
Dead Reckoning for Distributed
Network Online Games

by

Tristan Walker

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Tristan Walker 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Online networked games are becoming increasingly popular. One type of network ar-
chitecture used in these games is a distributed network architecture, where players send
periodic updates to each other and each player must locally reconstruct the position of their
opponents in between these updates. In this work, we assume a car model for the players,
as errors in this type of network are most pronounced when players have high speeds. We
are interested in decreasing this update frequency in order to conserve bandwidth. We are
also interested in investigating issues that arise when these locally replicated opponents
need to interact and collide with objects in the environment.

In this thesis we decompose the replication problem into two components: first, we must
predict the position of our opponents by extrapolating from the received updates, then we
must create a smooth trajectory from these predicted positions that appears believable
to the player. We introduce a neural network based approach to solving the prediction
portion that outperforms the current state of the art. We then propose a neural network
based approach and an approach based on a path tracking controller for mobile robots to
generate smooth trajectories. We present results to compare these approaches and show
that the path tracking approach performs better than both the neural network approach
and the established state of the art approaches.

We also investigate collisions between replicated opponents and the environment. This
is a complex problem, so for simplicity we are only examining collisions with static obsta-
cles. Collisions can vary dramatically based on small changes in impact point and angle,
and so we want to be able to predict collisions based on the predicted position of the oppo-
nent because that is theoretically our best estimate of the true position of our opponent.
We propose a neural network based approach to this problem, which is able to predict the
collision response of a vehicle colliding with a static obstacle. We present results that show
this method has potential to outperform the current best practice, but we also discuss
several implementation issues that must be addressed.

iii

Acknowledgements

I would like to thank my supervisor, Stephen Smith, for his guidance throughout my
Master’s degree. I would also like to thank Armin Sadeghi for his assistance during the
research and writing of this thesis.

iv

Dedication

This is dedicated to my parents for being such an inspiration and for always believing
in me.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 3

2 Literature Review 5

2.1 Networked Gaming . 5

2.2 Dead Reckoning . 6

2.3 Machine Learning in Video Games . 7

3 Background 8

3.1 Distributed Network Architecture . 8

3.2 Terminology . 9

3.2.1 Player Model . 9

3.2.2 Network Model . 10

3.2.3 Replication . 11

3.3 Dead Reckoning . 13

3.4 Linear Blending . 13

3.5 Projective Velocity Blending . 14

3.6 Supervised Learning . 15

vi

4 Trajectory Prediction 19

4.1 Trajectory Prediction Problem . 19

4.2 Neural Network Approach . 21

4.3 Simulation Setup . 22

4.4 Training . 22

4.5 Results . 24

5 Path Blending 27

5.1 Problem Setup . 27

5.2 Neural Network . 28

5.2.1 Training . 28

5.2.2 Implementation . 30

5.3 Path Tracking . 31

5.3.1 Formulation . 32

5.3.2 Implementation . 33

5.4 Results . 33

5.4.1 Neural Network Results . 33

5.4.2 Path Tracking Results . 34

5.4.3 Parameter Tuning . 36

6 Collisions 39

6.1 Problem Setup . 40

6.2 Solution Approach . 40

6.2.1 Neural Network . 41

6.2.2 Training . 42

6.2.3 Implementation . 43

6.3 Results . 44

vii

7 Conclusions 49

7.1 Future Work . 50

References 51

viii

List of Tables

5.1 Average errors for linear blending and path tracking blending. 36

ix

List of Figures

1.1 Screenshot of driving a vehicle in Grand Theft Auto Online 1

1.2 Example of extrapolating an opponent’s position from periodic updates . . 2

3.1 Labeled representation of the player model 10

3.2 Visual representation of the network model 12

3.3 Block diagram of the two player scenario 12

3.4 Projective velocity blending applied to blend r̄0 to predicted position r′t . . 15

4.1 Overview of the prediction network . 21

4.2 Screenshot from the Unity simulation environment 23

4.3 Prediction error of dead reckoning and prediction network over different
message intervals . 24

4.4 Predictions made using dead reckoning and the prediction network compared
to the master path . 25

5.1 Overview of the blending network . 28

5.2 Comparison of optimal path from the SOCP to the path generated by the
trained network . 30

5.3 Implementation of the blending network when not updating the velocity
with new messages . 34

5.4 Results of path tracking blending with untuned parameters and a message
interval of 300ms . 35

5.5 Results of path tracking blending with tuned parameters and a message
interval of 200ms . 37

x

5.6 Results of path tracking blending with tuned parameters and a message
interval of 300ms . 38

5.7 Results of path tracking blending with tuned parameters and a message
interval of 300ms and a drop rate of 50% 38

6.1 Overview of the collision network . 41

6.2 Screenshot of a collision with a cylindrical obstacle in Unity 42

6.3 Flow diagram of replication process at timestep k + i with collisions included 44

6.4 Position and Rotation error with a message interval of 100ms 45

6.5 Position and Rotation error with a message interval of 250ms 45

6.6 Position and Rotation error with a message interval of 500ms 46

6.7 Paths of Master compared to Linear and Our replication schemes with a
message interval of 500ms . 47

xi

Chapter 1

Introduction

Online games are becoming increasingly popular, with games such as Grand Theft Auto
Online, shown in Figure 1.1, having over 100,000 concurrent players at a time [26]. Devel-
opers strive to provide competitive, yet immersive experiences to players. In online games
in particular, one of the key challenges in delivering both of these is the limitations in
communication between players. In this work, we investigate games with a distributed
network architecture, which is an alternative to the more common host-client architecture
that does not require the developer to pay to maintain dedicated servers. In a distributed
network, players send information between each other and each player recreates their own
“best guess” as to what the true state of the game is. All information that is sent between
players may be subject to network latency and packet loss. Additionally, it is prohibitively
expensive to send information at the same rate that the game updates, and so players must
extrapolate information from periodic updates. The errors caused by these extrapolations

Figure 1.1: Screenshot of driving a vehicle in Grand Theft Auto Online

1

0

1 1′

2

2′

Figure 1.2: Example of extrapolating an opponent’s position from periodic updates

are more pronounced when players are moving at high speeds, such as when operating
vehicles. The most common vehicles players operate in video games are cars, and thus our
investigation focuses on the case where players are driving cars.

Suppose we are playing an online game against another player and our opponent sends
their position and velocity once every second. In practice, this happens much more fre-
quently, typically with a period under 100ms [3]. In order to maintain an immersive and
competitive experience, we want to be able render our opponent locally in a way that is
both believable and reasonably accurate so that interactions with the opponent feel fair
and natural. If we receive updates from our opponent every second, simply rendering
the opponent at the most recent position received from them would not be accurate or
believable. Thus we need some way of extrapolating our opponent’s position from the
information we receive. This is known as dead reckoning. With the information given in
our example, the most reasonable extrapolation we can make is to project the position
forwards using the received velocity. That is, if we received a position, r, and velocity, v,
at n seconds, we can estimate their position at n + t seconds as v(n + t) = r(n) + v(n)t.
We can see a visualization of this example in Figure 1.2. We start with our opponent’s
position and velocity at time 0, and we see their true path curves to the right. We can
see our extrapolations at 1 and 2 seconds as 1′ and 2′ respectively. From the figure we
can see that simply rendering the opponent’s position using this extrapolation is also not
sufficient, as the resulting path will be discontinuous at the points where we receive new
information from the opponent, which can be extremely jarring to the player. Thus we

2

need a method of not only predicting an opponent’s position, but also a strategy to blend
these predicted positions into a smooth, believable path.

This problem is further complicated when the replicated opponent has to interact and
collide with the environment or other opponents. Small discrepancies between a player’s
estimate of an opponent’s position and the opponent’s true position at the time of a collision
can result in significantly different trajectories after the collision. This is a difficult problem,
and existing techniques are largely aim to hide the effects of this discrepancy without
making any attempts to reduce the error between the trajectories.

1.1 Contributions

The following are the key contributions in this thesis:

• In Chapter 4, we present a new application of neural networks to extrapolate other
players’ positions in an online game. We provide simulation results that show our
approach has greater robustness to poor network conditions, with at least 25% less
error under poor conditions compared to the state of the art.

• Chapter 5 proposes a novel application of a path tracking algorithm to create a
smooth trajectory for believably replicating an opponent. We show through simula-
tion results that our approach produces smoother, more believable trajectories with
approximately 45%less error than the established state of the art.

• Chapter 6 applies neural networks to predict the response of a vehicle to a collision
with a static object. We show with simulation results that our approach can be-
lievably predict collisions under much poorer network conditions than the current
state-of-the-art.

During my graduate studies I also contributed simulation results and authorship of a
journal paper that has been submitted for publication [42].

1.2 Organization

In Chapter 2 we review related literature regarding networked games, dead reckoning, path
tracking, and machine learning. In Chapter 3 we introduce our model for a networked game,

3

and present established algorithms for dead reckoning and path blending. We present
our approach for predicting the position of an opponent in Chapter 4 along with results
demonstrating the effectiveness of our approach. Chapter 5 proposes our method for using
path tracking algorithms to complete the replication problem with results comparing to the
established methods described in Chapter 3. Chapter 6 describes our approach to predict
the response of a replicated vehicle with a static obstacle. Chapter 7 concludes this work
and outlines possible future investigations.

4

Chapter 2

Literature Review

This section provides a brief overview of relevant literature. We first examine literature
related to networked gaming, and how network conditions can affect the player experience.
We then examine literature related to predicting an opponent’s position, as well as how
these predicted positions may be used to form a smooth trajectory. Lastly, we look at
other applications of neural networks in video games.

2.1 Networked Gaming

Online games are becoming increasingly popular. Trying to send data over a network intro-
duces significant obstacles to creating an immersive and enjoyable experience. Noticeable
latency in the network can impact users’ enjoyment, with one study reporting that users
found latencies over 150 ms to be unacceptable [11]. Lee et al. propose Outatime [24],
a method to use Markov predictions and Kalman Filtering to predict future game states
and reduce input lag in cloud gaming applications. Savery et al. [34] examine the effect of
various lag compensation techniques on player enjoyment, and note that techniques that
result in the best performance of the player are not always the most enjoyable for the
player.

On the server side, researchers are looking into ways of reducing the amount of data
sent. Babei et al. [2] address this issue in cloud gaming by using eye tracking data to
determine where players are likely to look so that they can stream higher quality video
to those areas. Harvey et al. [15] use dead reckoning prediction to reduce the amount of
information packets sent to save on power when gaming on a phone.

