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1  | BACKGROUND

Couples who are unable to conceive within a year of regular, unpro-
tected sexual intercourse are recommended to seek evaluation. In 
about 40% of the couples, infertility is caused by a male factor and 
by both partners in an additional 20% of couples. The underlying 
causes for male infertility are multifactorial, with about 20% of these 
cases being idiopathic (Ayaz et al., 2015; Louis et al., 2013).

1.1 | Overview of semen analysis and its 
implications

According to the guidelines of the World Health Organization 
(WHO, 2010), the clinical evaluation of male patients includes a medi-
cal history, physical examination and at least two semen analyses. The 
conventional semen analysis is very important in identifying the sever-
ity of male factor infertility and guiding future analysis and treatment 
(Agarwal & Bui, 2017). It further includes the determination of volume, 
pH, colour, viscosity, liquefaction time, number of round cells, sperm 
total count, concentration, motility and normal sperm morphology.

1.2 | Limitations of semen analysis in predicting 
fertility status

Although standard semen analysis remains the standard of care to in-
itially evaluate male patients with infertility, a routine semen analysis 
does not accurately identify the aetiology of infertility or predict the 
reproductive success (Snow-Lisy & Sabanegh, 2013). Routine semen 
analysis yields variable results due to inter- and intra-observer vari-
ability, and it gives no information about sperm dysfunctions at cel-
lular and molecular levels (Agarwal & Bui, 2017; Esteves, 2014). 
Moreover, the lower reference limits established by the WHO are 
not applicable to all men as values of semen parameters overlap in 
fertile and infertile men. Therefore, the exact cause of idiopathic 
and unexplained male infertility remains unknown, even after per-
forming routine semen analysis (Hamada, Esteves, & Agarwal, 2011; 
Wallach et al., 1983). Normal semen parameters do not equate with 
a normal fertilisation potential of spermatozoa (Hamada et al., 2011; 
Lewis, 2007). As a consequence, more advanced tests are needed to 
accurately diagnose male infertility and predict pregnancy in couples 
trying to conceive naturally or couples undergoing assisted repro-
ductive technologies (ART; Oehninger, Franken, & Ombelet, 2014).
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Abstract
Conventional semen analysis is the standard of care to initially evaluate the fertility 
status of a male patient. However, it has some limitations and among these are fail-
ure to correctly identify the aetiology underlying fertility problems, intra- and inter-
observer variability and incomplete information about sperm function. Considering 
these drawbacks, advanced semen tests have been developed to assess male in-
fertility, including sperm function tests, oxidative stress (OS) and sperm DNA frag-
mentation (SDF) tests. This review illustrates the commonly utilised sperm function 
techniques, along with the assays used to assess SDF and OS and their diagnostic 
value.
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1.3 | What additional information can sperm 
function tests provide?

When investigating male factor infertility, it is important to con-
sider the detrimental effects of sperm chromatin and DNA damage. 
Identifying sperm dysfunctions and predicting fertilisation and preg-
nancy rates are potential benefits of sperm function tests (Oehninger 
et al., 2014). Sperm function tests are able to assess the transport 
of spermatozoa to the oocyte, the interaction of spermatozoa with 
cervical mucus and sperm–oocyte interaction. These tests assess 
the completion of sperm capacitation and the ability of spermatozoa 
to undergo ligand-induced acrosome reaction. Furthermore, sperm 
function tests determine whether spermatozoa are mature, motile 
and	able	to	bind	to	hyaluronan	(Kızılay	&	Altay,	2017).	These	aspects	
are crucial for the success of the fertilisation (Hamada et al., 2011; 
Oehninger et al., 2014). Also, sperm function tests could indicate 
an	appropriate	 therapy	 to	overcome	 the	 fertility	problems	 (Kızılay	
& Altay, 2017).

2  | SPERM FUNC TION

2.1 | Physiological basis of achieving fertilisation, 
pregnancy and embryonic development

Both, spermatozoa and oocytes undergo a series of preparatory 
steps to achieve fertilisation. The fertilisation process takes place 
once a spermatozoon reaches, recognises, binds and enters the 
oocyte (Lewis, 2007). This process involves sperm capacitation, 
penetration of the oocyte's cumulus matrix and acrosomal exo-
cytosis (Ikawa, Inoue, Benham, & Okabe, 2010). During acroso-
mal exocytosis, hundreds of fusion pores are formed between 
the outer acrosomal membrane and the sperm head plasma 
membrane. As a result, the enzymes released from the acro-
some locally digest the oocyte's zona pellucida. Consequently, a 
spermatozoon penetrates the zona pellucida, attaches to the oo-
lemma, the oocyte plasma membrane, and delivers the paternal 
genome to the future embryo (Anifandis, Messini, Dafopoulos, 
Sotiriou, & Messinis, 2014; Evans & Bailey, 2010). With each stage 
of the sperm transit through the female genital tract, the number 
of spermatozoa decreases, and only the most viable and capable 
spermatozoon reaches the oocyte. Oocytes will eventually only 
be fertilised by a single spermatozoon.

3  | SPERM FUNC TION TESTS

3.1 | Capacitation

Spermatozoa undergo a capacitation phase in the female genital 
tract. This physiological process involves all changes that enable 
spermatozoa to undergo acrosome reaction and thereby acquire 
fertilisation competence. A test to determine the spermatozoa's 

ability for capacitation aims to induce sperm capacitation under 
laboratory conditions by placing the spermatozoa in a capacitating 
medium (Ayaz et al., 2015; Louis et al., 2013) such as human tubal 
fluid (HTF) medium enriched with 3% albumin (Agarwal, Gupta, & 
Sharma, 2016a). A new test has been developed to assess the sper-
matozoa's capacitation potential, Cap-Score™ Sperm Function Test 
(Cap-Score™). The aim of this test is the detection and analysis of the 
localisation patterns of the ganglioside GM1 (a marker of lipid rafts 
in the sperm membrane), which is important for the evaluation of 
the spermatozoa's capacity to fertilise the oocyte. The proportion 
of spermatozoa that present the localisation patterns of the gan-
glioside GM1 that corresponds with capacitation is reported (Moody 
et al., 2017).

The clinical utility of the sperm capacitation test has not yet been 
well defined (Sigman & Zini, 2009; Vasan, 2011). This test may be 
used as a diagnostic tool (Moody et al., 2017) as it significantly cor-
related with the probability of pregnancy and was able to predict 
high versus low pregnancy rates (Schinfeld et al., 2018). On the one 
hand, reactive oxygen species (ROS) at low concentrations are es-
sential to trigger capacitation. However, an excessive intake of an-
tioxidants could cause reductive stress, which can scavenge these 
essential ROS and thereby lead to male infertility (Henkel, Sandhu, 
& Agarwal, 2019). In case of reductive stress, a discontinuation of 
the antioxidant intake would then be recommended. On the other 
hand, in cases of oxidative stress (OS), that is the excessive avail-
ability of ROS, premature capacitation (de Castro et al., 2016) and 
acrosome reaction (El-Taieb, Ali, & Nada, 2015) would be triggered, a 
condition which can also lead to infertility. The reduction of the OS 
by eliminating its causes such as varicocele or the administration of 
antioxidants would be advised.

3.2 | Acrosome reaction

The acrosomal reaction (AR) is a process that naturally occurs after 
sperm capacitation and sperm–zona pellucida binding. During AR, 
proteolytic enzymes stored in the acrosome are released to enable 
sperm–zona pellucida penetration eventually allowing spermatozoa 
to fertilise the oocyte (Agarwal, Bragais, & Sabanegh, 2008).

