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Abstract 

For several decades, personal computers have been used as a tool to enhance training 

and education. Some of the early computer systems used in this field, referred to as Computer 

Based Training (CBT) and Computer Aided Instructions (CAI), are static in nature. As such, 

the problem of these systems is that they do not adapt to learners’ needs and abilities. 

Intelligent Tutoring Systems (ITS) were proposed to offer more human-like instruction to 

students by taking both the student and the knowledge domain into consideration. This thesis 

examines the components of such systems, discusses the challenges faced by designers, 

provides examples of previously implemented systems, and proposes a new system to tutor 

microelectronic circuits. This system concentrates on MOSFET circuits and their current-

voltage characteristics. It also forms the base for future research to implement a more 

comprehensive microelectronics ITS. 
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Chapter 1 

Introduction 

An intelligent tutoring system (ITS) is a computing system that aims to facilitate and 

automate teaching by providing students with real-time feedback that is precise and adaptive. 

An ITS tries to mimic a human tutor by providing one-to-one instruction to each student 

according to their knowledge level and educational needs [1]. It also adds flexibility to the 

material to be taught and allows students to control the pace at which new knowledge is 

presented [2]. Many such systems have been proposed for use in different knowledge 

domains to help students and human tutors. Such domains include and are not limited to: 

flight simulation, general physics, and mathematics. To my knowledge, the field of 

microelectronic circuits is lacking an adequate automated system for teaching the subject 

efficiently. This research aims to fill that need by the design and development of such a 

system. 

As the field of microelectronic circuits depends heavily on mathematical equations, 

previously proposed ITSs that tackle the physics and mathematics domains will first be 

studied. Also, circuit simulators such as SPICE - often already used as a training tool - will 
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be studied and integrated into the system to help instructors create and generate new 

problems. 

The overall organization of the thesis is as follows: Chapter 2 presents a literature review 

of the previous related works. This chapter is subdivided in six main sections. Section 2.1 

discusses some major ITS in history. Section 2.2 presents an in-depth study of ITSs and their 

components. Section 2.3 focuses on ITSs that target physics and mathematics and how they 

handle equations. Section 2.4 discusses feedback and hint generation in previous ITSs. 

Section 2.5 presents some ITSs that target circuits instruction. Finally, Section 2.6 presents 

a summary of some existing ITSs. Chapter 3 proposes the design of the new microelectronic 

circuits system. Section 3.1 designs an algorithm to solve a simple problem. Chapter 4 

presents the experimental results. Chapter 5 discusses conclusions and future work. 
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Chapter 2 

Literature Review on Intelligent Tutoring 

Systems 

2.1 History of Intelligent Tutoring Systems 

One of the earliest examples of an ITS, reported by Carbonell in 1970 [3], was called 

SCHOLAR. SCHOLAR was designed to help instruct students learn the geography of South 

America. What made it "intelligent" was its ability to handle student questions that were not 

expected by the programmer. Also, it was able to give instructional knowledge at various 

levels according to context. SCHOLAR's input and output language was English, and it was 

capable of initiating sessions by asking questions to the student, or have the student initiate 

the session by inputting a question. Carbonell called his model "Information Structure-

Oriented Computer-Aided Instruction" (ISO-CAI) [3]. In 1990, Nwana [4] claims that 

SCHOLAR was in fact the earliest reported ITS. 

Brown, et al. [5] extended SCHOLAR’s ability to initiate dialog or have a dialog initiated 

as a response to the student’s input, to increase the ways a student can interact with the 
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system. The platform they created was called SOPHIE (SOPHisticated Instructional 

Environment). As opposed to the SCHOLAR pedagogical model, which was basically 

focused on giving information to the students, SOPHIE’s pedagogical model would receive 

and assess student input and give advice accordingly. SOPHIE's scope of learning was 

electronic troubleshooting, and it allowed the students to experiment with faulty components 

in a safe environment, and it gave them experience in detecting electronic faults. 

GUIDON [6] was designed as an ITS that teaches problem solving and diagnostic skills. 

It helps instruct the students to diagnose and treat bacterial infections. It initiates the learning 

process by giving students general information about a patient and allowing them to ask 

questions to further understand the symptoms to make a sound diagnosis. GUIDON 

evaluates students by referring to the MYCIN [7] medical expert knowledge system. 

The ETOILE system [8] was developed in 1997 in an attempt to simulate a human tutor 

by implementing multiple teaching methods. It has five different teaching agents, each agent 

adapting a teaching method supported by educational psychology. Baylor's MIMIC system 

[9] is another system that has different teaching agents, this time three. These three agents 

teach instructional design from three different perspectives. They interact with each other as 

well as with the student to provide an optimized learning experience. 

ALEKS is an ITS developed in 1996 by Canfield [10] to teach algebra and mathematics, 

in a factual manner. It has since expanded to teach math, chemistry, statistics, and 
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accounting [11]. Students can create an account for a simple fee; then, they start an 

assessment test in the course they want to master. The aim of that test is to determine what 

the developers call the “knowledge state” of the student. This state represents what topics 

the student is familiar with, and their degree of mastery in each topic so that the program can 

determine what material to present next. As the student progresses through the course, 

periodic assessments would update the knowledge state according to the student’s acquired 

knowledge. Other systems that employ the knowledge state approach include SIETTE [12] 

and RATH [13]. 

Some systems use adaptive navigation support to students to go through course 

material [14]. These systems give the student the ability to choose what to learn next while 

maintaining the general sequence of the material by hiding some material links and viewing 

others. Some of the systems that implement this technique include ELM-ART [15,16], 

InterBook [17], and De Bra's course [18]. 

The ViPS system [19], reported in 2013, allows students to create and simulate virtual 

pulley systems. This ITS helps to correct student misconceptions about the concepts of force 

and gravity by virtual experimentation. This guidance happens during the student attempts 

to solve the problem given by ViPS by creating a system of pulleys by the means of 

providing generic feedback and adding more case-specific hints if the student continues to 
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struggle. The ViPS system addresses conceptual misunderstanding problems; however, it 

does not teach numerical analysis skills. 

Another ITS that focuses on the conceptual understanding of physics is WHY2-

ATLAS [20]. Unlike ViPS that helps the students learn by experimenting, WHY2-ATLAS 

instructs students by having a dialog with them supported by a natural language processing 

engine. WHY2-ATLAS can analyze both long and short answers that students provide for a 

certain question and gives feedback on the answers’ correctness and completeness. This was 

seen to extend ITS capabilities since most previously implemented systems could only 

process short, well-formatted answers. 