5

2.2 Dead Reckoning

Dead reckoning is the practice of extrapolating an agent’s position given their state from
some previous point in time. Dead reckoning has broad applications in many fields related
to vehicle positioning, as well as networked games. The simplest method of dead reck-
oning is to extrapolate using only the estimated velocity. Many authors [5, 8, 31] have
shown this to be insufficient for immersive online gaming. Pantel and Wolf [31] note that
a major obstacle is that latency between players can be upwards of 100ms, and find some
success in mitigating this by incorporating acceleration and user input into their prediction
schemes. Aggarwal et al. [1] proposed a method of using timestamped messages to help
reduce the impact of latency between players. Kharatinov [19] proposed an adaptive dead
reckoning scheme that sends more data during more complex motions, and Almeida and
Felinto [8] used the popular game engine Unity to verify that this algorithm held up under
realistic network conditions, and showed that its performance was superior to traditional
dead reckoning techniques. For car simulations specifically, Chen and Liu [5] proposed an
algorithm that uses environmental cues such as roads to aid its predictions, and shows that
their algorithm has better performance than traditional techniques in terms of accuracy,
computational cost, and bandwidth consumption. In the field of marine navigation, Skul-
stad et al. [37] used a Recurrent Neural Network to perform dead reckoning for ships, with
performance comparable to or surpassing the traditional Kalman Filter approach. Belha-
jem et al. [4] use machine learning in a similar setting, by combining an Extended Kalman
Filter with neural networks to improve accuracy. Shi et al. [36] proposed an application
specific dead reckoning approach that uses data collected from human play sessions to pa-
rameterize a dead reckoning model specific to one game. Authors in [12] propose a two part
machine learning approach for video games to compensate for the inability of traditional
dead reckoning approaches to account for changes in player input. Their approach uses a
classifier to determine if a player will change direction based on their surroundings, and
uses a second network in place of traditional dead reckoning if the classifier determines the
player will change direction.

As shown by the example in Figure 1.2, extrapolation only forms part of our problem.
We must also be able to form these extrapolations into a smooth trajectory. Murphy [27]
describes an alternative dead reckoning technique used in the video game industry called
projective velocity blending, which results in smooth predicted trajectories. Schuwerk
and Steinback [35] note that while projective velocity blending produces visually smooth
paths, users did not enjoy the high accelerations it generated when used to produce haptic
feedback. Generating smooth trajectories is also very important in the field of autonomous
vehicles. Samson and Abderrahim [33] proposed a linearized feedback control method for a

6

wheeled robot to stably follow a commanded path. Ostafew et al. [30] successfully applied
this controller to a physical robot to enable it to traverse uneven outdoor terrain. Another
popular path tracking controller is the controller used by the Stanley robot for the DARPA
Grand Challenge [39], which uses wheel angle to control lateral and heading error.

2.3 Machine Learning in Video Games

Machine Learning has been rising in popularity and has many applications, especially in
the realm of video games. Besides using machine learning techniques for prediction and
dead reckoning as mentioned previously, another application is the use of deep learning
to play video games [18]. Machine learning is also used to approximate complex physics
calculations much faster than traditional numerical-based approaches. Holden et al. [16]
and Luo et al. [25] use neural networks to simulate cloth physics in real time. Tompson
et al. [40] uses a convolutional network to simulate incompressible Eulerian fluid physics.
Tracey et al. [41] uses supervised learning to model turbulence, and Lattimer et al. [23]
uses machine learning to predict behaviour of fires. Summerville et al. [38] explores the
use of machine learning to generate new content for video game such as new, unique levels.
Geisler [14] uses neural networks to model human behaviour and applies this to make AI
opponents that behave more realistically.

7

Chapter 3

Background

In this chapter, we will present our assumed model of the network and players. We also
introduce existing state-of-the-art techniques for replicating an opponent’s trajectory from
periodic information, including techniques for simply predicting position as well as tech-
niques for generating a smooth, continuous trajectory. We also present a brief background
of the machine learning techniques that we will be using in our solution approaches.

3.1 Distributed Network Architecture

In online video games there are two main network architectures: peer-to-peer or host-client
[21]. In a host-client network, one computer is designated as the server and is responsible
for managing the game state and communicating back and forth with all the players that
are connected to the server. The clients can then take the information received from the
server and display it to the player without much additional processing. Often this server
is an independent computer that does not participate in the game and is called a dedicated
server, as is the case in many large online games such as Counter Strike: Global Offensive
and League of Legends. These are costly to run and maintain, however, and a commonly
used alternative is called a listen server. In a listen server, one of the players is also
designated as the server, which was done in earlier versions of Call of Duty. This can
put additional computational load on the designated player’s machine as it must run the
server as well as run the game for the player. The player designated as the server also has
an in-game advantage over the other players because they do not have any latency to the
server.

8

The alternative is a peer-to-peer network, which we refer to as a distributed network. In
such a model, there is no single governing server; all players, or peers, periodically broadcast
information to their peers and must take the information received from their peers and
resolve it into their own consistent game state to render to the player. A distributed
network has the advantage of having less overhead for the game developer by eliminating
the need to maintain dedicated servers [28], and as such is sometimes chosen for smaller
online games such as the online game mode of Watch Dogs 2. However, a distributed
network introduces a number of new challenges. With no single host dictating the game
state, each player can have their own slightly different interpretation of what the game looks
like at a given time. When a player receives information from other players, they must do
their own processing to determine what it thinks the new state of the game looks like, and
small discrepancies can escalate over time to have dramatic changes to the game state. For
example, if one player’s guess of another player’s position is off by a small margin, they may
think that the other player will collide with a tree when they did not. Additionally, since
the players must send information to all other players, bandwidth consumption can be a
concern. We will be investigating how to reduce bandwidth consumption while maintaining
or improving accuracy in the prediction of other players.

3.2 Terminology

3.2.1 Player Model

In a 3-dimensional video game, a player’s state can be described by the tuple X =
(r,v,q, a,ω) containing the car’s position vector r ∈ R3, velocity vector v ∈ R3, ori-
entation quaternion q, acceleration vector a ∈ R3, and angular velocity vector ω ∈ R3.
Note the use of a quaternion to represent the player’s orientation as is common in video
game engines [43]. Figure 3.1 shows a labeled model with these properties.

The player interacts with the game world through the engine in discrete timesteps
corresponding to each frame that is rendered by the game. We will define the time between
frames as δt. In practice, the timesteps that the game engine uses to update the game
state do not have to correspond to frames that are rendered to the player. However, in this
work we will assume that a single frame is rendered at each timestep of the game, and will
use the two interchangeably. We can view the game engine as a black box system that uses
the physics of the game to determine how the player interacts with the world and other
players. We will define the player’s control actions at a timestep k to be A[k] = (h, c)
with h, c ∈ [−1, 0, 1] representing a discrete left, straight, or right control action and

9

Figure 3.1: Labeled representation of the player model

a discrete deceleration, coasting, or acceleration control action respectively. We could
consider continuous control inputs without adding much complexity, but for simplicity
we will assume players use a keyboard for control, resulting in discrete inputs. At each
timestep, the engine takes the player’s state, the player’s actions, and the world state,
and produces the player’s state at the next timestep. If we represent the world state at
timestep k as W [k], and the game engine as a function B that takes this as well as the
player’s state and actions, we can write the evolution of the player’s state as X [k + 1] =
B(X [k],W [k],A[k]). In this work, for simplicity, we can assume that the world state is
static, and can be encapsulated in the function B. Thus, we can think of the evolution of
the player’s state as simply X [k + 1] = B(X [k],A[k]).

3.2.2 Network Model

For simplicity in this work, we will only be considering one other player at a time. To
extend this work to multiple other players, the techniques described for handling one other
player can simply be repeated for each other player, assuming that there is no interaction
between players. If the game models some interation between players, such as gravity
in a space simulation game, additional work would need to be done to approximate the
interaction between two networked opponents. For clarity, this work is written from the

10

perspective of the player receiving information from another player, which we call the
opponent. This is simply for clarity; they are not necessarily competing with each other in
the game and simply represent two human agents playing on a network. In a two-player
game on a distributed network, each player will periodically broadcast their state and
control actions to the other player. The players receive this information over a network,
which means that it may be subject to latency and packet loss. To help deal with potential
delays and timing issues, players will also broadcast the time that the information was
recorded when broadcasting their state. We will call this set of information that the players
broadcast a message, defined as s[k] = (X [k],A[k], k) where k is the timestep the message
is sent. We assume that timesteps are globally synchronized across all players. This is
difficult in practice, and messages would usually include a time t instead of a timestep
k. However, we will use k to avoid extra conversions from continuous time to discrete
timesteps. Additionally, we define the following network parameters: message interval T ,
as the number of milliseconds the player waits before sending another message, latency d,
as the number of milliseconds it takes for the message to reach the other player, and packet
loss p as the percentage of messages that will not be received by other players. Figure 3.2
shows latency and message interval when a player is receiving messages from an opponent
over a network. In this figure, i = b T

δt
c, representing the number of timesteps between

messages. Recall that δt is the time between timesteps. In our investigation, we are
primarily concerned with making our solution robust to larger values of T . Current games
typically use message intervals around 100ms or less [3]; we are interested in developing
a replication scheme that is robust to message intervals of up to 300ms or greater. Our
algorithm should also be robust to moderate latency up to 100ms and packet loss of up
to 10%, but these are not the primary variables that we will examine. The model of the
game engine for the two player scenario is shown in Figure 3.3.

3.2.3 Replication

When playing a networked game, we do not know the ground truth of our opponent’s states
at all times. We only receive periodic messages of our opponent’s state, which is subject
to latency and packet loss, and leaves many frames in between for which we have no new
information. Thus we wish to create a believable estimate of our opponent from these
periodic messages. We will call our local estimate of our opponent a replica. This replica
must appear to be a real player, meaning that it must appear to obey the established
physics of the game, and its position should be reasonably close to the true position of the
opponent to ensure that we have an accurate image of the state of the game.

