.9)

(3.10)

gj,new = gj,old +∆gj (3.11)

∆gj = ROUND

 Fg,j√
βg + F2g,j

× γg

 (3.12)

Fg,j =
gj,target − gj

γg
(3.13)

where:
ROUND rounds the value to the nearest whole integer seconds
cnew is the new cycle time (in seconds)
∆c is the increment to adjust the cycle by (in seconds)
γc is absolute value of the maximum adjustment possible (in seconds)
βc is a calibration parameter that controls how sensitive the the sigmoid func-
tion is (unit-less)
cmin is the minimum cycle length (in seconds) as outlined in the HCM

copt is the optimal cycle identified by using the estimate Xi,j values (in seconds)
gj.new is the new green time (in seconds) for a particular phase j
gj,old is the old green time (in seconds) for a particular phase j

51



3 using travel time to re-time signals

∆gj is the increment to adjust the green by (in seconds)
βgj is a calibration parameter that controls how sensitive the sigmoid function
is (unit-less)
γg is the absolute value of the maximum amount to adjust the green by (in
seconds)
gj,target is the green value to adjust to computed based on the delay value (in
seconds)

Fundamentally these equations are used to scale the adjustment to some maximum
value. A sigmoid function is used to dampen the changes and can be used to ensure
that the maximum change is only applied when the gap between the target plan
calculated based on the delay is drastically different than the current plan. Due to
the error that may be associated with the delay values, this allows high adjustments
to only be made when the calculated ideal plan differs from the current plan by a
significant amount. βc and βg can be used to control how linear-like the equation’s
behaviour is and different thresholds between the green split adjustment and cycle
adjustment can be used for all the β and γ values. In situations where the γ value is
small, the β be set to a higher value to create a threshold by which the target plan
must differ by before changes will be applied.

3.2.3 Determination of the Optimal Offset Adjustment

A multi-step process is used to identify the optimal offset as some parameter values
depend on the results of other intersections. For the cycle length, each intersection
can compute its optimal cycle ck that is used to select the optimal cycle c for the
corridor. With the optimal cycle selected for the corridor, green times can be optimised
at each intersection. Then, following this, the offset is optimised. Optimisation of the
offset requires prediction of how vehicles will move through the corridor. The model
applied in this research is the Robertson model, which depends on the flowrate at the
upstream intersection qk, the flowrate at the downstream intersection q ′k, the travel
time T between the two intersections, and calibration parameters α and β.

The offset controls the lag between the start of green at all intersections. The pro-
posed procedure for offset adjustment is shown in Figure 3.3. In coordinated con-
figurations with multiple intersections, the degree of saturation Xi,j (also called the
volume to capacity ratio) calculated can be used to directly estimate the demand for a
particular approach. This requires specification of an appropriate adjusted saturation
flow value and calculation of the capacity of all relevant movements. Downstream vol-
umes are computed in reference to upstream movements that would provide volume,
and volume between intersections is assumed to be insignificant. With the demand,
predictions can be made on downstream arrivals and the offset can be adjusted accord-
ingly. In this research the Robertson model as discussed in Section 2.2.2 is applied to

52



3 using travel time to re-time signals

predict downstream flows using Equations 2.5 and 2.6, which are shown below as
Equations 3.14 and 3.15.

q ′(n+ t) = F× q(n) + (1− F)× q ′(n+ t− 1) (3.14)

F =
1

1+αt
, t = βT (3.15)

Where:
n is the interval bin being examined (e.g. ten seconds)
q(n) is the arrival flow at interval n (in vehicles)
q ′(n+ t) is the downstream volume (in vehicles) after t seconds since the start
of interval n
F is a smoothing factor (unit-less)
t is typically set to the fastest expected travel time (typically in seconds)
T is the average travel time between the upstream and downstream intersections
(typically in seconds)
α is a calibration parameter for the platoon dispersion rate with respect to time
(unit-less)
β is a calibration parameter representing how much faster than the average the
front of the platoon will travel (unit-less)

A deterministic discharge model is used to model departure rates at intersections
and the resulting delay. Computation of the arrivals requires estimation of the capac-
ity of the intersection Ci,j, which is then multiplied by the degree of saturation Xi,j.
Computation of the capacity requires an estimation of the saturation flow rate Si,j.
This is calculated based on a pre-specified base saturation flow rate and pre-specified
adjustment factors for each intersection’s movement. The computation proceeds as
outlined in the HCM and CCG for each movement and is done in conjunction with
the signal timing parameters. For permissive left turns an iterative approach is used
where through movement volumes are first estimated for use in the capacity calcu-
lation. With the volume estimate obtained, the expected queue accumulation at each
movement is modelled at each intersection using deterministicD/D/x queuing. When
a particular phase j is green, signals are assumed to discharge vehicles for each move-
ment i at their respective saturation rates Si. These discharge rates are then used in
the Robertson platoon dispersion model specified in Equations 3.14 and 3.15 to pre-
dict the arrival rates at each downstream intersection. Using the predictions from the
Robertson model, each intersection is optimised sequentially by selecting the offset ad-
justments from a range of [−γo,+γo] that provides the highest total count of vehicles
arriving on green.

3.3 case studies

To evaluate the proposed method, two approaches were used. In the first approach, a
simple simulator was created to generate delays based on the CCG equations, and er-
rors were then applied and a Monte Carlo approach was used to gauge the sensitivity

53



3 using travel time to re-time signals

Figure 3.3: Overview of Offset Adjustment Procedure

of the model to those errors. In the second approach, micro-simulation was used and
Bluetooth and WiFi detections were replicated in the simulation platform.

3.3.1 Monte Carlo Simulation

Preliminary evaluation was conducted using the Monte Carlo Simulator and a variety
of settings were tested to gauge the performance of the proposed method. The follow-
ing section highlights the effects studied. In all preliminary studies the values of γ
and β were set to 1 and adjustments are made after every cycle.

3.3.1.1 Scenario Settings

In the Monte Carlo Simulation a single isolated intersection with one lane for each
movement is modelled and the effect of error, γ, and β were studied in a sensitivity
analysis. As an isolated intersection, this study only examines the split and cycle
adjustment methods. Multiple volume scenarios are examined, including constant
volumes, a volume scenario that steadily increases from zero to a high value, and a
real-world volume scenario. The real-world volume is shown below in Figure ??. For
each volume scenario, delay values are generated based on the volumes at specific
intervals and errors are applied to these delay values based on assumed standard
deviations. Two error scenarios were evaluated, in the first an error of σ(ε) = 1s was
applied and in the second an error of σ(ε) = 5s was applied.

Figure 3.4: Monte Carlo Simulator Volume

54



3 using travel time to re-time signals

3.3.1.2 Travel Time and Delay

In the Monte Carlo simulation predefined volumes are first generated and a simple
deterministic simulator was developed. The deterministic simulator is a period-by-
period simulator that uses the HCM equations to predict the delay experienced by
vehicles per cycle and averages it over each optimisation period. These delay values
are treated as the ground truth, and the best decision the controller could make would
be to use this value to make a signal timing adjustment. A key limitation of this simu-
lator is that it is not designed to simulate over-saturated conditions as, for simplicity,
it is assumed that the queue clears after cycle change and that queue accumulation
does not affect subsequent delays. An error is applied to the ground truth delays for
each iteration of the Monte Carlo Simulator to obtain an overview of the impact of
measurement error on the algorithm. Errors are applied additively to delay values
according to the normal distribution with multiple predefined standard deviations.

3.3.1.3 Effect of Volume

Volume was expected to have a strong effect on the performance of the algorithm.
There are two primary reasons. The first is that lower volumes mean less accurate
delay measurements as there are fewer samples. The second is that lower volumes
typically produce lower delay values which amplify the effect of the error as even
errors of one second will become significant. Figure ?? shows the performance of the
algorithm as the volume varies through 1000vph, 800vph, 400vph, and 200vph for
each approach. In this design, the cycle length of the intersection is held constant, so
the expected delay predicted by the algorithm becomes lower as the volume decreases.
Since both approaches have the same volume, the optimal decision is always to main-
tain the allocated green to the seeded value of 40s for each approach. This decreasing
delay magnifies the effect of the applied error such that at low volumes the error
dominates the decision making process and significant degradation is observed when
volume drops to 200vph.

3.3.1.4 Responsiveness to Demand Change

A further test was conducted to gauge the responsiveness of the algorithm to dynamic
traffic variations. In this test the volume on the E/W approach varies linearly from
100vph to 1700vph across an 8 hour range, with a 30 minute warmup period of con-
stant volume. The opposite approach’s volume is held constant at 400vph. The results
are shown in Figure 3.6. As before, cycle length is not changed. Errors applied to the
delay measurements produce a noticeable lag in the decisions made by the controller
at low volumes. This effect diminishes as the volume increases regardless of the error
applied, but in the high error scenario it can be observed even at volumes of 800 vph.

55



3 using travel time to re-time signals

(a) σ(ε) = 1s (b) σ(ε) = 5s

Figure 3.5: Volume Impacts on Split Decisions across 10,000 runs (decisions with no error
shown in red)

(a) σ(ε) = 1s (b) σ(ε) = 5s

Figure 3.6: Reaction Speed across 10,000 runs (decisions with no error shown in red)

56



3 using travel time to re-time signals

(a) Cycle Adjustments, σ(ε) = 1s (b) Split Adjustments, σ(ε) = 1s

(c) Cycle Adjustments, σ(ε) = 5s (d) Split Adjustments, σ(ε) = 5s

Figure 3.7: Cycle and Split Decisions across 10,000 runs (decisions with no error shown in red)

3.3.1.5 Cycle and Split Adjustment

A key limitation of the algorithm is clearly visible in situations with low volumes as
these will also generally lead to lower delays. However, when the cycle time is not
adjusted, low delays also produce low values of Xi,j which reduce the effect of timing
changes on the delay due to the under-saturated nature of the intersection. The real-
world volume scenario shown in Figure 3.4 is applied to evaluate the performance of
the split and cycle adjustment across a wide combination of volumes. Cycle times are
bounded by a maximum of 120 seconds and a minimum of 40 seconds. The results
are shown in Figure 3.7. As in previous sections, a noticeable lag is observable in
decisions, especially for the high error scenario. However, the range of differences in
timing plans by absolute value is not as significant as in previous sections as the lower
cycle time means that even at low volumes the effect of a few seconds of green are
more pronounced.

57



3 using travel time to re-time signals

3.3.1.6 Impacts of Other Control Parameters (γ and β)

The γ parameter controls the maximum step size and β is a smoothing factor that
controls the linearity of the response. Changes to either affect the algorithm’s ability
to move to the optimal plan in rapidly changing situations. This also limits the effect
of bad decisions. This effect is shown in Figure 3.8 for the high error (σ(ε) = 5s)
scenario.While selection of a low γ results in more stable performance, the setting can
cause higher delays in rapidly changing scenarios or in situations where decisions are
made at longer intervals.

Setting β to high values results in a muted response and the controller will only
make changes when the current plan differs substantially from the optimal plan. The
effect is illustrated in Figure 3.8c. The muted response reduces large erroneous steps
from being taken, however, altering this parameter also means that the adjustments
themselves are smaller steps toward the optimal plan. For example, the timing plan
may only change when the difference between the optimal plan is greater than 5

seconds but the controller will only make a 1 second adjustment if that threshold is
met. Higher β values therefore result in sub-optimal decisions when data is error-
free, as can be seen by comparing the optimal decisions between Figures 3.8c and 3.8b.
In contrast, when errors are introduced, simulation runs with higher β values better
track the optimal decisions that more aggressive parameters would make in error-free
configurations.

Setting β = γ2 produces a near linear response for smaller changes but limits
the situations where large adjustments are done. This was found to offer the best
compromise between allowing the model to quickly re-correct bad decisions while
also preventing steps from being too large in the presence of errors.

3.3.2 Simulation Study

Simulation was conducted in VISSIM for the control scenario first and it serves as
a baseline to compare. Since all scenarios are simulated with the same seeds, the
arrival time of vehicles between different simulation runs is identical. Comparisons
are therefore provided on a relative basis compared to the control scenario for all the
sensitivity analyses conducted.

3.3.2.1 Scenario Settings

PTV Vissim was used to model a corridor on University Avenue in Waterloo, Ontario
from the intersection of Westmount to King Street as shown in Figure 3.9. The mod-
elled corridor uses volume data from 2018 obtained from the Region of Waterloo for a
three hour peak period. Intersections #1 and #6 are major intersections while intersec-
tion #4 has significant northbound traffic during the peak hour. Aggregated volumes
for all scenarios are shown in Figure 3.10.

Simulated detectors are shown on Figure 3.9 and are placed at mid-block locations
and cover all approaches. Detectors are all modelled with fixed detection ranges of

58



3 using travel time to re-time signals

(a) γ = 1s

(b) γ = 5s

(c) γ = 5s,β = 25

Figure 3.8: Effect of γ and β in High Error Situations

59



3 using travel time to re-time signals

Figure 3.9: Microsimulation Network

Figure 3.10: Aggregated volumes by time stamp

100m and poll vehicles every 2s. These values were selected after a review of the
literature and from field data collected by a probe vehicle portable Bluetooth and WiFi
scanners. For this scenario, γ and β are set to 5 and 25 respectively for both cycle, split,
and offset adjustments. For simplicity, the progression factor kf,j in equation 2.14 was
set to 1 for all intersections with no upstream intersection and 0.7 otherwise. Green
splits were limited to a maximum 100s for major phases and 5 - 15s for protected left
turn phases (depending on storage length) for intersections with protected lefts in the
field plan. A minimum of 20s green for major movements and 0s of green for protected
left movements was also enforced. Cycle lengths were limited to a maximum of 120s
and a minimum of 60s.

All controllers implement a fixed signal timing schedule with adjustments made by
the algorithm. A three hour period was simulated in VISSIM and repeated across 10

runs, with runs having different seeds. The same set of 10 runs was applied to test
multiple scenarios including a control scenario with current field timings and actuated

60



3 using travel time to re-time signals

signal control, penetration rates varying from 5% to 100%, optimisation intervals of
every 2, 3, or 4 cycles, and a 1.5x volume scenario. A high response scenario is also
tested that sets γ and β to 10 and 100 respectively for all adjustments. During each
optimisation interval, delay data is collected for the duration and used to estimate
X and Y. Optimisation decisions are made at the end of the interval and take effect
immediately. This means that shorter cycle lengths have more frequent adjustments
and that longer cycles will have higher confidence in their delay estimates.

3.3.2.2 Travel Time and Delay

In the microsimulation approach individual Bluetooth and WiFi detectors are mod-
elled directly. A platform was developed to interface with PTV Vissim using the
Component Object Model (COM) programming interface. Detectors are defined with
a detection type, measurement centroid, detection rage, and detection frequency. On
entry, a random check is done on each vehicle to determine which detectors can de-
tect them based on a predefined market penetration rate. At each detection interval,
the ID of detectable vehicles within range of a detector are recorded. Key simplifi-
cations introduced by this approach is that vehicles are detected only once (in field
settings vehicles may have more than one Bluetooth or WiFi device), non-vehicles such
as pedestrians or cyclists are not modelled, detectors have static detection rates and
ranges, and that detectors always detect vehicles that are in range of the detector if
they are flagged as detectable.

As with real Bluetooth or WiFi detectors, however, only the travel-time is measured
and the delay must be estimated from the collected data. Lloyd’s implementation of
the k-means approach, as outlined in Section 2.4.1.1 was used to group vehicles into
delayed and non-delayed clusters. k was predefined to 2 and the algorithm was seeded
using the fastest and slowest times. The differences between the average across each
optimisation period is then used as the delay when estimating X using Equation3.6
and the process in Section 3.2.

3.3.2.3 Rate and Optimisation Interval

A total of 15 scenarios for combinations of penetration rate (5%, 10%, 25%, 50%, and
100%) and optimisation interval (2, 3, and 4 cycles) were considered. Table 3.1 high-
lights the results for all runs relative to the control scenario. Scenarios are listed by
their penetration rate and optimisation interval. The control scenario is an actuated
plan developed from the same field volumes. The adaptive algorithm is seeded with
a plan that provides equal green to all approaches and a cycle of 90 seconds.

Better results were generally observed for more frequent updates, and in most sce-
narios the results from updates every 2 cycles produced the best improvements. This
is likely due to the fact that the algorithm can correct any poor decisions made sooner
and is better able to adapt to the sudden spikes in volume that occurs after the first
hour. Since the algorithm was seeded with a sub-optimal plan, the longer update in-
tervals had particularly poor performance in the first run. Penetration rate was not

61



3 using travel time to re-time signals

Table 3.1: Average Delay Reductions, listed by (Penetration Rate, Optimisation Inter-
val)

Scenario 1 2 3 4 5 6 7 8 9 10 Avg

(100, 2) −2 7 9 0 25 14 11 20 15 6 11

(100, 3) 15 14 17 18 19 11 8 −3 6 14 12

(100, 4) −41 10 14 4 12 −3 3 7 −3 7 1

(50, 2) −4 −9 22 11 22 8 0 4 22 7 9

(50, 3) 17 28 22 19 23 19 7 3 13 9 16

(50, 4) −37 −16 4 22 20 −1 −14 3 7 19 1

(25, 2) 5 20 12 12 24 6 4 3 2 14 10

(25, 3) 3 −3 2 3 8 14 −3 3 1 5 3

(25, 4) −40 −5 1 −8 10 −13 14 5 2 2 −3

(10, 2) 3 −4 35 23 39 27 30 24 19 24 22

(10, 3) 12 8 18 7 23 21 15 8 10 −3 12

(10, 4) −22 −17 15 −2 34 11 6 16 23 15 9

(5, 2) 8 7 16 17 30 20 16 −10 15 2 12

(5, 3) −25 7 2 −10 26 26 7 9 7 −7 4

(5, 4) −11 13 3 −9 6 7 2 −21 21 20 4

62



3 using travel time to re-time signals

found to have a strong impact on the performance, however more stable performance
was observed for the higher penetration rates. This is more clearly visible in Figure
3.11 which shows the performance in 15 minute intervals. The difference is particu-

(a) 5% Penetration, Every 2 Cycles (b) 100% Penetration, Every 2 Cycles

(c) 5% Penetration, Every 3 Cycles (d) 100% Penetration, Every 3 Cycles

(e) 5% Penetration, Every 4 Cycles (f) 100% Penetration, Every 4 Cycles

Figure 3.11: Delay Reduction per 15 minute Compared to Control

larly visible during the first run where the controller is better able to reach an optimal
plan from the seed plan. Since the control scenario is timed to peak flows (between
1800 seconds and 2700 seconds on each run) the algorithm’s performance is better dur-
ing other periods, particularly between 5400 seconds and 7200 seconds when volume
patterns shift more substantially away from peak flows.

63



3 using travel time to re-time signals

3.3.2.4 Cycle and Green Splits

The signal timing decisions made by the algorithm were also examined for consistency.
Figure 3.12 plots the decisions made by the controller at intersection #1 for the 5% and
100% penetration scenarios. It should be noted that these figures plot the planned time,
but the actual time may differ as the signal may extend the green to accommodate
changes in the offset.

(a) 5% Penetration, Every 2 Cycles (b) 100% Penetration, Every 2 Cycles

(c) 5% Penetration, Every 3 Cycles (d) 100% Penetration, Every 3 Cycles

(e) 5% Penetration, Every 4 Cycles (f) 100% Penetration, Every 4 Cycles

Figure 3.12: Split Allocations and Cycle Lengths (per Cycle)

At this intersection, the field plan provides a maximum of 15s of green to the pro-
tected left turns, 45s to the East/West movements and 35s to the North/South move-
ments. Protected left phases are actuated and serve a minimum of 5s of protected

64



3 using travel time to re-time signals

green when called. In Figure 3.12 it can be seen that higher optimisation intervals pro-
vide split ratios that adequately serve the demand most of the time, and the timing
plan is more stable. However, more frequent optimisations produced signal timings
that better track the cyclic changes in volume at the intersection. The controller has a
tendency to lower the cycle length and at this intersection much of the delay is caused
by the N/S left turn movement.