2.2 Components of an ITS 

An ITS has five main components [21]: (1) a student model, (2) a pedagogical module, (3) 

domain knowledge, (4) a communication model, and (5) an expert model. Figure 2.1 shows 

a diagram of these components and their interactions. 
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Fig. 2.1.  Traditional Components of an ITS and their Interactions 

Student model: The student model holds learner-specific information, including the 

current state of learner knowledge. This model helps the ITS to adapt to each individual 

learner’s needs. There are two common techniques to represent the student information: (1) 

overlay models and (2) Bayesian networks [21]. The overlay model represents student 

knowledge as a subset of the expert knowledge, and ITSs gradually tutor the student so that 

the knowledge of the two becomes exactly the same. One disadvantage of this model is that 

it does not show if the student has previous misconceptions that are not part of the knowledge 

base; therefore, an extension that allows for the explicit representation of “buggy” 

knowledge was suggested by Holt et al. [22]. A Bayesian network represents pieces of 
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knowledge in nodes and associates these nodes with the probability that the student knows 

this information based on their interaction with the system [21]. The student model can 

include more general information about the student than just their knowledge of the domain. 

An example is the students’ preference to look at examples before they attempt to solve 

questions. 

Pedagogical model: The pedagogical model determines the materials or topics to be 

presented to the learner, according to the information communicated by the student 

model [21]. One of the main challenges in designing this model is selecting the meta-strategy 

used to teach the domain. The best solution is to implement multiple teaching meta-strategies 

and let the student model choose the strategy that best suits the individual student. There are 

three low-level issues that need to be addressed by the pedagogical model designer after the 

meta-strategy is selected. The first one is selecting the topic the student needs to currently 

focus on. The second is that once a topic is selected, the system should generate and present 

the student with a problem to solve. This problem should have an appropriate difficulty level 

according to the student ability. Finally, when a student struggles with a problem, the system 

should generate and give appropriate feedback. The amount of help a student gets should 

again be according to their skills and ability. 
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Domain knowledge: The domain knowledge contains the information to be taught by the 

ITS. One of the main challenges is how to represent the knowledge so that it could be easily 

accessed by the other models. 

Communication model: The communication domain is the ITS interface with the student. 

It presents the knowledge, the problems and the feedback, and takes questions and answers 

from the learner. 

Expert model: The expert model contains the information being taught by the ITS and 

can simulate the ability of an expert to solve problems in the domain. 

2.3 Equation Handling and Manipulation 

Andes [23] is an ITS specialized in Newtonian physics. It targets college students that have 

previous algebraic experience. In the second version of Andes known as Andes 2 [23], a 

solution graph is generated for each problem. The solution graph is the main data structure 

used in Andes, where all possible solutions of a problem are generated and stored. Each 

solution graph has a solution point, where every variable of the problem is solved with its 

numeric value had the problem been solved. A color-by-number approach, where the 

variable is substituted with its correct value, is used to evaluate the correctness of the 

equation. If the left-hand side of the equation is equal to its right-hand side, the equation is 

said to be balanced; then, the equation is correct and is colored green; otherwise, it is wrong 
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and is colored red. This method has a flaw where adding extra variables that their value is 

zero or multiplied by zero is not considered as an error; however, it is claimed that this 

situation rarely happens. Figure 2.2 shows a screenshot from Andes interface [23]. 

 

 

Fig. 2.2. Screenshot taken from Andes Interface showing a Newtonian physics problem 

(left), variables (top right) and equations entered by the student (bottom right) [23] 
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The solution graph is generated by a problem solver that uses three groups: known 

quantities, generated equations, and sought quantities [23]. Initially, the set of known 

quantities includes the quantities given in the question, and the set of sought quantities 

includes the quantities the student is asked to calculate. To generate the solution, Andes 

iteratively chooses a problem-solving method (PSM) to apply to one of the sought quantities. 

A PSM uses a hierarchical algorithm with multiple steps that works towards applying a 

major physics principle and the minor principles associated with it. The major physics 

principle that the PSM will choose is the one that contains the selected sought quantity and 

then updates the known quantities and the sought quantities set. The problem is solved when 

the sought quantities set is empty. The following is part of the solution graph for the problem 

in Andes illustrated in the screenshot in Figure 2.2. 
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Fig. 2.3.  A Partial Solution Graph for the Inclined Plain Problem. It shows the expert model 

reasoning to find the required value (final velocity of the car) and how to apply 

physics principles to calculate it [24]. 

In 1999, Liew et al. [25] presented an intelligent tutoring system called the PHSYICS-

TUTOR. This system accepts equations as answers from students and provides an algorithm 

to reason about such answers. Liew et al. [25] claimed that such an algorithm must have the 

ability to manipulate algebraic equations and represent the basic concepts of physics. Before 

representing their reasoning mechanism, they discussed the then-available methods of 

accepting students’ answers and the weaknesses of each method as follows. 
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a) Multiple choice question: This type of question is the easiest to grade and can have 

pre-programmed immediate feedback. The problem with this method is that the tutor 

does not know how the students reached their answers. 

b) Natural language text: This type of question uses keywords and phrases to assess the 

answer. Liew et al. [25] claimed that natural language text is not appropriate for 

answers to questions concerning physics, as there are many ways to represent the 

same equation. 

c) Numeric answers: Numeric answers can be used for questions when all variables 

have given values except for one. The problem with this type of question is that when 

a student gives a wrong answer, it is hard to determine the source of the error as there 

are no intermediate steps to generate the final value. 

Liew et al. [25] also claimed that although the Andes system accepts equations as input 

from students, it does not apply the knowledge of physics and its principles to reason about 

the students’ answers. Andes uses equation comparison to evaluate and give feedback. The 

problem with Andes’ approach is the huge number of equivalent equations for each answer, 

which makes pre-programing all solutions an infeasible task. This, in turn, limits Andes’ 

ability to provide suitable feedback for each equation entered by the student. Liew et al. [25] 

found that the basic principles in the domain of introductory physics can be represented 
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easily due to their fairly manageable number. Also, algebraic equations are only 

conceptually correct if they are properly derived from these principles. PHYSICS-TUTOR 

has a knowledge base that is composed of these basic principles, their dimensions, and the 

operations that can be carried out on them and whether the result of the operation is a new 

instance of physics. This knowledge is represented as a relationship diagram. Figure 2.4 

shows a relationship diagram of physics concepts related to force. 

