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Abstract: The development of a linear mixed model to describe the degradation of friction on flexible
road pavements to be included in pavement management systems is the aim of this study. It also
aims at showing that, at the network level, factors such as temperature, rainfall, hypsometry, type
of layer, and geometric alignment features may influence the degradation of friction throughout
time. A dataset from six districts of Portugal with 7204 sections was made available by the Ascendi
Concession highway network. Linear mixed models with random effects in the intercept were
developed for the two-level and three-level datasets involving time, section and district. While the
three-level models are region-specific, the two-level models offer the possibility to be adopted to
other areas. For both levels, two approaches were made: One integrating into the model only the
variables inherent to traffic and climate conditions and the other including also the factors intrinsic to
the highway characteristics. The prediction accuracy of the model was improved when the variables
hypsometry, geometrical features, and type of layer were considered. Therefore, accurate predictions
for friction evolution throughout time are available to assist the network manager to optimize the
overall level of road safety.

Keywords: friction; skid resistance; pavement; performance; degradation; linear mixed models
(LMMs)

1. Introduction

Road pavements are usually designed for a life cycle of 10 to 20 years. In this pe-
riod, road agencies or transport departments are responsible for guaranteeing acceptable
pavement quality standards. Among the most relevant parameters to assure road safety
adopted by many of those departments are rutting [1], usually associated with structural
performance, and friction or skid resistance [2], associated with functional performance.
Many EU countries have developed national policies to control skid resistance in their net-
works. Some rely on skid resistance coefficient measurements, and others on correlations
between road surface macrotexture depth and the skid resistance coefficient [3].

Besides that, many transport departments, road agencies, and researchers have ded-
icated their efforts to the development of friction degradation models. Currently, these
models consider as predominant factors the texture, the average annual or cumulative
daily traffic, the age of the surface course, and the polishing coefficient of the aggregates of
the surface during a certain period [4–7].

Recently, the need for experimentally validated skid resistance prediction models
accounting for tire and pavement surface texture characteristics and environmental factors
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was identified [8]. In this sense, more models were developed for several pavement
treatments at various climate, traffic, and pavement conditions [6]. They were in accordance
with previous studies based on long-term monitoring of friction, which mentioned that
age of surface course, traffic volume, and climate of a section were directly related to
friction, and other factors such as speed, temperature, tyre type and state (size, tread
profile, tyre pressure rating), and type of road surface could affect pavement friction [6,9].
In asphalt mixtures, the binder also affects friction, but it has been considered in an
early stage of pavement life [10], which justifies neglecting it in the friction prediction
models. However, an asphalt mixture is a coated system with a nonlinear visco-elastoplastic
response [11]. Researchers started only recently to look at it as so [12], seeking to improve
friction modelling.

Further factors can influence the performance of friction over time, such as the type of
layer [6,8], the road alignment, and profile characteristics whose relationship has not yet
been adequately demonstrated [13], particularly in long-term studies (LTPP). Moreover, it
was acknowledged that the level of skid resistance required for roads in operation should
vary throughout the road depending on its geometry and other factors [14].

The methods used to model pavement degradation/performance indicators are many.
They include stochastic methods such as the Markov chain and Bayesian methodology,
linear or nonlinear regression and panel data/longitudinal models, or so-called mixed-
effects models [15], and artificial intelligence modelling techniques.

The advantages of the mixed-effects models are several, namely greater flexibility,
identification of temporal patterns of databases, the possibility of including predictors
of temporal variation and iterations of variations of these predictors with time, and the
possibility of testing the significance of the error [16–18].

Despite the advantages they present, these models have few applications to either
model global or individual performance indicators. For example, Yu et al. [19] used lin-
ear mixed-effects models to predict future conditions of a specific pavement section, and
Khraibani et al. [20] and Lorino et al. [17] developed nonlinear mixed-effects models to
identify and quantify the impact of structural and climatic factors on cracking evolution.
Regarding pavement skid resistance performance, from LTPP testing sections, Li et al. [6]
developed both fixed- and random-effects models to evaluate and identify the most influ-
ential factors.

On the contrary, Markov chains are widely used as a probabilistic model to predict
pavement performance [21–23], but they are not suitable for investigating the factors
affecting the deterioration process. Artificial Intelligence (AI) techniques are also used to
model pavement degradation [24–26] and friction precisely [27]. Due to the non-formulated
nature of these techniques, the analysis of the factors is more complex and, therefore, less
attractive for such a purpose.

Based on the literature review, the need to develop comprehensive and validated
models adapted to local conditions to predict asphalt pavement friction is clear. This is due
to the variety of local conditions and possibly the difficulty of accessing reliable databases
with enough information along time. Moreover, enhanced regression modelling techniques
offer the possibility of investigating the model’s significant factors in depth.

2. Study Methodology

The literature review showed the relevance of developing friction models that incorpo-
rate local condition variables and the advantages of using regression modelling approaches.
Therefore, this study aimed to describe the friction degradation of flexible pavements and
identify whether the traffic, climate conditions, pavement structure, geometric characteris-
tics, and location influence behavior.

The study methodology consisted of two main phases: Introduction of study area and
data to be modeled, and modelling approach to achieve the main objectives.

In the first phase, provided by a Portuguese motorway concessionary, a raw database
was worked out and completed with climate data. A wide set of descriptive variables was
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defined, taking into account the literature review remarks and also the variables included
in the friction models available. Therefore, five explanatory variable groups constitute the
database: Traffic, climate conditions, pavement structure, geometric characteristics, and
location. Descriptive statistics were carried out, and a correlation analysis was performed
to identify the explanatory variables to be included in the model.

