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Abstract 

Bimetallic nanoparticles have gained attention in the last decade due to their unusual characteristics 

compared to monometallic counterparts. However, production of such particles with controlled 

morphologies and composition need to be explored and the mechanisms understood. In this work, 

we demonstrate a fast and simple process to obtain flower-like Zn-Fe (Zinc-Iron) nanoparticles (NPs) 

using a hybrid system based on the combination of conventional magnetron sputtering and a cluster 

beam source. The morphology and structure were characterized by Scanning transmission electron 

microscopy (STEM), while the chemical composition was evaluated by simultaneous acquisition of 

Energy-dispersive X-ray spectroscopy (EDS) and Electron energy loss spectroscopy (EELS). Besides, 

molecular dynamic simulations were used to model the nanoparticle collisions during the 

simultaneous production, revealing the formation mechanisms of the flower-like nanoparticles. 

Keywords: bimetallic; STEM; EELS tomography; oxygen scavengers; nanomaterial.  

Introduction 

Hybrid metallic nanoparticles (NPs) have shown enormous potential in a variety of fields, including 

materials for biomedical, catalysis, sensors, energy [1-2] , and food packaging applications [3]. These 

heterostructures are characterized by a synergetic effect among the components, which provides not 

only the functionalities of each metal but also enhanced properties due to additional features 

provided by the interface of their components. Their chemical composition, morphology, and 

concentration define the functional characteristics. However, to properly control the morphology and 

composition of the NPs, the growth mechanisms of these heterostructures must be well understood. 

This kind of nanostructures are usually produced by physical, chemical, and biological methods [4]. 

However, magnetron sputtering is one of the techniques that allow a control of the distribution, size, 



and composition, besides the non-toxicity of the samples thanks to the absence of chemical solvents 

[5].  

We have previously reported the production of individual Zn particles supported by a carbon substrate 

using classical magnetron sputtering[5], and the production of metallic particles using cluster beam 

sources coupled to a vacuum chamber has also been reported [6-7]. Their morphology can be 

controlled by the deposition conditions, varying from spherical to cubic NPs. Besides, the formation 

of core-shell and Janus-like particles is also well-known. However, these multi-element NPs are usually 

produced using a complex cluster beam source setup, where more than one magnetron allows the 

condensation of the particles inside the cluster gun chamber.  

To simplify this process, we designed a simple and fast production methodology of flower-like Zn-Fe 

NPs and explored the growth mechanisms taking place during the production.  

Experimental details 

Zn-Fe NPs were produced using a magnetron sputtering chamber equipped with a cluster gun. The 

process consisted in applying, during 1 min, a density current of 2.96 mA.cm-2 and 2.67 mA.cm-2 to Zn 

(principal chamber) and Fe (cluster gun) targets, under an Argon working pressure of 0.8 Pa and 70 

Pa, respectively. 

The materials were characterized using high-angle annular dark-field (HAADF) STEM images, Energy-

dispersive X-ray spectroscopy mappings (EDS-mapping) and Electron Energy Loss Spectroscopy (EELS) 

acquired on a double corrected FEI Titan Themis operated at 200keV.  

Finally, molecular dynamic simulations were carried out to elucidate the growth mechanism of the 

particles, using LAMMPS [8]. Cu NPs were chosen for the MD simulations in lieu of Zn NPs because of 

similar atomic masses and the lack of a suitable MD force-field for the iron-zinc pair.  

More detailed information can be found in supplementary information (Figure S1-S3).  

Results and discussion 

Fe or Zn NPs oxidize spontaneously when contacting oxygen in the environment, forming a passivation 

layer that prevents further oxidation. Thus, when they are produced separately, core-shell 

nanostructures of the form Me/MeOx are produced, for Me=Zn and Fe (see supplementary 

information Figure S4). However, when the particles are produced simultaneously with a rotating 

substrate holder, a completely different morphology of the particles is obtained, frequently presenting 

a flower-like morphology, as shown in Figure 1 (see supplementary information Figure S5). Phase-



contrast images (HR-TEM) in Figure 1b reveal different phases in the interior and exterior of the NPs. 

The inner part of the particles is formed by a monocrystalline phase, whose digital diffraction pattern 

may be attributed to a Fe phase (Figure 1c). The outer region of the particles corresponds to a 

polycrystalline material, with inter-planar distances to those of a Zn/ZnO. However, the unambiguous 

identification of the phases is hindered in the phase-contrast images and thus, a chemical 

characterization was carried out by EDS and EELS. 

