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Abstract. The domain classification of scientific knowledge objects has been 

continuously improved over the years. Systems that can automatically classify a 

scientific knowledge object, through the use of artificial intelligence, machine 

learning algorithms, natural language processing, and others, have been adopted 

in most scientific knowledge databases to maintain internal classification 

consistency as well as to simplify the information arrangement. However, the 

amount of available data has grown exponentially in the last few years and now 

it can be found in multiple platforms under different classifications due to the 

implementation of different classification systems. Thus, the process of searching 

and selecting relevant data in research studies and projects has become more 

complex and the time needed to find the right information has continuously 

grown as well. Therefore, machine learning and natural language processing play 

an important role in the development and achievement of automatic and 

standardized classification systems that will aid researchers in their research 

work. 

Keywords: Natural Language Processing, Machine Learning, Domain 

Classification, Scientific Knowledge Objects. 

1 Introduction 

The process of searching and selection of relevant data in research studies and projects 

have become more complex due to the huge amount of available data. In the data search 

process, researchers may or may not use various filters to restrain the amount of data 

that the used platform returns. These filters are used to classify the data and rearrange 

it under certain labels to simplify the search process. 

During the search process, publication date, document type, and scientific domain 

are the most common filters applied to search processes and to the data itself. Regarding 

the scientific domain, this classification method is applied in almost every search, 

allowing the researcher to specify the scientific field that corresponds to the focus of 

the search. 

However, multiple times data can be found under different search platforms with 

different domains associated. That happens because different platforms use different 

classification systems which cause data to be labeled differently, or even being possible 



that the classification given to it could be wrong. Therefore, the inexistence of 

standardized and automatic systems for the classification of scientific knowledge 

objects (SKOs) has a major impact on the search process. Relevant information may 

not be found due to this inconsistency, and out of search focus information can cause 

several delays in the information search process. 

Thus, this paper aims to provide an overview of the state-of-the-art in machine 

learning (ML) algorithms and natural language processing (NLP) techniques for SKOs 

domain classification through the review of the most recent studies and reviews that 

have been conducted in SKOs domain classification as well as identifying the most 

suitable algorithms to perform the domain classification. 

The structure of this paper is composed as follows: Research Method, Machine 

Learning, and Natural Language Processing, Literature Review Results, and 

Conclusions. 

2 Research Method 

The research process and the write of this review were based on the guidelines provided 

by Webster & Watson [1]. 

 

2.1 Literature Search 

To carry out the literature search that will support the research component of this project 

was used only one search platform:  Scopus. Search criteria and terms were also defined 

to filter the quantity and quality of the information. 

Thus, and since the project requires the study of the state of the art of ML and NLP 

techniques for the classification of SKOs, the search criteria YEAR> = 2014 was 

defined. With a temporal restriction of this amplitude, the results obtained from the 

queries introduced in Scopus are more current, that is, the solutions and investigations 

presented in the results adopt more recent techniques, thus allowing to verify the state 

of the art in this context. Table 1 synthesizes the obtained results of the search stage. 

Table 1. Total number of results. 

Search query Number of results 

1. "scientific articles classification" AND "NLP" 0 

2. "scientific articles classification" AND "machine learning" 3 

3. "scientific articles classification" 4 

4. "classification of research articles" 5 

5. "classification of research papers" 39 

6. "domain classification" AND "scientific articles" 2 

7. "domain classification" AND "research papers" 16 

8. "domain classification" AND "research papers" AND "NLP" 2 



Search query Number of results 

9. "domain classification" AND "NLP"  43 

10. "topic classification" AND "research papers"  11 

11. "topic classification" AND "NLP"  198 

12. "topic classification" AND "machine learning"  872 

13. "domain classification" AND "machine learning"  284 

14. "semantic analysis" AND "NLP" AND "classification" 964 

15. "subject classification" AND "NLP" AND "research paper" 2 

16."subject classification" AND "machine learning" AND "research 

paper" 

12 

 

2.2 Literature Selection 

Based on the results obtained in the previous section, a preliminary selection of the 

literature was made with a focus on the title, summary, keywords, and introduction to 

determine which results were within the context of the research focus. Therefore, this 

selection process resulted in 20 obtained SKOs. Table 2 shows the results of the 

literature selection. 

Table 2. Number of selected, repeated and obtained results. 

Search query Selected results Repeated results Obtained results 

1. 0 0 0 

2. 0 0 0 

3. 1 1 0 

4. 0 0 0 

5. 1 0 1 

6. 1 1 0 

7. 1 0 1 

8. 0 0 0 

9. 1 0 1 

10. 2 1 1 

11. 6 0 6 

12. 5 2 3 

13. 3 0 3 

14. 5 3 2 



Search query Selected results Repeated results Obtained results 

15. 1 0 1 

16. 1 0 1 

Total 28 8 20 

 

2.3 Backward Tracking 

This backward tracking process complements the literature search done previously as 

well as fix any informational gaps that might exist by obtaining additional relevant 

SKOs that the selected ones have referred to. 

