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Abstract: The essential oil of Cymbopogon winterianus (EOCW) is a natural product with antioxidant,
anti-inflammatory, and antifibrotic properties. We studied the effect of EOCW in the progression
of histological changes of pulmonary fibrosis (PF) in a rodent model. The oil was obtained by
hydrodistillation and characterized using gas chromatography–mass spectrometry. Intratracheal
instillation of bleomycin was performed in 30 rats to induce PF, while Sham animals were subjected
to instillation of saline solution. The treatment was performed using daily oral administration of
distilled water, EOCW at 50, 100, and 200 mg/kg, and deflazacort (DFC). After 28 days, hemogram
and bronchoalveolar lavage fluid (BALF), tissue levels of malondialdehyde (MDA), superoxide
dismutase (SOD), and catalase (CAT) were assayed. Histological grading of PF, immunohistochemical
expression of α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) were also
analyzed. The EOCW major compounds were found to be citronellal, geraniol, and citronellol. EOCW
significantly reduced inflammation in BALF, reduced MDA levels, and increased SOD activity. EOCW
attenuated histological grading of PF and reduced immunohistochemical expression of α-SMA and
TGF-β in a dose-dependent way, likely due to the reduction of oxidative stress, inflammation, and
TGF-β-induced myofibroblast differentiation.

Keywords: pulmonary fibrosis; terpenes; Wistar rats; myofibroblasts; histological labelling; immuno-
histochemistry

1. Introduction

Idiopathic pulmonary fibrosis (PF) is a chronic interstitial lung disease that affects over
3 million individuals worldwide, with a mean survival time of about 3 years, characterized
by progressive deposition of fibrotic tissue in the lungs and overall poor prognosis [1,2].
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Studies have suggested that the incidence and prevalence of idiopathic PF is continuously
growing, and that PF is strongly associated with advanced age [3,4].

The main pathologic changes that play a critical role in the pathogenesis of idiopathic
PF are oxidative stress, inflammation, and collagen deposition, but the comprehensive
understanding of the pathobiology of the disease remains elusive [5]. However, micro-
injury of the alveolar epithelium induced by environmental and microbial exposures (metal
and wood dust, viruses, and drugs) and individual genetic factors (dysfunctions of the
MUC5B gene, causing reduction of mucociliary clearance enhancing lung injury) have
been recognized as the first drivers of idiopathic PF [2,6]. Subsequently, fibroblast and
myofibroblasts collections that actively produce extracellular matrix, including high levels
of collagen, are hallmarks of idiopathic PF progression. The source of these cells has
been related to epithelial–mesenchymal transition (EMT), a pathophysiological process
that is defined by the detection of several biomarkers that mirror the loss of epithelial
phenotype and the gain of mesenchymal one, such as cytoskeletal proteins involved
in cell contraction (e.g., α-smooth muscle actin) [7]. EMT events are involved in the
direct conversion of damaged lung epithelial cells into mesenchymal fibroblasts, and the
persistence of EMT-inducing signals seems to promote extracellular matrix accumulation
causing tissue scarring in idiopathic PF [8,9].

Transforming growth factor beta (TGF-β) is a cytokine that plays a key role in the
pathogenesis of idiopathic PF [10]. Increased expression of TGF-β has been demonstrated
to precede collagen synthesis and deposition in animal models of lung fibrosis [11], and
adenoviral-mediated gene transfer of active TGF-β has induced severe fibrosis in rodent
lungs [12]. TGF-β modulates EMT-related transdifferentiation of pulmonary fibroblasts and
type I alveolar cells into myofibroblasts, such as plasma membrane junctional and adhesion
complexes adaptation, and cytoskeleton reorganization [13]. An increased number of
myofibroblasts, identified by their expression of α-smooth muscle actin (α-SMA), has been
related to the progression of pulmonary fibrosis [14].

