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Abstract: Emergency departments in hospitals are having many difficulties in achieving the per-
formance levels required by health regulators and society. The waiting times as well as the total
throughput time are examples of performance indicators that emergency departments need to im-
prove in order to provide a better service to the community. To achieve improvement of performance,
the present paper shows a methodology to assist the design process of an emergency department
using simulation techniques. In this study, the emergency department of a hospital located in the
northern region of Portugal was considered to test the proposed simulation technique. The emer-
gency department initial state was assessed, in terms of patient flow, as well as the human resources
needed at every stage of the service. In order to understand in depth the process that a patient
goes through during an emergency episode, a comprehensive study was performed on the hospital
database. This allowed the analytical description of an emergency episode, which was further used
as an input to the simulation model. After developing the simulation model with the information
obtained by the hospital’s database, a validation stage was performed. Finally, in order to achieve
an optimized design for the emergency department several variant scenarios were considered and
evaluated. This methodology proved to be very useful in determining an optimized operation for
complex, and non-linear systems.

Keywords: operations management; emergency department; discrete event simulation; lean healthcare;
simulation model

1. Introduction

The intensification of competition in the industrial sector, namely the automobile
sector, has launched companies in search of new and more effective production organization
and management methods. In the mid-twentieth century, a new productive ideology
was born within Toyota, capable of breaking the productive paradigms rooted at the
time. Contrary to the concept of mass production developed by Henry Ford, with which
production lines are associated, the Toyota Production System (TPS) intends to achieve
the same objective, continuous production flow, with more limited resources [1] when
producing low-volume and high-variety products. This production philosophy became
known with the publication of the book “The machine that changed the world” as lean
manufacturing [2]. Despite the interest of the academic-scientific community in Japanese
productive strategies, which increased between 1977 and 1983, with the publication of the
first article in English [3], only years later did it become more accentuated in the business
sphere, deriving from a crisis in the automotive sector [4]. Associated with the publication
of the famous book “The machine that changed the world” a global proliferation of the
Toyota Production System occurred in the automotive sector all around the world. The
benefits resulting by TPS or lean production principles and concepts, such as reducing
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costs and increasing product quality, quickly led to its expansion to different areas [5].
This expansion process was intensified when several industrial segments, besides the
automobile segment, achieved prominent results with the its adoption in their production
processes [6]. According to Hines et al. [7], delivering products with value to customers
passed not only through the application of lean principles at the operational level, but also
at the strategic level. Disseminating the principles recommended by the lean philosophy
(initially addressed to production) to the remaining levels of a company gave rise to a new
concept, lean enterprise [1]. This philosophy excels in identifying the processes and tasks
that truly add value to the service provided to customers throughout the company. Thus,
by implementing lean to the whole enterprise, it is expected to reduce operating costs,
improve the quality of the service provided, as well as the reduction of its lead time.

The gains made possible by the lean philosophy quickly aroused curiosity in different
sectors. There has been an increasing tendency to transport lean principles to the public
sector in order to reduce costs and, at the same time, improve the efficiency of government
operations [8]. However, although lean philosophy represents a set of principles and not
tools, transposing it directly to the government sector presents multiple obstacles. Both
labour law codes, as well as the potential conflict between management and workers, may
make it impossible to adopt lean government policies [8]. Nevertheless, the health sector
has been demonstrating a great capacity to adapt to the principles of the philosophy origi-
nated in Toyota in what can called lean healthcare, which is a very recent concept [9]. To
advocate a management policy based on lean healthcare concepts means a constant search
to provide improved patient services using a lower number of resources. It should also be
noted that lean healthcare presents an antagonistic perspective to traditional management
policies, based on the dismissal of personnel or compromising the quality of the service
provided [10]. The exact beginning of the application of the lean healthcare concept is
somewhat diffuse, however pioneering work stands out [11], where the author transports
productive technology to the hospital context in order to reduce inventories. Since then,
multiple publications have appeared in the scientific community [9], addressing several
applications of different Lean tools in healthcare services, such as the application of SMED
techniques to reduce the setup time of an operating room [12], the application of perfor-
mance indicators such as the overall equipment effectiveness of operating rooms [13], or the
application of the methodology 5S in a hospital establishment [14]. Research in lean health-
care has been growing almost exponentially; however, according to Proudlove et at. [15]
and D’Andreamatteo et al. [16], lean healthcare is still in an early stage of development,
with countless opportunities yet to be explored [9].