There are a series of laboratory tests to assess the ability of 
spermatozoa to undergo AR such as flow cytometry and fluores-
cence microscopy using lectins or antibodies, electron microscopy, 
bright-field light microscopy and chlortetracycline fluorescence. 
In order to investigate acrosomal functionality, a baseline and 
an	 induced	 AR	 are	 determined	 (Figure	 1;	 Kızılay	 &	 Altay,	 2017;	
Zeginiadou, Papadimas, & Mantalenakis, 2000). AR testing as-
sesses the percentage of spermatozoa that spontaneously release 
their acrosomal content as well as the percentage of spermato-
zoa that are acrosome-reacted after an induction of AR in vitro 
(Snow-Lisy & Sabanegh, 2013). The difference between induced 
and spontaneous AR is called the inducibility of AR, that is the 
ability of spermatozoa to undergo AR (Henkel, Müller, Miska, Gips, 
& Schill, 1993).
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Electron microscopy and flow cytometry are considered the best 
techniques for AR testing. However, their performance comes with 
a big disadvantage as both techniques are expensive. Other tech-
niques are easier to perform, but have other disadvantages as they 
are labour-intensive and it can be difficult to properly identify the 
AR. Important information is gathered by distinguishing between 
spontaneous and AR following the induction with calcium ionophore 
or low temperature (Zeginiadou et al., 2000).

Overall, testing the AR can give valuable information regard-
ing the fertilising ability of spermatozoa (Zeginiadou et al., 2000). 
Pampiglione, Tan, and Campbell (1994) concluded that an acrosomal 
response <31.3% is an indicator of fertilisation failure in all stud-
ied cases. A meta-analysis concluded that AR is a good predictor 
of in vitro fertilisation (IVF) outcome (Oehninger, 2000). As a con-
sequence, patients with ART failure and poor acrosomal reaction 
should	be	redirected	to	ICSI	(Kızılay	&	Altay,	2017).	A	more	sophis-
ticated test for AR is the zona pellucida-induced acrosome reaction 
(ZIAR) induced by solubilised human zona pellucida (ZP) that can 
distinguish between fertile and subfertile males (p = .001; Bastiaan, 
Menkveld, Oehninger, & Franken, 2002). In general, the information 
provided by AR testing helps in better managing the male infertility 
cases.

3.3 | Sperm–zona pellucida binding tests

To reach the oolemma and consequently the nucleus of the oocyte, 
spermatozoa must pass through the zona pellucida. The most com-
mon causes of IVF (Liu & Baker, 2000) and intrauterine insemination 
(IUI; Arslan et al., 2006) failure are sperm–zona pellucida binding 

defects. The two most common tests that evaluate sperm–zona 
pellucida binding capacity are the hemizona assay (Oehninger 
et al., 1989) and the competitive zona binding assay (Liu, Clarke, 
Lopata, Johnston, & Baker, 1989). Sperm–zona pellucida bind-
ing assays have a high predictive power for fertilisation outcome 
(Oehninger, 2000). These tests may be recommended for patients 
with standard IVF failure and unknown primary infertility causes 
(Samplaski, Agarwal, Sharma, & Sabanegh, 2010). As a consequence, 
patients with sperm–zona pellucida binding defects are counselled 
to consider ICSI (Arslan et al., 2006).

3.3.1 | Hemizona assay

For the hemizona assay (HZA), either pre-ovulatory, non-fertilised 
or recycled failed-fertilised human oocytes can be used (Henkel, 
Müller, Stalf, Schill, & Franken, 1999; Oehninger et al., 1991; Henkel 
et al., 1995). Since oocytes are dissected into two equal halves 
under microscopic control and the ooplasm is then removed, there 
is no functional, live oocyte for fertilisation, but an empty hemizona 
with no developmental potential. One hemizona is incubated with 
fertile donor spermatozoa (positive control), and the second half is 
incubated with patient's spermatozoa (Samplaski, Sharma, Agarwal, 
& Sabanegh, 2014). The hemizona index (HZI), which is the ratio of 
patient and control, is calculated. A value of HZI <30% is considered 
abnormal (Arslan et al., 2006).

The hemizona assay can significantly distinguish between fer-
tile and subfertile male patients (p = .001; Bastiaan et al., 2002) and 
may be recommended to patients with oligoasthenoteratozoosper-
mia (OAT) and with repetitive IVF failures (Oehninger et al., 2014). 
Patients with a HZI <30% had lower pregnancy rates compared with 
patients with a HZI more or equal to 30% (11.1% and 40.6%, re-
spectively; Arslan et al., 2006). Furthermore, patients with oligozoo-
spermia have low or normal ZP binding, but low ZIAR (56/72, 78%), 
which is in accordance with their low probability of natural or con-
ventional IVF fertilisation rate (Liu & Baker, 2004; Oehninger, 2000; 
Oehninger et al., 1989). This test is of high clinical value and gives 
important information regarding the physiology of the spermatozoa. 
However, due to its labour-intensiveness, the necessity for special-
ised expensive equipment and the fact that human zonae pellucidae 
are not readily available, the hemizona assay is rarely used today.

3.3.2 | Competitive intact zona binding assay

For the competitive zona binding assay or sperm–zona bind-
ing ratio test, zona-intact devitalised human oocytes are used. 
About 20 zonae pellucidae of complete human oocytes are in-
cubated with an equal number of motile spermatozoa from both 
fertile donor (control) and patient (test). The control and test 
spermatozoa are labelled with different fluorochromes. The 
cut-off value for the ratio of the number of test spermatozoa to 
that of control spermatozoa is 30%, and a value of less than the 

F I G U R E  1   Acrosome reaction testing using lectins labelled with 
fluorescence (Reprinted with permission, Cleveland Clinic Center 
for Medical Art & Photography ©2011–2020. All Rights Reserved)
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cut-off is considered abnormal (Esteves, Verza, Sharma, Gosálvez, 
& Agarwal, 2015). Regarding the competitive intact zona binding 
assay, Liu et al. (1989) concluded that the result of this test is cor-
related with the fertilisation rate in patients with abnormal sperm 
morphology.

3.4 | Sperm–oocyte penetration assay

The sperm–oocyte penetration assay or zona-free hamster oocyte pen-
etration assay was one of the first assays to evaluate sperm function 
and tests the ability of spermatozoa to undergo capacitation, acrosome 
reaction, fusion and penetration through the oolemma. Furthermore, 
it tests the ability of sperm heads to decondense within the cytoplasm 
of hamster oocytes (Oehninger et al., 2014). Human spermatozoa un-
dergo capacitation and bind to the oolemma of trypsinated hamster 
oocytes	to	remove	the	zona	pellucida	(Kızılay	&	Altay,	2017).

This test poorly predicts fertilisation outcome (Oehninger, 2000). 
The sensitivity and specificity (Mao & Grimes, 1988; Vogiatzi 
et al., 2013), positive and negative predictive values (PPV and NPV; 
Kızılay	&	Altay,	2017;	Mao	&	Grimes,	1988;	Vogiatzi	et	al.,	2013)	for	
this test widely vary. This test cannot predict successful IVF, and it is 
considered as insufficient for IVF patient selection (sensitivity 37%, 
specificity 95%; Mol et al., 1998). In conclusion, the sperm–oocyte 
assay is not recommended for routine use as it is an expensive and 
time-consuming	test	with	a	poor	clinical	value	(Kızılay	&	Altay,	2017).

3.5 | Other tests

Additional tests that assess various sperm functions are the hypo-
osmotic swelling test, the sperm mitochondrial membrane potential, 
the hyaluronan binding assay and the anti-sperm antibodies test.