The multifactorial etiopathogenetic factors involving continuous oxidative stress,
unresolved inflammation, and tissue scarring have made the management of the idiopathic
PF so challenging that few therapeutics have succeeded in the clinic, and they have failed
to improve patient survival [15]. As most therapeutic agents (corticosteroids, antifibrotic,
and immunosuppressant drugs) have focused on one step at a time of idiopathic PF
pathogenesis, the results tend to be unpromising [16,17]. Thus, therapeutic approaches
based on traditional knowledge, such as plant-derived compounds, able to act in different
steps of idiopathic PF pathogenesis, might be a successful strategy to treat the disease [18].

Cymbopogon winterianus Jowitt is an aromatic grass cultivated in India and Brazil. The
essential oil obtained from its leaves has demonstrated anti-inflammatory and antioxidant
properties [19] and low toxicity [20]. These biological properties are potentially attributed to
its the major monoterpenes, namely, geraniol (40.06%), citronellal (27.44%), and citronellol
(10.45%) [21]. In fact, geraniol reduces pro-oxidative lipid peroxidation and nitric oxide
(NO) and reactive oxygen species (ROS) production [22], whereas citronellal inhibits pro-
inflammatory 5-lipoxygenase (5-LOX) synthesis [23]. Citronellol inhibits inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, resulting in antioxidant
and anti-inflammatory effects [24].

There is also evidence that the EOCW chemical constituents modulate the fibrosis
process in different tissues. Geraniol attenuates fibrosis, prevents atherogenesis, and exerts
anti-inflammatory effects by the NF-κB signaling pathway on atherogenic diet induced
fibrosis in hamsters [25]. Furthermore, the essential oil of Cichorium glandulosum Boiss et
Huet, whose major chemical constituent is citronellol (74.060%), reduces the extracellular
fibrillar proteins deposition, such as collagen and elastic fibers, on carbon tetrachloride-
induced liver fibrosis in rats [26].

Considering the antioxidant, anti-inflammatory, and antifibrotic properties of the
essential oil of Cymbopogon winterianus, and its chemical composition, we hypothesize that



Pharmaceutics 2021, 13, 679 3 of 20

it may prevent or attenuate the progression of histological changes of pulmonary fibrosis
in a bleomycin-induced murine model.

2. Materials and Methods
2.1. Sampling Site and Plant Material

Fresh leaves of Cymbopogon Winterianus were obtained from the Brazilian Agricultural
Research Corporation (EMBRAPA), who collected the samples in July of 2018 in Aracaju
(coordinates: 10◦57′02.4′′ S 37◦03′07.4′′ W), Sergipe, Brazil. The specimens were deposited
in the herbarium of the Department of Botany nf the Tiradentes University with the
registration no. 0844.

2.2. Extraction and Analysis of the Essential Oil

The fresh leaves of Cymbopogon Winterianus were dried at 60 ± 1 ◦C for four days in a
drying oven (MA035/5, Marconi®, Piracicaba, São Paulo„ Brazil). Hydrodistillation was
used to obtain the essential oil of the leaves in a Clevenger-type apparatus. The obtained
essential oil was separated from the aqueous phase and stored in an amber bottle in a freezer
(at −4 ◦C) until further used. The chemical analysis of its components was performed
by a GC/MS (GCMSQP2010 Ultra, Shimadzu Corporation, Kyoto, Japan) equipped with
an AOC-20i autoinjector (Shimadzu Corporation, Kyoto, Japan), following a previously
described method [27], with some modifications. The separations were performed on 30 m,
Rtx®-5MS Restek fused silica capillary column (5% diphenyl-95% dimethylpolysiloxane)
with a 0.25 mm internal diameter and 0.25 mm film thickness. Helium 5.0 was used as
the carrier gas at a flow rate of 1.0 mL/min. The injection temperature was 280 ◦C. The
volume of 1.0 µL (10 mg/mL) of sample was injected at a split ratio of 1:30. The oven
temperature was programmed isothermally at 50 ◦C for 1.5 min, followed by a rate increase
of 4 ◦C/min until reaching 200 ◦C, and then at 10 ◦C/min up to 300 ◦C, which was kept for
5 min. For the GC/MS, the ionic capture detector impact energy was 70 eV. The fragments
were analyzed by a quadrupolar system programmed to filter fragments/ions with m/z
from 40 to 500 Da and detected by an electron multiplier. The data were processed with
the aid of GCMS Postrun Analysis software (Labsolutions, Shimadzu Corporation, Kyoto,
Japan). The components were identified by a comparison of their retention times with
those available in the literature [28]. The retention index was determined using the Van den
Dool and Kratz (1963) equation [29], for a homologous series of n-alkanes (nC9–nC18). The
components of the essential oil were also identified by comparing their mass spectra with
the spectra available in the WILEY8, NIST107, and NIST21 equipment databases, which
allow the comparison of mass spectral data sets and the use of a minimum similarity index
of 80%.