Although the lean approach was initially inspired for the automotive segment, some
of its associated tools can be applied to all sectors. From these tools are analysis techniques,
and against current prejudice, the simulation of discrete events is one of the techniques
that stands out. The constant technological advancement has enhanced the development
of simulation software that is increasingly robust and capable of numerically translating a
real scenario. This fact made it possible to test changes to existing processes without the
need to implement them on a real scale [17,18]. Despite representing a theme that has been
cherished in academia since 1950, its use as a tool to analyse issues related to production
only proliferated from 1986 onwards [19]. Since then, the adoption of simulation as an
analysis technique has gained notoriety, with a multitude of studies published in sharp
detail in different contexts to date [20]. Just as lean has expanded to different sectors, so
has simulation. The application of this technique as a problem analysis technique and
support to the decision-making process quickly spread in the health sector, highlighting
the adoption of themes such as the study of surgical procedures, intensive care unit design,
among others [21]. Both the discrete event simulation technique and the lean healthcare
principles share the objective of improving the analysed process. An example of integration
between these two concepts was proposed in 2012 by Stewart Robinson [22]. Thus, testing
the various scenarios resulting from the adoption of measures based on lean healthcare
concepts became possible with the use of discrete event simulation [23,24].
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Based on the succinct historical framework presented, it can be easily understood
that both the application of the lean philosophy to the health sector, as well as the use of
the simulation technique as an aid to the improvement of hospital services, represent a
remarkably recent theme in the scientific community. Thus, in terms of scientific research,
answering the question if is possible to achieve an improved design in healthcare services
by using innovative simulation techniques was the foundation for the study presented
here. In this context, the authors’ willingness to answer the question with the need for
improvement of a hospital emergency department located in the north region of Portugal
culminated in the research plan presented. The main goal was to develop a new operation
parameterization for the hospital’s emergency department, through the association of
simulation techniques with the lean healthcare philosophy. In this way, several variant
scenarios, optimized according to a lean healthcare philosophy, can be studied without the
need for scale tests.

2. Methods

As mentioned previously, a Portuguese hospital was used as a case study to develop
the research presented in this paper. In this case study, firstly, a diagnosis phase was
performed in which the main resources, information, processes, and flows were identified,
and the relevant data of the system was collected and processed. Secondly, the discrete-
event simulation model of the emergency department was developed. In this phase various
key performance indicators were assessed to confirm the simulation model validation. The
third phase consisted in generating functional variations of the emergency department, in
terms of medical staff and room capacities, using the simulation model in order to evaluate
and foresee different operational behaviors of the emergency department. In this phase an
in-depth analysis of the results was performed, and a set of improvements were proposed
to confidently proceed to the emergency department redesign.

2.1. Case Study Overview

The case study research in this paper was developed is an emergency department of a
hospital located in the north of Portugal. The main objective was to assess the operation of
the emergency department and take the opportunity that it was undergoing a structural
redesign to optimize its structure and operation. A total of three meetings were performed
to gain insight on how the emergency department operates, and understand the main
difficulties felt by the working staff (doctors, nurses, and operational assistants). Along
with five in-field observations taken by the authors to detailed assess procedures in the
emergency department, the hospital also provided the entire database of 2018 admissions
and treatments. This allowed advanced data treatment to be performed, as well as data
probabilistic fitting to be achieved with very high confidence levels, in order to describe
emergency episodes analytically. The emergency department was modelled considering all
types of emergency episode and several results were obtained from the scenarios generated
with the simulation model. Several guidelines were proposed for an improved redesign
and operation of the emergency department.

2.1.1. Triage Procedure

One major drawback associated with increasing demand in emergency departments
is overcrowding, which leads to lengthy waiting times and, consequently, to potential
security issues due to those waiting times. In an attempt to minimize this impact, triage
procedures are essential, as they diagnose the patient’s clinical state severity leading to the
establishment of organized flows. The hospital under study follows the Manchester triage
protocol in which the patient receives a color in accordance with the severity state exhibited.
Although the color received represents a severity in the patient’s clinical condition, it also
represents the target waiting time until the first medical intervention, which can be seen
in Figure 1.
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Figure 1. Manchester triage colors with the corresponding target waiting time.

The standard maximum waiting time established by the Manchester triage protocol
will be one of the most important key performance indicators to assess in the several
scenarios generated by the simulation model as it directly represents how well the system
is performing and also because it represents a guideline imposed by the national health
regulator. In fact, regarding the inherent magnitude of such an indicator, in Portugal the
financing of the emergency department depends on compliance with the times specified
by the Manchester triage protocol.

2.1.2. Process Stages

An emergency episode can be generically described by three procedures: (1) Ad-
mission, where the patient fills out the necessary forms to be admitted to the emergency
department; (2) Triage, where a screening process assigns priorities to patients based on
their clinical condition; (3) Treatment, which conjugates all the necessary actions to solve
the patient’s clinic condition. To better clarify the patients’ flow through all process stages
an illustrative scheme is presented in Figure 2. As can be seen, every arriving patient will
pass firstly by the admission process, being then directed to the triage stage. Concluding
this stage, the patient follows to the respective treatment area assigned in the triage process.
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In the following section, it will be shown how every process was analytically modelled
using data from the database provided by the hospital.