3.5.1 | Hypo-osmotic swelling test

Sperm vitality and plasma membrane integrity can be assessed with 
the hypo-osmotic swelling test (HOST; Agarwal, Gupta, & Sharma, 
2016b). A characteristic of viable spermatozoa with intact mem-
brane under hypo-osmotic stress (150 mOsmol/L) is that they swell 
and curl their tail. This is a consequence of the membrane semi-per-
meability when fluid enters the cell's intact membrane. While live 
cells keep ions and other osmotically active molecules outside and 
only allow water to penetrate into the cell, resulting in cellular swell-
ing, the plasma membrane of dead spermatozoa is not intact result-
ing in a leaky membrane. Consequently, dead spermatozoa do not 
swell and do not change their tail shape (Dias, Cho, & Agarwal, 2019). 
Patients with very few or no motile spermatozoa in the ejaculate are 
suitable	for	HOS	testing	(Kızılay	&	Altay,	2017;	Peeraer,	Nijs,	Raick,	
& Ombelet, 2004). A lower limit of 58% vitality is accepted. This test 
represents a good choice when sperm staining methods are not an 
option, especially before ICSI (World Health Organization, 2010).

The opinions regarding the hypo-osmotic swelling test are divided 
with regard to IVF success. While Barratt et al. (1989) reported that 
this test has no predictive value for patients undergoing IVF, Jeyendran, 
Van der Ven, Perez-Pelaez, Crabo, and Zaneveld (1984) concluded the 
HOST can be used in addition to the standard semen analysis because 
of its accuracy and ability to predict the IVF ability of spermatozoa.

Additional diagnostic value of this test is based on the fact the 
HOST highly predicts sperm viability, a parameter that appears 
to be associated with increased DNA fragmentation index (DFI) 
as measured by SCSA and TUNEL assay (Stanger, Vo, Yovich, & 
Almahbobi, 2010). The result of the HOST is correlated with sperm 
parameters such as concentration (r2 = .2179, p < .05), total mo-
tile spermatozoa (r2 = .7103, p < .0001), progressive motile count 
(r2 = .6912, p < .0001) and normal sperm morphology (r2 = .3401, 
p < .001; Stanger et al., 2010). Couples undergoing IUI with a HOST 
score <50% had lower pregnancy (p < .05) and higher miscarriage 
rates (p < .005) compared to those with HOST scores equal or more 
than 50% (Tartagni et al., 2002). The HOST score was significantly 
lower (p < .0001) in sperm specimens with anti-sperm antibodies 
compared to sperm specimens from normozoospermic men. Hence, 
the reduced fertility during ART of infertile men with anti-sperm an-
tibodies could be due to poor membrane integrity, which is a reflec-
tion of cellular viability (Rossato, Galeazzi, Ferigo, & Foresta, 2004).

3.5.2 | Sperm mitochondrial membrane potential

Mitochondrial function, mainly the mitochondrial membrane potential 
(MMP), can be assessed using both fluorescence microscopy and flow 
cytometry coupled with fluorescent dyes (Moraes & Meyers, 2018). The 
principle of the assay is that MMP is correlated with the fluorescence col-
our and intensity (Perry, Norman, Barbieri, Brown, & Gelbard, 2011). In 
order to evaluate the MMP in human spermatozoa, JC-1 and TMRM (te-
tramethylrhodamine methyl ester perchlorate) are the most commonly 
used fluorescent dyes (Moraes & Meyers, 2018). Since JC-1 gives rather 
unreliable results (García-Macías et al., 2005; Uribe et al., 2017), TMRM 
is preferred to be used for human spermatozoa (Uribe et al., 2017). 
TMRM is a simple, time-effective method, easy to set in laboratories 
equipped with flow cytometry technology, and can accurately detect 
changes in ΔΨm with efficiency comparable to JC-1 without its limita-
tions (Uribe et al., 2017). Using this technique, the results obtained were 
comparable with semen parameters (Uribe et al., 2017).

The TMRM technique for MMP measurement is simple, 
time-effective and easy to perform in a clinical laboratory (Uribe 
et al., 2017). It was shown that this test can discriminate be-
tween normal and low-quality semen samples (p < .0001; Uribe 
et al., 2017), and is associated with sperm parameters such as 
progressive motility, viability, normal morphology, sperm count 
and seminal volume (p < .003 for all parameters; Espinoza, Schulz, 
Sánchez, & Villegas, 2009). This test also discriminates between 
astheno- and oligoasthenozoospermic patients (p = .003), thus pro-
viding important information regarding the mitochondrial function 
in semen specimens (Zou, Liu, Ding, & Xing, 2010). Consequently, 
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this test can be used to complement the routine semen analysis 
(Espinoza et al., 2009).

Determination of the rate of mitochondrial oxygen consumption 
is a more direct approach to measure the mitochondrial bioener-
getics involved in sperm motility and can be determined by means 
of polarography. This assay of oxygen consumption has been intro-
duced by Moraes and Meyers (2018). However, this technique needs 
a closed system and has low throughput, making it irrelevant for clin-
ical practice (Moraes & Meyers, 2018).

3.5.3 | Hyaluronan binding assay

Only mature spermatozoa with normal morphology, minimal DNA 
fragmentation, normal chromatin condensation, lesser chromosomal 
aneuploidies and intact acrosomes bind to hyaluronic acid, a com-
pound in the cumulus matrix that surrounds human oocytes (Huszar 
et al., 2003; Myles & Primakoff, 1997). Bound spermatozoa have com-
pleted the spermiogenetic processes and are not acrosome-reacted 
(Huszar et al., 2003; Oehninger et al., 2014). The hyaluronan binding 
assay (HBA) assesses sperm maturity and viability (Huszar et al., 2003; 
Oehninger et al., 2014). There are two methods for selecting sperma-
tozoa with high affinity to hyaluronic acid: the hyaluronic acid (HA) cul-
ture dish (PICSI, physiological intracytoplasmic sperm injection) and a 
viscous medium containing HA (Sperm Slow®;	Kızılay	&	Altay,	2017).

Liu et al. (2014) reported a higher acrosome integrity and MMP 
in motile spermatozoa bound to hyaluronic acid (HA) compared with 
spermatozoa in the initial semen specimen (p < .01). Furthermore, 
the percentage of spermatozoa bound to HA was weakly (r = .195–
0.268, p < .05) positively correlated with AR, normal morphology and 
negatively correlated with DNA fragmentation (r	=	−.308,	p < .01) 
and excessive residual cytoplasm (r	=	−.218,	p < .05; Liu et al., 2014). 
Tarozzi et al. (2009) found that spermatozoa bound to hyaluronan 
and sperm morphology are correlated both before and after density 
gradient centrifugation (r = .458 and r = .358, respectively). This test 
discriminates between DNA fragmentation within the overall sperm 
population and that in sperm bound to hyaluronan (p = .029; Tarozzi 
et al., 2009). A contradictory result was shown in a study conducted 
by Nijs et al. (2010) in which the authors conclude that this test is 
not able to discriminate between patients with high, low and failed 
fertilisation rates. Moreover, the hyaluronan binding assay was not 
in relation with other reproductive outcomes such as fertilisation 
rate, implantation and miscarriages (Tarozzi et al., 2009).

3.5.4 | Anti-sperm antibodies test

Anti-sperm antibodies (ASA) are one of the causes of male infertil-
ity and are found in about 9.5% of men with abnormal semen samples 
(Munuce, Berta, Pauluzzi, & Caille, 2000). The ASA test is recommended 
to patients with asthenozoospermia, with disrupted blood–testis bar-
rier, or when sperm agglutination can be observed during a routine 
semen analysis (Snow-Lisy & Sabanegh, 2013). One of the causes for 

sperm agglutination is the presence of ASA (Berger, Smith-Harrison, & 
Sandlow, 2019). ASA in the serum and seminal plasma can lead to male 
infertility by interfering with sperm motility and sperm–oocyte bind-
ing (Agarwal & Said, 2009; Chiu & Chamley, 2004) and incapacity of 
penetrating the cervical mucus (De Almeida, Soumah, & Jouannet, 1986).