2.3. Experimental Procedures of Lung Fibrosis: Induction and Treatment

The animal experiments were approved by the Ethics Committee on Animal Re-
search of the Tiradentes University (CEUA/UNIT) through Opinion No. #020917. Ethics
principles Use of Laboratory Animals of the Brazilian Society of Laboratory Animal Sci-
ence (SBCAL/COBEA) were followed together with the 3R principles of the EU Directive
2010/63/EU transferred to the national Decreto-Lei 113/2013 (in Portugal), the 2001/83/EC
and 86/609/EEC (on the protection of animals used for experimental and other scientific),
and the Amsterdam protocol on animal protection and welfare of 1997 FP7 Decision num-
ber 1982/2006EC. Thirty-six adult male Wistar rats (Rattus norvegicus albinus) weighing
225 ± 25 g were randomly assigned into six experimental groups (Table 1). Animals
were housed in plastic cages with bedding of wood shavings, which was replaced daily,
under controlled temperature at 22 ◦C and a 12 h light/dark regimen, with water and
food ad libitum (Labina®; Purina, São Paulo, Brazil). Bleomycin-induced lung fibrosis
was performed according to Bahri et al. (2017) [5]. The animals were subjected to disso-
ciative anesthesia with intraperitoneal administration of 0.10 mL/100 g of 10% ketamine
(Ketamine®, Rhobifarma Indústria Farmacêutica Ltda, Hortolândia, São Paulo, Brazil)
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and 0.25 mL/100 mg of xylazine (Anasedan® - Sespo Ind e Com. Ltda, Paulínia, São
Paulo, Brazil, ). Briefly, induction of fibrosis was carried out by intratracheal instillation
of 5.0 mg/kg body weight (bw) of bleomycin sulfate (Cinaleo®, Laboratories Meizler, São
Paulo, Brazil) dissolved in 0.5 mL of sterile saline. The same procedures were performed
in the control group (Sham), using saline solution instead of bleomycin. The treatment of
the animals proposed for the different experimental groups started three days after these
procedures. Deflazacort (Calcort®, Merrell Lepetit, São Paulo, Brasil), soybean oil, and
EOCW were administered daily by gavage, for 28 days. The animals were euthanized by
cardiac puncture exsanguination, and the lungs were surgically removed. The left lung
was fixed in 10% phosphate-buffered formalin (pH 7.4) for further histological procedures.
The right accessory pulmonary lobes were frozen (−80 ◦C) for further colorimetric assays.

Table 1. Distribution of animals in experimental groups according to treatment.

Groups (n = 6) Pulmonary Damage Procedure Oral Administration (Treatment) a

Sham b Saline solution Soybean oil
Vehicle c Bleomycin sulfate (5 mg/kg) Soybean oil
EOCW 50 c Bleomycin sulfate (5 mg/kg) 50 mg/kg essential oil of Cymbopogon winterianus
EOCW 100 c Bleomycin sulfate (5 mg/kg) 100 mg/kg essential oil of Cymbopogon winterianus
EOCW 200 c Bleomycin sulfate (5 mg/kg) 200 mg/kg essential oil of Cymbopogon winterianus
DFC c Bleomycin sulfate (5 mg/kg) 1.0 mg/kg Deflazacort

a The volume administered was 0.2 mL, regardless of the treatment. b Intratracheal instillation of saline and c bleomycin to induce
pulmonary fibrosis.