In the second phase, linear-mixed models with random effects in the intercept were
described and fitted for the two- and three-level datasets. Level 3 introduces regional
effects, level 2 distinguishes road sections, and level 1 represents the friction repeated
measures made over time. Furthermore, for each level dataset, two approaches were made:

1. the model considers only the variables inherent to traffic and climate conditions;
2. the model, in addition to the previous variables, includes factors intrinsic to highway

characteristics.

Thus, in total, four Linear Mixed Models (LMMs) were developed and compared to
find the model that provides a better fit to the data.

Finally, the cross-validation technique was used to evaluate the predictive performance
of all models.

In the next sections, these two main study phases are described in detail, and the
results are examined.

3. Materials and Methods
3.1. Friction Measurement

In this study, the wet skid resistance was measured with a Grip Tester, according to
the technical standard CEN/TS 15901-7:2009 [2]. The device is a trailer with two drive
wheels and a single small test wheel that was towed behind a vehicle (Figure 1). The test
wheel is mounted on a stub axle and is mechanically braked by a fixed gear and chain
system with a ratio of 27:32 in relation to the drive wheels so that there is a slip ratio of just
over 15%. The static load on the test wheel is (50 ± 30) N. The test wheel tyre has a smooth
tread. The two drive wheels are mounted on the main axle, which also carries a toothed
wheel. Water is deposited in front of the test tyre from a water tank fitted with a control
valve. To the trailer are coupled systems to continuously measure and store the distance
and horizontal drag and vertical load forces. The friction coefficient, known as the Grip
Number (GN), is calculated as the rate vertical/drag load forces. The test was carried out
in wet conditions with the vehicle operating at 50 km/h.
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3.2. Data Collection

The data was collected in the highway network of the Portuguese concessionaire
Ascendi on different roads with at least two traffic lanes in each direction, which are
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located in six districts: Aveiro, Braga, Guarda, Porto, Vila Real, and Viseu, as shown
in Figure 2. Thus, they are inserted in different climate environments and topographic
conditions, but they were constructed mostly with granite aggregates, as they are abundant
in those regions.
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As the quality control plan for this concessionary establishes that friction monitoring
campaigns have to be carried out at 100 m sections every four years, sections with 100 m
length were adopted. A sample with a total of 7204 pavement sections, each one identified
by the corresponding kilometric point (PK), was made available for this study. Three
monitoring campaigns were included in the study, times 0, 1, and 2. According to the
operation and maintenance contract, friction measurements are carried out in each section
approximately in the same period. The first measurements (time 0) were carried out
6 to 8 months after the road opened to traffic and after that, every four years. Therefore,
with the first measurements, it is expected to capture the maximum friction, with the
second (time 1) the equilibrium phase, and with the third (time 2), it is expected to capture
friction changes.

In this period, in all sections, there were no maintenance operations on the pavement.
After that time (eight years), it is common practice to carry out maintenance operations on
highways that alter the pavement surface characteristics.

3.3. Description of the Database

The variables characterizing each 100 m section were grouped in a database as follows:
Pavement structure (type of surface course); traffic (accumulated or annual average daily,
light and heavy vehicles, and day or night); climate conditions (temperature, precipitation,
and relative humidity of the air); geometric characteristics of the vertical and horizontal
alignments (plan, profile), and the lane and hypsometry. Some of these variables were
identified in the state-of-the-art review; others were defined according to the objectives of
the work.

3.3.1. Type of Surface Course

The structure of the pavement is crucial information to the analysis of its performance.
However, as this study intends to develop prediction models for the degradation of friction
in road pavements, only the type of surface course is described in Table 1.

3.3.2. Traffic

Since any road pavement is designed to support a determined traffic volume, on the
most requested lane, obtained from a traffic study, therefore adding uncertainty to the data,
in this study, real data concerning the traffic circulating on the highway were used. Actual
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traffic data were collected using automatic vehicle counter systems that are installed on
highways and toll plazas. The selected traffic variables are described in Table 2.

Table 1. Categories of the explanatory variable type of surface course.

Categories Description

PA Porous asphalt (PA 12.5).

GGA.BMR Gap-graded asphalt concrete (GGA) with bitumen modified with a high
percentage of Rubber Modified Binder (BMR).

GGAC Gap gradded asphalt concrete surface course (AC10surf) and (AC14surf).

Table 2. Traffic explanatory variables.

Variable Description

AADT Annual average daily traffic (vehic./day × 106) in the year of the observation (t = 0, t = 1, t = 2).
Calculated as the average 24-h traffic volume at a given location over a full 365-day year.

Ac.ADT Accumulated annual daily traffic (vehic. × 106), until the time of the observation (t = 0, t = 1,
t = 2). Represents the total number of vehicles that cross a section up to a given moment.

Ac.ADT/direction Accumulated annual daily traffic per direction of circulation (vehic./direction × 106), until the
time of the observation (t = 0, t = 1, t = 2). This is the Ac.ADT divided by 2.

Ac.ADT/direction/lane
Accumulated annual daily traffic per direction and per lane (vehic./direction/lane × 106), until
the time of the observation (t = 0, t = 1, t = 2). For sections with two lanes: RL = 95% and LL = 5%,

and three lanes: SL = 80%, RL = 15% and LL = 5%.

Ac.ADT heavy

Accumulated annual daily heavy traffic (heavy vehic. × 106), until the time of the observation
(t = 0, t = 1, t = 2). Heavy vehicles are those with more than two axles and with a height greater
than or equal to 1.10 m. Represents the total number of heavy vehicles that cross a section up to a

given moment.

Ac.ADT heavy/lane

Accumulated annual daily heavy traffic per lane (heavy vehic./lane × 106), until the time of the
observation (t = 0, t = 1, t = 2). Represents the total number of heavy vehicles that cross a section

up to a given moment in a given lane as a percentage of the total heavy vehicles circulating in
each direction. For sections with two lanes: RL = 95% and LL = 5%, and three lanes: SL = 80%,

RL = 15% and LL = 5%.

