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Abstract

The incompressible Navier—Stokes equations are of major interest due to their importance
in modelling fluid flow problems. However, solving the Navier—Stokes equations is a difficult
task. To address this problem, in this thesis, we consider fast and efficient solvers. We are
particularly interested in solving a new class of hybridizable discontinuous Galerkin (HDG)
discretizations of the incompressible Navier—Stokes equations, as these discretizations result
in exact mass conservation, are locally conservative, and have fewer degrees of freedom than
discontinuous Galerkin methods (which is typically used for advection dominated flows).
To achieve this goal, we have made various contributions to related problems, as I discuss
next.

Firstly, we consider the solution of matrices with 2 x 2 block structure. We are in-
terested in this problem as many discretizations of the Navier-Stokes equations result in
block linear systems of equations, especially discretizations based on mixed-finite element
methods like HDG. These systems also arise in other areas of computational mathematics,
such as constrained optimization problems, or the implicit or steady state treatment of any
system of PDEs with multiple dependent variables. Often, these systems are solved itera-
tively using Krylov methods and some form of block preconditioner. Under the assumption
that one diagonal block is inverted exactly, we prove a direct equivalence between conver-
gence of 2 x 2 block preconditioned Krylov or fixed-point iterations to a given tolerance,
with convergence of the underlying preconditioned Schur-complement problem. In par-
ticular, results indicate that an effective Schur-complement preconditioner is a necessary
and sufficient condition for rapid convergence of 2 x 2 block-preconditioned GMRES, for
arbitrary relative-residual stopping tolerances. A number of corollaries and related results
give new insight into block preconditioning, such as the fact that approximate block-LDU
or symmetric block-triangular preconditioners offer minimal reduction in iteration over
block-triangular preconditioners, despite the additional computational cost. We verify the
theoretical results numerically on an HDG discretization of the steady linearized Navier—
Stokes equations. The findings also demonstrate that theory based on the assumption of
an exact inverse of one diagonal block extends well to the more practical setting of inexact
inverses.

Secondly, as an initial step towards solving the time-dependent Navier—Stokes equa-
tions, we investigate the efficiency, robustness, and scalability of approximate ideal restric-
tion (AIR) algebraic multigrid as a preconditioner in the all-at-once solution of a space-
time HDG discretization of the scalar advection-diffusion equation. The motivation for this
study is two-fold. First, the HDG discretization of the velocity part of the momentum block
of the linearized Navier—Stokes equations is the HDG discretization of the vector advection-



diffusion equation. Hence, efficient and fast solution of the advection-diffusion problem is a
prerequisite for developing fast solvers for the Navier—Stokes equations. The second reason
to study this all-at-once space-time problem is that the time-dependent advection-diffusion
equation can be seen as a “steady” advection-diffusion problem in (d + 1)-dimensions and
AIR has been shown to be a robust solver for steady advection-dominated problems. We
present numerical examples which demonstrate the effectiveness of AIR as a preconditioner
for time-dependent advection-diffusion problems on fixed and time-dependent domains, us-
ing both slab-by-slab and all-at-once space-time discretizations, and in the context of uni-
form and space-time adaptive mesh refinement. A closer look at the geometric coarsening
structure that arises in AIR also explains why AIR can provide robust, scalable space-time
convergence on advective and hyperbolic problems, while most multilevel parallel-in-time
schemes struggle with such problems.

As the final topic of this thesis, we extend two state-of-the-art preconditioners for the
Navier—Stokes equations, namely, the pressure convection-diffusion and the grad-div/augmented
Lagrangian preconditioners to HDG discretizations. Our preconditioners are simple to im-
plement and our numerical results show that these preconditioners are robust in A and
only mildly dependent on the Reynolds numbers.
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Chapter 1

Introduction

The research presented in this thesis is on efficient solution techniques for the numerical so-
lution of the Navier—Stokes equations. The Navier-Stokes equations are useful in modelling
many fluid flows of interest and the efficient solution of these equations is an increasingly
important area of research. The goal of the research in this thesis is parameter-robust
preconditioners for linear systems resulting from the hybridizable discontinuous Galerkin
(HDG) discretization [89, 132] of the Navier—Stokes equations. The details of the HDG
discretizations are discussed in following chapters, while in the remainder of this chapter,
we provide a gentle discussion to emphasize the research problem.