2.4. Assessment of the Body Weight of the Animals

The body weight of the animals was assessed at the beginning and at the end of
the experiment. The percentage of body weight gain in each group was calculated using
the Equation (1).

BWg =
f Bw− iBw

f Bw
× 100 (1)

where BWg is the percentage of body weight gain, fBW is the body weight at the end of the
experimental time, and iBW is the body weight at the beginning of the experimental time.

2.5. Hematological Analysis of the Peripheral Blood

Hematologic analysis was performed using the automatic hematologic analyzer Sys-
mex Xs1000i (Sysmex America, Inc., Mundelein, IL, USA). Differential leukocyte counting
was performed with an optical microscopy after staining with Pappenheim’s method for
each case. Data were expressed as absolute number of cells per mm3 of peripheral blood.

2.6. Analysis of the Bronchoalveolar Lavage Fluid (BALF)

After cardiac puncture exsanguination, 1 mL of sodium phosphate buffer was slowly
injected into the lungs through a catheter and then immediately aspirated. Samples were
centrifuged, supernatant was stored at –80 ◦C, and the pellet was resuspended in 250 µL
of sodium phosphate buffer. The total number of cells was assessed by direct counting
in a hemocytometer using the Trypan blue exclusion method. For cell differentiation
analysis, 200 µL of cell suspension was added in a cytospin slide chamber (Shandon EZ
Double Cytofunnel, Thermo Scientific, Waltham, MA, USA), spun at 800 rpm for 5 min
in a Cytospin 4 (Thermo Scientific, USA) and stained with Stain Set Diff-Quik (Siemens
Healthcare Diagnosis Inc., Newark, NJ, USA). Percentages of macrophages, neutrophils,
and lymphocytes were obtained and adjusted by total cell number.

2.7. Assessment of Lipid Peroxidation and Mda Tissue Levels

Lipid peroxidation was determined based on the detection of thiobarbituric acid (TBA)
reactive products [17]. A reaction with TBA can detect small amounts of lipid peroxides,
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and more particularly, the free malondialdehyde (MDA) produced during the oxidative
breakdown of lipids and polyunsaturated fatty acids. Briefly, we incubated both lung
supernatant and sodium phosphate buffer at 37 ◦C for 1 h, and the mixture was centrifuged
after being precipitated with 10% TCA (trichloroacetic acid). Then, 1% TBA was added
to the supernatant, and the mixture was placed in the boiling water for 15 min. The
absorbance was read at 532 nm and expressed in nmol/mg protein using a molar extinction
coefficient of 156,000 M/cm. The determination of total proteins was carried out using the
methodology established by the Labtest® brand commercial kit.

2.8. Assessment of Superoxide Dismutase (SOD) Tissue Activity

The organs that were removed were washed thrice in potassium chloride solution
(1.15% KCl), and then homogenized (1:5 w/v) with a solution containing KCl, phenyl-
methylsulfonylfluoride (PMSF 100 m/mol), and Triton solution (10%). Homogenates were
centrifuged at 3000× g for 10 min at 4 ◦C, and the supernatant was stored at −80 ◦C for the
determination of oxidative stress markers (TBARS and SH). Superoxide dismutase (SOD)
activity was based on the inhibition of the auto-oxidation of epinephrine to adenochrome
in the presence of SOD (pH 10.2) [17]. Briefly, 20 mL of epinephrine (5 mg/mL) was added
to the assay mixture containing 10 mL of bovine catalase (0.4 U/mL) and 62.5 mM sodium
carbonate–sodium bicarbonate buffer. One unit of SOD is defined as the enzyme required
to inhibit the quantity of adenochrome generated by 50%. The absorbance was recorded
at 480 nm.

2.9. Assessment of Catalase (CAT) Tissue Activity

In the samples prepared as previously described, CAT activity was assessed using
the method previously reported by Bahri et al. (2020) [17] at 240 nm. Briefly, the reaction
mixture included H2O2 in 0.019 M, 0.05 M phosphate buffer (pH 7), and 0.03 mL of lung
sample. CAT activity was expressed as µmole of H2O2 consumed/min/mg of protein.