Ac.ADT heavy_daytime
Accumulated annual daily heavy traffic that circulated in the daytime period in a given lane,

between 07:00 and 19:00, (heavy vehic._daytime × 106), until the time of the observation (t = 0,
t = 1, t = 2).

Ac.ADT heavy_nighttime
Accumulated annual daily heavy traffic, that circulated in the night period between 19:00 and

07:00 in a given lane, (heavy vehic._nighttime × 106), until the time of the observation
(t = 0, t = 1, t = 2).

RL: right lane; LL: left lane; SL: slow lane; t: time.

3.3.3. Climate Conditions

Temperature, particularly its variation, influences the performance of bituminous
mixes. Therefore, it was considered adequate to gather all the data available on the
Portuguese Institute of the Sea and Atmosphere (IPMA) site to characterize it, as it covers
a wide area and can be accessed by everybody. The record of climate normals (average
values) concerning the 1971–2000 period [28] was used to set the temperature factors.

Precipitation was another climate factor that has been regarded. For that, the averages
of the total quantity of precipitation (P) and the maximum daily quantity of precipitation
(PM), which are available in the Climatological Atlas of the Iberian Peninsula or Iberian
Climate Atlas (ACI) [28] were used. The variable relative humidity (RH), available in Portal
do Clima [29], was also considered. Thus, the values considered for the climate variables
correspond to the month in which friction was measured and to the zone or district where
it is inserted. Table 3 describes all the variables concerning climate conditions.
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Table 3. Explanatory variables concerning the climate conditions corresponding to the month in which friction was
measured and the zone or district where it is inserted.

Variables Description

Higher max temp Higher value of the maximum temperature, in ◦C.
Average max temp Average maximum temperature, in ◦C.
Average med temp Average mean temperature, in ◦C.
Average min temp Average minimum temperature, in ◦C.
Lower min temp Lower value of the minimum temperature, in ◦C.

Average No. days temp max30 Average number of days with maximum temperature ≥30 ◦C.
Average No. days temp max25 Average number of days with maximum temperature ≥25 ◦C.
Average No. days temp min20 Average number of days with minimum temperature ≥20 ◦C.
Average No. days temp min0 Average number of days with minimum temperature ≤0 ◦C.

Ac. No. days temp max30 Accumulated number of days with maximum temperature ≥30 ◦C.
Ac. No. days temp max25 Accumulated number of days with maximum temperature ≥25 ◦C.
Ac. No. days temp min20 Accumulated number of days with maximum temperature ≥20 ◦C.
Ac. No. days temp min0 Accumulated number of days with minimum temperature ≤0 ◦C.

P Average of the total quantity of precipitation (mm).
PM Daily maximum quantity of precipitation (mm).
RH Relative humidity of the air (%).

A note about climate change is justified at this point. According to the Portuguese
Meteorological Institute, up to 2040, in the study region, the annual average temperature
will increase 1 ◦C in comparison to the 1971–2000 period. As the measurements were
done in the last decade, it is acceptable to say that changes are small and the data can
be used for modelling purposes. Furthermore, according to Anupam et al. [30], rough
surfaces are expected to compensate for the lower hysteretic friction that characterizes
friction measurements at higher temperatures. Therefore, as the surface courses included
in this study are rough, the effect of temperature in each section (not between sections
inserted in distinct areas) is small. Measurements carried out on similar roads of the same
regions showed that friction variation could be neglected in the short term, even though
the main factors that affect it were introduced and exhaustively analysed in the modelling
procedure, as the number of climate variables suggests. Moreover, the model formulation
includes a random effect associated with each 100 m section to introduce an extra source of
variability into the model.

3.3.4. Geometric Characteristics

When a road alignment (plan and profile) is designed, multiple relations between the
alignment and the environment where it will be implanted should be considered to ensure
aspects such as the inherent costs of construction and operation, the circulation speed,
the safety, and the comfort of the users. Therefore, it becomes relevant to characterize
the highway sections according to the geometrical features to establish the effect of those
design decisions on friction. Table 4 presents the variables related to the characteristics of
the highway and also hypsometry as it is related to the altitude of each section.

Table 4. Explanatory variables of the characteristics of the highway.

Variables Categories Description

Lane

Longitudinal area of the lane devoted to the circulation of vehicles; this variable is characterized by:

LL Left lane located close to the highway axis.

RL Right lane in highways or highway sections with two traffic lanes in the same direction.

SL Slow lane in highways or highway sections with three or more traffic lanes, for the
circulation of cargo heavy vehicles or sets of vehicles whose length exceeds 7 m.
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Table 4. Cont.

Variables Categories Description

Plan

Corresponds to the horizontal characteristics in the highway (plan view) and is characterized by:

SA Straight alignment; this is the straight line that defines the plant alignment (∞).

C Clothoid, is the transition curve and is an adimensional parameter.

CC Circular curve, is the curve alignment of constant radius (m).

Profile

Corresponds to the characteristics of the vertical alignment of the highway (profile view); this variable is
characterized by:

S Slope, this is the tangent of the angle formed with the horizontal (%).

Ccc Concave concordance curve, is the minimum radius of the concave concordances (m).

Ccv Convex concordance curve, is the minimum radius of the convex concordances (m).

Hypsometry

Describes the distribution of elevation of land with respect to sea level within an area of interest; his variable is
characterized by:

Low Altitude Area where a section belongs to whose hypsometric curves are inserted in the interval
[0, 200 m].

Medium Altitudes Area where a section belongs to whose hypsometric curves are inserted in the interval
[200, 2000 m].

