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1  | BACKGROUND

1.1 | Male infertility

Globally, about 15% of couples desiring pregnancy are infer-
tile and male factor is responsible for about 30% to 50% of these 
cases (Agarwal, et al., 2019; Sigman, Lipshultz, & Howards, 2009). 
Environmental, physiological and genetic factors affect sperm func-
tion leading to infertility (Durairajanayagam, 2018). Semen analysis 
is the first step in the laboratory evaluation of male infertility. A 
semen analysis by itself is only a diagnostic test, it cannot deter-
mine the cause of infertility. In about 20% of the cases termed as 
idiopathic infertility, the cause is unknown (Agarwal, et  al.,  2019; 
Cooper et al., 2010; World Health Organization, 2010). This diagnos-
tic limitation of semen analysis introduced the need to identify mark-
ers to understand the underlying molecular mechanism responsible 
for infertility. One such marker is oxidative stress (OS). Oxidative 
stress is a major player in the pathology of male infertility (Agarwal 
et al., 2006; Agarwal, Virk, Ong, & du Plessis, 2014).

OS is involved in the majority of known clinical, environmental 
and lifestyle causes of male infertility (Agarwal & Sengupta, 2020; 
Durairajanayagam,  2018). Furthermore, OS is implicated in the 

pathophysiology of infertility due to varicocele, genitourinary 
tract infection, prostatitis, obesity, tobacco smoking, endocrine 
imbalance and testicular dysfunction (Darbandi et  al.,  2018; 
Tremellen,  2008; Wagner, Cheng, & Ko,  2018; Wright, Milne, & 
Leeson, 2014). The plasma membrane of the spermatozoa is rich in 
polyunsaturated fatty acids (PUFAs) and therefore very susceptible 
to oxidation causing sperm dysfunction. This results in infertility, 
fertilisation failure, pregnancy loss, poor embryonic development 
and even childhood cancer (Fujii & Imai, 2014; Wahab, Yazmie, Isa, 
& Lokman, 2015). In this review, we will highlight the significance 
of OS in male infertility and describe the assays currently available 
for its evaluation.

1.2 | Mechanism of oxidative stress as a cause of 
infertility

Much like every other biological cell, oxygen is required by the mi-
tochondria for energy producing processes via the oxidative phos-
phorylation pathway. This involves the oxidation and reduction 
of molecules consequently producing highly reactive molecules 
known as free radicals (Bisht & Dada, 2017; Bisht, Faiq, Tolahunase, 
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& Dada, 2017; Sharma & Agarwal, 2020). Reactive oxygen species 
(ROS) are highly reactive and very unstable molecules which pos-
sess one or more unpaired electrons (Nakajima et  al.,  2002; Nohl 
et al., 2000; Vezin et al., 2002). Superoxide anion (O2

−•), hydroxyl-
radical (OH•), hydrogen peroxide (H2O2), hypochlorous acid (HOCl) 
and reactive nitrogen species such as peroxynitrite (ONOO−) and 
nitric oxide (•NO) are all examples of ROS. ROS can be produced 
endogenously by seminal polymorphonuclear leucocytes (Aitken & 
Baker, 2013; Henkel, 2011; Mupfiga, Fisher, Kruger, & Henkel, 2013) 
and morphologically abnormal spermatozoa. Spermatozoa with ex-
cessive residual cytoplasm as a result of incomplete sperm matu-
ration also have the ability to produce ROS (Aitken, 2017; Gomez 
et al., 1996). Furthermore, abnormalities in the mitochondria occur 
due to leakage of electrons from cytosolic L-amino acid oxidases 
and plasma membrane nicotinamide adenine dinucleotide phos-
phate (NADP) oxidases (Aitken,  2017; Ford,  2004; Koppers, De 
Iuliis, Finnie, McLaughlin, & Aitken, 2008). Exogenous sources in-
clude tobacco smoking, alcohol usage, radiation, pollution, testicular 
heat and other environmental toxicants (Tremellen,  2008; Wright 
et al., 2014; Figure 1).

Redox balance is essential for normal sperm function 
(Aitken, 2017; Aitken & Curry, 2011; Du Plessis, Agarwal, Halabi, & 
Tvrda,  2015; de Lamirande, Jiang, Zini, Kodama, & Gagnon,  1997; 
Wagner et al., 2018). OS is a result of high levels of ROS or a de-
pleted antioxidant capacity in sperm cells (Bisht & Dada,  2017). 
Spermatozoa are exposed to OS during spermatogenesis, epididy-
mal storage and transit through the reproductive tract and at the 
time of ejaculation (Aitken & Curry, 2011; Sakkas & Alvarez, 2010; 
Tremellen,  2008). Limited availability of intracellular antioxidants 
and elevated ROS levels expose the vulnerable molecules to oxida-
tive attack (Aitken, 2017; Aitken & Curry, 2011).

2  | ROLE OF ROS IN SEMINAL PL A SMA

2.1 | Physiological role

Controlled amounts of ROS are essential for the spermatozoa to 
acquire fertilising capacity. Physiological levels of ROS regulate the 
intracellular calcium concentration as well as the enzymatic tyros-
ine kinase activity required for capacitation and hyperactivation; 
a physiological condition where the sperm motility is dramatically 
enhanced. Only capacitated spermatozoa display hyperactivated 
motility and undergo the acrosome reaction necessary for ferti-
lisation. Incubation of spermatozoa with exogenous oxidants such 
as O2

-•, H2O2 and •NO results in capacitation, hyperactivation 
and acrosome reaction and helps in oocyte fusion (Aitken,  2017; 
Aitken & Curry,  2011; Dutta, Henkel, Sengupta, & Agarwal, 
2020; Makker, Agarwal, & Sharma,  2009; Tremellen,  2008). 
Physiological levels of ROS are also essential for chromatin and fla-
gellar protein modifications during spermatogenesis (O'Flaherty & 
Matsushita-Fournier, 2017).

2.2 | Pathological role

Although ROS is involved in the regulation of physiological processes 
of the spermatozoa, an excess of ROS can impair cellular constitu-
ents affecting cell signalling and sperm function. The PUFAs render 
the spermatozoa more susceptible to lipid peroxidation, which re-
sults in the formation of potentially toxic and mutagenic aldehydes 
and alkanols causing DNA fragmentation (Figure  1) (Aitken,  2017; 
Aitken, Gibb, Baker, Drevet, & Gharagozloo,  2016; Henkel,  2011; 
Moazamian et al., 2015; Sharma & Agarwal, 2020).

