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ity of MESMA together with a cropland classification hierarchical approach was thus proven to be suited for Striga
detection in a heterogenous agroecological system. These results can be used to guide in the adaptation, mitiga-
tion, and remediation of already infested areas, thereby avoiding further Striga infestation of new croplands.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

There is a great need for precise information on the occurrence of
harmful weeds within croplands to enhance scaling out of interventions
and mitigation of crop production constraints, that may impede agricul-
tural products' supply chains (Mutanga et al., 2017). Striga is a parasitic
weed of global economic importance that penetrates the roots of the ce-
real crops after germination and withdraws nutrients and water,
thereby suffocating and out-competing the host cereal crops
(Hassanali et al., 2008). Consequently, the productivity of economically
fundamental host crops like maize, sorghum, and rice can deteriorate
considerably, causing extensive grain yield reductions and unprece-
dented socioeconomic impacts (Ejeta and Gressel, 2007). Striga weed
detection using remote sensing techniques such as the in-situ
hyperspectral methods (Mudereri et al., 2020) or high-to-medium spa-
tial resolution satellite data (i.e. PlanetScope and Sentinel-2 (S2)) are
essential tools to help identify weed distributional patterns and priority
areas at plot and/or field scales (Mudereri et al., 2019a). Spectral re-
sponses in small scale agroecological systems, typical for Africa, exhibit
alarge intra- and inter-field variability which results in detection errors
when discriminating between co-occurring crops and weeds (i.e. maize
and Striga) (Mudereri et al., 2019a). Specifically, the heterogeneity,
fragmentation, and complex crop cycles (Xiong et al., 2017a) of
African cropping systems hinder the detection of hidden spectral prop-
erties of the Striga weed, when pixel-based detection approaches are
employed.

On the other hand, the complex structure of remotely sensed spec-
tral information often shadows analytical spectral characteristics and
obstructs the comprehensive characterization of targeted constraints
within the croplands (Somers et al., 2011). However, studies have
shown that the mixed pixels (e.g. crop and Striga) can be decomposed
using subpixel classification methods i.e. spectral mixture analysis
(SMA: Powell et al.,, 2007; Huovinen et al., 2020). Numerous variants
of SMA to model subpixel fractions have been used by other studies
such as the simple spectral mixture analysis (SSMA: Somers et al.,
2011), Monte Carlo spectral mixture model (AutoMCU: Asner and
Lobell, 2000), Bayesian spectral mixture analysis (BSMA: Song, 2005),
linear mixture analysis (Heinz and Chang, 2001) and multiple
endmember spectral mixture analysis (MESMA: Roberts et al., 1998).
These methods are all set and operationalized by: (1) determining
how many pure spectra known as endmembers (EMs) are present in
an image data, (2) identifying the biophysical nature of each of those
EMs within a pixel, and (3) estimating the fractional abundances of
each EM in a pixel (Correa Pabon et al., 2019; Somers et al., 2011).

MESMA is, by far, the most extensively used SMA method that yields
a relatively low classification error and provides high detection accura-
cies when compared to the other SMA methods (Degerickx et al,, 2019;
Wang et al,, 2014). The MESMA approach has been used in a wide range
of applications including characterization of urban environments
(Franke et al., 2009), mapping of fire (Quintano et al., 2013), plant spe-
cies (Roberts et al., 1998), marshes (Li et al., 2005; Rosso et al., 2005)
and agricultural agroecosystems (Njenga, 2016), among others. How-
ever, no or a few studies have yet to use MESMA-based fraction images
to estimate Striga (Striga hermonthica) occurrence or severity. Thus, this
study is the first attempt to test the efficacy of MESMA in estimating and
mapping Striga occurrence and fractions within croplands in Africa
using a test site in Kenya.

To effectively perform a subpixel classification method, Degerickx
et al. (2019) suggested using a-priori classification or segmentation

along with SMA approaches to constrain EMs to certain segments of
the image to ensure a reduction in the spectral confusion. To detect in-
vasive weeds like Striga that infest croplands using image data and
subpixel SMA, one would need to first classify the croplands, before
employing any SMA like MESMA. Mapping of croplands using single-
date or multi-date multispectral images and machine learning classifi-
cation algorithms is well documented in the literature (Belgiu and
Csillik, 2018; Gumma et al., 2019). Among the machine learning algo-
rithms used in most of these studies, the random forest (RF) performs
relatively better than the other methods for delineating croplands
(Belgiu and Csillik, 2018; Immitzer et al., 2016).