2.10. Histological Procedures and Assessment of the Histological Grading of Bleomycin-Induced
Lung Fibrosis

For histological analysis, the formalin-fixed lung samples were dehydrated in ethanol,
diaphanized in xylene, and embedded in paraffin. Then, 20 serial histological sections were
obtained from the lung sample. Four of them were stained in hematoxylin/eosin (HE) and
six in Masson’s trichrome (5.0 µm thick). The other 10 histological sections (3.0 µm thick)
were used for the immunohistochemical study. All of the histological analysis was blindly
conducted by two examiners previously calibrated. In order to assess the severity and the
extension of lung fibrosis, a semi-quantitative grading system described by Ashcroft et al.
(1988) [30] and modified by Hubner et al. (2008) [31] was used. Briefly, 10 histological fields
(400×, 0.025 mm2) of each section (five from the upper and five from the lower halves of
the left lungs) were analyzed and classified as described in Table 2. Data were expressed as
median and interquartile intervals.

2.11. Analysis of the Immunohistochemical Expression of α-SMA and TGF-β in the Lung Tissue

Both of the immunohistochemical reactions were performed on five 3.0-µm-thick
sections of paraffin-embedded tissues. Antigen retrieval was performed with citrate buffer
solution (pH 6.0) for 15 min in an electric pressure cooker. Endogenous peroxidase activity
was suppressed with 10% H2O2, in five cycles of 5 min each. Subsequently, the sections
were incubated with primary antibodies for 2 h. Primary antibodies included: anti-α-
SMA (clone h-CD, dilution 1:400; Dako, Glostrup, Denmark) and anti-TGF-β (clone 17,
1:50 dilution; Novocastra Laboratories, Newcastle upon Tyne, UK). Immunohistochemical
staining was performed with Advance (Dako, Hamburg, Germany), following the manu-
facturer’s instructions. Slides were then exposed to diaminobenzidine tetrahydrochloride
(DAB; Sigma-Aldrich, St Louis, MO, USA) and counterstained with Carazzi’s hematoxylin.
Twenty histological fields (800×, 0.0625 mm2), 10 from the upper and 10 from the lower
halves of the lung histological sections, were randomly selected and recorded, and positive
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cells (identified by cytoplasmic brown stain) were counted. Data were expressed as mean
number of positive cells/histological field (0.0625 mm2).

Table 2. Modified Ashcroft scale for histological grading of lung damage.

Grade of Fibrosis Modified Scale

0 Alveolar Septa: No fibrotic burden at the flimsiest small fibers in some alveolar walls
Lung structure: Normal lung

1 Alveolar Septa: Isolated gentle fibrotic changes (septum ≤3× thicker than normal)
Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses present.

2
Alveolar Septa: Clearly fibrotic changes (septum >3× thicker than normal) with not-like formation but not
connected to each other
Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses.

3
Alveolar Septa: Contiguous fibrotic walls (septum >3× thicker than normal) predominantly in whole
microscopic field
Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses.

4 Alveolar Septa: Variable
Lung structure: Single fibrotic masses (≤10% microscopic field)

5
Alveolar Septa: Variable
Lung structure: Confluent fibrotic masses (>10% and ≤50% of microscopic field). Lung structure severely
damaged but still preserved.

6
Alveolar Septa: Variable, most not existent
Lung structure: Large contiguous fibrotic masses (>50% of microscopic field). Lung architecture mostly not
preserved.

7 Alveolar Septa: Non-existent
Lung structure: Alveoli nearly obliterated with fibrous masses but still up to five air bubbles.

8 Alveolar Septa: Non-existent
Lung structure: Microscopic field with complete obliteration with fibrotic masses.

2.12. Statistical Analysis

Statistical analysis was performed in Graph Pad Prism software, version 7.0 (GraphPad
Software, San Diego, CA, USA). Analysis of the normality of distribution of data was
performed using the Shapiro–Wilk test. Gaussian data (expressed as mean ± standard
mean error) were analyzed using analysis of variance (ANOVA) and Tukey’s multiple
comparisons test. Non-gaussian data (expressed as median and interquartile amplitude)
were analyzed using the Kruskal–Wallis test and Dunn’s multiple comparisons test. The
significance level adopted for all of the tests was 5% (p < 0.05).