Numerous tests have been developed to identify antibodies on 
the sperm surface, such as immunobead assays (IBT, Immunobead 
Test), MAR (mixed antiglobulin reaction) test, ELISA, tray aggluti-
nation tests (TAT), sperm immobilisation assay tests, flow cytome-
try and radiolabelled agglutinin assays (Mazumdar & Levine, 1998). 
However, the WHO only recommends the MAR and IBT tests for 
diagnostic purpose as only these tests correlate with immunological 
infertility (Agarwal & Said, 2009; World Health Organization, 2010). 
The preferred commercially available kit for the MAR test is the 
SpermMAR kit. The formation of agglutination between motile 
sperm and latex particles is an indication of IgA ASA present on the 
sperm surface (Agarwal & Said, 2009).

The IBT (immunobead binding test) test for ASA is specific and 
sensitive. However, it is an expensive method to perform as it is 
time-consuming and requires a highly skilled operator, and it is diffi-
cult to interpret the results (Mazumdar & Levine, 1998). Similarly, the 
MAR test is a fast specific assay, but needs a highly skilled operator. 
Furthermore, the sensitivity of this test remains unknown and the costs 
are very high (Mazumdar & Levine, 1998). The SpermMAR test identi-
fied ASA in about 13% of infertile men (Sinisi et al., 1993). A systematic 
review and meta-analysis reported that the presence of ASA is nega-
tively correlated with sperm concentration (Cui, Han et al., 2015) and 
motility (Cui, Han et al., 2015; Sinisi et al., 1993). Further, the presence 
of ASA increased the time of semen liquefaction (Cui, Han et al., 2015).

4  | FAC TORS THAT C AN AFFEC T SPERM 
QUALIT Y

Sperm quality is affected by a series of factors such as lifestyle, 
health or environmental factors. Lifestyle factors such as cigarette 
smoking, alcohol and caffeine consumption, use of recreational 
drugs or poor diet have been strongly correlated with the decrease 
of semen parameters (Durairajanayagam, 2018). On the other hand, 
health conditions such as obesity, psychological and genital heat 
stress, advanced paternal age and sleep disturbances can also cause 
sperm quality impairment (Durairajanayagam, 2018). Similarly, envi-
ronmental factors such as pesticides, phthalates, air pollution and 
mobile phones affect the quality of the spermatozoa by decreasing 
the sperm parameters (Jurewicz, Hanke, Radwan, & Bonde, 2009). 
Additionally, geographical or regional factors have also been associ-
ated with the quality of the semen (Elbardisi et al., 2018).

4.1 | Oxidative stress

Oxidative stress is caused by the imbalance between ROS and antioxi-
dants. ROS are a group of radical and non-radical derivatives of oxygen 
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(e.g. superoxide anion, hydrogen peroxide, hypochlorite, hydroxyl radi-
cal) that are normally produced in the body. Physiological ROS levels 
play an important role during sperm maturation, more precisely dur-
ing capacitation, hyperactivation, acrosome reaction and oocyte fu-
sion (Agarwal & Bui, 2017; de Lamirande, Leduc, Iwasaki, Hassouna, & 
Gagnon, 1995; Du Plessis, Agarwal, Halabi, & Tvrda, 2015). However, 
OS occurs when ROS outweigh the seminal plasma antioxidant capacity 
(Ayaz et al., 2015). This imbalance leads to lipid peroxidation and DNA 
damage, and induces apoptosis (Agarwal & Bui, 2017; Aitken, 2017).

4.1.1 | Sources of ROS in semen

The sources of ROS in semen can be classified as lifestyle factors, 
environmental factors and health factors. Lifestyle factors increase 
the levels of ROS include smoking, alcohol and recreational drug 
abuse. Pesticides, air pollutants, electromagnetic and ionising radia-
tion are environmental factors that increase ROS production. Health 
factors such as stress, strenuous exercise, chemotherapy, urogenital 

infections, varicocele, spinal cord injury, diabetes and prostatitis can 
also increase the production of ROS (Agarwal & Bui, 2017; Aitken, 
Gibb, Baker, Drevet, & Gharagozloo, 2016; Ayaz et al., 2015; de 
Lamirande et al., 1995; Sabeti, Pourmasumi, Rahiminia, Akyash, & 
Talebi, 2016). Nevertheless, leukocytes and immature spermatozoa 
are the major sources of ROS in semen. While leukocytes are an ex-
ternal source and predominantly affect the sperm plasma membrane, 
immature and abnormal spermatozoa (internal source) also affect the 
sperm DNA (Figure 2; Agarwal & Bui, 2017; Aitken & Baker, 1995).

4.1.2 | Impact of pro-oxidant/antioxidant imbalance 
on sperm quality

Under physiological conditions, ROS support normal function 
of spermatozoa (Agarwal & Bui, 2017; Du Plessis et al., 2015). 
However, the imbalance between pro-oxidants or ROS and anti-
oxidants or reductants results in OS, which can cause lipid per-
oxidation, DNA damage and apoptosis. As a consequence, more 

F I G U R E  2   Causes of oxidative stress 
in human spermatozoa (Reprinted with 
permission, Cleveland Clinic Center for 
Medical Art & Photography ©2011–2020. 
All Rights Reserved)
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ROS are produced and can trigger a vicious cycle of OS (Agarwal 
& Bui, 2017; Aitken, 2017). High concentrations of ROS affect the 
sperm plasma membrane, which is extraordinarily rich in polyun-
saturated fatty acids (PUFA). As a consequence, these PUFA are 
highly susceptible to oxidation, a process that leads to lipid peroxi-
dation of the membrane lipids. It has been reported that extrinsic 
ROS affect sperm motility (Aitken, 2017), while high intracellular 
levels of OS were correlated with increased levels of DNA frag-
mentation and low sperm motility (Agarwal, Sharma, et al., 2014; 
Mahfouz et al., 2010; Sharma et al., 2010). Further, OS has been 
reported to exert harmful effects on other sperm parameters 
such as ejaculate volume, concentration, morphology and viability 
(Agarwal, Mulgund, Sharma, & Sabanegh, 2014; Agarwal, Sharma, 
et al., 2014).

4.1.3 | Measurement of seminal ROS levels

Measuring ROS is the most commonly used method for OS assess-
ment. Currently, available assays for the measurement of seminal 
ROS levels include chemiluminescence, flow cytometry, thiobarbi-
turic acid reactive substances, nitroblue tetrazolium and oxidation–
reduction potential.

Chemiluminescence
Chemiluminescence is the most commonly used method for the de-
tection of ROS based on the reaction of extra- and intracellular ROS 
with a luminescent probe, mostly luminol or lucigenin, at neutral 
pH. It is a direct and sensitive method. While lucigenin is specific 
for extracellular superoxide, luminol detects all ROS, extracellular 
and intracellular (Aitken, Buckingham, & West, 1992). When these 
chemiluminescent compounds combine with free radicals, a light 
signal is generated, which can be detected with a luminometer that 
converts the light signal to an electrical signal. The levels of ROS are 
measured as relative light units (RLU).