F I G U R E  1   Physiological and 
pathological role of reactive oxygen 
species (ROS) and generation of excessive 
ROS by endogenous and exogenous 
sources of seminal reactive oxygen 
species
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OS results in increased DNA damage, reduced motility, impaired ac-
rosome reaction and decreased implantation rates in vitro fertilisation 
(IVF) (Aitken, 2017; Aitken & Curry, 2011; Bakos, Henshaw, Mitchell, 
& Lane, 2011; Palmer, Bakos, Fullston, & Lane, 2012; Tremellen, 2008; 
Wahab, Isa, & Ramli, 2016). It also interferes with epigenetic modifi-
cations and may result in abnormallities in sperm gene methylation 
(Darbandi et al., 2018; Menezo, Silvestris, Dale, & Elder, 2016; Tunc 
& Tremellen,  2009). Consequently, DNA damage may also result in 
impairment of embryo development, increased risk of gene mutations 
and miscarriage, congenital malformations and increased incidence of 
diseases in the offspring (Aitken & Curry, 2011; Aitken et  al.,  2016; 
Aitken & Koppers, 2011; Bisht & Dada, 2017; Muratori et al., 2015; 
Sakkas & Alvarez, 2010; Wright et al., 2014). The role of OS in male 
infertility is well established and has led to a number of direct and indi-
rect laboratory tests to measure OS in the semen.

3  | L ABOR ATORY E VALUATION OF 
OXIDATIVE STRESS

OS levels can be evaluated by various direct and indirect methods, 
which are listed in Table 1 and further described below.

3.1 | Direct methods

Direct tests measure the concentration of oxidant molecules and in-
clude chemiluminescence assay, nitro blue tetrazolium (NBT) assay, 
cytochrome C reduction test, electron spin resonance technique and 
oxidation–reduction potential (ORP).

3.1.1 | ROS measurement by 
chemiluminescence assay

Chemiluminescence assay is the most widely used direct test for 
quantification of ROS in semen (Agarwal, Ahmad, & Sharma, 2015). 
The two commonly used probes for measurement of ROS are lu-
minol (5-amino-2,3-dihydro-1,4-phthalazinedione) and lucigenin 
(10,10’-dimethyl-9,9’-biacridiniumdinitrate). Luminol is a yellow-col-
oured, membrane permeable cyclic diacylhydrazide used to detect 

both global intracellular and extracellular ROS. However, it cannot 
discriminate the different types of oxidants. Lucigenin is a membrane-
impermeable probe used to measure the extracellular O2

−•(Agarwal, 
Ahmad, et al., 2015). When measuring global ROS with luminol, a 
working solution (5 mM) of luminol is prepared in dimethyl sulfoxide 
(DMSO) and a blank, negative and a positive control is used along with 
the test sample. (Figure  2). The analysis is conducted using a lumi-
nometer (Figure  3). The chemiluminescent signals are expressed in 
relative light units (RLU). The results for test samples are obtained by 
subtracting the average RLU of negative control from the test sample 
(Agarwal, Ahmad, et al., 2015). The samples are normalised for sperm 
concentration by dividing the ROS value by the sperm concentration 
and results are expressed as RLU/106 sperm/mL of semen (Agarwal, 
Ahmad, et al., 2015). A cut-off of <102.2 RLU/s/106 sperm/mL can 
discriminate fertile from infertile men (Agarwal, Ahmad, et al., 2015).

3.1.2 | Nitroblue tetrazolium test

Nitroblue tetrazolium test (NBT) assesses the intracellular ROS pro-
duced by spermatozoa and leucocytes. Nitroblue tetrazolium (2,2’-bis 
(4-nitrophenyl)-5,5’-diphenyl-3,3’-(3,3’-dimethoxy-4,4’-diphenylene) 
ditetrazolium chloride is a yellow-coloured water-soluble nitro-substi-
tuted aromatic tetrazolium compound. In the presence of cellular O2

-•, 
it is converted to a water-insoluble formazan crystal (Baehner, Boxer, 
& Davis, 1976; Gosalvez, Tvrda, & Agarwal, 2017; Tunc, Thompson, & 
Tremellen, 2010). In the sperm cytoplasm, NADPH is synthesised by 
glucose-6-phosphate dehydrogenase via the hexosemonophosphate 
pathway. NADPH contributes to the synthesis of superoxide anions 
by NADPH oxidase. The same enzyme catalyses the reduction of NBT 
into formazan. It also indirectly provides a measure for ROS generation 
in cytoplasm. The reduced formazan is easily detected microscopically 
(Esfandiari, Sharma, Saleh, Thomas, & Agarwal, 2003) or spectropho-
tometrically (Gosalvez et al., 2017; Tunc et al., 2010). Alternately, it can 
also be detected using kit such as Oxisperm®kit (Halotech®DNA).

3.1.3 | Cytochrome C reduction test

The Cytochrome C reduction test is a colorimetric assay used to 
detect extracellular O2•

- released by cells and causes the reduction 

Test Test principle

Direct

Comet assay Evaluates the integrity of DNA, double- and single-strand breaks

TUNEL assay Evaluates DNA fragmentation, double- and single-strand breaks

Indirect

SCSA Evaluates the susceptibility of sperm DNA to acid denaturation

SCD or Halo test Evaluates the susceptibility of sperm DNA to acid denaturation

AOT Evaluates double- and single-strand breaks

Abbreviation: AOT, acridine orange test; SCSA, sperm chromatin structure assay; SCD, sperm 
chromatin dispersion; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling.

TA B L E  1   Direct and indirect 
assays used to evaluate sperm DNA 
fragmentation
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of ferricytochrome C to ferrocytochrome C by NADPH dependent 
cytochrome C reductase. The reaction is analysed spectrophoto-
metrically at 550nm absorbance (Dikalov & Harrison, 2014). Various 
commercially available kits can be used with a cuvette or in a micro-
plate. The spectrophotometer is set at 550  nm in the kinetic pro-
gramme. A blank (NADH+ Buffer) and a positive control (NADPH+ 
Cytochrome C Reductase enzyme) are included in the assay. The 
test is performed by adding superoxide dismutase (SOD) to selec-
tively measure O2•

− mediated reduction (Dikalov & Harrison, 2014). 
Dismutation of O2•

− into (H2O2) is catalysed by SOD, and the result-
ing SOD-inhibited signal is used to normalise the results. The results 
are expressed as NADPH-Cytochrome c Reductase (NCR) unit. One 
unit of NCR activity is the enzyme that generates 1 micromole of 
reduced cytochrome C per minute.