3.3.2.5 Offsets

Offset adjustments made by the algorithm in the above 15 scenarios were tracked
and recorded. These decisions are summarised in Figure 3.13 for the 5% and 100%
scenarios and are presented as a heatmap. In this heatmap no-change is marked as
orange while red areas denote decreases of the offset and green areas increases. As
can be seen from the figure, the 5% penetration scenario generally had more changes
made to the offset but the overall pattern was similar regardless of the penetration
rate. Intersections #4, #5, and #6 generally saw more increases to the offset while
intersections #1, #2, and #3 generally had more stable offsets.

3.3.2.6 Additional Demand

This scenario is designed to demonstrate the potential benefits of the proposed method
to allow signals to adapt as volumes change. Volumes are increased on all approaches
linearly by 1.25x and comparisons are re-run for the control scenario without chang-
ing the signal timing plan and with a new signal timing plan. The algorithm’s perfor-
mance with updates every 3 cycles is compared to both control scenarios. The results
of this comparison are shown in Table 3.2.

Table 3.2: Performance improvement of the Re-timing Method Com-
pared to Actuated Controller

Penetration Rate Retimed Signals (%) Base Timings (%)

100% 10.9 18.7

50% 10.2 18.2

25% 8.8 16.9

10% 5.2 13.8

5% 5.1 10.1

When compared to the base scenario’s timings, the algorithm reduces delays by
10% to 18%, depending on the penetration rate. When compared to re-timed signals,
this improvement is reduced to 5% to 11%. These results show that under changing
volume conditions, the proposed algorithm can provide performance that is close to
or better than actuated controllers timed with the volume data.

65



3 using travel time to re-time signals

(a) 5% Penetration, Every 2 Cycles

(b) 5% Penetration, Every 3 Cycles

(c) 5% Penetration, Every 4 Cycles

(d) 100% Penetration, Every 2 Cycles

(e) 100% Penetration, Every 3 Cycles

(f) 100% Penetration, Every 4 Cycles

Figure 3.13: Offset Changes per Cycle

3.4 conclusions

This chapter investigates the potential of using travel time data to improve the signal
timings of signalised intersections. A model-based fine-tuning method is proposed
to re-time signals solely using travel-time data. This method could be implemented
in both on-line or off-line configurations at locations without vehicle detection or as
an alternative to install costly vehicle detectors. Although the algorithm is evaluated

66



3 using travel time to re-time signals

using data from WiFi or Bluetooth detectors, any technology that provides travel time
estimates could be suitable.

The system’s reliability depends on a number of key factors. In particular, the sensi-
tivity analysis and simulation study highlighted that under some circumstances tim-
ing plans can be unstable. In the simulation study, it was observed that the algorithm
struggled to reliably re-time low-volume approaches, such as non-busy periods for
protected left turns. The results also showed that while the proposed system has
some elements of adaptive control, the decisions lag behind optimal ones, especially
in situations with measurement error.

Adjustments of the timing plan every other cycle help mitigate these impacts and
generally saw higher performance in the microsimulation study, however frequent
adjustments also lower the accuracy of measurements, particularly for low volume
approaches. Penetration rates were found to have limited impact, though generally
lower penetration rates produced less stable timing plans.

Under changing volume conditions, the algorithm proposed provides an alterna-
tive method to constant signal re-timing through the use of travel time data. When
volumes were increased the algorithm reduced delays by up to 18% when compared
to unmodified actuated signal timings and by 11% when compared to re-timed actu-
ated signals.

67



4
D E E P R E I N F O R C E M E N T L E A R N I N G : S I G N A L C O N T R O L O F
I S O L AT E D I N T E R S E C T I O N S

One of the key gaps in the state-of-the-art identified in Chapters 1 and 2 is the in-
ability of traditional systems to capitalise on advances brought by new data sources
and Artificial Intelligence (AI). Further, while traditional systems can work well when
optimised for specific conditions, it is difficult and costly to keep signal timings up-
to-date. Bluetooth and WiFi-based travel time data were introduced in Chapter 3 as
one possible way to solve these problems, but technological developments also allow
other sources of data to be used. In particular, advancements in video-based detec-
tion, LIDAR, infra-red, and other similar systems have brought the possibility for
high-resolution data to be available in real-time.

The scale of data available also opens the door to more complex ways of optimis-
ing traffic signals. Recent advancements in AI has demonstrated algorithms that are
capable of human-like decision-making, such as AlphaGO that used Deep Reinforce-
ment Learning (DRL) to beat the world’s best players of the complex strategy game of
Go (Mnih et al., 2015). Within the literature, AI techniques have seen some interest in
recent years, but systematic studies exploring optimal settings and design are limited.
Successful application of DRL to the traffic domain requires specification of a number
of key parameters, and configuration of them. These include the state space, action
space, model structure, and rewarding system.

This chapter outlines a comprehensive study to evaluate and design an optimal
DRL signal controller that functions on isolated intersections. A platform was devel-
oped and the sensitivity of key parameters was explored. The results of this analysis
form the basis of the corridor or area-wide signal control study conducted in the sub-
sequent chapter. In-depth details on the developed platform, including pseudo-code
representations are provided in Appendix A in Section A.2.

4.1 system settings and problem description

Consider the problem of traffic signal control of a typical intersection whereby the
signal controller needs to decide at what time it should change the signal and give
green to a different group of movements. The underlying problem can be framed as a
Markov Decision Process (MDP) in a rolling-horizon form with discrete time decision
points, t (now), t+ 1, t+ 2, .... In an MDP, the system state at the current time t, as
described by a state space St, can be altered by an control agent’s decision or action,
denoted by At and subsequently transit to another state in the next time interval
t+ 1 (St+1). The transition from a particular state St to the next state St+1 can be de-
scribed by a transition probability denoted by P(St+1|St,At). An immediate reward

68



4 deep reinforcement learning : signal control of isolated intersections

Rt = R(St;At;St+1) can be defined based on how the system transitioned from state
St to state St+1 after action At is taken. These three components form the basis of all
MDPs. It should be noted that, in many real-world problems, it may not be possible to
fully observe the state at a particular time, and often only part of the state is visible to
the decision-maker. These problems are typically called Partially Observable Markov
Decision Process (POMDP) and in these problems the decision-maker makes some ob-
servation Ot based on St and then chooses its action based on that observation. The
relationship between all these variables is illustrated in Figure 4.1.

Figure 4.1: The Relationship Between States, Observations, and Rewards in an MDP

Under this framework, the traffic signal controller acts as an agent that continuously
makes decisions (or take actions) at each second on whether to advance the signal to
the next phase or to keep it at the current phase. It is assumed that the agent would be
constantly making observations about the system state which could be traffic volume,
queue length or movements of individual vehicles depending on the traffic detectors
available to the agent. The agent would use the observations to assess the immediate
and future rewards of alternative actions and decide at each decision point the best
action to take. This is further illustrated below in Figure 4.2. The environment consid-
ered is an isolated intersection, including the time, place, lane structure, and positions
of vehicles. It is assumed that the signal controller acts as an agent in the environment
and can observe the time, queue lengths, discharges from the stop bar, and phasing
of the signals. The fundamental elements that must then be determined before this
framing can be used includes: the exact representation for the state and observations
to give the model; the exact actions the agent can take and the expected consequences
of those actions, and the rewarding method to use; which are the key issues being
addressed in the proposed methodology described in the following sections.

69



4 deep reinforcement learning : signal control of isolated intersections

Figure 4.2: Framing the Traffic Problem as a POMDP

4.2 methodology

As discussed in Chapter 2, one of the most successful solution methods to MDP is
Reinforcement Learning (RL). In RL, the agent uses the observations, states, actions,
and rewards to learn an optimal policy π∗ by which it can operate in the environment.
One of the most common approaches to reinforcement learning is Q-learning, where
the agent assigns and learns a value for each state based on the rewards it receives
and the rewards it expects to receive in the future discounted by some factor γ. Deep
Reinforcement Learning (DRL), specifically, Deep Q Networks (DQN), is an approach
to reinforcement learning that relies on deep neural networks to learn the optimal
policy, or Q-function. This research explores and formulates a method by which DQN

can be used to control traffic signals.
Deep Q Networks (DQN) models have several components that govern its model

structure. These include many different weights w that are organised into groups
called layers. Input are provided in matrices with dimensions M×N and fed sequen-
tially starting from the raw sensing of the environment and passing through each layer
until reaching the output from which the actions are chosen. The output of each layer
is calculated using many different approaches. In this research Convolutional Neural
Networks (CNN) are used in many of the layers. These layers work by using a smaller
batch of weights to progressively scan the input values and generate the output. The
step size by which this scanning proceeds is determined by the stride of the layer,
and the resulting output will be smaller for higher stride values as a distinct weight
is not used for each individual input value. In addition to CNN layers, this research
also uses fully-connected layers and max-pool layers. In fully-connected layers each
input is mapped to an output through a weight, whereas in max-pool layers adjacent
input values in the matrix are combined and the maximum value is used as input
for the output. All layers in the model use the Rectified Linear Unit (ReLU) function
to determine the output for a given input. More broadly, this function is called an
Activation Function and controls how the weight is applied to the input to generate
the output. The ReLU function outputs the product of the input and the weight if the
result is positive, and zero otherwise.

70



4 deep reinforcement learning : signal control of isolated intersections

In order to be used successfully, DQN models must first be trained to operate on
the environment they are working in. Training adjusts the weight values based on the
outcomes observed using a process called backpropagation. A number of different ap-
proaches are used to stabilise the training process and improve convergence. This re-
search uses an approach called ε-greedy training which operates by having the agent
choose actions randomly by some probability ε and exploiting its training by some
probability 1− ε. Training is divided into three phases, the first is observation where
the agent fills its experience buffer by observing the environment, including states,
transitions, actions, and rewards. The second is training where the agent anneals ε by
reducing it from its initial value to some final value. The third is fine-tuning or appli-
cation of the model. At some point during this stage, if the model is to be applied to
operate on a different environment, the learning process is stopped and the agent’s
experience is transferred to the new problem. The agent is then fine-tuned further on
the new problem, but is able to exploit the knowledge previously gained.

4.3 model design

In this research, a modular API platform was first developed to facilitate communi-
cation with the deep learning agent and sensors providing information on the envi-
ronment as well as the intersection controller. An extensible design framework was
used to allow drop-in replacement of components such as the simulation model or
sensor API, and to allow multiple intersections to be trained from a single simulation
network in parallel. The only requirement for any replacement component is that its
input and output conform to the API’s specification. A high level overview of these
components is shown in Figure 4.3. In this chapter only isolated intersections are eval-
uated, but the architecture was developed to enable multiple intersections to be linked
together through the API layer. In isolated configurations, the architecture functions
identically except there is only 1 model training thread.

To operate properly, the agent must be provided with some input at pre-defined
intervals from the environment. The agent then passes its actions out through the API
for the controller to act on. The following sections provide detailed discussions on the
key components of this architecture.

4.3.1 Deep Reinforcement Learning Model

A deep reinforcement learning model was developed in Python using Tensorflow
(Abadi et al., 2016). Tensorflow is developed by Google and is commonly used for
the purposes of large-scale machine learning without requiring the development of
complex neural networks from a syntactical point of view. A deep convolutional neu-
ral network was developed based on the model structure proposed by Mnih et al.
(Mnih et al., 2015). This model structure showed strong performance in complex pat-
tern recognition tasks when applied to reinforcement learning problems, including
the ability to play computer games such as early Atari games and Pong, as well as

71



4 deep reinforcement learning : signal control of isolated intersections

Figure 4.3: Overall Design Architecture, extensible intersection count from 1 to N

different applications demonstrated by other researchers including robotics (Tai and
Liu, 2016; Rodriguez-Ramos et al., 2019), finance (Jiang, Xu, and Liang, 2017), and
image recognition tasks (Rao, Lu, and Zhou, 2017).

The model structure adapted for this platform is shown in Figure 4.4. This structure
accepts input as a matrix with dimensions 80× 80× 4. Three convolutional layers are
included as well as two max-pooling layers. The final output provides the estimatedQ
value of selecting each action given the particular input. Further details and pseudo-
code implementations of this algorithm are provided in Appendix A in Section A.4.1.
The following sections provide overviews of the critical parameters and inputs of the
model.

Figure 4.4: Deep Learning Model Structure

72



4 deep reinforcement learning : signal control of isolated intersections

Figure 4.5: State Space Observation Matrix

4.3.1.1 State Space and Observation Matrix

Representations of the states of the control environment are a critical component of
any reinforcement learning problem. In traffic signal control contexts, this will depend
on the information available. In this research it is assumed that real-time information
on the number of vehicles waiting to be discharged in front of the stop line in each
lane group of all approaches, i.e. queue length, is available and observable by the
agent. There are many technologies in development that are able to provide some of
these data, including some commercial products that automate traffic counts using
video, Radar, or Lidar data. Loop detectors can also be used to provide some of these
inputs. In addition to the availability of the queue length, it is also assumed that
within its detection range the technology would provide accurate per-second queue
counts. With this assumption, a framework for the observations made on the state
space by the agent was developed to represent queue information in a vector format
usable in the model. An overview of the state space observation matrix is shown in
Figure 4.5. The model’s input space is 84× 84× 4 individual values, and so the matrix
must be shaped to fit this size. Figure 4.5 shows the 2D abstraction used to represent
the key data, including the queues for each movement, the signal state, and time of
day information and has dimensions 84× 84. In this figure, the abstraction highlights
generally what data is included in the observation matrix, and the model is provided
the current and previous 3 states of the matrix as input.

Each vector is a binary vector of N quantities that are 0 or 1 depending on the
data. For queues, each queue vector qi is composed of N sets of binary values qi =
c0, c1...cN which are 1 if there are at least i cars in the queue and 0 otherwise.N can be
any arbitrary value, and each column is scaled such that all 84 values are used (even
if N is less than or greater than 80). Multiple vectors are generated for each movement
group. Any combination of lane groups can be included, but once trained the structure
cannot be altered significantly without further fine-tuning. In this research separate
vectors are coded for each of the cardinal directions’ through and left turn movements.
Similarly, signal timings are coded into eight possible groups, Pi = p1,p2, ...p8 for
protected-permissive operation corresponding to the respective lane groups. Time of

73



4 deep reinforcement learning : signal control of isolated intersections

day information is also encoded by hour and day of the week as two separate vectors
Td = h0,h1, ...h23 and Tw = d1,d2, ...d7 for Monday to Sunday. As columns are scaled
to fit the height of the matrix, the width is also scaled by duplicating column values to
increase their width. Each assembled matrix represents the state at a particular time
slice, but the final input to the model also includes the matrices of the proceeding 3

states (Ot−1,Ot−2,Ot−3).

4.3.1.2 Action Space

In modern signals, timing plans are normally understood in terms of ring-and-barrier
diagrams. In these diagrams, phases that govern what signal phase a particular lane
group sees are organised into groups called rings. Rings in the diagram depict the
phase as a sequence similar to a film-strip. Barriers are special points on the diagram
where all rings must cross over and change their timing at the same time. Between
barriers, phases in the same ring are incompatible and cannot time together, while
phases in other rings are compatible with each other. This is illustrated in Figure 4.6 for
a typical protected-permissive operation along with a proposed action scheme. Five
actions are defined to allow the controller to follow basic ring-and-barrier structures
while also implementing some features common to actuated signals. At every second,
the agent chooses a legal action from each of the five available actions. Action 0 is
the do nothing action and allows the controller to move to the next decision frame
without changing the signal. Actions 1 and 2 advance phases in only rings 1 and 2,
respectively.

Figure 4.6: Actions Available to the Controller

When crossing a barrier, actions 1 and 2 also allow the agent to implement protected-
permissive operation by advancing ring 1 or 2 to the left turn phase (e.g. φ1 to φ3 for
action 1) and the other ring to the last compatible phase (e.g. φ6 to φ8 for action 1).
When crossing a barrier, these actions are only permitted if both rings have served
the main through phase (e.g. if φ5 and φ2 are timing, Action 1 is illegal). Action 3

advances both rings 1 and 2 to the next phase and, like actions 1 and 2, when crossing
a barrier is only valid if all rings are timing the phase immediately prior. In protected-
permissive settings, when crossing the barrier, action 3 will provide a protected left to

74



4 deep reinforcement learning : signal control of isolated intersections

both directions. Action 4 is only valid when both rings are timing the phase before the
barrier (e.g. φ2 and φ6). When selected it causes the controller to skip to the phase just
before the next barrier. In protected-permissive configurations this means advancing
to the through movements for both directions.

Action filtering is employed to prevent the agent from selecting illegal actions.
Where an action is illegal and has the highest Q value, the agent cannot select it
and must instead select the action with the next highest Q. This design is suitable for
most typical applications, but some complex situations may require additional con-
siderations. However, adding additional rings would increase the number of actions
significantly resulting in more state-action pairs for the model to learn.

4.3.2 Reward Function

Reward functions are the primary method by which a model developer guides the
strategy learned by a reinforcement learning agent. The design of a rewarding func-
tion will influence how fast the agent learns and how effective the final policy is. For
traffic signal control, several options are available depending on what goals are to be
achieved and the design of the model. Since the input is framed in terms of queue
lengths it naturally makes sense to consider a reward function that considers these in-
puts. Further, since decisions are made frequently, it is necessary to consider a metric
that can give instantaneous feedback to the model.

A number of different rewarding structures based on the queueing mechanism were
therefore evaluated and a sensitivity analysis was conducted. In the first, a reward of x
for each vehicle discharged and a penalty of y for each queued vehicle were assigned.
An additional penalty factor u can also be applied to penalise the agent for creating
split failures. Different candidate values for x,y, and u are evaluated. Since rewards
and penalties are applied every second, the long term effect of of the reward is similar
to the total delay. This rewarding system requires that agent be able to observe the
discharges from the stop bar for any time period where the model is being trained.

Reward clipping has been shown to have positive effects on learning by stabilising
the performance (Mnih et al., 2013). Reward clipping modifies the original reward
value by restricting its output to some specific range, commonly (−1, 1). Clipping is
done using a wide variety of approaches, including truncating rewards outside the
range or scaling the rewards to fit within the range. In this work a scaling approach
is evaluated where the rewards are clipped between (−1, 1) by a sigmoid function
shown in Equations 4.1 and 4.2 below. The function applied will diminish the penalty
for excessive queues but threshold values can be configured.

Rc =
Rt
250√

1+ ( Rt250)
2

(4.1)

Rt = (xt − yt)× u (4.2)

Where:

75



4 deep reinforcement learning : signal control of isolated intersections

Rc is the clipped reward
Rt is the reward from actions in time t given the state St, successor state St+1,
and action At taken
xt is the positive component of the reward calculation
yt is the negative component of the reward calculation, or the penalty to be
subtracted
u is a scalar parameter that can be configured

In addition to this approach, a second approach to the rewarding system was also
evaluated. This approach attempts to minimise the longest queue at the intersection
based on work proposed by Li et al (Li, Lv, and Wang, 2016). In this approach the
agent is rewarded for each vehicle gi behind a green light and penalised for each
vehicle ri behind a red light and rewards are clipped using Equation 4.1.

Finally, a third approach to rewarding was also evaluated. In this third approach
the agent is only rewarded for discharging vehicles and not penalised for any other
actions.

4.4 transfer learning

In Section 2.4.4 the idea of transfer learning is introduced. Transfer learning is a critical
part of any machine learning model that would be applied to real-world intersections.
In practical situations, it would be expected that a model would be first pre-trained
in a simulation environment and then applied in the real-world. This could reveal a
number of problems as the model’s performance may be tied to the driver behaviours
of the simulator, which could differ from local real-world driver behaviour.

A transfer learning approach is therefore evaluated by first pre-training the model
on one simulator (e.g. SUMO) and then applying it on another (e.g. VISSIM) as a way
to simulate the transfer between simulated and real-world environments. These sim-
ulators have different driver behaviour models, VISSIM’s is based on the Wiedemann
model outlined in Section 2.2.5.1 and SUMO is based on Krauß’s model as outlined in
Section 2.2.5.2.

4.5 scenario settings

A simulation environment was developed in SUMO as shown in Figure 4.7. This envi-
ronment is a single four-legged intersection with two lanes for the through and right
movements as well as additional turning lanes for the left turn movement. In the de-
fault scenario, volumes are generated using a stochastic Poisson arrival process, with
the average arrival rates given in Figure 4.8 and Table 4.1. This arrival rate starts with
one direction at a low volume and the other direction at a high volume and steadily
switches which direction has the higher flow.