 

Fig. 2.4.  Relationship between Physics Concepts Related to Force 

 

Force
*

Mass
Acceleration

/

Distance Time
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The diagram in Figure 2.4 shows that the force can be calculated by multiplying mass 

and acceleration, and that the result of dividing the distance by time is the velocity. A 

diagram can also imply that certain operations cannot be applied to certain principles; for 

example, mass cannot be added to force. The domain knowledge also has a class diagram, 

where each physics concept is associated with its structure. This allows the system to know 

which operations are allowed on which concept [25]. For example, force is a vector; hence, 

it can be decomposed to its principal components. The decomposition operation cannot be 

applied to mass because it is a scalar quantity. A portion of a class diagram is shown in 

Figure 2.5. 
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Fig. 2.5.  A Portion of a Class Diagram Showing Some Vector and Scalar Principles [25] 

For each question, the instructor supplies PHYSICS-TUTOR with an answer. This 

answer is parsed to form a tree, called parse tree. For example, the equation 

𝑚𝐴 ∗ 𝑔 sin(𝜃) = 𝑚𝐵 ∗ 𝑔 (2.1) 

is parsed into the parse tree of Figure 2.6 [25]. 

 

 

Vector

Force Acceleration Position

Scalar

Mass Length
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Fig. 2.6.  Parse Tree of Equation (1) 

When the student enters an equation as their answer, PHYSICS-TUTOR first runs a 

dimensionality check on the parse tree by using the domain knowledge to assign dimensions 

for the variables in the student’s answer, e.g., kg, m/s, etc. [25]. This ensures that the answer 

is dimensionally consistent. If the answer is not dimensionally consistent the student is asked 

to enter a new one. An example of a correct answer that the student may enter is: 

𝑚𝐴 ∗ sin(𝜃) − 𝑚𝐵 = 0 (2.2) 

The answer in the previous equation has been rearranged and simplified by removing a 

common factor. This answer is parsed as shown in Figure 2.7 [25]. 
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Fig. 2.7.  Parse Tree of a Correct Answer 

To match the student’s answer with the instructor’s, the system does the following [25]: 

1. The system scans the tree from the bottom up to make sure that all terms match a 

physics concept in the domain knowledge. If it does not find a match, it constructs 

a list of possible matching concepts. The concept that matches both term in the 

example is force = mass * acceleration. 

2. Then, the system finds a modification to the terms so that they form a physical 

quantity. In this example, it adds the acceleration, g, to both terms. 

3. At the end, the system applies algebraic manipulation to the tree until it matches 

the solution tree. 
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Let us assume that the student has provided the following wrong answer [25]: 

𝑚𝐵 ∗ 𝑔 + 𝑚𝐴 ∗ 𝑔 sin(𝜃) = 0 (2.3) 

The parse tree of this answer is shown in Figure 2.8 [25]. 

 

 

Fig. 2.8.  Parse Tree of a Wrong Answer 

 

This answer is not dimensionally consistent; therefore, the system will not be able to 

match it to the correct answer. The closest correct match it could find is when the (+) operator 

is replaced with a (-). The system has data knowledge of the different errors that a student 

can make, and it has different handlers to handle different types of errors. 

The PHYSICS-TUTOR system has some limitations regarding hit-generation, handling 

time and periodic quantities, and differentiation and integration [25]. 
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2.4 Feedback Generation 

In 1998, Gertner [26] developed a feedback system to help students correct their mistakes in 

quantitative physics equations in a timely manner. This feedback system was developed to 

be integrated with the Andes Newtonian physics ITS. The system individually evaluates 

each equation entered by the student to check whether it is part of the correct solution. One 

of the main problems of the Andes ITS is that students often complain that the system 

occasionally flags some of the correct equations as incorrect. Gertner [26] explained that this 

problem can happen for one of three reasons. The first reason is that the equations were 

correctly flagged incorrect; however, the student’s final answer was correct. This, 

phenomenon along with lack of appropriate feedback, made the student confuse their 

equations to be correct. The second reason is students using interpretations different from 

those that are used by the ITS. The third reason is that the equations are correct; but, they 

are not part of the partial solution pre-generated and stored by the ITS. Gertner [26] 

addressed the first and second reasons, whereas the third reason was partially addressed by 

adding alternative solutions to Andes and giving the students feedback if their solutions were 

not the optimum one. To give feedback on an incorrect equation, Andes compares it with all 

equations stored in the system that are part of the solution for that problem. If there is a 

match, the equation is correct;else if there is a close equation, the system gives a hint on the 
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difference. If no match is found, the system uses hints to guide the students to the correct 

solution. 

The equation comparison is done by representing the student’s equation and 

Andes’generated equations in canonical form. The equation is converted to its equivalent 

canonical form by first rearranging it in such a way that all the terms are moved to one side 

of the equation and other side is equal to zero. Then, the resulting polynomial is converted 

to a vector. The first element of the vector is a variable and the coefficient at the n+2 position 

of the vector is the coefficient of the variable raised to power n. For example, 𝑥2 + 2 is 

represented by the vector [𝑥 2 0 1] where 𝑥 is the variable; 2 is the coefficient of 𝑥0; 0 is the 

coefficient of 𝑥; and 1 is the coefficient of 𝑥2. Similarly, the vector [𝑥 2 [𝑦 0 1] 1] is the 

canonical form of the polynomial 2 + 𝑥1[0𝑦0 + 𝑦1] + 𝑥2 which is the polynomial 𝑥2 +

𝑥𝑦 + 2. 

The closest equation to the student’s answer is found by calculating a match score 

between the student’s equation and every equation in the hash table generated by Andes. 

The match score between two vectors ranges between 0 and 100. This score is calculated by 

computing individual match scores between the elements of the vectors as follows. If both 

elements are variables, a function that calculates the similarity score between the variables 

is used. If both elements are numbers, the score is 100 if they are the same; 80 if they are 

negative of each other; 70 if 𝑛1 = 1/𝑛2, 𝑛1 = cos(𝑛2), or 𝑛1 = sin(𝑛2); and 30 otherwise. 
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If the two elements are of different types; then, the score is zero. After that, the individual 

scores are multiplied by a factor based on the element’s relative positions in the two vectors. 

At the end, the scores are summed up and divided by the average length of the two vectors 

to give the final match score. After finding the closest equation, Andes calculates match 

scores for each term in the equation. The term with the lowest match score is used to generate 

a hint from a preset table. That was the case in Andes 1. 

Andes 2 has what the authors call the “what is wrong help hint” button. This button 

generates hints by using error handlers [23]. When the student presses the "what is wrong" 

button, a group of error handlers each specialized with one type of error (sign, trigonometry, 

etc.) edits the student’s equation according to the error it is designed to handle. After each 

edit, the equation is re-evaluated. If it becomes correct then the error handler returns the 

solution and a priority; otherwise, it returns nil. The error handler that generates a solution 

with the highest priority is used to generate three hints: a pointing hint, a teaching hint, and 

a bottom-line hint. Andes gives hints to only one mistake at a time even though it can detect 

more than one mistake because it lacks the natural language processing power required to 

generate comprehensible hints for multiple errors at once. 