3.1.4 | Electron spin resonance/electron 
paramagnetic resonance

Electron spin resonance (ESR) spin-trapping uses the nitrone com-
pound to detect oxygen free radicals such as O2•

− and HO• uti-
lising magnetic resonance spectroscopy (Kohno,  2010). Electrons 
are characterised by the angular momentum of the electron dem-
onstrated as a spin quantum number. When an external magnetic 
field is applied, the electrons orient themselves either parallel or 
antiparallel to the magnetic field. This results in two distinct en-
ergy levels for the unpaired electrons. By using a fixed frequency 
of microwave irradiation, some of the electrons in the lower energy 
level are excited to the higher energy level leading to absorption of 
energy (Kopáni, Celec, Danišovič, Michalka, & Biró, 2006).

ROS molecules can be detected by the using the ‘spin-trap’ strat-
egy as well as by hydroxylamine spin probes because they have a 
very short half-life (Dikalov, Polienko, & Kirilyuk, 2018; Kohno, 2010). 
The spin-trap approach is based on diamagnetic nitrone or nitroso 
compounds which ‘trap’ a radical molecule, generating a paramag-
netic spin adduct radical, which are detectable by ESR. These ad-
ducts have a specific ‘signature’ electron paramagnetic resonance 
spectrum based on the type of trapped radical. 5,5-dimethyl-1-pyr-
roline-N-oxide (DMPO) is the most common nitrone spin-trapping 
molecule. Hydroxylamine spin probes are different from spin-trap 
compounds; they do not bind the radicals but they form stable ni-
troxide when they are oxidised. The oxidation process requires the 
transfer of one electron. The most common electron is O2−• (Dikalov 
et al., 2018; Kohno, 2010). ESR measurements provide information 
about the quantity, type, nature, surrounding environment and be-
haviour of unpaired electrons (Dikalov et al., 2018; Kohno, 2010).

F I G U R E  2   Set-up of the tubes for 
reactive oxygen species measurement. 
A total of 11 tubes are labelled from S1–
S11: Blank, negative control, test sample 
and positive control. Luminol is added 
to all tubes except the blank. Hydrogen 
peroxide is added only to the positive 
control

F I G U R E  3   Autolumat 953 Plus Luminometer used in 
the measurement of reactive oxygen species (ROS) by 
chemiluminescence assay. Multiple tubes can be loaded 
simultaneously for measuring ROS. The luminometer can be 
connected with a computer and monitor



     |  5 of 18ROBERT et al.

3.1.5 | Oxidation–reduction potential

Oxidation–reduction potential (ORP) is a new metric of redox equi-
librium in a specified biological system. It measures the transfer of 
electrons from antioxidants (reductants) to oxidants. The MiOXSYS 
system comprises of an Analyzer consisting of an ultrahigh imped-
ance electrometer (Rael, Bar-Or, Kelly, Carrick, & Bar-Or, 2015) and 
a sensor with the reference and the working electrodes. To perform 
the test, a MiOXSYS sensor is placed on the sample port and 30 µl of 
the sample is placed on the pre-inserted sensor (Figure 4). The sam-
ple fills the reference electrode on the sensor, completing the elec-
trochemical circuit and the test then commences (Agarwal, Sharma, 
Roychoudhury, Du Plessis, & Sabanegh, 2016). The test is based on 
the electrical conductance relative to an internal reference standard 
(Shapiro, 1972) according to Nernst equation. 

Where E is the Redox potential or ORP. E0 is the standard potential of 
a redox system measured with respect to hydrogen electron, which is 
arbitrarily assigned an E0 of 0 volts. R = gas constant. T = absolute tem-
perature measured in degrees Kelvin. n = number of moles of electrons 
transferred in the balanced equation for the reaction occurring in the 
cell. F = Faradays constant.

This galvanostat-based system measures the static ORP (sORP) 
by measuring the voltage between the reference and the working 
electrode. MiOXSYS analyzer detects the voltage between the ref-
erence and the working electrodes at an interval of 0.5 s, and the 
final ORP is calculated after ~120 s; an average of the last 10 s (or 
the last 20 readings) of the run. ORP results are expressed in millivolt 
(mV) and are a snapshot of the balance of the redox system. ORP 
is manually normalised by dividing with the sperm concentration to 
give the adjusted ORP and expressed as mV/106 sperm/mL (Agarwal 
al., 2016). A cut-off of 1.34 mV/106 cells/mL was shown to discrimi-
nate samples based on semen quality (Agarwal et al., 2019). The ad-
vantages and of disadvantages of direct tests are listed in Table 2.

3.2 | Indirect tests

Indirect tests measure the concentration of antioxidants or the ROS-
induced damage on cellular components such as lipids, DNA or pro-
teins (Table 3). The advantages and disadvantages of indirect tests 
are shown in Table 3.

3.2.1 | Endtz test

Leucocytes, particularly polymorphonuclear neutrophils and mac-
rophages, can produce significantly higher levels of ROS than ab-
normal spermatozoa and negatively affect sperm quality (Sharma, 
Pasqualotto, Nelson, & Agarwal, 2001). White blood cells (WBC) can 
be differentiated from the immature germ cells by the peroxidase 
or the Endtz test (Shekarriz, Sharma, Thomas, & Agarwal,  1995). 
The Endtz test is based on the evaluation of peroxidase, an enzyme 
present in the leucocyte granules which utilises H2O2 to oxidise the 
colourless substrate benzidine to an insoluble blue/brown derivative 
(Agarwal, Gupta, & Sharma, 2016b). The test can differentiate perox-
idase positive granulocytes such as neutrophils, polymorphonuclear 
leucocytes and macrophages from other germ cells (Endtz,  1974). 
The concentration of seminal leucocytes more than 1x106 WBC/mL 
of the sample is indicative of leucocytospermia (Cooper et al., 2010; 
World Health Organization, 2010).

3.2.2 | Measurement of lipid peroxidation products

Unlike the somatic cells, the lipid bilayer in the plasma membrane 
of the human spermatozoa has high levels of PUFAs, which ren-
der them particularly susceptible to damage caused by excess ROS 
(Alvarez & Storey,  1995; Mack, Everingham, & Zaneveld,  1986; 
Poulos, Darin-Bennett, & White,  1973). The breakdown of PUFAs 
to form lipid peroxides is known as lipid peroxidation (Halliwell & 
Chirico,  1993). Lipid peroxidation generates end products such as 

E (ORP)=E0−RT∕nF,

F I G U R E  4   Measurement of ORP by the MiOXSYS system. (a) MiOXSYS analyzer showing the socket and the sensor module, (b) sensor 
showing the reference cell and the sample port where the sample is loaded and (c) loading of semen samples on the sample port of the 
sensor strip
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malondialdehyde (MDA), hydroxynonenal, 2-propenal (acrolein) and 
isoprostanes, all of which are indicators of OS (Dalle-Donne, Rossi, 
Colombo, Giustarini, & Milzani, 2006). These unstable lipid perox-
ides decompose to form cytotoxic second messengers of oxidative 

stress such as MDA, 4-hydroxynonenal (4-HNE) and acrolein (ACR). 
These complex compounds modify relatively more stable DNA, li-
pids and proteins thereby altering sperm functions (Spickett, 2013; 
Zarkovic, 2003).