The time-dependent incompressible Navier—Stokes problem is given by

Ot —vVi+ (@-V)i+Vp=f inQ, (1.1a)
V-u=0 in Q, (1.1b)
ﬁ|t:0 = 170, in Q, (1 1C)

U= §'D on 8QD, (1 1d)
o
Va—g, —np = on 0y, (1.1e)

where # is a vector-valued function representing the velocity of a fluid, the scalar function
p represents the kinematic pressure, v is a given constant called the kinematic viscosity,
f is the given source term, §p is given boundary data, Q@ C R? is the domain of the
problem in dimension d = 2, 3, the boundary of 2 is partitioned as 022 = 9Qp |J 0y with
Np N2y = 0 and 7 denotes the outward normal vector to the boundary. In case of
large v, there is a stable steady state solution as t — oo which can be obtained by solving



the stationary Navier—Stokes problem:

— V24 (G- V)i +Vp=f in, (1.2a)
V.@=0 in (1.2b)

U= gD on (9QD, (12C)

V% —np=20 on 0Ny. (1.2d)

Equation (1.2a) is called the momentum equation and Equation (1.2b) is called the continu-
ity equation. Note that, in the absence of Neumann boundary conditions, i.e. if 92 = 91 p,
the pressure p is only unique up to a constant. Therefore, if 02 = 9€)p, we impose that
the pressure mean on (2 is zero for the problem to be well-posed.

Usually the equations are normalised with respect to the size of the domain and the
magnitude of the velocity to measure relative contributions of convection and diffusion. Let
L be the characteristic length of the domain, then E = #/L are the points in a normalised
domain where # are the points in ). Furthermore, let U be some reference value for the
magnitude of the velocity. We non-dimensionalize the velocity and pressure according to
i = Uu, and p(Lg) =U 2p*(f_‘), respectively, where x denotes the dimensionless variable.
Substituting these into Equation (1.2), we get

1

L :
oo —f in . (1.3)

V2, + (i, - V)i, + Vp, = e

Here Re := UL/v is the Reynolds number which is used to measure the relative contri-
butions of convection and diffusion. Assuming L and U are chosen suitably, then Re < 1
means that the flow is diffusion dominated. As Re grows, the flow becomes more convec-
tion dominated and it approaches the incompressible Euler equations as Re — co. We
will not directly use this form of the equations, however we will repeatedly refer to the
Reynolds number.

The Navier—Stokes equations can be solved using non-linear iterations, solving a linear
problem at each step. Given an initial guess (i, po), a sequence of iterates are computed
which converges to the solution. These iterations most commonly take the form of
Newton or Picard linearizations. In this thesis, we use Picard iterations due to their large
radius of convergence and simplicity in implementation (see [37] and references therein for
a discussion on linearising the convection term (@ - V)a).

Now we introduce the linearised Navier—Stokes equations, also known as the Oseen



equations,
— N2+ (0-V)i+Vp=f inQ, (1.4a)
V.i=0 inQ, (1.4b)
in which the operator (7 - V) in Equation (1.2) has been replaced by (@ - V) in Equa-

tion (1.4a) and where w is a given velocity field. We define our Picard iterations by
choosing W = w,_; and solving

— N2y + (Gyy - V)ily + Vp, = f  in Q, (1.5)
V.i,=0 inQ, (1.6)
to generate a sequence of iterates (;,p;), for i = 1,2,--- k. At each step, we compute

e = max{||t; — @;_1||/||t@ — toll, ||lpi — pi-1l|/|lpi — pol|}- When € is less than some given
tolerance, we stop the iteration and set @ = . Picard iterations are not likely to converge
if used to solve the strong form of the Navier—Stokes problem, however, some convergence
results for the Picard iterations applied to weak formulations of the Navier—Stokes problem
are available, for example, see [95, 37]. Furthermore, in the case of elliptic nonlinear weak
problems, we know that the number of Picard iterations required to convergence will be
independent of the mesh size given that the mesh is fine enough and the resulting linear
problem is solved sufficiently accurately [66, 70]. While the Navier—Stokes problem is not
elliptic, we observe the same phenomenon; as we refine the mesh, the number of Picard
iterations to convergence stay fixed.