 

Figure 1. a) HAADF-STEM low magnification image of hybrid Zn-Fe nanoparticle deposited on ultra-

thin carbon, b) phase-contrast image of a single particle. The inset corresponds to the FFT of the image, 

c) IFFT based on the FFT spots highlighted by the blue circles, c) IFFT based on the FFT highlighted in 

green. 

The small and large NPs in Figure 1a have the same structure and are distributed on different zones 

of the surface, as shown in Figure S5. Moreover, figures 2a and 2b show the spectrum images from a 

single particle characterized by STEM-EDS and STEM-EELS. The results confirm the distribution of Zn 

and Fe from HR-TEM images, where the core is composed of Fe, surrounded by Zn NPs, forming 

flower-like nanoparticles. EELS spectra (Figure 2c) revealed a pure Fe phase in the core, and the 

existence of some Fe in the petals of the particles, forming a Zn(F)eO phase, which is also confirmed 

by EDS. It is worth noticing that the Fe core does not show an oxygen peak in the spectrum, which 

suggests that the major elements oxidized are located in the exterior of the particles. This is attributed 

to the galvanic protection that Zn offers to Fe. This oxidation control suggests that by adjusting the 

amount of Zn and Fe in the heterostructures, the oxidation of the particles can be tuned, allowing the 

use of these systems in applications such as oxygen scavenging and antibacterial properties.  



 

Figure 2. a) HAADF-STEM and EDS spectrum images for a bimetallic Zn-Fe NP, b) EELS spectrum 

images of the same NPs in a). c) EELS spectra from the core and edge of the blue and orange 

squares in b), respectively. d) EDS spectra of the particle shown in a), and e) reconstructed ZnFe 

NP using HAADF-STEM tomography.  

2D projection from the (S)TEM does not allow us to determine the extent to which Zn covers the Fe 

core, and thus, to guarantee that such particles are not completely wrapping the Fe core, tomography 

studies were carried out. Figure 2e displays the particles after the 3D tomography reconstruction as 

well as their projection; clearly, the particles are formed by a core spherical particle decorated with 

smaller particles that shape the petals of the flower-like morphology. Such petals exist not only at the 

surface-plane of the substrate but also on the top of the particles, indicating a strong redistribution of 

the Zn nanoparticles.  



Molecular dynamics simulations (MD) reveals the main mechanisms responsible for the restructuring 

of the NPs on the surface. Initially, the simulation shows that the clusters are freely moving on the 

surface, due to the low substrate-cluster interaction energy. After the impact, the iron NPs kinetic 

energy is partly degraded into heat, as can be seen by the NPs heating reported in Figure 3c, and also 

transferred to the substrate. Due to the large size of the substrate compared to the NPs, the 

temperature variation is negligible, and most of the energy is converted into mechanical energy, 

triggering substrate elastic modes. As a consequence Cu clusters are accelerated by NP impact in a 

way that is proportional to the incoming NPs energy, as depicted by their mean square displacement 

(MSD) in Figure 3d. This increased mobility means that all those phenomena related to surface 

diffusion, such as coalescence, are accelerated. 

 

Figure 3. a) Simulated system before the equilibration of copper clusters and after 1 ns (Fe=blue, 

Cu=green and C=grey), b) top view of the simulated system after 1 ns; the inset in the image represents 

the STEM multislice computer-simulated images c) Temperature of the Fe NPs during impact and d) 

the mean square displacement of copper clusters on the substrate.  



Another significant phenomenon, observed for large impact velocities, is the re-sputtering of Cu 

clusters from the surface due to the small adhesion energy of the Cu clusters (supplementary 

information). At all impact energies considered, the attachment of Cu clusters to the Fe NPs was 

observed. When re-sputtering occurs, the clusters can also attach on top of the Fe-NPs, and not only 

in correspondence of the substrate/surface contact. 

We could deduce that the decoration of Fe-NPs Zn cluster occurs because the impact promotes the 

mobility of their on the surface, hence accelerating the coalescence of Fe and Zn NPs. Moreover, the 

fact that Zn is also observed on the top can be explained by impact-driven re-sputtering and 

subsequent adhesion of Zn clusters over the Fe NP. 

Based on the MD simulation results, HAADF-STEM images simulation were carried out [9](Figure 3b 

inset). The images reveal a more intense core when compared to surrounding particles, which for 

HAADF images signify heavier elements or thicker regions. In this particular case, it is known that Zn, 

Fe and Cu would have very similar contrast due to the proximity in the atomic number, therefore the 

changes are mainly due to the size of the particles. Thus, the smaller size of the Zn clusters explains 

their different contrast in the STEM images, which, together with the tomography results, confirm the 

existence of smaller particles decorating the core.  