In this study, the Google Earth Engine (GEE) was used to execute ac-
curate and localized cropland mapping. The strength and versatility of
the GEE and the subpixel MESMA to manipulate S2 multitemporal
data were exploited to execute a two-step cropland and Striga weed
classification approach. This approach was necessitated by the need to
constrain the classification of Striga occurrence within the cropland
area to considerably reduce the number of EMs. Various studies in agri-
culture monitoring and management have used the GEE platform to add
and curate their data while exploiting Google's cloud resources to un-
dertake all the processing procedures (Kelley et al., 2018; Landmann
etal., 2019). The objective of this study was thus to advance the feasibil-
ity of Striga weed detection using the subpixel MESMA within croplands
derived using the high resolution (10 m) freely available multispectral
S2 images and their respectively derived vegetation indices (VIs) in
the small-holder farming system.

2. Study area

The study was conducted in the Rongo sub-county (coordinates: 0°
39°12"S; 34° 35°40™E and 0° 59°16'S; 34° 37°21 E), covering an area
of ~213 km?. Rongo is in the Migori county of western Kenya, occurring
atan altitude of 1470 m (Fig. 1). A tropical and subtropical climate char-
acterizes the study area with a bimodal rainfall distribution. Average an-
nual rainfall of 1600 mm across the two rainy seasons i.e. during ‘short
rains’ season spanning November to January and ‘long rains’ season oc-
curring between March and June characterizes the study area. The study
area experiences relative humidity that ranges between 50% and 70%
throughout the year, while the annual average temperature is 20.6 °C.

In Rongo, the savanna grassland biome dominates the natural eco-
systems, often flanked with deciduous and exotic forest vegetation. On
the other hand, the agricultural cropping system in the study area is
mainly mixed small-scale farms, with an average field size of 0.1 ha.
Maize, bean, cassava, green gram, groundnut, and fruits such as avo-
cado, banana, pawpaw, mango, and indigenous vegetables as food
crops are common in Rongo for predominantly subsistence purposes.
Sugarcane grown mainly in the southern region of the study area is
the main cash crop, among others. Rainfall variability, insect pests, and
the invasive Striga weed are the major crop production constraints in
the study area.

3. Methods
3.1. Two-step hierarchical classification approach

The proposed methodology uses a two-step hierarchical approach to
detect the occurrence of Striga i.e. (1) S2 time-series composites to de-

tect and distinguish cropland and non-cropland over a series of agricul-
tural growing seasons using RF classifier in a semi-automatic approach
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Fig. 1. The location of Rongo in Kenya. The light green diamonds show the location where
the spectral endmembers were extracted. The background layer is the Sentinel-2 image of
the 13th of December 2017 displayed in the true colour using the red, green, and blue
(RGB) band combination of Sentinel-2 bands 4,3, and 2, respectively.

in GEE and (2) spectral unmixing of the derived cropland using a single-
date (13th December 2017) S2 image and MESMA in R-software to as-
sess the occurrence of Striga. The generalized workflow of the classifica-
tion approach used in this study is shown in Fig. 2. The details of each
step are thereafter described in the subsequent sub-sections.

3.2. Striga and land use/ cover (LULC) field data collection

Striga ‘presence’ (n = 52: maize fields with at least one visible stand
of Striga up to e stands) or ‘absence’ (n = 20: maize fields with no vis-
ible stands of Striga), together with other cropland data were obtained
from field surveys conducted between the 12 and 16" of December
2017, which coincided with the peak Striga period and the maximum
phenological stage of the maize in the study area. A global positioning
system (GPS) instrument (43 m accuracy) was used to locate the
field Striga reference data. Also, reference data on different land use
and land cover (LULC) classes i.e. bare land (including fallow and aban-
doned cropland), built-up area, natural vegetation (forests, shrubland,
and grasslands), and water were collected through digitizing regions
of interest (ROI) on Google Earth® (Chemura et al., 2017) and are sum-
marized in Table 1. The administrative ward boundaries were used as
strata in a stratified random sampling approach, to determine areas of
Striga ‘presence’ and ‘absence’, other LULC classes and to reduce sam-
pling bias. The Striga and LULC classes were arranged into two main
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classes for classification i.e. cropland and non-cropland to create a
crop mask. A total of 260 sample polygons consisting of 5890 pixels
for the two classes were derived and divided into 77% for image classi-
fication training and 23% for testing the accuracy of the classification
(Table 1). To perform a pixel-based classification, the sample points at
a pixel scale were organized in a Google fusion table and retrieved in
the GEE, then the corresponding input sample pixel values were ex-
tracted at the S2 image pixel resolution (i.e. 10 m).

3.3. Cropland mask generation in the GEE

The use of the GEE in this study was employed to map cropland and
generate a cropland mask to reduce the propagation of classification
error. The freely accessible cropland maps are derived over large areas
at coarse spatial resolution hence have many limitations such as inabil-
ity to account for fragmentation, failure to delineate small farms and to
adequately capture the influence of mixed cropping systems, which
leads to confusion with other land cover types (Oliphant et al., 2019).
As a result, such cropland maps are inadequate and not useful in areas
where crop fields are small (< 0.1 ha) and within mixed cropping sys-
tems such as those in the small-holder farming sector which character-
ize the present study area in Kenya.