The finite element method does not directly discretize the Oseen equations. Instead,
the finite element method discretizes the weak formulation of this problem. Letting Vz =
{i € [HY Q)Y@ = @ on 9Qp} and Q = Lo(Q) with HY(Q) = {u € Ly(Q)|Vu € Ly(Q)},
the weak formulation of the Oseen equations is given by:

Find @ € V,,, and p € @ such that

(@, 0) 4+ (i @, 7) — b(p,¥) = (f,¥)q for all T € Vg, .
b(q,u) =0 for all ¢ € Q, (1.8)

where



and where the dyadic operator : is the double dot product, and (-, -) is the L? inner product.

Conforming finite element methods are obtained by introducing finite-dimensional sub-
spaces VI C Vg and Q" C Q. Here h signifies that the cardinality of these spaces depends
on the grid size. See [22, Chapters 0-2] for a good and in-depth explanation. The discrete
problem is: find ) € Vg}; and pj, € Q" such that

a(tp, vp) + n(W; up, Up) — b(pr, vp) = ( ﬁ,vqh)g for all v;, € Voh, (1.9a)
b(qn,un) =0 for all g, € Q". (1.9b)

Remark 1.0.1. Here we would like to clarify what we mean by a grid. A grid is a non-
overlapping subdivision of the domain. We further impose the following conditions:

e shape-regularity: the ratios of the diameters of the inscribed and the circumscribed
circles for each element are bounded; and

e quasi-uniformity: the ratio of the sizes of any two elements in the subdivision is
bounded.

An example of a grid is given in Figure 1.1.

To obtain the underlying matrix formulation of this problem, let {¢;} and {i;} be
bases, respectively, of the spaces V" and Q" so that Ju;,p; s.t. ), = >.i, w¢; and
Pr =D 1o, Pith;. Since we are free to pick the test functions 0, and gj, from their respective

spaces, we can write the discrete problem Equation (1.9) as a square linear system of the
form

A(v) + N(w BT| |U F
()B() o el = 1ol (1.10)
where U = [ug, - - ,un]T and P = [po, - ,pm}T. We will refer to the matrices A, N and

B, respectively, as the discrete vector Laplacian, the discrete vector convection and the
discrete divergence (the weak gradient is the adjoint of the weak divergence operator so
we simply denote it as BT). These are named after the continuous operators they have
been derived from, namely, a(, ), n(w; u, v) and b(p, ¥) respectively. Note that while A is
symmetric, N is non-symmetric, and so the full system matrix is also non-symmetric.

We conclude this section by summarizing the discrete problem in Algorithm 1 and
pointing out the focus of my research. Picard iterations are used to solve the non-linear
Navier—Stokes equations. At every Picard iteration we need to solve the discrete form

4
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Figure 1.1: An example of a grid.

of the linearised Navier-Stokes equations (Equation (1.10)). Often, many Picard itera-
tions are required to obtain a solution for the non-linear Navier-Stokes problem. Since
Equation (1.10) needs to be solved at each of these Picard iterations, the efficiency of the
algorithm strongly depends on the efficiency of the solution of these linear systems. How-
ever, efficiency depends highly on two problem parameters, namely, the mesh size h and the
Reynolds number Re. The ultimate goal of this thesis is to find a solver for Equation (1.10)
that is robust both in h and Re.

1.1 Convergence of Krylov subspace methods

In this section, we discuss some error bounds of Krylov subspace methods, particularly
GMRES (Generalized Minimal RESidual method) [139, 137, 138] for the solution of linear
systems of the form Az = b. A Krylov subspace method is a projection method: given the
linear system Az = b with A € R™*", initial guess xy and two m-dimensional subspaces
K,, and L,,, we seek

T € xg + K, such that b — Az L L,,,



Algorithm 1 An algorithm to solve the Navier—Stokes equations

Initialize i = 1, rres = 1. Given an initial guess (i, po)
while rres > tol and i < maxit do
Create and solve the linear system

U@
§210)

F
0

A(I/) + N(ﬁlfl) BT
B 0

Construct w; = > ", ul(j)g;i and p; = >, pgj)z/),» using UV) = [u((]j), o uf’| and

