
Chapter 1
Singularity Subtraction for Nonlinear Weakly
Singular Integral Equations of the Second Kind

M. Ahues, F. D. d’Almeida, R. Fernandes & P. B. Vasconcelos

Abstract The singularity subtraction technique for computing an approximate so-
lution of a linear weakly singular Fredholm integral equation of the second kind is
generalized to the case of a nonlinear integral equation of the same kind. Conver-
gence of the sequence of approximate solutions to the exact one is proved under
mild standard hypotheses on the nonlinear factor, and on the sequence of quadrature
rules used to build an approximate equation. A numerical example is provided with a
Hammerstein operator to illustrate some practical aspects of effective computations.

1.1 Introduction

The reference Banach space is the set X := C0([a,b],R) with the supremum norm.
We consider the operator K defined by

K(x)(s):=
∫ b

a
g(|s− t|)N(s, t,x(t))dt, x ∈ X , s ∈ [a,b],

where g is a weakly singular function in the following sense:

M. Ahues
Université de Lyon, FRANCE,
e-mail: mario.ahues@gmail.com

F. D. d’Almeida
Universidade do Porto, PORTUGAL,
e-mail: falmeida@fe.up.pt

R. Fernandes
Universidade do Minho, PORTUGAL,
e-mail: rosario@math.uminho.pt

P. B. Vasconcelos
Universidade do Porto, PORTUGAL,
e-mail: pjv@fep.up.pt

1



2 M. Ahues, F. D. d’Almeida, R. Fernandes & P. B. Vasconcelos

lim
s→0+

g(s) = +∞, and g ∈C0(]0,b−a],R+)∩L1([0,b−a],R+).

To be consistent with [An81] and [AhEtAl01], we assume that g is a decreasing
function on ]0,b−a].
The factor N, containing the values x(t) ∈ R of the functional variable x ∈ X for
t ∈ [a,b], is a continous function

N : [a,b]× [a,b]×R→ R, (s, t,u) 7→ N(s, t,u),

with continuous partial derivative with respect to the third variable.
Then the operator K maps X into itself, and it is Fréchet-differentiable over X .
When N(s, t,x(t)) := κ(s, t)x(t) for some continuous function κ : [a,b]×[a,b]→R,
then K is a linear bounded operator from X into itself.
In this paper, we are interested in the general, possibly nonlinear, case.

The main idea of the singularity subtraction method is to compensate the singularity
of g(|s−t|) along the diagonal s= t, by multiplying g(|s−t|) by a factor which tends
to 0 as t→ s. If K is linear, this factor is κ(s, t)(x(t)−x(s)). In the general case, the
factor is N(s, t,x(t))−N(s,s,x(s)).
This leads to rewrite K as

K(x)(s) :=
∫ b

a
g(|s− t|)[N(s, t,x(t))−N(s,s,x(s))]dt

+N(s,s,x(s))
∫ b

a
g(|s−t|)dt. (1.1)

The singularity subtraction method builds an approximation of K as it is written in
(1.1), and, as described in [An81] for the linear case, it is a double approximation
scheme consisting of truncation and numerical integration.
The ideas worked out in [An81] and [AhEtAl01] for the linear case, are extended
here to the nonlinear case.
Truncation: Given δ ∈ ]0,b−a[, we replace g with a truncated approximation g

δ
in

a δ -right-neighborhood of 0. This function coincides with g outside a small interval
[0,δ ], and is constantly equal to g(δ ) in [0,δ ]. Hence g

δ
is a continuous function. In

the sequence of singularity subtraction approximations, the role of δ is played by a
sequence (an)n≥2 in ]0,b−a[ leading to the function gn defined by

gn(s) :=
{

g(an) for s ∈ [0,an],
g(s) for s ∈ ]an,b−a].