3.3.1. Sentinel-2 (S2) data compositing

S2 level 1C images, which were provided at the top of atmosphere
reflectance, were sourced from the GEE. Image processing and analysis
for generating the non-cropland mask was also implemented in the
GEE. The procedures executed in GEE included image cloud filtering, at-
mospheric correction (converted to the bottom of atmosphere reflec-
tance) and normalization for illumination effects (i.e. shade) using
median compositing, spatial resampling to the 10 m pixel size (for
bands whose pixel size are >10 m), vegetation indices calculation, ma-
chine learning classifier parameterization, creating the final cropland
classification map, and assessing the accuracies of the classification
product. A relatively cloud-free layer stack image input was generated
by stacking the S2 reflectance image collection (n = 121) within two
consecutive years (i.e. between 1% of January 2017 and 31°* of Decem-
ber 2018) and then applying a cloud and shadow mask. Pixel-based
image compositing is a common procedure to condense the number
of pixels with redundant and invalid data due to the atmospheric inter-
ference, shadow, or other noise remaining after pre-processing (Bey
et al., 2020). Clouds and shadows cause radiometric distortions that
hamper the operational use and product generation by compromising
the accurate estimation of biophysical parameters (Wu et al., 2018).
Thus, the elimination of contaminated pixels is an important procedure
that guarantees a reduction in spectral error.

The median compositing method has been reported to be computa-
tionally and technically less demanding and provides the best results
when compared to other pixel-based image compositing methods
such as (i) maximum ratio value, (ii) annual greenness pixel, (iii) best
pixel based on the distance to the nearest cloud, and (iv) seasonal
greenest pixel (Bey et al., 2020). Use of the median value eliminated
clouds (high pixel values) and shadows (low pixel values) from each
band, over time (Bey et al., 2020; Gumma et al., 2019; Xiong et al.,
2017b). Using the ‘median ()’ function in GEE, the median values for
all the 121 S2 images were used for each band to capture the variability
among seasons and to select the most representative pixel values over
the entire period.

Five vegetation indices (VIs) namely normalized difference vegeta-
tion index (NDVI: Rouse et al., 1974), modified soil adjusted vegetation
index (MSAVI: Qi et al., 1994), enhanced vegetation index (EVI: Huete
et al,, 2002), and two red-edge (RE) vegetation indices i.e. RE-NDVI
(Sibanda et al., 2019) and RE-EVI were derived from the bands of
S2 at 10 m pixel size and added to the spectral band composite. The
two RE band-indices were computed after resampling the respective
bands to the 10 m pixel size. This was done to match the spatial
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Fig. 2. The general workflow of the two-step hierarchical approach for detecting the Striga weed.

resolution of the visible (blue, green, and red) and NIR bands. These in-
dices were selected as they are designed to capture the sensitivity of
vegetation features while minimizing the influence of the confounding
factors such as atmospheric effects and soil reflectance (Bannari et al.,
1995; Xue and Su, 2017). These indices have also been reported by
other studies as the best in capturing vegetation variabilities over time

PNIR—pRed
PNIR + 6 X pRed—7.5 X pBlue + 1

EVI =25 x 3)

where pNIR, pRed pBlue in Egs. (1), (2), and (3) represent the near-
infrared red and blue reflectance values, respectively for a given pixel.

(Chemuraetal,, 2017; Sibanda et al,, 2019). These indices are calculated  pr_ npyy - PNR—PRE2 @)
as shown in Egs. (1)-(5): PNIR + pRE2
NIR—pRed NIR—pRE2
NDv] — PR PRed (1)  RE—EVI=25x PR (5)
PNIR + pRed PNIR + 6 X pRE2—7.5 X pBlue + 1
2
MSAVI — 2pNIR +1— \/(ZpNIR +1)"—8 (PNIR—pRed) 2) where pRE2 in Egs. (4) and (5) represent S2 band 6 or red-edge 2 (RE2)
2 reflectance values for each given pixel.

Table 1
Striga and Land use/ cover (LULC) classes and samples sizes used in the classification of the cropland and Striga in the Rongo study area, Kenya.