2.1.3. Layout

To better understand and simulate the patient flow during an emergency episode it
is important to consider the exact morphology of the emergency department. Figure 3
illustrates an overview of the emergency department plant, with different colors highlight-
ing all relevant areas to the study. For consistency purposes, the color scheme used will
be maintained throughout the rest of the article. The first stage on an emergency episode
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is the admission, which in this case occurs in the purple area. After being admitted, the
patient will undergo the triage process (blue area), where a priority level is assigned, which
determines the treatment area the patient will be placed. This case study will consider
three priorities, green, yellow, and orange, and the corresponding treatment areas, as
explained in the section triage procedures. Each of the rooms has a limited capacity in
terms of treatment places, being 22 places in the green area, 15 places in the yellow area and
20 places for the orange area. Figure 3 illustrates the real emergency department layout
after the structural redesign. The real plant (including areas, distances, and treatment
places) was uploaded to the simulation model.
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2.1.4. Staff and Shifts

In Portugal all the public emergency departments have similar operating policies,
and it is very common for the emergency department to be divided into two shifts, a day
and a night shift. In the hospital of this case study, each shift lasts 12 h, the daily shift
being between 09:00 and 21:00, and the night shift between 21:00 and 09:00. Since the
night demand is considerably lower in comparison to the daily demand, a smaller team of
professionals is considered. Such reduction is compensated with a reinforcement period
between 21:00 and 00:00. Usually, the staff teams are organized according to the demand
patterns per shift as presented in Table 1.

Table 1. Medical staff per shift.

Shift Admission
(Administrative)

Triage
(Nurses)

Orange
(Physicians)

Yellow
(Physicians)

Green/Blue
(Physicians)

Daily 2 3 2 3 2
Night 1 1 2 2 0

As one can see, the red priority does not have a corresponding team which can be
justified by two main reasons: red patients represent less than 1% of all cases, and, when a
red patient arrives to the emergency department medical staff from the other teams are
instantaneously moved to treat that patient. In fact, red patients never suffer from resource
shortage, meaning they never wait to be observed and treated and that is the reason why
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those patients are not included in this study. A similar philosophy is considered for the
night staff for the green/blue treatment room. Since this type of patient is not considered
urgent, during 21:00 to 09:00 they are assigned to the yellow treatment area. In this study,
green will include both areas, green and blue.

2.2. Data Collecting and Analysis

Bearing in mind that the case study is developed in an emergency department of a
hospital, most of the data used in this study, refers to one full year of information provided
by the hospital. The key information, provided by the hospital, used in this study was:

- Patient admission time.
- Starting time of the triage process.
- Total duration time of the triage process.
- Time between triage and the first medical observation.
- Treatment time, which represents the time between the first medical observation and

medical discharge.

Figure 4 shows a typical flow for an emergency episode, with the indicators that
the authors had access to being highlighted. Superimposed, it was also mentioned what
were the purpose that the indicators assumed in the present study. As can easily be seen,
although the authors do not have some measurements, they can easily be determined using
the indicators provided by the hospital.
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Figure 4. Patient flow schematic with the indicators, provided by the hospital, used in the present study.

Admission time was used to discover how patient arrival is distributed along every
day of the week, which is easy to establish by sorting the data. Validation data, as the name
states, were used to validate the simulation model, which was done by comparing the
average values of the database with those achieved by the model. Lastly, the fitting data
were used to describe a processing time in the simulation model, being the probabilistic
adjustment of data, to theoretical distributions, made using the maximum likelihood
method. This method determines the input parameters of the theoretical distribution
according to the database, later used as inputs in the simulation model.

3. Analytical Description of an Episode

The use of simulation models to predict the behaviour of the system requires an
analytical description of all the constituent stages which a patient will go through during
an emergency episode [22]. For that purpose, and after being able to identify how the emer-
gency department works, the authors used the hospital’s database to describe the process
mentioned in Figure 2. As easily perceived the current section presents the analytical study
conducted to every stages of an emergency episode, which will be used as inputs to the
simulation model.
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3.1. Patient Arrival

Emergency departments have to deal with unknown and unbalanced demand. Know-
ing the demand’s distribution along every day of the week and the respective Manchester’s
priorities represent a key factor for planning purposes [25]. Moreover, having an overview
of the behavior of arrivals to the emergency department allows for better resource planning
and preventive preparation of the system [16].

The hospital monitors the emergency episode for every patient by registering the
times when changes occur in the episode state. For investigating the patient arrival
distribution, it is only necessary to know the time when each patient was admitted to the
emergency department, which is the first record in the hospital database. Therefore, the
authors had access to the 2018 database which contained 92,978 entries referencing 0.2%
red priorities, 8.2% orange priorities, 46.9% yellow priorities, 41.2% green priorities and
3.5% blue priorities, as can be seen by the pie chart presented in Figure 5.
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Orange, yellow and green priorities are the most common patient type that arrives
in the emergency department. Since green and blue patients are not usually considered
urgent episodes, they are treated together in the same area, and so treated as only one type
of patient medical state in this study. Red patients (for brevity, the patient priority state
will be referred by the color) have a distinct flow inside the emergency departments not
being considered in the study here presented.