The solution graph mentioned in Section 2.2 is also used to generate what in Andes is 

called the "what’s next" hint [23]. These hints are used when the student is stuck and does 

not know what to do next. When a "what’s next" hint is provoked, Andes checks the solution 
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graph to find a main principle that the student has not applied yet and points them towards 

applying it. 

Liew and Smith [27] proposed a framework to provide feedback for a system of physics 

equations. They determined that five factors make the mapping process between the student 

equations and the ideal answer more difficult. These factors are: (1) variable renaming, (2) 

simple aliasing of variables (variables that are equivalent to each other), (3) mapping 

coefficients for a pair of variables, (4) elimination a class of variables (implicitly 

representing some variables as an expression of others), and (5) the choice of coordinate 

axes. 

In Liew and Smith’s [27] system the student should submit all equations before feedback 

is generated. As it is the case for Andes 1, the first step of analysing the student equation is 

transforming it to canonical form. After that, the whole set of equations is algebraically 

transformed to eliminate extra variables; for example, the variable 𝑣1 = 𝑘 ∗ 𝑣2 is eliminated 

by substituting it with the expression 𝑘 ∗ 𝑣2. Also, intermediate variables that are only 

represented in the student answer are eliminated by the same method. When the student set 

of equations has the same cardinality as the answer set of equations, a one-to-one mapping 

between the variables is carried out by first looking for variable names that are a perfect 

match, and then uses heuristics and domain knowledge to map the remaining variables. Once 

the variables are mapped, the algorithm maps each equation in the student set to its 
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corresponding equation in the answer set. Only equations with the same dimensions are 

compared for finding a possible match. An equation is considered a good or bad match based 

on heuristics such as the presence or absence of a certain term in both equations. 

After the equations in the student’s set are mapped to their corresponding equations in 

the answer set, they are compared for differences for feedback generation [27]. Examples of 

such differences include a '+' sign instead of a '–' and vice versa, missing or extra terms, 

incorrect coefficients, missing or extra trigonometric functions, and other differences that do 

not result in a change of the equation’s dimensions. Some differences such as a switch of 

sign can happen due to the use of different coordinate axes. This is eliminated by inspecting 

if the sign switch is consistent in all of the equations in the student set. Feedback is generated 

based on the differences found in the comparison stage. 

2.5 ITS for Circuits 

Electronic circuits present their own challenge when designing an ITS. This is due to their 

vast domain and the large variety of skills the student should master. These skills 

includeconceptual understanding, circuit analysis, troubleshooting and simulation, and 

design. The latter gives the ITS designer the greatest challenge as designproblems are usually 

open ended and have multiple valid answers. 
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SOPHIE [5], discussed in Section 2.1, was one of the first attempts to develop an ITS 

for electronic circuits. Its target was to help students master simulation and circuit 

troubleshooting skills by allowing them to experiment with a simulated platform and give 

them feedback to their designs. 

The Circuit Exercise [28] was proposed in 1992 to assist students in basic circuitanalysis. 

It generates a circuit problem randomly, solves it and gives the students feedback as they 

solve it. The drawback of this system is the limited number of circuit components it can 

analyse. The components that it can work with are resistors, capacitors, and coils. 

The Interactive Multimedia Intelligent Tutoring System (IMITS) [29] is another ITS that 

targets the basic undergraduate circuit instruction including AC, DC, and transient analysis. 

It challenges students with real life problems that would face an electrical engineer. It allows 

students to access the material which includes interactive tutorials and gives them access to 

a simulation laboratory to test their designs. The students can choose the order in which they 

would solve the exercise questions and the system monitors their knowledge evolution and 

suggests what material to cover next. 

A more recent electronics ITS is the ElectronixTutor [30]. The goal ofElectronixTutor 

goal is tutoring apprentice electrical technicians in the navy. It incorporates many learning 

agents that support conversation with a student and multiple choice questions with feedback 

as well as some classic textual material and videos. 
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As it has been discussed in the previous sections, the available ITS systems either target 

basic electrical circuits, or are focused on simulation and have little to no problem-solving 

exercises. This led us to strongly believe that an ITS that facilitates the instruction of 

microelectronic circuits with non-linear components such as MOSFET diodes and bipolar 

transistor is urgently needed. This research provides a steppingstone for the development of 

such an ITS. The following chapter will discuss how this problem is approached. 

2.6 Summary of Existing ITSs 

Nowadays, there are many types of ITSs in the market. Table 2.1 provides a brief 

description and comparison between some of them. 

 



 
 

Table 2.1. Description and Comparison between a Few of the Currently Available ITS 

Name Research/ 

Commercial 

Year Tested Claims Languag

e 

Input Subjects 

 

1- Andes 

 

Research 

 

1997 

 

Yes 

As good as pencil and paper with the need 

of manual grading 

 

Englis

h 

 

Equations 

 

Physics 

 

2- Mastering 

Physics 

 

Commercial 

 

1998 

 

Yes 

- Help students develop problem-solving 

skills for success in physics 

- Build conceptual and quantitative 

understanding 

- Encourage students to learn and apply 

physics concepts 

 

Englis

h 

 

No search engine. 

MCQ 

 

Physics 

 

3- Socratic 

 

Commercial 

 

2013 

 

Yes 

 

- Works for all subjects 

- Built for learning 

- Powered by Google AI 

- Loved by educators 

 

Englis

h 

 

- Handwritten 

problems 

- Search engine 

Biology, Chemistry, 

Physics, Earth 

Science, 

Environmental 

Science 

4- Darisni Commercial    Arabic MCQ Math, Science, 

English, Arabic 

 

5- Khan 

Academy 

 

Non-profit 

 

2008 

 

Yes 

- Personalized learning 

- Trusted content 

- Tools to empower teachers 

 

Englis

h 

 

MCQ, numeric 

Math, Science, 

Economics and 

Finance, Arts and 

Humanities. 

Computing 

 

6- Go Learning 

Bus 

University 

 

Commercial 

 

2015 

Has 93 

rating of 

average of 

4.1/5 on the 

App Store 

- Combined over 300 applications in one 

- AI driven couch 

- 60 minutes a week can help becoming 

great in more than 300 topics 

 

Englis

h 

 

MCQ 

 

School, University, 

Professional 

Training, Languages 

 

7- Basic Physics 

Formulas 

 

Commercial 

 

2015 

 

4 ratings of 

5 /5 

Apply technology to teach physics better 

and faster, and to provide tools for 

learning that are objective, so the students 

can achieve their goals (good grades), but 

in a captivating way, in the sense that 

knowledge is truly incorporated and will 

not be easily forgotten. 

