
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Santeri Moberg

APPLICATION FOR MANAGING TEST
ENVIRONMENTS IN CONTINUOUS
INTEGRATION TESTING PROCESS

Master’s Thesis
Degree Programme in Computer Science and Engineering

May 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/428286842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Moberg S. (2021) Application for Managing Test Environments in Continuous
Integration Testing Process. University of Oulu, Degree Programme in Computer
Science and Engineering, 69 p.

ABSTRACT

Continuous integration enables the rapid development of software where each
code change is automatically tested and integrated frequently to a shared
code repository. Nowadays, with increasing complexity of embedded systems,
continuous principles have been adopted in the development of embedded
software. Using continuous principles in development of embedded software
provides its unique challenges as the code changes must be tested in the hardware,
to ensure that the software works in production environment. Some of the
challenges are limited amount of test environments, long test and build times, and
wide variety of different hardware used in the testing. Because of these challenges,
an application which can be used to manage test environments and hardware is
required.

At the heart of this thesis is a web application called ReserveTool which
provides an interface for management and reservation of test environments.
The purpose of the thesis work was to improve the existing application as
it had limitations to supporting planned new features. After examining the
requirements, it was decided that a new application called ReserveTool 2.0 should
be developed.

Implementation of the ReserveTool 2.0 consisted of development of a new
database and web UI/REST API for management and reservation of test
environments. User experiment was carried out to evaluate the usability of the
web UI of ReserveTool 2.0. Feedback from the user experiment was positive with
a few suggestions that helped in outlining the future development of ReserveTool
2.0.

Keywords: hardware inventory, reservation, REST API, web

Moberg S. (2021) Sovellus testiympäristöjen hallintaan jatkuvan integraation
testausprosessissa. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 69 s.

TIIVISTELMÄ

Jatkuva integraatio mahdollistaa ohjelmiston nopean kehityksen, missä jokainen
koodimuutos automaattisesti testataan ja integroidaan useasti lyhyellä aikavälillä
yhteiseen ohjelmavarastoon. Nykyaikana sulautetut järjestelmät muuttuvat
koko ajan entistä monimutkaisemmaksi, jonka johdosta jatkuvia periaatteita
on alettu ottaa käyttöön sulautetun ohjelmakoodin kehityksessä. Jatkuvien
periaatteiden soveltaminen sulautetussa ohjelmistossa tuo mukanaan omat
haasteensa, koska muutokset ohjelmakoodissa täytyy testata sulautetuissa
laitteissa, jotta muutoksen toimivuus tuotannossa voidaan taata. Haasteisiin
kuuluu testiympäristöjen rajallinen määrä, pitkät testaus- ja käännösajat,
sekä kattava kirjo erilaisia testauksessa käytettyjä laitteita. Näiden haasteiden
johdosta tarvitaan sovellus, jonka avulla voidaan hallita testiympäristöjä ja
laiteita.

Tämän diplomityön keskiössä on web-sovellus nimeltä ReserveTool, joka
tarjoaa rajapinnan testiympäristöjen hallintaan ja varaamiseen. Diplomityön
tarkoitus oli parantaa nykyistä sovellusta, sillä siinä oli rajoitteita, jotka
vaikeuttivat uusien toimintojen kehitystä. Vaatimusten tutkimisen jälkeen,
päätettiin että uusi sovellus nimeltä ReserveTool 2.0 tulisi kehittää.

ReserveTool 2.0:an implementaatio koostui uuden relaatiotietokannan,
sekä testi ympäristöjen hallitsemiseen ja varaamiseen tarkoitetun web-
käyttöliittymän ja REST APIn kehityksestä. ReserveTool 2.0:an web-
käyttöliittymän käytettävyys arvioitiin käyttäjäkokeen perusteella. Kokeesta
kerätty palaute oli positiivista ja se auttoi kartoittamaan ReserveTool 2.0:n
jatkokehitystä.

Avainsanat: inventaario, varaus, REST API, web

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 8

1.1. Motivation.. 9
1.2. Structure of the Thesis .. 10

2. SOFTWARE TESTING AND CONTINUOUS INTEGRATION 11
2.1. Software Testing ... 11

2.1.1. Different Software Testing Levels... 13
2.1.2. Regression Testing .. 15
2.1.3. Test-Driven Development (TDD).. 15

2.2. Continuous Integration .. 15
2.2.1. Testing in CI ... 17

2.3. CI for Embedded Software .. 17
2.3.1. Testing in a Target Hardware.. 18
2.3.2. Simulated Hardware in CI.. 18

2.4. Continuous Delivery ... 19
2.5. Use of Continuous Principles in the ReserveTool 20

3. REQUIREMENTS.. 21
3.1. ReserveTool 1.0 and Its Use .. 21
3.2. Limitations of ReserveTool 1.0 .. 23

3.2.1. Hardware Inventory ... 23
3.2.2. Hardware Utilization Rate.. 24
3.2.3. No Support for Dynamic Hardware Configurations.................... 24
3.2.4. Usability of the System.. 24

3.3. Different Solutions for the Reservation System 25
3.3.1. Target Administration Tool (TAToo) ... 25
3.3.2. Velocity .. 25
3.3.3. Choosing the Reservation System... 27

4. IMPLEMENTATION OF RESERVETOOL 2.0 .. 28
4.1. Technologies Used in the Implementation .. 28
4.2. Database .. 29

4.2.1. Hardware Model ... 29
4.2.2. Configuration Model ... 32
4.2.3. Other Models .. 32

4.3. Authentication and Authorization in ReserveTool 2.0............................ 35
4.3.1. User Groups.. 36
4.3.2. Authentication .. 36
4.3.3. Object-Level Permissions .. 37

4.4. ReserveTool 2.0 REST API ... 37
4.4.1. Implementation of ReserveTool 2.0 REST API 38

4.5. Web UI of ReserveTool 2.0.. 39
4.5.1. Navigation .. 39
4.5.2. Home ... 40
4.5.3. Hardware .. 41
4.5.4. Configurations .. 43
4.5.5. Connection Making View .. 45
4.5.6. IP Address and Virtual Machine Views 46
4.5.7. Orders .. 47
4.5.8. Statistics ... 47

4.6. Configuration Reservation ... 49
4.6.1. Reservation System ... 49
4.6.2. Reservation through the Web UI... 51
4.6.3. Reservation through the REST API .. 52

4.7. Importing the Hardware Inventory ... 53
4.8. Tests to Ensure Operability of ReserveTool 2.0 53

5. EVALUATION AND DISCUSSION.. 54
5.1. User Experiment ... 54

5.1.1. Survey .. 55
5.1.2. Survey Results .. 56

5.2. Future Work ... 57
6. SUMMARY ... 59
7. REFERENCES ... 60
8. APPENDICES.. 63

FOREWORD

This thesis was carried out at Nokia in Oulu. The past year has been quite challenging
with the heavy limitations and extraordinary circumstances posed by COVID-19
pandemic. Things were quite different from the usual with the amount of remote
working, social distancing, and seeing empty hallways at the site. Nevertheless, I
managed to complete this thesis work and my studies at the university are finally
coming to an end.

I want to thank everyone in the team at Nokia for guidance and support during this
tough year. I would also like to express my gratitude to Aku Visuri who worked as the
supervisor for this thesis from the University of Oulu and provided valuable guidance.

Oulu, May 10th, 2021

Santeri Moberg

LIST OF ABBREVIATIONS AND SYMBOLS

API application programming interface
CCS cascading style sheets
CI continuous integration
CPU central processing unit
CSRF cross-site request forgery
CSV comma separated values
DRF Django REST framework
ER entity-relation
GUI graphical user interface
HTTP hypertext transfer protocol
HTTPS hypertext transfer protocol secure
IP internet protocol
LDAP lightweight directory access protocol
NFS network file system
ORM object-relational mapper
PSCI platform software continuous integration
REST representational state transfer
SQL structured query language
SaaS software as a service
TDD test-drive development
URL uniform resource locator
VCS version control system
WMS warehouse management system

commit making a set of changes to the code permanent
formset set of multiple HTML forms

8

1. INTRODUCTION

Continuous integration (CI) is a software development practice where changes to
a shared code repository are frequently integrated. Each integration is verified
by automated testing to detect bugs and problems. Utilization of CI ensures that
developers always have access to a stable build of the software. Moreover, it results
that bugs and problems are found early making them easier to fix, because there is
much less backtracking that must be done to find the cause. [1]

This thesis is made as a part of a CI team whose responsibility is to integrate
changes to embedded software code to an existing code base. It is crucial that the
tools used in the CI environment work smoothly without significant problems so that
new builds of the software can frequently be integrated. Using CI in the development
of embedded software has its own challenges. Some of the things that must be taken
into consideration are limited amount of test environments, build and test times and
wide range of different hardware [2]. Testing embedded software at system level,
requires software to be tested in hardware, because to find defects that would happen
in production, the test environment must be as close as possible to the production
environment [1].

Hardware used in the test environments is in their own laboratory which is managed
by the CI team. The CI team is responsible for performing maintenance related
tasks in the laboratory which might include building target configurations out of
the hardware in the laboratory, updating information in the reservation system and
replacing broken hardware. To ensure that CI operates smoothly, there is an application
called ReserveTool which provides an interface for reserving test environments (target
configurations) from the laboratory.

The platform software continuous integration process (PSCI) is the machinery
responsible for the continuous integration (section 2.2) and continuous delivery
(section 2.4) of the platform software. It consists of various of different CI servers,
version control systems and other applications. ReserveTool is used by PSCI for
reserving test environments for tests that are performed in hardware.

Platform software makes use of trunk-based development [3] in its branching
model. In trunk-based development, developers make commits (changes to the code)
frequently to the same branch called a trunk instead of using several development
branches which are then later merged to a single branch. In platform software, all
the new feature development and new hardware support are done in the trunk. Use of
trunk-based development in platform software, places a lot of strain on the CI system
and with it, to ReserveTool, as there are large amounts of commits daily and each of
them must be tested.

An overview of the PSCI environment and its flow is presented in Figure 1. The
platform software consists of four different system components: 1, 2, 3 and 4. There
are five different CI servers that operate in the system, one for each system component
and one for the release of platform software. The first step in PSCI process is the
code review in Gerrit [4], where the code change is reviewed by other developers
and verified by a verification CI server which runs a small subset of tests that are
supposed to find most obvious errors in the code change. The code change can only be
merged with the approval of both verification CI and other developers. After the code
change has been merged, the new build of the system component software which has

9

the code change is tested in its respected system component CI. When the tests have
passed in the system component CI, a new system component release is made with a
release tool, the binaries of the system component build are saved to a network file
system (NFS) and information about the build is saved to a CI database application.
System component release is stored in a version control system and it contains release
notes about what was made in the code change among with ready-made downloadable
packages. Next part in the PSCI is the platform software release CI process which uses
new system component builds to combine them to a new build of platform software
release which will then be tested at a system level. After the tests have passed, a new
release candidate is provided to release management team which then decides which
release candidate they promote as a new platform software release.

Code review in Gerrit
and verification CI

Commit in system
component 1

Commit in system
component 2

Commit in system
component 3

Commit in system
component 4

System component 4
CI server

System component 3
CI server

System component 2
CI server

System component 1
CI server

System component
release

Platform Software
release

Platform Software
release CI serverCI database

Release management

Figure 1. Description how commits proceed in the PSCI.

1.1. Motivation

ReserveTool is a web-based application which responsibilities include cataloguing
hardware in the laboratory, providing an interface for the reservation of test
environments, and statistical data about the usage of the hardware. The goal of this
thesis work is to improve the usability and reliability of ReserveTool, the utilization
rate of the hardware in ReserveTool and provide support for new features such as
dynamic target configurations, an accurate hardware inventory and implicit reservation
using pools and labels.

During this thesis, requirements for the new reservation application were examined
and it was determined that a new application called ReserveTool 2.0 should be
developed. The database of ReserveTool 2.0 was designed in a way that information
about each individual hardware used in the target configurations is stored in the
database among with the connections between different hardware. Both web UI and
REST API were designed to provide functionality for managing database objects
and reserving configurations. Usability of the web UI was evaluated with a user
experiment.

10

1.2. Structure of the Thesis

Chapter 2 talks about what is software testing and its purpose, what is continuous
integration, and how continuous integration principles work in embedded software
environment.
Chapter 3 compares different options for the reservation system that were available
and tells the reason why developing ReserveTool 2.0 was the chosen approach to fix
the limitations of ReserveTool 1.0. The chapter also gives an overview about the usage
of ReserveTool 1.0 and its limitations.
Chapter 4 describes the implementation of ReserveTool 2.0.
Chapter 5 Reviews what was achieved during the thesis, describes a user experiment
and its results. Finally, the future development of ReserveTool 2.0 is discussed.
Chapter 6 Tells the summary of the thesis.