Using the chemiluminescence technique, Agarwal, Ahmad, and 
Sharma (2015) reported that a cut-off of 102.2 RLU/s/106 sperma-
tozoa for seminal ROS was able to differentiate between fertile and 
infertile men with good sensitivity (76.4%) and specificity (53.3%). 
The studies also revealed that ROS are negatively correlated with 
the ejaculate volume (r	=	−.111;	p = .046), sperm motility (r	=	−.265;	
p < .001) and concentration (r	=	−.373;	p < .001; Agarwal, Sharma, 
et al., 2014). Further, a meta-analysis concluded that ROS levels are 
in weak negative correlation with the fertilisation rate after IVF 
(estimated	overall	 correlation	−0.374).	Thus,	 tools	measuring	ROS	
may be useful to predict the IVF outcome (Agarwal, Allamaneni, 
Nallella, George, & Mascha, 2005). However, the disadvantages of 
this technique are that ROS cannot be measured in frozen samples, 
azoospermic and low-volume ejaculate specimens (Sharma et al., 
2019). Overall, chemiluminescence is a reliable, reproducible and 
accurate technique with a diagnostic value in the evaluation of male 
infertility (Agarwal, Sharma, et al., 2014; Vessey, Perez-Miranda, 
Macfarquhar, Agarwal, & Homa, 2014) and is recommended for 

patients with idiopathic or unexplained infertility (Agarwal, Cho, & 
Sharma, 2018).

Fluorescence: flow cytometry
Flow cytometry is used to distinguish a specific sperm population 
after adjusting the cell suspension to a density of 105–107 cells/ml 
(Gosálvez, Tvrda, & Agarwal, 2017). Sperm cells are labelled with a flu-
orescent dye, which is excited by a laser, and the emitted light is then 
detected. In addition, the light scatter signals (forward and sideward) 
are measured (Mahfouz, Sharma, Lackner, Aziz, & Agarwal, 2009). 
This technique allows the measurement of 10,000 events (Gosálvez 
et al., 2017), and both specific and non-specific fluorescent probes 
can	be	used	(Dolník,	Mudroňová,	Pošivák,	Lazar,	&	Mudroň,	2019).	
Specific fluorescent probes recognise a particular type of ROS. For 
instance, while dihydroethidium specifically detects intracellular su-
peroxide	(Mahfouz,	Sharma,	Lackner,	et	al.,	2009),	2′,7′-dichloroflu-
orescein diacetate generally detects different types of intracellular 
ROS (Gosálvez et al., 2017). Oxidation of these probes changes their 
properties from non-fluorescent to fluorescent (Martínez-Pastor 
et al., 2010). The level of fluorescence is determined by the extent 
of the OS/the concentration of ROS available (Dolník et al., 2019; 
Hossain et al., 2011).

When analysing intracellular ROS, flow cytometry is considered 
a more specific, accurate and sensitive method compared to chemi-
luminescence, as it focuses specifically on male germ cells (Gosálvez 
et al., 2017). On the other hand, chemiluminescent determination 
of intracellular ROS levels in spermatozoa gave negative results 
(Mahfouz, Sharma, Lackner, et al., 2009). Flow cytometry requires 
low sperm count, being a good test option for patients with oligo-
zoospermia (Mahfouz, Sharma, Lackner, et al., 2009). However, the 
disadvantages of this technique are the expensive and sophisticated 
equipment required to perform it (Gosálvez et al., 2017).

Thiobarbituric acid reactive substances
Malondialdehyde (MDA) is a by-product of lipid peroxidation. 
Thiobarbituric acid (TBA) reactive substances (TBARS) measure 
the damage produced after lipid peroxidation by accessing MDA 
with spectrophotometry or fluorometry (Agarwal, Cho, et al., 2018; 
Agarwal, Henkel, Sharma, Tadros, & Sabanegh, 2018). The concen-
tration of TBARS is determined as the coefficient of molar absorp-
tivity of the product (Gosálvez et al., 2017). As the MDA levels in 
seminal plasma are 5- to 10-fold higher than in spermatozoa, semi-
nal MDA can be easily measured by spectrophotometry (Agarwal & 
Majzoub, 2017; Tavilani, Doosti, & Saeidi, 2005). Since the TBARS 
assay is a relatively simple test, albeit with low specificity (Agarwal, 
Cho, et al., 2018), it is the most widely used direct technique 
for assessing sperm membrane oxidation (Agarwal, Virk, Ong, & 
Plessis, 2014).

Lipid peroxidation evaluated by TBARS was strongly cor-
related with sperm concentration (r	=	−.736,	p = .000) and mod-
erately correlated with total sperm count (r	 =	 −.509,	 p = .026), 
semen volume (r = .479, p = .038; Patricio et al., 2016) and with 
progressive motile spermatozoa (r	 =	 −.41,	 p < .05; Zarghami & 
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Khosrowbeygi, 2004). Moreover, seminal plasma MDA levels 
were significantly higher in infertile men than in fertile controls 
(p < .05; Nakamura et al., 2002).

Nitroblue tetrazolium
The nitroblue tetrazolium (NBT) test is a direct measurement for 
ROS produced by spermatozoa and leukocytes. This is an inexpen-
sive and sensitive method that uses NBT, a yellow-soluble nitro-
substituted aromatic tetrazolium compound. NBT is reduced by 
cellular superoxide ions and forms a formazan, which is a com-
pound coloured blue–black that can be monitored spectrophoto-
metrically. This test allows identification of ROS of cellular origin in 
the seminal ejaculate (Agarwal, Cho, et al., 2018; Agarwal, Henkel, 
et al., 2018; Esfandiari, Sharma, Saleh, Thomas, & Agarwal, 2003). 
The NBT positive response in leukocytes in the whole ejaculate 
(r = .59, p = .0006) and leukocytes (r = .7, p < .0001) strongly cor-
relates with the result of chemiluminescent assay (Esfandiari 
et al., 2003). The NBT test gives valuable information about the 
contribution of leukocytes and defective spermatozoa to the gen-
eration of ROS (Esfandiari et al., 2003). This test is a good pre-
liminary tool for patients with suspected high ROS levels (Agarwal, 
Cho, et al., 2018; Agarwal, Henkel, et al., 2018).

4.1.4 | Measurement of total antioxidant capacity

The currently available assay for antioxidant measurements is the 
total antioxidant capacity (TAC) assay (Mahfouz, Sharma, Sharma, 
Sabanegh, & Agarwal, 2009). This technique measures the levels of 
enzymatic or non-enzymatic antioxidants in semen samples by using 
a colorimetric or spectrophotometric assay. The colorimetric assay 
is the most widely used and employs 2,20-azino-di-[3-ethylbenzthi-
azoline sulfonate] (ABTS) as specific reagent (Agarwal, Cho, et al., 
2018; Agarwal, Henkel, et al., 2018). It tests the ability of the semi-
nal plasma antioxidants to inhibit the oxidation of ABTS to ABTS+, 
which is compared to that of Trolox (6-hydroxy-2,5,7,8-tetrameth-
ylchroman-2-carboxylic acid). The final result is reported as micro-
moles (μM) of Trolox equivalent (Roychoudhury, Sharma, Sikka, & 
Agarwal, 2016).

The TAC method was able to distinguish the prevalence of 
OS in infertile patients compared with healthy men at a cut-off of 
1,947 μM in seminal plasma (Roychoudhury et al., 2016). TAC is a 
simple, accurate and reliable tool for the diagnosis and management 
of male infertility (Said et al., 2003). However, the TAC results should 
be assessed in combination with the amount of seminal ROS to have 
an overview of the impact of OS on semen quality and sperm func-
tion (Gupta, Caraballo, & Agarwal, 2019).

4.1.5 | Oxidation–reduction potential

The standard assays to determine seminal OS (chemilumines-
cence, flow cytometry, TBARS and NBT) only quantify ROS levels, 

which are only reflecting the OS side of the redox homeostasis. 
On the other hand, antioxidants, the counterparts of ROS, are de-
termined using the TAC assay. In order to cover both sides, the 
effects of oxidants and reductants, and the oxidation–reduction 
potential (ORP), a direct method to determine OS that includes 
both ROS and antioxidant measurement can be used. It indicates 
the redox state, that is the balance between oxidants and reduct-
ants in a given semen sample (Agarwal & Bui, 2017). Further, this 
is a simple and fast screening tool for the overall oxidative status 
of semen. ORP is measured using the MiOXSYS (male infertility 
oxidative system), which is a method based on a galvanostatic 
technique. It indicates the ORP that represents the actual redox 
balance (Agarwal et al., 2019) in milli Volts (mV), a variable that is 
then normalised to the sperm concentration. The latter is reported 
as mV/106 sperm/ml. A clinical cut-off of 1.34 mV/106 sperm/ml 
has been established (Agarwal et al., 2019).