 

Englis

h 

 

N/A 

 

Physics 
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Table 2.1 (Continued - 1) 

Name Levels Type of 

Questions 

Feedback Interactive AI Online Teacher/ 

Student 

Specific 

Curriculum 

Input type 

 

1- Andes  

 

University 

 

Problem 

Solving 

 

Immediate 

- Allows for three 

hints generated 

according to 

entered equation 

- Allows for next 

step hint 

 

Yes 

 

On-

Offline 

 

Both 

 

No 

 

Text 

 

2- Mastering 

Physics  

 

High school 

and 

University 

 

MCQ 

 

Immediate 

- Hints pre-

programmed by 

choice 

- has interactive 

simulators and 

learning games 

 

No 

 

Yes 

 

Both 

 

Yes 

 

Text 

 

3- Socratic  

 

N/A 

Answers 

questions and 

shows 

examples 

 

N/A 

 

No 

NN probably 

used for 

character 

recognition 

 

Yes 

 

Student 

 

No 

 

Oral, text, 

picture 

 

4- Darisni  

 

All school 

levels 

 

MCQ 

After Exam is 

done and 

submitted 

Can live connect to 

a teacher 

 

No 

 

Yes 

 

Student 

 

Yes 

 

Text 

 

5- Khan 

Academy 

 

All levels 

 

MCQ, 

problem 

solving 

 

Immediate 

 

Allows for step by 

step hints 

Yes, student 

model employs 

AI to know 

which parts of 

the knowledge 

base have been 

perfected 

 

Yes 

 

Both 

 

No 

 

Text 

6- Go Learning 

Bus 

University 

 

All Levels 

 

MCQ 

 

Immediate 

 

No 

AI couch for 

paid users 

 

Yes 

 

Student 

 

No 

 

Text 

7- Basic Physics 

Formulas 

High school 

and 

University 

 

N/A 

 

N/A 

Shows detailed 

solution at request 

 

No 

 

No 

 

Student 

 

No 

 

Text 
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Table 2.1 (Continued - 2) 

Name Research/ 

Commercial 

Year Tested Claims Language Input Subjects 

 

8- iPhysics 

 

Commercial 

  

5 ratings of 

4.6/5 on the 

App Store 

- Learn quickly from over 

70 topics, 

- Easily repeat formulas, 

theorems, definitions and 

properties 

- Quickly find the topics 

that matters to you 

 

English 

 

MCQ 

 

Physics 

 

9- Memrise 

 

Commercial 

  

139.9k 

ratings of 

4.8/5 on the 

App Store 

 

- Learn with locals 

- Practice games 

- Improve your 

pronunciation 

- Learn anywhere 

 

English 

 

MCQ, Words formed 

from list of letters 

Spanish, French, 

Japanese, German, 

Korean, Italian, 

Russian, Chinese, 

Portuguese, Arabic, 

Norwegian, Dutch, 

Swedish, Polish, 

Turkish or Danish. 

 

10- Duolingo 

 

Commercial 

 

2012 

 

87.778K 

ratings of 

4.6/5 on the 

App Store 

- Feels like a game and 

makes sure you stay 

motivated 

- Take 10 minutes a day, 

and you’ll surprise 

yourself with how well 

you can speak a new 

language 3 months from 

now 

- Practice with fun lessons 

that will leave you eager 

to learn more, and 

develop reading, writing, 

speaking, listening and 

conversation skills along 

the way 

English, Arabic, 

Chinese, Czech, 

Dutch, French, 

German, 

Greek, 

Hindi, 

Hungarian, 

Indonesian, 

Italian, 

Japanese, 

Korean, Polish, 

Portuguese, 

Romanian, 

Russian, Spanish, 

Thai, Turkish,  

Ukrainian, 

Vietnamese 

 

Choice from list 

 

Languages 
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Table 2.1 (Continued - 3) 

Name Levels Type of 

Questions 

Feedback Interactive AI Online Teacher/ 

Student 

Specific 

Curriculum 

Input 

Type 

 

8- iPhysics 

Highschool, 

introductory 

university 

 

MCQ 

 

Immediate 

 

No 

Calculate a 

percentage of 

topic mastery 

 

Yes 

 

Student 

 

No 

 

Text 

 

9- Memrise 

 

Beginner to 

expert 

 

MCQ, translate 

word 

 

Immediate 

 

Yes 

Yes, the 

words 

appearance in 

questions 

depends on 

how much a 

student 

struggle with 

them 

 

Yes, 

offline 

paid 

 

Student 

 

No 

 

Text 

 

10- Duolingo 

 

Beginner to 

expert 

MCQ, translate 

word, match the 

pair 

 

Immediate 

 

Yes 

 

Not apparent 

 

Yes 

 

Student 

 

No 

 

Text 

 

 



31 

2.6.1 Andes [31] 

Andes is a problem-solving platform that forces the student to draw vectors and define all 

variables to be able to solve the question. At each step of drawing, variable definition, or 

equation entry, Andes gives immediate feedback by color. If the feedback is that the student 

has made a mistake, the student can ask for up to three gradual hints, and the third one gives 

the answer. If the student is stuck and does not know what to do next, they can also ask for 

up to three hints. 

2.6.2 Mastering Physics [32] 

Mastering Physics is an online platform that includes explanatory videos, interactive 

simulators, and a huge question bank. It allows teachers to set up homework and quizzes for 

their students. 

2.6.3 Socratic [33] 

Socratic is a research engine that gathers education material from all over the World Wide 

Web (WWW) and videos from YouTube. Students can ask their questions orally, by text, or 

by scanning a written problem. Then, Socratic shows the student one or more websites that 

has a problem-solving engine for that particular problem. 
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2.6.4 Darisni [34] 

Darisni is an online platform for school students in all grades. It has explanatory videos and 

MCQ exams. The students do not know whether they answered correctly to a certain 

question until they submit the whole exam. The students can also schedule time with an 

actual teacher for live lessons. 

2.6.5 Khan Academy [35] 

Khan Academy is an online learning platform for various topics at different levels. It divides 

each course into chapters and has a quiz at the end of each one. These quizzes assess the 

students’ understanding of the knowledge base with the help of AI. 

2.6.6 Go Learning Bus University [36] 

This application is the main application of over 300 learning applications that teach various 

courses at various levels. It teaches the material by text and graphs and has MCQ quizzes 

with immediate feedback after each chapter. It also offers an AI couch for subscribed users. 
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2.6.7 Basic Physics Formulas [37] 

Basic Physics Formula is an application that summarises and explains basic physics by text 

and graphs. The formulas are organized by topics like mechanics, fluids, optics and so on. 

Each topic is divided into subtopics where a brief explanation and examples are presented. 