3. Results

The essential oil of Cymbopogon winterianus presented as a colorless oil, with a distinct
odor and a yield of 1.14%. The identification of the components in the sample is described
in Table 3 and included 47 compounds. Among them, 17 oxygenated monoterpenes,
13 oxygenated sesquiterpenes, 7 sesquiterpenes, 5 monoterpenes, 2 aldehydes, 2 ketones,
and 1 acid. Citronellal (32.61%), geraniol (22.83%), and citronellol (14.37%) were the main
oxygenated monoterpenes found.
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Table 3. Chemical composition and retention indices of the chemical constituents of the EOCW.

RT (min) a Compounds b (%) c RI d

6.4 3-Hexanone, 2-methyl- 0.01 871
11.0 5-Hepten-2-one, 6-methyl- 0.03 987
11.1 β-Myrcene 0.10 990
12.7 Limonene 3.21 1027
13.9 Melonal 0.16 1053
15.4 Terpinolene 0.05 1087
16.0 Linalool 1.17 1101
16.5 cis-Rose oxide 0.05 1110
17.2 trans-Rose oxide 0.03 1127
18.1 Isopulegol 1.55 1145
18.7 Citronellal 32.61 1159
19.2 Isopulegol 0.10 1170
19.6 4-Terpineol 0.07 1178
19.8 Carane, 4,5-epoxy-, trans 0.06 1183
20.2 α-Terpineol 0.09 1191
20.3 cis-4-Decenal 0.05 1194
20.8 Decanal 0.20 1206
22.1 Citronellol 14.37 1233
22.5 Neral 1.32 1242
23.4 Geraniol 22.83 1262
23.8 Geranial 1.56 1272
25.9 Citronellic acid 0.26 1320
27.4 Citronellol acetate 0.93 1354
27.6 Phenol, 4-allyl-2-methoxy- 0.94 1359
28.7 Geranyl acetate 1.14 1384
29.0 β-Element 0.56 1392
30.1 Caryophyllene 0.04 1419
31.5 Humulene 0.07 1454
32.5 Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)- 0.07 1477
32.7 Germacrene D 0.97 1482
33.4 α-Muurolene 0.30 1501
33.6 δ-Guaiene 0.56 1506
34.0 α-Amorphene 0.24 1514
34.4 β-Cadinene 1.16 1524
35.4 o-Menth-8-ene-4-methanol, α,α-dimethyl-1-vinyl-, (1S,2S,4R)-(−)- 3.64 1552
36.4 trans-Sesquisabinene hydrate 1.02 1577
36.7 Caryophyllene oxide 0.14 1584
38.1 Eudesmol 0.49 1621
38.4 α-Acorenol 0.46 1629
38.5 α-Eudesmol 1.26 1633
38.9 α-Muurolol 1.79 1644
39.0 Cadinol 0.45 1648
39.2 β-Eudesmol 0.67 1652
39.4 α-Cadinol 2.95 1657
41.5 (Z,E)-Farnesol 0.04 1716
41.7 (E,E)-Farnesol 0.21 1723

a RT, retention time; b compounds listed in order of elution from an DB-5MS column; c percentage based on FID peak area normalization;
d RI, retention index, calculated using the Van den Dool and Kratz (1963) equation [29].

Table 4 shows the animals’ body weight on the first and on day 28. Only the group
EOCW200 showed a gain in body weight over the experimental period, although this was
significantly lower than observed in the Sham group (p < 0.001). On the other hand, the
Vehicle group and all of the other treated groups (EOCW50, EOCW100 and DFC) showed
statistically similar percentages of body weight loss (p > 0.05).
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Table 4. Body weight variation of animals according to the experimental group.