11

2. SOFTWARE TESTING AND CONTINUOUS INTEGRATION

To ensure that software does only what it is designed to do, it must be tested. It is
estimated that about half of the time and expenses used in software development are
spent in testing the developed software or system [5]. Consortium for information &
software quality (CISQ) estimated in their report on the cost of poor software quality
in the US [6], that in 2020 it amounted to $2.08 trillion. The largest contributor to such
a huge number was operational software failures which constituted to $1.56 trillion.

There is a universal rule in testing which states that it is impossible to find all the
errors and defects from the software with testing as there is never enough time and
resources to do that [7 p.3]. Because, to find all the possible errors and defects, every
possible path the software could take would have to be tested with every possible input
there is [5 p.9-14]. For this reason, different strategies and choices about the software
testing must be made.

CI is a development practice where changes to a existing code base are integrated
frequently and verified by automated build and tests [1]. With the use of CI, problems
caused by a separate integration phase in the software development can be avoided.

This chapter first investigates software testing, different software testing strategies
and the four distinct software testing levels. After that, topics under CI such as how CI
operates, what are its benefits, how testing is performed in CI and how does CI work
in embedded system environment are explored. At the end of the chapter, a summary
about how the explored topics are related to ReserveTool is given.

2.1. Software Testing

Purpose of the software testing is not to make software look perfect or completely
free of errors. It is to find as many errors and bugs as possible with a finite number
of resources [5 p.5-9]. This results in a trade-off between the quality of the software
testing and costs in resources such as time and money. Software testing can be divided
into two different testing strategies: black box testing and white box testing [5 p.9].

In black box testing, the program is viewed as a black box where its internal
structure and behaviour are not known. Only the input and output of the program are
examined and tests are designed based on the specification of the program. Because
it is impossible to exhaustively test the program with all the possible inputs, the goal
should be to maximize the number of errors found with finite amount of test cases
[5 p.10-11]. According to Jorgensen [8 p.7], specification-based testing (black box
testing) offers two main advantages for test cases:

1. Test cases are independent of the implementation of the program which makes
them to withstand changes to the implementation.

2. Test cases can be developed parallel with the implementation reducing the
duration of development intervals.

Jorgensen also points out few negative things about black box testing which are
that it frequently suffers from significant redundancy found in test cases and from
the possibility that there are gaps of untested software. Moreover, with only the

12

specification it is hard to create tests for unspecified behaviour as the tester must rely
on their imagination. Picture illustrating black-box testing is shown in Figure 2.

Input

Program seen as a
black box

Output

Figure 2. In black box testing, the program is thought as a black box where its
internal structure and behaviour are not known. Tests are made and measured using
the specification of what the program should output given the specific inputs.

White box testing allows the test designer to look at the program’s internal structure
and logic when designing tests for the program. Access to the internal structure of the
program allows the test designer to see all the different paths the program can take and
test them. Even if all those paths could be tested which is highly unlikely, it still would
not guarantee that all the errors would be found, because some errors in the same path
could happen with specific inputs. Picture illustrating white box testing is presented
in Figure 3. White box testing also has the risk of making tests depend too much on
the program’s code and ignoring the specification of what the program should do. [5
p.11-13]

Input

Program seen as a
white box

Output

Figure 3. In white box testing, program’s internal structure and behaviour are known
which allows the tester to create tests for all the paths the program can take.

13

Generally, it is effective to make use of principles inside both black box and white
box strategies to form a reasonable compromise between resources used for testing
and errors found [5 p.90]. The resulting combination from the white box and black
box testing can be called a grey box testing, where the tester has partial knowledge
of the internal workings of the program but not the full source code of the program
[9]. Partial knowledge of the internal structure allows a tester to design intelligent test
scenarios that touch on things like exception handling, communication protocols and
data types [10].

2.1.1. Different Software Testing Levels

Software testing can be divided into four different levels: unit testing, integration
testing, system testing and acceptance testing [11 p.16]. The hierarchical relationship
between different software testing levels is shown in Figure 4.

Integration
testing

System
testing

Acceptance
testing

Unit testing

Figure 4. Software testing levels can be arranged in hierarchical order from the highest
(acceptance) to the lowest (unit) level of testing.

Unit testing

Unit testing also known as the module testing is the lowest level of testing where
the testing is focused on the small building blocks of the program rather than the
program which makes the pinpointing of faults easy, as the errors found by the tests are
contained in their relative units or modules [5 p.91]. According to Jorgensen [8 p. 78],
there is not a single rule that states what constitutes as the unit in the unit testing. It can
be a function, a class, a single procedure etc., and it depends on several factors such as
the type of software and the programming language the software is implemented in. It
is probably best defined by the organization implementing the software. Unit testing
utilizes white box testing techniques [11 p.158].

14

Integration testing

Integration testing is the next level above the unit testing. In integration testing,
individual units or modules are systematically put together while tests are performed
on the interfaces between the units [11 p.158-159]. According to Naik et al., [11 p.163]
integration testing includes both the black box and white box testing approaches.

There is some discussion about whether the integration testing should be considered
as its own software testing level. Already back in 2004 Myers et al. [5 p.129] did not
consider integration testing as its own testing level by stating that integration testing
is part of the unit testing (module testing) when incremental module testing strategy is
used. The close relationship between integration and unit testing is further emphasized
by a study made by Trautsch et al. [12] which found that there was no significant
difference between the defects found with integration testing and unit testing as the
unit tests were also capable of detecting interface defects.

System testing

System testing is the level above integration testing. Purpose of system testing is to
compare the system with its original objectives [5 p.130]. Jorgensen [8 p.253] states
that system level testing is the closest level to everyday experience where we evaluate
products based on our expectations and not based on some specification or standard.
System testing includes wide variety of testing such as functionality testing, security
testing, robustness testing, load testing, stability testing, stress testing, performance
testing and reliability testing [11 p.17].

Myers [5 p.143] emphasizes that system testing should not be performed by
programmers who coded the program or by the organization that is responsible for
the development of the program. This stems from two reasons: the system testing
should be performed from the viewpoint of the end user and development organization
is limited by psychological ties to the program which limits their ability demonstrate
that program does not meet its objectives.

In a survey conducted by Kassab et al. [13], it was found that system level testing
was the most common level of testing used in the projects conducted by industry
professionals with functionality testing being the most prevalent aspect of system
testing.

Acceptance testing

Acceptance testing is the final level above the system testing. It is usually performed
by the customer or by the end user with the purpose of comparing the developed
program with its initial requirements. If there is a contract between the customer
and the company developing the program, acceptance tests are done by comparing
the program’s operation with the original contract. [5 p.144]

Naik et al. [11 p.451] divides acceptance testing into two categories: user acceptance
testing and business acceptance testing. User acceptance testing is carried out by the
customer to ensure that system satisfies requirements that were set by contract. On the
other hand, business acceptance testing is performed by the development organization
to ensure that the system will pass the user acceptance testing.

15

2.1.2. Regression Testing

In regression testing, the same tests are always ran to the software after it has been
changed. This ensures that the newly introduced or changed parts of the software do
not interfere with the existing ones and the software works as it should [14, 15, 5
p.18]. Regression testing is commonly performed in CI to confirm that the change was
integrated properly [16]. In the PSCI, all the testing that is done can be considered
regression testing.

According to Wong et al. [14], regression testing becomes more expensive when the
time goes on and software evolves, as old tests are rarely discarded, and new ones are
introduced. These costs can be reduced with different techniques for regression test
selection such as modification-based test selection where only tests where new and old
versions of the software produce different outputs are performed. Elbaum et al. [17]
also introduced other techniques that can improve test selection such as continuous
regression test selection and continuous test suite prioritization.

2.1.3. Test-Driven Development (TDD)

In traditional software development, tests for implemented features are written after
the code has been written. Test-driven development does the opposite of that and tests
for the feature are written prior to coding it. As the name of the practice suggests,
doing tests prior to coding the program drives the design of the program. Having tests
that can be run during the development progress helps to produce a cleaner design,
because the code can be easily refactored, as the programmer has the confidence of
knowing the program works, if the tests pass. [18]

2.2. Continuous Integration

At the beginning of Martin Fowler’s famous article about CI [1], Fowler describes the
traditional integration of software with a story about a company which had a software
project that had been integrating for several months with no estimation about how long
the integration would take. Fowler then points out that the integration being long and
unpredictable process was a common story between software projects back then, and
this lengthy process can be avoided with the use of CI.

According to Fowler, in CI, members of a development team integrate their changes
to a shared code repository frequently, usually multiple times each day. Each
integration is verified by an automated build which includes testing to find integration
problems as soon as possible. Figure 5 shows how a typical CI might operate:

1. A developer commits changes to a shared code repository.

2. A CI server polls the code repository and notices the change.

3. The CI server does automated build and testing of the change.

4. After the tests are done, feedback about the result of the build is sent to the
developer.

16

Commit changes

Developer

Poll changes

Repository
feedback

CI server

Build-->Test-->Result

Figure 5. Description of how a typical CI operates.

There are several benefits that usage of CI introduces:

• Reduced risks: According to Fowler [1], without CI there is no guarantee on
how long the integration process of the development cycle might take. With CI,
this unpredictability can be eliminated as there is always a working version of
the software and there is knowledge about what parts are working and what are
not.

• Rapid feedback: Through CI, feedback about the state of the software project
can be learned several times a day. This can reduce the time spent finding and
fixing bugs or problems. [19]

• Frequent deployment: With CI, deployable software can be generated at any
given time, because software can be proven to work after it has passed the tests
[20 p.56].

• Reduces repetitive processes: Using automated CI, various of repetitive
processes such as code compilation, testing, database integration can be
automated which frees people to do higher value work [19 p.30].

• Greater product confidence: When, utilizing CI practices, developers have
greater confidence to make changes, as they know that every build of the
software is verified by testing, and with frequent interactions, CI system can
inform them quickly if something goes wrong in their code change [19 p.32].

In their study about how adopting CI impacted different software projects, Zhao et al.
[21] observed increase in quality and amount of automated testing as well as increase in
amount of commits which was to be expected with the "integrate frequently" guideline
of the CI. In a similar study by Vasilescu et al. [22], it was noticed that after adopting
CI, there were fewer pull requests rejected and an increase in amount of bugs found by
the core developers of the software project which overall increased the quality of the

17

software. Study on CI usage in open source projects by Hilton et al. [23] observed that
projects that use CI release more than twice as often as those that do not.

2.2.1. Testing in CI

To ensure that broken code does not get committed to the CI, developers should run
a private build of the software locally which emulates the integration build [19 p.42].
This provides a safety net for the CI and reduces the number of broken builds.

Building and testing a change in CI should be reasonably fast so that it does not
slow down development significantly. In Kent Beck’s famous book about extreme
programming [24 p.110] he stated build time of ten minutes to be ideal. According to
Duvall et al. [19 p.91], most of the build time in CI is taken by the automated testing.
In a study about the long duration of CI builds Ghaleb et al. [25] found several factors
that often constitute to the long build times in CI:

• Triggering builds during the day or on weekdays. This is the most likely due
to CI system having a limited number of resources and there being several
simultaneous builds.

• Builds are not marked as finished even though all the required jobs are finished.

• Rerunning failed jobs under the build to keep stable build status.

As minimizing build time is important, new techniques for reducing build time are
developed. One example of this is SmartBuildSkip framework developed by Jin et al.
[26] which uses machine learning to determine which build should be skipped as their
result would be success. Once a build fails, all the subsequent builds are executed until
the build result is success.

A recent survey by Garousi et al. [27] indicates that test automation is the aspect of
software testing which proposes most challenges to industry professionals. According
to Fowler M. [1], tests performed in CI should be automated tests that check the
functionality of the code after a change. Testing in CI can be considered being mostly
regression testing as the same set of tests or a subset of tests are performed to each a
new build of the software. This also results in that bugs and problems are found more
easily, as the developer has confidence that the build, they started their work on, was
stable and had passed the tests.

2.3. CI for Embedded Software

In the early days of CI back in the year 2007, Karlesky et al. [28] found that embedded
software industry’s general perception was that implementing the CI and practices of
TDD to embedded software development is too difficult due to software being so close
to the hardware and limited amount of test environments. In their article, they proved
that implementing CI in embedded software development is possible and provides
benefits such as reduced integration time and making it easy to pinpoint the source
of unexpected behavior in the system.