PO = [pf, - ’pgg;)r
Compute rres = max{||d; — @;—1||/||d; — @oll, ||pi — pi-1||/||pi — pol|} and increment
7.

end while

where K, = span{rg, Arg,..., A" 1rq} with 7o = b — Azg. As a result, Krylov subspace
methods look for an approximate solution z,, in the search space K,, with the condition
that the residual vector b — Ax,, is orthogonal to L,,. Depending on the choice of the
subspace L,,, we obtain different Krylov subspace methods (L,, = AK,, for GMRES).
Moreover, the approximate solution obtained at the m-th iteration of a Krylov subspace
method can be written as x,, = 2o+ pm—_1(A)ro where p,,_1 is a m — 1-st degree consistent
polynomial, i.e. p,,—1(0) = 1.

The discussion on the error bounds is the foundation of work presented in this thesis, as
some of these error bounds are very similar to the error bounds of finite element methods
which allows us to use functional analysis tools to develop and analyze preconditioners. The
classical and most well-known results on the convergence of Krylov subspace methods are
the error bounds of the conjugate gradient method [138, pg. 176] given in Theorems 1.1.1
and 1.1.2.

Theorem 1.1.1. Given the problem Ax = b, where A is a real symmetric positive definite
matrix, after k steps of the conjugate gradient method, the following bound holds

H:L'—x(k)H < min
A prelly,prp(0)=1

A)(z — 2z H < min max|pg (A H z— 2 H ,
A=) < min  maxlp )| -2
where %) and 20 are, respectively, k-th and 0-th iterates, \; are the eigenvalues of A,

and 11y is the set of real polynomials up to and of degree k.



Theorem 1.1.2. Given the problem Ax = b, where A is a real symmetric positive definite
matriz, after k steps of the conjugate gradient method, the following bound holds

=1, -

2(¢_+1) I

where x*) and 20 are, respectively, k-th and 0-th iterates, and k(A) = Amax(A)/Amin(A)
which is called the condition number of A.

Theorem 1.1.2 implies that well-conditioned problems (e.g. the condition number « of
A is small) will reach desired tolerance levels rapidly. However, it should be noted that
a large condition number does not necessarily imply slow convergence. For example, the
conjugate gradient method will solve the problem ezactly in at most |o(A)| iterations,
where o(A) is the set of eigenvalues (spectrum) of A (see Theorem 1.1.1). Hence, if the
coefficient matrix has only two eigenvalues, the conjugate gradient method will converge
in two iterations independent of the condition number.

For finite element problems, the condition number of the coefficient matrix A depends
on the mesh size h. For example, in the case of a continuous Galerkin discretization of the
Poisson problem, k(A) = O(h™%). Keeping in mind that the error bound in Theorem 1.1.2
is a pessimistic upper bound (and Theorem 1.1.1), this observation on x(A) hints that
the number of iterations to convergence will increase as the grid is refined, i.e., as h — 0.
Numerical experiments confirm this prediction; the number of iterations to convergence
doubles as the grid size h is halved. It is desirable to find a way to alleviate, or all together
eliminate, h-dependence, as many practical problems require very fine grids with A small.
We achieve this through preconditioning. A preconditioner, without loss of generality, is
an operator P such that x(P~Y2AP~1/2) < k(A) , see [119] for a survey. In this sense,
the matrix A itself is the “perfect” preconditioner as K(A~'A) = 1 independent of i and
any other problem parameters. However, inverting A is equivalent to solving the original
system directly, therefore, defeating the purpose of iterative solvers. Hence, we additionally
want preconditioners to be cheap to apply.

We can use the concept of spectral equivalence to develop and rigorously analyze precon-
ditioners for finite element discretizations of some PDEs. Two symmetric positive definite
matrices A, P € R™" are called spectrally equivalent if there exist constants C,c > 0
independent of some problem parameters such that

(x, Ax)
(x, Px)

<C Vr € R".



Generally, the problem parameter of interest is the grid size h, hence, spectral equivalence
is commonly defined with respect to h.

We now include a very useful theorem which ties the concept of spectral equivalence to
the condition number.