TA B L E  2   Advantages and disadvantages of direct tests used to measure oxidative stress levels in the seminal plasma

Test Advantages Disadvantages

Chemiluminescence 
assay

1.	Robust
2.	High sensitivity and specificity

1.	Requires large sample volume
2.	Time-consuming
3.	Expensive equipment
4.	Cannot be used to measure ROS in frozen, viscous or 

azoospermic samples
5.	Affected by changes in pH, centrifugation and the presence of 

NADPH, cysteine, ascorbic acid or uric acid

Nitroblue 
tetrazolium test

1.	Readily available, inexpensive and has high 
sensitivity

2.	Provides information about the differential 
contribution of leucocytes and abnormal 
spermatozoa in the production of ROS i.e. the 
cellular origin of ROS in the sample

3.	 It detects intracellular ROS, therefore it can be 
used to discriminate the cellular source of ROS 
in a heterogeneous cell population

4.	 It can detect much lower concentrations of 
(neutrophils) leucocytes (0.5 × 106/ml) than he 
established World Health Organization (2010) 
cut-off for leucocytospermia (1.0 × 106/ml)

1.	Presence of other cellular reductases may also reduce NBT
2.	Changes in the cellular content of various oxido-reductases may 

also alter the rates of NBT reduction
3.	Specificity of ROS detected is questionable because the assay is 

based on the reduction of NBT

 

Cytochrome C 
reduction test

1.	 It can quantify O2•− released during the 
respiratory burst of neutrophils or by isolated 
enzymes

2.	Can measure high level of ROS production

1.	Electrons donated from enzymes and other molecules can 
directly reduce ferricytochrome c, and the resultant change in 
absorbance is not specific for O2•−

2.	Small quantities of O2•− cannot be detected. The enzyme cannot 
access to the intracellular space, so, only the extracellular ROS 
fraction can be detected

Electron spin 
resonance: 
Spin-trap

1.	Spin trap can differentiate between different 
kinds of oxidative molecules

2.	 In Hydroxylamine Spin, oxidation of hydroxyl 
spin probes generates very stable nitroxide, 
whose half-life can last hours

1.	The spin-trap can be chemically modified by several enzymes
2.	Hydroxylamine Spin generates the same type of nitroxide, 

therefore cannot discriminate between different oxidative 
molecules.

3.	Probes are basic and at physiological pH are partially inactive in 
hydroxylamine spin

4.	Spontaneous oxidation of hydroxylamine increases in presence 
of transition metal ions, therefore addition of Fe/Cu chelators to 
solutions and buffer is required

5.	Adduct formation may be hampered by the scavenging action of 
antioxidants in both techniques

Oxidation–reduction 
potential

1.	Simple, rapid (less than 4 min) method.
2.	Can be used in fresh and frozen samples without 

any prior treatment
3.	High sensitivity and specificity
4.	Results are stable for up to 2 hr.
5.	 It estimates all the oxidants and antioxidants 

present in a given sample (and not just one end 
of the spectrum as do other tests that detect 
oxidative stress directly or indirectly)

6.	ORP measurements are more stable than 
standard semen analysis

7.	 Can discriminate semen samples based on sperm 
parameters or fertility status

1.	Viscous samples are difficult to load and can affect the reading
2.	Cannot be used to analyse azoospermic samples

Abbreviations: NBT, nitroblue toluidine; ROS, reactive oxygen species; WHO, World Health Organization.
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3.2.3 | Malondialdehyde measurement 
by thiobarbituric acid—reactive substances 
(TBARS) assay

Malondialdehyde (MDA) is a reactive and mutagenic end product 
of lipid peroxidation in semen and can be measured using the TBA 
assay. In this assay, MDA (an aldehyde) derived from peroxides and 
unsaturated fatty acids binds with 2 molecules of TBA to form the 
MDA-TBA adduct which is measured colorimetrically or fluorometri-
cally (Halliwell & Chirico, 1993). MDA levels in the seminal plasma are 
5–10-fold higher compared with those in the spermatozoa (Tavilani, 
Doosti, & Saeidi, 2005). Low concentrations of sperm MDA can be 
detected by the sensitive high-performance liquid chromatography 
(Li, Shang, & Chen, 2004; Shang et al., 2004), or by spectrofluorom-
etry (Aitken, Harkiss, & Buckingham, 1993).

Malondialdehyde levels show a significant positive correlation 
with seminal ROS levels in men with infertility, compared with fer-
tile controls or normozoospermic individuals, highlighting its clinical 
utility (Hsieh, Chang, & Lin, 2006; Tavilani et al., 2005). ROS-induced 
abnormalities in motility, sperm DNA integrity and sperm-oocyte fu-
sion are associated with an increase in MDA concentration (Aitken, 
Clarkson, & Fishel, 1989; Aitken et al., 1993).

Highly reactive aldehyde 4-hydroxynonenal (4-HNE), an end 
product of lipid peroxidation, is a second messenger of free rad-
icals and a signalling molecule. HNE-protein adducts are quanti-
fied using ELISA with a monoclonal antibody (Borovic, Rabuzin, 
Waeg, & Zarkovic, 2006). 4-HNE may impair sperm capacitation 
by targeting the protein kinase A affecting the tyrosine phos-
phorylation pathway and thus reducing sperm motility (Baker 
et al., 2015).

TA B L E  3   The advantages and disadvantages of indirect tests used to measure oxidative stress levels in the seminal plasma

Test Advantages Disadvantages

Myeloperoxidase 1.	Rapid, easy to perform and inexpensive
2.	Recommended by WHO to assess leucocytospermia in semen
3.	> 1 × 106 peroxidase positive WBC/mL of semen 

(leucocytospermia)

1.	Peroxidase-positive leucocytes (PMNs 
and macrophages) account for 50%–60% 
and 20%–30% respectively of all seminal 
leucocytes.