The multicentre study that analysed 2,092 patients in nine 
countries reported that at a cut-off value of 1.34 mV/106 sperm/
ml, the ORP test was able to differentiate specimens with abnor-
mal semen parameters (Agarwal et al., 2019). The ORP value as 
determined by the MiOXSYS is statistically significantly higher in 
infertile patients compared with healthy men (p < .001; Agarwal 
& Bui, 2017). A positive correlation between ORP and sperm DNA 
fragmentation (SDF) was reported (r = .22, p < .001) in infertile 
patients (Majzoub et al., 2018). Hence, the ORP test is a reliable 
marker of semen quality and OS (Agarwal, Henkel, et al., 2018; 
Arafa et al., 2018) and a helpful method when selecting patients for 
OS treatment and for monitoring the treatment response (Agarwal, 
Cho, et al., 2018; Agarwal, Henkel, et al., 2018). Further, it may help 
in cases of couples with idiopathic male infertility caused by OS 
and couples with recurrent pregnancy loss (Agarwal et al., 2019) 
because OS may play a key pathologic role in these cases and the 
results could lead to better management of these couples.

4.2 | Sperm DNA damage

During spermatogenesis, undifferentiated stem cells proliferate and 
differentiate in spermatozoa. This process consists of spermatogo-
nial proliferation, meiosis and spermiogenesis (Gunes, Al-Sadaan, 
& Agarwal, 2015; Paoli, Pallotti, Lenzi, & Lombardo, 2018). It is es-
sential that the sperm DNA structure remains intact throughout the 
proliferation and differentiation steps so that the genetic informa-
tion is correctly transferred to the next generation. One of the most 
common causes of male infertility is represented by SDF, a type of 
DNA damage (Ribeiro et al., 2017).

4.2.1 | Sources of sperm DNA damage

Sperm DNA damage can occur at the level of testicles, epididymis 
or after ejaculation (Lewis & Aitken, 2005). A decrease in sperm 
DNA integrity can be caused by environmental conditions such as 
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cigarette smoking (Le et al., 2019; Potts, Newbury, Smith, Notarianni, 
& Jefferies, 1999), irradiation (Arnon, Meirow, Lewis-Roness, & 
Ornoy, 2001), chemotherapy (Morris, 2002), alcohol consumption 
(Le et al., 2019) and environmental toxins (Zini & Libman, 2006). 
Pathophysiologic conditions have also been associated with sperm 
DNA damage, and examples of such conditions are genital tract in-
flammation that result in leukocytospermia (Alvarez et al., 2002), 
varicocele (Saleh, Agarwal, Sharma, et al., 2003), cancer (Kobayashi 
et al., 2001), hormonal factors (Zini & Libman, 2006), testicular hyper-
thermia and febrile illness (Evenson, Jost, Corzett, & Balhorn, 2000; 
Zini & Libman, 2006). Further, sperm cryopreservation (Lewis & 
Aitken, 2005) and the age of the patient (Alshahrani et al., 2014; Le 
et al., 2019) are also associated with increased sperm DNA damage. 
The conditions mentioned above can lead to increased sperm DNA 
damage or chromatin abnormalities by three different mechanisms: 
ROS, abortive apoptosis and abnormalities in chromatin packaging 
(Schulte, Ohl, Sigman, & Smith, 2010).

4.2.2 | Impact of sperm DNA damage on 
sperm quality

DNA damage can occur as single- (ss) and double-strand (ds) DNA 
breaks, as well as alteration of bases (Singh & Agarwal, 2011). Sperm 
DNA damage is a biomarker for male infertility with clinical value in 
diagnosis and prediction of conception (Lewis et al., 2013).

Several studies concluded that sperm DNA damage is associ-
ated with abnormalities in conventional semen parameters such 
as motility (Kvitko et al., 2012; Le et al., 2019; Sun, Jurisicova, & 
Casper, 1997; Zini, Bielecki, Phang, & Zenzes, 2001), morphology (Le 
et al., 2019; Sun et al., 1997) and concentration (Irvine et al., 2000; 
Sun et al., 1997; Zini et al., 2001). Zini et al. (2001) reported a sig-
nificant statistical association between DNA denaturation, sperm 
motility and morphology (p < .0001 and p = .029, respectively). 
Further, several studies reported that SDF was statistically associ-
ated with sperm concentration (Irvine et al., 2000; Sun et al., 1997; 
Zini et al., 2001), morphology (Le et al., 2019; Sun et al., 1997) and 
motility (Kvitko et al., 2012; Le et al., 2019; Sun et al., 1997; Zini 
et al., 2001). A systematic review and meta-analysis reported that 
patients with a low level of SDF had higher live birth rates compared 
to those with high SDF (Osman, Alsomait, Seshadri, El-Toukhy, & 
Khalaf, 2015).

4.2.3 | Measurement of sperm DNA damage

A variety of techniques have been developed to assess the integrity 
of the genetic material of sperm cells, mainly the terminal deoxynu-
cleotidyl transferase dUTP nick end labelling (TUNEL) assay, Comet 
assay, sperm chromatin dispersion (SCD) test, cytochemical tests 
such as acridine orange (AO), toluidine blue (TB) and chromomycin 
A3 (CMA3), and the Sperm Chromatin Structure Assay (SCSA®). 
TUNEL and Comet assay under neutral pH conditions are direct 

assays for sperm DNA damage measurement. Direct tests measure 
sperm DNA strand breaks or abnormalities in the structure of the 
chromatin (Schulte et al., 2010). Indirect assays such as SCD and 
SCSA measure the breaks that already exist in DNA and the suscep-
tibility of DNA to denaturation (Henkel, 2007).

Measuring SDF is challenging because there are numerous tech-
niques that produce variable and inconsistent results. Thus, the 
predictive power and clinical implications vary markedly between 
different techniques (Ribeiro et al., 2017). Standardised protocols 
have only been published for the SCSA (Evenson, 2013), TUNEL 
(Ribeiro et al., 2017; Sharma, Ahmad, Esteves, & Agarwal, 2016), SCD 
(Evenson, 2016; Gosálvez, López-Fernández, & Fernández, 2013) and 
the Comet assay (Simon & Carrell, 2013). SDF testing can be consid-
ered in patients with varicocele, unexplained infertility, IUI failure, 
recurrent pregnancy loss, IVF and/or ICSI failure, or when semen 
parameters are borderline but the patients present with modifiable 
lifestyle risk factors (Agarwal, Cho, Majzoub, & Esteves, 2017).

TUNEL assay
The TUNEL assay is a direct test, which quantifies real sperm DNA 
damage (Figure 3; Henkel, Hoogendijk, Bouic, & Kruger, 2010; 
Ribeiro et al., 2017). This method uses the enzyme TdT (DNA poly-
merase) that adds fluorescein-labelled deoxyribonucleotides (dUTP) 
in	a	non-preferential	way	to	free	single-	and	double-stranded	3′-hy-
droxyl (OH) break ends (Sharma et al., 2016). With this technique, 
the incorporation of dUTP into DNA breaks is quantified as percent-
age of fluorescent spermatozoa (DFI). Both, flow cytometry and flu-
orescence microscopy can be used (Agarwal et al., 2017). However, 
the DFI obtained by cytometry and fluorescence microscopy can-
not be directly compared with the results obtained from the TUNEL 
assay as both assays measure different aspects of sperm DNA dam-
age (Henkel et al., 2010).