Striga/ LULC class Description Cropland class Sample polygon Train pixels Test pixels

Striga infested maize fields Crop fields with Striga Cropland 52

Non-Striga infested maize fields Crop fields without Striga Cropland 20

Other crops Other non-maize cropland Cropland 46

Total 118 2362 720

Built-up Human-made constructions Non-cropland 52

Bare land Surfaces without vegetation Non-cropland 21

Natural vegetation Woodland and grassland Non-cropland 35

Water Water bodies Non-cropland 34

Total 142 2158 650
Total 260 4520 1370
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3.3.2. Random forest classification

The RF algorithm (Breiman, 2001) was used to classify the cropland
and non-cropland area in GEE using the median composite reflectance
of the S2 wavebands and the additional five VIs. RF is an ensemble ma-
chine learning classifier that has accomplished effective classification
and prediction results in many remote sensing studies, including crop-
land mapping (Belgiu and Csillik, 2018; Oliphant et al., 2019). A detailed
explanation of RF and its efficiency in remote sensing is provided in
Abdel-Rahman et al. (2014). RF builds compound decision trees
(ntree) in a machine learning ensemble algorithm approach for classifi-
cation and regression (Breiman, 2001). For each of the decision trees, a
bootstrap sample (2/3 of the original data referred to as “in bag” data) is
grown. These randomly sampled subsets are used to split several nodes
of these decision trees using random subsets of variables for classifica-
tion (mtry) with the default mtry value calculated as the square root
of the total number of variables (Abdel-Rahman et al., 2014). The class
with the majority votes from all the generated trees is then provided
as the final class prediction (e.g. cropland or non-cropland) (Mudereri
et al., 2019b). In this study, the default ntree and mtry settings, viz.
500 trees and 3 mtry were used to perform the pixel-based RF classifica-
tion for cropland mapping. On the other hand, the algorithm was
trained using the independent 77%-pixel samples (4520) as shown in
Table 1. The non-cropland class was masked out from the S2 image of
the 13™ of December 2017 and the remaining cropland class was then
used to perform MESMA as described in Section 3.4.

3.4. Endmember selection and collection

The most vital step to a successful and valid SMA encompasses de-
termining the number, type, and matching spectral signatures of EMs
(Song, 2005; Somers et al.,, 2011). These spectral signatures of the EMs
are obtainable either directly from the satellite image data reference
spectra or spectral libraries, and portable spectroradiometers
(Landmann, 2003; Somers et al., 2011).

In this study, three EM spectra within the cropland class were iden-
tified and used in the MESMA namely: (1) flowering Striga (2) crop and
other weeds, and (3) soil. These three EMs were collected using canopy-
level in-situ hyperspectral data collected with the ASD FieldSpec®
Handheld 2™ spectroradiometer (HH2: ASD, 2010). We purposively
sampled 14 maize field plots (30 m x 30 m each) during the peak Striga
flowering window (12" —~16™ December 2017). In each plot, five quad-
rats measuring 1 m x 1 m each were identified along two crossing diag-
onal transects. Specifically, two quadrats were laid out across each of the
two diagonal transects and 10 m away from the plot edges, while the
other quadrat was placed at the center of the sampling plot (i.e.
0.25 m from each side of a quadrat). The 1 m x 1 m quadrats were
used as a guide to locate the center of the focus area for the in-situ spec-
tral measurements of the EMs (Fig. 3a).

Within each quadrat, the ASD with a ground focal area of about
0.19 m? was used to collect the EM spectral data (Fig. 3b). The ASD in-
strument used in this study acquires reflected radiation in
325-1075 nm of the electromagnetic spectrum with a built-in 2 nm
sampling resolution (ASD, 2010). The collected spectra are automati-
cally resampled to a 1 nm spectral range. A bare optical input at a
nadir full conical angle field of view (25°) was employed at 1 m above
the maize crop to collect the data. This setting allows the instrument
to capture spectra in an area of ~0.5 m in diameter on the target
(FieldSpec, 2017; Sibanda et al., 2015). This target area unit was enough
for capturing the precise spectral signal of the three EMs i.e. Striga, crops
with other weeds, and soil. A full description of the EM data collection
and how the guiding quadrats were laid out are provided in Mudereri
et al. (2020).

A total of 120 spectra samples were collected and grouped into the
three target endmembers i.e. (1) flowering Striga (n = 40), (2) crop
and other weeds (n = 40), and (3) soil (n = 40). These samples were
filtered using the ‘noiseFiltering’ function and smoothened using the
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Fig. 3. a) The guiding quadrat used to estimate the Striga infestation level and b) the
ground focal area of the analytical spectral device (ASD) measurements.

‘Savitzky-Golay’ filter in R software (R Core Team, 2020) using the
‘hsdar’ package (Lukas et al., 2018). The spectral resampling to the con-
figuration of S2 was subsequently conducted using the spectral re-
sponse function, i.e. ‘SpectralResampling’ in the ‘hsdar’ package. The
average values corresponding to each band were then used as the
input to the EM values for running the MESMA in R software (R Core
Team, 2020).