In order to generate a smooth and believable trajectory for the replica, we break the

11

Player

Opponent

𝑠[𝑘 + 𝑖]

𝑑 𝑇

𝑠[𝑘]

Figure 3.2: Visual representation of the network model

Game
Engine

Player
X [k]

A[k]

s[k]

X [k + 1]

Figure 3.3: Block diagram of the two player scenario

12

problem into two parts for our approach. The first component is the prediction problem,
where the goal is to predict the state of the opponent at some time in the future given the
most recently received message from them. The other component we refer to as blending,
where we must move our replica of the opponent towards this predicted position in a
smooth manner that appears believable to the player. The predicted states do not need to
form a smooth trajectory, but the trajectory formed by the blended states should appear
realistic to the player. These problems will be defined in more detail later, but we will
introduce the convention here of using X̂ to denote predictions and X̄ to denote the state
of the blended replica.

3.3 Dead Reckoning

The process of extrapolating an estimated state from some earlier state in time is called
dead reckoning. The simplest form of dead reckoning is to project using linear physics;
given a position, r[k] and a velocity v[k] at timestep k, one can estimate the position at
timestep k + i as r̂[k + i] = r[k] + tv[k], t = iδt, recalling that δt is the time between
timesteps, and thus t is the time between timesteps k and k + i. If additional information
is available, it can also be incorporated. For example, to include acceleration, a[k], one
can use basic kinematics to give

r̂[k + i] = r[k] + tv[k] + 1/2a[k]t2.

The state of the art algorithm that we will compare to is a version of dead reckoning
that uses velocity and angular velocity. Given position r[k], velocity v[k] and angular
velocity ω[k] at timestep k, we predict the position at the next timestep by extrapolating
using the given velocity, rotated by the given angular velocity. We will define a rotation
operator rot such that rotθ(v) rotates v by the Euler angles given by θ ∈ R3. Then we have
r̂[k+1] = r[k]+rotω[k]δt(v[k]δt), where δt is the time between frames. To predict further into
the future, this process is repeated for each frame, ie. r̂[k+2] = r̂[k+1]+rotω[k]2δt(v[k]δt).
This means that the predicted trajectory from one known state will be a piece-wise linear
arc.

3.4 Linear Blending

One of the simplest blending strategies is to replicate the opponent at a set delay behind
the current prediction. This has the effect of smoothing the predicted path, at the cost of

13

introducing error from the delay. Suppose we have a replica of our opponent at timestep
k − 1 with a position r̄[k − 1], and we wish to move it smoothly towards our predicted
position r̂[k]. Mathematically, we can find the current position of our replica as r̄[k] =
r̄[k − 1] + (r̂[k]− r̄[k − 1])δt/λ, where λ is the time behind the prediction that the replica
will be.

To implement this algorithm, a new predicted state should be generated for each
timestep and the replica should be blended according to this algorithm at each timestep.
This strategy can be tuned by varying λ; a smaller λ results in a trajectory that aggres-
sively follows the predictions but can make sharp, unrealistic turns, while a larger λ yields
a smoother trajectory that lags further behind the prediction. This algorithm does not
guarantee that the blended path will be smooth, and at low values of λ the resulting
trajectory may have visibly sharp corners.

3.5 Projective Velocity Blending

The current state of the art blending algorithm is known as projective velocity blending
[27]. While relatively simple in theory, it yields smooth paths with quite consistent and
robust results. This algorithm performs both the prediction and blending steps; given the
current state of the replica X̄ and a message with the last known state X , the algorithm
performs a dead reckoned projection of both the current state and the last known state,
and uses a linear interpolation between the two to yield the blended position. In practice,
this works best when the projection of the current state uses a linear interpolation of the
current velocity and the last known velocity. To predict i steps ahead with t = iδt, recalling
that T is the message interval, i.e, the maximum time we are extrapolating to, this looks
like:

tblend = t/T

vb[k] = v̄[k] + (v[k]− v̄[k])tblend

r̂[k + i] = r̄[k] + vbtblend +
1

2
a[k]t2

r′[k + i] = r[k] + vbtblend +
1

2
a[k]t2

r̄[k + i] = r̂[k + i] + (r′[k + i]− r̂[k + i])tblend

A visual representation of projective velocity blending is shown in Figure 3.4.

14

𝒂[𝒌]

𝒗0

𝒓[𝒌]

𝒓ത[𝒌] 𝒗ഥ[𝑘]

𝒗𝑏

𝒓ො[𝑘 + 𝑖]

𝒓′[𝑘 + 𝑖]

𝒓ത[𝑘 + 𝑖]

Figure 3.4: Projective velocity blending applied to blend r̄0 to predicted position r′t

3.6 Supervised Learning

Supervised Learning is a form of machine learning in which the goal is to learn an unknown
function that maps an input to an output, given a training set of sample input-output
pairs. Machine learning itself is an umbrella term that encompasses a number of different
techniques. These techniques fall into two main categories: classification and regression.

In classification, the goal is to assign a discrete label to a given input. For classification
tasks in the realm of Supervised Learning, the classifier can only assign labels for which
training data exists. One of the most common classifiers is the Support Vector Machine
(SVM) [6]. In its original form it separates classes via linear hyperplanes, however the
authors in [6] propose a way to use SVMs for nonlinear classification by applying the kernel
trick, which allows the algorithm to implicitly operate in a higher dimensionality. Another
simple form of classification is known as k-Nearest Neighbors (k-NN) [13]. With k-NN
classification, an input is assigned the label that is most common for the k most similar
members of the training set. Classification algorithms are typically evaluated based on
their accuracy, or the percentage of inputs that they can classify correctly.

Regression aims to generate a continuous output from a given input. One of the simplest
forms is linear regression, which approximates the relationship between input and output
with a linear factor. Algorithms like k-NN can be adapted to become regression algorithms
by taking an average of the output values of the k most similar members of the training

15

set. Regression models are evaluated based on their error compared to the true output
values, typically measured with root mean squared error (RMSE).

One of the increasingly popular techniques in machine learning is Artifical Neural Net-
works. This in itself is a very broad concept that can be applied to both supervised and
unsupervised learning, and can perform classification as well as regression. Neural Net-
works are inspired by the structure of neurons in a biological brain; they are composed of
a network of nodes or “neurons” that transmit signals to each other through a network of
connections, mirroring the transferal of information between neurons through synapses in
a real brain. These connections each have a weight that is learned through training the
network, which will be discussed later. Each node takes the weighted sum of its inputs as
well as its own bias term, which generates the output of the node. The nodes are typically
arranged in layers; there are many different ways to connect these layers, each with their
own benefits. Feedforward networks are networks in which nodes are only connected to
nodes in the next layer. In a fully connected network, each node is connected to every node
in the next layer. Networks that allow nodes to connect to the same or previous layers are
known as recurrent networks, and can be effective in situations where there may be some
temporal correlation in the input data. Networks with one or two layers can be sufficient
for many tasks, but additional layers may help to extract higher level features from the
input data. Networks with more layers are said to be deeper.

Each node outputs some function of the sum of its inputs. This function that gener-
ates the output of a node is called the activation function. A simple choice of activation
function would be a linear function, in which the sum of the inputs is multiplied by some
constant factor. However, this choice has a significant shortcoming in that if the entire
network is linear, it is essentially performing linear regression. Therefore, most modern
Neural Networks use nonlinear activation functions. It has been proven that with nonlinear
activation functions, a neural network with just one hidden layer of sufficient size is capa-
ble of approximating any function [7]. Common choices include the sigmoid or hyperbolic
tangent (tanh) functions. These are very similar functions, but since the tanh function
is centered around the origin it may perform better in applications where the input may
be positive and negative. These functions can be computationally expensive especially
when there may be hundreds or thousands of them in a network. Additionally, they suffer
from the vanishing gradient problem, where the slope of the output becomes very small
for very small or large input values, which may cause training to slow significantly or even
stop. Recently, a common choice of activation function is the rectifier, or Rectified Linear
Unit (ReLU). This is a simple function, defined as the positive part of its argument i.e.,
f(x) = max(0, x). The simplicity of this function makes it cheap to compute, and its
linear nature ensures that it does not suffer from the vanishing gradient. Moreover, the

16

nonlinearity at the origin ensures that ReLU is capable of approximating any function.

The key algorithms in training Neural Networks are gradient descent and backpropoga-
tion. Details regarding training are following the conventions in [29]. At a high level,
training a network is an iterative process where the connection weights are varied slightly
to try and improve the accuracy of the network at each iteration. The function that cap-
tures the accuracy of the network is called the cost function (or sometimes loss function
or objective function). For regression tasks, this is typically the mean squared error i.e.,
C(w, b) ≡ 1

2n

∑
x ||y(x) − a||2, where w and b are the weights and biases of the network

respectively, n is the number of training inputs, a is the output of the network for a given
x, and y(x) is the target we wish to achieve. Training a network aims to find the set of
weights and biases that minimizes this cost function. This is typically done through gra-
dient descent, the details of which will not be discussed here. Gradient descent finds the
gradient of the cost function and takes small steps in the direction of steepest decreasing
gradient. The technique for finding this gradient is called backpropogation, which is derived
such that it takes advantage of the layered structure of the network to avoid unnecessarily
duplicating calculations. There are many extensions to these techniques that aim to speed
up training such as variable learning rates that control large the steps taken in gradient
descent are, and stochastic gradient descent that uses stochastic sampling and shuffling of
the dataset to train on small subsets of the training data. In training Neural Networks,
typically a portion of the training dataset is reserved as test data and not used to train
the network and is instead used to evaluate the performance of the network once it has
converged.

A key advantage of Neural Networks is that they can often be implemented like black
boxes, where understanding of the internal mathematics behind their functioning is not
required for them to be successful. Many libraries such as PyTorch [32] are available
that make implementation of such networks straightforward. The important choices that
remain for the user have to do with the properties of the network: the number of nodes,
the choice of activation function, and how the nodes are structured are some of the most
defining features of a network. Some architectures are known to perform better for some
applications, for example the field of image recognition is dominated by Convolutional
Neural Networks [22], meant to efficiently extract higher level features from an image.
Selecting the number of nodes in a network offers a tradeoff; more nodes offers the ability
to model more complex functions at the cost of increased computational resources and
longer training times. Additionally, having too many parameters in the network relative
to the complexity of the function being modeled increases the risk of overfitting, where
the model performs very well on the training data but can no longer generalize to fit
unseen data. Besides choosing an appropriate number of nodes, other techniques exist to

17

reduce overfitting including cross-validation and regularization. Cross-validation involves
performing multiple iterations of training, where a different segment of the training data is
used as test data in each iteration. Regularization adds an additional penalty term during
training to encourage lower weights. Preprocessing of data, such as normalizing inputs,
can also improve the performance of a network.