Numerical integration: To proceed with the singularity subtraction idea – like in
the linear case – we define a general grid with n≥ 2 points on [a,b]:

a≤ τn,1 < τn,2 < .. . < τn,n ≤ b. (1.2)

This grid is called the basic grid, and it determines n−1 subintervals of [a,b].
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The integrals in the first line of (1.1), after replacing g with gn, are approximated by
some quadrature rule Qn with p(n) nodes depending on the nodes of the basic grid.
For instance, if Qn is the composite trapezoidal rule, then the quadrature grid is the
basic grid, so p(n) = n; if Qn is the composite Simpson rule, then its nodes are the
points of the basic grid and the mid-points of the corresponding subintervals, and
hence p(n) = 2n−1; for some other rules Qn, the nodes are the so-called Gaussian
points, which are obtained by shifting to each subinterval of the basic grid the zeros
of a polynomial of a given degree m belonging to a complete sequence of orthogonal
polynomials in some particular Hilbert space, and hence p(n) = m(n−1).
In this paper, we consider a sequence (Qn)n≥2 of quadrature rules built upon the
basic grid. The nodes of Qn are denoted by tp(n), j, j = 1, . . . , p(n), and are numbered
so that a ≤ tp(n),1 < · · · < tp(n),p(n) ≤ b. The weights of Qn are denoted by wp(n), j,
j = 1, . . . , p(n). We suppose that they are all positive, and that there exists a constant
γ > 0 such that

∑
tp(n), j∈I

wp(n), j ≤ γ (d− c) when a≤ c < d ≤ b, and I is ]c,d] or [c,d[ (1.3)

(cf. hypothesis (H) in [AhEtAl01], page 225). Almost all commonly used quadrature
rules satisfy (1.3). The constant γ plays an active role in the proof of Theorem 1.

Ideally,
∫ b

a
g(|s− t|)dt should be available in closed form. If not, a specially fine

numerical quadrature formula should give an accurate value of this integral for any
fixed value of s ∈ [a,b].

1.2 Singularity subtraction

Consider the basic grid (1.2) and define hn, j := τn, j+1−τn, j for j = 1, . . . ,n−1, and
hn := max

j=1,...,n−1
hn, j. The singularity subtraction technique, as presented in [An81],

relates truncation and numerical integration through the following condition on the
sequences (an)n≥2 and (Qn)n≥2: There exist constants α1 > 0 and β1 > 0 such that

α1hn ≤ an ≤ β1hn for all n≥ 2,

i.e. the width of truncation must tend to zero at the same rate as the mesh sizes.

These considerations lead to approximate K, as written in (1.1), by the following
operator Kn: For x ∈ X , and s ∈ [a,b],

Kn(x)(s) :=
p(n)

∑
j=1

wp(n), jgn(|s− tp(n), j|)
[
N(s, tp(n), j,x(tp(n), j))−N(s,s,x(s))

]
+N(s,s,x(s))

∫ b

a
g(|s− t|)dt.
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The exact equation, to be solved numerically, is: For y ∈ X , find ψ ∈ X such that

ψ = K(ψ)+ y, (1.4)

i.e. F (ψ) = 0, if F : X → X is the operator defined by F (x) := x−K(x)− y for
all x ∈ X . We assume that 1 is not in the spectrum of the Fréchet-derivative of K at
ψ , so ψ is an isolated solution of (1.4).

The approximate equation, to be solved exactly, is: Find ψn ∈ X such that

ψn = Kn(ψn)+ y, (1.5)

i.e. Fn(ψn) = 0, if Fn : X → X is the operator defined by Fn(x) := x−Kn(x)− y
for all x ∈ X .

If we take the values of (1.5) at tp(n),i, i = 1, . . . , p(n), we get the following, possibly
nonlinear, system of order p(n) with unknowns xn(i) := ψn(tp(n),i), i = 1, . . . , p(n):

xn(i) =
p(n)

∑
j=1

wp(n), j gn(|tp(n),i−tp(n), j|)[N(tp(n),i, tp(n), j,xn( j))−N(tp(n),i, tp(n),i,xn(i))]

+N(tp(n),i, tp(n),i,xn(i))
∫ b

a
g(|tp(n),i− t|)dt + y(tp(n),i).

This p(n)-dimensional system can be written as

Fn(xn) = 0, (1.6)

where, for all x ∈ Rp(n)×1, and i = 1, . . . , p(n),

Fn(x)(i) := x(i)−
p(n)

∑
j=1

wp(n), j gn(|tp(n),i− tp(n), j|)[N(tp(n),i, tp(n), j,x( j))

−N(tp(n),i, tp(n),i,x(i))]−N(tp(n),i, tp(n),i,x(i))
∫ b

a
g(|tp(n),i− t|)dt− y(tp(n),i))

= x(i)−
p(n)

∑
j=1

wp(n), j gn(|tp(n),i− tp(n), j|)N(tp(n),i, tp(n), j,x( j))

+N(tp(n),i, tp(n),i,x(i))
[ p(n)

∑
j=1

wp(n), j gn(|tp(n),i− tp(n), j|)−
∫ b

a
g(|tp(n),i− t|)dt

]
−y(tp(n),i).