Despite the unknown nature of the arrivals, it is important to describe the arrival
pattern per priority (based on historic records) in order to identify how the demand is
distributed throughout the day. For that purpose, the arrival pattern was determined for
each hour of every weekday per priority, as shown in Figure 6.
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Discriminating the emergency department demand patterns is important to identify
several characteristics: the demand at night shift is considerably lower in comparison to
the rest of the day; the morphology of the arrival pattern of yellow and green priorities is
identical. As can be seen, two peaks occur during the day, one generally between 08:00
and 10:00 and another between 14:00 and 16:00 (for yellow and green). Orange patients
are considered very urgent episodes with severe clinical states which converts to far fewer
entries, and, although there are also two peaks, their magnitude is smoother than in the
yellow and green pattern. The demand during the weekdays is considerable higher in
comparison to the weekend, highlighting Monday as the most demanded day. This study
analytically proved an idea shared within the staff members who mentioned Monday as
the worst day in terms of performance.

3.2. Admission Process

Each patient only becomes an emergency episode after passing by the admission
process, which consists of registering the patient entrance in the emergency department.
From this point, the emergency process starts being monitored by the hospital, registering
the times of the main events regarding patient treatment. As the hospital only begins
monitoring patients after the registration process is finished, there is no data on the database
to characterize the admission process processing time. Thus, to know how long it takes to
admit a patient it was conducted an observation action to collect the admission processing
time, described in Figure 7. The collecting action took place on three different days of the
week to include randomness in the sample.
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Since the purpose of describing analytically the admission process is to use such data in
the simulation model, the collected data were treated and fitted, conservatively, to a uniform
distribution, with a minimum and maximum of 3 and 5 min, respectively (Figure 7).

3.3. Triage Process

After entering the emergency department, which occurs when the registration process
finishes, the patients have to wait for the triage process. Manchester’s protocol is applied,
being assigned a priority level (represented by a color), as well as the medical specialist
who will attend the patient. The triage duration is recorded for every patient and, thus, to
analytically describe the triage process, a probabilistic fit of that data was performed based
on the database provided. The maximum likelihood method [26] was used to determine
the fitting parameter, being expressed in Figure 8 the data histogram and corresponding fit,
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as well as the probability plot. As can be seen by the Figure 8b, a Lognormal distribution
(mean 4.58096 s and deviation 0.554615 s) shows a very good fit with the hospital database.
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Determining the random distribution that better represents the real data is of paramount
importance to this study as it will be used in the simulation model to mimic the triage pro-
cess behavior. Such a good fit increases confidence in developing a valid simulation model.

3.4. Treatment Rooms

Long waiting queues, and therefore, lengthy waiting times are common characteristics
associated with emergency departments worldwide [25]. This can be associated with an
unbalance between demand and capacity, and with operational wastes which amplify
capacity problems [27]. The combination of these facts is the main justification for the
unproductive environment of emergency departments, which is amplified by the increasing
demand experienced over the years [25].

Thus, to pursue an improved performance, and properly design the required resources,
it is imperative to understand the demand of the treatment rooms, which may be assessed
by determining the takt time. This indicator measures, on average, how often a patient
arrives at the treatment room. Since the hospital monitors at which time the patient begins
the triage process and also the triage duration, it is possible to determine the exact time
that the patients leave the triage area and arrive at the treatment room. Takt time will be
the average time between arrivals, being expressed in Table 2.

Table 2. Takt Time obtained from the hospital database.

Green Room Yellow Room Orange Room

13 min 12 min 69 min

Analyzing the data of Table 2, it is possible to observe that green and yellow patients
arrive almost at the same rate, which is related to the fact that they represent a similar
percentage of emergency episodes. Orange episodes, as these refer to more serious health
diagnoses, are not as common as the green and yellow, the takt time being considerably
higher. For the purpose of establishing an efficient service, the takt time represents the
needed treatment rate at which there will be no queue in the treatment rooms. Therefore,
takt time can be used to design the medical staff capacity required to respond to a specific
demand, aiming in this way to create operational flow.

Knowing the takt time for each treatment area is extremely important since it estab-
lishes a production rate needed in the treatment rooms to reduce the possibility of creating
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queues, and consequently, long waiting times. As mentioned previously, the treatment
process represents all the actions/stages that an emergency episode can follow, which can
represent a large variety of flows.

When patients start treatment there are several actions/stages that they may undergo.
This means that there are several types of flows inside the treatment rooms. Although the
hospital makes a huge effort to record all steps of the patient inside the treatment rooms, in
fact, such task is not completely fulfilled due to system limitations and personnel mistakes.
Moreover, several information is recorded in different information systems which make it
impossible to correlate and gather all the data regarding all steps of a patient inside the
treatment room.