18

Chapter 4

Trajectory Prediction

Consider a player in a multiplayer game with one opponent over a distributed network.
The player and opponent send each other a message at regular intervals containing infor-
mation describing their state. As the player, we wish to locally replicate our opponent
accurately and believably. Believability is difficult to quantify, and is a combination of dif-
ferent factors. A believable trajectory should be smooth and appear to obey the dynamics
of the vehicle, and should not show consistent hiccups when it receives new messages. Our
replication scheme is composed of two separate steps; first we predict the position of our
opponent after the received message as accurately as possible, then we use a blending algo-
rithm to create a smooth and believable trajectory for our replica. This chapter focuses on
the prediction portion of the replication process. Note that in this breakdown of the prob-
lem, the prediction encompasses only the position; the blending portion is responsible for
determining the orientation. This decomposition places a higher emphasis on believability
to the player by giving the blending algorithm full control to select orientations that make
the most sense given the blended replica’s trajectory.

In this chapter we define our problem, and present our neural network based approach.
We also provide simulation results where our approach demonstrates reliable performance
over a wider range of message intervals compared to the traditional dead recknoning ap-
proach described in Section 3.3.

4.1 Trajectory Prediction Problem

For the prediction portion of the replication process, our goal is, given the most recent
message we have received from an opponent, to predict their position up to the time we

19

receive another message. Recalling that δt is the time between frames, we can formally
define the problem as follows.

Problem 1 (Trajectory Prediction) Given a message s[k] and a time after the mes-
sage to predict ∆t, find a state X̂ [k+ i] where i is the number of timesteps to predict, i.e.,
i = b∆t

δt
c.

Note that given the decomposition into a prediction and blending problem, there are
two possible approaches to making predictions. Our chosen approach is to make a single
prediction for the time in the future that we expect to receive another message, using the
blending algorithm at every timestep to create a smooth trajectory towards this predicted
point. The alternative is to make a prediction for the next timestep and blend towards this
next point on a frame by frame basis. This approach places more emphasis on positional
accuracy at every frame, as it encourages the blended state to stay close to the predicted.
We have chosen to once again favour smoothness and believability of replication by blending
to the single predicted point, which allows for more positional error during the intermittent
timesteps while allowing the blending algorithm more freedom to control smoothness.

We are most interested in situations where the opponent’s position varies greatly in
between messages, where there is higher potential error between the predicted position
and the true position. This corresponds to situations where the opponent has a high
speed, such as when they are operating a vehicle. For this investigation, we are looking
specifically at predicting the position of an opponent when they are driving a car.

Design Considerations: The prediction problem poses many challenges. Recall that
we can model the evolution of the player’s state as X [k + 1] = B(X [k],A[k]), where
the function B represents the game engine. For predicting one time step in the future,
the problem is essentially to approximate the unknown function of the game engine. This
function itself is difficult to approximate, as it is dictated by complex physics. The function
may also vary based on the properties of the player’s vehicle, such as its weight and
power. Additionally, when predicting multiple time steps in the future, we do not know
what actions the player will make in the upcoming time steps, for example if the player
chooses to suddenly brake or turn sharply. Solutions to the prediction problem should
be computationally efficient as it needs to be computed at every timestep, and in a real
implementation would need to be calculated for every opponent. A good solution should
also be independent of the properties of the opponent’s vehicle; it should be able to be
easily applied to different vehicles without needing to manually tune parameters.

20

2 Layers of 100 Units

Velocity

Angular

Velocity

Time

Displacement

Actions

Figure 4.1: Overview of the prediction network

4.2 Neural Network Approach

Neural Networks are well suited for this problem because they sufficiently address the
challenges stated above. The core idea of neural networks is that they are able to model
unknown functions given enough training examples. This is the scenario presented by this
problem: we are trying to approximate the game engine, and we can easily record the
position of cars within the engine to obtain ample amounts of training data. Training
of Neural Networks is also automated, and so with a new set of training data one can
easily train a model for a different vehicle without any training data. Additionally, making
predictions with a Neural Network is a very inexpensive operation.

The proposed solution is a network with 13 inputs and 3 outputs, shown in Figure 4.1.
The size and number of hidden layers was chosen to be two layers of 100 units, as this
was the smallest the network could be while achieving good accuracy. The dimensionality
of the input is reduced by converting the velocity and angular velocity to the coordinate
frame of the opponent. This means that the output from the network is also in the local
coordinate frame of the opponent, and must be applied accordingly. By doing this we do
not need orientation as an input. Since the cars can drift, the velocity is not only straight
ahead in the car’s coordinate frame, and so velocity cannot be reduced to a scalar speed.
The velocity and angular velocity vectors are both input as 3 components, the steering
and acceleration inputs comprise the next 2 inputs, and the last input is the time ahead

21

to predict. The output is a 3 component vector representing the displacement from the
initial position. Note that the initial position does not need to be known or input into
the network to find the displacement. Although cars primarily operate in a 2 dimensional
plane, all 3 dimensions are included to allow this network to be applied to 3 dimensional
scenarios.

4.3 Simulation Setup

Simulations to validate the approach are conducted in the Unity engine [17]. In Unity, we
have a car that we control which we call the master car, which is the red car in Figure 4.2.
This car represents the opponent’s true state. We fully record the state of the car at
each timestep, which allows us to collect training data for our network. Additionally, we
simulate receiving messages from this master car by reading one of these recorded states
every T seconds (recall that T is the specified message interval). We simulate the additional
network parameters of latency and packet loss by adding a delay of d milliseconds before
we can use a message, and adding a p percent chance that we cannot use a given message,
where d and p are the latency and packet loss respectively. From this information, we apply
our prediction and blending scheme to create a replica car, shown in yellow in Figure 4.2,
which as a player would be the version of our opponent that we would see. These cars have
no physical interaction with each other, and are only overlaid to be able to easily make
comparison and quickly judge the error of the proposed algorithms. Replication schemes
are independent of each other and so any number of different replicas can be run at once,
each with different replication schemes in order to easily compare different algorithms.

These cars are simulated with full three dimensional physics including wheel slip. As
seen in Figure 4.2, the master car is drifting slightly sideways through its turn, adding
additional nuance to the prediction problem. Full physics also means that driving on
uneven terrain and collisions are modeled, which will be investigated in later sections. The
simulation runs at 50 frames per second, meaning our time between timesteps is δt = 0.02s.

4.4 Training

To collect training data for the prediction network, we drive the master car and record
a message s[k] at each timestep consisting of the state, control actions, and time, i.e.,
s[k] = (X [k],A[k], t). To collect additional data, an automated driving script was run to
imitate human control that inputs a random steering and acceleration input, randomly

22

Figure 4.2: Screenshot from the Unity simulation environment

assigning a new one of each at intervals between 0 and 10 seconds. For each recorded
message, s[k], an input-output pair can be formed by using a vector of the velocity v[k],
angular velocity ω[k], and a time to predict ∆t as the input. The output vector is obtained
by taking the difference in position between the original position r[k] and the position at
the frame ∆t after, r[k + i] where i = ∆t

δt
. Thus we have the input-output pair x =

(v[k],ω[k],A[k], t), y = (r[k + i]− r[k]).

To train the network, input-output pairs are created with values of ∆t up to a maximum
desired prediction time ∆tmax. Typically, this would be slightly more than the message
interval T , as this is the longest time we would expect before receiving new information.
If we wish for the network to be more robust to packet loss, we can train it for double our
desired message interval. Choosing a value for ∆tmax presents a tradeoff: higher values of
δt yield a more general network that is able to make predictions over a larger time window,
but may reduce the accuracy of the network even at low values of ∆t since the network
has to learn a model to fit a much broader function. Moreover, the input-output pairs may
have significantly less correlation at larger values of ∆t, making training a model for larger
times even more difficult.

The recorded training set consists of 1.6 million recorded messages. The amount of

23

100 200 300 400 500 600
Message Interval (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r (
m

)

Dead Reckoning
Network

Figure 4.3: Prediction error of dead reckoning and prediction network over different mes-
sage intervals

training data available is directly proportional to the maximum number of timesteps we
wish to predict for i.e., total training instances is 1600000(∆tmax

δt
). The network was imple-

mented in Python using PyTorch. Mean squared error was used as the cost function, and
the Adam optimizer [20] was used for gradient descent, as it is easy to implement without
fine tuning and provides good performance in practice.

4.5 Results

The baseline prediction algorithm we compare to is the discrete-time dead reckoning algo-
rithm described in Section 3.3. Our model is trained for ∆tmax = 400ms, which is much
higher than the typical message interval used in online games. The average prediction error
of both these algorithms is shown in Figure 4.3. The mean of the prediction error is shown
with the solid line, while the shaded region indicates the 25th and 75th percentiles, giving
a notion of the spread of the data. To give a reference for the scale of errors, the vehicles
used in simulation measure roughly 2.4m wide and 4.7m long. Both algorithms have very
low error for message intervals below 200ms. What we are most interested in is the range
between 200ms and 400ms. Our prediction network has considerably lower average error
during this portion, as well as lower spread of the error. Note that although our network is

24

20 15 10 5 0 5 10
40

45

50

55

60

65

70 Master
Dead Reckoning
Network

(a) Predicted positions compared to the master
path

22.5 20.0 17.5 15.0 12.5 10.0 7.5
48

50

52

54

56

58

60

62

64
Master
Dead Reckoning
Network

(b) Zoomed section of master path

Figure 4.4: Predictions made using dead reckoning and the prediction network compared
to the master path

25

only trained for message intervals up to 400ms, it is able to maintain superior performance
to the dead reckoning approach beyond this range, up to message intervals of 600ms. These
results show that our approach offers consistent predictions for higher message intervals,
indicating the possibility of saving bandwidth by increasing message intervals. Moreover,
our approach maintains lower error for much higher message intervals as well, and although
message intervals this high are not realistically be used in practice, they indicate that our
approach is more robust to packet loss as it will be able to extrapolate better from the last
known message.