In addition to the volume settings, the other settings listed in Table 4.1 were estab-
lished as the reference scenario. Subsequent comparisons were made by modifying
some of these settings to gauge their impact while holding others at their defaults.

76



4 deep reinforcement learning : signal control of isolated intersections

Figure 4.7: SUMO Network

For the initial sensitivity analysis, turning movements and protected left turn phasing
is not considered to reduce the training time as the agent only has to choose be-
tween two actions, changing the signal or doing nothing. A test with the best values
identified is then run with volumes that contain all turning movements and protected-
permissive phasing. Based on the initial analysis work, the simplifications were found
to not have a significant impact on the overall patterns of the sensitivity analysis be-
yond increasing the training time.

Figure 4.8: Default Volume Scenario

77



4 deep reinforcement learning : signal control of isolated intersections

Table 4.1: Default Settings

Setting Value Setting Value

Volumes Model

Northbound and linear increase to Initial Epsilon 1

Southbound 2400 every 900s Final Epsilon 0.005

Eastbound linear decrease to Annealing Steps 50000

Westbound 0 every 900s Observation Steps 10000

Turning Ratios (R,L,T) 0%,0%,100% Learning Rate 10−6

Discount Rate γ 0.99

Simulator Mini-batch Size 32

Speed Limit 60 kph Detectable Queue 80

Driving Model Krauss (Krauß, 1998) Reward Function x = 5;y = 0.4

Terminal State 10800 seconds or - u = 10 times

total queue > 150 - queue > 2

4.6 sensitivity analysis

A sensitivity analysis was conducted on the isolated intersection by varying some
of the critical parameters and retraining the model. The sensitivity analysis covers
the detectable queue length, reward function parameters, other model settings, and
transfer learning. A comparison is also provided to traditional actuated control with
a ring-and-barrier controller.

Results in these sections are collected as averages of a complete scenario run (maxi-
mum 3 hours). Terminal states occur either when the full simulation has run or when
the total queue length in the system exceeds 150 vehicles. Excessive queues represent
unrealistic situations where the agent has lost control over the situation; therefore
reducing their prevalence could lead to less experience required before convergence.

4.6.1 Detectable Queue Length

The model’s input depends on the availability of queueing information, but in many
practical situations this information may be limited in its availability, including limits
on the resolution and range of detectable vehicles. A sensitivity analysis was con-
ducted to evaluate the performance of the model as the detection limits ranged from
2 to 80 for Queue length. Queue detection is modelled through a per-lane system, and
the Queue vectors are scaled to accommodate the tested limits. The reward function
similarly is not scaled past the detection limit, though discharges are still recorded as
usual. The results of this analysis are highlighted in Table 4.2 and Figure 4.9 for all
models that converge to a stable policy that ceases to trigger terminal states.

78



4 deep reinforcement learning : signal control of isolated intersections

Table 4.2: Comparative Results based on Limited Queue
Lengtha

Detectable Average Average Convergence Stepb

Queue Queue Delay (steps)

2
c - -

10 23.7 36.6 1030000

20 23.0 35.9 1020000

40 23.0 35.8 1300000

80
d

23.0 35.8 1050000

a Results for 1 million time steps after initial conver-
gence of the baseline model (1× 106 to 2× 106)

b Convergence Step defined as point where accumu-
lated reward does not improve by more than 5% over
the next 100 complete simulations.

c Does not converge to a stable policy.
d Baseline settings

The reward accumulation plot in Figure 4.9c shows the total rewards collected in
an episode for each model as it gains experience. Total rewards will peak and plateau
once the model’s training has stabilised, and generally a model that collects higher
rewards is better for the same reward function. However, in this test, since the reward
function’s penalty is affected by the queue detection, this comparison is limited. In
most cases, rewards plateaued after around 1 million frames of experience.

When only 2 vehicles can be detected the model is not able to converge to a sta-
ble policy. With such limited resolution, queues are almost always detected at all
approaches and the agent is not able to discern a proper strategy. Further, the agent
sometimes ignores long queue lengths, especially when volumes are low on the other
approach, in favour of collecting rewards from the main street. All other settings ex-
amined eventually converge to policies that produce stable timings.

Training beyond the onset of plateauing in the collected rewards resulted in a degra-
dation of performance for all models, likely due to over-fitting. Average delays in-
creased by at least 10% beyond 2 million frames for all models except for the case in
which the detectable queue length was set to 10.

Although the model with the detectable queue length set to 10 did converge to a
stable policy, its performance was noticeably worse than all other models. An Analysis
of Variance (ANOVA) and Tukey analysis were conducted to compare the performance
results of the models and determine which differences were statistically valid. For a
period of 1 million steps after the convergence of the baseline model, only the model
with detection less than 10 had a statistically significant difference. However, after 2

million frames, all models have similar performance with no statistically significant
differences. However, this is likely due to over-fitting to this demand pattern.

79



4 deep reinforcement learning : signal control of isolated intersections

4.6.2 Effect of Reward Function Parameters

Since the model’s primary goal is to maximise rewards, the reward function’s design
is a critical component of the model’s architecture. A variety of values were tried to
evaluate the effect of the penalty and reward factors (x and y) and the scale factor
(u) that define the final reward specified in Equation 4.1 and 4.2 have on the model’s
learning rate and final performance. A total of four settings for x, y, and u plus the
baseline setting were examined as outlined in Table 4.3. Mathematically these can be
represented using the following basic forms:

xt = bx ×Q(t) (4.3)

yt = by × E(t) (4.4)

Where:
Q(t) is the queue length at the end of time interval t
bx is a weight parameter applied to the queue length Q(t) at time t
E(t) is the count of discharged vehicles during time interval t
by is a weight parameter applied to the count of discharged vehicles E(t) at
time t

A further 3 settings were also examined for the alternative reward framing dis-
cussed in Section 4.3.2. These results are all presented in Table 4.3. The results are
highlighted in Table 4.3 and Figure 4.10. Changes to the reward function resulted in
substantial impacts to the convergence of the model. In particular, only the Baseline,
R2 and R3 settings produced stable performance while the alternative reward framing
was not able to converge to a stable policy at all. The baseline setting performed the
best, acheiving a 60% higher level of performance than the next best performer - R3.
The additional guidance provided by penalising the agent for split failures through
the u parameter was found to be useful, as the performance of the baseline with
u = 10 performed better than setting R2 which removed the effect of u. This parame-
ter also has the effect of penalising the agent for rapidly changing the the traffic light,
which is not optimal as the "do nothing" action often should be selected until queued
vehicles discharge.

4.6.3 Effect of Model Training Settings

In ε-greedy training, the agent first decides whether to exploit its knowledge with
probability 1− ε or explore with probability ε. The process of training aims to allow
the model to act and obtain experience to refine its ability to identify the optimal
action to take at any given time. Training is divided into three stages. In the first
stage the agent observes the environment and ε is not annealed and held at its initial
value. This stage allows the agent to collect experiences to fill its experience buffer,
and the target network is not updated during this stage. Longer observation periods
will give more varied experiences to sample from the initial training, but the time
spent observing may be wasted if no valuable information is obtained or could be

80



4 deep reinforcement learning : signal control of isolated intersections

Table 4.3: Comparative Results based on Rewardsa

Avg. Queue Avg. Delay Conv. Stepb

Name Setting (Vehicles) (Seconds) (steps)

Baselinec bx = 5,by = 0.4,u = 10×Q(t) > 2 23.0 35.8 1050000

R1
d bx = 1,by = 0.4,u = 10×Q(t) > 2 - - -

R2 bx = 5,by = 0.4,u = 1 35.4 52.2 1100000

R3 bx = 10,by = 0.4,u = 10×Q(t) > 2 30.2 43.5 1610000

xt = Q(t) behind green lights; - - -

R4
d yt = Q(t) behind red lights - - -

xt = Q(t) behind green lights; - - -

R5
d yt = 2×Q(t) behind red lights - - -

xt = 2×Q(t) behind green lights; - - -

R6
d yt = Q(t) behind red lights - - -

a Results for 1 million time steps after initial convergence of the baseline model (1× 106
to 2× 106)

b Convergence Step defined as point where accumulated reward does not improve by more
than 5% over the next 100 complete simulations.

c Baseline settings
d Does not converge to a stable policy.

unhelpful if the situations observed are not realistic. Following this stage, the value
of ε is annealed by reducing it from an initial value to some smaller final value. This
annealing occurs over the length of time assigned to this stage. During this period the
agent changes from primarily exploring the relationship between states and actions to
exploiting the knowledge it has developed. When ε is fully annealed, the agent may
continue training but will generally exploit its knowledge and greedily select the best
action.

When exploring by selecting a random action, the agent will weight each action
equally and select one. However, the problem of traffic control in per-second continu-
ous decision-making means that the agent will typically expect to select the do nothing
action until a suitable time and then select one of the other actions. If each action is
weighted equally, then the agent’s exploration horizon will be limited to the first few
frames after the signal has timed with the minimum green. To address this limitation,
an alternative training method was considered where if the agent randomly decides
to choose the do nothing action, the action is repeated for N times, with N is set to
30× h× ε, where h is a random value between 0 and 1 and ε is the current value of
ε during the training. N therefore decreases from a maximum value of 30 seconds as
ε is annealed.

In this section the effect of lengthening or shortening the training periods is assessed
for its impacts on training speed. This includes the length of the observation time,

81



4 deep reinforcement learning : signal control of isolated intersections

annealing time, initial ε value, learning rate, and discount factor γ. The learning rate
controls how fast the weights of the model are updated and higher values can lead
to faster training times. The tested models are all trained using the Adam Optimiser,
which is a stochastic gradient descent algorithm (Kingma and Ba, 2014).

The results are shown in Table 4.4 and Figure 4.11. Each of the settings test differ-
ent lengths of the training time, with M1 to M3 using shorter or longer observation
lengths. Settings M4 to M6 change the length of the annealing period. Settings M7
to M10 test different learning rates and discount factors. The learning rates and dis-
count factors tested are lower and higher than the default baseline. Finally setting
M11 evaluates the performance of the alternative training strategy.

Table 4.4: Comparative Results based on Model Settingsa

Avg. Avg. Convergence Stepb

Name Setting Value Queue Delay (steps)

Baselinec Baseline - 23.0 35.8 1050000

M1 Observation Length 2000 23.1 36.0 1570000

M2 Observation Length 5000 24.9 37.4 1470000

M3 Observation Length 30000 32.5 37.8 1760000

M4 Annealing Length 20000 25.6 36.1 990000

M5 Annealing Length 40000 24.9 37.4 1450000

M6 Annealing Length 70000 37.5 29.8 2880000

M7
d Learning Rate 10−5 - - -

M8
d Learning Rate 10−7 - - -

M9 Discount Factor 0.75 23.0 35.3 780000

M10 Discount Factor 0.50 25.2 37.2 800000

M11 Random Green 30s× h× ε 23.9 36.4 770000

a Results for 1 million time steps after initial convergence of the baseline model (1×
106 to 2× 106)

b Convergence Step defined as point where accumulated reward does not improve
by more than 5% over the next 100 complete simulations.

c Baseline settings are 10000 and 50000 steps of observation and annealing respec-
tively, discount of 0.99, and learning rate of 10−6

d Does not converge to a stable policy.

In terms of performance, settingsM3 andM6 highlight that longer observation and
annealing intervals did not translate into faster convergence. While the final difference
in performance of the models was not statistically significant from the baseline after
convergence, convergence occurred faster for shorter observation and annealing inter-
vals. Overall, the baseline provided the best performance, however setting M4 had
faster convergence.

82



4 deep reinforcement learning : signal control of isolated intersections

The benefit of shorter annealing or observation times could be caused by the ten-
dency of exploration to lead to unrealistic traffic jams. This is strengthened by the fact
that setting M11 that tested the alternative training strategy had the fastest conver-
gence of all settings with convergence observed in 770,000 simulation steps compared
to 1 million for the baseline setting.

Learning rates other than 10−6 did not converge onto optimal policies. This re-
sult was unexpected as other applications with similar Deep Neural Networks (DNN)
designs have achieved success with such learning rates on different problems (e.g.
(Krizhevsky, Sutskever, and Hinton, 2012; Zhu et al., 2017), however this learning rate
is still normal but suggests that exploration in the problem space does not reliably
produce experiences that would allow faster training. This implementation did not
examine the effect of variable learning rates, and annealing the learning rate from
a higher value to a lower one may also provide benefits over static learning rates
(Chollet, 2017).

The discount factor controls how an agent prioritises immediate rewards and future
rewards. High values of γ means the agent’s time horizon is longer, while smaller val-
ues lead to prioritisation of immediate rewards. Some researchers have used values as
low as 0.1 (Li, Lv, and Wang, 2016). Depending on the reward function and problem,
high discount values can lead to extremely large Q values as the agent’s time hori-
zon approaches infinity and long time horizons can obscure the effect of immediate
choices, making it more difficult to learn an optimal policy. Values of 0.5 and 0.75were
compared to the baseline of 0.99. When γ is set to 0.5 the effect of rewards beyond
the next 5 steps is greatly diminished. Similarly, for 0.75 the effect of rewards beyond
the next 15 steps is negligible, while for 0.99 rewards within the next 200 steps still
contribute significantly. While both discount factors provided faster convergence than
the baseline condition, the initial performance at convergence for the 0.5 setting was
generally worse than the baseline condition. In general, setting the discount factor
to a lower value of 0.75 encouraged faster training and provided the same or better
performance when compared to the baseline.

Regardless of the settings chosen, all the models eventually converge onto a policy
that provides a similar level of performance, and the primary impact observed was
on training speed. For more complex problems, training speed becomes an impor-
tant variable as complex action spaces can hinder the ability of the agent to explore
effectively.

4.6.4 Effect of Time of Day

The baseline observation from the observation matrix includes vectors to encode the
time of day Th and day of week Tw. A sensitivity analysis was conducted by training
the model with, without, and with only time of day information. The test scenarios
are summarised in Table 4.5 and Figure 4.12. An alternative volume scenario was
also tested with settings S3 and S4. In these settings the volume is adjusted to more
clearly follow hourly lines. The NB/SB approaches have volumes of 1800vph and the

83



4 deep reinforcement learning : signal control of isolated intersections

EB/WB approaches have volumes of 800vph. During the second hour, all approaches
have volumes set to 1300vph.

Table 4.5: Comparative Results based on Observation Space Configuration. Re-
sults for time period between 3× 106 and 4× 106 timesteps

Name Space Queue & Delay Conv. Step (steps)

Baseline Ot = {qi,P, Th, Td} 24.0 36.7 1050000

S1 Ot = {qi,P} 24.0 36.4 1050000

S2
a Ot = {P, Th, Td} - - -

S3
b Ot = {qi,P, Th, Td} 24.1 35.5 1480000

S4
b Ot = {qi,P} 23.7 35.0 2450000

a Does not converge to a stable policy
b Settings with alternate volumes

The results showed that while the time of day information reduces the training time
in some cases, the results are mixed. Setting S1 had similar performance to the base
scenario and similar convergence speed. While setting S3 initially converged faster
in terms of the rewards collected, setting S4 still had better initial performance, and
ultimately the performance difference between the two models was not significant.
Setting S2 was not able to converge to a stable policy when only time of day informa-
tion was provided. Since decisions are made continuously on a per-second horizon
and no green information was provided the agent cannot predict when to change the
signal.

4.7 model transferability

The transferability of trained models is a major gap in the literature but is an impor-
tant question when studying how such models could be applied in field settings with
conditions that are different from those assumed when the models were trained. In
practical situations, it would not be possible to train a model by allowing it to ran-
domly select actions and navigate through traffic congestion. Although models could
be pre-trained in simulation environments, the behaviours the model learns will be
different and some adjustments would likely be needed. A study was designed to
evaluate how difficult fine-tuning would be if the underlying driver behaviour was
modified. The transferability of the trained DRL model is evaluated by training the
model using data from one simulator (e.g. SUMO) and testing its performance in an-
other (e.g. VISSIM). A model was pre-trained in SUMO for 1 million frames and then
applied on a VISSIM network that replicated the layout and volumes of the train-
ing intersection, as shown in Figure 4.13. This training time was identified as the
convergence time and stopping the pre-training here avoids over-fitting the model to
the SUMO network. VISSIM’s driver behaviour model is a psycho-physical model that
has different driver behaviour regimes and is used in many professional applications.

84



4 deep reinforcement learning : signal control of isolated intersections

SUMO’s driver behaviour is based on gap distances and collision avoidance, and the
model contains a number of changes to prioritise calculation speed that allows it to
simulate large scale networks (Krauß, 1998).

Without calibration, both SUMO and VISSIM have noticeable performance differ-
ences under the same traffic conditions. Visual differences can be observed in the
discharge rate of vehicles and there are noticeable congestion differences for the same
actuated timing plan between both simulators. Pre-training a model on SUMO and
then applying it on VISSIM is therefore similar in some regards to pre-training the
model in simulation and then applying it to a field setting. During fine tuning, the
model’s ε value is not reset and training continues with the agent usually exploiting
its pre-learned knowledge.

The results of the fine-tuning process are shown in Figure 4.14. The model’s initial
performance is not optimal and visually the agent initially repeatedly switches be-
tween phases too early resulting in congestion. However, convergence is much faster
and after 75,000 simulation time-steps the model re-converges on an optimal policy,
though after about 10,000 steps the models performance becomes acceptable and it
no longer triggers terminal states due to congestion. This result suggests that some
fine-tuning would be required in the field, but that much of the knowledge learned
in the simulation environment could be transferred. In this instance, transferring the
trained network to VISSIM required approximately 1 additional day of fine-tuning,
though acceptable performance was observed sooner.

4.8 comparison to traditional signal control and timing methods

The baseline model’s performance was compared to a traditional actuated control.
Actuation is enabled through SUMO’s ability to simulate loop detectors and three tim-
ing plans for each of the hours simulated were used. These plans were developed
in SYNCHRO with average volumes for each of the hours. The same plan was run
both in a fully-actuated configuration and in fixed time configuration. The following
results in Table 4.6 highlight the comparison between the traditional approaches and
the baseline model.

Table 4.6: Comparative Results to Traditional Control
Methods

Name Average Queue Average Delay

Baselinea,b
23.0 35.8

Fully Actuated 25.1 38.9

Fixed Time 25.4 39.18

a Results for 1 million time steps after initial conver-
gence of the baseline model (1× 106 to 2× 106)

b Baseline settings

85



4 deep reinforcement learning : signal control of isolated intersections

When compared to traditional control methods, the baseline model reduces de-
lays by 10% when compared to the fixed time controller and 6% when compared to
actuated signals. Importantly, however, the baseline model is not seeded with any
knowledge of the demand at the intersection.

4.9 full ring and barrier controller

A ring-and-barrier style controller was then evaluated using the full action space spec-
ified in Section 4.3.1.2. The scenario modelled in the previous case studies shown in
Section 4.5 is adapted by modifying the base scenario to have turning volumes of 10%
left, 10% right, and 80% through. Apart from the turning movements, all settings and
configurations remain the same for the simulation and training process as outlined
previously.

Delay results for the full actuated controller are shown in Figure 4.15. Accommodat-
ing turning traffic requires longer cycle lengths, especially in the middle hour where
both directions have high volumes. This causes higher delays when compared to the
two-phase case. The training time and results for the baseline scenario is also plotted
on this figure. When compared to the baseline scenario, training times are also nearly
four times as long and the model does not converge until over 2 million frames of ex-
perience have been recorded. Performance during the learning process is also initially
very poor as the agent learns to balance when protected left turn phases should be
called.

4.10 conclusions

This chapter investigates the ability of DRL to operate and optimise the control at an
isolated intersection. A platform was developed including an Application Program-
ming Interface (API) interface by which different components can be removed and
replaced, such as the learning model and simulator. This creates a de-coupled system
where, in the future, it may be possible to conduct further research on this platform us-
ing field studies or hardware-in-the-loop simulation. A complete structure necessary
for a DRL model to operate was then specified, including a state space and observation
definition, action pattern, reward functions, and parameters of the model.

A sensitivity analysis was then conducted to identify the optimal settings for the
model. The first parameter explored was the maximum queue length that the model
can observe, and it was found that performance started to degrade as soon as fewer
than 10 vehicles are observable. A variety of reward functions were then examined,
but the best performance was observed when the model was penalised with 5 points
for each queued vehicle and reward 0.4 points for each discharged vehicle at every de-
cision point. In terms of training length, the best performance came from the baseline
settings with observation occurring over the first 10,000 frames and then annealing
ε over the next 50,000 frames. Longer annealing times did not improve performance.
The optimal learning rate was found to be 10−6 and higher or lower rates resulted

86



4 deep reinforcement learning : signal control of isolated intersections

in models that would not converge to optimal policies. Setting the discount factor to
0.75 was associated with improved performance.