To overcome this difficulty, the authors considered a generic flow type, which is
presented in Figure 9. It is important to mention that although Figure 9 illustrates a yellow
patient example, the same strategy was applied for orange and green patients. As one can
see, the flow type considered in the present study describes the treatment time with three
components in two medical interventions, one in the beginning of the episode and the other
at the end, and miscellaneous actions in the middle. All three components are characterized
as a percentage of the treatment total time. The time for the first medical observation is
determined by a triangular random distribution with parameters: minimum 15%, mode
12.5%, and maximum 20%. The time for second medical intervention (and consequent
medical discharge) is determined as 5% of the total episode time. This parameterization
was considered acceptable by the medical staff based on their experience on treating all
types of patients. In fact, the number of medical interventions may vary from patient to
patient, however, with this generic approach, all medical interventions are aggregated
in two interventions. In general terms, the total time the medical staff is occupied with
the patients will be the same. The time for miscellaneous actions (impossible to know
from the hospital database) is the remaining time (subtracting the time of the two medical
interventions to the total treatment time).
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Figure 9. Generic episode flowchart and parameterized flowchart considered in this case.

Different pathologies, as well as different priorities, will represent distinct treatment
times. Since the database of the emergency department distinguishes the priority, as well
as the diagnosis and the time from the first medical intervention until medical discharge, it
was possible to treat such data using probabilistic fitting. As an example, for an episode
characterized by a yellow priority with a diagnosis of “problem in the members” the
treatment time for that type of episode is described by a lognormal distribution with mean
of 113.836 s and a variance of 4667.12 s (Figure 10 represents the probabilistic fit). This
procedure was carried out for the most common diagnosis presented in hospital database,
representing around 90% of all types of episode (orange, yellow, and green) that the hospital
must treat. Such detailed data analysis confers great reality upon the parameterized flow
adopted for the study of the treatment rooms.
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4. Simulation Model Description

After the analytical description of an emergency episode was completed, a simulation
model with the same stages identified in Figure 2 was developed to predict the performance
of the emergency department. This section presents how the previous information was
considered in the simulation model. To finish a numerical validation of the simulation
model, it is presented by comparing the obtained values with the real ones.

4.1. Overview

All the information shown previously was implemented in the simulation model
(using Simio software) to realistically model the emergency department. Figure 11 presents
an overview of the simulation model. All the processes and data analytically processed in
the previous section were implemented in the simulation model.
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4.2. Patient Arrival Process

Simulation models often use Poisson distribution to generate the entities (patients
in the present case) since it is known to be the best distribution fitting to describe arrival
events [28]. Such distribution only requires the input of one parameter, the arrival rate
of the event, which in our case is the arrival of a patient. As mentioned previously, the
average arrival was determined for every hour of the week, as shown in Figure 6. These
values, as is easily perceived, represent the input parameter of the Poisson distribution,
which is used by the simulation model to generate the arrival of a new patient. For the
purpose of clarification, consider as an example the arrival pattern of the 10th hour of
Monday, shown in Figure 6a, i.e., 16 green patients. This means that the simulation model
will take 16 as the input parameter of the Poisson distribution for the tenth hour of Monday.

4.3. Admission Process

The admission process is the first stage that each episode needs to go through. The
processing time for this process was parameterized with a uniform distribution with a
minimum value of 3 min and a maximum value of 5 min (implementation of the data
fitting presented in Figure 7). The resources modeled for this process were administrative
staff (two resources).

For this process, the most important performance indicators to analyze are the resource
utilization (administrative staff) and the process queue (both time and number in queue).
The simulation model also records the time when the admission process finishes which
will allow for computing the admission process cycle time and, consequently, the triage
process takt time.

4.4. Triage Process

The modelling procedure for the triage process is similar to that described above, with
the operating time being dictated by a lognormal distribution (regarding the probabilistic
fitting illustrated in Figure 8). In the triage process the patient is assigned a priority (in
accordance to the percentage distribution found in the database). For the present study
only orange, yellow, green and blue patients were considered since they represent 99.8%
of the cases. As mentioned previously, blue patients were aggregated to the green ones
as they share the same medical resources. For the triage process the modelled resources
were nursing staff. The redesigned emergency department is planned to have three triage
workstations, so the simulation model is flexible to accommodate any number of nursing
staff for triage purposes.

For this process, the most important performance indicators to analyze are the resource
utilization (nursing staff) and the process queue (both time and number in queue). The
simulation model also records the time when the triage process finishes which will allow for
computing the triage process cycle time and, consequently, estimate the takt time for each
treatment room. When the triage process ends, the simulation model also starts monitoring
the waiting time of the patient until the first medical intervention. This waiting time is one
of the most important performance indicators of the study as it will reveal whether the
emergency department is complying with the Manchester protocol time or not.