Thus, was developed a simple application that builds a cross-reference matrix 

between the references present in the selected literature to determine each one 

frequency, returning the number of occurrences of each reference from the complete 

given references list. To develop this application was made a preliminary analysis of 

the references list to detect which adjustments were needed. This process resulted in 14 

more SKOs to complement the ones obtained previously, making a total of 34 initial 

SKOs. 

3 Machine Learning and Natural Language Processing 

NLP came to complement the existing approaches of information processing, enabling 

the understanding of texts and languages of human nature. These texts have different 

characteristics from structured texts since, in addition to often being in the form of free 

text, that is, unstructured text, they have intrinsic characteristics that may result in some 

additional meaning or purpose beyond the simple text. For a human being, these 

characteristics may be evident and will make sense, but for a computer, this is no longer 

the case. 

Thus, the appearance of NLP has enabled the computer to identify these types of 

occurrences, for example, the expression of feelings, Sentimental Analysis, which has 

been increasingly explored in recent times. Thus, the connection between the 

techniques of NLP with ML has been providing increasingly better results. As the name 

implies, NLP is related to data processing and information extraction. It can be 

considered as the first step, after obtaining the data, to achieve a more rigorous and 

accurate classification system. 

Regarding ML, one of the elements that have the greatest impact on the project is 

the selected approach(es). Typically, supervised and unsupervised approaches are the 

most common ones among ML implementations. Models based on supervised 

approaches need previously classified data sets to calibrate the model itself [2] whereas, 

in unsupervised approaches, they do not need the data to be classified, being able to 

make use of lexicons, to carry out the data classification [3]. 

 



3.1 Data Classification - ML 

The implementation of ML algorithms is directly linked to the definition of the 

classification system, being the ML algorithms classification output restricted to the 

classification system defined. The identification and results of ML algorithms can be 

found in Section 4. 

 

3.2 Data Processing - NLP 

The most common approaches to the use of NLP techniques usually use a set of steps, 

in which the data obtained is processed. In the work of Romanov et al [4], in which a 

classification system for scientific texts in Russian was developed, an approach 

consisting of 5 steps was presented, namely: the removal of formulas that are frequent 

in scientific texts; the aggregation of metadata, which includes the title, keywords, and 

summary; transformation of data to lowercase; the removal of stop words that reduces 

the amount of existing information to just useful information; and the stemming of 

words, which consists of deflecting words to determine their lemma. 

Nurfikri & Adiwijaya [5] presents an implementation based on four steps, namely 

case folding, tokenization, removal of stop words, and word lemmatization, the last two 

steps being common in both implementations presented. 

Regarding the application of case folding, the transformation of the text by 

converting all existing letters to lower case letters as well as the possible removal of 

punctuation characters or even numbers [5] helps in removing existing noise in the data, 

and this removal makes it easier to perform the following steps to be performed. 

As for the removal of stop words, it is a very common step in NLP implementations, 

since it significantly reduces the amount of abstract information [6] that will be 

processed by the algorithms, for just useful information. This removal allows the 

adopted algorithms to process this information more quickly, thus making a more 

efficient classification process. For the execution of this step, mention is made of two 

different possibilities. As a first possibility for the removal of stop words, we have the 

adoption of stop word dictionaries such as WordNet [5] to compare and remove these 

words from the data if there is a correspondence between them and the dictionary. 

Another option would be the adoption of a library that, using internal methods, 

performs this removal automatically. The SciKit Python [7] and NLTK [8][9] libraries 

are examples of libraries that can be used to perform this step. 

Tokenization consists of analyzing and transforming data to generate terms [10], 

which means that complete sentences are transformed into arrays of words/tokens or, 

transform documents or paragraphs into arrays of simple phrases depending on the 

desired level. The NLTK library mentioned above also allows the execution of this step, 

resulting in more simplified information to be processed by the following steps. 

Concerning the lemmatization of words and stemming of words, both approaches 

have similar characteristics having the same objective however, the result obtained may 

vary between them. Both approaches aim to transform words into their root word but 

using different methods. While the stemming process tries to identify the root word of 

each existing word in the data obtained by removing plurals of similar words [10] and 

removing existing prefixes and suffixes, lemmatization still uses the lexical context and 

semantics to identify similar words[10] and thus determine the root words. In this way, 

it can be said that the application of lemmatization should return better results 



concerning the extraction of the root word of each existing word in the data since it 

takes into account the context in which they are inserted. 

 

3.3 Data Semantic Analysis - NLP 

Data semantic analysis is a component that plays an important role in obtaining a 

rigorous classification of SKOs. As the classification is directly related to their content, 

there is a need to understand it and classify it. 