2.	Cannot detect the ROS generation by 
spermatozoa

Total antioxidant 
capacity

1.	Measures all antioxidants in seminal plasma
2.	Automated
3.	Established cut off ≥1950 µM Trolox indicative of good antioxidant 

reserves

1.	Requires expensive assay kit and 
microplate reader

Lipid peroxidation

HNE-HIS adduct 
ELISA

1.	Rapid 1.	Cross reactivity

Malondialdehyde 
assay

1.	Simple, Measures lipid peroxidation
2.	Detects MDA-TBA adduct by colorimetry or fluoroscopy

1.	Expensive instrumentation
2.	Rigorous controls required
3.	Nonspecific for MDA

DNA fragmentation 1.	Multiple methods available – TUNEL, SCSA, Comet, SCD, and 
8-OHdG

2.	Comet assay is simple, versatile, sensitive and rapid assay and has 
demonstrated some correlation with other assays such as SCSA and 
TUNEL

3.	SCD test is simple, fast, and reproducible with comparable results 
to those of the SCSA

4.	SCSA and TUNEL with flow cytometry is robust and sensitive 
method

5.	TUNEL is a direct method that measures single- and double-strand 
DNA breaks

1.	Multiple cut-offs
2.	 Inter- and intra-observer variability
3.	Lack of standardised reference value
4.	The 8-OHdG technique can itself cause 

DNA oxidation interfering with basal level
5.	Cost of is a major concern in TUNEL and 

SCSA assays

Post-translational 
modifications

1.	Commercially available assay kits 1.	Costly and time consuming
2.	Does not provide an overall assessment of 

the OS

Protein alterations 1.	Highly specific and sensitive
2.	Selected proteins can be validated by western blot analysis, ELISA 

or immunochemistry. Sperm protein alterations specific to male 
infertility conditions can be identified

1.	Requires expensive instrumentation, 
software programs and specific skills

2.	Costly and time consuming

Abbreviation: 8-OHdG, 8-hydroxy-2-deoxyguanosine; ELISA, enzyme linked immunosorbent assay; MDA, malondialdehyde; OS, oxidative stress; 
OS, oxidative stress; PMN, polymorphonuclear neutrophils; ROS, reactive oxygen species; SCD, sperm chromatin dispersion; SCSA, sperm chromatin 
structure assay; TBA, thiobarbituric acid; TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labelling; WBC, white blood cell; WHO, 
World Health Organization.
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Peroxidation of arachidonic acid results in the formation of iso-
prostanes which are a series of prostaglandin F2-like compounds. 
They can be determined by quantification of the amount of F2-
isoprostanes (F2-IsoP) present in the semen (Signorini, Comporti, & 
Giorgi, 2003; Signorini et al., 2008).

8-iso-PGF2α is determined by immunocytochemical staining 
with polyclonal antibody and visualised under fluorescence micro-
scope. Significantly higher levels of free 8-iso-PGF2α levels in the 
seminal plasma are reported in infertile men when compared with 
normozoospermic men (Khosrowbeygi & Zarghami, 2007). In addi-
tion, it negatively correlates with MDA and seminal SOD activity in 
normozoospermic men (Tavilani et al., 2008).

3.2.4 | Measurement of total antioxidants in 
seminal plasma

Total antioxidant capacity (TAC) is the measure of the reduc-
ing capacity of seminal antioxidants against an oxidative reagent. 
It evaluates enzymatic antioxidants in the seminal plasma such as 
superoxide dismutase, catalase, glutathione peroxidase and non-
enzymatic antioxidants such as α-tocopherol (vitamin E), ascorbate 
(vitamin C), β-carotene (vitamin A), folic acid (vitamin B9), ferritin 
and carnitines, N-acetyl L-cysteine, coenzyme Q10, ceruloplasmin, 
selenium, L-arginine, urate and zinc (Henkel, Sandhu, Agarwal, & A., 
2019; Mahfouz, Sharma, Lackner, Aziz, & Agarwal, 2009a; Mahfouz, 
Sharma, Said, Erenpreiss, & Agarwal, 2009b). Over the years, a num-
ber of assays have been proposed which include colorimetric, spec-
trophotometric and chemiluminescence-based assays.

In the colorimetric assay, the clear seminal plasma is used with 
the TAC kit. The principle of the assay is based upon the ability 
of all antioxidants in the seminal plasma to inhibit the oxidation 
of the 2,2′-azino-di-[3-ethylbenzthiazoline sulphonate] (ABTS) to 
ABTS+. (Agarwal Gupta, & Sharma, 2016a, 2016b, 2016c, 2016d). 
The antioxidants in the seminal plasma suppress the absorbance 
at 750 nm; this suppression is proportional to the concentration 
of antioxidant. Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchro-
man-2-carboxylic acid), a water-soluble tocopherol analogueis 
used as the standard. The amount of antioxidant in a given sample 
is measured by a colorimeter (Agarwal, Gupta, & Sharma, 2016a, 
2016b, 2016c, 2016d). Antioxidant level is reported as micro-
moles of Trolox equivalent. The normal antioxidant concentration 
in a sample is >1,950 micromoles of Trolox equivalent (Figure 5). 
Lower TAC values reflect increased OS or poor ROS scavenging 
ability. Although this test is rapid, it does not measure any spe-
cific enzymatic antioxidants (Roychoudhury, Sharma, Sikka, & 
Agarwal, 2016).

3.2.5 | ROS-TAC score

ROS-TAC score is derived from the individual values obtained for 
ROS levels and seminal TAC values. Principal component analysis 

is used to analyse the standardised values of ROS and TAC. The 
linear combinations or weighted sums accounts for the most vari-
ability among correlated variables. The ROS and TAC values of the 
control samples are used to generate a reference point (Sharma, 
Pasqualotto, Nelson, Thomas, & Agarwal, 1999).

Patients with high OS have a lower ROS-TAC score than do fer-
tile healthy men (Sharma et al., 1999). ROS-TAC score can discrimi-
nate between fertile and infertile men better than ROS or TAC alone 
(Sharma et al., 1999). Significantly lower ROS–TAC scores than con-
trols are seen in infertile men with male factor or idiopathic infer-
tility. Furthermore, significantly higher ROS–TAC scores are seen in 
men with male factor diagnoses who are able to initiate a successful 
pregnancy compared to those who do not. Male partners of cou-
ples who achieve pregnancy have ROS–TAC scores similar to those 
of the controls. ROS–TAC score may help identify patients with a 
clinical diagnosis of male infertility who are likely to achieve a preg-
nancy over a period of time (Pasqualotto, Sharma, Pasqualotto, & 
Agarwal, 2008).