The system (1.6) must be solved accurately by some numerical method like, for
instance, Gauss’ method in the linear case, and Newton’s method – as described in
the sequel – in the nonlinear case.

The Jacobian matrix of Fn : Rp(n)×1→ Rp(n)×1 at x ∈ Rp(n)×1 is given by
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F′n(x)(i, j) = δi, j−wp(n), j gn(|tp(n),i− tp(n), j|)
∂N
∂u

(tp(n),i, tp(n), j,x( j))

+δi, j
∂N
∂u

(tp(n),i, tp(n),i,x(i))
[ p(n)

∑
`=1

wp(n), j gn(|tp(n),i− tp(n),`|)−
∫ b

a
g(|tp(n),i− t|)dt

]
,

where δi, j is the Kronecker delta, and i, j = 1, . . . , p(n).

The Newton’s sequence
(
x
[k]
n
)

k≥0 in Rp(n)×1 is defined, for a given starting column

x
[0]
n ∈ Rp(n)×1, by

F′n(x
[k]
n )c

[k]
n =−Fn(x

[k]
n ), x

[k+1]
n := x

[k]
n + c

[k]
n , k ≥ 0,

where c
[k]
n is the unknown. Equivalently,

F′n(x
[k]
n )x

[k+1]
n = F′(x

[k]
n )x

[k]
n −Fn(x

[k]
n ), k ≥ 0,

where x
[k+1]
n is the unknown, i.e.

(I−A
[k]
n −D

[k]
n )x

[k+1]
n = b

[k]
n ,

where I is the identity matrix of order p(n), and, for i, j = 1, . . . , p(n),

A
[k]
n (i, j) := wp(n), j gn(|tp(n),i− tp(n), j|)

∂N
∂u

(tp(n),i, tp(n), j,x
[k]
n ( j)),

D
[k]
n (i, j) := δi, j

∂N
∂u

(tp(n),i, tp(n),i,x
[k]
n (i))

[∫ b

a
g(|tp(n),i−t|)dt

−
p(n)

∑
`=1

wp(n),` gn(|tp(n),i−tp(n),`|)
]
, (1.7)

b
[k]
n (i) :=−

p(n)

∑
j=1

wp(n), j gn(|tp(n),i−tp(n), j|)
∂N
∂u

(tp(n),i, tp(n), j,x
[k]
n ( j))x[k]n ( j)

+x
[k]
n (i)

∂N
∂u

(tp(n),i, tp(n),i,x
[k]
n (i))

[p(n)

∑
`=1

wp(n),`gn(|tp(n),i−tp(n),`|)

−
∫ b

a
g(|tp(n),i−t|)dt

]
+

p(n)

∑
j=1

wp(n), j gn(|tp(n),i−tp(n), j|)N(tp(n),i, tp(n), j,x
[k]
n ( j))

−N(tp(n),i, tp(n),i,x
[k]
n (i))

[ p(n)

∑
j=1

wp(n), j gn(|tp(n),i−tp(n), j|)−
∫ b

a
g(|tp(n),i−t|)dt

]
+ y(tp(n),i). (1.8)
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1.3 Convergence

Let
p→ denote pointwise convergence, n→ norm convergence, cc→ collectively com-

pact convergence (cf. [An71]), and ν→ the ν-convergence (cf. [AhEtAl01]).

Theorem 1 Let (Qn)n≥2 be a sequence of composite quadrature rules with nodes
tp(n), j and weights wp(n), j, j = 1, . . . , p(n), satisfying (1.3). Then

(
Kn
)

n≥2 is point-
wise convergent to K,

(
Fn
)

n≥2 is pointwise convergent to F , and
(
ψn
)

n≥2 is con-
vergent with limit ψ .