In terms of the state space, removal of the time of day information from the state
space did not seem to have an effect on the final performance of the model, but this
may be due to the volume scenario tested. However, in some cases, the time of day
information seemed to help reduce training times.

Providing the model with more useful experience when acting randomly was also
associated with a reduction in training time. Since the agent typically must choose the
do nothing action sequentially in most cases, the alternative training strategy forced the
agent to on occasion select the do nothing action multiple times in a row. This allows
for more varied experience as the performance of the traffic system rapidly degrades
if the agent switches phases too soon.

Transfer learning is a strategy that allows a model to be pre-trained in one environ-
ment and then fine-tuned in another. This strategy has not been discussed at present
in the literature, but will be vitally important if deep learning models are to be applied
to traffic signal control problems. Transfer learning was found to significantly reduce
training times when a model trained in one simulator was fine-tuned on a different
simulator with different driver behaviour dynamics.

Finally, a full ring-and-barrier controller was trained and compared to the two-
phase controllers. It was found that training a full ring-and-barrier controller requires
almost three times the training time. Performance during the learning phase was also
substantially worse than the two-phase design as the controller has more actions from
which to choose.

87



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay

(b) Average Queue

Figure 4.9: Evaluation Results by Queue Length Observation Limit

88



4 deep reinforcement learning : signal control of isolated intersections

(c) Reward Accumulation

Figure 4.9: Evaluation Results by Queue Length Observation Limit

89



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay

(b) Average Queue

Figure 4.10: Evaluation Results by Reward Function Parameters

90



4 deep reinforcement learning : signal control of isolated intersections

(c) Reward Accumulation

Figure 4.10: Evaluation Results by Reward Function Parameters

91



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay

(b) Average Queue

Figure 4.11: Evaluation Results by Reward Function Parameters

92



4 deep reinforcement learning : signal control of isolated intersections

(c) Reward Accumulation

Figure 4.11: Evaluation Results by Reward Function Parameters

93



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay

(b) Average Queue

Figure 4.12: Evaluation Results by Time of Day Parameters

94



4 deep reinforcement learning : signal control of isolated intersections

(c) Reward Accumulation

Figure 4.12: Evaluation Results by Time of Day Parameters

Figure 4.13: VISSIM Network

95



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay (b) Average Queue

(c) Reward Accumulation

Figure 4.14: Evaluation Results from VISSIM with pre-trained Model

96



4 deep reinforcement learning : signal control of isolated intersections

(a) Average Delay

(b) Average Queue

Figure 4.15: Evaluation Results from a Full Ring-and-Barrier Controller

97



4 deep reinforcement learning : signal control of isolated intersections

(c) Reward Accumulation

Figure 4.15: Evaluation Results from a Full Ring-and-Barrier Controller

98



5
D E E P R E I N F O R C E M E N T L E A R N I N G : S I G N A L C O N T R O L O F
M U LT I P L E I N T E R S E C T I O N S

Multi-intersection configurations introduce new challenges due to the traffic interac-
tion between intersections in contrast to the case for the isolated intersections consid-
ered in Chapter 4. While an agent pre-trained on an isolated intersection will likely
still perform well, some opportunities can be missed depending on the information
available to the agent. In particular, in coordinated settings the actions taken at other
intersections could be useful as indicators to predict when vehicles may arrive. How-
ever, using input from other intersections can create dependency relationships where
the unavailability of this information can affect the performance of the model. Further,
these relationships may not be generic and transferable as they are expected to depend
on many factors such as the spacing of intersections, speed limits of roadways, and
the level of congestion. This Chapter introduces a new DRL model for optimising the
coordinated control of multiple intersections. The following sections present details
of the proposed DRL model and a case study on its performance in comparison to the
state-of-the-art adaptive traffic control system - SCOOT.

5.1 problem description and overview of methodology

In Chapter 4 the single intersection traffic signal control problem was framed as a
Markov Decision Process (MDP), in which the traffic system was described in terms
of states St, which include all relevant elements such as the vehicles, their positions,
speeds, the time of day, and an control agent was used to make decisions on the
actions At based on observations Ot and the expected rewards Rt. A Deep Reinforce-
ment Learning (DRL) model that uses a Deep Q Networks (DQN) was proposed to
learn the Q value of choosing each action in a given state.

In this Chapter, we attempt to extend the single intersection model for adaptive
traffic signal control and coordination of multiple intersections. Specifically, this re-
search investigates the feasibility of making use of the trained single intersection DRL

model for controlling individual intersections in a network with some minimal ad-
justment to the model structure. Unlike the conventional network or corridor signal
coordination plan, there is no need to explicitly consider a common cycle time and
signal offset between neighbouring intersections as decisions on phase transition at
individual intersections are made on a second-by-second basis. As a result, the same
MDP framework described in the previous chapter will be used for the control agent
at each intersection, but with the additional assumption that each agent is able to
observe the decisions of other agents (e.g., signal timing upstream intersections).

99



5 deep reinforcement learning : signal control of multiple intersections

This research first considers the problem of applying the model for isolated inter-
sections onto a network of multiple intersections. In this approach each agent solves
its own local problem, and the key focus is on the scalability of the model by exam-
ining how the training of the model can be adapted to scale on a multi-intersection
environment. In this approach one model is pre-trained on a generic intersection and
then transfer learning is used to apply the model to intersections with different config-
urations. Then, this research considers the idea of providing timing information from
upstream intersections to each agent as part of the observations they can make.

5.1.1 Observation Matrix Changes

The state space observation matrix as described in Section 4.3.1.1 is used as a starting
point. This matrix contains vectors for queues at each approach, signal state, and time
of day information. The implementation evaluated in this section allows up to 80
vehicles to be detected.

An extended structure is considered as an alternative scenario. Timing information
Uk = t1, t2, ...tm from up to four upstream intersections k ∈ 1, 2, 3, 4 can be provided
to each agent, as shown in Figure 5.1. This timing information is encoded similarly
to all other data in a binary-vector format where ti is 1 if the time in seconds since
the last green is greater than i. In this design m is constrained to a maximum of 80
seconds. Since intersections may be arbitrarily spaced, this information’s usefulness
is tied to the specific intersection. To evaluate its impact, after training a model with a
set of timing vectors, the vectors are removed to simulate the effect of a disconnection
between the two intersections.

Figure 5.1: Extended State Space

5.1.2 Transfer Learning

In Section 2.4.4 the idea of transfer learning was introduced and in the sensitivity anal-
ysis conducted in Section 4.7 transfer learning was evaluated by pre-training a model

100



5 deep reinforcement learning : signal control of multiple intersections

on one simulator and transferring the model to another. In this corridor evaluation
the idea of transfer learning was further explored by transferring a model pre-trained
on a generic intersection to an arbitrary set of real-world intersections in this corridor.

5.2 model training and evaluation

5.2.1 SCOOT Emulation

In order to evaluate the performance of the proposed model, an emulator for one of
the most popular adaptive traffic control systems - SCOOT is implemented and used
for benchmarking purposes. Traditional adaptive traffic control systems vary in their
conventions and approach to the coorindation problem. Many of these systems are
proprietary and the exact workings are not available. However, the theoretical basis
for most of these approaches is widely published and available. To benchmark our
proposed DRL optimisation model, one of the most successful adaptive traffic signal
control systems - SCOOT is used as the comparison reference. SCOOT is an adaptive
algorithm originally developed in the 1980’s and works by incrementally adjusting
the split time, cycle time, and offset at coordinated intersections. In order to enable
a simulation-based analysis, the basic functions of the SCOOT system must be imple-
mented in the same simulator where our proposed solution is tested. This section
describes how the basic functions of the SCOOT system is emulated in SUMO based
on past work published on SCOOT. These include the operating manual for SCOOT

(Siemens Mobility, Traffic Solutions, 2016), some early work published outlining the
approach when it was first proposed (Hunt et al., 1982; Robertson and Bretherton,
1991; Robertson, 1986), and versions of SCOOT replicated by other researchers (Raphael,
2018). The following sections provide an overview of the modules and functions repli-
cated from SCOOT, including the split, cycle, and offset optimisers. A detailed overview
of the implementation, including pseudo-code, is provided in Appendix A in Section
A.4.2. The implementation outlined in these sections tries to maintain and use current
SCOOT default parameters wherever possible.

5.2.1.1 Split Optimiser

SCOOT’s split optimiser changes the amount of green time allocated to individual
movements at the intersection. The fundamental principle governing the decision is
balancing the degrees of saturation (i.e. the ratio of the predicted arrival flow rate to
the capacity flow) for all approaches. This strategy attempts to ensure fairness for all
users sharing the intersection’s space and produces a solution that is approximately
optimal in terms of delay minimisation. The balancing can prioritise one direction,
but by default aims to make all approaches equal.

In SCOOT, these decisions are made 5 seconds before the scheduled end of each
phase with three possible outcomes: terminating early, doing nothing, or extending
the phase. When the controller chooses to terminate early or extend, by default this is
done for a temporary extension or termination of 4 seconds. Then, for the following

101



5 deep reinforcement learning : signal control of multiple intersections

cycle, the timing plan is permanently altered by 1 second (Raphael, 2018; Siemens
Mobility, Traffic Solutions, 2016). When making the decision, SCOOT uses predicted
arrival flow rates for each approach by applying a cyclic flow model.

The cyclic flow model applies the Robertson platoon dispersion model (Raphael,
2018) with the same functional form previously discussed in Equations 2.5 and 2.6
in Section 2.2.2 on page 24. The Robertson equations require specification of the cal-
ibration parameters α and β which are taken as 0.35 and 0.8 respectively based on
recommendations for moderate demand (Gordon, 2003).

5.2.1.2 Cycle Optimiser

With default settings, SCOOT’s cycle optimiser runs every five minutes. The cycle op-
timiser looks at the degree of saturation at all intersections on the corridor under the
control of SCOOT in a specified region and tries to adjust this cycle time such that
the maximum degree of saturation at any intersection is closest to 0.9. This is done
by evaluating an increase or decrease of 0, 4, 8, 16, or 32 seconds to the cycle time.
SCOOT also considers the impact of changing some minor streets to double or half
cycle lengths (Raphael, 2018; Siemens Mobility, Traffic Solutions, 2016)

5.2.1.3 Offset Optimisation

By default, offset optimisation is done once per cycle, just before the final phase. SCOOT

considers the effect of adjusting the reference clock of the intersection by 4 seconds
(forwards or backwards) or retaining the current offset. This evaluation occurs by
comparing the number of stops that would be incurred for the cyclic flows predicted
and selecting the adjustment associated with the fewest stops (Raphael, 2018; Siemens
Mobility, Traffic Solutions, 2016).

5.2.1.4 Saturation Flow Rate

In field applications of SCOOT, a key parameter called the saturation occupancy is used
to estimate the degree of saturation and should be configured and calibrated to ensure
best performance. This value is similar to the concept of saturation flow but specific
to loop-detector-based applications (Siemens Mobility, Traffic Solutions, 2016) and
represents the fraction of time that a detector will be actuated when the intersection is
saturated. In field settings, it depends on local driving conditions and characteristics
of the detectors. However, in simulation settings the function of detectors is different
and not dependant on the same factors. Loop detectors in SUMO distinguish individual
vehicles and can count volume directly. Therefore, the concept of saturation occupancy
is not emulated; instead saturation flow is directly considered when estimating the
degree of saturation.

102



5 deep reinforcement learning : signal control of multiple intersections

5.2.2 Model Training

An overview of the training process is shown in Figure 5.2 for all learning scenarios.
When transfer learning is not applied, the process continues directly to fine tuning
and evaluation on the same network. During transfer learning, models were first pre-
trained on an isolated intersection for 1 million simulation frames before further fine-
tuning on their specific intersections. This duration was chosen in reference to the
sensitivity analysis conducted in Chapter 4. The training process is identical to the
process outlined in 4.5 and 4.6. Volumes used for the pre-training are the same as
those shown in Figure 4.8. As in Chapter 4, a model without turning movements
and a model with turning movements are trained, and when turning movements are
included the turning volume is set to 10% for each turning direction. An ε-greedy
approach is used but with the optimised settings identified in the sensitivity analysis.
In particular, an observation length of 10,000 timesteps and 200,000 further steps to
anneal ε were used. A discount rate of 0.9 was used.

Figure 5.2: Training Process

The two-phase model is explicitly designed to test transfer learning, including both
a transfer learning scenario and a scenario that trains the entire model on the corri-
dor. A full model with all turning movements is then trained and evaluated using a

103



5 deep reinforcement learning : signal control of multiple intersections

Figure 5.3: SUMO Simulated Corridor

transfer learning approach. During transfer learning, ε-greedy training is still used,
however ε is set to 0.2 and the observation time is reduced to 5,000 simulation frames.
ε is then annealed over 125,000 steps. This allows the controller to rely on exploration
more as it learns to manage an intersection with a different configuration.

Similarly the SCOOT controller and DRL models with the extended state space are
all trained and applied on the same corridor. For the DRL scenarios, two scenarios are
evaluated. In both DRL models are trained on their individual intersections using the
extended state space. Then, in the first scenario training is stopped and evaluation is
conducted. In the second scenario, the upstream timing information is disabled from
the state space and training is stopped. The model’s performance is assessed without
the timing information to assess its impact in the model’s decision-making.

5.2.3 Case Study Network

A six intersection corridor was simulated in SUMO. An overview of the network is
shown in Figure 5.3 and the locations of simulated SCOOT detectors are also high-
lighted. Detectors for SCOOT were placed immediately after the discharging exit for
the corridor intersections and immediately as vehicles enter the simulation when no
upstream intersection was present. In this corridor, intersections #1 and #6 are major,
while intersections #2-#5 are minor. However, for simplicity all intersections are mod-
elled as SCOOT enabled and a DRL model is trained and applied for each intersection.
The field environment has actuation on all major left turns and some of the left turns
for minor approaches; further, minor intersections are all semi-actuated. Field timings
were obtained and used when evaluating scenarios with all turning movements. Syn-
chro was used to generate timing plans for scenarios where turning movements were
excluded. Intergreen time was altered from the reference plan to be 5 seconds instead

104



5 deep reinforcement learning : signal control of multiple intersections

of 4, as times less than 5 were found to cause lock-ups and priority issues with turning
movements. A summary of the total volumes at all intersections is shown in Table 5.1.

5.3 results

The case study outlined above is used to generate a number of comparative studies.
The transfer learning scenarios tested include studies to test the advantages of transfer
learning, a comparative study to SCOOT, an evaluation of the extended observation
matrix, and a scenario with additional volume.

5.3.1 Effectiveness of Transfer Learning

Transfer learning was evaluated by training the system using two approaches. In the
first a single model is pre-trained and then transferred to each individual intersection
wile in the second all intersections are trained fully from scratch.Average cumulative
delay and queue lengths were collected in SUMO and averaged for all intersections
in the simulation. Due to limitations with SUMO’s data collection tools, delay is not
recorded until a vehicle exits the simulation, thus in congested situations that trigger
terminal states the results may are inaccurate. Transfer learning was first evaluated
using the two-phase model to identify any implementation challenges and then using
the full ring-and-barrier controllers.

In the two-phase evaluation, two models were developed to assess the impact that
transfer learning has. In the first transfer learning is applied and in the second the
model is fully trained on the corridor. During transfer learning, the model’s weights
are transferred after pre-training the model for 1 million frames to individual models
on each intersection. Delay, queue, and per-route delays are shown in Figure 5.5 for
the transfer learning scenario and full retraining scenario. For the transfer learning
scenario, only results after the transfer has taken place are shown.

Since ε is reset to 0.2, the agent initially causes some minor congestion after trans-
ferring the model, however the issues were mostly localised to the streets that had
different configurations and terminal states were never triggered by the model. Con-
vergence is achieved in about half the time when compared to re-training the model
with no experience and provides similar final performance. As can be seen in Figure
5.4b, when compared to the Synchro plan, the DRL models had a tendency to prioritise
movements on the minor street rather than the corridor as the main corridor, Univer-
sity Avenue, has higher delay in both DRL scenarios but the side streets have lower
delays. This may be a difference in design goals or may be due to the simplicity of
two-phase operations, but as a result of this difference the overall delay in the DRL

scenario is lower.
Following this assessment, the transfer learning approach was used with a pre-

trained full Ring-and-Barrier controller. The agent was trained on an isolated intersec-
tion for a total of 3 million frames and weights were transferred similarly to the case

105



5 deep reinforcement learning : signal control of multiple intersections

Table 5.1: Summary of Volumes at Each Intersection

Name Scenario Avg. Vol. Peak 15-min. Vol.1

University/Westmount (#1) 2504 3380

East Leg 831 1180

West Leg 393 460

North Leg 690 876

South Leg 589 864

University/Seagram (#2) 2082 2880

East Leg 1121 1640

West Leg 615 756

North Leg 96 336

South Leg 250 148

University/Phillip (#3) 1461 1860

East Leg 676 828

West Leg 648 808

North Leg 129 208

South Leg 8 16

University/Albert (#4) 1934 2828

East Leg 570 776

West Leg 608 816

North Leg 521 916

South Leg 234 320

University/Hazel (#5) 1377 1924

East Leg 592 744

West Leg 676 952

North Leg 35 60

South Leg 73 168

University/King (#6) 1865 2420

East Leg 525 632

West Leg 697 892

North Leg 290 408

South Leg 353 488

1 Estimated by using the maximum total 15-minute volume from the
data

106



5 deep reinforcement learning : signal control of multiple intersections

(a) Average Queues

(b) Average Delay

Figure 5.4: Evaluation Results for the Two-Phase Scenario

(a) Average Delay by Link

Figure 5.5: Evaluation Results for the Two-Phase Scenario

of the two-phase controllers. An additional 2 million frames of fine-tuning were re-
quired to fine-tune the individual models. The entire training process was completed
over 10 days on an intel i7-4790 processor.

When compared to the actuated controller running with existing field timings, the
DRL model provided noticeable benefits. The results are shown in Figure 5.6 and

107



5 deep reinforcement learning : signal control of multiple intersections

5.7.Field timings did not provide adequate service to the left turn movements at in-
tersections #1 (Westmount) and #3 (Albert) during peak periods and queue spillback
would block the through movement of these approaches. On average under the field
plan vehicles had 83 seconds of delay and an average of 91 vehicles were stopped be-
hind a red light throughout the entire simulation at any given time. The DRL reduced
the delay to 78 s with 66 vehicles waiting behind a red light resulting an overall im-
provement of 5% on the delay. However, the improvements may be higher as queues
at intersection #3 blocked vehicles from entering the simulation.

(a) Average Delay

(b) Average Queue

(c) Average Delay by Link

Figure 5.6: Evaluation Results for the Full Ring-and-Barrier Scenario

108



5 deep reinforcement learning : signal control of multiple intersections

(a) Average Corridor Delay

(b) Average Minor Street Delay

Figure 5.7: Evaluation Results for the Full Ring-and-Barrier Scenario

When comparing the performance on the minor and major streets, the DRL model
has a tendency to balance delays between the major and minor streets better and
avoids the creation of congested conditions. In contrast to the results from the two-
phase controller, in this setting the DRL model provides better performance to both
the side streets and the main corridor.