Theorem 1.1.3 (Rayleigh, can be found in [79] pp. 234-235). The eigenvalues of ann xn
Hermitian matrix H, given in order \y > XAy > -+ > \,, can be characterized as

H
, A, = min (z, He)
0£zeCn  (x,x)

Using Theorem 1.1.3 and the definition of the condition number, we see that, given two
symmetric positive definite matrices A and P of the same dimensions

)\maX(P_l/QAP_l/Q)
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with
Au(P2AP) = iy SPTPAPTRG) 0 AY)
. 0£zECT (x,x) o£yeCr (y, Py)’
A (P*I/zAP*W): max (z, P72 AP ) = max (y, Ay)
e 0#zECn (x,x) o#yeCr (y, Py)’

Therefore, given spectrally equivalent symmetric positive definite matrices A and P,
k(P~Y2AP~1/2) will be bounded from above by the constant C'/c independent of the grid
size h and Theorem 1.1.2 implies that the conjugate gradient method will asymptotically
converge in the same number of iterations independently of the grid size. Such a precon-
ditioner P is called h-robust, or h-optimal.

Note that h-robustness itself may not be practical if the application of the precondi-
tioner is expensive (see the discussion related to the choice P = A above). Hence, we are
motivated to seek cheap, h-robust preconditioners. For example, for many discretizations
of the Poisson problem, it is well-known that appropriate multigrid cycles are spectrally
equivalent to the coefficient matrix (see, for example, [50, pp. 91-112]). This fact, together
with linear computational complexity of multigrid methods [138, pg. 443] with respect to
the mesh size, further motivates research in this direction.

Unfortunately, we can not appeal to these results directly in the case of the Navier—
Stokes equations because discretizations of this problem give rise to non-symmetric and



indefinite coefficient matrices. Hence, the bounds in Theorems 1.1.1 and 1.1.2 are not
applicable. Fortunately, many Krylov subspace methods have been developed for solving
linear systems of equations where the coefficient matrix may be non-symmetric and in-
definite. Among these, we consider GMRES (and flexible GMRES) [139, 137] due to the
availability of many error bounds for these methods as we discuss next. We want to note
that if the coefficient matrix is symmetric then GMRES produces the same iterates as
MINRES (MINimal RESidual method) [120] (albeit at a higher computational cost), so
the bounds discussed below are also valid for MINRES.

The earliest GMRES error bounds (Theorem 1.1.4) are due to [18, 12]. Elman’s PhD
thesis [18] in 1982 is the first time the bounds are published, one year after the same bounds
appeared in his paper with Eisenstat and Schultz [12]. In both cases, however, these bounds
were presented for GCR. Saad and Schultz published their paper on GMRES [139] almost
three years later. They proved that GCR iterates are exactly GMRES iterates. Hence,
Elman’s bounds are also valid for GMRES.

Theorem 1.1.4 (Elman’s bound). Let A be a positive real matriz, that is, its symmetric
part M = $(A+ AT) is positive definite. Define its skew-symmetric part R = 1(A — AT).
If {re}2., are the residuals generated by GMRES, then

k/2
. )\min(M)z
relle < min A rolle < [1 — —=5—~ rol|2,
Irdle < _min [pn(A)lalirol 2 < [ | ol
and
k/2

Iralls < |1 Amin(M)7 "l

T — T s

kllz = Amin (M) Amax (M) + p(R)? o

where p(R)? = ||RTR||2. If A is diagonalizable, i.e. A= XAX™', where X is the matriz
whose columns are the eigenvectors of A and A is a diagonal matriz whose diagonal entries
are the eigenvalues, then

||7‘k||2 1 .
< |[X X min max AL
[|roll2 — 1lell ||2pkeﬂk,pk(o)=1 Ajj [pe ()|

Furthermore, this bound can be relaxed such that if the set £ contains the eigenvalues of A
then

|7 |2 o .
< | X |]o]| X min max M.
||TO||2 = || ||2H H2pk€Hk,pk(0)=l Ned |pk< )’
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Proof. See [18, Theorems 5.4, 5.9] and [12, Theorems 3.3, 3.4]. O

Notice that the bounds given above require the coefficient matrix to be positive real
or diagonalizable. We can relax the conditions on the coefficient matrix A by introducing
field of values (FOV), W(A) = {(Az,z) : « € C",||z|| = 1}. It is known that ReW(A) =
W(AJFTAT) and ImW(A) = W(A_2AT), hence, if 0 ¢ W(A) Theorem 1.1.4 can be rewritten
as follows:

Theorem 1.1.5 (Elman’s FOV bound). Let A be a square matriz such that 0 ¢ W(A),
then the residual generated at the k-th step of GMRES satisfies

k/2

J

el [, na)?
ol [EIE

where p(A) = min{|z| : z € W(A)}.