Examples of techniques that apply data semantic analysis are Part-of-Speech (PoS), 

Latent Dirichlet allocation (LDA), Bag of Words (BoW), Term Frequency – Inverse 

Document Frequency (TF-IDF), GloVe, and Word2vec. These techniques refer to the 

need to try to understand the data not only as a set of characters but as elements that 

have some value or meaning in a given context. 

In the case of PoS tagging, the objective is to try to classify each word/token in a 

sentence using classes such as name, verb, adjective, preposition, among others [11] 

taking into account not only the basic characteristics defined by each language for each 

word but also the context in which the word is inserted as well as the relationship 

established between that word and the neighboring words in the sentence. 

The LDA probabilistic model performs the representation of the data under a 

hierarchical scheme, defining that each data set is constituted by a certain set of topics 

and that each word/token belongs to a certain topic [12]. In this way, it is possible to 

carry out the classification of a given data set taking into account the topics observed 

in it, and that classification takes into account the words in the data as well as the 

probabilities of each word belonging to each topic. Thus, the same word can belong to 

multiple topics, but with a different probability of occurrence for each topic. 

Another existing model is the BoW which, when complemented by other models 

such as the TF-IDF model, can become a powerful tool in classification tasks. 

In the BoW model, two features can be verified. Firstly, this model creates a “bag” 

of words that will contain all the words in the total data set [13], functioning as a 

database of words that serve as the basis for the execution of the second functionality 

related to the frequency calculation algorithm inherent to this method. This algorithm, 

when exposed to a data set, counts the occurrences of each word, and associates each 

one with the same value, called weight [13]. Thus, it is possible to make a comparison 

between these weights assigned by the algorithm to that data set, with other data sets 

previously processed, thus allowing to perform some sort of classification. 

The TF-IDF model, like the BoW method, also assigns a weight to each existing 

word to determine which words are most important in a given data set. However, this 

algorithm is not based solely on the frequency of occurrence of each word, but rather 

the total frequency of each word in the global data set [13]. Thus, this algorithm tends 

to devalue words with a high-frequency value in a global set [14], assuming the 

possibility that they are noise. In the context of classification, most of the words in the 

data do not contribute to the classification process, which can lead to deviations in the 

results obtained. 

An alternative to the BoW model would be to use models such as GloVe [15] or 

Word2Vec [16]. These models differ from the BoW model in that they do not assign a 

weight to each word, but a vector. In this way, words can be represented in space 



through their vectors, enabling the calculation of similarity between words [17] as well 

as the identification of relationships between them. 

In this way, the use of semantic data analysis models will be indispensable in this 

project since the context in which the data is presented can determine the correctness 

or not regarding the classification of articles. For example, in the title “Co-training for 

topic classification of scholarly data” [18], “scholarly data”, by itself, would obtain a 

classification in the area of education, which would conflict with the classification 

attributed to the first part of the title that is related to the training of algorithms for the 

classification of topics, which is framed in the area of computer science. With the 

absence of semantic analysis, the classification of this article would return practically 

the same weight for both parties, which is not correct since “scholarly data” is the object 

of classification of the algorithms, making this article an article with a weight higher 

education in the field of computer science and not in the field of education. 

4 Literature Review Results 

The present section aims to summarize the results obtained from the review of the 

obtained literature to determine the state-of-the-art in ML algorithms, and NLP 

techniques. 

 

4.1 Data Classification Results - ML 

To analyze the ML algorithms presented in the literature, the following Table 4 was 

built. 

Table 3. ML algorithms analysis. 

Literature SVM CRF NN NB LR LSTM RF 

[4] X  X  X X X 

[5] X  X X    

[6]        

[7] X   X    

[8] X  X   X  

[9] X  X X  X  

[18] X   X    

[19]  X X   X  

[20]   X     

[21]      X  

[22] X X      

[23]   X   X X 

[24]      X  



Literature SVM CRF NN NB LR LSTM RF 

[25]   X     

[26] X   X    

[27] X  X   X  

[28]   X     

[29] X   X X   

[30]   X     

 

Among the ML algorithms, there are the Support Vector Machine (SVM) and Naïve 

Bayes (NB) algorithms which, in addition to being the most traditional algorithms, 

continue to provide good results. In Romanov et al [4] 99% accuracy was obtained 

regarding the classification of scientific texts based on their abstracts. However, this 

high acuity value reveals low precision and recall values, 61% and 36% respectively, 

which is not ideal. The best set of analysis metrics for the methods was achieved 

through the use of the SVM algorithm, which was the one with the best results when 

compared to other algorithms such as Logistic Regression (LR), Random Forest (RF), 

Long Short Term Memory ( LSTM) and a variant of the Neural Network (NN), called 

the Artificial Neural Network (ANN). 