3.4. Data Analysis
3.4.1. Descriptive Data Analysis

In this subsection, the descriptive analysis of the variables is presented. Firstly, a
box plot illustrating how the dependent variable (friction) changed in time is presented in
Figure 3. As can be seen, there is an apparent decrease in the median of the friction with
time. To confirm that, a Kruskall–Wallis test was conducted. The test results showed statisti-
cally significant differences in the median of friction among the three times (p-value < 0.001).
Furthermore, the friction of period 2 is statistically lower than the friction of periods 0 and
1 (Turkey’s HSD test, p-value < 0.001). This demonstrates that the parameter friction has a
typical performance regarding the asphalt pavements.
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A statistical summary of the quantitative variables is provided in Table 5. As can be
seen, the average of the friction is 0.6 GN and ranges from 0.24 GN to a maximum of 0.96 GN.
Regarding the traffic variables, the difference between the highest and lowest value of the
annual average daily traffic (AADT) up to the observation year is 0.3274 × 106 vehicles,
showing a large increase over time. Moreover, according to the Portuguese Road Pavement
Design Manual [31], the minimum value for the accumulated annual average daily traffic of
heavy vehicles (Ac.ADT heavy) fits within the traffic class T3 and T4 (300–800 heavy vehi-
cles), therefore in an intermediate traffic level at the beginning of the life of the pavements.

Table 5. Statistical summary of the quantitative variables.

Variables Minimum Maximum Mean Median Standard
Deviation

Coefficient
of Variation

Friction 0.2400 0.9600 0.60 0.5900 0.13 0.22
AADT 0.0016 0.3290 0.0546 0.0412 0.0574 1.0511

Ac.ADT 0.0722 120.0850 18.9549 15.0523 20.9676 1.1062
Ac.ADT/direction 0.0361 60.0425 9.4775 7.5262 10.4838 1.1062

Ac.ADT/direction/lane 0.0018 57.0404 5.0233 0.7034 8.2631 1.6449
Ac.ADT heavy 0.0036 6.0043 0.9477 0.7526 1.0484 1.1062

Ac.ADT heavy/lane 0.0002 0.3002 0.0474 0.0376 0.0524 1.1062
Ac.ADT heavy_daytime 0.0001 0.2101 0.0332 0.0263 0.0367 1.1062

Ac.ADT heavy_nighttime 0.0001 0.0901 0.0142 0.0113 0.0157 1.1062
Higher max temp 22.00 40.50 32.43 34.00 6.23 0.19

Average max temp 11.80 29.20 20.72 20.90 5.13 0.25
Average med temp 7.70 21.40 15.64 16.40 4.33 0.28
Average min temp 3.50 16.00 10.57 11.50 3.77 0.36
Lower min temp −7.30 11.40 1.76 1.40 4.65 2.64

Average No. days temp max30 0.00 14.70 2.92 0.80 4.22 1.45
Average No. days temp max25 0.00 25.80 7.74 5.60 8.46 1.09
Average No. days temp min20 0.00 1.50 0.29 0.00 0.42 1.44
Average No. days temp min0 0.00 4.90 0.53 0.00 1.04 1.98

Ac. No. days temp max30 7.40 44.60 22.25 13.90 13.35 0.60
Ac. No. days temp max25 41.00 99.00 66.83 49.40 24.23 0.36
Ac. No. days temp min20 1.00 5.30 2.11 1.70 1.13 0.54
Ac. No. days temp min0 2.30 39.90 14.07 11.90 12.57 0.89

P 11.80 231.15 83.39 82.60 57.27 0.69
PM 38.00 103.16 64.24 66.00 15.89 0.25
RH 30.00 70.00 51.46 50.00 12.64 0.25
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In the case of temperature data, the higher value of the maximum temperature (higher
max temp), the average maximum temperature (average max temp), and the lower value
of the minimum temperature (lower min temp) are those that present the largest differ-
ence between the minimum and the maximum value. This situation also occurs for the
accumulated number of days with a maximum temperature of 25 ◦C (Ac. No. days
temp max25).

The difference between the highest and lowest value of the average of the total quantity
of precipitation (P) is 219.4 mm, and the average of the relative humidity of the air (RH)
is 51.5%. This shows that climate variables address a broad set of conditions that are
representative of the Portuguese weather.

Regarding the qualitative variables, the absolute frequency (number of events) and
relative frequency (absolute frequency normalized by the total number of events) are
described in Table 6.

Table 6. Frequencies of the qualitative variables.

Variable Categories Absolute Frequency Relative Frequency

Lane
LL 3 367 46.7
RL 3 326 46.2
SL 511 7.1

Plan
SA 2 322 32.2
C 2 209 30.7

CC 2 673 37.1

Profile
S 4 131 57.3

Ccc 1 379 23.5
Ccv 1 694 19.1

Layer
GGAC 3 951 54.8

PA 2 850 39.6
GGA.BMR 403 5.6

Hypsometry Low Altitude 2 411 33.5
Medium Altitudes 4 793 66.5

Only 7.1% of the sections typify the additional heavy vehicles lane (SL). About 37% of
the sections are in a circular curve (CC), and the number of sections in straight alignment
(SA) or clothoid (C) is about 31%, whereas the profile is characterized by 57% of the sections
in slope (S).

The number of sections with a gap-graded concrete surface course (GGAC) is much
higher (54.8%) than the number of sections with a gap-graded asphalt concrete modified
by a high percentage Rubber Modified Binder (GGA.BMR) (5.6%), and most of the sections,
about 67%, are located at medium altitudes.

3.4.2. Correlation of the Variables

Given the relatively large number of explanatory variables, a correlation analysis
was performed to identify which explanatory variables are highly correlated with the
response variable (friction) to be included in the model. Correlations among variables were
tested depending on the Pearson’s correlation coefficient, which measures the direction
and strength of the linear relationship between two continuous numerical variables.