2.6.8 iPhysics [38] 

iPhysics is an application that summarizes physics topics and offers links to Wikipedia for 

further explanation. It offers three levels of MCQ quizzes at the end of each topic. 

2.6.9 Memrise [39] 

Memrise is a language learning application that teaches the students by sound and text. It 

has MCQ and word/phrase translation questions that ask the students to form words from a 

list of letters, to help students’ revision. It can detect the words that a particular student 

struggles with and include them more often in revision questions. It also has an explore mode 

where the students can use the smartphone camera to learn the name of the objects in their 

surroundings. 
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2.6.10 Duolingo [40] 

Duolingo is a language learning platform that is offered in many languages. The languages 

available to learn depend on the student native language. It offers sound and text and has 

MCQ, match the pair, and word/phrase translation questions, form words from a list of 

letters. 

This chapter has presented a review of current ITS with emphasis on the ones that target 

circuits and physics. The next chapter will propose our ITS and discuss its features. 
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Chapter 3 

Proposed Microelectronic Circuits ITS 

This chapter will discuss the proposed microelectronic circuits ITS. First, the techniques 

used will be briefly described followed by a description of the two modules that compose 

the system: (1) the teacher’s module and (2) the student module. 

3.1 Skeletal Algorithm 

It is suggested to use a similar approach for the proposed circuits ITS; however, instead of 

using a problem solver to find the value of the sought quantities, an open-source Spice circuit 

simulator can be used to calculate the values of the various variables that are included in the 

problem. The instructor will have to draw the circuit for any new problem to be added to the 

ITS and identify the known and sought variables. Once this is done, the circuit simulator 

will find the value of the sought variable and send it to a framework that generates “for 

loops” to accept input from the student, similar to the initial code shown in Figure 3.1. below 
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Fig. 3.1.  General Code of the Student Module 

 

The next step of the development process is to add a module for the teacher where he/she 

can run LTspice and generate an operating point simulation RAW file. That raw file is then 

read by the teacher’s module and the simulated variables are extracted and displayed; then, 

the teacher will be asked to complete the following steps: 

1. Enter the MOSFET specification for each device in the simulated file. 

2. Enter any variables needed to solve the problem. 

3. Specify the given variables from the list of the variables that have been entered. 

#%%Taking and processing input part a 

while ((Flag_V1a&Flag_V2a)!=1): 

 eq=input("Enter an equation or final value for part a\n") 

 answer=eq.split("=") #split the equation by the "=" sign 

 lhs=answer[0] #left hand side 

 rhs=answer[1] #right hand side 
 #checking answer 

 lhs_parsed = parser.expr(lhs).compile() 

 rhs_parsed = parser.expr(rhs).compile() 

 lhs_value= eval(lhs_parsed) 

 rhs_value=eval(rhs_parsed) 

 rhs_value=round(rhs_value,6) 

 lhs_value=round(lhs_value,6) 

 if (lhs_value==rhs_value): 

  answer=1 

  print ("\nYour entry is correct\n") 

 else : 

  answer=0 

  print ("\nYour entry is incorrect\n") 

  %run error handlers 

print("\nWell done!! Part a is done") 
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4. Specify the number of parts that the question has and enter the variables the student 

is required to find to complete the solution. 

Figure 3.2 displays the flowchart of the teacher’s module. 
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Fig. 3.2.  Flowchart of The Teacher’s Module 

 

 

Name the Problem

Run LtSpice

Import Variables 

from Simulation

Specify Given and 

Required Variables

Add Intermediate 

Variables

Save

Enter Specifications 

for Each MOSFET 
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After completion of the previously mentioned steps, the variables are saved in the 

problems’ library and are ready to be imported by the student module to be solved. 

When the student module is run, it asks the student to enter the name of the problem to 

be solved and the program will load its variables. Then, the given variables and their values 

will be displayed, and the student is asked to find the required variables. The console then 

asks the student to enter an equation or final value for each part of the problem until all 

required variables for that part have been entered correctly. Once the student enters an 

equation, the student gets an immediate textual feedback telling hem if heir entry is correct 

or not. This is done by substituting all variables in the student’s entry with their correct 

values and checking whether the equation is balanced. If the student enters a new variable 

that has not been listed as given in the problem, the student receives an undefined variable 

message, unless the entry is recognized by the module as a variable definition. 

When the student enters an incorrect equation, the feedback generation routine is 

activated. As the focus of this thesis is MOSFET circuits, the error handlers only look for 

errors in the MOSFET I-V characteristic equations. Common errors that are included in the 

proposed ITS are: 

1. Using an equation for the wrong region of operation. 

2. Mistaking 𝐾𝑛
′  and 𝐾𝑛 (or 𝐾𝑝

′  and 𝐾𝑝) and hence not multiplying by 𝑊 𝐿⁄ . 

3. Confusing the source and the drain terminals. 
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4. Using 𝑉𝐺𝑆 instead of the overdrive voltage 𝑉ov. 

5. Not applying the body effect, when applicable. 

The algorithm detects these mistakes by substituting the erroneous variable with the 

correct one and re-evaluating the equation. If the equation becomes correct, the ITS displays 

a hint appropriate to the student’s mistake. The algorithm is able to detect one error per entry 

and is able to detect errors in equations whether the variables are represented numerically or 

symbolically. Figure 3.3 displays the flowchart of the student’s module. 

Thus far, I have proposed a new ITS for microelectronic circuits and discussed its 

components. The next chapter (Chapter 4) will present the experimental results and 

screenshots of actual runs of the ITS system. 
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Fig. 3.3.  Flowchart of the Student’s Module 
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Chapter 4 

Experimental Results 

In this chapter, I will present the test methodology for the microelectronic circuits ITS 

presented in Chapter 3. The program has been tested on three different problems/examples 

taken from the textbook “Microelectronic Circuits”, commonly known as Sedra/Smith. The 

used problems are taken from the International sixth edition [41]. 

4.1 First Example Question – Problem 4.48 

The first question is Problem 4.48 on page 498 [41]. It was chosen to test the ITS program's 

ability to deal with a typical NMOS circuit containing multiple MOSFETS working in the 

saturation region. It also tests the program's ability to track the required variables of 

problems containing more than one part. The text of the question is illustrated in Figure 4.1 

as follows: 
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Fig. 4.1.  Problem 4.48 page 498 [41] 

The following pages present a detailed work through for problem 4.48, and the following 

subsections introduce two more problems and present some screenshot of their solutions. 