3.2.6 | Measurement of sperm DNA fragmentation

OS and apoptosis contribute to sperm DNA fragmentation (SDF; 
Henkel et  al.,  2005; Mahfouz et  al., 2010; Mahfouz et al., 2009a; 
Mahfouz et al.,  2009b; Sakkas et  al.,  1999). In addition, advanced 
age, cigarette smoking, chemotherapy, radiation, cancer, varico-
cele, leucocytospermia and elevated levels of ROS all contribute 
to SDF (Agarwal, Varghese, & Sharma, 2009; Zini, Boman, Belzile, 
& Ciampi, 2008). Several authors have demonstrated high amount 

F I G U R E  5   Total antioxidant capacity receiver operating 
characteristics (ROC) curve showing the area under curve (AUC), 
cut-off, sensitivity, specificity, positive predictive value, negative 
predictive value and accuracy of the assay
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of impaired DNA integrity in infertile men (Garolla et  al.,  2015; 
Majzoub, Agarwal, Cho, & Esteves, 2017; Ribas-Maynou et al., 2013).

The more commonly used tests are summarised below.

Sperm chromatin dispersion assay
In this assay, spermatozoa are treated with an acid solution prior 
to lysis buffer, spermatozoa with fragmented DNA produce a mini-
mal halo (Fernández et  al.,  2003). When spermatozoa with non-
fragmented DNA are immersed in an agarose matrix and directly 
exposed to lysing solutions, the resulting deproteinised nuclei (nu-
cleoids) show a central (core) and peripheral halo of dispersed DNA 

caused by release of DNA loops. These halos can be observed ei-
ther by bright-field microscopy using Wright's stain or fluorescent 
microscopy with DAPI (4′,6-diamidino-2-phenylindole; 2 µg/ml; Feijó 
& Esteves, 2014; Fernández et al., 2005; Figure 6). SDF is negatively 
correlated with fertilisation rates and embryo quality in IVF/ICSI. 
However, SDF was not related with clinical pregnancy rates or births 
(de la Calle et al., 2008; Muriel et al., 2006).

Comet assay or Single-cell gel electrophoresis
The comet assay, also called the single-cell gel electrophoresis, 
is based on the electrophoretic migration of cleaved fragments of 

F I G U R E  6   Assessment of sperm DNA fragmentation using the sperm chromatin dispersion (SCD) test. Nucleoids from human 
spermatozoa obtained with the improved SCD procedure (Halosperm, Halotech DNA, SL, Madrid, Spain) under (a) bright-field microscopy 
and Wright's stain (b) under fluorescence microscopy and DAPI staining. Green arrows target spermatozoa containing a normal DNA 
molecule. Red arrows target a highly fragmented spermatozoon (degraded spermatozoa). (c–g) Electronic filtered images showing a series 
of nucleoids with different levels of sperm DNA damage. Nucleoids with highlighted core delineation in green correspond to (c) large (d) 
and medium halos of dispersed chromatin representing a normal DNA molecule. Nucleoids in red are spermatozoa containing fragmented 
DNA and are represented by (e) small or (f) no halos of dispersed chromatin and (g) degraded spermatozoa. Bright-field and fluorescence 
microphotographs were obtained using a motorised fluorescence microscope controlled with software for automatic scanning and image 
digitisation (Leica Microsystems). The microscope was equipped with a Leica EL6000 metal halide fluorescence light source and Plan-Fluotar 
60 × objectives with three independent filter blocks (DAPI-5060B; FITC- 3540B and TRITC-A; Semrock). A charge-coupled device (Leica 
DFC350 FX, Leica Microsystems) was used for image capture. (Courtesy of Prof. Jaime Gonsálvez, Madrid, Spain)

(a)

(b)

(c) (d) (e) (f) (g)
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DNA. It is based on the principle that the negatively charged DNA 
loops or fragments are drawn through an agarose gel in response to 
an electrical field. Neutral comet assay detects only double-stranded 
DNA breaks, whereas alkaline comet assay detects both single- and 
double-stranded DNA breaks (Singh et al., 1989; Singh, McCoy, Tice, 
& Schneider, 1988).

Terminal deoxynucleotidyl transferase-mediated deoxyuridine 
triphosphate-nick end labelling (TUNEL) assay
Terminal deoxynucleotidyl transferase-mediated deoxyuridine 
triphosphate-nick end labelling or the TUNEL assay uses a tem-
plate-independent DNA polymerase enzyme called terminal deox-
ynucleotidyl transferase (TdT), which adds deoxyribonucleotides 
to 3′ hydroxyl (OH) end of DNA breaks (Figure  7). TdT enzyme 
adds fluorescent deoxyuridine triphosphate (dUTP) to the free 
3’-OH break-ends of DNA and are quantified by flow cytometry 
(Agarwal et al., 2016c, 2016d; Gupta, Sharma, & Agarwal,  2017; 
Sharma, Ahmad, Esteves, & Agarwal, 2016; Sharma et al., 2010). 
TUNEL assay measures both single- and double-strand DNA 
fragmentation.

DNA fragmentation can be measured using an APO-DIRECT Kit 
(BD PharmingenTM). The percentage of negative (TUNEL-negative) 
and positive (TUNEL-positive) cells is calculated on the flow cy-
tometer software (Figure 8a–e). The reference value of 16.7% has 
been established for DNA fragmentation (Figure  9a). Significantly 
higher levels of SDF are seen in infertile men compared with control 
(healthy men) (Agarwal et al., 2016a; Agarwal et al., 2016b; Agarwal 
et al., 2016c; Agarwal et al., 2016d; Gupta et  al.,  2017; Sharma 
et al., 2016) (Figure 9b).

Sperm Chromatin Structure Assay (SCSA)
Impaired sperm chromatin is susceptible to partial DNA denatura-
tion induced in situ either with heat or acid treatment. This change in 
the conformation following acid or heat treatment is determined by 
measuring the metachromatic shift of acridine orange fluorescence 
from green (native DNA) to red (denatured DNA). The extent of SDF 
measured as % of sperm with fragmented DNA is called DNA frag-
mentation index or DFI (Evenson, 2016). 

Intact spermatozoa (native double stranded) fluorescent green 
whereas those with fragmented DNA (single-stranded DNA) fluo-
resce red. SCSA is sensitive and robust assay that accurately mea-
sures the percentage of DNA-damaged spermatozoa. A DFI of 30% 
can differentiate between fertile and infertile samples (Evenson, 
Larson, & Jost, 2002; Evenson & Wixon, 2006).