Examining the paths predicted by the two algorithms gives a better picture of how the
two algorithms compare. A comparison of the predictions of the two algorithms is shown
in Figure 4.4. Note the sawtooth pattern created by the prediction algorithms as they
extrapolate and diverge further from the master path until they receive a new message.
In the close up view, the dead reckoning algorithm clearly creates this sawtooth pattern
of repeatedly diverging throughout the curved portion of the path, while the prediction
network is able to predict a relatively smooth curve. Also note that when the network’s
predictions diverge near the start of the path, they do so less severely than the dead
reckoning algorithm. This increased consistency in the predictions is highly desirable in
creating a believable path for a replica vehicle.

26

Chapter 5

Path Blending

Suppose a player has a sequence of predicted states for an opponent. Simply rendering
these predictions as they come will not result in a believable trajectory. There may be
significant discontinuities in the path when new messages arrive, and the overall trajectory
will likely not be very plausible in terms of obeying the dynamics of the car. Thus the
player will need to apply some form of blending to the predicted states in order to believably
replicate the opponent’s car.

In this section, we first attempt to apply a neural network approach similar to the
one in Section 4.2 to generate a blended trajectory. This attempt was unsuccessful, as
the resulting solution was unpredictable and occasionally unstable. We instead use an
approach based on a feedback-linearized controller used in robotics that is able to give
better and more consistent results.

5.1 Problem Setup

Given a sequence of predicted states (X̂ [0], ..., X̂ [k]), we wish to produce a sequence of
blended states (X̄ [0], ..., X̄ [k]) to replicate an opponent. While reducing

∑k+i
j=k ‖r̄[j]− r̂[j]‖

is desired, it cannot be used as the sole metric to evaluate potential solutions. The blended
states must be accurate as well as believable. We therefore propose a generic evaluation
function g, such that our goal is to produce a sequence of blended states (X̄ [0], ..., X̄ [k])
where g(X̄ [0], ..., X̄ [k]) is maximized. Note that unlike the prediction problem, the quality
of a solution to the blending problem is dependent on the other blended states and thus
the problem cannot be approached one timestep at a time.

27

2 Layers of 100 Units

Velocity

Displacement

Time

∆ Velocity

Velocity

Figure 5.1: Overview of the blending network

5.2 Neural Network

Given the success of the Neural Network approach to the prediction problem, we first tried
a machine learning method for the blending problem. We wish to once again leverage a
neural network’s ability to provide computationally efficient outputs that can be generated
in real time. Creating a solution for the blending problem is more difficult because there is
no definite quantity that we wish to optimize, which means we have no clear cost function
or training targets to use to train our network.

5.2.1 Training

To utilize supervised learning we must first create a method to generate targets to train
the network with. Again, the criteria for a good blending algorithm is largely qualitative,
and so there is some amount of human discretion in generating these training instances.
This method must also be automated in order to produce sufficient data for training. We
choose to formulate and solve a Second Order Cone Program (SOCP) to generate training
instances. An optimization problem such as this should be able to produce desireable
trajectories given proper formulation, but it is too computationally expensive to be able
to run at every timestep in real time. Thus, we train a neural network to try and learn the
solution to this SOCP.

28

To formulate this SOCP, we must attempt to quantify the evaluation criteria for the
blended path. Recall that we want our blended path to be accurate as well as smooth;
we use the positional error as the objective function to minimize, and add constraints to
ensure smoothness of the path. Since the acceptable smoothness of the path is up to human
discretion, we control smoothness via a soft constraint penalizing acceleration magnitudes
greater than a specified amax. For a segment of the master trajectory between timesteps k
and k + i, we can formulate the SOCP as follows:

min
k+i∑
j=k

‖rj − r̄j‖2
2 + βθ

s.t. rj+1 = rj + vjδt,

θ ≥ ‖vj+1 − vj‖2
2 − amax,

θ ≥ 0

This is a convex optimization problem that can be solved using existing solvers. In our
case, we used CVXPY [10]. The parameters amax and β control how smooth the resulting
path will be: amax governs how quickly the trajectory can change direction without being
penalized, and β dictates how much the trajectory is penalized for exceeding amax. Larger
values of β mean the trajectory is less likely to exceed amax and will be smoother at the cost
of potentially greater positional error. These parameters were manually tuned by solving
the blending problem for segments of predicted paths and examining the resulting blended
trajectories.

For our network, we first try to implement it without considering orientation to evaluate
its potential as a solution. If successful, orientation can be added to the network or
calculated using another method afterwards. We are given a message s[k], a predicted state
X̂ [k + i], and a time to predict, ∆t. An overview of the network is shown in Figure 5.1.
For inputs to our blending network we require the current velocity v[k], the displacement
between the current and predicted position (r̂[k + i]− r[k]), the difference in current and
final velocity (v̂[k+ i]− v[k]), and the time to predict ∆t. The output of the network is a
velocity y = v̄[k+j] to apply to the current replica, i.e., r̄[k+j+1] = r̄[k+j]+ v̄[k+j] ·δt.

For training this network, an upper limit on the time to blend ∆tmax must be speci-
fied, presenting similar tradeoffs to the selection of the maximum time to predict for the
prediction network. To use the SOCP, we sample a random state of the master car and
predict a trajectory that is as long as ∆t i.e., (X [k], ...,X [k+ i]), i = ∆t

δt
. We then generate

states near the start of the path by applying small disturbances to the starting position,

29

16 18 20 22 24 26 28
16

18

20

22

24

26

28
Predictions
Network
Optimal

32 34 36 38 40

50

52

54

56

58

Predictions
Network
Optimal

Figure 5.2: Comparison of optimal path from the SOCP to the path generated by the
trained network

velocity, and orientation to mimic the offset between the replica and the predicted path
when a new message is received. We can then use the solver to generate a sequence of
optimally blended points to use as training targets. Note that while these solutions are
optimal with respect to our SOCP formulation, there is no truly optimal solution to the
blending problem as the quality of a solution is ultimately up to human judgement. The
SOCP solver was used to generate 2.1 million training instances. Similar to the prediction
network, the blending network was trained using the Adam optimizer with Mean Squared
Error as the cost function. A comparison of the paths generated by the network and the
optimal paths from the SOCP is shown in Figure 5.2. Note that while the network does
a good job of replicating the path, there is some error in the final position of the blended
path, while the SOCP solutions have virtually no error in the final position.

5.2.2 Implementation

Suppose we are at timestep k with a replica car with state is X̄ [k] and we receive a new
message s[k]. There are i timesteps until we expect to receive the next message, i.e, i = T

δt
.

To implement the blending network, we use the algorithm described in Algorithm 1.

30

Algorithm 1: BlendingAlgorithm

1 while replicating do
2 s[k] = Latest Message
3 i = T/δt
4 r̂[k + i], v̂[k + i] = Predict(s[k], i)
5 j = 1
6 while no new message do
7 v̄[k + j] = Blend(v̄[k], r̂[k + i]− r̄[k], v̂[k + i]− v̄[k], j · δt)
8 r̄[k + j] = r̄[k + j − 1] + v̄[k + j] · δt
9 j + +

10 if j > i then
11 i = i+ T/δt
12 r̂[k + i], v̂[k + i] = Predict(s[k], i)

In simpler terms, when a message is received we predict the position and velocity of
the opponent at the time we expect to receive a new message. We then apply the blending
algorithm at each frame. Line 10 checks if we have passed the time we predicted up to
without receiving a new message, which can happen in the event of packet loss. Notice that
our prediction approach described in Section 4.2 does not explicitly predict a velocity. In
our implementation, we approximate the velocity using v̂[k+ i] = (r̂[k+ i]− r̂[k+ i−1])/δt.

5.3 Path Tracking

As an alternate blending algorithm, we leverage the fact that the motion we are trying to
replicate is based on a car’s dynamics and borrow concepts from mobile robotics. Path
tracking is widely used in mobile robotics, particularly for wheeled robots, to allow robots
to follow a specified path in the presence of error from sensors, actuators, or the environ-
ment. In our scenario, error in our position comes from the deviation between the predicted
position and the true position. Applying a path tracking controller ensures that the re-
sulting path is smooth and obeys the dynamics of a wheeled vehicle. The path tracking
controller also has the advantage of using feedback control to ensure the system is stable.

31

5.3.1 Formulation

For our path tracking controller, we use the controller proposed in [30]. For completeness,
we give a brief derivation of the controller below. We model the opponent as a unicycle
robot where we can freely control the velocity and heading of the robot. The longitudinal,
lateral, and heading errors at time k are given by ε[k] = [εX [k], εL[k], εH [k]]T respectively,
and are calculated using the Euclidean distance to the predicted state at time k, x̂k. With
the linear and angular velocities at time k as v[k] and ω[k] respectively, and the time
between frames as δt, the resulting error dynamics are:[

εL[k + 1]
εH [k + 1]

]
=

[
εL[k]
εH [k]

]
+ δt

[
v[k] sin εH [k]

ω[k]

]
where v[k] and ω[k] are inputs and ω[k] is given by the controller. If we assume the
velocity v[k] is constant, and let z1[k + 1] := εL[k], z2[k] := v[k] sin εH [k], and η[k] :=
v[k] cos εH [k]ω[k], the system becomes:[

z1[k + 1]
z2[k + 1]

]
=

[
1 δt
0 1

] [
z1[k]
z2[k]

]
+ δt

[
0

v[k] cos εH [k]ω[k]

]
=

[
1 δt
0 1

] [
z1[k]
z2[k]

]
+ δt

[
0
η[k]

]
We choose a proportional controller with the form η[k] = −γ1z1[k]−γ2z2[k] with γ1, γ2 > 0,
which yields the following stable, closed-loop system:[

z1[k + 1]
z2[k + 1]

]
=

[
1 δt

−δtγ1 1− δtγ2

] [
z1[k]
z2[k]

]
Solving for ω[k] gives the following relation to govern the heading:

ω[k] = −γ1εL[k]−γ2v[k] sin εH [k]
v[k] cos εH [k]

This formulation does not control velocity, so we must introduce another equation to
govern our replica’s velocity. Borrowing from the linear blending described in Section 3.4,
we will use a similar equation to govern the velocity for this approach. We define εtotal =
εX [k] + εL[k], which lets us write ‖v[k]‖ = ‖εtotal‖/γ3. This gives us three parameters to
tune, γ1, γ2, and γ3.

32

5.3.2 Implementation

The integration of the path tracking controller uses the same overall algorithm as the blend-
ing network, shown in Algorithm 1. To use the heading and velocity equations described
above to generate a single blended velocity v̄[k+j], we rotate the previous blended velocity
v̄[k + j − 1] by ω[k]δt and set its magnitude as ‖v̄[k + j]‖ = ‖εtotal‖/γ3.