When the teachers first run the teacher’s module, they are asked to enter a name for the 

problem. The previous problem was named “Problem 1”, as it was the first problem used to 

test the program. After naming the problem, LTspice is run automatically. For ease of 

simulation, the two MOSFETS in the two parts of the problem are duplicated to form four 

MOSFETS named 𝑀1, 𝑀2, 𝑀3, and 𝑀4, two for each part. Similarly, 𝑉1, 𝑉2, and 𝑉3 are 

duplicated and named 𝑉1, 𝑉2, and 𝑉3 for part a, and 𝑉4, 𝑉5, and 𝑉6 for part b. Note that this 

naming scheme is for simulation purposes only and can be changed by the teachers when 

they specify the problem’s variables. Figure 4.2 shows a screenshot of the LTspice circuit 

schematic for the example problem. 

In the circuit of Fig. P4.48 [41], transistors 𝑄1 and 𝑄2 have 𝑉𝑡 = 1V and the process 

transconductance parameter 𝐾𝑛
′ = 100𝜇A/V2. Assuming λ = 0, find 𝑉1 and 𝑉2 for 

each of the following cases: 

a) (𝑊 𝐿⁄ )1 = (𝑊 𝐿⁄ )2 = 20 

b) (𝑊 𝐿⁄ )1 = 1.5(𝑊 𝐿⁄ )2 = 20 
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Fig. 4.2.  LTspice Schematic of Problem 1 

After the teacher finishes simulating the circuit and closes LTspice, they are asked to 

enter the name and path of the LTspice raw file that has been generated by running the 

simulation. Once this is done, the raw file is read by the help of the ltspy3.py module [42] 

and the number of MOSFETs in the simulation is determined to facilitate entering their 

specifications. Then, the program displays the values of the variables generated by the 

simulation and the number of MOSFETs it has detected. It will also ask the teacher to 

confirm this number. Figure 4.3 shows a screenshot of the console interface after quitting 

LTspice. 
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Fig. 4.3.  Screenshot of the Variables Imported from LTspice 

I() in Figure 4.3 stands for a current flowing through the circuit element between the 

parentheses, for examples, and Id(M) stands for a current flowing in the drain terminal for 

MOSFET (M). 
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After the teacher confirms or modifies the number of MOSFETs in the problem, they are 

asked to enter the specifications for each MOSFET one by one, as shown in Figure 4.4. 

These specifications are: 𝑉𝑡0, 𝐾𝑛
′ , 𝑊/𝐿, 𝐼𝐷, 𝑉𝐺𝑆, 𝑉𝐷𝑆, and body bias. If the MOSFET does 

have a body bias, further specification is sought to calculate 𝑉𝑡 from 𝑉𝑡0. 

 

 

Fig. 4.4.  MOSFET Specification Entry by the Teacher 
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After defining the MOSFET specifications, the teacher is asked to enter any variable that 

is needed to solve the problem but has not yet been defined. An example is presented in 

Figure 4.5. 

 

 

Fig. 4.5.  A Sample of Variables that were not entered as a MOSFET Specification 

 

When the teacher indicates that there are no more variables to be defined, the console 

displays all the variables that have been defined so far and asks the teacher to specify which 

of them are “given” to the student at the beginning of the problem, as indicated in Figure 4.6. 
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Fig. 4.6.  List of Defined Variables Shown to the Teacher 
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Once that is done, the teacher is asked to identify how many parts the problem has; then, 

the teacher must define the variables that the student is required to calculate as illustrated in 

Figure 4.7 below. At the end, all these variables are saved as dictionaries in the problem 

databank, and the teacher’s work is concluded. 

 

 

Fig. 4.7.  Defining the Variables that the Student Must Calculate 
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When the student runs the student module, they are asked to enter the name of the 

problem they want to solve. After that, the given and required variables are displayed, as 

shown in Figure 4.8. 

 

 

Fig. 4.8.  Given and Required Variables of Problem 1 as Shown to the Student 
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An experienced student will realize that 𝐼𝐷1 = 𝐼𝐷2 = 100𝜇A for part 1, since both 

MOSFETs are identical so he will enter the equations 𝐼𝐷1 = 100𝜇A and 𝐼𝐷2 = 100𝜇A. 

Because both 𝐼𝐷1 and 𝐼𝐷2 have not been given nor defined before, the console will send a 

confirmation message that these two variables have now been defined and their values can 

be used in other equations, as illustrated in Figure 4.9. 

 

 

Fig. 4.9.  Defining ID1 and ID2 

Notice that Python 3 syntax of expressing power as ** is used to be read correctly by the 

parser. 
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At this stage, the student inserts the value of 𝐼𝐷1 and 𝐼𝐷2 in the MOSFET I-V 

characteristic equation to solve for 𝑉𝐺𝑆1 and 𝑉𝐺𝑆2. The I-V characteristic equations for a 

MOSFET that is operating in the triode region is given as: 

𝐼𝐷 = 𝐾𝑛
′ ∗ (𝑊/𝐿) ∗ (𝑉𝐺𝑆 − 𝑉𝑡 − (0.5 ∗ 𝑉𝐷𝑆)) ∗ 𝑉𝐷𝑆 (4.1) 

Although both 𝑀1 and 𝑀2 are operating in the saturation region, the student may assume 

that they are operating in triode. The program will detect that error and provide the 

appropriate hint to the student as illustrated Figure 4.10. 

 

 

Fig. 4.10.  Output produced by the ITS when there is more than one Unidentified Variable 

in the Student's Equation 

 

The program detected that there are two unidentified variables, which are 𝑉𝐺𝑆1 and 𝑉𝐷𝑆1; 

hence, it cannot solve the equation. If the student defines one of these values, let’s say 𝑉𝐷𝑆1, 
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then, the student enters the same equation of the triode region of operation again, the result 

will be as shown in Figure 4.11. 

 

 

Fig. 4.11.  Error Generated when Using Triode Equation Instead of Saturation 

Now, assume the student has identified that the MOSFET is operating in the saturation 

region for which I-V characteristics equation is: 

𝐼𝐷 = 0.5 ∗ 𝐾𝑛
′ (𝑊/𝐿) ∗(𝑉𝐺𝑆 − 𝑉𝑡)

2 (4.2) 

A few of the errors the student might commit while entering the correct equation include 

assuming 𝐾𝑛
′  is 𝐾𝑛, hence not multiplying by 𝑊/𝐿, or using 𝑉𝐺𝑆 instead of the overdrive 

voltage. Both of these cases and their appropriate feedback are shown in Figure 4.12. 
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Fig. 4.12.  Feedback for Errors in the I-V Characteristic Equations 

When the student enters the correct equation, 𝑉𝐺𝑆1 will be defined; then, it can be used 

to find the value of 𝑉3𝑎; also, 𝑉1 and 𝑉2 can be calculated from the following equation: 

𝑉1 = 𝑉2 = 𝑉𝐷𝐷 − (𝑅 ∗ 𝐼𝐷1) (4.3) 

Figure 4.13 shows the student entering these equations and completing part 1 of the 

question. 
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Fig. 4.13.  Student Entering Correct Equations and Required Variables for Part 1 

As illustrated in Figure 4.13, the program can evaluate both numerical and symbolic 

variables. Furthermore, it can detect when all the required variables for a certain part have 

been found. 