Table 7 presents the Pearson’s correlation coefficient (rs) of response variable and
all explanatory variables highly correlated with the response variable. Therefore, these
variables are selected as the explanatory variables in regression modelling and will be
included in the mixed model as the fixed effect covariates.

The results analysis showed that the traffic variable with the highest linear relation
with the response variable was Ac.ADT (with rs = −0.645, p-value < 0.01), and the variables
related to climate conditions—the higher max temp (with rs = 0.222, p-value < 0.01); average
No. days temp max25 (with rs = 0.223, p-value < 0.01); P (with rs = −0.12, p-value < 0.01)
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and RH (with rs = 0.366, p-value < 0.01)—are significantly correlated (p-value less than
0.05) with the dependent variable (friction).

Table 7. Correlation between the dependent variable and some explanatory variables (coefficient
of Pearson).

Explanatory Variables Pearson Coefficient (rs) Significance of the
Correlation (Bilateral)

Ac.ADT −0.645 <0.01
Higher max temp 0.222 <0.01

Average no. days temp max25 0.223 <0.01
P −0.12 <0.01

RH 0.366 <0.01

For example, the mean profiles of friction values for all sections versus two of the
explanatory variables are provided in Figure 5. These plots show that the mean friction
decreases linearly with Accumulated Annual Daily Traffic (Ac.ADT) and increases linearly
with average number of days with maximum temperature ≥25 ◦C (average No. days
temp max25).
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4. Modelling Approach
4.1. Model Formulation

Linear mixed-effects models (LMMs) are mixed-effects models in which both the fixed
and the random effects occur linearly in the model function.

LMMs are particularly appropriate for the analysis of nested structured data, as in
this study. Kilometric points (PK) are nested within districts, and repeated measures are
collected on the same kilometric point over time.

These models extend linear models by incorporating random effects, which can be
regarded as additional error terms, to explain the correlation between observations within
the same group. In this study, dealing with a large number of kilometric points, some
degree of unobserved heterogeneity is present. The unobserved heterogeneity among
pavement sections was accounted for by using random intercept models.

The linear mixed-effects model expresses the i-th kilometric point as [29]:

Yi = Xiβ+ bi + εi, i = 1, . . . , n (1)
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where:

Yi
(
Yi1 . . . YiTi

)T represents a vector (of size Ti × 1) of responses (friction) for the i-th
kilometric point;

Xi is the known fixed-effects covariates matrix (of size Ti × p);
β is a vector (of size p × 1) of unknown regression coefficients (or fixed-effects parame-

ters);
bi is a vector (of size q × 1) of random-effects associated with the i-th kilometric point;
εi represents an error vector (of size Ti × 1) of n residuals associated with an observed

response for the i-th kilometric point.

Moreover:

bi ~Nq (0, D)
εi ~NTi (0, Ri)
bi
e
εi

are independent for the same i-th kilometric point and of each other.

where D is the q × q covariance matrix for the random effects, and Ri is the Ti × Ti
covariance matrix of the errors in kilometric point i.

In general terms, the maximum likelihood methods (Maximum Likelihood—ML; or
Restricted Maximum Likelihood—REML) are used to obtain estimates of the parameters in
LMMs. However, ML estimates of the covariance parameters are biased, whereas REML
estimates are not. This aspect makes it impossible to compare mixed linear models with
different fixed-effects structures based on the restricted maximum likelihood function [32].

Following the methodology described in Pinheiro and Bates [32], the significance of
fixed effects’ terms in the model is assessed by conditional F-tests using a sequential sum
of squares.

When two different models are nested (they differ only by adding more parameters
to the fixed effects structure), a Likelihood Ratio Test (LRT) comparing the log-likelihood
values between two models is used to test the superiority of different models. This test is
only valid if the fixed effects on both models were estimated by the ML method [32].

Akaike’s Information Criterion [33] and Bayesian Information Criterion [34] are also
used to compare several alternative models. These criteria are based on the maximum
likelihood function, the number of parameters, and the number of observations, or equiva-
lently, the sample size. The lowest value for both criteria indicates the best fit [16,32]. In this
study, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are
used to choose the most appropriate structure for the covariance matrix of the errors (Ri),
which describes the structure of the correlation among data points within kilometric points.

Cross-validation is a technique used to evaluate predictive models by partitioning
the original sample into a training set to train the model, and a test set to evaluate it. The
cross-validation methods for assessing model performance are the holdout method, the
k-fold method, and the leave-one-out method. In k-fold cross-validation, the original
sample is randomly partitioned into k equal sized subsamples. One sample is used to train
the model, and the remaining ones are used to test it later to quantify the prediction error as
the mean squared difference between the observed and the predicted outcome values. The
k-fold method is considered one of the most robust methods for estimating model accuracy,
as it evaluates the performance of the model in different subsets of training data [35]. Thus,
it was adopted in this study.

The Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), and the Mean
Bias Error (MBE) were used to assess models’ predictive performance. A smaller RMSE,
MAE, or MBE value indicates a more accurate prediction.

All statistical analyses were performed using the R statistical software (version 3.5.0) [36]
and the Statistical Package for the Social Sciences (version 24) [37].

4.2. Modelling Results

Using AIC and BIC, the independent structure was selected (this structure assumes
no correlation between observations within kilometric points).
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4.2.1. Linear Mixed Models for Two Levels of the Dataset (Models P)

First, the null model (no covariates) was fitted (Equation (2)).

Frictionti = β0 + b0i + εti (2)

Frictionti is the dependent variable in time (t) in the kilometric point (i).
where b0i ∼ N

(
0, σ2

P
)

, εti ∼ N
(
0, σ2

ε

)
, i = 1, . . . , 7204 and t = 0, 1, 2.

This model is useful for deciding whether a random-effects model might be appropri-
ate for the data. Table 8 presents the parameter estimates, their corresponding standard
error, and the p-value for this model.