Some edge cases need to be accounted for during implementation of this algorithm.
Firstly, with our choice of velocity control, we need to consider the case where our blended
position is ahead of the predicted position, which can happen in cases of extreme decelera-
tion. If this case is unhandled, the replica will accelerate away from the predicted position
indefinitely. In our implementation we handle this case by simply halving the speed of the
replica, allowing time for the predictions to catch up to the replica. Another edge case is
that if the heading error is outside of +/ − 90◦, the replica will end up tracking the path
in the opposite direction, converging to 180◦ of heading error. To remedy this, we clamp
the heading error to +/− 80◦, which also helps avoid numerical errors from dividing by 0
or close to 0 in the heading equation.

5.4 Results

In this section we present results comparing our proposed approaches to the established
state of the art methods including the linear blending approach described in Section 3.4
and the projective velocity blending technique described in Section 3.5.

5.4.1 Neural Network Results

Preliminary results for the blending network were obtained by training the network for a
∆tmax of 500ms and simulating using a message interval of T = 500ms with no latency
or packet loss. These simulations were run with predictions made using the existing state-
of-the-art dead reckoning algorithm described in Section 3.3 to reduce potential variables.
Our neural network approach is compared to the linear blending approach described in
Section 3.4 with λ = 0.4. Initial results when implementing the network are shown in
Figure 5.3 and show good performance along smooth curves, but show noticeable error
at high speed turns or other areas where the predictions would have greater error. More
importantly however, the blended path from the network eventually diverges completely
from the master path. While the errors in the final positions of the blended path appeared

33

40 20 0 20 40 60
10

20

30

40

50

60

Master
Linear
Network

Figure 5.3: Implementation of the blending network when not updating the velocity with
new messages

insignificant in Figure 5.2, they result in complete divergence when they are allowed to ac-
cumulate over multiple predicted segments. With no explicit feedback control mechanisms
to mitigate error, there are no guarantees that the blended path will be able to consistently
track the predictions. The black box nature of neural networks also makes the behaviour
of this approach difficult to predict. Ultimately, due to these shortcomings along with the
manual tuning required in the training process, this approach was deemed unsatisfactory
and was not investigated further.

5.4.2 Path Tracking Results

The state-of-the-art we compare to initially is the discrete linear blending approach de-
scribed in Section 3.4 with λ = 0.4. With initial parameters of γ1 = 80, γ2 = 20, γ3 = 0.2
obtained through trial and error, initial results are promising, showing much smoother
paths than the existing state-of-the-art with considerably less error. A γ3 of 0.2 corre-
sponds to roughly half the delay of the the state-of-the-art algorithm. These results are
shown in Figure 5.4. The direction of the master path is indicated with an arrow, and a
point is marked on each path at a timestep where a message was sent from the master. This

34

20 0 20 40 60

30

40

50

60

Master
Linear
Ours

Figure 5.4: Results of path tracking blending with untuned parameters and a message
interval of 300ms

marked point shows that using γ3 = 0.2 results in roughly half the delay compared to the
linear blending approach. Our approach also replicates the path of the master considerably
better than the linear blending technique.

Although it is not the only metric to evaluate blending algorithms, examining the posi-
tional error between the algorithms summarizes the performance nicely. We will examine
both the absolute error, as well as what we call the adjusted error, which is calculated
by comparing the error between blended position r̄[k] and the actual time shifted position
r[k − λ/δt], or in the case of path tracking blending, r[k − γ3/δt]. This is meant to some-
what eliminate the impact of the different delay values used and compare how closely the
algorithms follow the true path, independent of delay, by comparing the blended points
with the points on the master path that corresponds to that amount of delay. The averages
of these two errors are shown in Table 5.1. While the path tracking blending is expected
to have lower absolute error due to running with a smaller delay, it also has significantly
lower adjusted error, suggesting that it also does a better job of following the master car’s
original path. While this metric is not precise by any means, its results combined with the
smoothness of the path upon visual inspection are encouraging for the potential of path
tracking blending.

35

Table 5.1: Average errors for linear blending and path tracking blending.

Message Interval 100ms 300ms 500ms

mean std dev mean std dev mean std dev

Linear 5.25 3.02 6.19 2.27 5.54 3.17
Path Tracking 2.71 1.53 3.27 1.16 2.97 1.68

Linear Adjusted 1.17 0.99 1.75 1.12 1.49 1.21
Path Tracking Adjusted 0.33 0.20 0.57 0.34 0.72 0.64

5.4.3 Parameter Tuning

While the initial results with randomly selected parameters are promising, this approach
has further potential available by tuning its 3 parameters. Through manual experimenta-
tion, it was found that lower values of γ1 and γ2 were desirable as they produced smoother
paths, but setting these too low resulted in greater error. A lower value of γ3 is desired as
it directly correlates to less delay in the blending algorithm. However, it was found that
for higher message intervals there was a firm lower limit for how low γ3 could be while
maintaining stability. Thus we can select γ3 based on our desired message interval as the
only parameter we tune by hand. In our case, for a desired message interval of 250−300ms,
we selected γ3 = 0.1. We can then use a simple grid search to find our tuned values of
γ1 and γ2 by simulating our path tracking blending algorithm with different values of γ1

and γ2 and calculating the average errors of each combination. We want to select values
that result in low error, but we also wish to choose low values of γ1 and γ2. Therefore, we
selected the pair of γ1 and γ2 with the lowest sum whose average error was within 20% of
the minimum average error. This gave us our tuned values of γ1 = 130, γ2 = 10, γ3 = 0.1.

The tuned algorithm is then compared to the dead reckoning and linear blending ap-
proach described in Sections 3.3 and 3.4, and the projective velocity blending technique
described in Section 3.5. Figure 5.5 shows the algorithms performing with a message in-
terval of 200ms and no packet loss or latency. The master vehicle is traveling from right
to left, and a point has been marked on the path of each replica at the same timestep
where a message was received from the master. This point shows the differences in how
delayed each replica is: the linear blending approach causes noticeable delay, while the
PVB replica runs next to the master, with our approach running slightly behind. These
results illustrate the tradeoff between delay of the replica and smoothness of the trajec-
tory. The linear blending approach runs significantly behind, but maintains a very smooth
trajectory; its trajectory is even too smooth, filtering out some of the detail of the master

36

90 80 70 60 50 40 30

30

35

40

45

50

55

60 Master
Linear
PVB
Ours

Figure 5.5: Results of path tracking blending with tuned parameters and a message interval
of 200ms

path. The PVB approach on the other hand, has no delay behind the master car at the
cost of some irregularities in the path when it must double back when its extrapolation is
incorrect. Our approach sacrifices a small amount delay for considerably better replication
of the master path. Our approach is also robust to worse network conditions, as shown
in Figure 5.6. At these network conditions, the flaws of all the replication algorithms are
magnified. At this message interval, even the conservative linear blending approach shows
jarring changes in direction. Our blending approach shows some divergence from the mas-
ter path, but it is masked to a much better degree than the PVB approach. Figure 5.7
shows even worse network properties, with a message interval of 300ms and 50% packet
loss. Our algorithm still performs adequately at these worst-case network properties, while
the other two algorithms show significant issues. The effect of latency is not compared
here as it affects all algorithms in the same way by making them perform as if the message
interval has the latency added to it, and including it as a variable would only obfuscate
the results.

37

90 80 70 60 50 40 30

25

30

35

40

45

50

55
Master
Linear
PVB
Ours

Figure 5.6: Results of path tracking blending with tuned parameters and a message interval
of 300ms

110 100 90 80 70 60 50 40

50

55

60

65

70

75

80

85
Master
Linear
PVB
Ours

Figure 5.7: Results of path tracking blending with tuned parameters and a message interval
of 300ms and a drop rate of 50%

38

Chapter 6

Collisions

A large challenge, particularly in networked games, is how to deal with collisions. In net-
worked games, we do not have a perfect model of our opponents, but as shown in previous
sections, with a good prediction and blending scheme we can create a decent approxima-
tion of our opponents. Maintaining an accurate and believable model of our opponents
is made more difficult in the presence of collisions, however, since small differences in the
impact point can have a dramatic effect on the outcome of the collision. In some cases,
small differences in position between the replica and the true position can make the dif-
ference between one colliding with an obstacle and the other not colliding. This problem
is further complicated by considering collisions between multiple other players, where all
agents involved in the collision are replicas whose exact position is not known.

We are restricting our investigation to only look at collisions between a replicated
opponent and a static obstacle. Even in this case, there are significant challenges presented.
If the replica does not have physics enabled and collisions are not otherwise accounted for,
the replica will pass through obstacles without colliding until a new message is received
from the master car after a collision has occurred. This can be especially jarring for the
player, as this blatantly violates the physics of the game engine. Alternatively, if the
replica does have physics enabled and we attempt to implement our blending algorithm in
the presence of obstacles, we may still be attempting to blend the replica to a predicted
point that is inside an obstacle. This disagreement between the blending algorithm and
the physics engine can result in extreme cases where the replica is ejected from the collision
with a very unrealistic angle and velocity. This is equally jarring for the player and is also
undesirable.

One approach that is used in practice is to disable predictions when a collision is

39

detected by the replica, and allow local physics to control the replica for some tuned period
of time before merging back into the prediction scheme [9]. One shortcoming of this is that
it depends on the position of the replica, which may be inaccurate. As discussed above,
small differences in position between the replica and the master can have a significant
impact on the collision response. We would like to explore the possibility of predicting a
collision and determining a response based on the predicted positions of the replica, since
these should be much closer to the true position of the car we are attempting to replicate.
This is a very nuanced problem with many implementation pitfalls, and so our goal will
be mainly to establish a proof of concept that predicting collisions based on predicted
positions of the replica is reliable and reasonably accurate.

6.1 Problem Setup

Given a message from an opponent s[k] and an obstacle P , determine if the opponent will
collide with the obstacle. If not, perform prediction and blending as described in Chapters
4 and 5. If the opponent will collide, generate a series of believable states X̄ [k], ..., X̄ [k+ i]
to approximate the true states, X [k], ...,X [k+ i], after collision. Success of an approach is
evaluated similarly to the blending results, with some emphasis placed on Euclidean error
while also considering the believability of the replication. Assume we can override the
implemented prediction and blending mechanisms when a collision is detected, thus there
is no requirement for the solution here to utilize the previous algorithms. The solution for
this problem should, however, be able to smoothly return to the regular prediction and
blending after the car is no longer affected by the collision dynamics.