Conclusion 

Zn and Fe NPs were deposited simultaneously using a hybrid system based on a conventional 

magnetron sputtering and a cluster source. Phase-contrast images (HR-TEM) exhibited two different 

phases in the interior and exterior of the particles. The inner part is formed by a monocrystalline phase 

attributed to the Fe phase, while the exterior region of the particles corresponds to a polycrystalline 

of the Zn/ZnO. Besides, MD simulation demonstrated that the observed coverage of the Fe NPs occurs 

after the aggregation with Zn NPs, promoting Zn NPs diffusivity on the surface, hence accelerating the 

coalescence of Fe and Zn NPs. The samples properties that have been studied in the present 

investigation can be used in a wide range of including oxygen scavenging, antibacterial devices and 

bio-imaging technologies. 
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Highlights 

 

 Hybrid sputtering/ gas agglomeration system produces flower-like Zn-Fe NPs. 

 

 Fast, simple and reliable method to produce bimetallic nanoparticles. 

 

 Molecular dynamics shows the growth mechanisms of the particles. 

 

 Galvanic couple between Zn –Fe protects Fe from oxidation. 
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Materials production 

All nanoparticles (NPs) of Zn, Fe, or Zn-Fe were produced using a hybrid sputtering equipped with a 

cluster gun. The scheme presented in Figure S1 shows the setup apparatus where all samples were 

produced, which is composed of two principal parts: (i) the main chamber with an internal diameter 

of 40 cm connected with a vacuum system, where the Zinc target (99.9% of purity, Ø = 50.8 mm, and 

thickness 4.5 mm) was located at 6 cm from the substrate holder, and (ii) a DC cluster beams source 

linked with water cooling system, with a Fe target (99,95% of purity, Ø = 6.9 cm and thickness 3 mm, 

The cluster gun has two nozzles with 2.5 mm and 4 mm of diameters, respectively. The distance 

between the Fe magnetron and the cluster gun inner aperture was 8 cm and the rotating substrate 

holder was located 10 cm away from the outer aperture of the cluster gun. The nozzles created a 

differential pressure, which permitted the passing of the cluster beams toward the main chamber.  

The main chamber and the cluster beam were evacuated with an initial pressure of  1 x10-4 Pa and  

0.02 Pa, then set up to a working pressure of 0.8 Pa to 70 Pa, respectively, with the presence of Argon 

as a sputtering gas introduced in the cluster gun chamber (Φ Ar = 50 sccm). The substrates were in 

static mode for samples Zn and Fe in order to optimize parameters to produce NPs from each target, 

whereas were rotated with a speed of 2 rpm for the hybrid nanoparticles. 

All samples were deposited onto substrates of Si-wafers, TEM Cu-grids with ultra-thin carbon layers 

(400 mesh) and glass. The Si and glass substrates were cleaned by distilled water, acetone, and ethanol 

for 10 min sequentially in order to remove impurities on the surface. Table S1 presents the parameter 

details used to produce Zn and/or Fe NPs.  

 



 

Figure S1. Schematic of the cluster chamber. 

Table S1. Process parameters. 

Process 

mode 
 

JZn 

(mA/cm2) 

JFe 

(mA/cm2) 

Zn+Fe layer 

time 

(min) 

Rate(nm/

mn) 

static Zn 2.96 -- 8 * 70 

static Fe -- 2.67  15 ** 80 

rotated ZnFe 2.96 2.7 1 -- 

(*) only Zn  (**) only Fe 

Materials Characterization 

Scanning transmission electron microscopy (STEM – EDS) 

High angle annular dark-field (HAADF) STEM and phase-contrast images were acquired on a double 

corrected FEI Titan Themis operated at 200 keV. HAADF-STEM images were recorded using a 

convergence angle of 21 mrad with a pixel dwell time set at 10µs. A camera length of 115 mm was 

selected, which allows the HAADF detector to collect electrons between 50 and 200 mrad.  

Energy-dispersive X-ray spectroscopy mappings (EDS-mapping) in transmission mode was performed 

in double corrected FEI Titan Themis operated at 200 keV equipped with a Super-X EDX detector. 

Iterative maps of 512 x 512 pixels were recorded with a dwell time per pixel of 10 µs at 200 keV to 

determine the elemental distribution. The current of the electron beam was maintained as constant 

as possible in all the samples between 200 and 250 pA, and the maps were acquired for 15 min. 