Regarding the null model, the Portuguese National Road Administration has estab-
lished a minimum friction standard value of 0.60 GN when t = 0. The intercept parameter
estimates reflect it as it is close to this value.

Since σ2
P = 0.0049 and σ2

ε = 0.119, then 29.16% (0.0049/(0.0119 + 0.0049)) of the
data variation is explained by allowing the intercept to vary across sections, indicating
that unobserved heterogeneity among pavement sections is best captured by using a
random-intercept model.

First, the Model P_I (using only the variables inherent to traffic and climate conditions)
was fitted.

For Model P_I (Equation (3)), the statistically significant covariates were: Time,
Ac.ADT, higher max temp, average no. days temp max25, P, and RH. This can be written as:

Frictionti = β0 +β1 Timeti + β2 Ac.ADTti + β3 Higher max tempti + β4 Average No. days temp max25ti
+ β5 Pti + β6 RHti + b0i + εti

(3)

where b0i ∼ N
(
0, σ2

P
)
, εit ∼ N

(
0, σ2

ε

)
, i = 1, . . . , 7204 and t = 0, 1, 2.

From the results obtained for Model P_I (Table 8), it is evident that on average the
friction decreases with time (time), the accumulated annual average daily traffic (Ac.ADT),
the average number of days with maximum temperature ≥ 25 ◦C (average No. days temp
max25), and the average of the total quantity of precipitation (P). Conversely, it increases
with the relative humidity of the air (RH) and the higher value of the air maximum
temperature (higher max temp).

After adding the factors inherent to the highway characteristics (only with statistically
significant covariates) to Model P_I, it resulted in Model P_II (Equation (4)). In this model,
the relative humidity of the air (RH) was not significant. It is expressed as follows:

Frictionti = β0 + β1 Timeti + β2 Ac.ADTti + β3 Higher max tempti + β4 Average No. days temp max25ti
+ β5 Pti + β6 Laneti + β7Planti + β8 Profileti + β9 SurfaceLayerti + β10 Hysometryti

+b0i + εti

(4)

where b0i ∼ N
(
0, σ2

P
)
, εit ∼ N

(
0, σ2

ε

)
, i = 1, . . . , 7204 and t = 0, 1, 2.

As shown in Table 8, all variables are statistically significant (p-value <0.0001). It can
be observed that on average friction decreases more on the right lane ( β̂ = −0.0394)
than on the additional lane ( β̂ = −0.0250) when compared with the values of the left
lane. Moreover, on average, it decreases more on circular curve sections ( β̂ = −0.0128)
than on clothoid sections ( β̂ = −0.0040) when compared with straight alignment sec-
tions. Regarding the type of surface course, friction decreases in the porous asphalt layer
( β̂ = −0.0787) when compared with Gap Graded Asphalt Concrete (GGAC) sections.
Furthermore, based on the normal quantile–quantile (Q-Q) plot, it was concluded that
there are no significant deviations from the normality assumption (Figure 6).

The graph of the residuals versus fitted values for each studied model is analysed to
evaluate whether the curve fits the data well (Figure 7). The residuals must be randomly
distributed around the horizontal line representing a residual error of zero to confirm the
curve fits the data well. The residuals appear to be homogeneously distributed, indicating
the model fits well.
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Table 8. Results of the friction models P for the two-level Dataset.

Models P Null Model P Model P_I Model P_II

Fixed-Effect Parameter Estimate (β) Standard Error p-Value Estimate (β) Standard Error p-Value Estimate (β) Standard Error p-Value

Intercept 0.5960 0.0018 <0.0001 0.5068 0.0138 <0.0001 0.7800 0.0098 <0.0001

Time – – – −0.0625 0.0011 <0.0001 −0.0646 0.0011 <0.0001

Ac.ADT – – – −0.0012 0.0001 <0.0001 −0.0010 0.0000 <0.0001

Higher max temp – – – 0.0039 0.0003 <0.0001 0.0039 0.0003 <0.0001

Average No. days temp max25 – – – −0.0091 0.0002 <0.0001 −0.0095 0.0002 <0.0001

P – – – −0.0006 0.0000 <0.0001 −0.0007 0.0000 <0.0001

RH – – – 0.0032 0.0002 <0.0001 – – –

Lane (ref: LL) – – – – – – – – –

(Lane = RL) – – – – – – −0.0394 0.0010 <0.0001

(Lane = SL) – – – – – – −0.0250 0.0020 <0.0001

Plan (ref: SA) – – – – – – – – –

(Plant = C) – – – – – – −0.0040 0.0029 0.1619

(Plant = CC) – – – – – – −0.0128 0.0027 <0.0001

Profile (ref: Ccc) – – – – – – – – –

(Profile =Ccv) – – – – – – 0.0091 0.0035 0.0100

(Profile = S) – – – – – – 0.0024 0.0030 0.4380

Layer (ref: GGAC) – – – – – – – – –

(Layer = PA) – – – – – – −0.0787 0.0026 <0.0001

(Layer = GGA.RMB) – – – – – – 0.0086 0.0062 0.1625

Hypsometry (ref: Medium Altitudes) – – – – – – – – –

(Hypsometry = Low Altitudes) – – – – – – −0.1410 0.0029 <0.0001

Random Parameters Estimate IC 95% Estimate IC 95% Estimate IC 95%

σ2
P 0.0049 (0.0045; 0.0053) 0.0063 (0.0059; 0.0068) 0.0019 (0.0017; 0.0020)
σ2
ε 0.0119 (0.0117; 0.0121) 0.0051 (0.0050; 0.0052) 0.0047 (0.0046; 0.0048)
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4.2.2. Linear Mixed Models for the Three-Level Dataset (Models PD)

Following the same methodology described before, linear mixed models for three data
levels were developed to describe the degradation of the friction parameter.