The TUNEL assay has been standardised by Sharma 
et al. (2016), and at a cut-off value of 16.8%, the test showed 
high specificity (91.6%). SDF was significantly higher in infertile 
patients compared with that in control men (p < .001). While the 
controls had an upper limit of SDF that was equal to 19.6%, infer-
tile patients had an upper limit of SDF that was equal to 68.9% 
(Sharma et al., 2016). Sperm parameters such as morphology 
(r = –.4423, p = .0026), motility (r = .4818, p = .0008) and progres-
sive motility (r = .4545, p = .0017) were correlated with the DFI 
(Henkel et al., 2003). Furthermore, high correlation between DFI 
and sperm parameters was identified, such as total sperm count, 
concentration, motility and normal sperm morphology in patients 
undergoing ICSI (Borini et al., 2006). The association of DFI with 
pregnancy outcomes and fertilisation is uncertain as studies report 
different conclusions. Some researchers mention that DNA frag-
mentation measured by the TUNEL assay is a prognostic indicator 
of pregnancy (Benchaib et al., 2007; Borini et al., 2006), fertilisa-
tion (Benchaib et al., 2007) and pregnancy loss (Borini et al., 2006), 
while others report no association (Henkel et al., 2003). However, 
a meta-analysis published by Cui, Han, et al. (2015) and Cui, Zheng, 
et al. (2015) concluded that the TUNEL assay achieved higher 
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accuracy regarding the diagnostic value for male infertility com-
pared to SCD and Comet assay.

Comet assay
The Comet assay or single-cell gel electrophoresis is a direct test 
that detects sperm ssDNA and dsDNA breaks at the single-cell 
level (Enciso, Sarasa, Agarwal, Fernández, & Gosálvez, 2009). This 
technique is based on the fact that DNA fragments migrate in an 
electric field according to their weight from the anode to the cath-
ode resulting in the formation of a comet tail emerging from the 
nucleoid (Enciso et al., 2009). During agarose gel electrophoresis, 
high-molecular weight (intact) DNA fragments migrate very little or 
do not migrate at all and remain at the ‘head of comet’. In contrast, 
low-molecular weight (broken) DNA fragments migrate in a manner 
that represents the image of a comet's tail (Simon & Carrell, 2013). 
The decondensed sperm DNA (using neutral or alkaline denatur-
ing conditions) is stained with a fluorescent DNA-binding dye 
(Evenson, 2016). The level of DNA fragmentation is visualised using 
an imaging software, and the comet tail length and fluorescence in-
tensity are measured (Schulte et al., 2010). In the Comet assay under 
neutral pH conditions for lysis and electrophoresis, the identification 

of dsDNA breaks is possible. In the alkaline Comet assay, the DNA 
is decondensed and this condition allows the identification of both 
ssDNA and dsDNA breaks without distinction (Enciso et al., 2009; 
Singh, McCoy, Tice, & Schneider, 1988).

The Comet assay is a sensitive and inexpensive technique, 
which allows assessment of DNA damage in single spermatozoa 
rather than an overall percentage of DNA fragmentation in the 
whole semen sample (Lewis et al., 2013). This assay requires a 
small number of cells for analysis, and thus, DNA fragmentation 
can even be determined in samples with low sperm counts. The 
DNA integrity is evaluated as the frequency of sperm cells con-
taining fragmented DNA (Enciso et al., 2009). Analysing between 
50 and 500 spermatozoa is enough to have clear view of the DNA 
damage status of the whole sperm specimen with a coefficient of 
variation lower than 4% (Lewis et al., 2013). This technique detects 
protamine- and histone-bound chromatin breaks equally (Lewis 
et al., 2013).

A weak correlation between DNA fragmentation measured by 
the neutral Comet assay and semen parameters was reported (Trisini, 
Singh, Duty, & Hauser, 2004). In addition, the neutral Comet assay was 
not able to distinguish between fertile and infertile men, presenting no 

F I G U R E  3   TUNEL assay for the 
assessment of sperm DNA fragmentation 
(Reprinted with permission, Cleveland 
Clinic Center for Medical Art & 
Photography ©2011–2020. All Rights 
Reserved)
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diagnostic value (Ribas-Maynou et al., 2013). In two different studies, 
Simon, Lutton, McManus, and Lewis (2011) and Simon et al. (2013) 
recommend the alkaline Comet assay as a diagnostic tool for male in-
fertility and IVF outcomes. Low fertilisation and pregnancy rates, and 
poor embryo quality were associated with increased levels of DNA 
fragmentation in spermatozoa (Simon, Castillo, Oliva, & Lewis, 2011). 
The alkaline Comet assay best predicted male infertility followed by 
TUNEL, SCD and SCSA (Ribas-Maynou et al., 2013). The disadvan-
tages of the alkaline Comet assay are that it is a laborious assay with 
inter-laboratory variation, which makes it a less desirable diagnostic 
test (Simon & Carrell, 2013).

Sperm chromatin dispersion test
Sperm DNA fragmentation is linked with the level of nuclear con-
densation as spermatozoa with fragmented DNA are more suscep-
tible to DNA denaturation (Agarwal et al., 2017). The SCD test or 
Halo test is an indirect assay based on fluorescence microscopic 
evaluation. This technique is based on the fact that after DNA de-
naturation and nuclear protein removal, sperm cells with intact DNA 
form a characteristic halo of dispersed DNA loops when loaded on 
an agarose gel. Spermatozoa with fragmented DNA will have non-
dispersed chromatin (small halos). It mostly measures the absence of 
damaged DNA in spermatozoa. ssDNA damage is proportional with 
the amount of non-dispersed chromatin (Agarwal et al., 2017).

To date, statistically significant correlations have been identified 
between SDF assessed by the Halosperm test and sperm parameters 
such as motility, morphology and concentration (Velez de la Calle 
et al., 2008). It was reported that the rate of SDF is directly propor-
tional with zygotes displaying asynchrony between the nucleolar pre-
cursor bodies of zygote pronuclei (p = .001; Muriel et al., 2006). In 
addition, SDF in testicular spermatozoa tested by the SCD assay was 
higher in patients with non-obstructive azoospermia than in testicular 
spermatozoa of patients with obstructive azoospermia. However, in 
this study, besides the group of patients with non-obstructive azo-
ospermia and patients with obstructive azoospermia, no additional 
groups of fertile men were included to compare the results (Meseguer 
et al., 2009). DFI measured by the SCD assay at the cut-off of 26.1% 
has a high diagnostic value in differentiating infertile from fertile men 
(Wiweko & Utami, 2017). At the cut-off value of 18% of SDF, this tech-
nique is a good predictor of fertilisation (Velez de la Calle et al., 2008). 
A value more that 25.5% of DFI is associated with higher IVF failure 
rates (López, Lafuente, Checa, Carreras, & Brassesco, 2013). However, 
no significant correlation was identified between SDF measured by 
the SCD test and clinical pregnancies or births for couples undergoing 
IVF and ICSI (Velez de la Calle et al., 2008). A meta-analysis investigat-
ing the impact of SDF on clinical outcome parameters after assisted 
reproduction indicated that SDF has only limited predictive capac-
ity (Cissen et al., 2016). Specifically, the SCD and SCSA were shown 
to have poor predictive power, while the predictive capacity of the 
TUNEL and Comet assays was with areas under the curve (AUC) of 
0.71 and 0.73, respectively, indicating fair predictive capacity. Overall, 
hierarchical summary receiver operating characteristic (HSROC) plots 

and Forest plots indicated a high variability of specificity and sensitiv-
ity of SDF to predict pregnancy.