8-hydroxy-2-deoxyguanosine (8-OHdG)
8-hydroxy-2-deoxyguanosine (8-OHdG) assay measures levels of 
8-hydroxy-2-deoxyguanosine, which is a byproduct of oxidant-
induced DNA damage in the spermatozoa. It can be detected at a 

single-cell level using 8-OHdG specific antibodies producing fluo-
rescence that can be visualised by flow cytometry or fluorescent 
microscopy (Vorilhon et al., 2018).

8-OHdG provides the most direct evidence that SDF due to 
oxidative stress is involved in male infertility. 8-OHdG is inversely 
associated with sperm concentration (Kodama, Yamaguchi, Fukuda, 
Kasai, & Tanaka,  1997). SDF measured by 8-OHdG and TUNEL 
assay are highly correlated with each other (Aitken, De Iuliis, Finnie, 
Hedges, & McLachlan, 2010). In addition, 8-OHdG levels are highly 
correlated with the extent of disruption of chromatin remodelling 
(De Iuliis et al., 2009).

3.2.7 | Detection of post-translational 
modifications of proteins

Spermatozoa do not have an active protein synthesis; however, a 
dynamic change in protein profile occurs as a result of acquisition 
of new proteins through vesicular transport and several post-trans-
lational modifications (PTMs) (Samanta, Swain, Ayaz, Venugopal, & 
Agarwal, 2016). PTMs are chemical alterations in the protein struc-
ture that are typically catalysed by substrate-specific enzymes. 
These modifications regulate the stability, distribution and function 
of proteins. Post-translational modifications increase the diversity of 
the proteome, and specific modifications are introduced that can be 
translated into functional changes in the affected proteins (Brohi & 
Huo, 2017).

Percent DFI=
Red fluorescence

Total(red+green)fluorescence
×100.

F I G U R E  7   Schematic of the DNA staining principal by the 
TUNEL assay
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Failure to control complex molecular processes can be detri-
mental or lethal for the cell. There are about 300 reported covalent 
modifications and of these modifications, the most common are 
phosphorylation, nitrosylation, glycosylation, methylation, lipid 
modification, ubiquitination and acetylation (Zhou et  al.,  2015). 
Protein modifications by ROS results in formation of end prod-
ucts such as s-glutathione, nitrotyrosine and reactive carbon-
yls (Dalle-Donne et al., 2006; Radi, 2004; Samanta et al., 2016). 
These modifications result in altered protein functions that can 
be measured by ELISA using protein-specific antibodies (Agarwal, 
Sharma, et al., 2015; Esteves et al., 2015; Radi, 2004). PTMs are 
overexpressed in the seminal plasma proteome of men with high 
levels of ROS when compared to fertile control group (Agarwal, 
Ayaz, et al., 2015).

3.2.8 | Proteomic analysis of spermatozoa and 
seminal plasma

Protein alterations present both in the spermatozoa and seminal 
plasma vary at different levels of OS (Agarwal, Ayaz, et al., 2015; 
Sharma et  al.,  2013). Exposure of seminal proteome to differ-
ent amounts of OS showed that proteins involved in biomolecule 
metabolism, protein folding and degradation were differentially 
modulated in infertile patients when compared to fertile controls 
(Agarwal, Ayaz, et al., 2015; Sharma et al., 2013). Exposure of the 
sperm proteome to different levels of OS in infertile men showed 
differentially expressed proteins (DEPs) exhibiting distinct repro-
ductive functions (Ayaz et al., 2015). These modified DEPs can be 
identified by proteomic and bioinformatic analysis and validated as a 

F I G U R E  8   Example of Accuri C6 Workspace and gating strategy used in both laboratories for TUNEL data analysis. (a) FSC/SSC plot 
showing the gate used for spermatozoa selection (G1). (b) PI/FSC plot with gating for PI positivity (G2). (c) PI/FITC plot of negative control 
sample (TdT enzyme omitted). (d) PI/FITC plot of standard sample. (e) PI/FITC plot of positive control sample. FSC, forward scatter; SSC, side 
scatter; PI, propidium iodide fluorescence; FITC, fluorescein isothiocyanate fluorescence; Q1-UL, upper left quadrant; Q1-UR, upper right 
quadrant; Q1-LL, lower left quadrant; Q1-LR, lower right quadrant

F I G U R E  9   Receiver operator 
characteristic (ROC) curve showing (a) 
TUNEL cut-off and the area under the 
curve. Values within the parentheses 
represent the 95% confidence interval and 
(b) distribution of TUNEL values between 
controls and infertile men
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potential biomarkers of ROS by Western blot analysis using protein-
specific antibodies or ELISA followed by immunochemistry. Most 
commonly employed techniques to detect sperm-specific protein al-
terations utilising proteomic analysis include 2D polyacrylamide gel 
electrophoresis (2D-PAGE), differential in gel electrophoresis (DIGE) 
and liquid chromatography-mass spectrometry (LC-MS) or liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). Global 
proteomic analysis involves analysis of pooled or individual test sam-
ples of spermatozoa or seminal plasma (Agarwal et al., 2016; Ayaz 
et al., 2015; Samanta et al., 2016). The quantification and identifica-
tion of a target protein can be achieved by Western blot analysis, 
(Agarwal et al., 2016) or by immunocytochemistry (Engvall, Jonsson, 
Jonsson, & Perlmann,  1971; Mathews, Plaisance, & Kim,  2009; 
Samanta et al., 2018).

3.3 | Measurement of intracellular ROS

Intracellular ROS is measured by flow cytometry using two specific 
dyes 2’,7’ dichlorofluorescin diacetate (DCFDA) and dihydroeth-
idium or hydroethidine (DHE). DCFDA is deacetylated within the 
sperm cell and oxidised by ROS to form 2’,7’-dichlorofluorescein 
(DCF), a fluorescent green compound. It measures peroxyl, alkoxyl, 
NO2

●, carbonate (CO3
●−) and OH● radicals (Mupfiga et al., 2013). 

Peroxynitrite, hypochlorous acid and OH• in defective spermato-
zoa can also oxidise DCF and significantly contribute to the posi-
tive signals (Mahfouz et al., 2009a; Mahfouz et al., 2009b; Myhre, 
Andersen, Aarnes, & Fonnum, 2003). Cellular production of O2

●− 
can be visualised by oxidation of O2

●-by DHE and results in hydrox-
ylation and formation of 2-hydroxyethidium with red florescence 
emission at 488  nm (Henkel et  al.,  2003; Rothe & Valet,  1990; 
Zielonka, Vasquez-Vivar, & Kalyanaraman,  2008). Furthermore, 
viable cells generating ROS can be measured by DHE along with 
a vitality marker (SYTOX green; De Iuliis, Wingate, Koppers, 
McLaughlin, & Aitken,  2006; Mahfouz et al., 2009a; Mahfouz 
et al., 2009b). Fluorescent techniques have a higher specificity, ac-
curacy, sensitivity and reproducibility (Gosalvez et al., 2017).