3.5. Striga detection using multiple endmember spectral mixture analysis
(MESMA)

The cropland area of the S2 reflectance image of the 13" of Decem-
ber 2017 that was used in the MESMA was pre-processed in the GEE as
described in Section 3.3.1 of this study. The choice of the image sensing
date was influenced by the coincidence with the period of field refer-
ence data collection, the highest maize phenology, peak Striga
flowering, and the optimal time for Striga separability from the co-
occurring crops and other weeds (Mudereri et al., 2020). The MESMA
models the spectral data as linear combinations of pure spectra, called
EMs while allowing the types and number of EMs to vary on a per-
pixel basis (Roberts et al., 1998). Thus, each class is characterized by
unique sets of EMs and their fractions (Thenkabail et al., 2019). For
each pixel, MESMA iteratively runs several candidate models (Franke
et al., 2009) and the best model is assessed based on pixel fractions
identified, their residuals and having the smallest root mean square
error (RMSE) when compared to the spectral curve of the pixel
(Degerickx et al.,, 2019; Thenkabail et al., 2019). The models are thus ap-
plied to the entire image on a per-pixel basis. In this study, the MESMA
algorithm within the ‘RStoolbox’ package (Leutner et al., 2019) in R-
software (R Core Team, 2020) was used. The ‘RStoolbox’ package for
MESMA uses the non-negative least squares (NNLS) regression through
a sequential coordinate-wise algorithm. The MESMA was executed
using the default settings as follows: method NNLS, 400 iterations, and
tolerance of 1 x 10~°. The outputs from the MESMA algorithm are indi-
vidual bands representing the estimated pixel fraction and probability
of occurrence of each of the tested EMs (0-1) and RMSE per pixel. The
base equations of MESMA and RMSE are given by Egs. (6)-(8)
(Thenkabail et al., 2019):

PN = 21 fiepp + Ex 6)
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and

Yhfi=1 7)
M
z (&’

RMSE =\ *=— 8)

where p’ \ is the reflectance at a given wavelength (N\), pi is the reflec-
tance of EM i at \, f; is the cover fraction of EM i, N is the total number of
EMs in the model, €, is the residual error of the model, and M is the total
number of bands.

3.6. Accuracy assessment

Accuracy assessment and validation are a key component of any the-
matic map production, particularly when using remotely sensed data
(Dube et al., 2019). The process demands randomly sampled high-
quality reference data sets enumerated at suitable spatial and temporal
scales (Mupfiga et al., 2016). The classification results of each of the hi-
erarchical steps i.e. cropland and Striga maps were compared to random
samples of validation pixels to assess the classification accuracy. Due to
the unavailability of percentage coverage reference observations for
Striga, soil, and other crops and weeds classes to compare with the pre-
dicted class fractional coverage, the accuracy of MESMA results was val-
idated using the standard and traditional classification confusion matrix
method. A pixel in the MESMA map was classified as the material (i.e.
Striga, soil, or crops with other weeds) with the highest fractional cov-
erage. The soil and crops with other weeds classes were then combined
as non-Striga.
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Specifically, the performance of the RF classifier used in cropland
mapping and MESMA were validated using the accuracy assessment
metrics, derived from the respective confusion matrices (i.e. overall ac-
curacy (OA), user's accuracy (UA), producer's accuracy (PA), and the F-
score) and the RMSE. The OA was calculated by dividing the total cor-
rectly classified instances by the total samples considered in the classi-
fication (Quintano et al., 2013). On the other hand, the PA (i.e. error of
omission) was derived from dividing the correctly classified instances
in each class by the total number of reference samples for that class,
while UA (i.e. error of commission) was obtained by dividing the cor-
rectly classified instances in each class with the total number of in-
stances that were classified to belong to that class (Kyalo et al., 2017).
The F-score evaluates the accuracy of a class using the precision (posi-
tively classified values) and recall (the number of relevant instances
that were actually classified, also called sensitivity) (Graesser and
Ramankutty, 2017; Kyalo et al.,, 2017). For each of the mapping ap-
proaches (i.e. cropland mapping in GEE and Striga occurrence mapping
using MESMA), the error matrices that provided all the four metrics i.e.
OA, UA, PA, and F-score were established.

4. Results
4.1. Cropland mapping

Approximately 54% (114.3 km?) of the Rongo area was classified as
cropland while the remaining area of 98.7 km? (46%) was non-
cropland. Remarkably, the forest areas, roads, bare land, built-up
areas, and their boundaries were accurately detected. The results indi-
cate that the croplands in Rongo are diverse and irregular in shape, di-
rection, and sizes (Fig. 4). Due to the inter-annual variability, some of
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Fig. 4. Visual comparison of the 10 m cropland map extents derived using Sentinel-2 data and random forest classifier in GEE a) Rongo sub-county, b) a subset cropland extent shows crop
fields in light green colour overlaid on a Google Earth image, and c) a reference Google Earth image zoomed-out from the red rectangle in a).
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Table 2
Classification confusion matrix for the cropland and non-cropland classes mapped in the
Rongo sub-county using Sentinel-2 data and random forest classifier in GEE.