109



5 deep reinforcement learning : signal control of multiple intersections

5.3.2 Coordinated Control: A Comparison to SCOOT

The full Ring-and-Barrier design was extended and evaluated through a comparison
against SCOOT and semi-actuated signals. In this study all DRL models were fully
trained from scratch without transfer learning. A single model was trained for 5 mil-
lion frames on the corridor over a multiple-day period. Then, training was stopped
and the model’s final performance was compared, the results of which are highlighted
in Table 5.2

Table 5.2: Comparative Results to Traditional Control Methods and SCOOT

Name Average Travel Time Average Delay Average Queue

Semi-Actuated 160.1 s 92.3 s 83.4 veh

SCOOT 143.0 s 75.8 s 67.8 veh

DRL 139.1 s 70.3 s 58.7 veh

DRL-NN1
169.1 s 102.0 s 92.1 veh

1 In the NN scenario, neighbouring information is excluded during evalua-
tion

Overall, the DRL model performed the best and reduced delays by 7% when com-
pared to the SCOOT emulator. When the timing information from adjacent intersec-
tions was removed from the DQN model the performance of the agents degraded
significantly, and performance was worse than the actuated controller. This result was
surprising and may suggest some over-fitting to the scenario. Importantly, exclusion
of the neighbouring timing information is indistinguishable from "zero seconds since
the upstream phase showed green" to the agent as the vectors were blanked from the
state space, and this may create a false signal to the model. Regardless, the results of
this analysis show that the information from neighbouring intersections is valuable to
the controller but that a dependency relationship may be formed. In real-world situa-
tions, if information becomes unavailable, the model will either need to be trained to
consider this information or an alternative model may need to be applied as a backup.

5.3.2.1 Trajectory Comparison

Trajectory data was captured using SUMO’s position tracing tools. Trajectories for the
SCOOT, DRL, and DRL-NN scenario were plotted for the busiest 1000s period (5000s to
6000s) for vehicles travelling straight on the corridor from one of the evaluation runs.
These trajectories are shown in Figure 5.8 and 5.9

When compared to the SCOOT scenario, the DRL model has tendency to prefer lower
cycle lengths. Importantly, unlike SCOOT the DRL model is not constrained to a network
cycle time, and so individual intersections may change the light as best suits their
demand. Consequently, the SCOOT emulator creates some additional delay due to the
longer cycles. However, the progression provided by both models is very similar.

110



5 deep reinforcement learning : signal control of multiple intersections

(a) DRL (b) DRL-NN (c) SCOOT

Figure 5.8: Eastbound Trajectory Results for Each Model Scenario

In contrast, the DRL-NN scenario’s performance was noticeably worse and progres-
sion is routinely interrupted. Additionally, the model causes over-saturated congested
conditions at some intersections, especially the first intersection in the eastbound di-
rection. The tendency of the DRL model to minimise the cycle length was counter-
productive in the case of the DRL-NN and the model had a tendency to shorten the
cycle lengths even more.

5.3.2.2 Performance Sensitivity to Traffic Demand

Additional volume was then applied to the fully trained network to model changing
traffic conditions. These were done as linear volume increases of of 25% additional
volume and 50% additional volume on all routes compared to the baseline scenario.
The 25% additional increase in volume creates over-saturated conditions at some in-
tersections during the peak 15 minutes, while the additional 50% volume creates
over-saturated conditions throughout the network, blocking vehicles from entering
the simulation on some approaches.

The performance of the DRL algorithm and SCOOT are shown below in table 5.3. In
this table Blocked Vehicles are vehicles that could not be inserted into the simulation
(and so are not counted in the delay measures.

111



5 deep reinforcement learning : signal control of multiple intersections

(a) DRL (b) DRL-NN (c) SCOOT

Figure 5.9: Westbound Trajectory Results for Each Model Scenario

Table 5.3: Comparative Results to Traditional Control Methods and
SCOOT

Volume Scenario Model Average Delay Blocked Vehicles

25% SCOOT 131 s 300 veh

25% DRLs 115 s 251 veh

50% SCOOT 312 s 1103 veh

50% DRL s 288 s 721 veh

These results show that the DRL model is able to keep its performance as the volume
scenario changes, and continues to provide improvements when compared to SCOOT.
Average delays were lower by 13% and 8% respectively for the 25% and 50% additional
volume scenarios. Approximately 17% and 35% more vehicles were able to be inserted
into the network when compared to the SCOOT scenario for the 25% and 50% volume
scenarios, which suggest the DRL model is able to improve network throughput when
compared to other alternatives.

112



5 deep reinforcement learning : signal control of multiple intersections

5.4 conclusions

The results of the analyses in this chapter have highlighted the potential for DRL to im-
prove the performance of multi-intersection configurations. The analysis was divided
into two main approaches. In the uncoordinated configuration, transfer learning was
used to pre-train models on a generic intersection and then fine-tuned on each in-
dividual intersection. The results of the analysis showed that transfer learning cut
convergence time in half. In addition, during training performance was better than
the full re-training as the model was able to exploit its experience to avoid extremely
poor decisions, with peak delays during training about 60% less than those when
retraining from scratch. In the multi-intersection configuration, each model makes
control decisions that are locally optimal, and the model had a tendency to provide
much better service on the minor approaches than the actuated controllers with tim-
ings used from the field and Synchro. The model was also better able to react to the
changes in demand during the analysis period and avoid significant delays. When im-
plementing a full ring-and-barrier controller, the DRL model reduced average delays
by at least 5%.

A coordinated design was also evaluated by extending the state space of the model.
In this design the timing information upstream was provided to each downstream
intersection, and the agent was trained from scratch to use this information. The
resulting analysis highlighted that when compared to SCOOT the DRL model had a
tendency to select shorter cycle times. This resulted in shorter delays, especially at the
entry intersection. Delays were reduced by 7% when compared to the SCOOT emulator.
A sensitivity analysis was also conducted by removing the timing information after
the models were trained. This was done by setting the values of the matrix to zero
(which is equivalent to a situation where the upstream intersection has just timed or is
timing green). The performance of the model declined significantly with this change,
and had worse performance than the Semi-actuated controller. This result suggests
that the timing information is used by the model to make control decisions, and that
the controller may make sub-optimal decisions in the presence of false information.

113



Part III

C O N C L U S I O N S A N D C O N T R I B U T I O N S

This part’s chapter gives a summary of the research done, the key findings,
and the limitations.

114



6
C O N C L U S I O N S A N D C O N T R I B U T I O N S

The research conducted as part of this thesis has focussed on enabling traffic control
systems to capitalise on recent advances in technology, data availability, and develop-
ments in AI. These areas are of critical importance in developing the next generation of
traffic control systems, and offer significant opportunities for transportation agencies
to improve the performance of the existing transportation system. These are especially
important as cities continue to grow and embark on their Smart City journey.

This research has made contributions to the literature through two key develop-
ments. First a practical traffic signal re-timing method has been developed to leverage
low-cost travel-time solutions such as Bluetooth and WiFi sniffing. Secondly, this re-
search developed two deep learning based adaptive traffic signal control models and
tested their performance across a wide variety of settings and configurations. The fol-
lowing sections highlight the key findings and contributions from each of these two
areas of research.

6.1 summary of research findings

6.1.1 Traffic Signal Re-timing Using Travel Time Data

One of the major limitations with traditional signal timing management methods is
caused by the limited availability of data that can be used to update signal timing
plans on a regular basis. Signal re-timing is often done using a manual and labour
intensive process where field volumes must first be obtained, then entered into soft-
ware to produce signal timings that are then implemented in the field. One of the most
practical ways to address this limitation is to take advantage of Big Data by leveraging
sources such as Bluetooth and WiFi signals. These technologies have shown promise
for use in monitoring applications; but limited studies have been conducted in the
literature on other applications such as traffic management control.

In Chapter 3 a new traffic signal control model using travel time data as a basis
was developed. The proposed model relies on the HCM’s delay equations to estimate
the degree of saturation (X) and makes adjustments to three major timing parame-
ters: split times, cycle lengths, and offsets. The model implements these adjustments
through three major steps: 1) the delay is estimated from travel time data collected
between mid-block Bluetooth or WiFi detectors; 2) the degree of saturation and flow
ratio (Y) is estimated from the delay data; 3) a new optimal cycle time is calculated;
4) the adjusted cycle times are then allocated to individual phases; 5) the volumes
and patterns of vehicle movements between intersections are estimated; and finally 6)
the offset is adjusted based on these predictions. An incremental approach is used to

115



6 conclusions and contributions

make these adjustments similar to how SCOOT operates where the model chooses at
key intervals whether or not to make an adjustment to the timing plan.

Two separate case studies were conducted to evaluate the performance and sensi-
tivity of the proposed model to measurement errors and system conditions. In the
first approach a Monte Carlo simulation was developed to test the key parameters of
the model and determine optimal settings. The Monte Carlo simulator evaluated the
effect of critical parameters such as the optimisation step size and calibration param-
eters that control the how quickly the model responds to estimated demand changes.
Particular focus was also given to the effect measurement errors would have on the
decisions. The work led to the following key findings:

• The results of the analysis showed that situations with low volumes were par-
ticularly vulnerable to sub-optimal decisions. This vulnerability arises from the
fact that lower volumes produce lower delays and thus errors of even 1 second
can become significant. Volumes below 800 vph (near saturation) produced poor
decisions when the standard deviation of the error (σ(ε)) was 5 seconds. For the
scenario where σ(ε) was set to 1 second, performance decreased when volumes
dropped below 200 vph.

• Aggressive strategies with high step sizes and quick responses were also found
to produce unreliable decisions for high values of σ(ε). In particular a lag in re-
sponse was noted in changing volume situations when compared to the optimal
decisions.

Following this, a microscopic traffic simulation analysis was conducted to evaluate
the performance of the proposed signal updating method under realistic real-world
settings with emulated emulation of Bluetooth and WiFi detectors; the study focused
specifically on the performance of the proposed model and its sensitivity to some sys-
tem parameters such as market penetration, measurement error, and traffic patterns.
The main findings are summarised as follows:

• The results of the analysis showed that the most stable performance when com-
pared to traditional actuated control came when optimisation frequency was
kept at 3 cycles, with 4 cycles having the worst performance. Despite this, fre-
quent optimisation was still found to perform well in many scenarios, though
performance was often erratic. Good performance was still observed even in
situations of low penetration rates.

• A key limitation of the approach was observed where queue spill-back can be
improperly handled by the algorithm as by default the algorithm assumes that
delays can be remedied by increasing the green time for the movement. In par-
ticular left turns can easily block through movements under highly saturated
conditions, leading to a situation where extra time is allocated to through move-
ment instead of the left turn movement.

116



6 conclusions and contributions

6.2 deep reinforcement learning for adaptive traffic signal con-
trol

In addition to the advantages Big Data brings, a number of advances in machine learn-
ing have opened up possibilities for real-time human-like decision making. Presently,
many systems rely on rigid rule-based decisions. This research therefore attempted to
address their limitations with an intelligent AI-based solution that applies a state-of-
the-art machine learning technique, Deep Reinforcement Learning (DRL), and trains
an agent to operate in an environment and to learn an optimal policy to operate in it.
This work was divided into two major parts, an initial explorative study examining
the sensitivity key parameters of a DRL system, including the identification of optimal
parameters, on an isolated intersection, and an evaluation of a fully developed DRL

platform on a real-world corridor.

6.2.1 State Space Configurations

In this research, the sensitivity of key parameters to the performance of the DRL

agent was examined. These parameters include the state space representations and
the model’s ability to sense the environment, rewarding system and function used,
transfer learning techniques, and multi-agent learning. The sensitivity analysis con-
ducted tested a variety of input parameters for the model. The fundamental basis for
the model’s operation was queue length. Secondary inputs of time of day, day of the
week, and current signal status were also provided to the model.

In terms of the state space and sensing abilities of the model, the following key
results were observed:

• The effect of measurement sensitivity on queue lengths was tested by using
queue length detections limited to 2, 10, 20, 40, and 80 vehicles. The algorithm’s
performance was statistically the same for cases with a queue detection range
covering 20 or more vehicles. In the case of 10 vehicles, the model’s policy
was stable but performance was lower than other scenarios. When the detec-
tion range covers only two vehicles, however, the model did not converge to a
stable policy. All other models converged to a stable policy after approximately
1 million frames of experience.

• Excessive training was found to create an over-fitting problem and average de-
lays increased by at least 10% beyond 2 million frames for most models. Visual
observation of the model highlighted that when queue detection is limited the
state space is frequently indicating that vehicles are present and identifying pat-
terns becomes difficult.

• The inclusion or removal of time-of-day and day-of-week information was found
to have mixed results. In general training time was reduced slightly as more
information could be leveraged, but the information was not sufficient on its
own without queue information to provide a stable policy. This is likely due to

117



6 conclusions and contributions

limitations of the state space, which does not directly provide the amount of
green that has been timed.

6.2.2 Reward Functions

Reward functions guide the model to an optimal policy by providing feedback on
whether the state an agent is in is good or bad. In this research a few different reward-
ing systems and parameters were tested. As control is derived from queue length,
these rewarding systems depend on queue length and vehicle discharges to reward
or penalise an agent. The following key findings were observed:

• The most effective rewarding system was penalising the agent for each wait-
ing vehicle behind a red light and rewarded it for each discharged vehicle. A
sensitivity analysis was conducted to determine which parameters had the best
performance. A reward of 5 for each discharged vehicle and -0.4 for each wait-
ing vehicle was found to be the most effective. This corresponds to a reward-
to-penalty ratio of 12.5 to 1. In addition, penalising the agent for causing split
failures was also found to have a positive effect on training speed and the final
performance of the model.

• An alternative reward framing that penalises the agent for queues behind red
lights and rewards it for queues behind green lights was found to be ineffective.

6.2.3 Training Strategies

Training strategies can be used to reduce the amount of time an agent spends on
exploring various state-action pairs, which can lead to faster convergence to an opti-
mal policy and can prevent the agent from being trapped in a local-minimum. One
of the most common strategies employed when training RL agents is called ε-greedy
training. In ε-greedy, the agent exploits its learned knowledge with probability 1− ε
or otherwise takes a random action. A variety of different strategies were explored,
such as changing the length of the observation time, annealing (exploration) time. Ad-
ditionally, changes to other parameters such as the learning rate and discount factor
were also explored. An additional learning strategy that recognises that the do nothing
action should be selected more frequently than other actions was explored. In this
strategy if the agent chooses the do nothing action, a separate probability check is also
made to determine if the action should be repeated and for how long. This analysis
resulted in the following key findings:

• Middle-length observation periods of 5000 frames led to faster convergence than
shorter or longer periods. The shorter annealing period of 20000 frames also led
to to faster convergence. The longest settings for observation and annealing were
also found to result in some over-fitting and sub-optimal performance and had
higher final delays and queues than other settings.

118



6 conclusions and contributions

• Learning rates other than the default value of 10−6 did not converge to optimal
policies.

• A discount factor of 0.75 was associated with both better performance and faster
convergence than the default of 0.99 and the lower value of 0.5. This value rep-
resents a compromise between prioritising immediate rewards while still main-
taining some consideration for future rewards. In contrast, values of 0.99 were
prone to inflating Q-values for state-action pairs.

• The alternative training strategy led to faster training times and convergences
and was found to reduce frequent changes that were observed in ordinary
ε-greedy training. The strategy reduced training times by approximately 50%
when compared to baseline settings.

6.2.4 Transfer Learning and Full Ring-and-Barrier Designs

The sensitivity analysis was conducted using a two-phase controller, as the simplicity
of the configuration leads to faster training times. A multi-action controller emulating
full ring-and-barrier operation was also tested. A transfer-learning experiment was
also conducted. In this experiment the model is first pre-trained using one simulator
(SUMO) then fine-tuned on another (VISSIM). The difference in driver behaviour em-
ulates the changes expected when pre-training a model on a simulation environment
for application in the field. In this experiment the model is first pre-trained to a point
just after convergence (approximately 1 million simulation frames). The simulation
environment is then switched and ε is re-initialised and a short annealing is run. The
results of this study revealed the following key findings:

• The added complexity from a full ring-and-barrier resulted in nearly four times
the training time when compared to a two-phase design.

• Using transfer learning, convergence is much faster than a full retraining and
within 75,000 simulation steps the model’s performance re-converges to an opti-
mal policy.

• Peak delays were 60% lower during training when using transfer learning when
compared to retraining from scratch.

6.2.5 DRL Model for Multi-Intersection and Corridor Control

Multiple intersections introduce additional variables to the problem as the arrival pat-
tern at an intersection is dependant on the actions of upstream agents. Two major ap-
proaches to multi-intersection control were evaluated. In the first, a multi-intersection
control strategy was tested. In this strategy the isolated DRL controllers are applied
on multiple intersections with each controller implementing an optimal solution lo-
cally. Then, in the second scenario, coordinated control was tested by extending the

119



6 conclusions and contributions

DRL model’s state space to include information about the time since the last green at
upstream intersections, which is similar to the traditional offset parameter. Its perfor-
mance was tested by comparing it against traditional actuated control and a SCOOT

emulator. The SCOOT emulator was coded in reference to exiting literature on SCOOT.
A corridor based off University Avenue in Waterloo was coded in SUMO and used as

a test network. The multi-intersection control strategy further extended the analysis
done on transfer learning by pre-training models on a generic intersection and fine-
tuning them on each of the target intersections. These intersections each have different
volume patterns and geometries, including T intersections. Tests were run using two-
phase and full ring-and-barrier controllers. The following key findings were observed:

• When compared to training all intersections simultaneously from scratch, the
transfer learning scenario reduced training times by 50% for both the two-phase
controllers and full ring-and-barrier controllers.

• In the full ring-and-barrier comparison, delays were reduced by over 6%. Side
streets in particular saw significant delay reductions.

The state space of the DRL model was then extended to consider the benefits of in-
cluding timing information from upstream intersections, and performance was com-
pared against a SCOOT emulator and actuated signals. To test the dependency of the
model on the timing information, the model was also run with no information by set-
ting the time since the last upstream green to zero. The following key findings were
observed:

• The DRL algorithm’s performance resulted in delay reductions of approximately
7% network-wide and queue length reductions of approximately 11%.

• When compared to semi-actuated control, delays were reduced by over 20%.

• Performance was degraded by 40% when the time since the last upstream green
was set to zero. This suggests that the model considers this offset information
when making timing decisions.

6.3 major contributions

This research has advanced the state of the art in adaptive traffic signal control in three
key areas: application of big data and novel data sources, adaptive signal control, and
application of machine learning. In the literature, there has been limited research fo-
cussing on using alternative data sources and applying state-of-the-art deep learning
techniques to optimise signals, such as travel time. This research has proposed new
models and methods, conducted new analyses, and developed a novel platform.

120



6 conclusions and contributions

6.3.1 Contributions on Applying Travel Time for Signal Retiming

Optimisations based on travel-time and delay have not been previously explored sub-
stantially in the literature. In particular, to the best of our knowledge, on-line signal
optimisation has not been studied in any prior work. The results of this research has
therefore advanced the state-of-the art by proposing and evaluating a new model
that can be used to retime signals off-line or on-line in a adaptive-like configuration
(Muresan, Fu, and Zhong, 2019). The work also contributed to the literature by ex-
amining and identifying the optimal settings, effects of confounding factors such as
measurement error and market penetration, and comparing the method to existing
technologies. The results of this research will be useful as Big Data technologies con-
tinue to see more use in industry.

6.3.2 Contributions on Applying DRL for Adaptive Traffic Signal Control

This research’s work on DRL has advanced the state of the art in the application of
machine learning for adaptive signal control. As an emerging topic, the idea of DRL for
signal control has just begun to receive attention. The model developed for isolated
intersections is one of the first to consider the idea of DRL, combining Q-learning
and ordinary reinforcement learning.The contribution entails the development of a
completely new model, including state space, action formulation, and reward function
(Muresan, Fu, and Pan, 2018; Muresan and Fu, 2020; Muresan and Fu, 2021). The
comprehensive sensitivity analysis done is among the first to be done in the area of
deep learning and signal control and included significant findings on the sensitivity
of the model to limited information, the optimal settings of parameters such as the
learning rate, discount factor, learning periods, reward functions, and strategies to
deploy the model to the field such as transfer learning (Muresan and Fu, Under Fourth
Review).

Many of the existing studies on the application of deep learning for traffic signal
control are constrained to simple models and application settings and the idea of
multi-intersection and corridor-based control has been rarely explored. In particular,
work on transfer learning and with full ring-and-barrier controllers is very limited in
the literature. This research has advanced the state of the art by first studying how
transfer learning can be used to simplify the deployment and training of models to
multiple intersections, which has addressed the significant scalability problems and
training challenges, and could be applied to scale the solution to networks of arbitrary
configurations (Muresan and Fu, 2021). Secondly the proposed model included a com-
plete action space with turning traffic and can be applied to intersections with com-
plex phasing. Thirdly, the idea of providing information from adjacent intersections
can be incorporated into the decision process is novel, which is simple but effective
in solving the signal coordination problem. The proposed model is also competitive
with the performance of existing state-of-the-art models such as SCOOT.