4  | T YPES OF SAMPLES USED FOR ROS 
ME A SUREMENT

ROS levels can be measured in unprocessed seminal ejaculate or 
semen sample processed by simple wash, swim up, migration-sed-
imentation or density-gradient centrifugation (Benjamin, Sharma, 
Moazzam, & Agarwal, 2012).

4.1 | Neat (or unprocessed) seminal ejaculate

Levels of ROS in the neat sample or unprocessed samples are re-
flective of the ROS produced by spermatozoa and all the other 
cells present in the seminal ejaculate. These include secretions 

from prostate, seminal vesicles and other accessory glands and 
cellular components such as round cells, leucocytes and epithelial 
cells.

4.2 | Sperm wash

In this method, culture medium is added to the ejaculate and the 
sample is centrifuged twice and the seminal plasma is removed. 
However, this does not eliminate other cells such as leucocytes, 
round cells and debris. The centrifugation force (<500 g) and num-
bers of centrifugation steps must be kept to a minimum in order 
to reduce the ROS-induced damage by nonviable, morphologically 
abnormal spermatozoa and leucocytes (Björndahl et al., 2010; Ren, 
Sun, Ku, Chen, & Wu, 2004).

4.3 | Swim-up

In the conventional swim-up technique, 0.5  ml of post-liquefac-
tion sample is gently placed at the bottom of a tube and layered 
with about 2 ml of the sperm wash medium. Swim up can also be 
performed using a prewashed sperm pellet obtained by low speed 
centrifugation and placing the tube gently at an angle of 45° and 
incubating for 60  min. Clear supernatant is carefully aspirated 
using sterile pipette and centrifuged to obtain a highly motile, 
morphologically normal intact spermatozoa enriched in the ab-
sence of other cells, proteins and debris within the supernatant 
(Agarwal et al., 2016d). Swim-up method is inexpensive; however, 
the sperm recovery is relatively low and only 5 to 10 per cent of 
sperm cells are retrieved.

4.4 | Migration-sedimentation

Migration-sedimentation is usually used for samples with low motil-
ity. It uses the swim-up technique and the natural settling of sperma-
tozoa due to gravity. It is performed in special tubes called Tea-Jondet 
tubes (Mortimer, 1994). The amount of ROS produced is not very 
significant as this technique is gentle (Henkel & Schill, 2003).

4.5 | Discontinuous density gradient

Density gradient separation is a process where the cells are sepa-
rated based on their density, motility and the centrifugation speed. 
The gradient is a colloidal suspension of silica particles, which are 
stabilised with covalently bonded hydrophilic Silane in HEPES. Two 
distinct gradients are used and consist of a lower phase or 80% gra-
dient and an upper phase or a 40% gradient. Two mL of lower phase 
is placed in a 15  ml graduated centrifuge tube and 2  ml of upper 
phase is placed gently on the lower phase. Up to 2 ml of a completely 
liquefied semen sample is gently layered on top and centrifuged at 



     |  13 of 18ROBERT et al.

300 g for 20 min. The highly purified motile sperm cells are enriched 
in the soft pellet at the bottom. (Agarwal et al., 2016a, 2016b, 2016c, 
2016d). Two mL of sperm washing medium (modified HTF with 
5.0 mg/ml human albumin) is used to wash the gradient. The sample 
is centrifuged at 300 g for 7 min. The final pellet is resuspended in 
0.5 ml of the sperm washing medium. This method allows for the en-
richment of mature and motile spermatozoa. Sperm recovery rates 
of 30%–80% can be achieved depending on the quality of the initial 
semen sample as well as the technical skill of the operator.

5  | FAC TORS AFFEC TING THE ROS 
ME A SUREMENT

Semen samples with a higher concentration of morphologically ab-
normal spermatozoa with excessive presence of cytoplasm will pro-
duce higher levels of ROS (De Lamirande & Gagnon, 1995; Plante, de 
Lamirande, & Gagnon, 1994). The measurement of intracellular ROS 
will also be affected by the scavenging action of the antioxidants 
present in the seminal plasma, producing a result lower than the ac-
tual ROS concentration at a given time point. Hence, it would be ideal 
to separate the cells from the reactants-containing seminal fluid. The 
time of assessment is important wherein viable samples have higher 
oxidative damage when exposed to ROS for longer periods (Bourne, 
Archer, Edgar, & Gordan Baker, 2009). The semen samples undergo 
sperm preparation post-liquefaction by various methods to obtain 
a rich population of morphologically normal and highly motile sper-
matozoa. Paradoxically, sperm preparation techniques that include 
centrifugation also increase the ROS production.

6  | LIMITATIONS OF CURRENT OXIDATIVE 
STRESS MARKERS

Enzymes and other molecules can modify the reagents used in assays 
such as cytochrome C reduction test, electron spin resonance and 
NBT reducing the accuracy of the results. Lipid peroxidation cross-
reactivity is a drawback with HNE-HIS adduct ELISA, whereas the re-
agent used in MDA-TBARS is not specific for MDA. Most of the above 
described assays require large sample volumes, specific reagents and 
expensive instrumentation and are laborious. The majority of these 
assays measure only a single parameter and do not provide a com-
prehensive assessment of OS. Sperm preparation performed prior to 
the assay can further enhance the ROS production as a result of re-
peated centrifugation. Measurement of ORP overcomes majority of 
these limitations being rapid and cost-effective and can be measured 
in fresh and frozen samples without any prior sample preparation.

7  | CONCLUSION

Although OS has a central role in male infertility, a physiological 
level is required for normal sperm function. Both direct and indirect 

methods for measuring OS are available, but establishing the refer-
ence ranges of these markers is challenging. ORP provides a global 
value of redox potential and can help categorise men with normal, 
high or low OS. There is ongoing need for more efficient and safer 
technique that avoids the excessive production of ROS during the 
preparation of spermatozoa.

Take Home Message
1.	There is no ‘gold standard’ for the evaluation of oxidative stress.
2.	The direct and indirect tests for the detection of oxidative stress 

present different strengths and weakness, which limit their use in 
clinics.

3.	There is an urgent need for laboratory tests that are novel, simple 
and provide a comprehensive picture of oxidative status in the 
infertile male.

4.	ORP represents a promising marker to be used in the andrology 
laboratory, as it provides an evaluation of the global redox status, 
unlike other techniques which assess only the oxidants or the 
antioxidants.
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