Body Weight Sham Vehicle EOCW 50 EOCW 100 EOCW 200 DFC

Initial (g) 174 ± 11.33 236.8 ± 20.7 213.33 ± 20.81 200.25 ± 12.01 179.83 ± 9.04 174.66 ± 6.31
Final (g) 183.4 ± 9.55 228.6 ± 15.14 206.66 ± 20.64 195 ± 7.02 182.5 ± 8.31 172.5 ± 6.22

Body weight gain (%) 5.17 ± 1.60 a −3.46 ± 2.32 b –3.24 ± 1.21 b –2.63 ± 2.85 b 1.42 ± 0.55 c –1.27± 0.48 b,c

Data are expressed as means± SEM. Different letters (a, b, c) in the same line represent significantly different values between them (p < 0.05;
ANOVA and Tukey’s multiple comparisons test).

Table 5 shows the assessment of hematological parameters in the groups at the end of
the experimental time. Although significant differences were observed in some parameters
of both red and white cells of the peripheral blood, all of the values remained within
the normal range of the reference. These findings suggest that no relevant status of
hematological change was observed under the experimental conditions in the bleomycin-
induced pulmonary fibrosis model.

Table 5. Hematological parameters of the animals submitted to the experiment.

Hematological Parameters Sham Vehicle
EOCW (mg/kg)

DFC
Reference

Range *50 100 200

Total leukocytes (×103/µL) 4.7 ± 0.6 a 3.1 ± 1.2 b 5.0 ± 0.3 a 4.5 ± 0.6 a 6.1 ± 1.4 a 3.6 ± 0.4 b 2.3−9.9
Red blood cells (×103/µL) 8.0 ± 1.0 a 5.8 ± 0.7 b 6.1 ± 1.7 b 6.1 ± 0.9 b 7.6 ± 1.2 a 9.0 ± 0.4 a 5.2−8.8

Hematocrit (%) 51.8 ±1.9 a 38.4 ± 4.0 b 40.5 ± 0.70 b 39.2 ± 1.70 b 46.0 ± 2.4 a 52.8 ± 2.9 a 27.2–48.5
Hemoglobin (g/dL) 15.7 ± 0.9 13.7 ± 1.7 13.6 ± 0.9 13. 9 ± 0.8 14.6 ± 1.0 16.0 ± 0.8 11.1–17.1
Platelets (×103/µL) 1.0 ± 0.2 1.3 ± 0.7 1.0 ± 0.4 1.2 ± 0.2 0.9 ± 0.1 0.8 ± 0.1 0.76–1.31

* Reference range values available in Lima et al. (2014) [32]. Different letters (a, b) in the same line express significantly different values
between them (ANOVA and multiple comparison Tukey’s test, p < 0.05).

As demonstrated in Figure 1, a significant increase in the BALF total leukocytes counts
was observed in group Vehicle in comparison with Sham (p < 0.001). Although a significant
decrease in the leukocytes counts was determined by the administration of EOCW at 50
and 100 mg/kg (p < 0.001), the leukocyte counts remained significantly above the Sham
group (p < 0.001). However, the treatment with EOCW at 200 mg/kg and deflazacort
not only promoted a significant decrease in the BALF leukocyte counts in comparison
with groups Vehicle, EOCW50, and EOCW100 (p < 0.001), but also reduced them to
values statistically comparable to the Sham group (p > 0.05). Differential analysis showed
increase in neutrophils, lymphocytes, and macrophages counts in Vehicle (p < 0.001). All
of the treatment protocols tested in this study similarly promoted significant reduction of
neutrophils and macrophages to the basal ranges observed in Sham (p < 0.001), and there
was no significant difference between them (p > 0.05). Regarding lymphocytes, however,
although EOCW at 50 and 100 mg/kg determined a significant decrease in the cell counts
(p < 0.001), only the administration of EOCW at 200 mg/kg and deflazacort promoted a
reduction intense enough to bring the values to the basal ranges seen in Sham (p > 0.05).