18

Nevertheless, there are certain challenges due to the nature of embedded software
that it poses to the CI such as expensive [29] test environments, limited amount of test
environments and long build and test times for tightly coupled systems [2].

2.3.1. Testing in a Target Hardware

Fowler M. [1] emphasized that to find problems and bugs that would appear in
production, the software must be built and tested in a target environment that is as
close as possible to the production environment. This is because if the test environment
differs from the production environment, tests done in each environment might produce
different results which makes the selection of test environment very important. Rapid
feedback is also one of the essential things at the heart of CI which ensures that
problems and failures do not propagate and cause other failures [19 p.203-204].

According to Broekman [7 p.199-207], in the prototyping stage of embedded
software development there are five different test levels:

• software unit tests

• software integration tests

• hardware/software integration tests

• system integration tests

• environmental tests

Only the first two levels can be performed without the target hardware. In the
hardware/software integration tests, software is loaded in the hardware memory. In
a system integration test, all the hardware parts of the embedded system are brought
together, as the purpose is to verify the correct operation of the complete embedded
system. Environmental tests are used to test how the embedded system influences its
environment and how the embedded system reacts its surrounding conditions like the
temperature, humidity, shock, and vibrations. After the prototyping stage, comes the
pre-production stage where real target hardware is also used.

2.3.2. Simulated Hardware in CI

Hardware can be simulated using a virtual platform. The virtual platform can run the
unmodified binaries of the software that would be ran on a real system and perform well
when simulating hardware – software interface [30 p.2]. Broekman et al. [7 p.193-195]
introduces a simulation stage as the first stage of development in embedded systems.
In the simulation stage testing is done using simulated hardware. As the development
progresses the simulated hardware is gradually replaced by real hardware. Engblom
[31] listed several advantages that simulated hardware provides for CI in embedded
system environment:

• The state can be saved. By saving the state virtual hardware significant amount
of time can be saved. For example, state where the system has already been

19

booted could be saved and it could be reused as a starting point for the tests.
Normal hardware would have to be booted to remove the effects of previous
tests. [31].

• It has been seen that limited amount of test environments is one of the challenges
in CI of embedded software [2]. With virtual hardware, this is not a problem,
since it can be simulated on any server that is capable of running the simulated
hardware. Also, when developing software for a new variant of hardware, their
amount can be very limited or they might not even have been manufactured yet.
Using a virtual platform can start software development for the new product
earlier [30 p.5].

• There is more control when using simulated hardware; a simulator program will
not go unresponsive if there is a failure during the testing [31].

• All the different hardware configurations can be tested because it does not have
the physical limitations of the normal hardware [31].

However, there are some properties that cannot be tested properly on simulated
hardware like internal buses, clocks, pipelines, and caches. [30 p.2] For that reason,
system level tests need to be run on real hardware. After all, as said by Mårtensson
et al. [2] it cannot be ensured that same tests will pass for a build that runs on real
hardware than for a build that runs on simulated environment.

2.4. Continuous Delivery

According to Humble et al. [20 p.105], just having a CI is not enough, because CI
mostly focuses on development teams it leads to too long feedback cycle between
development team and operations team who are responsible for releasing the software.
This can be fixed by further automating the release process by introducing continuous
delivery (CD).

CD is a software engineering approach which can deliver software changes into
production or into the hands of the users in a quick, safe and sustainable way [32].
In essence, operations team can deploy a build of the software into production with a
push of a button [20 p.106]. This is made possible with the use of CI which ensures
that the code is in a state where it can always be deployed. The process of CD can be
visualized with a deployment pipeline which shows the steps that code change takes on
its way to production. As the code change progresses through the pipeline, confidence
that it will work in production increases as the environment becomes more production
like with each further stage [20 p.108]. A typical CD pipeline is presented in Figure 6.

Build & unit testsCode change ReleaseUser acceptance
tests

Automated
acceptance tests

Figure 6. Description of a typical CD pipeline. All the steps in the pipeline are
automated except the final step of releasing the software which is done manually.

20

The pipeline starts when a code change is made to a VCS by CI, triggering a new
instance of the pipeline. A new build of the software is made and unit tests are
performed. After that automated acceptance testing follows. Once that stage is done,
it is followed by user acceptance testing. All the aforementioned stages are automated
up until the final stage which is the release stage where operations team can choose to
make a release when they find a release candidate, they deem suitable. Objective of
the pipeline is to eliminate unfit release candidates as soon as possible in the pipeline
so that there is rapid feedback on the root cause of the failure to the team [20 p.108].

Continuous integration is often combined with continuous delivery in an
abbreviation called CI/CD. Although CD in the abbreviation can also refer to
continuous deployment. It is different from the continuous delivery in a way that
continuous deployment goes one step further where new software is automatically
deployed to the customers [33].

2.5. Use of Continuous Principles in the ReserveTool

ReserveTool is an essential part of the continuous integration and delivery of the
platform software. It provides the test environments (physical hardware or virtual
hardware) to automated CI and to developers who run the private builds of the software
before committing code changes to CI. It is important that the ReserveTool ensures and
enables the continuous development of the platform software.

21

3. REQUIREMENTS

Purpose of this chapter is to give the reader an overview how ReserveTool 1.0 is used in
the PSCI environment, what are the problems the system in place has and what are the
possible solutions. This is done by first examining ReserveTool 1.0 and comparing its
features with different reservation system candidates used in the company, including
ReserveTool 2.0. Finally, a reasoning why the development of ReserveTool 2.0 was
the chosen approach, is presented.

3.1. ReserveTool 1.0 and Its Use

ReserveTool 1.0 is the current reservation system that is used in the PSCI environment
by two system component CIs, platform software release CI and by the developers of
previously mentioned two system components. The users of ReserveTool 1.0 can be
divided in three different groups:

• Admins are in the charge of maintaining the ReserveTool. They have
physical access to the laboratory where the different hardware is stored. Their
typical tasks include making physical connections between hardware, replacing
broken hardware, building new target configurations, and registering them to
ReserveTool.

• Automated CI servers use ReserveTool’s REST API for finding suitable target
configurations for tests that need to be performed in hardware. This user group
includes two system component CI servers and the platform software release CI
server. CI servers use a Python client that ReserveTool provides to communicate
with ReserveTool’s REST API. Figure 7 presents a flowchart on how a typical
CI job reserves a target configuration for testing a new software build. Time out
for the test job on reserving suitable target is usually set at 15 minutes.

• Developers reserve target configurations to test their changes before they are
committed to the system component CI. Developers are also responsible for
providing new test cases when they are needed which could be due to a new
feature or hardware being introduced. These new test cases must be tested prior
to their use in the CI. Typical use case for the developer involves reserving a
configuration, powering it on and running tests on it. Developers mainly use
ReserveTool through its web UI.

22

Try to reserve a target
configuration

Target configuration
reserved

Is time out limit
exceeded?

Download new build
of the software

Execute tests

Power on target
configuration

Fetch logs from target

Power off

Free target

Yes

Is the target free?

No

Terminate the test job

Yes

No

Figure 7. Flowchart detailing how a continuous integration test job uses target
configurations for testing the new builds of software in the PSCI environment.

A use case diagram which displays the use cases of different user groups in
ReserveTool 1.0 is presented in Figure 8. Developers and automated CI servers are
the end users of ReserveTool 1.0 who reserve and queue target configurations (test
environments) to perform tests in hardware. Use cases for admin users consist of
management of target configurations, pools and hardware inventory, and browsing of
statistical data about the utilization of target configurations.

Target configurations in the ReserveTool 1.0 are divided into different pools
which are groupings for configurations that determine the users who can reserve
the configurations belonging to that pool. In ReserveTool, different CI servers and
developer teams have their own pools of configurations from where to reserve. The
configurations are either behind a virtual machine or a unique IP address depending on
if the configuration is meant for the use of CI or developers. Configurations used by
the CI are behind virtual machines because it makes configuring the targets which to
reserve easier from the side of a CI server. Configurations that are meant for developers

23

Admin

Developer

Automated CI

Queue target

Reserve target

Manage targets

Browse statistics

Manage Pools

Manage hardware
inventory

Figure 8. The use cases for ReserveTool 1.0.

are behind IP addresses, because it is better for the developers to have straight access
to the configuration as it gives them more control over the hardware.

3.2. Limitations of ReserveTool 1.0

ReserveTool 1.0 has a wide variety of limitations that hinder its development and
the performance of the PSCI environment. The main limitations being the poor
information about the hardware inventory, the hardware utilization rate and lack of
support for dynamic hardware configurations. These limitations are examined more
thoroughly in next subsections.

3.2.1. Hardware Inventory

ReserveTool 1.0 does not have a proper hardware inventory. This poses a problem
to the maintainers of the laboratory because they do not have accurate and up to
date information about what hardware the laboratory has. This problem is amplified
even more due to old hardware breaking and new hardware coming in. Currently,
ReserveTool 1.0 relies on a script that reads the hardware information from the target
configurations that are registered in the system. The solution does not give accurate
information for a few reasons:

• The script can read information only from a target configuration that is powered
on.

• Some hardware types such as power switches for example, do not support
reading information by a script.

• Hardware currently not used in any target configuration cannot be reached by
the script.

24

These limitations indicate that non-automated approach could give much more
accurate information but would require to be manually updated by the maintainers
to keep it up to date.

3.2.2. Hardware Utilization Rate

Each day there are multiple code changes that go through the PSCI and they need
to be tested at the system level (in hardware). Because there is limited amount of
test environments (target configurations), all the tests cannot be run parallel, and
queues have to be made. If the utilization rate of the hardware is not 100%, there
is always some savings to be had by increasing it. Utilization of the hardware in the
ReserveTool 1.0 can be measured by looking at the reservation time of different target
configurations.

The utilization data that can be measured in ReserveTool 1.0 has one problem; it
does not know the amount of time the reserved target configuration was powered on
during the reservation. This is especially problematic for the measuring utilization of
target configurations allocated to developers as they tend to be reserved for longer
periods of time than the target configurations reserved by CI servers and are not
necessarily powered on the whole time of the reservation. Utilization data would be
improved greatly by considering the amount of time the configuration is powered on.

3.2.3. No Support for Dynamic Hardware Configurations

The database of ReserveTool 1.0 has models only for the target configurations, and not
for the individual hardware of which the target configurations are built from. Because
of that there is no support to dynamically create target configurations from different
hardware, as it is not possible to save the information about physical connections
between different hardware. For example, when considering a fiber switch which is
hardware that handles fiber connections to multiple hardware, information about which
port of the fiber switch has which hardware connected, could be used to create dynamic
hardware configurations in ReserveTool without having to move them physically.

3.2.4. Usability of the System

Over the lifetime of ReserveTool 1.0, several small usability limitations have emerged.
These limitations are listed below:

• There is no option to extend or repeat a reservation.

• There is no option to schedule a reservation ahead of time.

• User cannot reserve a target just by stating pool and labels, they must explicitly
select a target configuration.

• There is no permission handling so regular users can accidentally break
something.

25

• Some parts of the web UI feel slow, especially views which list large amount of
target configurations.

3.3. Different Solutions for the Reservation System

There are two other reservation systems in the company use that could have been
chosen as the reservation system for the PSCI environment: Velocity [34] and TAToo.
Therefore, there was a choice between one of them or development of ReserveTool 2.0.
Each of these options provided a different set of features and limitations. Table 1 shows
a comparison between the features offered by ReserveTool 1.0, planned ReserveTool
2.0, TAToo and Velocity. ReserveTool 1.0 is shown in the Table 1 to give perspective
on what features the current reservation system offers and what features it lacks.

3.3.1. Target Administration Tool (TAToo)

TAToo is an internally developed target reservation tool at Nokia. TAToo’s two main
features are target reservation and a hardware inventory. The normal users of TAToo
can reserve targets that are listed at a target booking table. The target can be a cluster
which consists of two or more singular targets or just a singular target. Management
of the targets is handled by the admin users.

TAToo can be used through the web UI or through the API which provides methods
for reading target information, reserving targets and freeing targets. TAToo has an
automatic target repairing system which checks the statuses of the targets in the tool.
If the status is "to be checked", it starts a job which will then try to repair the target.

3.3.2. Velocity

Velocity is a cloud-based warehouse management system that is sold by following
software as a service model (SaaS) [34]. Some business lines at Nokia use a
customized version of Velocity in their laboratory setting for reserving hardware
and keeping track of the hardware inventory in the laboratory. Velocity calls each
hardware that is registered to the system as a concrete resource. The managing of
these concrete resources is done by admin users who also have access to the laboratory
to make physical connections. Normal users can build abstract resources that describe
conditions on which to select concrete resources. Velocity also lets its users to build
collections of resources called topologies. Both resources and topologies can be
reserved by the normal users.