Cytochemical tests (acridine orange, toluidine blue and 
chromomycin A3)
The acridine orange (AO) test uses acridine orange, a dye with me-
tachromatic properties, to measure DNA integrity by differentiating 
between normal dsDNA from denatured ssDNA. Depending on the 
type of DNA, AO intercalates with and emits a different colour, green 
for dsDNA and red for ssDNA. Fluorescence microscopy is used to 
determine the extent of DNA denaturation (Agarwal et al., 2017; 
Ajina et al., 2017; Schulte et al., 2010).

Red-fluorescing sperm cells as identified by the AO test were 
significantly correlated with sperm parameters such as normal mor-
phology and viability (Ajina et al., 2017). The cut-off of 58% of cells 
that turned red was considered as an indicator of abnormal chro-
matin status (Cebesoy, Aydos, & Unlu, 2006). However, the AO test 
is not very efficient and is also limited in terms of the fluorescence 
duration, staining heterogeneity, being prone to visual errors and a 
probability of appearance of artefacts (Pourmasumi et al., 2017).

The toluidine blue (TB) test is based on the fact that spermato-
zoa with abnormal chromatin packaging and impaired DNA present 
with phosphate residues that are prone to bind to basic (cationic) 
dyes such as toluidine blue. Spermatozoa with tightly bound DNA 
are lighter stained (or colourless) and have few TB binding sites. 
Spermatozoa with low DNA integrity are dark (blue) stained as they 
have high TB binding capacity (Ajina et al., 2017). This method is 
an inexpensive, light microscopy-based technique. Therefore, only 
a relatively small number of sperm cells can be analysed (Schulte 
et al., 2010; Tsarev et al., 2009).

Ajina et al. (2017) reported significant correlations between 
spermatozoa with low DNA integrity (blue stained) in the toluidine 
blue test and normal morphology, motility and viability. The propor-
tion of dark TB-stained spermatozoa (p < .001) and light TB-stained 
spermatozoa (p < .001) were statistically different between infertile 
and fertile men (Tsarev et al., 2009). This test could predict male 
infertility at the cut-off of 45% for dark TB-stained cells (Tsarev 
et al., 2009). Schlegel and Paduch stated that the TB test can bet-
ter measure the interactions between DNA and proteins than did 
the SCSA (Schlegel & Paduch, 2005). The results of the TB test cor-
relate well with those of the AO test (Ajina et al., 2017; Erenpreisa 
et al., 2003; Schlegel & Paduch, 2005). The TB test may be clinically 
applied in future as a complementary test to standard semen analy-
sis for the assessment of the male fertility potential.

Chromomycin A3 (CMA3) staining is an indirect test that anal-
yses the chromatin condensation, instead of DNA integrity. It is 
used for determination of protamine deficiency in the chromatin 
structure. CMA3 is an antitumor agent, guanine–cytosine specific 
fluorochrome, which competes with protamines bound to DNA. 
Spermatozoa with histone–protamine displacement deficiencies are 
CMA3-positive cells and are identified in bright yellow colour using 
a fluorescent microscope (Nijs et al., 2009; Pourmasumi et al., 2017).
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The percentage of CMA3-positive sperm cells assessed by 
CMA3 was significantly associated with sperm count (Iranpour, 
Nasr-Esfahani, Valojerdi, & Taki Al-Taraihi, 2000; Lolis et al., 1996), 
concentration (Nijs et al., 2009), motility (Iranpour et al., 2000) and 
morphological anomalies (Iranpour et al., 2000; Lolis et al., 1996). 
Sperm specimens with a percentage higher than 60% of CMA3-
positive cells had high levels of round cells (Lolis et al., 1996). 
Furthermore, spermatozoa with low staining capacity tend to pres-
ent higher fertilisation rates. Conversely, sperm specimens with a 
percentage >30% of CMA3-positive cells had lower fertilisation 
rates (Sakkas et al., 1998).

Sperm chromatin structure assay
The sperm chromatin structure assay (SCSA®) is an indirect test 
based on flow cytometry that analyses sperm chromatin integrity. 
This assay is used to determine the susceptibility of sperm DNA fol-
lowing denaturation induced by acids or heat which is resulting in 
ssDNA breaks (Henkel et al., 2010). The sample is stained with AO, 
which binds to DNA giving the red fluorescence colour to broken 
DNA, and green colour to unbroken DNA strands. The SCSA is con-
sidered the gold standard among the tests available for SDF test-
ing (Ribeiro et al., 2017). This technique is a simple, reproducible, 
well-established methodology with established clinical thresholds, 
which makes it a good assay with diagnostic value in fertility clinics 
(Evenson, Kasperson, & Wixon, 2007). The results are expressed as 
SDF index (%) and high DNA stainable (HDS) cell fractions (%).

The SCSA can differentiate fertile donors from patients 
with idiopathic and male factor infertility (Saleh, Agarwal, Nada, 
et al., 2003). In addition, the SCSA is a good predictor of sperm 
quality (Wang et al., 2017) as the DFI was inversely proportional 
to semen parameters (p < .002) such as concentration, motility 
and morphology by WHO or strict criteria (Saleh, Agarwal, Nada, 
et al., 2003). In addition, the SCSA value was inversely correlated 
with sperm motility in asthenozoospermic patients (p = .001; 
Moradian Fard et al., 2019).

The DFI was higher in infertile patients who did not obtain a preg-
nancy with ART compared to those who were able to obtain a preg-
nancy using ART (Saleh, Agarwal, Nada, et al., 2003). It was reported 
that when the DFI assessed by SCSA exceeds the threshold value of 
30%, ICSI should be indicated in these couples (Bungum et al., 2007). 
Further, the SCSA alone can be used as a predictive tool in couples with 
recurrent spontaneous abortions as the DFI was significantly higher in 
these couples compared to the controls at a cut-off value of 13.59% 
(Yuan et al., 2019). The fertilisation rate was negatively correlated with 
DFI assessed by SCSA (Saleh, Agarwal, Nada, et al., 2003). Two studies 
have reported that the value given by this test may (Saleh, Agarwal, 
Nada, et al., 2003) or may not (Green et al., 2019) be associated with 
embryological outcomes. In addition, the value given by SCSA was not 
associated with clinical outcomes (Green et al., 2019). Boe-Hansen, 
Ersbøll, and Christensen (2005) concluded that the differences in re-
sults obtained by SCSA may occur based on the laboratory technician 
conducting the analysis, the day and the time of the day.

5  | CONCLUSION

Considering the low predictive value of standard semen analy-
sis in predicting pregnancy outcomes, sperm functional tests are 
needed in the advanced workup of the infertile couple. Sperm 
function tests can be helpful to guide the clinician to choose the 
best treatment option for infertile couples. Several advanced 
semen analysis tests are currently available, and their clinical rel-
evance has been extensively studied. These tests include specific 
sperm function tests including SDF as well as tests that measure 
ROS, antioxidants and ORP. Sperm function tests can assess the 
important characteristics of spermatozoa and predict the fertilisa-
tion and pregnancy outcomes of an infertile couple. It has been 
concluded that the most powerful test to assess the OS state is 
ORP. Although the majority of studies indicates a significant rela-
tionship between SDF and the outcome of assisted reproduction, 
other studies could not show this relationship. Therefore, assays 
aiming to test the function of the spermatozoa and measurement 
of DNA damage and OS should be better standardised, so they can 
be incorporated into the WHO guidelines.

6  | TAKE HOME MESSAGE

1. Advanced sperm testing can help in better predicting pregnancy 
in couples trying to conceive naturally or undergoing ART.

2. Standardized methodologies of advanced tests are needed in 
order to increase their diagnostic value in the evaluation of male 
infertility.
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