A DRL signal control platform was developed featuring the following key elements:

121



6 conclusions and contributions

• A modular API system that consisted of a variety of changeable components,
including the ability to interface with different simulators.

• An emulation of multi-device functionality through a multi-threaded design for
each model being trained, including inter-thread communication to facilitate
communication between different models.

• A ring-and-barrier style controller was also implemented with actions emulating
typical behaviour present in modern systems such as protected-permissive left
turn operation.

6.4 limitations and areas for future research

In order to maintain the scope of this research, a number of factors were not explored
explicitly, which requires further research, as discussed in the following sections.

6.4.1 Travel-Time Based Signal Optimisation

The performance of the travel-time based signal timing method proposed in this re-
search could be affected by many factors such as data quality, intersection conditions,
or traffic dynamics. One of the critical factors is the level of congestion. Although
the effect of the degree of traffic congestion was studied to some extent, the impacts
of over-saturated conditions was not explored extensively. Over-saturated conditions
introduce a number of key challenges as the HCM equations begin to depend more
heavily on the saturation flow rate and the evaluation time used. The random over-
flow component of the overall delay becomes more prominent, and the expected value
of this can only be captured by repeated long-term observation. For real-time control
(or signal adjustment), the observed delay may not be a true representation of the
overall traffic conditions due to random variation. Furthermore, the evaluation time
is particularly critical and although a fixed value was used the evaluation time should
ideally track how long the intersection has been in an over-saturated condition. Fi-
nally, the method used to estimate the delay requires additional considerations for
over-saturated conditions and in over-saturated conditions vehicles may queue out-
side the detection range of detectors.

To properly serve near and over-saturated movements, an estimation of the satu-
ration flow-rate is required as the HCM overflow delay (d2) becomes important and
requires the saturation flow when calculating the movement’s capacity. This compli-
cates the application of this method to permissive movements like left and right turns
as the HCM process would need to be followed to provide an estimate of the adjusted
saturation flow and capacity. The sensitivity of this algorithm’s performance to the
estimated saturation flow rate was not studied and should be considered in future
work. Furthermore some other assumptions, such as the distribution of traffic be-
tween lanes and shared lanes may also have significant impacts particularly on the d2
value as their impacts on saturation flow were not extensively examined. Although

122



6 conclusions and contributions

the test cases did result in over-saturated conditions on some cases, the impact of
over-saturated movements was not thoroughly studied.

Another critical limitation is the assumption that the delays observed are caused
solely by the amount of green time displayed to the movement. This was observed
to cause problems particularly on protected left turn movements where an over-
saturated left turn movement would block the through lanes resulting in higher delays
for the through movement. The controller would then increase both the through and
left turn greens rather than just the left turn green resulting in sub-optimal control.

The progression factor in the delay equations 2.14 was set in reference to guideline
values in the CCG, however it should be noted that these values may not be suitable
for all cases, and particularly as the offset improves. Exact specification of this fac-
tor is integral to coordinated settings as uniform delay will decrease if vehicles are
more likely to arrive on green. This problem requires further exploration that was not
covered by this research.

For permissive left turn movements, the HCM typically defines a way by which vol-
umes and delays can be estimated by considering the number of vehicles that would
discharge in the permissive movement. This research estimated the contribution of
both the permissive and protected green portions to the saturation flow rate and con-
sidered the entire green time for the left turn movement, however this method could
use additional validation and verification as on some approaches large queues formed
for the left turn movement.

Due to design limitations, the algorithm’s timing plans were also implemented
through fixed-time controllers. However, this means that the actuated controllers have
some benefits in terms of their operation when compared to the algorithm, includ-
ing the ability to gap-out the actuated protected left movements. By adjusting the
maximum green times, however, it is possible that actuated controllers could also be
improved through this algorithm.

While the approach tested needs only per-movement delay data, the primary im-
plementation examined in simulation relies on Bluetooth and WiFi detectors installed
at midblock locations. This deployment may not be feasible in all cases and further
exploration is required to determine if other configurations work.

This work focussed on the problem of re-timing signals using travel time data and
the impacts of measurement errors. While some challenges pertaining to the use of
real-world Bluetooth or WiFi data are addressed, some simplifications are made. In
particular, issues surrounding detection frequency and detection range, filtering out
non-vehicles, and duplicate detections were not explored extensively. While some of
these issues could be controlled by changing the parameters of the device scanning
(e.g. increasing or decreasing receiver power) proper configuration would likely re-
quire local calibration. Further, the k-means algorithm used to categorise the data,
while simple, is likely not the most effective, especially under over-saturated condi-
tions. The effect of these on the estimation error has seen limited consideration in
the literature and further work in this area would likely be needed to successfully
estimate delay from travel time in all situations. However, this may not be an issue

123



6 conclusions and contributions

in some application settings such as rural areas or areas where travel-time data can
come from alternative sources such as connected vehicles.

6.4.2 Deep Reinforcement Learning (DRL) for Adaptive Traffic Signal Control

The deep learning-based traffic signal control models proposed in this research fo-
cusses specifically on the application of deep reinforcement learning (DRL) and with
its specific implementation that relies on Deep Q Networks. In recent years other
techniques such as Actor-Critic designs have also shown great promise and could be
explored in future research for the potential applications to traffic signal control. Some
preliminary work was done in this area and future work would be useful in exploring
if other model structures may yield better performance. These model structures may
also require modifications to the action space, state space, and reward system.

This thesis research work has also focussed specifically on using queue length as
the primary observable variable to represent the system state. WHile modern sensor
technology such as video cameras or LiDAR are increasingly making queue length de-
tection feasible, it remains not as easily obtainable as other data, such as flow profiles
at specific locations from loop detectors or zone-based video detection systems. These
traffic flow data have been used as the major input for many traditional adaptive traf-
fic control systems. How they can be used, either solely or in combination with queue
data in this proposed DRL framework and what the potential value of improving the
performance of the proposed system is still an open question to be addressed in future
research.

Another limitation of our research is the case study comparing the performance of
out proposed system to the state-of-the-art adaptive traffic control method – SCOOT.
A SCOOT emulator was coded, which may not fully reflect the performance of SCOOT

in practical field settings. Furthermore, SCOOT is a proprietary system and while the
methods used are available for analysis in literature, it is not possible to fully replicate
all functions. Future research should look at hardware-in-the-loop simulations as the
next step to evaluating the feasibility of AI systems.

This work has also assumed that detection of queue lengths and discharging vehi-
cles is possible and these data can be reliably measured at per-second intervals. Real
world implementations will likely involve some form of measurement error and er-
roneous inputs that may need to be handled by the model, but further research is
required to determine what effect these would have.

The evaluation of the proposed control system is also empirical in nature, which
means the findings and conclusions are limited to the cases and scenarios being con-
sidered. Future research should explore its performance over a wider range of network
configurations, traffic variations and control constraints. It would also be interesting
to explore the feasibility of applying the proposed model for area-wide control of
signalized intersections.

124



B I B L I O G R A P H Y

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. (2016).
“Tensorflow: A system for large-scale machine learning.” In: 12th {USENIX} sym-
posium on operating systems design and implementation ({OSDI} 16), pp. 265–283.

Abbott-Jard, Michael, Harpal Shah, and Ashish Bhaskar (2013). “Empirical evaluation
of Bluetooth and Wifi scanning for road transport.” In: 36th Australasian Transport
Research Forum (ATRF). Vol. 2. 4.

Abdulhai, Baher, Rob Pringle, and Grigoris J Karakoulas (2003). “Reinforcement learn-
ing for true adaptive traffic signal control.” In: Journal of Transportation Engineering
129.3, pp. 278–285.

Abedi, Naeim, Ashish Bhaskar, and Edward Chung (2013). “Bluetooth and Wi-Fi
MAC address based crowd data collection and monitoring: benefits, challenges
and enhancement.” In:

Adams, William Frederick (1937). Road traffic considered as a random series. Institution
of Civil Engineers.

Agarap, Abien Fred (2018). “Deep learning using rectified linear units (relu).” In: arXiv
preprint arXiv:1803.08375.

Arel, Itamar, Cong Liu, T Urbanik, and AG Kohls (2010). “Reinforcement learning-
based multi-agent system for network traffic signal control.” In: IET Intelligent
Transport Systems 4.2, pp. 128–135.

Astrom, Karl J (1965). “Optimal control of Markov processes with incomplete state
information.” In: Journal of mathematical analysis and applications 10.1, pp. 174–205.

Barth, Dave (Aug. 2009). The bright side of sitting in traffic: Crowdsourcing road congestion
data. Google Maps.

Bas, Erhan, A Murat Tekalp, and F Sibel Salman (2007). “Automatic vehicle counting
from video for traffic flow analysis.” In: Intelligent Vehicles Symposium, 2007 IEEE.
Ieee, pp. 392–397.

Basheer, Imad A and Maha Hajmeer (2000). “Artificial neural networks: fundamen-
tals, computing, design, and application.” In: Journal of microbiological methods 43.1,
pp. 3–31.

Beess, KensrnN G (1988). “Analysis of platoon dispersion with respect to traffic vol-
ume.” In: Trffic Flow Theory ønd 1, p. 64.

Bekker, René, GM Koole, Bo Friis Nielsen, and Thomas Bang Nielsen (2011). “Queues
with waiting time dependent service.” In: Queueing systems 68.1, pp. 61–78.

Bonneson, JA, MP Pratt, and MA Vanderhey (2008). “Predicting the Performance of
Automobile Traffic on Urban Streets. Final Report, NCHRP 3-79.” In: Transporta-
tion Research Board.

Centennial FDOT (May 2016). Advanced Signal Control Technology.

125



bibliography

Chakraborty, Goutam, Kshirasagar Naik, Debasish Chakraborty, Norio Shiratori, and
David Wei (2010). “Analysis of the Bluetooth device discovery protocol.” In: Wire-
less Networks 16.2, pp. 421–436.

Chien, Steven I, Kitae Kim, and Janice Daniel (2006). “Cost and Benefit Analysis for
Optimized Signal Timing-Case Study: New Jersey Route 23.” In: Institute of Trans-
portation Engineers. ITE Journal 76.10, p. 37.

Chiu, Stephen and Sujeet Chand (1993). “Adaptive traffic signal control using fuzzy
logic.” In: Fuzzy Systems, 1993., Second IEEE International Conference on. IEEE, pp. 1371–
1376.

Chollet, François (2017). “Xception: Deep learning with depthwise separable convolu-
tions.” In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1251–1258.

Chronopoulou, Alexandra, Christos Baziotis, and Alexandros Potamianos (2019). “An
embarrassingly simple approach for transfer learning from pretrained language
models.” In: arXiv preprint arXiv:1902.10547.

City of Calgary (2017). City of Calgary: Bluetooth travel time system.
City of Toronto ITS Operations (2016). url: http://www1.toronto.ca/wps/portal/

contentonly?vgnextoid=af8cdee2b80a4510VgnVCM10000071d60f89RCRD.
City of Toronto (Jan. 2012). Drawings for Traffic Control Devices.
— (2017). City of Toronto: Traffic Signals. url: http://www1.toronto.ca/wps/portal/

contentonly?vgnextoid=9452722c231ec410VgnVCM10000071d60f89RCRD.
Da Silva, Felipe Leno and Anna Helena Reali Costa (2019). “A survey on transfer

learning for multiagent reinforcement learning systems.” In: Journal of Artificial
Intelligence Research 64, pp. 645–703.

Daganzo, Carlos F (1994). “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory.” In: Transportation
Research Part B: Methodological 28.4, pp. 269–287.

Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. (2012). “Large scale
distributed deep networks.” In: Advances in neural information processing systems,
pp. 1223–1231.

Dresner, Kurt and Peter Stone (2008). “A multiagent approach to autonomous inter-
section management.” In: Journal of artificial intelligence research 31, pp. 591–656.

El-Tantawy, Samah, Baher Abdulhai, and Hossam Abdelgawad (2013). “Multiagent re-
inforcement learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC): methodology and large-scale application on downtown Toronto.”
In: IEEE Transactions on Intelligent Transportation Systems 14.3, pp. 1140–1150.

Federal Highway Administration (2011). EDC-1: Adaptive Signal Control Technology.
Centre for Acceleratiing Innovation. url: https://www.fhwa.dot.gov/innovation/
everydaycounts/edc-1/asct.cfm.

— (Apr. 2017a). Leveraging the Promise of Connected and Autonomous Vehicles to Improve
Integrated Corridor Management and Operations: A Primer - FHWA Operations.

— (2017b). Traffic Signal Timing Manual. url: https://ops.fhwa.dot.gov/publications/
fhwahop08024/index.htm.

126

http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=af8cdee2b80a4510VgnVCM10000071d60f89RCRD
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=af8cdee2b80a4510VgnVCM10000071d60f89RCRD
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=9452722c231ec410VgnVCM10000071d60f89RCRD
http://www1.toronto.ca/wps/portal/contentonly?vgnextoid=9452722c231ec410VgnVCM10000071d60f89RCRD
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm


bibliography

Fellendorf, Martin and Peter Vortisch (2000). “Integrated modeling of transport de-
mand, route choice, traffic flow and traffic emissions.” In: 79th Annual Meeting of
the Transportation Research Board, Washington, DC.

Feng, Yiheng, K Larry Head, Shayan Khoshmagham, and Mehdi Zamanipour (2015).
“A real-time adaptive signal control in a connected vehicle environment.” In:
Transportation Research Part C: Emerging Technologies 55, pp. 460–473.

Feng, Yiheng, Jianfeng Zheng, and Henry X Liu (2018). “Real-time detector-free adap-
tive signal control with low penetration of connected vehicles.” In: Transportation
Research Record 2672.18, pp. 35–44.

Fontaine, Michael D., Jiqqi Ma, and Jia Hu (June 2015). Evaluation of the Virginia De-
partment of Transportation Adaptive Signal Control Technology Pilot Project. Report No.
VCTIR 15-R24. Rhythm Engineering.

Freudiger, Julien (2015). “How talkative is your mobile device? An experimental study
of Wi-Fi probe requests.” In: Proceedings of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, pp. 1–6.

Friedrich, Bernhard (2002). “Adaptive signal control: an overview.” In: 13th Mini Euro
Conference–Handling Uncertainty in the Analysis of Traffic and Transportation systems.

Genders, Wade and Saiedeh Razavi (2016). “Using a Deep Reinforcement Learning
Agent for Traffic Signal Control.” In:

Goodall, Noah, Brian Smith, and Byungkyu Park (2013). “Traffic signal control with
connected vehicles.” In: Transportation Research Record: Journal of the Transportation
Research Board 2381, pp. 65–72.

Google Deep Mind (2017). DeepMind. url: https://deepmind.com/research/alphago/.
Gordon, R.L., National Research Council (U.S.). Transportation Research Board, Na-

tional Cooperative Highway Research Program, American Association of State
Highway, Transportation Officials, and United States. Federal Highway Adminis-
tration (2010). Traffic Signal Retiming Practices in the United States. Nchrp Synthesis.
Transportation Research Board. isbn: 9780309143172.

Gordon, Robert L (2003). Systems Engineering Processes for Developing Traffic Signal Sys-
tems. Vol. 307. Transportation Research Board.

Group, PTV et al. (2014). “PTV Vissim 7 User Manual.” In: Karlsruhe, Germany.
Guler, S Ilgin, Monica Menendez, and Linus Meier (2014). “Using connected vehicle

technology to improve the efficiency of intersections.” In: Transportation Research
Part C: Emerging Technologies 46, pp. 121–131.

HDR Corporation (Dec. 2008). Costs of Road Congestion in the Greater Toronto and Hamil-
ton Area.

Haghani, Ali, Masoud Hamedi, and Kaveh Farokhi Sadabadi (2009). I-95 Corridor coali-
tion vehicle probe project: Validation of INRIX data.

Haghani, Ali, Masoud Hamedi, Kaveh Sadabadi, Stanley Young, and Philip Tarnoff
(2010). “Data collection of freeway travel time ground truth with bluetooth sen-
sors.” In: Transportation Research Record: Journal of the Transportation Research Board
2160, pp. 60–68.

Hamerly, G and C Elkan (2003). Learning the K in K-means Advances in Neural Informa-
tion Processing Systems.

127

https://deepmind.com/research/alphago/


bibliography

Hart-Bishop, J, B Hellinga, and A Zarinbal (2016). “Advanced Traffic Signal Con-
trol Using Bluetooth/Wi-Fi Detectors.” In: Kelowna 2016-CITE Annual Meeting and
Conference-Technical Compendium.

Hartigan, John A (1975). Clustering algorithms. John Wiley & Sons, Inc.
Hartigan, John A and Manchek A Wong (1979). “Algorithm AS 136: A k-means clus-

tering algorithm.” In: Journal of the royal statistical society. series c (applied statistics)
28.1, pp. 100–108.

Higgs, Bryan, M Abbas, and Alejandra Medina (2011). “Analysis of the Wiedemann
car following model over different speeds using naturalistic data.” In: Procedia of
RSS Conference, pp. 1–22.

Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning algo-
rithm for deep belief nets.” In: Neural computation 18.7, pp. 1527–1554.

Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the dimensionality
of data with neural networks.” In: science 313.5786, pp. 504–507.

Hoey, Jesse and Pascal Poupart (2005). “Solving POMDPs with continuous or large
discrete observation spaces.” In: IJCAI, pp. 1332–1338.

Hoogendoorn, Serge, Raymond G Hoogendoorn, and Winnie Daamen (2011). “Wiede-
mann revisited: new trajectory filtering technique and its implications for car-
following modeling.” In: Transportation research record 2260.1, pp. 152–162.

Hunt, PB, DI Robertson, RD Bretherton, and M Cr Royle (1982). “The SCOOT on-line
traffic signal optimisation technique.” In: Traffic Engineering & Control 23.4.

INRIX Traffic (2017). url: http://inrix.com/about/.
Jiang, Zhengyao, Dixing Xu, and Jinjun Liang (2017). “A deep reinforcement learning

framework for the financial portfolio management problem.” In: arXiv preprint
arXiv:1706.10059.

Jin, Xuexiang, Yi Zhang, Fa Wang, Li Li, Danya Yao, Yuelong Su, and Zheng Wei (2009).
“Departure headways at signalized intersections: A log-normal distribution model
approach.” In: Transportation research part C: emerging technologies 17.3, pp. 318–327.

Kamarajugadda, Anil and Byungkyu Park (2003). Stochastic traffic signal timing opti-
mization. Tech. rep. Center for Transportation Studies, University of Virginia.

Kergaye, Cameron, Aleksandar Stevanovic, and Peter T Martin (2008). “An evaluation
of SCOOT and SCATS through microsimulation.” In: International Conference on
Application of Advanced Technologies in Transportation, Transportation and Development
Institute, Athens, Greece.

Ketchen, David J and Christopher L Shook (1996). “The application of cluster analysis
in strategic management research: an analysis and critique.” In: Strategic manage-
ment journal 17.6, pp. 441–458.

Kim, Kitae, Dennis Motiani, Lazar N Spasovic, Branislav Dimitrijevic, and Steven
Chien (2014). “Assessment of Speed Information Based on Probe Vehicle Data:
A Case Study in New Jersey.” In: Transportation Research Board 93rd Annual Meet-
ing. 14-4464.

Kim, Seoungbum and Benjamin Coifman (2014). “Comparing INRIX speed data against
concurrent loop detector stations over several months.” In: Transportation Research
Part C: Emerging Technologies 49, pp. 59–72.

128

http://inrix.com/about/


bibliography

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion.” In: arXiv preprint arXiv:1412.6980.

Koerner, Ralph J (Nov. 1976). Inductive loop vehicle detector. US Patent 3,989,932.
Kotu, Vijay and Bala Deshpande (2019). “Chapter 7 - Clustering.” In: Data Science

(Second Edition). Ed. by Vijay Kotu and Bala Deshpande. Second Edition. Morgan
Kaufmann, pp. 221 –261. isbn: 978-0-12-814761-0. doi: https://doi.org/10.1016/
B978-0-12-814761-0.00007-1. url: http://www.sciencedirect.com/science/
article/pii/B9780128147610000071.

Krajzewicz, Daniel, Jakob Erdmann, Michael Behrisch, and Laura Bieker (2012). “Re-
cent development and applications of SUMO-Simulation of Urban MObility.” In:
International journal on advances in systems and measurements 5.3&4.