In this and the subsequent sections, we will discuss part 2 of the problem. When  students 

move to part 2 and try to apply the current equation for one of the MOSFETS in the saturation 

region as they did in part 1, they get a notification that their equation is correct; however, it 

has too many unknowns to be solved as shown in Figure 4.14. 
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Fig. 4.14.  The Error Message the Student Receives when Entering an Equation with too 

many Unknown Variables 

The student should be able to apply Kirchhoff's Current Law at node V3 and deduce that: 

𝐼𝐷1 + 𝐼𝐷2 = 200𝜇A (4.4) 

Then, the student can apply the MOSFET current equation on both 𝐼𝐷3 and 𝐼𝐷4, and 

substitute both 𝑉𝐺𝑆3 and 𝑉𝐺𝑆4 with −𝑉3𝑏. After inserting the resulting equation, the program 

will solve for 𝑉3𝑏 as illustrated Figure 4.15. 
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Fig. 4.15.  Applying Kirchhoff's Current Law to Find V3b 

After that, the student can find both 𝐼𝐷3 and 𝐼𝐷4 for the MOSFET current equation as in 

Figure 4.16. 

 

Fig. 4.16.  Finding ID3 and ID4 

At the end, the student will find 𝑉1𝑏 and 𝑉2𝑏 by applying Ohm's Law, as demonstrated 

in Figure 4.17. 
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Fig. 4.17.  Finding the Final Values for Problem 1 

As shown Figure 4.17, the program recognizes that all required variables have been 

correctly found and the session is terminated. 

4.2 Second Example Problem 

A second example problem is chosen to test how well the program can handle PMOS. 

The problem is example 4.7 on page 380 of the Sedra/Smith sixth International edition [41]. 

The problem statement is illustrated in Figure 4.18. 
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Fig. 4.18.  Second Example Problem 

To test if the program can detect confusion between 𝐾𝑝 and 𝐾𝑝
′  for a PMOS transistor, it 

is assumed that 𝐾𝑛
′ = 100𝜇A/V2 and 𝑊 𝐿⁄ = 10. 

First, we run the teacher module to setup the problem. In the ITS, the problem's name is 

"problem 2".  Figure 4.19 shows the circuit to be simulated by LTspice. 

 

Design the circuit of Figure 4.25 so that the transistor operates in saturation with 𝐼𝐷 =

0.5𝑚A and 𝑉𝐷 = +3. Let the enhancement-type PMOS transistor have 𝑉𝑡 = −1V and 

𝐾𝑝
′(𝑊 𝐿)⁄ = 1𝑚A/V2 assume 𝜆 = 0. What is the largest value that 𝑅𝐷 can have while 

maintaining saturation region operation? 
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Fig. 4.19.  Circuit Schematic for Problem 2 as Entered into LTspice 

Figure 4.20 shows that the program has successfully identified that the circuit has one 

MOSFET. 
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Fig. 4.20.  Teacher Module Screen for Problem 2 

Now, let us test how well the program identifies errors in the MOSFET current equation 

for a PMOS. This is demonstrated in Figure 4.21. 
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Fig. 4.21.  Student Module Identifying Errors in a PMOS Equation 

As can be seen in Figure 4.21, the program successfully identified the errors in the 

MOSFET current equation for a PMOS. 
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4.3 Third Example Problem 

The third problem is a NMOS-based circuit that is designed by the writer to test the program 

for identifying the body bias and triode region of operation. The circuit schematic is shown 

in Figure 4.22. 

 

 

Fig. 4.22.  Circuit Schematic for Problem 3 as Entered into LTspice 

The problem statement is given in Figure 4.23. 

 

Fig. 4.23.  Statement of the Third Example Problem 

Find Id for the circuit shown in Figure 4.22 given that 𝐾𝑛
′ = 100𝜇A/V2, 𝑊 𝐿⁄ = 10, 

𝑉𝑡0 = 0.8V, 𝛾 = 0.4, and 2𝜙𝑓 = 0.7 



64 

Figure 4.24 shows the program giving the appropriate hint to a student who used the 

value of  𝑉𝑡0 instead of 𝑉𝑡. Furthermore, the program correctly identifies that the student 

used the equation for the saturation region instead of triode. 

 

 

Fig. 4.24.  Feedback for Problem 3 

In this chapter, three different MOSFET problems were tested. These problems were 

chosen to test how the program handles different types of MOSFETs running in different 

operation regions. 
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Chapter 5 

Conclusions and Future Work 

 In this thesis, a new ITS was designed and implemented for microelectronics circuits 

featuring MOSFET circuit elements. The proposed ITS program allows the teachers to add 

and simulate simple MOSFET circuits and specify the variables for students to solve. The 

students, on the other hand, have the ability to choose a problem from the databank to solve 

and enter equations that work towards solving it. The students receive immediate feedback 

on the correctness of their equations and some hints if their entry is wrong; moreover, they 

have the chance of committing one error concerning the equation of MOSFET current-

voltage characteristic equation. 

Three example problems have been presented to illustrate the applicability, capability, 

and effectiveness of the proposed ITS program in solving problems and giving appropriate 

feedback to the users. 

As for future work, it is proposed to implement a graphical user interface (GUI) that I 

strongly believe that it will be an excellent addition to the presented ITS. As illustrated in 
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Chapter 4, the existing program only supports a textual interface. Adding a GUI to the ITS 

will make it easier to handle, user friendly, and more appealing to the students. 

Secondly, I would like to build our own circuit analyser and problem solver. This will 

add many new benefits to the program and enhances its capability. An example of the new 

features would be to use the equations generated by the problem solver as a base for 

comparison with the students’ equations. This comparison with the use of AI will help the 

program to detect more than one error per equation, as well as giving it the ability to give 

more sophisticated and accurate hints and feedback. Furthermore, the addition of a circuit 

analyser will make it easier to expand the program so that it allows the addition of problems 

with circuit elements other than MOSFETs, such as bipolar junction transistors and diodes. 

Last, but not least, the circuit analyser will facilitate the addition of open-ended design 

problems, as it gives the program the ability to fully analyse and simulate the students’ 

circuits. 

Finally, I plan to develop a student module that uses Bayesian networks to track the 

learning progress of each student individually and give feedback tailored specifically to the 

knowledge and understanding of the student. 

 The results of this thesis have been submitted in a paper to the International 

Conference on Information, Intelligence, Systems and Applications (IISA 2021). 
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