Velocity has different user types: normal users, admin users and unauthenticated
users. Normal users are the users who use the system to reserve resources or topologies
to their use. Admin users have several different roles in the system such as management
of concrete resources, reservations, and users. Unauthenticated users cannot make
reservations and have only read-only permissions to certain places in the system.

Reservations in the velocity can be scheduled to happen immediately or later. There
is also an option to repeat the reservation hourly, daily, weekly, or monthly. User can

26

Table 1. Comparison of ReserveTool 1.0, ReserveTool 2.0, TAToo and Velocity
Feature ReserveTool

1.0
ReserveTool

2.0
TAToo Velocity

Reserve target
configurations

yes yes yes yes

Support for
dynamic
target
configurations

no yes no yes

Must pay for
license

no no no yes

Easy to
implement
new features

yes yes no no

Hardware
inventory

partial yes yes yes

Power on
targets

yes yes no yes

API support yes yes partial yes
Automatic
repair

no yes yes -

End-user can
build their
own
configurations

no no no yes

Interactive
web UI for
building
configurations

no no no yes

Selection of
tasks to run in
start and end
of reservation

no no no yes

also select different automation assets that will be run during start-up and teardown
of the reservation. For example, an automation asset could be a script that handles
powering on the hardware or setting up a test environment.

Velocity has a REST API which provides an extensive interface for external
applications that use the system. Velocity also provides a python library for
communication with the REST API which makes it simple to integrate it in python
projects.

27

3.3.3. Choosing the Reservation System

After exploring different solutions within the CI team, it was chosen that ReserveTool
2.0 should be developed as the reservation system for the PSCI environment. This was
due to several reasons:

• Easy to implement new features as the development of ReserveTool is done
within the team.

• No need to pay for a license to use the system like in Velocity.

• System is flexible so that it can be modified to better fit the needs of the PSCI.

• There is more control over the reservation system.

Ability to develop ReserveTool 2.0 from the ground up fixes a lot of the fundamental
problems that exist in design of ReserveTool 1.0, e.g., the problem with the hardware
inventory which is explained in subsection 3.2.1. ReserveTool 2.0 will introduce new
features such as support for dynamic hardware configurations by providing the ability
to save information about connections between the hardware. Old features that exist
in ReserveTool 1.0 will also be improved and made more robust. Data collection for
statistics such as the utilization rate will be improved to provide more meaningful data.

28

4. IMPLEMENTATION OF RESERVETOOL 2.0

This chapter describes different parts of the implementation of ReserveTool 2.0: the
database, authentication and authorization, web UI, and REST API. In the next section,
an overview and reasoning for different technologies used in ReserveTool 2.0 is given.

4.1. Technologies Used in the Implementation

As ReserveTool 2.0 is a web application, it was essential to choose some web
framework to ease the development of the application. Django [35], which is a Python1

based web framework, was chosen for this purpose. The main reason for choosing
Django was that it was used with ReserveTool 1.0 which provided a few advantages:

• Reuse of code Some code can be reused between the different versions of
the ReserveTool, e.g., powering modules which are used for powering the
configurations.

• Familiarity The CI team, who are responsible for maintaining ReserveTool, are
familiar with Django framework which leads to easier future development as it
does not require learning a new framework or programming language.

REST API for ReserveTool 2.0 was built using Django Rest framework2 (DRF)
which is a powerful toolkit that provides a framework for building REST APIs on top
of Django applications. Decision for choosing DRF to implement the REST API for
ReserveTool 2.0 opposed to creating REST API functionality to the views of the web
UI, was because DRF provides a lot of built in functionality such as browseable API
and view sets supporting different HTTP methods which reduce a lot of development
time. Keeping the REST API separate from the web UI views in the ReserveTool 2.0
also makes the code cleaner and easier to maintain. Documentation of the ReserveTool
2.0 REST API is generated with a library called drf-yasg3. Drf-yasg generates
documentation that follows OpenAPI specification 2.0 (swagger)4 automatically based
on the source code of the implemented DRF API.

Front-end of the ReserveTool 2.0 web UI was stylized using a framework called
Bootstrap5 with a goal in mind to minimize the usage custom CSS to keep the UI
uniform and easy to maintain. Bootstrap was also used in ReserveTool 1.0 which
makes styling of the UI familiar to the users of ReserveTool 1.0. The dynamic aspects
of the web UI utilize programming language JavaScript and its library jQuery6.

1https://www.python.org/
2https://www.django-rest-framework.org/
3https://github.com/axnsan12/drf-yasg
4https://swagger.io/specification/v2/0
5https://getbootstrap.com/
6https://jquery.com/

29

4.2. Database

For interaction with the database, Django provides an object-relational mapper (ORM)
which is a layer between a relational database and the application. ORM automates
the transfer of data from relational database to python objects that can be used in
the application code [36]. This provides us with high-level abstraction on top of the
relational database and allows us to create the database using python classes, instead of
complex SQL statements. These classes are called models and represent tables found
in the relational database. Writing, reading, editing, and deleting data is done through
the database models.

This section describes the structure of ReserveTool 2.0 database. The database
consists of 18 different models with varying complexity. Entity-relationship (ER)
diagram of the database is presented in Figure 9.

The next subsections in this section describe each database model, their fields, and
their relationships to other database models. Hardware and Configuration models
are described more in-depth in this section because they are the two centre pieces
of ReserveTool 2.0 while the rest of the models are mostly built around them.

4.2.1. Hardware Model

The Hardware model is used for storing information about hardware in the PSCI
laboratory. Each piece of hardware must be registered to the database before it can
be used in configurations. This makes information about the hardware inventory as
accurate as it can be, as we do not have to rely on a script that only works when the
hardware is powered on.

The name of the hardware is automatically made from its unit id by combining it
with an incremental number which makes the name unique. The name field is used
as a lookup field in the URL of the hardware in both Web UI and REST API of the
ReserveTool. Hardware model has seven different types:

• Power switch: Hardware that handles powering of the individual hardware in the
configuration. The same power switch can be used in multiple configurations at
the same time.

• Base transceiver station (BTS) A wireless communication device which is
usually the system under testing (SUT). The same BTS can only be used in
one configuration at a time.

• Network switch A type of hardware which handles a remote connection to the
configuration. The same network switch can be used in multiple configurations
at a time.

• Serial port server Hardware which handles serial connections to the
configurations. The same serial port server can be used in multiple target
configurations at a time.

30

Configuration

name

status

datetime_creation

datetime_modified

Reservation

reservation_length

datetime_creation

datetime_closed

power_off_automatically

free_automatically

activated

power_on_time

power_on_time_added

Hardware

name

type

unit_id

status

product_code

serial_number

asset_number

parent -- children

mac_address

slot

datetime_creation

datetime_modified

User

username

email_address

Port

type

name

value

connected_to

powered

M

M

M

0..N

M M

1

0..N

IpAddress

ip_address

slug

unique

VirtualMachine

domain

Label

name

description

Pool

name

Queue

reserver_name

reservation length

datetime_creation

datetime_closing

power_off_automatically

free_automatically

0..N
1

0..N
1

0..N
1

0..N

1

Order

myorder_id

sales_order

purchase_order

datetime_creation

datetime_closed

0..N

1

Rack

name

Room

name

Shelf

name

City

name

SwInfo

name

value

datetime_modified

Country

name

1 0..N

0..N

1

M

M

M

M

M

1

1

1

M

Parameter

name

value

description

0..N

1

1
0..N

1

1

1
0..N

0..N

1

0..N

1

1

1

1

0..N

Figure 9. The ER diagram of ReserveTool database. Each relationship is defined in the
database model where the arrow representing the relationship starts. Many-to-many
relationships are marked with a red color and annotated with a letter M on both ends
of the relationship.

• Simics Is a virtual version of a BTS. It is usually the SUT in the configuration
that it can be found in. The same simics can only be used in one configuration at
a time.

• Virtual environment A hardware type that is mainly reserved for docker
containers. The same virtual environment can only be used in one target
configuration at a time.

• Other A hardware type which can be used if the above mentioned types
cannot be used. For example, could be used by some highly specified custom
equipment.

31

Hardware also has fields for the serial number, product code, asset number, MAC
address. The serial number is a number that can be found on most of the hardware in
the PSCI laboratory. It is attached to the product when it is manufactured and provides
unique identification for it during its whole lifetime. The product code identifies the
product family which the hardware belongs to. The asset number is a number that is
attached to expensive equipment and used by the company accounting. The Hardware
model has relationships to seven different models which are shown in Figure 10.

0..N 1

Port

Configuration

Reservation

Order

Shelf

IP address

M
M

M
M

0..N

1

1

0..N

0..N

1
0..N

parent -- children

Hardware

Figure 10. The ER diagram that describes the relationships of the Hardware model.
Each relationship is described with an arrow that shows the direction of the relationship
and labels that show the cardinality of the relationship.

The description about each relationship in the Hardware model and their role can
be found in Table 2. For more detailed description about each field of the Hardware
model, see Table 5 in the appendices.

Table 2. Relationships of the Hardware model.
Model Cardinality Description

Configuration many to many
Hardware can be thought as a building block,
from which, the configurations are made of.

Shelf one to many Tells the physical location of the hardware.
IP Address one to many The IP address allocated to the hardware.

Reservation many to one

Reservation object that is made when
a configuration that the hardware belongs to,
is reserved. Allows tracking of reservation
history of a specific hardware.

Order one to many
Holds the purchasing information related
to the hardware.

Port many to one

Tells the ports that are found in the hardware.
Used for mapping the physical connections
between hardware. Important for finding
the correct power switch port in
powering of a configuration.

Hardware one to many

Recursive relationship to Hardware model
which allows to construct hierarchical
relationship between different hardware.
Makes creation of configurations more
convenient.

32

4.2.2. Configuration Model

The Configuration model is used to represent configurations that are built from
hardware and reserved by the users of the ReserveTool. The Configuration model
has status which has four different states: available, reserved, maintenance and
broken. This status is used to determine what actions the user may perform to
the configuration, e.g., users can only reserve available configurations and cannot
reserve broken configurations. The Configuration model is one of the centre pieces
of ReserveTool 2.0 which makes it the model with the most relationships to different
models. Configuration model’s relationships are presented in Figure 11.

User

Hardware

Pool

Label

Queue

Reservation

Virtual
Machine

SW info

0..N
1

M

M

M

M
M

1

1

1
0..N

Configuration

0..N1

0..N

Parameters
1

Figure 11. The ER diagram of the relationships of the configuration model.

The description about each relationship in the configuration model can be found in
Table 3. For more information about each field of the configuration model see Table 4
in appendices.

4.2.3. Other Models

This section describes the rest of the database models of ReserveTool 2.0. These
models are described more briefly than Configuration and Hardware models because
they are not as complex and mainly just provide some functionality for them.

Reservation model

The Reservation model stores information about reservations that are made in
ReserveTool 2.0. Reservation objects are made when a configuration is reserved. This
happens when a user reserves an available configuration or when the user has queued
reservation to a reserved configuration and the previous reservation ends. In the case
where reservation is made from a queue object, the user has to activate the reservation
within a certain time limit, or it will be cancelled.

Although reservation status can already be seen in the Configuration model,
Reservation model stores other important information about the reservation such as
the length of the reservation, the starting and ending timestamps of the reservation, if
the reservation has been activated and how much time the configuration was powered
on during the reservation. Time related information in the reservation model is used
to compute different properties about reservation e.g., how much time is left on the

33

Table 3. Relationships of the Configuration model.
Model Cardinality Description

Hardware many to many
Hardware objects are the main
building blocks which the configuration
is made of.

User one to many

User model is used in three different
relationships in the configuration model:
current user that is reserving the configuration,
user who created the configuration and
the user who has last modified the configuration.

Label many to many
Labels provide a quick way to describe what
hardware is in the configuration.

Pool many to many
Tells the pool which the configuration is
allocated to.

Queue many to one
Queued reservation. Used for creating a reservation
object once the configuration is available.

Reservation many to one
Every time the configuration is reserved,
new reservation object is made and attached
to the configuration.

SwInfo many to one
Tells the version of the software used in the
configuration.

Parameter many to one
Manually defined parameters that the user might
use while running tests in the configuration.

reservation or if the confirmation time for the reservation has been exceeded. A
reservation also holds information about two settings that user may choose when
making a reservation: power off the configuration automatically after the reservation
and end the reservation automatically after the time runs out.