4.5. Treatment Room

Unlike the previous processes, simulating the treatment of a patient is a more complex
process, since it involves the need for medical resources as well as other actions in the
emergency department. Thus, when a patient enters a treatment room the treatment total
time is computed based on the probabilistic data fitting explained in Figure 10. Then, it
requests a medical resource to initiate the treatment. At this stage two distinct scenarios may
occur, on the one hand if the medical resource is available the patient starts immediately the
treatment, on the other hand if there is not any medical resource available the patient waits
for the first observation. As was mentioned previously, the doctor’s allocation time to the
patient is a percentage of the treatment total time, which also depends on the probabilistic
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distribution associated with the patient’s pathology. However, if a medical resource is
available when requested but no treatment place is available in the treatment room, then
the patient remains waiting. As can be seen, two premises must simultaneously be met
for a patient to enter the treatment room: a medical resource and a treatment place being
available. The time for the second medical intervention is 5% of the treatment total time,
which will also depend on the patient pathology. For the second medical intervention the
patients request a medical resource and wait until a medical resource becomes available.
Patients inside the treatment room waiting for the second medical intervention have
priority over the patients waiting for the first medical intervention. In the second medical
observation the patients also receive their medical discharge, exiting the treatment room
and, therefore, making available a space in the treatment room. The time between the first
and second medical interventions is the remaining time of the treatment total time. This
time represents the miscellaneous actions that may occur in the treatment rooms.

In the treatment rooms two main resources were modelled: the medical staff and the
treatment places.

For the treatment rooms the most important performance indicators to analyze are the
resource utilization (medical staff); waiting queues (both time and number in the queue—
information needed to verify compliance with the Manchester protocol guidelines); and
treatment places occupation.

4.6. General Flow Validation

To validate the simulation model two phases were considered: the first one compared
the takt time for the treatment rooms obtained with the simulation model with the ones
calculated using the hospital database (Table 3); the second one measured the performance
indicators for each treatment room and asked for a validation of the corresponding system
behavior by experienced medical staff.

Table 3. Takt time comparison between values obtained by the database and by simulation model.

Green Room Yellow Room Orange Room

Database 13 min 12 min 69 min
Simulation model [10.9; 12.44] min [10.14; 14.10] min [54.82; 83.13] min

This shows that the emergency department is properly modelled in terms of flow. The
simulation results represent a confidence interval of 95% that encompasses the arithmetic
average of the database (the green room is sufficiently close to assume around 95% confi-
dence level). Thus, this experiment validates the general flow and the analytical definition
of the arrivals pattern, as well as the admission process and the triage process.

The second phase of the model validation was based on the expertise of the medical
staff due to lack of data in the hospital database. The results obtained with the simulation
model for each treatment room (considering the predefined number of resources and
treatment places) is fully detailed next. The treatment places’ occupation will not be
referred to for the model validation as it was new information only considered for the
redesign of the emergency department. The performance indicators obtained for the
reference case are shown in Table 4.

Table 4. Performance of the treatment rooms.

Average Number of Patients
Waiting for the First
Medical Observation

Average Waiting Time
for the First Medical

Observation

Medical Staff
Occupation

Green room 2.8 74 min 70%

Yellow room 10 162 min 74%

Orange room 0.11 8.6 min 34%
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By analysing Table 4 it is possible to verify that the average number of patients
waiting for medical treatment is 2.8, 10 and 0.11, for green, yellow and orange rooms,
respectively. In terms of waiting time, the average waiting time (in minutes) for medical
treatment is 74, 162 and 8.6, for green, yellow and orange rooms, respectively. In terms
of medical staff occupation, the results obtained show 70%, 74% and 34% occupation for
green, yellow and orange rooms, respectively. All the results were considered valid by
the hospital personnel. The green room is complying to the Manchester protocol times,
showing a realistic system behaviour, as these patients are usually associated with very fast
treatment times (processing times). The yellow room is the one showing more problems,
not complying to the Manchester protocol standard times. This is explained by the more
complex pathologies that these patients present which usually implies greater treatment
times. This factor associated with the fact that yellow patients present high arrival rates,
and also the shortage of resources, promotes the ineffective performance of the yellow
room. The orange room presents statistics that comply with the Manchester protocol times
representing no problems in terms of waiting time. These figures were validated by the
hospital personnel conferring the needed validation for the simulation model.

5. System Improvement Procedure

One of the greatest advantages of using simulation models is the flexibility to study
alternative scenarios without the need for real implementation. In this context, simulation
is used to assess which variations on the modelled resources can translate into an improve-
ment in the emergency performance. Since the real problems occur inside the treatment
rooms, it is only necessary to assess the impact of their allocated resources (medical staff
and treatment places). To properly design each treatment room, several scenarios were
developed in which the impacts of varying treatment places and medical resources were
assessed. The main performance indicators for scenarios evaluation were the Manchester
protocol time, the medical staff occupation (scenarios with human occupation higher than
80% are discarded), and the number of treatment places occupied.

5.1. Green Room

As previously observed, the green treatment room displays no problems in terms of
waiting time and medical resources occupation, which may reveal an over-dimensioning
of resources. In this context, scenarios were generated by reducing the medical team by
one member. For this case, the results in terms of average waiting time for the first medical
intervention, and the occupation of the medical resources for different number of treatment
places are shown in Figure 12, with the target limits being superimposed in red lines
(results must be under the red lines to represent viable scenarios).Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 21 
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Reducing the medical staff by one member will lead to a congested system state where
neither of the target performance indicators are met, which means that the number of
members in the team should be maintained.