Reference data

Cropland Non-cropland Total UA (%)
Map data Cropland 527 143 670 79
Non-cropland 24 676 700 97
Total 551 819 1370
PA (%) 96 83
F-score 0.87 0.89
OA = 88%

the croplands were fallow or probably abandoned as shown from the
Google high-resolution imagery. However, the classified image man-
aged to capture the inter-seasonal variability.

Table 2 shows that the overall cropland classification accuracy was
comparatively high (88%) with F-scores closer to 1 (0.87 and 0.89 for
the cropland and non-cropland classes, respectively). Table 2 also
shows that the error of omission for the cropland class was 4% (PA =
96%) and the error of commission was 21% (UA = 79%), while for
non-cropland the error of omission was 17% (PA = 83%) and error of
commission was 3% (UA = 97%).

4.2. Endmembers used in Striga detection using MESMA

Fig. 5 demonstrates the variation in spectral responses of the three
selected EMs within the 8 resampled S2 bands that correspond with
the wavelength range of the ASD instrument used. The RE2, RE3, NIR,
and NIRn revealed spectrally distinguishable differences in the EM re-
flectance values i.e. + 0.3 emanating from the different compositions
of the classes. However, there is no substantial difference in the EM
values within the same class (e.g. Striga EM) across the four stated
bands (i.e. RE2, RE3, NIR, and NIRn). On the other hand, the visible
bands (blue, green, and red) and the RE1 did not show substantial dif-
ferences for both within classes and across the three EMs (Fig. 5).

The Striga EM demonstrated the influence of the Striga flower com-
paction and colour by having the highest EM value in the red and higher
than the crops and other weeds EM in RE1. In contrast, the soil EM
shows higher reflectance values in the blue and red spectral bands.
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The crops and other weeds EM dominated the other five bands (i.e.
green, RE2, RE3, NIR, and NIRn).

4.3. Frequency of pixel fractions of the three endmembers

Fig. 6 shows the distribution and frequency of pixel fractions across
the three EMs tested in this study. The crops and other weeds EM dom-
inated most of the pixels compared to those of Striga and soil EMs in the
study area. Although many of the pixels and the larger pixel fractions
were occupied by crops and other weeds, results show fewer pixels
that had crop and other weeds fractions that are >0.6. The huge density
of Striga pixels was between 0.1 and 0.4 pixel fractions with >250,000
pixels having zero fractions of Striga. On the contrary, there were very
few pixels that exhibited close to zero value of the crops and other
weeds fractions in the entire study area. The proportion of soil EM,
when compared to the other two EMs, was very low as shown by the
few pixels representing the soil fraction and very low soil fractions
within those few available soil representative pixels. Most of the pixels
had a low RMSE (< 0.01) and a maximum RMSE of 0.024 across all the
pixels was obtained. Remarkably, this RMSE value represents almost
100% of the whole study area. The average RMSE (0.0075) revealed
that there were generally low EM prediction errors using MESMA for
the entire study area.

MESMA generated four fraction images for the three EMs and their
corresponding RMSE. Fig. 7 shows the classification results from the
MESMA of the fraction images of the three EMs. The results showed
that the RMSE was generally low across the entire study area, except
for the central areas of Rongo. Striga occurrence was high in the north
and northwestern sides of Rongo as visually shown by the red sub-
pixels in Fig. 7.

4.4, Striga infestation in Rongo sub-country

The false-colour image of the three EMs predicting the pixel fraction
using MESMA predicted that high proportions of Striga occur in the
northwestern region of Rongo (Fig. 8b), while in the southern region
it is generally low (Fig. 8c). Interestingly, Fig. 8 shows that some fields
were completely free of Striga infestation while in some other fields
the entire field (~ 30 m x 30 m) was completely occupied by Striga.
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Fig. 5. Three endmembers and their respective values derived from the resampled eight Sentinel-2 spectral bands used in the multiple endmember spectral mixture analysis (MESMA) for
Striga detection. The eight bands correspond to the blue, green, red, RE1, RE2, RE3, NIR, and NIRn waveband areas.
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root mean square error (RMSE) pixel values.