Krauß, Stefan (1998). “Microscopic modeling of traffic flow: Investigation of collision
free vehicle dynamics.” PhD thesis.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classifica-
tion with deep convolutional neural networks.” In: Advances in neural information
processing systems, pp. 1097–1105.

Laney, Doug (2001). “3D data management: Controlling data volume, velocity and
variety.” In: META Group Research Note 6, p. 70.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In: nature
521.7553, pp. 436–444.

Li, Li, Yisheng Lv, and Fei-Yue Wang (2016). “Traffic signal timing via deep reinforce-
ment learning.” In: IEEE/CAA Journal of Automatica Sinica 3.3, pp. 247–254.

Lighthill, Michael James and Gerald Beresford Whitham (1955). “On kinematic waves
II. A theory of traffic flow on long crowded roads.” In: Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 229.1178, pp. 317–345.

Lin, Wei-Hua and Chenghong Wang (2004). “An enhanced 0-1 mixed-integer LP for-
mulation for traffic signal control.” In: IEEE Transactions on Intelligent transportation
systems 5.4, pp. 238–245.

Lo, Hong K (1999). “A novel traffic signal control formulation.” In: Transportation
Research Part A: Policy and Practice 33.6, pp. 433–448.

MacQueen, James et al. (1967). “Some methods for classification and analysis of multi-
variate observations.” In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. Oakland, CA, USA, pp. 281–297.

Malinovskiy, Yegor, Nicolas Saunier, and Yinhai Wang (2012). “Analysis of pedestrian
travel with static bluetooth sensors.” In: Transportation Research Record: Journal of
the Transportation Research Board 2299, pp. 137–149.

Manar, Abdelaziz and Karsten G Baass (1996). “Traffic platoon dispersion modeling
on arterial streets.” In: Transportation Research Record 1566.1, pp. 49–53.

Manual, Highway Capacity (2010). “HCM2010.” In: Transportation Research Board, Na-
tional Research Council, Washington, DC.

Mardia, KV (1979). “JT Kent. and J. M. Bibby.” In: Multivariate Analysis.
Miller, Alan J (1963). “A COMPUTER CONTROL SYSTEM FOR TRAFFIC NETWORKS.”

In:

129

https://doi.org/https://doi.org/10.1016/B978-0-12-814761-0.00007-1
https://doi.org/https://doi.org/10.1016/B978-0-12-814761-0.00007-1
http://www.sciencedirect.com/science/article/pii/B9780128147610000071
http://www.sciencedirect.com/science/article/pii/B9780128147610000071


bibliography

Miovision (2017). Traffic Data Collection and Signal Operations - Miovision. url: https:
//miovision.com/.

Mirchandani, Pitu B and David E Lucas (2001). RHODES-ITMS Tempe field test project:
Implementation and field testing of RHODES, a real-time traffic adaptive control system.
Tech. rep.

Mirchandani, Pitu and Larry Head (2001). “A real-time traffic signal control system:
architecture, algorithms, and analysis.” In: Transportation Research Part C: Emerging
Technologies 9.6, pp. 415–432.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). “Playing atari with deep reinforce-
ment learning.” In: arXiv preprint arXiv:1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. (2015). “Human-level control through deep reinforcement learn-
ing.” In: nature 518.7540, pp. 529–533.

Moghaddam, Soroush and Bruce Hellinga (2013). “Quantifying measurement error in
arterial travel times measured by bluetooth detectors.” In: Transportation Research
Record: Journal of the Transportation Research Board 2395, pp. 111–122.

— (2014). “Real-time prediction of arterial roadway travel times using data collected
by bluetooth detectors.” In: Transportation Research Record: Journal of the Transporta-
tion Research Board 2442, pp. 117–128.

Moore Ii, James E, Stephen P Mattingly, C Arthur MacCarley, and Michael G McNally
(2005). “Anaheim advanced traffic control system field operations test: A technical
evaluation of SCOOT.” In: Transportation planning and technology 28.6, pp. 465–482.

Mueller, Edward A (1970). “Aspects of the history of traffic signals.” In: IEEE Transac-
tions on Vehicular Technology 19.1, pp. 6–17.

Muresan, Matthew and Guangyuan Panand Liping Fu (Under Fourth Review). “Deep
Reinforcement Learning for Adaptive Traffic Signal Control: Alternative Imple-
mentations, System Stability and Optimal Settings.” In: IEEE Transactions on Intel-
ligent Transportation Systems.

Muresan, Matthew and Liping Fu (2020). “Multi-Intersection Control With Deep Rein-
forcement Learning And Ring-And-Barrier Controllers.” In: 99th Annual Meeting
of the Transportation Research Board.

— (2021). “Multi-Intersection Control With Deep Reinforcement Learning And Ring-
And-Barrier Controllers.” In: Transportation Research Record.

Muresan, Matthew, Liping Fu, and Guangyuan Pan (2018). “Adaptive Traffic Signal
Control with Deep Reinforcement Learning: An Exploratory Investigation.” In:
97th Annual Meeting of the Transportation Research Board.

Muresan, Matthew, Liping Fu, and Ming Zhong (2019). “Continuous Updating of Traf-
fic Signal Timing Plans Using Bluetooth and Wifi Data.” In: 98th Annual Meeting
of the Transportation Research Board.

Pan, Guangyuan, Liping Fu, Ruifan Yu, and Matthew Iulian Muresan (2018). Winter
road surface condition recognition using a pre-trained deep convolutional neural network.
Tech. rep.

130

https://miovision.com/
https://miovision.com/


bibliography

Pan, Sinno Jialin and Qiang Yang (2009). “A survey on transfer learning.” In: IEEE
Transactions on knowledge and data engineering 22.10, pp. 1345–1359.

Pelleg, Dan, Andrew W Moore, et al. (2000). “X-means: Extending k-means with effi-
cient estimation of the number of clusters.” In: Icml. Vol. 1, pp. 727–734.

Pew Research Center (2015). U.S. Smartphone Use in 2015. url: http://assets.pewresearch.
org/wp-content/uploads/sites/14/2015/03/PI_Smartphones_0401151.pdf.

— (2016). Smartphone Ownership and Internet Usage Continues to Climb in Emerging
Economies. url: http://www.pewglobal.org/files/2016/02/pew_research_
center_global_technology_report_final_february_22__2016.pdf.

Phua, Peilin, Bill Page, and Svetlana Bogomolova (2015). “Validating Bluetooth log-
ging as metric for shopper behaviour studies.” In: Journal of Retailing and Consumer
Services 22, pp. 158–163.

Rao, Yongming, Jiwen Lu, and Jie Zhou (2017). “Attention-aware deep reinforcement
learning for video face recognition.” In: Proceedings of the IEEE international confer-
ence on computer vision, pp. 3931–3940.

Raphael, Jeffery (2018). “An Exploration of Traffic Signal Control using Multi-agent
Market-based Mechanisms.” PhD thesis. University of Liverpool.

Ratrout, Nedal T and Imran Reza (2014). “Comparison of optimal signal plans by
Synchro & TRANSYT-7F using PARAMICS–A case study.” In: Procedia Computer
Science 32, pp. 372–379.

Rhythm Engineering (2017). How InSyncs Real-Time Adaptive Traffic Control Works.
Richards, Paul I (1956). “Shock waves on the highway.” In: Operations research 4.1,

pp. 42–51.
Robertson, Dennis I (1969). “TRANSYT: a traffic network study tool.” In:
— (1986). “Research on the TRANSYT and SCOOT Methods of Signal Coordination.”

In: ITE journal 56.1, pp. 36–40.
Robertson, Dennis I and R David Bretherton (1991). “Optimizing networks of traffic

signals in real time-the SCOOT method.” In: IEEE Transactions on vehicular technol-
ogy 40.1, pp. 11–15.

Rodriguez-Ramos, Alejandro, Carlos Sampedro, Hriday Bavle, Paloma De La Puente,
and Pascual Campoy (2019). “A deep reinforcement learning strategy for UAV
autonomous landing on a moving platform.” In: Journal of Intelligent & Robotic
Systems 93.1-2, pp. 351–366.

Rosenberg, Chuck (2013). Improving Photo Search: A Step Across the Semantic Gap. Google.
url: https://research.googleblog.com/2013/06/improving-photo-search-
step-across.html.

SCATS (2000). An Introduction To The New Generation Scats 6. url: http://www.scats.
com.au/files/an_introduction_to_scats_6.pdf.

SCOOT Systems (2014). How Scoot Works. url: http://www.scoot-utc.com/DetailedHowSCOOTWorks.
php?menu=Technical.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview.” In:
Neural networks 61, pp. 85–117.

131

http://assets.pewresearch.org/wp-content/uploads/sites/14/2015/03/PI_Smartphones_0401151.pdf
http://assets.pewresearch.org/wp-content/uploads/sites/14/2015/03/PI_Smartphones_0401151.pdf
http://www.pewglobal.org/files/2016/02/pew_research_center_global_technology_report_final_february_22__2016.pdf
http://www.pewglobal.org/files/2016/02/pew_research_center_global_technology_report_final_february_22__2016.pdf
https://research.googleblog.com/2013/06/improving-photo-search-step-across.html
https://research.googleblog.com/2013/06/improving-photo-search-step-across.html
http://www.scats.com.au/files/an_introduction_to_scats_6.pdf
http://www.scats.com.au/files/an_introduction_to_scats_6.pdf
http://www.scoot-utc.com/DetailedHowSCOOTWorks.php?menu=Technical
http://www.scoot-utc.com/DetailedHowSCOOTWorks.php?menu=Technical


bibliography

Shen, Luou, Ronghui Liu, Zhihong Yao, Weitiao Wu, and Hongtai Yang (2018). “De-
velopment of dynamic platoon dispersion models for predictive traffic signal con-
trol.” In: IEEE Transactions on Intelligent Transportation Systems 20.2, pp. 431–440.

Siemens Mobility, Traffic Solutions (2016). SCOOT User Guide. Tech. rep. Siemens PLC.
Sims, Arthur G and Kenneth W Dobinson (1980). “The Sydney coordinated adaptive

traffic (SCAT) system philosophy and benefits.” In: IEEE Transactions on vehicular
technology 29.2, pp. 130–137.

Statistics Canada (2017). The Internet and Digital Technology, 2017032. url: https://
www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017032-eng.pdf.

Stevanovic, Aleksandar, Cameron Kergaye, and Peter T Martin (2008). “Field evalua-
tion of SCATS traffic control in Park City, UT.” In: 15th World Congress on Intelligent
Transport Systems and ITS America’s 2008 Annual Meeting.

— (2009). “Scoot and scats: A closer look into their operations.” In: 88th Annual
Meeting of the Transportation Research Board. Washington DC.

Szepesvari, Csaba (2010). “Algorithms for reinforcement learning: Synthesis lectures
on artificial intelligence and machine learning.” In: Morgan and Claypool.

Tai, Lei and Ming Liu (2016). “Mobile robots exploration through cnn-based reinforce-
ment learning.” In: Robotics and biomimetics 3.1, pp. 1–8.

Teply, S, DI Allingham, DB Richardson, and BW Stephenson (2008). “Canadian capac-
ity guide for signalized intersections.” In:

TomTom (2017). About TomTom Traffic. url: https://www.tomtom.com/en_gb/traffic-
news/traffic-incidents.

Tong, Huijiao, Leiji Zhu, Yong Xiong, and Wei Yao (2017). “Modeling large passenger
flow safety by simulation and testing.” In: 2017 3rd IEEE International Conference
on Computer and Communications (ICCC). IEEE, pp. 235–239.

Tong, Yue, Lei Zhao, Li Li, and Yi Zhang (2015). “Stochastic programming model
for oversaturated intersection signal timing.” In: Transportation Research Part C:
Emerging Technologies 58, pp. 474–486.

Transport Canada (Sept. 2016). ACTIVE-AURORA project: wireless connected vehicle tech-
nology now testing a variety of applications.

Transport Canada, Delcan, iTRANS, and ADEC (Apr. 2006). The Cost of Urban Conges-
tion in Canada. Tech. rep. Transport Canada.

Tyack, FG (1938). “Street traffic signals, with particular reference to vehicle actuation.”
In: Journal of the Institution of Electrical Engineers 82.494, pp. 125–154.

US Department of Transportation (2007). Intelligent Transportation Systems for Traffic
Signal Control: FHWA-JPO-07-004. Tech. rep. url: https://ntl.bts.gov/lib/
jpodocs/brochure/14321_files/a1019-tsc_digital_n3.pdf.

University of Alberta (Sept. 2016). The CST and the First Connected Vehicle Test Bed in
Canada.

Van Houdt, B and C Blondia (2005). “Approximated transient queue length and
waiting time distributions via steady state analysis.” In: Stochastic Models 21.2-3,
pp. 725–744.

Wallace, Charles E, KG Courage, DP Reaves, GW Schoene, and GW Euler (1984).
TRANSYT-7F user’s manual. Tech. rep.

132

https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017032-eng.pdf
https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2017032-eng.pdf
https://www.tomtom.com/en_gb/traffic-news/traffic-incidents
https://www.tomtom.com/en_gb/traffic-news/traffic-incidents
https://ntl.bts.gov/lib/jpodocs/brochure/14321_files/a1019-tsc_digital_n3.pdf
https://ntl.bts.gov/lib/jpodocs/brochure/14321_files/a1019-tsc_digital_n3.pdf


bibliography

Wang, Fengzi, Xinning Zhu, and Jiansong Miao (2017). “Semantic trajectories-based
social relationships discovery using WiFi monitors.” In: Personal and Ubiquitous
Computing 21.1, pp. 85–96.

Wasson Jason S., P.E., P.E. Sturdevant James R., and P.E. Bullock Darcy M. (June 2008).
“Real-Time Travel Time Estimates Using Media Access Control Address Match-
ing.” English. In: Institute of Transportation Engineers.ITE Journal 78.6, pp. 20–23.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-Learning.” In: Machine learning
8.3-4, pp. 279–292.

Wey, Wann-Ming (2000). “Model formulation and solution algorithm of traffic signal
control in an urban network.” In: Computers, environment and urban systems 24.4,
pp. 355–378.

Wilson, Christopher Joseph, Gareth Millar, and Roderick Tudge (2006). “Microsimu-
lation Evaluation of Benefits of SCATS-Coordinated Traffic Control Signals.” In:
Transportation Research Board 85th Annual Meeting. 06-1984.

Yang, Zhen, Yiheng Feng, and Henry X. Liu (2021). “A cooperative driving framework
for urban arterials in mixed traffic conditions.” In: Transportation Research Part C:
Emerging Technologies 124, p. 102918. issn: 0968-090X. doi: https://doi.org/10.
1016/j.trc.2020.102918. url: https://www.sciencedirect.com/science/
article/pii/S0968090X20308172.

Yau, Kok-Lim Alvin, Junaid Qadir, Hooi Ling Khoo, Mee Hong Ling, and Peter Komis-
arczuk (2017). “A survey on reinforcement learning models and algorithms for
traffic signal control.” In: ACM Computing Surveys (CSUR) 50.3, p. 34.

Yoshimura, Yuji, Anne Krebs, and Carlo Ratti (2016). “An analysis of visitors’ length
of stay through noninvasive Bluetooth monitoring in the Louvre Museum.” In:

Zanin, Michele, Stefano Messelodi, and Carla Maria Modena (2003). “An efficient
vehicle queue detection system based on image processing.” In: Image Analysis
and Processing, 2003. Proceedings. 12th International Conference on. IEEE, pp. 232–
237.

Zhao, Yi and Zong Tian (2012). “An overview of the usage of adaptive signal con-
trol system in the United States of America.” In: Applied Mechanics and Materials.
Vol. 178. Trans Tech Publ, pp. 2591–2598.

Zhu, Yuke, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi (2017). “Target-driven visual navigation in indoor scenes using
deep reinforcement learning.” In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, pp. 3357–3364.

133

https://doi.org/https://doi.org/10.1016/j.trc.2020.102918
https://doi.org/https://doi.org/10.1016/j.trc.2020.102918
https://www.sciencedirect.com/science/article/pii/S0968090X20308172
https://www.sciencedirect.com/science/article/pii/S0968090X20308172


Part IV

A P P E N D I X

134



A
C O D E I M P L E M E N TAT I O N S

a.1 main

A high-level overview of the components of the platform developed is shown in Fig-
ure A.1 below. A main script is used to initialise and control all parts of the model
training or evaluation process. The platform was developed in Python and uses an
object-oriented approach to programming where functions, variables, and other as-
pects are grouped together into related containers called objects. Functions and vari-
ables can then be accessed from these objects (in Python this is done through the dot
operator, e.g. object.function(arguments)). An overview of each piece is provided in the
paragraphs and sections below.

The script begins by loading the simulator and API object to interact with it. Two
APIs were developed to interact with SUMO and VISSIM, but additional APIs imple-
menting the methods discussed in Section A.2 could be added. Then the algorithm
loads the selected signal control method (as the learning model). This includes the DRL

model developed, SCOOT, or traditional fixed time or actuated control.
The loaded modules each create objects that can be interacted with, and each inter-

section’s model is run as a separate thread. The process of learning or signal control
is then done. In some cases the calculations are skipped if not relevant to the learning
model (e.g. the Actuated and SCOOT models don’t request the reward value). Since
the simulation itself is controlled in the main thread, synchronisation is required to
ensure that all intersections are learning at the correct rate and receiving frames at the
same time.

a.2 simulator api

The simulator API is an abstraction layer that translates inputs and outputs from the
main and learning model into commands understood by the relevant simulator. An
object-oriented style was used to develop the API and two Two abstraction layers
were developed for this project, one for SUMO and one for VISSIM.

Abstraction layers run the simulator as an external thread and implement the fol-
lowing functions:

• A reset function. This function returns the simulation to an empty state. It also re-
generates all the volumes (if needed) from a new random seed. After re-setting
the network, it also runs the simulation for a pre-defined warm-up period.

• An advance function. This function advances the simulation and then collects
all the data required for input from the simulator. This function is usually the

135



bibliography

Figure A.1: SUMO Simulated Corridor

136



bibliography

most time-intensive operation in a time step (particularly with VISSIM). Queue
lengths are estimated directly from vehicle locations and speeds. This function
also calls a number of other private functions that interact with the Network
Performance object to update data that is used in the DRL and SCOOT models.

• An action function. This function implements the actions described in Section
4.3.1.2. It interacts with a separate Ring and Barrier abstraction object that con-
trols and keeps track of all the phases

• A permitted actions function. This function checks which actions are valid at any
given time based on the timing rules in the Ring and Barrier abstraction.

Actions that implement with the simulator translate these calls for each specific simu-
lator.

To support the abstraction layer, there are a number of critical objects that are also
used to abstract part of the simulation’s operation. These include the following:

• A network performance object that keeps track of high-level data, including the
current step, the number of runs, and queue lengths. This object directly keeps
track of key elements of the reward function used in the DRL model, including
the number of vehicles discharged and the current queue length. This object is
usually included as a sub-object of the Network Data

• A network data object that has functions that keeps track of raw data, such as raw
vehicle positions, signals, and links. This object also has functions that allow
conversion of the raw data, such as functions to estimate the queue length for a
particular link used in the Network Performance object

• A signal head object that keeps track of the current state of each phase’s signal
(e.g. whether it’s green, red, etc).