In a second phase, scenarios were generated by decreasing the number of treatment
places. Figure 13 shows the results assuming the initial medical staff.
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occupation rate limit).

As can be seen, reducing the room treatment places is possible without penalizing the
medical resource in terms of occupation and also allowing compliance with the Manchester
protocol time requirements. Such behavior may be explained by the fact that green patients
do not represent urgent episodes resulting in lower treatment times, which means that
treatment places become available rapidly. These results reveal an over-design of the green
room in terms of treatment places.

5.2. Yellow Room

A poor performance was observed for the baseline scenario in the case of the yellow
treatment room. Thus, initially the impact caused by an increase in the capacity of the room
(number of treatment places) was evaluated, keeping the medical staff unchanged. For this,
several alternative scenarios with incremented room capacities were considered, with the
results obtained being expressed in Figure 14.
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Increasing the room capacity produces a benefic behavior (reduction of the waiting
time), without harming the medical staff, as they exhibit roughly the same occupation.
The stagnation observed in the waiting times conjugated with a stable occupation reflects
the need for increasing the medical staff. In this context, one more doctor was considered
during the daily period (keeping the scenarios generation of increasing the room capacity).
Figure 15 shows the results in terms of waiting time for the first medical observation, as
well as the medical occupation for the several scenarios generated.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 21 

  
(a) (b) 

Figure 14. Obtained values for different capacity scenario: (a) waiting time for first medical intervention (blue line—
simulation model, red line—Manchester time); (b) medical resource occupation (blue line—simulation model, red line—
occupation rate limit). 

Increasing the room capacity produces a benefic behavior (reduction of the waiting 
time), without harming the medical staff, as they exhibit roughly the same occupation. 
The stagnation observed in the waiting times conjugated with a stable occupation reflects 
the need for increasing the medical staff. In this context, one more doctor was considered 
during the daily period (keeping the scenarios generation of increasing the room 
capacity). Figure 15 shows the results in terms of waiting time for the first medical 
observation, as well as the medical occupation for the several scenarios generated. 

  
(a) (b) 

Figure 15. Obtained values for different capacity scenario: (a) waiting time for first medical intervention (blue line—
simulation model, red line—Manchester time); (b) medical resource occupation (blue line—simulation model, red line—
occupation rate limit). 

As can be seen, increasing the medical staff for the baseline case (15 treatment places) 
does not solve the waiting time problem (the Manchester protocol time is not met). 
However, increasing the number of treatment places improves the room performance in 
terms of waiting time (Figure 15a) and resource occupation (Figure 15b). It is important to 
note two observations regarding the room capacity: on the one hand to fulfill the 
Manchester’s protocol the room should increase three treatment spots (18 spaces in total); 
on the other hand the system reveals an asymptotic response around a total of 25 spaces 
which indicates that no more improvements are achieved after this number. This clearly 
means that migrating spaces from the green room to the yellow room will solve the 
response time problems faced by the hospital in the emergency department. 

Figure 15. Obtained values for different capacity scenario: (a) waiting time for first medical intervention (blue line—
simulation model, red line—Manchester time); (b) medical resource occupation (blue line—simulation model, red line—
occupation rate limit).

As can be seen, increasing the medical staff for the baseline case (15 treatment places)
does not solve the waiting time problem (the Manchester protocol time is not met). How-
ever, increasing the number of treatment places improves the room performance in terms
of waiting time (Figure 15a) and resource occupation (Figure 15b). It is important to note
two observations regarding the room capacity: on the one hand to fulfill the Manchester’s
protocol the room should increase three treatment spots (18 spaces in total); on the other
hand the system reveals an asymptotic response around a total of 25 spaces which indi-
cates that no more improvements are achieved after this number. This clearly means that
migrating spaces from the green room to the yellow room will solve the response time
problems faced by the hospital in the emergency department.

These results clearly show the nonlinear response of an emergency department, which
reinforces the need for advance techniques, such as discrete-event simulation, to determine
proper operation designs.

5.3. Orange Room

A similar analysis was conducted for the orange room where the decrease in the room
capacity was assessed. As can be seen, by both results presented in Figure 16 there is an
excess capacity in terms of room spaces and even in medical resources. However, since
orange patients are considered very urgent emergency episodes, the rooms need to have an
over design in both resources to accommodate peak demand without clogging the system.



Appl. Sci. 2021, 11, 805 18 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 21 

These results clearly show the nonlinear response of an emergency department, 
which reinforces the need for advance techniques, such as discrete-event simulation, to 
determine proper operation designs. 

5.3. Orange Room 
A similar analysis was conducted for the orange room where the decrease in the room 

capacity was assessed. As can be seen, by both results presented in Figure 16 there is an 
excess capacity in terms of room spaces and even in medical resources. However, since 
orange patients are considered very urgent emergency episodes, the rooms need to have an 
over design in both resources to accommodate peak demand without clogging the system. 