Proof. The Fréchet-derivatives T := K′ and Tn := (Kn)
′ at ψ are given by:

[T (ψ) f ](s) =
∫ b

a
g(|s− t|)∂N(s, t,ψ(t))

∂u
f (t)dt, f ∈ X ,s ∈ [a,b],

[Tn(ψ) f ](s) =
p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)
∂N(s, tp(n), j,ψ(tp(n), j))

∂u
f (tp(n), j)

−
p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)
∂N(s,s,ψ(s))

∂u
f (s)

+
∂N(s,s,ψ(s))

∂u
f (s)

∫ b

a
g(|s− t|)dt, f ∈ X ,s ∈ [a,b].

Let us consider the decomposition Tn(ψ) = T A
n (ψ)+T B

n (ψ), where

[T A
n (ψ) f ](s) :=

p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)
∂N(s, tp(n), j,ψ(tp(n), j))

∂u
f (tp(n), j),

[T B
n (ψ) f ](s) := −

p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)
∂N(s,s,ψ(s))

∂u
f (s)

+
∂N(s,s,ψ(s))

∂u
f (s)

∫ b

a
g(|s− t|)dt

for f ∈ X , and s ∈ [a,b].

We define, for x ∈ X , and s ∈ [a,b],

(Ux)(s) :=
∫ b

a
g(|s− t|)x(t)dt and (Unx)(s) :=

p(n)
∑
j=1

wp(n), jgn(|s−tp(n), j|)x(tp(n), j). By

(1.3), Un
cc→U , so Un

p→U (cf. Proposition 4.18 in [AhEtAl01], page 227).

The proof is done in 5 steps:

1. We show that Tn(ψ)
p→ T (ψ) and that Tn(ψ)

ν→ T (ψ) too:

As Tn(ψ) and T (ψ) are bounded linear operators, we use the results of [An81].
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Since (s, t,u) 7→ ∂N(s, t,u)
∂u

is a continuous function, and since (1.3) holds, then

Tn(ψ) and T A
n (ψ) satisfy the hypotheses of Proposition 4.18 in [AhEtAl01], page

227, and T A
n (ψ)

cc→ T (ψ). Hence T A
n (ψ)

p→ T (ψ). Recall that T (ψ) is compact
because K is compact. This implies that T A

n (ψ)
ν→ T (ψ).

For any f ∈ X such that ‖ f‖= 1,

[T B
n (ψ) f ](s) =

∂N(s,s,ψ(s))
∂u

f (s)
[∫ b

a
g(|s− t|)dt−

p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)
]

=
∂N(s,s,ψ(s))

∂u
f (s)

[
(Ue)(s)− (Une)(s)

]
,

where e(s) := 1 for s ∈ [a,b]. Hence

‖T B
n (ψ) f‖ ≤ ‖∂N(·, ·,ψ(·))

∂u
‖ ‖Une−Ue‖,

which tends to 0 as n→ ∞, since Un
p→U . Hence T B

n (ψ)
n→ O, so Tn(ψ)

p→ T (ψ).
Hence Tn(ψ)

ν→ T (ψ) (cf. Lemma 2.2 (b) (i) in [AhEtAl01], page 73).

2. We show that I−Tn(ψ) is invertible:

Since (I− T (ψ))−1 exists, and Tn(ψ)
ν→ T (ψ), there exists n0 ≥ 2 such that, for

n≥ n0,
‖(I−T (ψ))−1‖ ‖(Tn(ψ)−T (ψ))Tn(ψ)‖< 1.

Hence (I−Tn(ψ))−1 exists and is uniformly bounded (cf. [An81], page 413). By
continuity, the same holds for ((I−Tn(x))−1 for all x close enough to ψ .

3. We prove that Fn is locally invertible with continuous inverse in a neighborhood
of 0:

I−Kn is a continuously differentiable operator from the Banach space X into itself.
By the Inverse Function Theorem, I−Tn(ψ), being invertible, there is a neighbor-
hood of ψ where I−Kn is invertible with continuous inverse in some neighborhood
of y. Hence F−1

n exists and is continuous in some neighborhood of 0.

4. We prove that (Kn)n≥2 is pointwise convergent to K, and (Fn)n≥2 is pointwise
convergent to F :

An auxiliary operator K̂n is used in the proof. For x ∈ X , and s ∈ [a,b], define

K̂n(x)(s) :=
p(n)

∑
j=1

wp(n), j gn(|s− tp(n), j|)N(s, tp(n), j,x(tp(n), j)).