• A ring-and-barrier object that emulates ring-and-barrier operation. This object
includes tracking for the current phase, plan, minimum green, maximum green,
etc.

a.3 bluetooth and wifi platform

The Bluetooth and WiFi simulator consists of two different platforms. The Monte
Carlo simulator is a simple Python program while the code interacting with the sim-
ulator platform interfaces with the simulator API described in Section A.2. This code
functions as a learning model and fully interacts with the API.

a.3.1 Monte Carlo Simulator

This code runs exclusively in Python and loads pre-defined volume and roadway
configuration data data from tables

137



bibliography

Algorithm 1 Monte Carlo Simulator

1: procedure Estimate

2: volumes← volume.csv
3: LaneStructure← lanes.csv

#Defined at runtime
4: MarkovRuns

5: SimulationTimeLength

6: Errorσ
7: Errorµ
8: OptimiseCycle #Boolean
9: MinimumGreen5

10: MaximumGreen

11: MaximumCycle

12: MinimumCycle

13: Saturation

#Arrays to hold the output for each run
14: Greens =Array(Array(Array())) #each run, second, phase
15: Cycles =Array(Array()) #each run, second
16: for runi ∈MarkovRuns do
17: for timei ∈ SimulationTimeLength do
18: Ytotal,timei = 0

19: for phasei ∈ LaneStructure do
#Interpolate and get volume for a lane and time

20: volumei ← volumes(timei,phasei)
21: delayi,hcm ←HCMDelay(volumei,Greens,Cycles)
22: delayi,run = delayi,hcm+ErrorNorm(Errorµ,Errorσ)
23: Xest ←GoldenSection(delayi,run,phasei,Greens,Cycles)
24: Yest ← Xest ×

Greensphasei
Cycles )

25: Ytotal = Ytotal + Yest
26: end for
27: if OptimiseCycle then
28: Cyclesruni,timei =OptimiseCycle(Ytotal)
29: end if
30: for phasei ∈ LaneStructure do
31: Greensruni,timei,lanei ← HCMGreen(Yest,phasei , Ytotal)
32: end for
33: end for
34: end for
35: end procedure

138



bibliography

The HCMDelay and HCMGreen functions implement the HCM proceedure outlined
in Section 2.2.3 and the HCM2010 directly. This includes the ability to do capacity
estimation using a base saturation flow rate and adjustments for permissive left turns.
The ErrorNorm function applies an error value distributed normally with standard
deviation Errorσ and mean Errorµ. In all test cases Errorµ was defined as zero.

The GoldenSection function implements a Golden Section Search. The algorithm uses
the HCM equations to compute the delay for a given value of X, though the calculation
of d2 is done with a pre-calculated capacity value. The process proceeds according to
the following process:

a.4 learning model specification

The learning model specification is a custom API guideline used to generate models
that interact with

a.4.1 DRL Model

The DRL model is implemented using the Tensorflow library. Tensorflow simplifies
many aspects of neural network design by providing abstractions for layers, filters,
and training algorithms that would otherwise be complicated to code from scratch. It
is the basis of other deep learning libraries that can be used in Python, such as Keras.

a.4.1.1 Network Initialisation

Network initialisation is done by creating a Tensorflow network according the pre-
specified size.

a.4.1.2 Network Training

Network training proceeds after the network is initialised. Pseudocode for the training
is shown in Algorithm 5 The training process can run for a defined number of steps
or can optionally run permanently in the "train" phase (until manually stopped). A
number of settings must be defined, many of which are explored in this research.
Training proceeds by first obtaining the current state of the simulation, choosing an
action, executing the action, obtaining the reward, and obtaining the successor state.
These are all added to a replay buffer that holds the past 10,000 frames.

The replay buffer is a queue-like object where experiences are added to the front
and older experiences are pushed out from the back. A minibatch system is used to
provide experiences that are used to train the model. Minibatches have been shown to
provide more stable learning and reduce erratic behaviour in the model by allowing
the agent to re-experience past actions. By default a minibatch with 32 frames is drawn
from a replay buffer which is then used to train and update the model’s weights.
Prior to training, the agent must "observe" the network to populate this buffer. The
minimum observation time must be equal to the buffer size, but larger observation

139



bibliography

Algorithm 2 Monte Carlo Simulator

1: function GoldenSection(delayi,run,phasei,Greens,Cycles)
2: Tolerance = 0.0001 #Stops when calculated delay is within this range
3: XA = 0

4: delayA ←HCMDelayX(XA,Greens,Cycles) #Check delay from no volume
5: φ =

√
5+1
2 #The golden ratio

6: if delayi,run < delayA then
7: return XA
8: end if
9: DeviationA = |delayA − delayi|

10: XB = 2

#Check delay from a very over-saturated value
11: delayB ←HCMDelayX(XB,Greens,Cycles)
12: if delayi,run > delayB then
13: return XB
14: end if
15: DeviationB = |delayB − delayi|

16: XC = XB − XB−XA
φ

17: delayC ←HCMDelayX(XC,Greens,Cycles)
18: DeviationC = |delayC − delayi|

19: XD = XA + XB−XA
φ

20: delayD ←HCMDelayX(XD,Greens,Cycles)
21: DeviationD = |delayD − delayi|

22: while Deviation > Tolerance do
23: if DeviationC < DeviationD then
24: XB = XD
25: DeviationB = DeviationD
26: DelayB = DelayD
27: else
28: XA = XC
29: DeviationA = DeviationC
30: DelayA = DelayC
31: end if
32: XC = XB − XB−XA

φ

33: delayC ←HCMDelayX(XC,Greens,Cycles)
34: DeviationC = |delayC − delayi|

35: XD = XA + XB−XA
φ

36: delayD ←HCMDelayX(XD,Greens,Cycles)
37: DeviationD = |delayD − delayi|

38: end while
39: return XD
40: end function

140



bibliography

Algorithm 3 DRL - Network Initialisation Functions

1: function Weights(shape)
2: weights← tensorflow.truncatednormal(shape,mean = 0, stddev = 0.01)
3: return weights
4: end function

5: function Bias(shape)
6: bias← tensorflow.constant(shape, value = 0.01)
7: return bias
8: end function

9: function ConvolutionalLayer(input, filters, stride)
10: padding := "same"
11: Conv← tensorflow.conv2d(shape, filters, stride,padding)
12: end function

13: function MaxPoolLayer(input)
14: kernel_size := [1, 2, 2, 1] #Window Size is 2x2
15: strides = [1, 2, 2, 1] #Steps around in blocks of 2
16: padding := "same"
17: end function

times may allow more variability in the initial experience buffer by reducing the effect
of the warm-up period.

a.4.2 SCOOT Emulator

The SCOOT emulator is coded in Python as a class compatible with the basic learning
model unit. The module is divided into three key components: the split optimiser, cy-
cle optimiser, and the offset optimiser. All optimisers rely on an implementation of
the Robertson model to predict downstream flows Since the simulation API imple-
mented for the DRL model supports two rings, two-rings are also used for the SCOOT

emulation.

a.4.2.1 Robertson Model

Robertson’s model is the fundamental model applied to generate the Cycle Flow Pro-
files that SCOOT uses. This model is a geometric model that applies a transformation
to volumes on the upstream to predict downstream volumes. The basic outline of the
algorithm is shown in Algorithm 6. Output is binned at a pre-defined resolution of
15s for all emulation in this work, but may be aggregated or interpolated to match
green or cycle starting and ending times.

141



bibliography

Algorithm 4 DRL - Network Initialisation

1: procedure NetworkCreation

#Initialise the weights
2: Actioncount = 4 #Final output vector size
3: Matrixdim = 84

4: weightsconv1 ←Weights([8, 8, 4, 32]) #Rank 4 Tensor shape
5: weightsconv2 ←Weights([4, 4, 32, 64])
6: weightsconv3 ←Weights([3, 3, 64, 64])
7: weightsfc1 ←Weights([1600, 512]) #2D Fully connected weights
8: weightsfc2 ←Weights([512,Actioncount]) #Output weights

#Initialise the Bias
9: biasconv1 ← Bias([32])

10: biasconv2 ← Bias([64])
11: biasconv3 ← Bias([64])
12: biasfc1 ← Bias([512])
13: biasfc2 ← Bias([Actioncount])

#Initialise the layers using ReLU for convolutional layers
14: layerinput := [None,Matrixdim,Matrixdim, 4] #Batch of the last 4 states
15: layerconv1 ← tensorflow.relu(ConvolutionalLayer(layerinput,weightsconv1, 4)

+biasconv1
16: layerconv2 ← tensorflow.relu(ConvolutionalLayer(layerconv1,weightsconv2, 2)

+biasconv2
17: layerconv3 ← tensorflow.relu(ConvolutionalLayer(layerconv3,weightsconv3, 1)

+biasconv3
#Fully connected layers use matrix multiply

18: layerfc1 ← tensorflow.relu(tensorflow.matmul(layerconv3,weightsfc1))+
biasfc1

19: layerout ← tensorflow.relu(tensorflow.matmul(layerfc1,weightsfc2)) +
biasfc2

20: end procedure

142



bibliography

Algorithm 5 DRL - Network Training

1: procedure Train

2: environment← Simulator.API
3: γ #Defined at runtime
4: D :=Dequeue(1000) #Replay memory, default maximum 10000 frames
5: Batchsize := 32 #Minibatch size
6: ε := εinitial #Set at runtime, usually 1
7: εfinal #Set at runtime, usually 0.01
8: timeobservation #Set at runtime
9: timeexplore #Set at runtime

10: timetrain #Set at runtime, or indefinite
11: timeall = timeobservation + timeexplore + timetrain
12: statet ← environment.state #Initial state
13: η #Learning rate, defined at runtime
14: trainer←Tensorflow.AdamOptimiser(η)
15: while step < timeall do
16: state← environment.state
17: actionsall ←Evaluate(statet) #Gives Q-values for actions
18: random←RandomNum(0, 1)
19: actionsvalid =ValidAction(output) #Check in the API which actions are valid
20: if random < ε then
21: actionchoice =RandomSample(actionsvalid)
22: else
23: actionchoice =Max(actionsvalid) #Select the max Q-value action
24: end if
25: if thenε > εfinal & step > timeobservation
26: ε = ε− εinitial−εfinal

timeexplore
#Anneal ε

27: end if
28: enviornment.DoAction(actionchoice)
29: reward← environment.Reward
30: statet+1 ← environment.state
31: terminal← environment.Terminal #Check if the simulation needs to restart
32: D.add(statet,actionsall, reward, statet+1, terminal) #Excess discarded
33: if step > timeobserve then #Train the model|

#minibatch has elements state, actions, reward, statet+1, terminal
34: minibatch =RandomSample(D,Batchsize)

#Calculate the rewards scaled with gamma for the batch
35: for batch ∈ minibatch do
36: if batchterminal then
37: batchreward,calculated = batchreward
38: else
39: batchreward,calculated = batchreward + γ∗Max(actions)
40: end if
41: end for

#Run a training step and update the weights of the network
42: trainer.Run(minibatch)
43: end if
44: end while
45: end procedure

143



bibliography

Algorithm 6 SCOOT Emulator - Robertson Model

1: procedure ComputeRobertson(direction, controller, corridor, time)
#Volume data is obtained from valid upstream scoot-enabled detectors
#Volume data is binned per-15 seconds in this implementation

2: volumebinned,up ← corridor.detectors(controller,direction)
3: binsize := 15s

4: for bini ∈ volumeup do
5: F = 1

1+αt , t = βT
6: qdown(bini + t) := F× qup(bini) + (1− F)× qdown(bini−1 + t)
7: end for
8: return qdownstream,binned

9: end procedure

a.4.2.2 Split Optimiser

The split optimiser’s main operation is divided by the direction of the corridor. The
main operation is shown in Algorithm 7. By default, all directions are equally weighted
and the optimiser attempts to make an adjustment that balances the degree of satu-
ration (X) between all approaches in all rings of the controller. This is done with the
process shown in Algorithm ??. Calculation proceeds by using the Robertson model to
estimate volume flow rates. Saturation flow rates must be pre-calculated and specified
for all approaches and are used to estimate the degree of saturation from the green
and cycle times. The algorithm makes a recommendation by first setting flags for the
retard or advance decision to true. A check is then done against all approaches to see
if the change produces a resulting saturation flow rate that is greater than (for the
case of retard) or less than (for the case of advance) the corridor direction’s current X
value in the ring considered. If such a case is found then the flag condition is set to
false. If both retard and advance are false, then the algorithm recommends keeping
the current split time. This can occur due to the resolution of the check (±4s), but it is
not possible for both flags to be true. Finally, a check is also made on minimum and
maximum greens, and a flag is set to false if it would result in any phase having an
inappropriate green time.

a.4.2.3 Cycle Optimiser

The Cycle Optimiser runs at the end of the cycle which is defined relative to a refer-
ence phase. In this implementation the start of the corridor left turns is used as the
reference cycle. The procedure is outlined in Algorithm 8. This algorithm works by
checking each intersection’s predicted maximum degree of saturation and choosing
the adjustment that brings it closest to the target value (0.9 by default). Half and dou-
ble cycles are not considered in this implementation. Similar to split adjustment, if
a change would adjust the cycle below a maximum or minimum cycle the change is
disallowed.

144



bibliography

Algorithm 7 SCOOT Emulator - Split Optimisation

1: procedure SplitOptimiser(corridor, controller,action)
2: upstreams← corridor.upstream(controller) #Directions that can be optimised

#Calculate the benefit of changing the split
3: recommendation← Recommend(controller, corridor)
4: greenstotal,approach ← controller.greens
5: cycle← controller.cycle
6: offset← corridor.offset(controller,direction)
7: saturation← controller.saturation #Pre-specified at runtime

#Comparisons are made against the dominant direction of the corridor
8: predictedvol← Robertson(direction, controller, corridor )

9: Xdirection,retard := predictedvol

saturation×greensdirection−4
cycle

10: Xdirection,advance :=
predictedvol

saturation×greensdirection+4
cycle

11: Xretard := Max(Xdirection,retard)
12: Xadvance := Min(Xdirection,advance)

#These Booleans indicate if retarding/advancing moves toward balancing all Xs
13: recommendretard := true
14: recommendadvance := true

15: for approach ∈ controller.intersection do
#Compare the resulting X on the corridor to all other approaches

16: if approachdirection 6= direction then
17: approachvol ← Robertson(direction, controller, corridor )

#X for the approach will vary depending on the comparison
18: Xapproach,retard,advance :=

predictedvol

saturation×
greensapproach±4

cycle

19: if Xapproach,retard > Xretard then
20: recommendretard := false
21: end if
22: if Xapproach,advance 6 Xadvance then
23: recommendadvance := false
24: end if
25: recommendretard ←CheckMinMaxGreen(approach)
26: recommendadvance ←CheckMinMaxGreen(approach)
27: end if
28: end for
29: return recommendretard,advance,keep

30: end procedure

145



bibliography

After deciding on and when evaluating an adjustment the algorithm implements
the cycle change by proportionally increasing or decreasing green time to each phase.

Algorithm 8 SCOOT Emulator - Cycle Optimisation

1: procedure Cycle(corridor)
2: adjustmentscycle = (−32,−16,−8,−4, 0, 4, 8, 16, 32)
3: for controller ∈ corridor do
4: cycle← controller.cycle
5: Xtarget = 0.90
6: for direction ∈ controller do
7: for change ∈ adjustmentscycle do
8: if change+ cycle > cyclemin & change+ cycle 6 cyclemax then
9: q← ComputeRobertson(direction, controller, corridor)

10: S← controller.saturation #Pre-specified at runtime
11: Xcontroller,direction,change =

q
S× green

cycle+change

12: DiffXcontroller,direction,change := Xtarget −Xcontroller
13: end if
14: end for
15: end for
16: end for
17: changefinal ← Max(change,DiffX)
18: end procedure

a.4.2.4 Offset Optimisation

The Offset Optimiser works by checking the queues produced by each candidate offset
adjustment. Queues are estimated using the binned Robertson volumes in combina-
tion with a deterministic queueing model. The deterministic model assumes that no
vehicles can discharge during red but that vehicles can discharge at the pre-defined
saturation flow rate on green.

Offset adjustments are done every 5 minutes and implemented by proportionally
adding or subtracting time to each phase to bring the offset in alignment with the
new value by the next cycle. Offset adjustments can shorten the green time if the
adjustment is small, otherwise offset adjustments are done by adding green to each
phase.

146



bibliography

Algorithm 9 SCOOT Emulator - Offset Optimisation

1: procedure Offset(corridor)
#Check whether a change in the offset improves the predicted arrivals

2: adjustmentsoffset := −4, 0, 4
3: for controller ∈ corridor do
4: for direction ∈ (controller.directions ∈ corridor do
5: for change ∈ adjustmentsoffset do q ←

ComputeRobertson(direction, controller, corridor) greenstart,end ←
controller.greens+ change queue← D/D/x(q,greenstart,end

6: end for
7: end for
8: end for
9: changefinal ← Min(change,queue)

10: end procedure

147



colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of May 18, 2021 (document revision 2.0).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Title Page
	Examining Committee Membership
	Declaration
	Abstract
	Acknowledgments
	Dedication
	Contents
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Acronyms

	List of Abbreviations
	Introduction and Literature Review
	1 Introduction
	1.1 Background
	1.2 Traffic Signal Control Theory
	1.2.1 Traditional Traffic Control Systems
	1.2.2 Adaptive Signal Control

	1.3 Big Data and Machine Learning
	1.3.1 Big Traffic Data
	1.3.2 Machine Learning

	1.4 Problem Statement
	1.5 Research Objectives
	1.6 Thesis Organisation

	2 Literature Review
	2.1 The Development of Modern Signal Controllers
	2.1.1 Adaptive Signal Control

	2.2 Traffic Modelling and Prediction for Signal Control
	2.2.1 Queueing Models
	2.2.2 Platoon Dispersion
	2.2.3 The Highway Capacity Manual and Canadian Capacity Guide
	2.2.4 Cell Transmission Models
	2.2.5 Micro-Simulation Approaches

	2.3 Big Data Technologies
	2.3.1 Data from Connected Vehicles
	2.3.2 Bluetooth and WiFi Data
	2.3.3 Data from Smart Traffic Cameras
	2.3.4 Other Analytical Signal Control Strategies

	2.4 Machine Learning
	2.4.1 Data Clustering
	2.4.2 Artificial Neural Networks
	2.4.3 Reinforcement Learning
	2.4.4 Transfer Learning
	2.4.5 Traffic Control Applications



	Alternative Traffic Signal Control Methodologies
	3 Using Travel Time to Re-time Signals
	3.1 System Settings and Problem Description
	3.2 Methodology
	3.2.1 Estimation of Saturation Flow and Flow Ratio
	3.2.2 Determination of the Optimal Signal Timing Adjustment
	3.2.3 Determination of the Optimal Offset Adjustment

	3.3 Case Studies
	3.3.1 Monte Carlo Simulation
	3.3.2 Simulation Study

	3.4 Conclusions

	4 Deep Reinforcement Learning: Signal Control of Isolated Intersections
	4.1 System Settings and Problem Description
	4.2 Methodology
	4.3 Model Design
	4.3.1 Deep Reinforcement Learning Model
	4.3.2 Reward Function

	4.4 Transfer Learning
	4.5 Scenario Settings
	4.6 Sensitivity Analysis
	4.6.1 Detectable Queue Length
	4.6.2 Effect of Reward Function Parameters
	4.6.3 Effect of Model Training Settings
	4.6.4 Effect of Time of Day

	4.7 Model Transferability
	4.8 Comparison to Traditional Signal Control and Timing Methods
	4.9 Full Ring and Barrier Controller
	4.10 Conclusions

	5 Deep Reinforcement Learning: Signal Control of Multiple Intersections
	5.1 Problem Description and Overview of Methodology
	5.1.1 Observation Matrix Changes
	5.1.2 Transfer Learning

	5.2 Model Training and Evaluation
	5.2.1 SCOOT Emulation
	5.2.2 Model Training
	5.2.3 Case Study Network

	5.3 Results
	5.3.1 Effectiveness of Transfer Learning
	5.3.2 Coordinated Control: A Comparison to SCOOT

	5.4 Conclusions


	Conclusions and Contributions
	6 Conclusions and Contributions
	6.1 Summary of Research Findings
	6.1.1 Traffic Signal Re-timing Using Travel Time Data

	6.2 Deep Reinforcement Learning for Adaptive Traffic Signal Control
	6.2.1 State Space Configurations
	6.2.2 Reward Functions
	6.2.3 Training Strategies
	6.2.4 Transfer Learning and Full Ring-and-Barrier Designs
	6.2.5 DRL Model for Multi-Intersection and Corridor Control

	6.3 Major Contributions
	6.3.1 Contributions on Applying Travel Time for Signal Retiming
	6.3.2 Contributions on Applying DRL for Adaptive Traffic Signal Control

	6.4 Limitations and Areas for Future Research
	6.4.1 Travel-Time Based Signal Optimisation
	6.4.2 Deep Reinforcement Learning (DRL) for Adaptive Traffic Signal Control


	Bibliography

	Appendix
	A Code Implementations
	A.1 Main
	A.2 Simulator API
	A.3 Bluetooth and WiFi Platform
	A.3.1 Monte Carlo Simulator

	A.4 Learning Model Specification
	A.4.1 DRL Model
	A.4.2 SCOOT Emulator


	Colophon