Starting and ending timestamps and power on time from past reservations are used
to calculate two different statistics: the reservation rate and the power on rate. How the
information from the reservation model is used to compute these statistics is explained
in subsection 4.5.8. For more information about the fields of the Reservation model
see Table 6 in the appendices.

Order model

The Order model is used for saving information about orders related to the hardware
used in the laboratory. Purpose of the model is to make keeping track of new hardware
shipments easier. Most of the information saved in the Order model comes from the
company’s internal purchasing tool. For more information about the fields of the Order
model see Table 7 in the appendices.

Queue model

The main purpose of the Queue model is to allow queuing reservations to
configurations which are already reserved. The Queue model is very similar to the
Reservation model, as it contains all the information needed to create a reservation

34

once the queue is closed. A queue object can also be used to make a reservation even
if the configuration is not reserved. This is especially useful for the automated CI as it
lets the CI use only one endpoint for the reservation. More information about the fields
of the Queue model can be found in Table 8 in the appendices.

Port model

The Port model is used to store information about ports that are found in the hardware.
Each port has a type and value. There are five different types of ports: power, fiber,
HDMI, serial, and generic ports. Value of the port identifies a specific port on hardware
that has multiple ports of the same type. The Port model has a relationship with itself
called connected_to which is used to map a physical connection between two ports in
the real world. For more detailed description about the fields of the Port model, see
Table 9 in appendices.

Pool model

The Pool model is used for storing information about pools. The main purpose of the
pool model is to allocate the use of a certain configuration to a specific user group.
For example, developer team A has their own pool called developer A which is
attached to all the configurations that allocated to their use. The Pool model can also
be used to assert certain settings for reserving the configurations that belong to that
pool, e.g., freeing the configuration automatically after the testing or powering off the
configuration automatically after ending the reservation. The detailed description of
the fields is provided in the appendices in Table 10.

Label model

The Label model is used for storing information about labels. The purpose of labels is
to provide information about the configuration at a high level. Labels should provide
all the information that the user needs for finding a suitable configuration to reserve.
One configuration can have many different labels and the same label can be in multiple
configurations. Detailed description about the fields can be found in the appendices in
Table 11.

VirtualMachine model

The VirtualMachine model is used for storing information about the domain names
of virtual machines that are used by some of the configurations. For more detailed
information about the fields see Table 12 in appendices.

IpAddress model

The IpAddress model stores the information about IP addresses that used in the
ReserveTool. IP address can be attached to hardware which then tells the IP address
from where the hardware can be reached. For detailed description about the fields of
the IP address model see Table 13 in appendices.

35

SwInfo model

The SwInfo model is used to save version information about the software loaded in
the configuration. The thorough description of its fields can be found in appendices in
Table 14.

Parameter model

The Parameter model is used by the Configuration model to save information about
manually defined parameters which are used in automated testing or for giving
additional information to the user reserving the configuration. For accurate description
about its fields see Table 14 in appendices.

User model

The User model7 is Django’s built-in model for handling the users of the application.
It is used in the authentication and authorization of Django applications. For more on
how authentication and authorization is handled in ReserveTool 2.0 see section 4.3.

Location models

There are five different models that are used to represent the physical location of the
hardware in ReserveTool 2.0: Country, City, Room, Rack and Shelf. Relationships
between the models are hierarchical: Country has a relation to the city, the City has a
relation to the Room and so on. With these models, accurate location for the hardware
can be retrieved. For accurate descriptions of the fields of the location models see
tables 16 to 20 in the appendices.

4.3. Authentication and Authorization in ReserveTool 2.0

ReserveTool 1.0 did not have any restrictions to different user groups which is not
a great practice in general as the users are just people and people make mistakes.
Therefore, ReserveTool 2.0 has restrictions in place for certain actions with the purpose
in mind that a regular user should not be able to disrupt other user’s activities in the
ReserveTool in any way, e.g., accidentally powering off a configuration or a hardware
that is currently reserved by some other user.

Authentication and authorization in ReserveTool are handled using Django
authentication system8. The Django authentication system allows us to authenticate
the users of ReserveTool and set up permissions for different users at a user level or at
a user group level. At the core of the authentication system are the User objects which
represent the users of the system. User objects are used to authenticate and authorize
users when they interact with ReserveTool. If the user is authenticated, a user object
is associated with every request that the user makes in ReserveTool. The User object
can then be used to authorize the user’s actions by checking the permissions associated
with the user.

7https://docs.djangoproject.com/en/3.1/ref/contrib/auth/#user-model
8https://docs.djangoproject.com/en/3.1/topics/auth/

36

4.3.1. User Groups

The users of ReserveTool are divided into four different groups: admin, developers,
automated CI, and unauthenticated users. Each of these groups has different sets of
permissions that are discussed in the subsections under this section. The user groups
only provide a set of general permissions the user belonging to the group should
have. Admin users can freely set additional permissions for each individual user when
needed.

Admin

Admin is reserved for the staff of the PSCI laboratory. Admin users can access
the admin panel of the Django application and their actions in ReserveTool are not
restricted by any permissions.

Developers

Developers are the typical end-users of ReserveTool. By default, they are only
permitted to do reservation related or read-only actions in ReserveTool.

Automated CI

Permissions for the automated CI are basically the same as for the developer as the
automated CI only uses ReserveTool for reservation related activities.

Unauthenticated users

Unauthenticated users are only permitted to do read-only actions such as browsing the
hardware inventory or statistical data.

4.3.2. Authentication

ReserveTool uses LDAP [37] as the authentication back-end which allows users to
log in to ReserveTool through the website using their company credentials. When
a user first time logs into ReserveTool, User object is automatically generated to
ReserveTool’s database. Further log ins by the same user using their company
credentials are always associated with the User object found in ReserveTool’s database.

REST API of ReserveTool provides three different ways for authentication:

• Basic authentication: In basic authentication, the username and password are
sent in the header of the HTTP request. This is not ideal in production, as you
would have to send your credentials in plain text with every request.

• Token authentication: When a User object is created in ReserveTool, an
authentication token is automatically generated for that specific User object.
This token can then be used in a header of the HTTP request to authenticate
the user. ReserveTool REST API provides an endpoint for obtaining the token

37

which requires the user to send their username and password in a POST request.
Admin user can also provide a token for the user through Django’s admin panel.

• Session authentication: Session authentication uses Django’s default session
back-end which is the same that is used in the web UI of ReserveTool. With
session authentication cross-site request forgery (CSRF) token must be included
with non-safe methods like POST, PUT, PATCH and DELETE to protect from
CSRF attacks. Session authentication is typically used in ReserveTool when
browsing the REST API with a browser using the interface provided by the DRF.

Because ReserveTool REST API supports basic authentication and token
authentication all the requests must be done using HTTPS protocol.

4.3.3. Object-Level Permissions

Object-level permissions refer to permissions which determine whether the user should
be able to perform certain actions on a specific object. In the case of ReserveTool,
object-level permissions are utilized in the reservation and powering of configurations;
user who has active reservation to a configuration is the only non-admin user who can
end the reservation or change the power setting of the configuration.

4.4. ReserveTool 2.0 REST API

REST API is a web API which conforms to the REST architectural style [38 p.5].
According to Fielding T. [39 p.76-85] REST is a web architecture which can be derived
by applying a set of constraints to the elements within the architecture:

• Separation between a client and a server.

• Communication between the client and the server must be stateless; each request
to the server must contain all the information necessary to understand the
request.

• Cache constraints: data within a response must be labeled to be cacheable or
non-cacheable.

• Uniform interface: Four interface constraints: the identification of resources,
the manipulation of resources through representations; self-descriptive messages
and hypermedia as the engine of the application state.

• Layered system: Allows architecture to compose of hierarchical layers
improving evolvability and reusability [39 p.46].

• Code-on-demand is an optional constraint which allows client functionality to
be extended by allowing the client to download and execute code in the form of
applets or scripts.

38

A resource is an abstraction of information in REST. This information can be a
document, a service, a collection of other resources or anything that can be named.
The resource identifier is used to identify a particular resource. Actions performed on
the resources are done using representations. Representations can indicate the current
state of the requested resource or the desired state for the requested resource. [39
p.88-91]

4.4.1. Implementation of ReserveTool 2.0 REST API

A state diagram of the ReserveTool 2.0 REST API is presented in Figure 12. The
state diagram shows different resources that can be reached through the REST API
and the hyperlinked relations between them. The hardware, configuration, port,
and queue resources contain custom methods which are shown inside their resource
representation.

created configurations

modified configurations current queues

reserved configurations
User

Virtual machine

Label

Pool

hardware

labels

configuration

reserver

Reservation

Shelf RoomRack City Country

hardwares
created by

modified by
current reserver

virtual machine

labels

pools

ports

- parent
- childrenip address

IP address

hardwares

Order

pools

SW info

sw infos parameters

Configuration

(POST): /reserve/

(DELETE): /free/

(POST): /power/

(PATCH): /mark_as_broken/

Hardware

(PATCH): /add_hardware_children/

(DELETE): /clear_hardware_children/

(PATCH): /replace_hardware_children/

Port

(POST): /make_connection/

(DELETE): /break_connection/

connected to

configuration

location

Parameter

Queue

(GET): /poll/

Figure 12. The state diagram of the ReserveTool 2.0 REST API. Each resource that
found in the REST API is shown in the diagram.

The state diagram has been simplified in a way that list versions of the resources are
omitted because all the resources found in the REST API have it. Figure 13 displays
how a relationship between a list and items in it works using the configuration resource
as an example. The end-point for the list version of a specific resource displays the
objects associated with the resource in a list and handles the POST method which can
be used to create new objects of the model the resource represents. The item endpoint is
used to handle the methods like PUT, PATCH and DELETE that manipulate a singular
object.

39

itemList Item

Example URL:
/api/v1/configurations/

Example URL:
/api/v1/configurations/<name>/

GET
POST

GET
PUT

PATCH
DELETE

Figure 13. An example using the configuration resource on how the list-item
relationship works in ReserveTool REST API. List endpoint shows a list of
configurations and handles the POST method for creating new configurations. Item
endpoint handles methods that are used to manipulate a single configuration.

4.5. Web UI of ReserveTool 2.0

This section describes the web UI of ReserveTool 2.0. ReserveTool 2.0 web UI consists
of views which handle the communication between the database and the front-end.
As ReserveTool 2.0 is greatly database driven application, most of the views in the
web UI make use of Django’s built-in generic class-based views which provide a lot
of functionality for the common use cases such as displaying, creating, editing, and
deleting database objects. There five different generic class-based views that are used
for working with database objects in ReserveTool 2.0:

• ListView Shows information about multiple objects.

• DetailView Shows information about a single object.

• CreateView Provides and validates a non-populated form for the creation of a
single object.

• UpdateView Provides a form populated with existing data and validates the form
for editing the single object.

• DeleteView Deletes a single object.

Names for the views in ReserveTool 2.0 are composed from the model’s name and
action the view handles, e.g. a hardware-detail view shows information related to a
specific hardware and a hardware-delete view provides functionality to delete a specific
hardware.

4.5.1. Navigation

Structure of the ReserveTool 2.0 web UI can be thought as consisting of three layers.
The first layer consists of views that can be navigated to using a navigation bar which is
provided at the top of each web page in ReserveTool 2.0, see Figure 14. Options in the

40

navigation bar change based on if the user is authenticated and from their permissions:
e.g., link to the Admin panel is only shown for admin users.

(a) Navigation bar (user logged in)

(b) Navigation bar (user logged out)

Figure 14. Screenshots of the navigation bar of ReserveTool 2.0. Each option in the
navigation bar provides a link to a different view.

The second layer consists of views that can be navigated to from the views of the first
layer. The third layer consists of views that are navigated to from the views that belong
to the second layer. Although there are a few exceptions with reservation related views
where they are provided with a shortcut from home and configurations views. A chart
detailing how the web UI of ReserveTool 2.0 can be navigated is presented in Figure
15. At the top row of the chart are the views which are linked to directly from the
navigation bar of ReserveTool 2.0. Navigation consists of three different layers which
results in that everything in the web UI can be reached within three actions. API and
Admin links in the navigation, link to the index ReserveTool 2.0 REST API and to
Django’s built in admin panel. As they are outside the implementation of ReserveTool
2.0 web UI, they are not discussed in this section.