4.5. Accuracy assessment of Striga detection using MESMA

The Striga classification accuracy assessment focused primarily on
two classes of interest i.e. Striga infested and non-infested crop fields.
The predicted occurrence of Striga was in a good agreement with the oc-
currence reference points with an OA of 78%, PA of 79% (error of omis-
sion of 21%), and UA of 89% (error of commission of 11%) as shown in
Table 3. An F-score of 0.84 for mapping the Striga infestation showed
that the MESMA algorithm successfully predicted the occurrence of
Striga and its relative abundance within each pixel (Table 3). The PA
and UA for the non-Striga fields were lower than those obtained for
the Striga-infested fields.

5. Discussion

This study leveraged on the strength and versatility of RF and the ro-
bust spatiotemporal resolution of S2 imagery in the cloud-based GEE for
cropland mapping. Five spectral indices i.e. NDVI, EVI, MSAV], the red-
edge NDVI, and the red-edge EVI, and vegetation red-edge bands
(bands 5, 6, 7 and 8a) were used for the cropland mapping. Thus, adding
the indices, red-edge bands and the spatial resolution of the S2 sensor
permitted the successful delineation of croplands with high precision,
including where the agricultural landscapes are very heterogeneous,
fragmented and the fields are small (< 0.1 ha). The use of these indices
ensured stable and meaningful comparisons of seasonal and inter-
annual changes in vegetation growth and activity thus achieving satis-
factory classification results (Belgiu and Csillik, 2018). Other studies
have also reported the added-value of the improved S2 spectral and
spatial resolution for estimating leaf area index (Sibanda et al., 2019),

mapping LULC (Forkuor et al., 2018), Striga weed (Mudereri et al.,
2019a), and in cropland mapping (Xiong et al., 2017a).

Many recent studies have reported very high accuracies in cropland
mapping using S2 imagery (Forkuor et al., 2018; Noi and Kappas, 2018).
Belgiu and Csillik (2018) reported a 96.19% OA, using S2 in cropland
mapping, while Sibanda et al. (2015) confirmed high agreements in
quantifying above-ground biomass, using S2 data. The differences be-
tween the cropland mapping accuracies observed in the present study
and those obtained from other studies could have emanated from the
heterogeneous nature of the cropping system and differences in the
weeding regimes by the diverse small-holder farmers. This heterogene-
ity results in multiple spectra and texture captured by the sensors. Ad-
ditionally, most of the farmers in Rongo practice mixed cropping
within small field plots (< 0.1 ha) resulting in the diversity of field
sizes, orientation, and shapes. These factors could have caused the 12%
error (OA = 88%) margin realized in the cropland classification ap-
proach used in this study.

Thus, the UA (commission errors) were significantly lower than the
PA (omission errors) for cropland mapping. This was mainly because
when training the RF algorithm, we aimed to capture many croplands,
thus ensuring low omission errors for the cropland class. Thus, some
non-croplands were included as croplands, resulting in higher commis-
sion errors for the cropland class. In principle, an algorithm must bal-
ance PA and UA (Belgiu and Csillik, 2018; Oliphant et al., 2019). This
method is similar to the approach used by Oliphant et al. (2019) who
also championed reduction of the error of commission by optimizing
the RF algorithm, intending to capture as much cropland area as possi-
ble. Similarly, this study aimed to collectively capture all croplands in-
cluding fallow croplands to holistically test on the occurrence of the
devastating Striga weed. The target to reduce the propagation of the
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error to the MESMA process was achieved, thus the 4% (PA = 96%) crop-
land omission error is plausible given the damage caused by Striga.

The results produced from the accuracy assessment of the MESMA
were assuring, considering that the validation reference data used was
entirely independent of the MESMA model, unlike in the standard accu-
racy assessment procedure where the model internally splits the refer-
ence data into training and testing samples. The PA produced using an
independent point dataset was relatively high showing relatively low
errors of omission in the classification. Other studies have also reported
high accuracies when using EMs derived using field spectroradiometer
dataset (Landmann, 2003).

Additionally, the novel two-step hierarchical approach for cropland
mapping using RF and Striga detection using MESMA improved classifi-
cation accuracies as the suppression of the spatial constraints (noise)
from other classes minimized the spectral confusion (Degerickx et al.,
2019). Therefore, applying a few EMs to a spatially constrained
agroecosystem reduced the spectral densities and produced relatively
high mapping accuracies at low complexity levels. Hence, this hierarchi-
cal MESMA approach accounts for the spectral pixel-to-pixel variability
of agroecological systems through the simultaneous control of the spa-
tial classification dimension (Franke et al., 2009). Additionally, in con-
trast with the other classification algorithms, MESMA provides the
physical measurement of material contributions in a pixel or vegetation
abundance (Li et al., 2005; Rosso et al., 2005). Thus, besides providing
information about the occurrence of Striga in Rongo, this study quanti-
fied the magnitude and severity of the Striga infestation at suitable spa-
tial resolutions (10 m x 10 m) that have never been provided before.
Further studies are nevertheless desirable, to evaluate the performance

of other classifiers and compare them to the Striga detection results de-
rived from the approach of the present study.