6.2 Solution Approach

The problem presented in the previous section is to approximate the complex physics of
the game engine, similar to the prediction problem, but this time including interactions
with static obstacles. With our model of the game engine, this still looks like X [k + 1] =
B(X [k],A[k]), only this time the function B also encompasses static collisions. Unlike the
trajectory prediction problem, player actions do not play a large role in this case, as the
control inputs of the car have little impact on its collision response for many timesteps
after the collision.

40

2 Layers of 100 Units

Velocity

Point

Normal

Time

Displacement

Rotation

Figure 6.1: Overview of the collision network

6.2.1 Neural Network

We applied a neural network to this problem as well. In the Unity engine, collisions are
calculated based on a collision point and a collision normal. We also need to input the
velocity of the vehicle at the point of collision in order to calculate the collision response.
Vehicle parameters such as mass and friction coefficients are also necessary for calculating
a collision response, but in our case these will be captured implicitly within the network.
Our goal for this section is to establish a proof of concept for being able to predict col-
lision response using a neural network, and thus creating an easily generalizable model
by including such vehicle parameters as inputs is not a priority. The orientation of the
car is important in creating a believable trajectory, and cannot be easily estimated from
a given path and so we must include orientation as an output along with displacement.
Similar to the previous networks, we must also include a time from the collision that we
wish to predict. The dimensionality of the inputs and outputs is similar in magnitude to
the prediction problem described in Section 4.2 and so we will employ a similar network
with 2 hidden layers of 100 units. An overview of the network is shown in Figure 6.1. We
can represent a collision at timestep k and letting by the point of the collision c[k] and the
normal to the surface at the collision n[k]. Thus we may format our inputs and outputs
as x = (v[k], c[k],n[k],∆t), y = (∆r̄[k], q̄[k + i]), where ∆r̄[k] = r̄[k + i]− r̄[k] and i = ∆t

δt
.

41

Figure 6.2: Screenshot of a collision with a cylindrical obstacle in Unity

6.2.2 Training

To train and test collisions, a static cylindrical obstacle was placed in the Unity environ-
ment. To automatically generate collision data, a script was run that repeatedly launches
the master car at the obstacle at random angles and directions with a random speed within
the typical range of the car. Since collisions are resolved using a point and a normal, the
overall shape of the obstacle is not important and by using a circular obstacle, we are able
to easily capture all collision angles. A collision with this obstacle is shown in Figure 6.2.
The path of the master car throughout the collision is shown in red, and examining it
reveals a few potential challenges. During this process we are able to record the state of
the master car at every timestep, as well as whether or not a collision is occurring in a
given frame, and the point and normal of any detected collisions. As with the previous
networks, a maximum desired time to predict ∆tmax must be specified, presenting the same
tradeoff between generality and accuracy.

First note that after the collision, the car is facing backwards. Given the parameters
of the vehicle and the collision surface, this is how most collisions look; the car will rotate

42

away from the collision surface and its momentum will carry it through as it slides and
rotates around, where eventually the wheels will grip and it will roll slowly backwards. The
slight disconnect in the path near the impact point is due to the car rotating slightly in
relation to the ground plane, causing the trail left by the car to clip into the ground slightly.
Also notice in Figure 6.2 that after the initial collision the car impacts the obstacle again
slightly before settling into rolling backwards. This is problematic for collision prediction,
as our model is only trained for impacts while driving, and attempting to use our network
to predict a response from this secondary collision may result in error due to predicting
outside of what the network is trained for. Thus, in our implementation we must account for
these additional impacts. The overall collision response takes up to 2 seconds to establish
grip again and settle into smooth, controlled motion. Similar to before, the network was
trained using mean squared error and the Adam optimizer.

6.2.3 Implementation

When training the network, it was found that the collision network could be trained for
up to 500ms while maintaining reasonable accuracy. Additionally, the blending scheme
is specific to controlled driving motion of the vehicle and thus is not suitable for use in a
collision response. However, during the initial collision response, the path of the master
may not be smooth and so smoothness of the replica is not as important, thus we can
simply use the predictions from the collision network as the position of the replica, with
no blending applied.

With the collision network valid for up to 500ms, we still have up to 1.5s of collision
response remaining to predict. Simply applying the prediction scheme from before at this
point yielded unsatisfactory results, as the car is still sliding uncontrollably at this point
in the collision response in a way the prediction network was not trained for. A natural
progression would be to try and train the prediction network to handle a wider range of
motions, including this uncontrolled sliding. Doing so yielded better post-collision predic-
tions, but resulted in worse predictions in cases with no collisions where the predictions
would slide with no throttle applied. Thus another network, dubbed the sliding network
was trained with identical structure to the prediction network, using data from this post-
collision sliding period up to 2000ms after the collision. After this sliding period, we can
return to the normal prediction and blending scheme.

Our overall replication scheme with collisions included is shown in Figure 6.3 for de-
termining the blended position of the vehicle at time k + i, where s[k] is the most recent
message received from the master. Upon receiving a message, we first check if we have

43

Prediction
Network

Recent
Collision

Collision
Predicted

Blending
Algorithm

Sliding
Network

Collision
Network

X [k + i]

X [k + i]

No

Yes

X̂ [k + i] Yes

No

X̂ [k + i]

s[k], i

X [k + i− 1]

Figure 6.3: Flow diagram of replication process at timestep k + i with collisions included

recently collided with an obstacle (within 2000ms of a collision in our implementation). If
so, we use the sliding network to obtain a predicted position of the vehicle at time k + i,
then apply our blending algorithm to find the blended position X [k+ i]. If not, we use the
prediction network, then cast a box between predicted positions X̂ [k + i− 1] and X̂ [k + i]
and determine if that collides with an obstacle. If a collision is detected, we obtain our
blended position X [k+ i] directly from the collision network. If no collision is detected, we
apply our blending algorithm to the predicted state obtained from the prediction network
to obtain X [k + i]. Note that the blending algorithm also takes as input X [k + i− 1].

6.3 Results

In this section, our algorithm is compared to the state of the art dead reckoning and linear
blending described in Sections 3.3 and 3.4 with local physics enabled on the replica car.
with no considerations made for collisions, this scheme results in the replica overshooting
around the obstacle or jittering around the point of collision as the game engine attempts
to reconcile the replica colliding with an obstacle and the blending algorithm trying to
force the replica to a prediction that is inside the obstacle.

A summary of our algorithm’s performance compared to the linear blending approach
for message intervals of 100ms, 250ms, and 500ms is shown in Figures 6.4, 6.5, and 6.6
respectively. To characterize the average performance, around 100 random collisions were
simulated using the same script that was used to generate training data. For consistency in
these trials, the first message after the collision was forced to be sent T milliseconds after
the collision for each message interval T . This way, these results can be seen to loosely
represent the worst-case performance for a given message interval. During simulation, we
experienced some implementation issues with our approach that were unrelated to our

44

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r (
m

)

Ours
Linear

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0

10

20

30

40

50

Er
ro

r (
de

g)

Ours
Linear

(b)

Figure 6.4: Position and Rotation error with a message interval of 100ms

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0

2

4

6

8

10

Er
ro

r (
m

)

Ours
Linear

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0

20

40

60

80

Er
ro

r (
de

g)

Ours
Linear

(b)

Figure 6.5: Position and Rotation error with a message interval of 250ms

45

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r (
m

)

Ours
Linear

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Time After Collision (s)

0

20

40

60

80

100

120

140

Er
ro

r (
de

g)

Ours
Linear

(b)

Figure 6.6: Position and Rotation error with a message interval of 500ms

solution. Occasionally, the game engine’s collision detection system would fail to report
a collision. The other source of issues was our use of a local Python server to run the
neural network. Sometimes the communication between the Python server and Unity was
delayed by a frame or two, which resulted in the simulation using the predicted state of the
previous collision. Roughly 25% of trials experienced these issues, and were not included
in these results.

In the figures, the mean error is plotted as a solid line, and the shaded region repre-
sents the 5th and 95th percentiles of error. At low message intervals, i.e., 100ms, both
algorithms have low positional and rotational error, but the linear blending approach per-
forms very well in both categories. At higher message intervals, which is where we are
more interested, our approach shows some advantages over the linear blending approach.
At message intervals of 250ms and above, the linear blending approach starts to show the
overshooting that was mentioned earlier, as shown by the high peaks in the 95th percentile
of positional error. At message intervals of 250ms and 500ms, our approach has lower peak
positional error for both the 95th percentile and the mean. At message intervals of 500ms,
our approach also shows lower rotational error. This is an extreme interval that would
not be used in practice, but could arise if packet loss occurs during a collision at a lower

46

2 0 2 4 6 8 10 12 14

142

144

146

148

150

152

154

156 Master
Linear
Ours

(a) Paths of master compared to replicas during
collision

3 4 5 6 7 8

143

144

145

146

147

Master
Linear
Ours

(b) Close up view of impact point with orienta-
tion shown

Figure 6.7: Paths of Master compared to Linear and Our replication schemes with a
message interval of 500ms

message interval. Overall, our approach demonstrates much more consistent replication,
with fewer immersion-breaking jumps and overshooting.

Examining the paths of the replicas during a collision with a send rate of 500ms demon-
strates the advantages of our algorithm, while also revealing some shortcomings. The paths
of the linear replica and our replication scheme compared to the master car during a col-
lision in Figure 6.7. The most obvious advantage is that our algorithm does not suffer the
same overshooting problem as the linear blending. The close up view also shows how our
algorithm better matches the orientation of the master throughout the collision response.
One issue that was not addressed is the transition between the collision network and the
sliding network. In the post-collision path of our replica, there is a sharp point where
the replica backtracks for a timestep when it switches between the collision network and
the sliding network. In a fast-moving collision this is nowhere near as noticeable as the
overshooting of the linear blending, but it is still undesirable. In practice, there are many
ways that this could be addressed, but this was deemed outside the scope of this investiga-
tion. Another shortcoming of this approach is that the collision network is vehicle-specific,

47

and is also specific to the obstacle unless additional parameters such as obstacle material,
vehicle mass, and vehicle rigidity were also input into the network. This was not done for
this investigation, as training such a network would require immense amounts of data for
each different possible combination of obstacle and vehicle properties.