Kn can be rewritten as

Kn(x)(s) = K̂n(x)(s)+N(s,s,x(s))(U−Un)e(s). (1.9)
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Define
σ(x) := max

a≤s , t≤b
|N(s, t,x(t))|,

which is finite because of the continuity of N in its three variables, and of x in its
single one. In the linear case, σ(x) = ρ‖x‖ for some constant ρ > 0. Now,

|Kn(x)(s)− K̂n(x)(s)| ≤ σ(x)‖(U−Un)e‖→ 0 and ‖Kn(x)− K̂n(x)‖→ 0 as n→∞,

since Un
p→ U as stated in the beginning of this proof. Following the ideas of the

proof of Proposition 4.18 in [AhEtAl01], we decompose

K̂n(x)−K(x) = λδ +µn +ηn,

where λδ , µn and ηn are defined as follows. Let γ > 0 be the constant introduced in

(1.3). Given ε > 0, there exists δ ∈ ]0,b−a] such that
∫

δ

0
g(u)du <

ε

18
min{1, 1

3γ
}.

Set

λδ (s):=

min{b,s+δ}∫
max{a,s−δ}

[g(δ )−g(|s− t|)]N(s, t,x(t))dt,

µn(s):=
p(n)

∑
j=1

wp(n), j[gn(|s− tp(n), j|)−g
δ
(|s− tp(n), j|)]N(s, tp(n), j,x(tp(n), j)),

ηn(s):=
p(n)

∑
j=1

wp(n), jgδ
(|s− tp(n), j|)N(s, tp(n), j,x(tp(n), j))−

∫ b

a
g

δ
(|s− t|)N(s, t,x(t))dt.

Then the following upper bounds hold for all n greater than some integer n0(x):

|λδ (s)| ≤ 6 σ(x)
∫

δ

0
g(u)du ≤ σ(x)

3
ε,

|µn(s)| ≤ σ(x)
[

∑
|s−tp(n), j |<δ

wp(n), jgn(|s− tp(n), j|)+2γδg(δ )
]
≤ σ(x)

3
ε,

|ηn(s)| ≤
σ(x)

3
ε.

Since

|K̂n(x)(s)−K(x)(s)| ≤ |λδ (s)|+ |µn(s)|+ |ηn(s)| ≤ σ(x)ε,

we conclude that K̂n
p→ K. Kn

p→ K, and Fn
p→F .

5. We prove that (ψn)n≥2 is convergent with limit ψ:

Since F and Fn are invertible and Fréchet-differentiable, the derivative of their
inverses at 0 is equal to the inverse of the derivative of the direct operators at the
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inverse image of 0, and the integral form of the Mean Value Theorem for Derivatives
gives:

F−1
n (0)−F−1(0) = ψn−ψ = F−1

n (F (ψ))−F−1
n (Fn(ψ))

=
∫ 1

0
(F−1

n )′(Fn(ψ)+ t(F (ψ)−Fn(ψ))dt (F (ψ)−Fn(ψ)).

Hence

Fn(ψn)−Fn(ψ) =
∫ 1

0
F ′

n(ψ + t(ψn−ψ))dt (ψn−ψ).

Since the sequence (Fn)n≥2 is pointwise convergent to F and F (ψ) = 0, then
vn(t) := Fn(ψ)+ t(F (ψ)−Fn(ψ)) tends to 0 uniformly in t ∈ [0,1] as n→ ∞.
On the other hand, (F−1

n )′(vn(t)) = (I−Tn(un(t)))−1 is uniformly bounded for n
large enough and t ∈ [0,1], where un(t) := F−1

n (vn(t)). Finally, F ′
n(x) = I−Tn(x)

is bounded uniformly in x for x in any bounded set of X , and in t ∈ [0,1]. Hence
there exist constants α2 > 0 and β2 > 0 such that

α2‖Fn(ψ)‖ ≤ ‖ψn−ψ‖ ≤ β2‖Fn(ψ)‖, (1.10)

so the sequence (ψn)n≥2 is convergent with limit ψ .

1.4 Numerics

Data: The operator K is defined with a = 0, b = 1, N(s, t,u) := u3, and with the
weakly singular decreasing function g defined by g(s) :=− log(s) for s ∈ ]0,1]. The
solution of (1.4) is chosen to be the function ψ defined by

ψ(s) :=
(

s− 1
2

)2/3
, s ∈ [0,1].