First, the null model was fitted (Equation (5)).
Null Model PD.

Frictiontik = β0 + b0k + b0ik + εtik (5)

Then, Model PD_I (using only the variables inherent to traffic and climate conditions)
was fitted (Equation (6)).

Model PD_I.

Frictiontik = β0 + β1 Timetik + β2 Ac.ADTtik + β3 Higher max temp tik + β4 Average No. days temp max25tik
+ β5 Ptik + β6 RHtik + b0k + b0ik + εtik

(6)

Finally, Model PD_II was fitted (Equation (7)), after adding to Model PD_I the factors intrinsic
to the highway characteristics.

Model PD_II.

Frictiontik = β0 + β1 Timetik + β2 Ac.ADTtik + β3 Higher max temptik
+ β4 Average No. days temp max25tik + β5 Ptik + β6 RHtik + β7 Lanetik + β8 Plantik
+ β9 Profiletik + β10 SurfaceLayertik + β11 Hysometrytik + b0k + b0ik + εtik

(7)

where:
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Frictiontik is the dependent variable in time (t) in the kilometric point (i) in the district (k).

i = 1, . . . , 7204; t = 1, 2, 3; k = 1, 2, . . . 6;

b0ik ∼ N
(

0, σ2
PD

)
, b0k ∼ N

(
0,σ2

D

)
, εtik ∼ N

(
0, σ2

ε

)
In both models, the relative humidity of the air (RH) was not significant. Table 9 shows all

statistically significant variables (p-value < 0.0001).
In terms of parameter estimates, both models are quite similar except for hypsometry and

layer. This result is expectable as in Portugal the districts are linked to regions characterized by the
relief, which determines the choice of the surface layer. For example, roads near the sea are at low
altitudes, and their surface layers are often porous asphalt. At the same time, in inner areas, this
type of pavement is rarely used because of climate conditions associated with altitude and winter
maintenance.

The normal quantile-quantile (Q-Q) plots (Figure 8) show no significant deviations from the
normality assumption. In addition, the graph of the standardized residuals versus fitted values
for each of the studied models (Figure 9) does not show any systematic increase or decrease in the
variance of the residuals. Therefore, the residuals appear to be homogeneously distributed, indicating
good fit of the model.
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Table 9. Results of the friction models for the three-level Dataset.

Models PD Null Model PD Model PD_I Model PD_II

Fixed-Effect Parameter Estimate (β) Standard Error p-Value Estimate (β) Standard Error p-Value Estimate (β) Standard Error p-Value

Intercept 0.6136 0.0267 <0.0001 0.7056 0.0344 <0.0001 0.7213 0.0316 <0.0001

Time – – – −0.0597 0.0010 <0.0001 −0.0601 0.0011 <0.0001

Ac.ADT – – – −0.0013 0.0000 <0.0001 −0.0012 0.0001 <0.0001

Higher max temp – – – 0.0042 0.0003 <0.0001 0.0049 0.0003 <0.0001

Average no. days temp max25 – – – −0.0103 0.0002 <0.0001 −0.0106 0.0002 <0.0001

P – – – −0.0008 0.0000 <0.0001 −0.0007 0.0000 <0.0001

Lane (ref: LL) – – – – – – – – –

(Lane = RL) – – – – – – −0.0395 0.0010 <0.0001

(Lane = SL) – – – – – – −0.0257 0.0020 <0.0001

Plan (ref: SA) – – – – – – – – –

(Plant = C) – – – – – – −0.0044 0.0020 0.0291

(Plant = CC) – – – – – – −0.0092 0.0019 <0.0001

Profile (ref: Ccc) – – – – – – – – –

(Profile = Ccv) – – – – – – 0.0077 0.0024 0.0017

(Profile = S) – – – – – – 0.0031 0.0021 0.14450

Layer (ref: GGAC) – – – – – – – – –

(Layer = PA) – – – – – – −0.0644 0.0024 <0.0001

(Layer = GGA.RMB) – – – – – – −0.0778 0.0058 <0.0001

Hypsometry (ref: Medium Altitudes) – – – – – – – – –

(Hypsometry = Low Altitudes) – – – – – – 0.0154 0.0044 0.0005

Random Parameters Estimate IC 95% Estimate IC 95% Estimate IC 95%

σ2
D 0.0006 (0.0005; 0.0007) 0.0011 (0.0010; 0.0012) 0.0007 (0.0006; 0.0007)

σ2
PD 0.0043 (0.0014; 0.0133) 0.0066 (0.0021; 0.0204) 0.0055 (0.0018; 0.0170)
σ2
ε 0.0119 (0.0117; 0.0121) 0.0051 (0.0050; 0.0052) 0.0047 (0.0046; 0.0048)
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4.3. Models Comparison

As Model I is nested within Model II, either for the two-level dataset (Models P) or the three-
level dataset (Models PD), the Likelihood ratio test (LRT) was used to compare them. Tables 10 and 11
show a significant decrease in the log-likelihood associated with the inclusion of the variables inherent
to the highway characteristics, indicating the best performance of Model II. Moreover, the criteria
of information AIC and BIC in Model II are lower than in Model I (Tables 10 and 11), indicating
that Model II is the preferred one to fit the data. Then, the comparisons between Models I and II
confirm that the variables inherent to the highway characteristics have a significant effect in friction
degradation.

Table 10. Models P comparison.

Friction Models AIC BIC Log-Likelihood Test LRT p-Value

Models P
I −47869.38 −47797.56 −47887.38 – – –
II −51388.24 −51252.57 −51422.24 II vs. I 3534.86 <0.0001

Table 11. Models PD comparison.