Navigation bar

Home StatisticsAPI Admin Hardware Configurations Create
reservation

IP
Addressses

Virtual
Machines Orders Log in /

Log out

Create
Hardware

Hardware
Detail

Delete Edit

Configuration
Detail

Create
Configuration

Edit

Create Edit Delete Create Edit Delete Create Order
detail

DeleteDelete PowerReserveQueueEdit
Connections

End
Reservation

Edit
Queue

Delete
Queue

Mark as
broken

Figure 15. The navigation chart of the web UI of ReserveTool 2.0. Items represented
in the chart are views that can be found in ReserveTool 2.0. Arrows between the views
tell how a user can navigate through the web UI of ReserveTool 2.0.

4.5.2. Home

The homepage of ReserveTool 2.0 shows the user their currently reserved
configurations, their open reservation queues, and their previously reserved

41

configurations. Screenshot of the homepage is presented in Figure 16. Purpose of
the homepage is to provide user with a quick way to manage all their reservation
related activities in the ReserveTool and to show contact information or other essential
information to the users of the ReserveTool. The homepage has three different tables
for authenticated users: Current reservations, queued reservations, and previously
reserved configurations. Current reservations table shows the configurations that are
currently reserved by the user. Queued reservations show the active queues the user has
and provides functionality to edit or delete them. Previously reserved configurations
table lists configurations from the past 100 reservations the user has made.

Figure 16. A screenshot of the homepage of ReserveTool 2.0. In the homepage, a
user can find their currently reserved and previously reserved configurations. The
homepage also provides a way to manage queued reservations.

4.5.3. Hardware

This section describes the views related to Hardware model: hardware-list, hardware-
detail, hardware-create, hardware-update, hardware-delete views which are used for
listing hardware, showing details about individual hardware, creating new hardware,
editing, and deleting existing hardware.

Listing hardware

Listing hardware is done with a hardware-list view which displays hardware instances
on a single table, each row providing the most essential information about the hardware
and a link to the detail view of the individual hardware. Figure 17 shows a screenshot
of the hardware-list view. The name of the hardware provides a link to a detail view
of the individual hardware. Rows on the table are coloured based on the status of the
hardware. Specific hardware can be searched by using a search bar that is provided

42

above the table. The selector provided at the top of the table can be used to filter the
table based on the type of the hardware. Button that links to a view for creating new
hardware is provided for admin users above the table.

Figure 17. A screenshot of the hardware-list view. Each individual hardware is listed
on the table with its most essential information.

Showing details of a single hardware

Hardware-detail view is used for displaying all the information that is saved about
one hardware instance and to provide controls for editing and deleting the hardware
instance. Figure 18 shows a screenshot of the hardware detail view.

Figure 18. A screenshot of the hardware-detail view.

43

Creating, editing, and deleting hardware

Creation of hardware is done with the hardware-create view which uses a form called
hardware form that has input fields for all the different fields and relationships that are
used by the Hardware model. Editing a hardware instance is done through a hardware
update view which uses hardware form with a few non-editable fields such as unit id
and type omitted from the form. Creating and editing of ports that are related objects
used for mapping connections between different hardware is done with a dynamic
formset which is contained within the hardware form. This saves time, as the ports
that belong to the hardware can be created and edited within the same view. Creating,
editing, and deleting hardware requires user to be admin user.

4.5.4. Configurations

Configurations represent the test environments which are managed by admin users
and reserved by regular users of ReserveTool 2.0. Views related to the configurations
are configuration-list, configuration-detail, configuration-create, configuration-update,
and configuration-delete views. They handle listing configurations, showing details
about a single configuration, and creating, editing, and deletion of configurations.

Listing configurations

The listing of configurations is done with the configuration-list view. Configurations
are displayed on a single table which can be filtered based on a search term provided
by the user or by choosing pools and labels with the two selectors located next to the
search bar. Figure 19 shows a screenshot of the configuration-list view.

Figure 19. A screenshot of the configuration-list view. Configurations are listed on
the table which can be searched using a search field or filtered by selecting labels and
pools. Rows of the table are coloured based on the status of the configuration.

Actions column on the table provides four different actions based on status of the
configuration object level permissions which are derived from the user who is reserving
the configuration:

• Reserve: Shown when the configuration is available, and the user is
authenticated.

44

• End Reservation: Shown only to the user reserving the configuration.

• Queue: Shown when the configuration is reserved, and the user is not the one
reserving the configuration.

• Power on: Shown only to the user reserving the configuration when the
configuration is powered off.

• Power off: Shown only to the user reserving the configuration when the
configuration is powered on.

Showing details of a single configuration

Showing information about a single configuration instance is handled by the
configuration-detail view. Figure 20 shows a screenshot of the configuration detail
view.

Figure 20. A screenshot of the configuration-detail view. Configuration-detail view
shows all the information related to a single configuration. Buttons for editing,
deleting, reservation, powering and marking the configuration as broken are provided
at the top.

Configuration-detail view provides buttons for three additional actions for the
configuration that are not shown in the configuration-list view:

• Edit: Links to the configuration-update view.

45

• Delete: Links to the configuration-delete view.

• Mark as broken: Changes the status of the configuration to broken, ends the
current reservation and cancels queued reservations if there are any. This action
can only be used by the user currently reserving the configuration or by admin
users.

Configuration-detail view also contains a connection making view. For more
information about the connection making view, see subsection 4.5.5 below.

Creating, editing, and deleting configurations

Creating configurations is done through configuration-create view which uses a form
that has input fields for the fields of the Configuration model and selectors for
the relationships that the Configuration model uses. Configuration form also has
a dynamic formset for the creation of parameter objects related to that specific
configuration. Configuration-update view uses the same form as the configuration-
create view with the exception that regular users are allowed only to edit the parameter
formset.

4.5.5. Connection Making View

Connections between different hardware can be made using the connection making
view which is an asynchronous9 view found in the configuration-detail view.
Screenshot of the connection making view is presented in Figure 21. Editing
connections requires user to be admin user.

Figure 21. A screenshot of the connection making view. Ports found in the
configuration are listed on the table. For each port listed on the table, there is a
dropdown selector which is used to select the port to which it is connected to.

Currently, only the mapping of power connections provides functional purpose in
ReserveTool 2.0. In the Figure 21 which shows ports of one configuration, we can
see that power-2 port of the ASIK-136 hardware is connected to a power-1 port

9Asynchronous views can send and retrieve information from the web server without having to
refresh the whole web page.

46

of Enics-142 which is the power switch used in the configuration. To power on
the configuration, each power port of the power switch of the configuration that is
connected to the other hardware in the configuration has to be turned on. In the case
shown in Figure 21, to power on the configuration, the power-1 port on the Enics-142
power switch is switched on.

4.5.6. IP Address and Virtual Machine Views

There are two views in ReserveTool 2.0 web UI for managing IP Address and Virtual
Machine objects. The implementation for both views is very similar with only a few
differences: database models used are different and IP addresses are represented on
two tables instead of one based on the unique property on the IP address object which
determines if it can be used by multiple hardware. Figure 22a shows a screenshot of
the IP address view and Figure 22b shows a screenshot of the Virtual machine view.
Both views provide controls for editing, deleting, and creating new objects.

(a) IP address view

(b) Virtual machine view

Figure 22. Screenshots of IP address and virtual machine views. Both views are
similar with edit and delete buttons provided for each represented object. The button
for creating new objects is provided at the top in both views.

47

4.5.7. Orders

Instances of Order model are used to store purchasing information about hardware.
Order views are meant to be used by the admin users of ReserveTool to keep track of
new hardware shipments. Order is pending or open when it does not have a closing
time in the database. Once the hardware in the order is received by ReserveTool
admins, order can be closed. There are five different views related to order objects:
order-list, order-detail, order-create, order-edit, and order-delete.

Order-list view is used to list orders in a table with most essential fields of the
orders presented. Screenshot of the order-list view can be seen in Figure 23a. Each
order in the table has a link to the order-detail view of the order which shows all the
details about a single order and provides the controls for the manipulation of the order
instance. Screenshot of the order-detail view can be seen in Figure 23b.

(a) Order-list view

(b) Order-detail view

Figure 23. Screenshots displaying order-list and order-detail views. Link to order-
create view which is used for creating new orders is provided in the order-list view
at the top. Controls for editing, deleting, and closing the order are provided in the
order-detail view.

4.5.8. Statistics

Purpose of the statistics view is to provide the admin users of ReserveTool 2.0
statistics about the usage of ReserveTool 2.0. There are two different statistics that are

48

computed from the reservation objects attached to the hardware and configurations:
the reservation rate and power on rate.

Reservation rate ranges between zero and one, one being that object in question was
reserved the whole available time and zero being that the object was not reserved at
all during the whole available time. Equation (1) shows how the reservation rate is
calculated.

reservation rate =
reserved time

total time available
(1)

The power on rate is calculated somewhat similar to the reservation rate and ranges
from zero to one. The difference is that it measures the ratio of time which a
configuration or hardware was powered on. This provides more accurate information
about the true usage of the hardware because a configuration is not necessarily used all
the time during a reservation. Equation (2) shows how the power on rate is calculated.

power on rate =
power on time

total time available
(2)

Both statistics are represented in a bar chart. The time scale of the chart can be
adjusted to display data from the last day, week or month. User can also choose which
configurations or hardware the data will be fetched from. Screenshot of the statistics
page is presented in Figure 24. Different selectors at the top of the page numbered from

Figure 24. A screenshot of the statistic page. The reservation rate (red) and power on
rate (blue) are both displayed in the same bar chart where they can be compared.

one to three, determine the data that is displayed on the chart. The first selector (marked
with 1) lets the user select time frame for the chart. The options for the time frame are
day, week, or month. Second selector (marked with 2) is used to select the type for

49

the third (marked with 3) selector. There are three different types: a configuration,
hardware, and pool. The third selector lists either configurations, hardware, or pools
depending on the selection of the second selector and determines the hardware or
configurations from which the data is queried from.

4.6. Configuration Reservation

ReserveTool 2.0 offers several different ways to reserve a configuration. Reservation
can be made through the web UI or through the REST API. Making a reservation
requires user provide a few key pieces of information about the reservation:

• Duration: A user specified duration for the reservation. Must be under the
maximum duration which is set globally for all the reservations by the admins.

• Configuration or pools and labels: User must provide either configuration that
should be reserved or pools and labels which the desired configuration should
match.

• Power off automatically: Setting which determines whether the configuration
should be powered off after the reservation.

• Free automatically: Setting which determines whether the reservation should
be ended automatically once the duration runs out. This setting is enabled by
default and it can only admin users can disable it.

4.6.1. Reservation System

At the core of ReserveTool 2.0 reservation system are Reservation and Queue objects.
Reservation objects hold all the information about reservations such as the length of
the reservation, who made the reservation, and the configuration which is the target
for the reservation. A Queue object is created when a user queues a reservation to a
configuration which is already reserved. When the current reservation ends, if there is
a queue object in the reservation queue, a new reservation object is created using the
information contained in the queue object. Reservation queues in the ReserveTool use
first in, first out -principle which means that the oldest queue object that is not closed,
is processed first. Flowchart describing the steps of creating and ending a reservation
is presented in Figure 25.

Automatic ending of reservations and powering off configurations is handled by two
different management commands check_reservations and check_powers that are run
periodically every few minutes by their respected systemd services in the ReserveTool
server. Flow charts describing how the management scripts work are presented in
Figure 26.

50

Create Reservation

Change configuration
status to reserved and
current reserver to the

user who made the
reservation

Are there
reservations in the

queue?

Reservation ended

No

Change configuration
status to available and
current reserver field to

null

Create new Reservation
object with activated field

as false and change
current reserver field on

the configuration

Yes

Does the new
reserver have email

address?

Send email notification

Yes

Do nothing

Reservation made
from Queue object?

Yes

No

No

Figure 25. Flowchart displaying what steps are taken by ReserveTool 2.0 when a
reservation is created and ended.

Go through all available
configurations

Is configuration
powered?

No

Check automatic
powering off setting and
power off time exceeded

property on latest
reservation

Automatic powering off
enabled and power off

time exceeded?

yes

No

Power off the
configuration

Do nothing

Yes

(a) check_reservations script

Go through all reserved
configurations

Is automated freeing
enabled in the
reservation?

No

Yes

Check reservation times

Is reservation time
exceeded?

No

End reservation and send
email that reservation

was ended

Yes

Do nothing

(b) check_powers script

Figure 26. Flowchart displaying the decision process of the two management scripts:
check_reservations and check_powers.