  
(a) (b) 

Figure 16. Obtained values for different capacity scenario: (a) waiting time for first medical intervention (blue line—
simulation model, red line—Manchester time); (b) medical resource occupation (blue line—simulation model, red line—
occupation rate limit). 

6. Conclusions 
The paper presents a study of the emergency department in a hospital located in the 

north of Portugal. The objective of this study was to find solutions to improve the 
performance of the department in terms of waiting times and resource utilization using 
simulation techniques. In a first phase, the operating principles of the emergency 
department were presented, such as the arrival rates, the admission process, the triage 
protocol, resuming the main stages through which an emergency episode undergoes. 
Subsequently, an extensive analysis of the database provided by the hospital is presented, 
from which the stages of the emergency episode previously mentioned were analytically 
distinguished, as well as the emergency department demand. This made it possible to 
unveil Monday as the weekday with the higher demand in comparison to the rest of week. 
A demand pattern with two particularities was also evident: on the one hand the night 
shift registered a substantially lower number of entries, and on the other hand two peak 
periods between 08.00–10.00 and 14.00–16.00. 

Then, a simulation model based on the extensive treated data was developed and 
presented. All the processes that characterize an emergency episode were modeled using 
probabilistic fitting to properly translate the emergency service operation. This model was 
later used to plan both the medical team, as well as the treatment places. We found a 
dependency between the number of doctors that make up the team and the places 
available for treatment, which directly affects the treatment rooms’ efficiency. It was 
revealed and quantified how much the treatment rooms performance is affected due to 
resources (human and spaces) availability. It was found that the green room has a surplus 
of capacity in terms of the number of treatment places, and the opposite was verified for 
the yellows’ treatment room. In this case, an improved solution is achieved by considering 
the binomial increase of the number of spaces (at least 3) with the increase of the doctor’s 
team (1 doctor day shift). Thus, the authors proposed that the excess spaces in the green 

Figure 16. Obtained values for different capacity scenario: (a) waiting time for first medical intervention (blue line—
simulation model, red line—Manchester time); (b) medical resource occupation (blue line—simulation model, red line—
occupation rate limit).

6. Conclusions

The paper presents a study of the emergency department in a hospital located in
the north of Portugal. The objective of this study was to find solutions to improve the
performance of the department in terms of waiting times and resource utilization using
simulation techniques. In a first phase, the operating principles of the emergency depart-
ment were presented, such as the arrival rates, the admission process, the triage protocol,
resuming the main stages through which an emergency episode undergoes. Subsequently,
an extensive analysis of the database provided by the hospital is presented, from which the
stages of the emergency episode previously mentioned were analytically distinguished,
as well as the emergency department demand. This made it possible to unveil Monday
as the weekday with the higher demand in comparison to the rest of week. A demand
pattern with two particularities was also evident: on the one hand the night shift registered
a substantially lower number of entries, and on the other hand two peak periods between
08.00–10.00 and 14.00–16.00.

Then, a simulation model based on the extensive treated data was developed and
presented. All the processes that characterize an emergency episode were modeled using
probabilistic fitting to properly translate the emergency service operation. This model
was later used to plan both the medical team, as well as the treatment places. We found a
dependency between the number of doctors that make up the team and the places available
for treatment, which directly affects the treatment rooms’ efficiency. It was revealed and
quantified how much the treatment rooms performance is affected due to resources (human
and spaces) availability. It was found that the green room has a surplus of capacity in
terms of the number of treatment places, and the opposite was verified for the yellows’
treatment room. In this case, an improved solution is achieved by considering the binomial
increase of the number of spaces (at least 3) with the increase of the doctor’s team (1 doctor
day shift). Thus, the authors proposed that the excess spaces in the green room should be
allocated to the yellow room so it can achieve a better performance (doctor’s occupation
under 80% and waiting time for the first medical observation under 60 min, complying
with the Manchester protocol time requirements). This allowed us to conclude that a proper
room capacity design is influenced not only by the percentage of patients with a respective
priority but also by the severity of the priority itself. Although the percentage of green
patients is high, as their health status is not aggravated, and therefore they are treated more
quickly, the capacity of the room does not require a volume of spaces in accordance with
their percentage of entries. Taking into consideration the complexity and non-linearity
of the emergency department, only a discrete-event simulation approach is capable of
correctly modelling the system’s dynamics and intercorrelations allowing a proper design
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of both the size of the rooms and the medical team. However, if it is impossible to use a
simulation model, the room capacity assigned to each priority must consider two factors,
the severity of the patient and the percentage this represents in the total entries. It is
important to mention that every change proposed by the authors was implemented in
practice by the hospital management. Discrete event simulation has proven to be extremely
effective in determining the behavior of alternative scenarios without being implemented
at full scale. The flexibility associated with the simulation represents one of the biggest
advantages in its adoption since it allows informed decision making.
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