Friction Models AIC BIC Log-Likelihood Test LRT p-Value

Models PD
I −50478.77 −50406.95 −50496.78 – – –
II −52695.15 −52551.50 −52731.14 II vs. I 2234.38 <0.0001

Finally, the AIC and BIC values of Models PD are lower than those of Models P (Tables 9 and 10),
indicating that Models PD provide a better fit to the data.

As Model PD_II provides a better fit than Model P_II, a national network manager can use it to
get better predictions. However, for a more global application, Model P_II can be considered because
it also presents a good goodness-of-fit between observed and fitted values.

4.4. Model Validation

One of the most critical steps in modelling is validation. To assess the predictive performance of
all models considered in this study, a scatter plot of observed vs. fitted values was drawn (Figure 10).
The corresponding determination coefficient (R2) suggests a good goodness-of-fit between observed
and fitted values. The test of the fitted model against observed data demonstrated that both models
were able to capture the variation of friction within different sections.

So, in this study, a k-fold CV method was applied to assess the prediction capacity of the Models
P and PD. The 7204 sections were divided into ten (k) mutually exclusive subsets. In each iteration
(k), 720 sections were used as testing data for making predictions, and 6484 sections were used
as training data for parameter estimation. Once the model parameters were estimated for each
training dataset, all sections from the corresponding testing dataset were used to predict the friction.
Prediction errors were then calculated and subsequently used for calculating different validation
statistics. The procedure was repeated ten (k) times so that each subset was used once as testing data.
Mean validation statistics were then computed across the repetitions. The Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE), and the Mean Bias Error (MBE), which describe the average
model-performance error, were examined. Table 12 summarizes the values obtained for each model
and the respective standard deviation (SD). The results show that Model II (considering the variables
inherent to traffic, climate conditions, and the factors intrinsic to the highway characteristics) displays
lower RMSE, MAE, and MBE. This suggests that Model II can provide better prediction accuracy
than Model I (considering only the variables inherent to traffic and climate conditions).
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Table 12. The Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), the Mean Bias Error
(MBE), and the respective standard deviation for each model.

Model RMSE (SD) MAE (SD) MBE (SD)

P_I 0.0903 (0.0002) 0.0704 (0.0001) −0.0004 (0.0001)
P_II 0.0815 (0.0000) 0.0624 (0.0000) −0.0005 (0.0000)
PD_I 0.0909 (0.0001) 0.0711 (0.0001) −0.0061 (0.0002)
PD_II 0.0882 (0.0003) 0.0689 (0.0002) −0.0060 (0.0002)

5. Discussion and Conclusions

In this paper, four friction prediction models for flexible pavements were developed using
linear mixed-effects models. Several factors influencing friction were also investigated. The random
intercept models developed in this paper are an important methodological approach since they
consider and correct for heterogeneity that could arise from unobserved factors not captured in the
data-collection process. Moreover, the mixed-effect approach adopted was successful in identifying
section-specific effects. It allowed for examining the effects of variables inherent to traffic, climate
conditions, highway geometric characteristics, and type of layer.

The models showed the relevance of the geometric characteristics of the motorways, as the lane
location, characteristics of plan and profile, and hypsometry, in explaining the degradation of the
friction parameter through time. As far as climate, traffic, and pavement conditions are concerned,
the developed models strengthen the literature review findings.
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Results indicate that pavement sections’ heterogeneity may be captured through mixed-effects
models and the random effect provides a more appropriate method for analyzing multi-sections
pavement data. From the analysis of the signal of parameter estimates of the models, friction
decreases with: Time (time), accumulated annual daily average traffic (Ac.ADT), average number of
days with maximum temperature above 25 ◦C (average No. days temp max25), and average of total
precipitation (P). It increases with the maximum air temperature value (higher max temp).

It was demonstrated that friction is also influenced by highway alignment characteristics (plan
and profile), lane, type of layer, and hypsometry. Therefore, friction decreases on the right lane
(RL) and the slow lane (SL), in comparison with the left lane (LL), and in the circular curve (CC)
and clothoid (C) sections, in comparison with the straight alignment sections (SA), and the friction
increases on the convex concordance curve (Ccv) and slope (S) in comparison with the concave
concordance curve (Ccc).

Regarding the type of surface, friction decreases in the porous asphalt (PA) and gap-graded
asphalt concrete with a high percentage of Rubber Modified Binder (GGA.RMB) when compared
with the gap-graded asphalt concrete surface course (GGAC).

Moreover, when data on the road or highway characteristics are not available, the approach
adopted is also useful. The network managers may still base their decisions on a simpler but accurate
model that enables them to predict or assess the friction parameter degradation through time.

The database available for this work is limited concerning material characterization used for
layers’ construction, as the Polished Stone Value (PSV), which, together with traffic, are often the
main factors in friction prediction. Therefore, the models developed are restricted to pavement
surfaces made of granite aggregate. In the Portuguese case, granite aggregates are used extensively
on roads, and for that reason the models developed may be applied in most of the country. Besides
that, in a regression model, more variation in the explanatory variables allows to more confidently
pin down the relationship between the response variable and explanatory variables.

Therefore, in the future, the models developed could be upgraded using a database with surface
layers made of other aggregates, whose relevant properties for friction are known. The models
enable the prediction of friction degradation together with the identification of different factors that
explain it, being, for these reasons, a valuable tool to assist network managers. They will be able
to conduct maintenance and rehabilitation actions more efficiently, promote the best quality of the
surface pavement layers, and optimize the global level of road safety. The assets management could
be so much more efficient and accurate if the network manager spends extra resources to include in
the database the variables inherent to the characteristics of the roads.

These models can be applied in the existing system (SUSTIMS—Sustainable Infrastructure
Management System), allowing to determine the need for small to medium-term interventions and
guarantee one of the crucial surface characteristics of the motorway.
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