51

4.6.2. Reservation through the Web UI

There are two ways that a user can use to reserve a configuration. Explicitly finding
a configuration they want to reserve or by choosing pools and labels as criteria
when making a reservation and letting ReserveTool 2.0 choose a configuration that
matches that criteria. A configuration can be reserved from the configuration-list
view, configuration-detail view, or from a reservation-create view. The support for
reservation using pools and labels is provided only in the reservation-create view.
Figure 27 shows a screenshot of the reservation-create view. After submitting the form
displayed in the view, the user will be redirected to the detail view of the configuration
that was reserved for them.

Figure 27. A screenshot of the reservation-create view. In the form, the user has
to choose either a configuration or pools and labels which the configuration should
match.

Reservations done from the configuration-list view or configuration-detail view,
are explicit reservations aimed for a specific configuration and use a modal window
which asks for the reservation length and settings for power off automatically and
free automatically. Free automatically setting can only be changed by admin users.
Screenshot about the reservation modal window is presented in Figure 28.

52

Figure 28. A screenshot showing a modal window when a reservation is made using
the configuration-detail view.

4.6.3. Reservation through the REST API

There are three different ways a reservation can be made in the ReserveTool REST
API:

1. Creating a new Queue object by doing HTTP POST to /reservetool/queues/
endpoint. Creating a queue object requires user to provide length for the
reservation and either link to the configuration or pools and labels that match
some configuration. Figure 29 shows a flowchart detailing how ReserveTool 2.0
handles reservations using the Queue endpoint. This method is the preferred way
for the CI servers to reserve configurations due to its flexibility, as it returns a
Queue or Reservation object depending on the status of the configuration.

2. Creating a new reservation object by doing HTTP POST to
/reservetool/reservations/ endpoint. This method requires similar data as
the queue endpoint. Only difference is that for the request to succeed, the
configuration must be available. This method can be used when the user wants
to utilize reservation with pool and labels but does not want to queue reservation
if there are none currently available.

3. HTTP POST request to /reservetool/configurations/<name>/reserve/ endpoint
which is unique to a specific configuration. This method is the simplest way of
reserving a configuration through the REST API. The downside of this method
is that the configuration has to be available for the request to succeed, as this
method is limited to a single configuration and configuration selection using
pools and labels cannot be utilized.

53

HTTP POST to
Queue list

Is the
configuration

reserved?

No

Create and return a
Reservation object

Create and return a
Queue object

Yes

Poll Queue object
with HTTP GET

Is the
configuration

reserved?

No

Return a Queue
object

Yes

Figure 29. Flowchart showing how queue endpoint is utilized when making a
reservation through the REST API. The client can determine when it is their turn in
reservation when they are returned a Reservation object.

4.7. Importing the Hardware Inventory

Importing the hardware from ReserveTool 1.0 is necessary before ReserveTool 2.0
can be taken into use. Because all the information that ReserveTool 2.0 requires is
not available from ReserveTool 1.0 it was decided within the PSCI team that all the
hardware in the PSCI laboratory should be catalogued in a spreadsheet which can be
used to import all the necessary data to ReserveTool 2.0.

Importing from the spreadsheet was done by converting the spreadsheet to a comma-
separated values (CSV) format and reading it with a Python script and creating
necessary objects based on the information provided in the spreadsheet.

4.8. Tests to Ensure Operability of ReserveTool 2.0

Testing in ReserveTool 2.0 is currently done only for the REST API. Testing is
implemented using Django’s test framework that is extended by DRF. Purpose of the
tests is to provide a set of automated tests that can be run always when there is a
change to either database models or to the views of the REST API. The tests consist of
creation, modification, and deletion of database objects, and reservation related actions
such as reserving and queueing configurations.

54

5. EVALUATION AND DISCUSSION

The goal of this thesis was to improve ReserveTool 1.0 by increasing its usability and
reliability, improving the hardware utilization rate and provide support for new features
such as dynamic hardware configurations, hardware inventory, and reservation using
pools and labels. The product created during the thesis work was a new application
called ReserveTool 2.0 which was designed to achieve the goals mentioned above.
Most of the set goals such as the improved hardware inventory and the support for
dynamic configurations were achieved by ReserveTool 2.0. The goal of improving
reliability and hardware utilization could not be evaluated, because there was not
enough time to take ReserveTool 2.0 to production and monitor its performance.
Although, it can be argued that the poor hardware inventory was one of the causes for
low hardware utilization in ReserveTool 1.0, as it was not as apparent what hardware
the configurations in ReserveTool 1.0 represented. Having a better hardware inventory
in ReserveTool 2.0 should lead to a smaller number of obsolete configurations in the
application.

Achievement of functional goals such as support for dynamic hardware
configurations, hardware inventory, and reservation using pools and labels can be
validated by examining the implemented application. The support for dynamic
hardware configurations and hardware inventory was achieved by designing the
database in a way where configurations are built from hardware objects that have
port objects attached which can be used to map the connections between different
hardware. Reservation using pools and labels was implemented for both the REST API
(subsection 4.6.3) and web UI (subsection 4.6.2) sides of ReserveTool 2.0. Usability
of ReserveTool 2.0 was validated with a user experiment which is detailed in the next
section.

5.1. User Experiment

User feedback for ReserveTool 2.0 was gathered in a form of user experiment and a
survey. The participants for the user experiment consisted of members of the PSCI
team with most of them having previous experience from using ReserveTool 1.0. In
the task used in the experiment, participants had to create a configuration and test it by
reserving and powering it. The environment for the experiment was a development
server running the latest version of ReserveTool 2.0 application. The experiment
consisted of eight different steps:

1. Creating IP address object for the power switch.

2. Creating the pool and label objects for the configuration in the admin panel.

3. Creating two hardware: a power switch and a BTS type hardware.

4. Creating a configuration using the created hardware, pool, and label.

5. Making a power connection to the power switch in the configuration-detail view.

55

6. Reserving the created configuration in the detail page of the configuration and
powering it on.

7. Powering off the configuration and ending the reservation.

8. Answering the survey.

5.1.1. Survey

The survey consisted of various of different qualitative questions. Questions were
inspired by the Jakob Nielsen’s ten usability heuristics [40].

1. Was the system feedback in ReserveTool clear while performing the task? If
not, where was it unclear? Purpose of this question is to evaluate the feedback
ReserveTool 2.0 gives to the user when they perform actions in it.

2. Please describe any problem(s) you had using the ReserveTool during the task.
The aim of this question is to find any usability problems that were found during
the experiment which can then be added to the list of future improvements.

3. Were there any instances where using the ReserveTool was unintuitive? (The
ReserveTool behaved differently than you expected) This question relates
to Nielsen’s fourth usability heuristic which is consistency and standards.
Perspective from different users is valuable feedback because different people
have different expectations.

4. Did you get any error notifications when performing the task? This question is
simple yes and no question which determines whether the user should be asked
the next two questions.

5. What were the errors? This question is used to determine in which part of the
experiment errors happened and what were they.

6. Was it stated clearly how the errors you had can be avoided? If not, how
would you improve it? It is important that there are no unhandled error cases
in ReserveTool 2.0. Error messages are meant to help the users, so they have to
be able to understand them which makes it valuable to get their opinion.

7. How did the navigation in the new version of ReserveTool feel compared to
the old one? This question is aimed towards participants who have experience
using ReserveTool 1.0. It helps the transition from ReserveTool 1.0 to 2.0 if the
navigation feels familiar. This question is also somewhat linked to the question
about unintuitive behaviour as the users of ReserveTool 1.0 have expectations on
how the ReserveTool is navigated.

8. Was there anything in the old version of ReserveTool that you would have liked to
see in the new version? This question is also aimed at participants who have used
ReserveTool 1.0. The aim of this question is to find the features of ReserveTool
1.0 that should be ported in some way to ReserveTool 2.0 in the future.

56

9. How would you describe your overall experience when compared to previous
version of the ReserveTool? Purpose of this question is to survey how well
ReserveTool 2.0 is received by the users of ReserveTool 1.0.

10. Additional feedback If the participant has any feedback about ReserveTool 2.0
which does not respond to any other question in the survey, they can use the field
provided under this question for that.

5.1.2. Survey Results

The experiment was done by four different participants. From the responses in the
survey, it could be determined that three of the four participants had experience using
ReserveTool 1.0. With a limited number of responses in the survey, extensive thematic
analysis for the responses was not carried out. Instead, three different key topics were
identified based on the content of the responses. They are discussed in the following
subsections under this section.

Problems and errors encountered during the experiment

There were two participants who encountered errors during the experiment. The
first error was related the authentication. The user said that he could not log in to
the ReserveTool during the first five minutes of the experiment using the credentials
provided in the instructions for the experiment. After they managed to log in, they did
not encounter the error again and could not reproduce it. The error might be related
only to the user account used for the experiment, and as it could not be reproduced, it
might not be a serious one.

The second error that was encountered was related to data validation. The participant
created a port with a value "1234" which was not in the specified range for the power
switch type that was used. This error was communicated with a message that stated
that "TestPowerSwitch has maximum of 1 outlets. Given value is 1234". This error can
be avoided in the future by adding more validation in the form that creates the port.

Direct feedback and comparison to ReserveTool 1.0.

Overall, participants were positive about their experience using ReserveTool 2.0 during
the experiment. The survey question 3. about the unintuitive usage of ReserveTool 2.0
yielded two different viewpoints:

1. Two participants reported that usage of Django’s admin panel for the creation
pool and label objects felt unintuitive and would have rather used UI similar to
the creation of other objects. This is understandable because Django’s admin
panel differs greatly from the rest of the web UI of ReserveTool 2.0. The
design choice of using Django’s admin panel for pools and labels was driven
by the fact that creation of new pool or label is a rare task performed by admins
that the admin panel already has the functionality built-in which reduces the
development time.

57

2. One participant reported that usage felt intuitive but very different, because the
approach of "building a configuration from pieces" was different than they have
used to when working with ReserveTool 1.0. This is to be expected as the
creation of configurations is very different between ReserveTool 1.0 and 2.0.
In ReserveTool 1.0, user creates a configuration which does not require any
hardware information, because the hardware information about a configuration
is fetched with a script directly from the hardware residing in the IP address
allocated to the configuration. This has a drawback that the information can
be obsolete, because the hardware information can only be fetched while the
configuration is powered on. In ReserveTool 2.0 user has much better visibility
on what hardware the configuration they are creating has, as the hardware must
be created prior to the creating of the configuration.

When comparing the navigation of ReserveTool 2.0 and 1.0. The participant
reported that the navigation felt smoother in ReserveTool 2.0 than in ReserveTool
1.0. There is some threat to the validity of this result, because the participants have
experience from using the live version of ReserveTool 1.0 which has a lot more data in
its database which then increases the loading times when navigating the ReserveTool
due to longer query times.

When comparing their overall experience between ReserveTool 2.0 and 1.0,
participants reported that ReserveTool 2.0 is more complicated and requires more steps
from the user while providing more information. One participant also mentioned that
UI of ReserveTool 2.0 is visually more pleasing.

Suggestions for future development of ReserveTool 2.0

There were a few suggestions about features that could be developed in the future.
Some of them were features that are found in ReserveTool 1.0 such as a description
field for the configurations or reservation history of configurations. The latter is already
implemented in ReserveTool 2.0 but was not explored during the experiment which
makes it understandable that the participant missed it. The most interesting suggestion
that would greatly speed up the creation of a configuration was to have the creation of
all the simple related models Pool, Label, IpAddress, and VirtualMachine in a single
form.

5.2. Future Work

The future work for the ReserveTool 2.0 includes various of things ranging from
important features that are still needed for adopting ReserveTool 2.0 to production,
to endless small improvements and expansions in the future. One important feature
before ReserveTool 2.0 can be taken to production is an API client that simplifies the
usage of ReserveTool 2.0 REST API for the CI servers.

Once the ReserveTool 2.0 is properly taken into production, tests for both the REST
API and web UI should be implemented to ensure that the ReserveTool 2.0 works as
intended. Data integrity in ReserveTool 2.0 could be increased with a periodically run
management command which would check the hardware information from the real

58

hardware and compare it with the information in the database object of the respected
hardware. Any anomalies detected would be reported to the admin users.

The statistics view currently has only one bar chart which provides information
about the reservation rate and power on rate. This view could be expanded to
house other charts that measure some important metric related to the performance of
ReserveTool 2.0.

Groundwork for dynamic hardware configurations was done by allowing to store
information about different hardware connections. In the future, using a fiber switch,
dynamic configurations could be made on the fly using that information.

As one of the goals of ReserveTool 2.0 was a better hardware inventory, exporting
and importing of hardware information should be supported in the future. The file
format used for importing and exporting should be a format such as CSV or JSON to
make it portable to different systems and tools.