In the work by Kaplan et al. [22], a comparison was made between the SVM 

algorithm and the Conditional Random Field (CRF) algorithm using different 

processing characteristics. In this work, both algorithms obtained similar acuity values, 

being 72.4% and 72.7%, respectively SVM and CRF. 

In another investigation conducted by Bhaskaran et al. [19], CRF and Bidirectional 

Long Short-Term Memory (Bi-LSTM) algorithms were compared in which, in the 

context of domain classification, the acuity values of 92.17% and 90.96% were 

achieved, respectively. These values were obtained using the GloVe model concerning 

the data processing component. 

The Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) 

algorithms, the latter also a variant of NN, were compared by Semberecki & 

MacIejewski [9] given the classification of informative articles regarding their domain. 

The LSTM algorithm with 86.21% accuracy, proved to be more assertive compared to 

the CNN algorithm that obtained 82.07% accuracy. In this case, in the data processing 

component, the Word2vec model was used. 

It should also be noted that many of the investigations carried out, in the context of 

text classification, propose their adaptations to the existing models and algorithms, as 

is the case of the work of Ghumade & Deshmukh [20], which proposes a system derived 

from Recurrent Neural Network (RNN). The proposed model, which obtained 97.5% 

of correct classifications, managed to overcome the results obtained by the NB, ANN, 

and RF algorithms of 92.3%, 91.1%, and 87.5%, respectively. 

Regarding the results presented, it should be noted that the percentage values of the 

correctness of each algorithm, in the respective research project, are directly influenced 

by the level and quality of data processing before applying ML algorithms, as well as 

the quality of the data itself. Thus, comparative tests between different sets of steps and 



NLP models with ML algorithms will have to be carried out, to try to achieve 

satisfactory results. 

 

4.2 Data Processing and Data Semantic Analysis Results - NLP 

In the same way as the previous section, the following Table 5 summarizes the 

information exposed in the literature regarding NLP techniques. 

As for the NLP steps observed, there was a higher incidence in the data processing 

base steps, them being case folding, tokenization, and removal of stop words. In the 

application of semantic data analysis models, the vector representation models, in the 

context of this project, are those that have the greatest potential for contextualizing the 

data beyond the LDA model. This model is the most applied in multiple classification 

contexts since it is based on the definition of topics and the consequent classification 

of data based on a set of topics. 

Table 4. NLP techniques analysis. 

Liter

ature 

Case 

Foldi

ng 

Toke

nizati

on 

Stop 

Word

s 

Lema

tizati

on 

Stem

ming 

LDA POS BOW TF-

IDF 

Glove Word

2Vec 

[4]  X X      X   

[5] X X     X X X   

[6]  X      X   X 

[7]  X     X     

[8]  X         X 

[9] X   X X X      

[10] X X X X X X   X   

[15] X X X X X  X  X  X 

[19] X X     X   X X 

[20]  X X  X    X   

[25] X X X  X X  X    

[29] X X        X X 

[30] X  X  X       

[31]   X   X   X   

[32] X X  X X  X     

[33] X X X   X X X X X X 

[34] X X          

[35] X X X X        

[36]  X         X 



5 Conclusions 

The amount of available information, on diverse scientific platforms and databases that 

exist nowadays, can make it difficult to find the right one. That is why the existence of 

a standardized platform that could provide the most acuity possible in information-

seeking would have a major impact on research projects.  

The existence of a standardized classification system that could provide the most 

acuity possible SKOs classification, enables the information-seeking process with a 

major impact on researchers and in their research projects.  

To accomplish the implementation of the desired classification system, NLP and ML 

play an important role in data analysis and classification. As for the NLP steps, there 

was a higher incidence case folding, tokenization, and removal of stop words for data 

processing. In the application of semantic analysis, we highlight the vector 

representation models GloVe and Word2Vec, since they seemed to have the greatest 

potential for contextualizing the data.  

The results from the NLP application should feed the ML algorithms so that they 

can perform the correct classification of SKOs. Thus, the importance of this set of steps 

regarding the processing of data, that has a direct influence on the final result to be 

obtained, is visible. It should also be noted that the processing of the data, and the steps 

that constitute it, are variable, that is, the techniques exposed may not provide the best 

possible results because the used data has a direct influence on these same results. Thus, 

it will be necessary to carry out comparative tests between different sets of processing 

steps and models, to determine which is the best set of steps and models that provides 

the best results for the classification of SKOs. 

From the identified ML algorithms, the traditional SVM and NB algorithms continue 

to be the most used, and with satisfactory results in terms of accuracy. However, the 

LSTM algorithm proved to be a viable alternative to traditional algorithms, having also 

obtained good results in terms of the accuracy of the classifications.  

Future work will be related to the development of the classification system hopping 

to reach a standardized classification system that solves the information-seeking 

problems present on the current and future research projects 
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