Then the function y = ψ−K(ψ) takes the values y(0) = y(1) = 1/ 3√4−1/9, and

y(s) =
(

s− 1
2

)2/3
− 1

3

(
s2− s+

1
3

)
+ s log(s)

( s2

2
− s

2
+

1
4

)
+
(1− s) log(1− s)

3

(
s2− s

2
+

1
4

)
, s ∈ ]0,1[.

Programming: The numerical implementation was carried on MATLAB 2017b.

Newton: Because of its fast convergence, we have performed 7 iterations of New-
ton’s method for each fixed value of n.

Quadrature: The basic grid was chosen to be uniform. We used a composite
quadrature rule built with 3 Gauss points on each one of the n− 1 subintervals
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of the basic grid: the zeros of a Chebyshev polynomial of degree 3. Hence, we had
been led to a nonlinear system of order 3(n−1) for each value of n, and to a linear
system of order 3(n− 1) at each Newton’s iteration. The numerical integration of
the explicit integrals in (1.7) and (1.8) was performed by adaptive quadrature based
on a Gauss-Kronrod method (cf. [Sh08]). The use of strict tolerances for the nu-
merical adaptive quadrature approach is mandatory, otherwise finer discretizations
would not deliver the predicted convergence results.

Results: For some selected values of n, Table 1.1 shows the grid-valued relative
errors

rn :=
max

j=1,...,p(n)
|x[7]n ( j)−ψ(tp(n), j)|

max
j=1,...,p(n)

|ψ(tp(n), j)|
.

Figure 1.1 shows the relative errors of Table 1.1 in a loglog scale.

n rn

10 1.8e-03
20 2.9e-04
40 4.9e-05
80 8.5e-06

160 1.5e-06
320 2.6e-07
640 4.6e-08

1280 8.3e-09
2560 1.6e-09

Table 1.1 The grid-valued relative errors for 9 values of n

1.5 Conclusions

In this paper, we have extended to nonlinear integral operators, the singularity sub-
traction technique for approching linear weakly singular integral operators in the
framework of real valued continuous functions. The singularity subtraction tech-
nique cannot be settled in Lebesgue spaces.

The equation to be solved numerically, written as F (ψ) = 0, is discretized as
Fn(ψn) = 0, which leads to a finite-dimensional nonlinear problem which is solved
by Newton’s method.
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Fig. 1.1 The grid-valued relative errors in a loglog scale

We have proved that the sequence (Fn)n≥2 is pointwise convergent to F , and that
the sequence (ψn)n≥2 is convergent with limit ψ . The double bound (1.10) shows
that the convergence of the latter is neither slower nor faster than that of the sequence
of (Fn(ψ))n≥2 to 0.

Since the values of ψn are approximated by Newton’s method only at the p(n)
nodes of the quadrature grid, ψn could be globally approximated by interpolation, if
needed. In fact, oppositely to the linear case, once the unknowns xn(i) = ψn(tp(n),i)

are approximated by the values x[7]n (i) issued from Newton’s method, no natural in-
terpolation formula is available for a closed formula of ψn since, for each s ∈ [a,b],
ψn(s) is hidden implicitly in the nonlinear expression (1.5). This is a significant
difference between the linear case and the nonlinear case.

The expression (1.9) shows that the order of the pointwise convergence to K of the
sequence of approximaitons (Kn)n≥2 is dominated by the order of convergence of
the sequence of quadrature rules

(
Qn
)

n≥2. In the case of the numerical computations
presented in this paper, the sequence of quadrature rules converges in theory to the
exact integral at the same rate as n−2 tends to 0, when n→∞ (cf. [XiEtAl12]). This
is confirmed in practice, as it is shown in the loglog plotting of Figure 1.1, where
we observe that the slope of the straight line is around −2.

A major survey on numerical approximation of nonlinear integral equations is
[At92]. This paper studies numerical methods for calculating fixed points of non-
linear integral operators, i.e. equations of the form ψ = K(ψ) with the notation of
our paper. This corresponds to the case y = 0 and is less general than the work
presented here since y cannot be incorporated as a part of the integral operator K.
Methods treated in [At92] include a product integration type scheme for weakly sin-
gular Hammerstein operators, projection methods and Nyström methods. As in our
paper, all those methods require the solution of finite-dimensional systems of non-
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linear equations. An auxiliary numerical method is needed to solve these nonlinear
finite-dimensional systems.
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