59

6. SUMMARY

The objective of this thesis was to improve existing test environment management
application called ReserveTool 1.0 which operates in a continuous integration
environment. ReserveTool 1.0 had several limitations that were found by the users
of the application and fixing or eliminating them was the priority of this thesis work.
Among those limitations were a low hardware utilization rate, no support for dynamic
hardware configurations, usability limitations such as permissions handling, and most
importantly, a poor hardware inventory.

To fix the limitations, a new web application called ReserveTool 2.0 was developed.
A new database structure for the ReserveTool 2.0 was designed in mind that every
piece hardware in the laboratory is registered to ReserveTool 2.0 and test environments
called configurations are built from the hardware which leads to a much more accurate
hardware inventory. Both web UI and REST API were implemented for ReserveTool
2.0 to provide interfaces for management and reservation of configurations. Proper
authentication and authorization methods were implemented for the application which
allowed separation between different user groups and their permissions.

The usability of the web UI of ReserveTool 2.0 was evaluated with a user
experiment. The feedback from the participants of the experiment was positive
with a few future suggestions provided. Comparison between the utilization rate
and reliability between ReserveTool 1.0 and 2.0 could not be done as there was not
enough time to take ReserveTool 2.0 to production and monitor its performance.
The implemented application provides an easily expandable base for the future with
several improvements and a support for new features such as dynamic hardware
configurations.

60

7. REFERENCES

[1] Fowler M. & Foemmel M. (2006), Continuous integration.

[2] Mårtensson T., Ståhl D. & Bosch J. (2016) Continuous integration applied
to software-intensive embedded systems–problems and experiences. In:
International Conference on Product-Focused Software Process Improvement,
Springer, pp. 448–457.

[3] Hammant P. (2017). URL: https://trunkbaseddevelopment.com/.
Accessed 24.11.2020.

[4] URL: https://www.gerritcodereview.com/. Accessed 24.11.2020.

[5] Myers G.J. & Badgett T. (2004) The art of software testing, vol. 2. Wiley Online
Library.

[6] Krasner H. (2021), The cost of poor quality software in the us: A 2020
report. URL: https://www.it-cisq.org/the-cost-of-poor-
software-quality-in-the-us-2020-report.htm, accessed
15.01.2021.

[7] Broekman B. & Notenboom E. (2003) Testing embedded software. Pearson
Education.

[8] Jorgensen P.C. (2018) Software testing: a craftsman’s approach. CRC press.

[9] Khan M.E., Khan F. et al. (2012) A comparative study of white box, black box
and grey box testing techniques. Int. J. Adv. Comput. Sci. Appl 3.

[10] Acharya S. & Pandya V. (2012) Bridge between black box and white box–gray
box testing technique. International Journal of Electronics and Computer Science
Engineering 2, pp. 175–185.

[11] Naik K. & Tripathy P. (2011) Software testing and quality assurance: theory and
practice. John Wiley & Sons.

[12] Trautsch F., Herbold S. & Grabowski J. (2020) Are unit and integration test
definitions still valid for modern java projects? an empirical study on open-source
projects. Journal of Systems and Software 159, p. 110421.

[13] Kassab M., DeFranco J.F. & Laplante P.A. (2017) Software testing: The state of
the practice. IEEE Software 34, pp. 46–52.

[14] Wong W.E., Horgan J.R., London S. & Agrawal H. (1997) A study of effective
regression testing in practice. In: PROCEEDINGS The Eighth International
Symposium On Software Reliability Engineering, IEEE, pp. 264–274.

[15] Yoo S. & Harman M. (2012) Regression testing minimization, selection and
prioritization: a survey. Software testing, verification and reliability 22, pp. 67–
120.

https://trunkbaseddevelopment.com/
https://www.gerritcodereview.com/
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-2020-report.htm
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-2020-report.htm

61

[16] Hilton M., Nelson N., Tunnell T., Marinov D. & Dig D. (2017) Trade-offs in
continuous integration: assurance, security, and flexibility. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, pp. 197–207.

[17] Elbaum S., Rothermel G. & Penix J. (2014) Techniques for improving regression
testing in continuous integration development environments. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 235–245.

[18] Janzen D. & Saiedian H. (2005) Test-driven development concepts, taxonomy,
and future direction. Computer 38, pp. 43–50.

[19] Duvall P.M., Matyas S. & Glover A. (2007) Continuous integration: improving
software quality and reducing risk. Pearson Education.

[20] Humble J. & Farley D. (2010) Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

[21] Zhao Y., Serebrenik A., Zhou Y., Filkov V. & Vasilescu B. (2017) The impact
of continuous integration on other software development practices: a large-
scale empirical study. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, pp. 60–71.

[22] Vasilescu B., Yu Y., Wang H., Devanbu P. & Filkov V. (2015) Quality
and productivity outcomes relating to continuous integration in github. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 805–816.

[23] Hilton M., Tunnell T., Huang K., Marinov D. & Dig D. (2016) Usage,
costs, and benefits of continuous integration in open-source projects. In: 2016
31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, pp. 426–437.

[24] Beck K. (2000) Extreme programming explained: embrace change. addison-
wesley professional.

[25] Ghaleb T.A., Da Costa D.A. & Zou Y. (2019) An empirical study of the long
duration of continuous integration builds. Empirical Software Engineering 24,
pp. 2102–2139.

[26] Jin X. & Servant F. (2020) A cost-efficient approach to building in continuous
integration. In: 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), IEEE, pp. 13–25.

[27] Garousi V., Felderer M., Kuhrmann M., Herkiloğlu K. & Eldh S. (2020)
Exploring the industry’s challenges in software testing: An empirical study.
Journal of Software: Evolution and Process , p. e2251.

[28] Karlesky M., Williams G., Bereza W. & Fletcher M. (2007) Mocking the
embedded world: Test-driven development, continuous integration, and design
patterns. In: Proc. Emb. Systems Conf, CA, USA, pp. 1518–1532.

62

[29] Vöst S. & Wagner S. (2016) Trace-based test selection to support continuous
integration in the automotive industry. In: Proceedings of the International
Workshop on Continuous Software Evolution and Delivery, pp. 34–40.

[30] Aarno D. & Engblom J. (2014) Software and system development using virtual
platforms: full-system simulation with wind river simics. Morgan Kaufmann.

[31] Engblom J. (2015) Continuous integration for embedded systems using
simulation. In: Embedded World 2015 Congress.

[32] Continuous delivery. URL: https://continuousdelivery.com/.
Accessed 03.02.2021.

[33] Continuous integration vs. continuous delivery vs. continuous deployment.
Accessed 03.02.2021.

[34] URL: https://velocitywms.com/about-us/. Accessed 19.10.2020.

[35] Django Software Foundation, Django. URL: https://djangoproject.
com.

[36] Makai M. (2012), Object-relational mappers (orms). URL: https:
//www.fullstackpython.com/object-relational-mappers-
orms.html. Accessed 30.12.2020.

[37] Wahl M., Howes T. & Kille S. (1997), Rfc2251: Lightweight directory access
protocol (v3).

[38] Masse M. (2011) REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. " O’Reilly Media, Inc.".

[39] Fielding R.T. (2000) Architectural styles and the design of network-based
software architectures, vol. 7. University of California, Irvine Irvine.

[40] Nielsen J. (2005), Ten usability heuristics.

https://continuousdelivery.com/
https://velocitywms.com/about-us/
https://djangoproject.com
https://djangoproject.com
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html

63

8. APPENDICES

Appendix 1 Description of the fields of ReserveTool 2.0 database models.

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 64

This appendix shows the fields of each database model in ReserveTool 2.0 in table
format. Name, type, constraints and deleting behaviour are given for each field.

Table 4. The fields used in Configuration model
field name field type constraints delete behaviour
name CharField unique, required -
status CharField required,

choices:
• available
• reserved
• maintenance
• broken

-

datetime_creation DateTimeField - -
datetime_modified DateTimeField - -
pools ManyToManyField

to Pool model
required set null

labels ManyToManyField
to Label model

required set null

virtual_machine ForeignKey to
VirtualMachine
model

- set null

created_by Foreignkey to
User model

- set null

modified_by Foreignkey to
User model

- set null

current_reserver Foreignkey to
User model

- set null

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 65

Table 5. The fields used in Hardware model
field name field type constraints delete behaviour
name CharField unique, required -
unit_id CharField required,

must be one of the
unit_id choices

-

type CharField required,
choices:
• power switch
• bts
• network switch
• serial port server
• simics
• virtual

environment
• other

-

status CharField required,
choices:
• functional
• broken
• in recovery
• recovery failed

-

product_code CharField - -
serial_number CharField - -
asset_number CharField - -
mac_address CharField - -
slot IntegerField choices: 0-7 -
datetime_creation DateTimeField - -
datetime_modified DateTimeField - -
configuration ManyToManyField

to Configuration
model

bts, simics and
virtual
environment can
only be in one
configuration

set null

parent ForeignKey to self - set null
ip_address ForeignKey to IP

address model
- set null

location ForeignKey to
Shelf model

- set null

order ForeignKey to
Order model

- set null

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 66

Table 6. The fields used in Reservation model
field name field type constraints delete

behaviour
reservation_length DurationField must be under

maximum
duration

-

datetime_creation DateTimeField - -
datetime_closed DateTimeField - -
configuration ForeignKey to

Configuration
model

- set null

hardwares ManyToManyField
to Hardware
model

- set null

reserver ForeignKey to
User model

- set null

pools ManyToManyField
to Pool model

- set null

labels ManyToManyField
to Pool model

- set null

power_off_automatically BooleanField - -
free_automatically BooleanField - -
activated BooleanField - -
power_on_time DurationField - -
power_on_time_added DateTimeField - -

Table 7. The fields used in Order model
field name field type constraints delete behaviour
myorder_id CharField unique, required -
purchase_order CharField unique, required -
sales_order CharField unique, required -
datetime_creation DateTimeField - -
datetime_closed DateTimeField - -

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 67

Table 8. The fields used in Queue model
field name field type constraints delete

behaviour
reservation_length DurationField must be under

maximum
duration

-

datetime_creation DateTimeField - -
datetime_closed DateTimeField - -
configuration ForeignKey to

Configuration
model

- set null

reserver ForeignKey to
User model

- set null

pools ManyToManyField
to Pool model

- set null

labels ManyToManyField
to Label model

- set null

power_off_automatically BooleanField - -
free_automatically BooleanField - -
created_reservation OneToOneField to

Reservation model
- set null

Table 9. The fields used in Port model
field name field type constraints delete behaviour
type ChoiceField required,

choices:
• power
• fiber
• hdmi
• serial
• generic

-

value CharField - -
name CharField - -
powered BooleanField - -
hardware ForeignKey to

Hardware model
required cascade

connected_to OneToOneField to
Port model

- set null

Table 10. The fields used in Pool model
field name field type constraints delete behaviour
name CharField unique, required -

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 68

Table 11. The fields used in Label model
field name field type constraints delete behaviour
name CharField unique, required -
description CharField - -

Table 12. The fields used in VirtualMachine model
field name field type constraints delete behaviour
domain CharField unique, required -

Table 13. The fields used in IpAddress model
field name field type constraints delete behaviour
ip_address CharField unique, required -
slug SlugField unique -
unique BooleanField default = true -

Table 14. The fields used in SWInfo model
field name field type constraints delete behaviour
name CharField required -
value CharField required -
datetime_modified DateTimeField - -
configuration ForeignKey to

Configuration
model

- cascade

Table 15. The fields used in Parameter model
field name field type constraints delete behaviour
name CharField required -
value CharField - -
description CharField - -
configuration ForeignKey to

Configuration
model

- cascade

Table 16. The fields used in Country model
field name field type constraints delete behaviour
name CharField unique, required -

Appendix 1. Description of the fields of ReserveTool 2.0 database models. 69

Table 17. The fields used in City model
field name field type constraints delete behaviour
name CharField unique, required -
country ForeignKey to

Country model
- cascade

Table 18. The fields used in Room model
field name field type constraints delete behaviour
name CharField unique, required -
city ForeignKey to

City model
- cascade

Table 19. The fields used in Rack model
field name field type constraints delete behaviour
name CharField unique, required -
room ForeignKey to

room model
- cascade

Table 20. The fields used in Shelf model
field name field type constraints delete behaviour
name CharField unique, required -
rack ForeignKey to

Rack model
- cascade

	
	
	

	
	
	
	
	

	
	

	
	
	

	
	

	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	

	

	
	REFERENCES
	