The results of the MESMA for detecting Striga revealed that most of
the crop fields in Rongo were infested with the Striga weed. The results
obtained in this study concurred with the reports from other studies
that reported the occurrence of Striga in western Kenya (Atera et al.,
2013; Oswald et al., 2001) and in Rongo, mainly in the north and north-
western sites of Rongo. This information is critical for agricultural plan-
ning in Rongo as most of the farms in the northwestern sites of Rongo
practice little crop rotation and concentrate on maize throughout the
year on degraded soils. Therefore, there is a need for awareness
among the farmers to initiate crop rotation and to improve soil fertility
by incorporating cover crops that add organic matter, use green ma-
nure, or by growing legumes that enhance nitrogen fixation in the soil.
This is particularly different from the southern region where most of
the farms are sugarcane plantations, hence the low levels of Striga infes-
tation observed.

Although the use of the three EMs yielded insightful information on
Striga weed among co-occurring plants within a heterogenous agroeco-
logical system, the findings should be treated with caution. The location
of optimal EMs and their variability to represent the heterogeneity of
croplands and their various growth stages over the entire image or in
time remains a challenge (Franke et al., 2009). We observed that spec-
tral data from the same class had varying spectral characteristics per-
haps attributable to variations in crop ages, insect pests, and disease
damage, varying management practices, cropping system, or atmo-
spheric effects (Degerickx et al., 2019). Also, this could be because the
pixel size of most satellite-based imaging sensors is slightly bigger
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Fig. 8. A graphical representation of the fractions of the three endmembers i.e. Striga, soil and crops and other weeds that were derived from MESMA with a) showing the entire study area,
b) zoomed section of the study area with the top red box, and ¢) zoomed-out section of the study area with the bottom red box.

Table 3
Classification confusion matrix for the Striga and non-Striga classes detected in the Rongo
sub-county using Sentinel-2 data and MESMA.

Reference data

Cropland Non-Striga Total UA (%)
Striga 41 5 46 89
Map data Non-Striga 11 15 26 58
Total 52 20 71
PA (%) 79 75
F-score 0.84 0.65
OA = 78%

than the area sensed by the ground-based sensors. Thus, the applied
0.19 m? ASD sample area might have masked out some of the spectral
variations in our EMs. This often leads to uncertainties, particularly in
consideration of the temporal variation of the EMs spectra captured
across different points in time and space.

Therefore, it can be hypothesized that a spectrum that has been
tested to adequately model other spectra within the library might not
perform with the same precision when applied on a different satellite
image or in a different timescale (Song, 2005). These disparities are
often introduced by fluxes in the brightness caused by bidirectional re-
flectance that is exacerbated by large viewing angles and broadband
wavelengths when in-situ EMs are upscaled to satellite-based imagery
resolutions (Franke et al., 2009; Rosso et al., 2005). However, for this
particular study, the brightness-effects did not appear to have had any
major impact on the Striga detection results, since MESMA automati-
cally integrates shade as an endmember. Therefore, the use of this ap-
proach in other spatial or temporal settings should be applied with
caution. Also, this study was based on data collected during one of the
Striga peak flowering periods (December), hence there is a need for fur-
ther research integrating all Striga peak seasons in Kenya (i.e. June and
December).

10

6. Conclusions

In this study, a two-step hierarchical approach was employed for
mapping cropland using the RF classifier in GEE and the Striga weed
using MESMA on S2 data within a heterogenous agroecological system
in the Rongo sub-county in Kenya. This study confirmed the effective-
ness of the GEE as a data curation and cropland characterization plat-
form using RF. The high potential of the MESMA algorithm to
decompose mixed pixels and detect Striga occurrence and infestation
levels were demonstrated. Therefore, the masking out of other non-
target classes for different land cover classes before the implementation
of MESMA allowed for a more focused and spatially adjusted spectral
unmixing procedure that proved to enhance the classification accuracy
results and reduced spectral confusion. Besides, deriving EMs from the
in-situ spectrometric dataset provided a more realistic array spectrum
of Striga rather than deriving the EMs from the S2 image itself. Future
studies should compare the use of Striga EMs from other sources and
the respective EM selection mechanisms such as the endmember aver-
age root mean squared error (EAR), the minimum average spectral
angle (MASA), and the count based endmember selection (CoB) that
have been tested in other studies and are known to provide a filter to
get pure spectra for use as EMs. Furthermore, Striga infestation fraction
estimates could be empirically tested in areas of low, moderate, and
high infestation, using the MESMA and cropland mapping hierarchical
approach performed in this study.
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