If the ratio u(A)?/||A||* can be bounded by a constant independent of problem parame-
ters (e.g., h and Re for the Navier—Stokes equations), we can guarantee robust performance.
If A is positive real, then u(A) = /\min(A+2AT) so Theorems 1.1.4 and 1.1.5 are equivalent,
but the latter is applicable under slightly more general conditions. However, these bounds
can be very pessimistic for some problems. In such cases, Theorem 1.1.5 is predictive
of the performance of GMRES in an asymptotical sense and usually convergence is ob-
served much earlier than predicted. Starke offers another bound [151] and Eiermann and

Ernst [11] show that it is an improvement over Theorem 1.1.5.

Theorem 1.1.6 (Starke). Let A be a square matriz such that 0 ¢ W(A), which implies
0 & W(A™Y), then the residual generated at the k-th step of GMRES satisfies

Il < (1 - papuca )

where (A) = min{|z| : 2 € W(A)}.

Proof. See [151, Theorem 3.2] or [11, Theorem 6.1, Corollary 6.2]. O

Remark 1.1.1. We remark that Starke’s paper considers a GMRES which minimizes a
different norm than the usual  (discrete) lo-norm, similar to weighted GMRES of Pes-
tana [125]. The results demonstrate optimal convergence with respect to the chosen norm.
However, this is not a big problem as noted in [97, 92]. The idea is to minimize GMRES
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residuals in a norm induced by one of the inner products, but measure these residuals in the
norm induced by the other inner product. Depending on the pair of norms, their equivalence
constants (or the ratio of the constants) may depend on h. Nevertheless, the equivalence
constants come in only by an additive logarithmic value into the estimate of the number
of iterations [97, pg. 581]. Therefore, optimal convergence in one norm implies almost
optimal convergence in the ly-norm.

Another improvement over Theorem 1.1.5 is by Beckermann et al. [9]. Their idea is to
find a circular segment K such that C D K D W(A) and
min Al <C min max |p(2)]|,
Pkenk’pk(o)zl}lp( )H ~ pr€llepr(0)=1 z€K Ip(2)l
with C' a constant. As a result, they obtain an asymptotically sharper bound, see in
particular [9, Corollary 2.4].

Theorem 1.1.7 (BGT Bound). Let A be a square matriz such that 0 ¢ W(A), and let
B € (0,5) with cos(B) = u(A)/||Allz and pu(A) is as defined in Theorem 1.1.5. Then the
residual generated at the k-th step of GMRES satisfies

Il < o4 2/vB) 4 700,
[Irol[2
where
Vg 1= 2sin L
v 4—-28/m )"
Proof. See [9]. O

Theorem 1.1.7 has recently been improved by Tichy and Liesen [99, Theorem 3.1]. The
improvement is due to recent work by Crouzeix and Palencia [30] and the replacement of

[|All2 by r(A) = max{|z| : z € W(A)}.

Theorem 1.1.8 (BGT Bound Improved). Let A be a square matriz such that 0 & W(A),
and let 3 € (0, %) with cos(B) = u(A)/r(A) and p(A) is as defined in Theorem 1.1.5. Then
the residual generated at the k-th step of GMRES satisfies

72 ]2
l[7ol]2

< (1+V2)(2+ 75)75.

where

g ‘= 2sin (—5 ) .
4—20/m
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Proof. See [99, 9, 30] for details. O

Tichy and Liesen, in addition to Theorem 1.1.8, give a tighter bound under stricter
conditions on W(A). We will not repeat this bound here as it is not of interest to us.

Let A¢x = b be a linear system that depends on a parameter £, and let P, be a precon-
ditioner for this problem. Then the theorems in this section, under certain conditions on
W(PglAé), show that it is possible 