Electron Energy Loss Spectroscopy (EELS) 



Electron Energy Loss Spectroscopy (EELS) was performed on a double corrected FEI Titan Themis, 

operated at 200 keV, equipped with a dual-EELS Enfinum ER spectrometer. The STEM-EELS spectrum 

images (SI) were acquired with a spectrometer channel resolution of 0.1 eV with a 5 mm aperture, so 

that a resolution between 1 to 1.2 eV is achieved. The Fe L3,2-edges were collected using 5x10-2 s per 

pixel, while the zero-loss peak was simultaneously collected for 5x10-5 s per pixel. The beam 

convergence angle was set at 21 mrad, and the camera length was adjusted to 29.5 mm to position 

the majority of the electrons in the entrance of the spectrometer. 

Tomography  

A Fischione single tilt tomography holder was used to acquire HAADF-STEM images at 80 kV, in an 

angular increment of 5° and a tilt range of ±70°. Manual alignment was used, due to the size of the 

particles, to center the specimen at each tilt angle. Spatial image alignment was performed using 

cross-correlation of HAADF images in FEI’s Inspect3D software package. Tilt axis alignment was also 

undertaken in Inspect3D followed by reconstruction with 100 iterations.  

 

Figure S2. HAADF images acquired at an angular increment of 5° and a tilt range of ±70° of two ZnFe 

bimetallic nanoparticles. 

Molecular dynamics simulations 



Molecular modelling and simulations are used to investigate molecular phenomena  that  are  difficult  

to observe  experimentally. If, on one side, the adopted theoretical models rely on various simplifying 

assumptions that makes the simulations actually feasible. On the other side, the underlying physics of 

the studied phenomenon is fully known, hence providing precious insights. Thus, to model the 

experimental system, a substrate of 9 graphite layers was considered, lying in the xy plane, with a 

depth of 3 nm and a lateral size of 20 nm in each direction. The surface was decorated with 16 copper 

clusters, containing 28 atoms each. An iron nanoparticle with a diameter of 2.8 nm was created above 

the surface. Copper was chosen in lieu of Zn because of the lack of a suitable molecular dynamics 

force-field for the iron-zinc pair. However, because of their similar atomic masses, Cu clusters should 

represent closely the behaviour of Zn ones. The Cu-Fe interatomic interaction the MEAM force field 

was adopted [1] [2][. In particular, the parametrizations of Jelinek [3]  was used for iron and copper, 

while the parametrization of Liyanage [4] was used for carbon. Lennard-Jones potentials were added 

between atoms of adjacent graphite sheets to reproduce the correct interlayer spacing. The 

interaction between metal atoms and graphite was modelled using LJ potentials as well, chosen to 

reproduce the atomic adsorption energies for Fe and Zn on graphene. All simulations were performed 

using LAMMPS. 

The nanoparticle impact implies a large transfer of momentum causing the appearance of large forces 

within the simulation, which might render the MD integration unstable if a too large time-step is 

chosen. For this reason, time step of 0.1 fs was adopted, which ensures the correct description of 

particle motion and total energy conservation. All simulations were performed under NVE conditions, 

except for a 2 Å thick region at the edges of the substrate, for which NVT conditions were employed, 

with the temperature being fixed at 300 K and using a coupling constant of 10 fs. The center of mass 

of the NVT region was kept fixed. In this way, the mechanical and thermal coupling of the substrate 

with the support is reproduced, providing a way for energy dissipation. 

The nanoparticle and the graphite substrate were heated up at 300 K and equilibrated under NVT 

conditions. Next, the cluster was deposited on the substrate, such as shown in Figure S3. The substrate 

acts as a heat reservoir for the clusters so that a 100 ps run was sufficient to heat them to the substrate 

temperature. At this point, a net negative speed along the z-axis was set to all atoms of the iron NP, 

in order to trigger the impact, which was followed for 1 ns. Speeds of 100, 500 and 800 m/s were 

considered.   



 

Figure S3. a) side and b) top view of the simulated system before the equilibration of Cu clusters. Fe 

is depicted by red spheres, Cu by ochre ones and C atoms by grey dots. 

STEM multislice images simulation 

Simulation of HAADF images was carried out using Dr. Probe V1.9 software package, [5] using the final 

frame of the MD, with the beam perpendicular to the substrate surface. Frozen-lattice configuration 

was used and the simulation was carried out reproducing the experimental conditions at 200 kV and 

21 mrad aperture.  



 

Figure S4. a) HAADF-STEM and b) EDS spectrum images acquired for particles Zn/ZnO particles 

deposited using conventional magnetron sputtering, c) thick coating of Zn using conventional 

magnetron sputtering, d) HAADF-STEM and e) EDS spectrum images acquired for particles 

Fe/FeOx particles deposited using cluster gun, and f) thick coating of Fe using cluster gun. 

 



 

Figure S5. HAADF – STEM images of a set of flower-like nanoparticles. Scale bar represents 5 nm. 
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