48

Chapter 7

Conclusions

In this work we investigated new approaches to replicating an opponent given periodic mes-
sages in an online game over a distributed network, with the goal of increasing the message
interval to reduce bandwidth. We decomposed this problem into two parts: predicting the
opponent’s position from their latest message, and rendering a replica of the opponent to
follow these predictions with a smooth and believable trajectory. We used a neural network
to perform the predictions and showed results that were comparable to the state of the
art for low message intervals, and results that were far better than the state of the art
for higher message intervals. This indicates potential for using higher message intervals
while maintaining believable replication. We tried to apply a neural network to produce
a smooth trajectory for the replica vehicle as well, but the results were inconsistent and
unreliable and were deemed inadequate for the problem. We then applied a path tracking
algorithm borrowed from the field of mobile robotics to take advantage of the fact that we
were replicating wheeled vehicles, and found results that were superior to the state of the
art algorithms.

We also investigated the problem of resolving collisions in a distributed network en-
vironment. This is a very complex problem, and our investigation focused on collisions
between a replica vehicle and a static obstacle. In particular, we wanted to establish a
proof of concept that we could predict a collision response based on the predicted positions
of the replica as opposed to the current position of the replica, as these should be the
closest to the replica’s true position. We apply a neural network to predict the collision
response and show that it has superior performance to the current state of the art for high
message intervals.

49

7.1 Future Work

One of the next steps for this work is to integrate it into other existing game engines. Our
solutions were designed with the intention of being easily implemented with little hand
tuning required; integration into other engines would be able to demonstrate this ease of
implementation. This may also reveal unforeseen shortcomings of our approaches. It would
also be worthwhile to train new networks for different vehicles to verify that our approach
can be easily applied without additional steps or tuning for different vehicles.

There are many next steps for the collision prediction work. Firstly, the unresolved
implementation details could be explored, such as when to switch between the different
networks, and how to transition smoothly between them. Additionally, the sliding network
could potentially be merged with the prediction network to create a more comprehensive
network that better models a wider range of the vehicle’s range of motion. While we
attempted this in our investigation and could not do so successfully, we believe that with
a deeper network and more training data, a comprehensive network could be constructed.
This would streamline implementation, and would potentially improve predictions when
the master vehicle loses traction.

We also believe that, despite its poor performance in our testing, the neural network
blending approach has potential. Although it was potentially unstable, the trajectories
it generated while it was tracking successfully were very close to the true trajectory of
the vehicle. The most straightforward way to improve robustness would be to add some
recovery method to allow the blended path to reconverge if too much error is detected.
Methods to improve the training of the blending network could also be investigated such
as different network architectures, or different ways of normalizing and preprocessing the
data.

50

References

[1] Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and Sampath
Rangarajan. Accuracy in dead-reckoning based distributed multi-player games. In
Proceedings of 3rd ACM SIGCOMM workshop on Network and System Support for
Games, pages 161–165, 2004.

[2] Ebrahim Babaei, Mahmoud Reza Hashemi, and Shervin Shirmohammadi. A state-
based game attention model for cloud gaming. In 2017 15th Annual Workshop on
Network and Systems Support for Games (NetGames), pages 1–3. IEEE, 2017.

[3] Chris “Battle(non)sense”. How netcode works, and what makes ‘good’ netcode. PC
Gamer, 2017.

[4] Ikram Belhajem, Yann Ben Maissa, and Ahmed Tamtaoui. Improving low cost sen-
sor based vehicle positioning with machine learning. Control Engineering Practice,
74:168–176, 2018.

[5] Youfu Chen and Elvis S Liu. Comparing dead reckoning algorithms for distributed
car simulations. In Proceedings of the 2018 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pages 105–111, 2018.

[6] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[7] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989.

[8] Luis Fernando Kawabata de Almeida and Alan Salvany Felinto. Evaluation of the
motion-aware adaptive dead reckoning technique under different network latencies
applied in multiplayer games. In 17th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), pages 137–13709. IEEE, 2018.

51

[9] Matt Delbosc. Replicating chaos: Vehicle replication in ’Watch Dogs 2’, 2017. Game
Developers Conference.

[10] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[11] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of factors affecting play-
ers’ performance and perception in multiplayer games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and System Support for Games, pages 1–7, 2005.

[12] Elias P. Duarte, Aurora T.R. Pozo, and Pamela Beltrani. Smart reckoning: Reducing
the traffic of online multiplayer games using machine learning for movement prediction.
Entertainment Computing, 33:100336, 2020.

[13] Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency prop-
erties, volume 1. USAF school of Aviation Medicine, 1985.

[14] Ben Geisler. Integrated machine learning for behavior modeling in video games.
In Challenges in game artificial intelligence: papers from the 2004 AAAI workshop.
AAAI Press, Menlo Park, pages 54–62, 2004.

[15] R Cameron Harvey, Ahmed Hamza, Cong Ly, and Mohamed Hefeeda. Energy-efficient
gaming on mobile devices using dead reckoning-based power management. In 9th
Annual Workshop on Network and Systems Support for Games, pages 1–6. IEEE,
2010.

[16] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Sub-
space neural physics: fast data-driven interactive simulation. In Proceedings of the
18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 1–12, 2019.

[17] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper,
Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange.
Unity: A general platform for intelligent agents, 2020.

[18] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning
for video game playing. IEEE Transactions on Games, 2019.

[19] Vasily Y. Kharitonov. Motion-aware adaptive dead reckoning algorithm for collabora-
tive virtual environments. In Proceedings of the 11th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and Its Applications in Industry, VRCAI
’12, page 255–261, New York, NY, USA, 2012. Association for Computing Machinery.

52

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR (Poster), 2015.

[21] B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins. Peer-to-peer support for massively
multiplayer games. In IEEE INFOCOM 2004, volume 1, page 107, 2004.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[23] B.Y. Lattimer, J.L. Hodges, and A.M. Lattimer. Using machine learning in physics-
based simulation of fire. Fire Safety Journal, 114:102991, 2020.

[24] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev, Sergey
Grizan, Alec Wolman, and Jason Flinn. Outatime: Using speculation to enable low-
latency continuous interaction for mobile cloud gaming. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services, pages
151–165, 2015.

[25] R. Luo, T. Shao, H. Wang, W. Xu, X. Chen, K. Zhou, and Y. Yang. NNWarp:
Neural network-based nonlinear deformation. IEEE Transactions on Visualization
and Computer Graphics, 26(4):1745–1759, 2020.

[26] Sahil Mirani. How many people play gta 5? know more about this successful rockstar
release. Republic TV, 2020.

[27] Curtiss Murphy and E Lengyel. Believable dead reckoning for networked games. Game
engine gems, 2:307–328, 2011.

[28] Christoph Neumann, Nicolas Prigent, Matteo Varvello, and Kyoungwon Suh. Chal-
lenges in peer-to-peer gaming. SIGCOMM Comput. Commun. Rev., 37(1):79–82,
January 2007.

[29] Michael A Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[30] Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. Visual teach and
repeat, repeat, repeat: Iterative learning control to improve mobile robot path track-
ing in challenging outdoor environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 176–181. IEEE, 2013.

53

[31] Lothar Pantel and Lars C Wolf. On the suitability of dead reckoning schemes for
games. In Proceedings of the 1st workshop on Network and System Support for Games,
pages 79–84, 2002.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library, 2019.

[33] Claude Samson and Karim Ait-Abderrahim. Feedback control of a nonholonomic
wheeled cart in cartesian space. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1136–1141, 1991.

[34] Cheryl Savery, Nicholas Graham, Carl Gutwin, and Michelle Brown. The effects of
consistency maintenance methods on player experience and performance in networked
games. In Proceedings of the 17th ACM Conference on Computer Supported Cooper-
ative Work & Social Computing, CSCW ’14, page 1344–1355, New York, NY, USA,
2014. Association for Computing Machinery.

[35] C. Schuwerk and E. Steinbach. Smooth object state updates in distributed haptic
virtual environments. In 2013 IEEE International Symposium on Haptic Audio Visual
Environments and Games (HAVE), pages 51–56, 2013.

[36] Wei Shi, Jean-Pierre Corriveau, and Jacob Agar. Dead reckoning using play patterns
in a simple 2d multiplayer online game. International Journal of Computer Games
Technology, 2014:138596, May 2014.

[37] Robert Skulstad, Guoyuan Li, Thor I Fossen, Bjornar Vik, and Houxiang Zhang.
Dead reckoning of dynamically positioned ships: Using an efficient recurrent neural
network. IEEE Robotics & Automation Magazine, 26(3):39–51, 2019.

[38] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmg̊ard, Amy K
Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content gen-
eration via machine learning (pcgml). IEEE Transactions on Games, 10(3):257–270,
2018.

[39] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,
James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny
Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband,

54

Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rum-
mel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies,
Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley: The
robot that won the darpa grand challenge. Journal of Field Robotics, 23(9):661–692,
2006.

[40] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accel-
erating eulerian fluid simulation with convolutional networks. In International Con-
ference on Machine Learning, pages 3424–3433. PMLR, 2017.

[41] Brendan D Tracey, Karthikeyan Duraisamy, and Juan J Alonso. A machine learning
strategy to assist turbulence model development. In 53rd AIAA aerospace sciences
meeting, page 1287, 2015.

[42] Florence Tsang, Tristan Walker, Ryan A. MacDonald, Armin Sadeghi, and Stephen L.
Smith. Lamp: Learning a motion policy to repeatedly navigate in an uncertain envi-
ronment, 2020.

[43] Jim Van Verth. Math for game programmers: Understanding quaternions, 2013. Game
Developers Conference.

55

	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Literature Review
	Networked Gaming
	Dead Reckoning
	Machine Learning in Video Games

	Background
	Distributed Network Architecture
	Terminology
	Player Model
	Network Model
	Replication

	Dead Reckoning
	Linear Blending
	Projective Velocity Blending
	Supervised Learning

	Trajectory Prediction
	Trajectory Prediction Problem
	Neural Network Approach
	Simulation Setup
	Training
	Results

	Path Blending
	Problem Setup
	Neural Network
	Training
	Implementation

	Path Tracking
	Formulation
	Implementation

	Results
	Neural Network Results
	Path Tracking Results
	Parameter Tuning

	Collisions
	Problem Setup
	Solution Approach
	Neural Network
	Training
	Implementation

	Results

	Conclusions
	Future Work

	References