The tissue contents of MDA were assessed by the thiobarbituric acid reactive sub-
stance test (TBARs) in samples of lung tissue from animals with bleomycin-induced
pulmonary fibrosis (Figure 2A). Increased levels of MDA were observed in group Ve-
hicle (439.8 ± 26.7 nmol/mg) in comparison with group Sham (211.5 ± 23.1 nmol/mg;
p < 0.001). Significant reduction of MDA tissue levels in comparison with group Vehi-
cle was observed in groups EOCW 50 (333.8 ± 35.1 nmol/mg; p < 0.05), EOCW100
(256.6 ± 4.1 nmol/mg; p < 0.001), EOCW200 (262.6 ± 7.2 nmol/mg; p < 0.001), and
DFC (344.8 ± 10.8 nmol/mg; p < 0.05). In addition, the MDA levels observed in groups
EOCW100 and EOCW200 were statistically comparable to group Sham (p > 0.05). A signifi-
cant decrease in SOD activity was observed in Vehicle (82.3 ± 2.0 U/min/mg; p < 0.001),
EOCW50 (92.8 ± 1.9 U/min/mg; p < 0.05), and DFC (82.3 ± 2.0 U/min/mg; p < 0.001)
groups in comparison with that of Sham (75.5 ± 1.5 U/min/mg). However, the SOD ac-
tivity in groups EOCW100 (94.8 ± 0.4 U/min/mg) and EOCW200 (97.7 ± 4.8 U/min/mg)
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was statistically comparable to Sham (p > 0.05) (Figure 2B). Although no significant dif-
ference was observed between the values of CAT activity obtained in groups Vehicle
(27.5 ± 1.5 µMol/min/mg), EOCW50 (31.8 ± 0.9 µMol/min/mg), EOCW100
(28.5 ± 0.8 µMol/min/mg), EOCW200 (28.4 ± 3.5 µMol/min/mg), and DFC
(28.5 ± 2.3 µMol/min/mg) (p > 0.05), they all significantly decreased in comparison with
the Sham group (36.4 ± 1.2 µMol/min/mg) (p < 0.05; Figure 2C).
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Figure 1. Values obtained from bronchoalveolar lavage cells: (A) total cells; (B) neutrophils; (C) lymphocytes, and
(D) macrophages. Significant differences compared to the Sham group are expressed with *** p < 0.001; significant differences
compared to the Vehicle group are expressed as ### p < 0.001; significant differences compared to the OECW 50 group
are expressed as ∆∆∆ p < 0.001; significant differences compared to the OECW 100 group are expressed as ΦΦΦ p < 0.001.
(Kruska–Wallis, followed by Dunn’s multiple comparisons test).

BLM induced marked morphologic changes of the lung tissue in the Vehicle group,
compared with the Sham group, including: (i) intense inflammatory infiltration, with
lymphocytes and alveolar macrophages in the lung interstitium; (ii) severe thickening of
the alveolar septa due to intense fibrosis, leading to partial or total obliteration of the pul-
monary alveoli (alveolar collapse); (iii) intense peribronchial and peribronchiolar fibrosis;
(iv) formation of air bubbles in the middle of the obliterated parenchyma, resembling the
honeycomb aspect of hives (alveolar “honeycombing”); and (v) hyperemia and hemorrhage,
associated with areas of marked interstitial edema. The treatment with EOCW attenuated
BLM-induced lung damage as follows: (i) reduced inflammatory/phagocytic infiltration;
(ii) fewer damaged alveoli, including less alveolar obliteration and honeycombing; and
(iii) reduced alveolar thickening and peribronchial and peribronchiolar fibrosis. In addition,
as observed in DFC (deflazacort-treated group), the pulmonary changes observed in groups
EOCW100 and EOCW200 were markedly attenuated to almost normal levels, suggesting
that the doses of 100 and 200 mg/kg were more effective in inhibiting PF at a histological
level (Figure 3A). As demonstrated in Figure 3B, the severity of the Ashcroft’s histological
grading of pulmonary fibrosis induced by bleomycin in the Vehicle-treated group (6; 5−7)
was significantly reduced by the use of deflazacort (4, 1−5; p < 0.001) and EOCW at 100 (5,
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4−6; p < 0.01) and 200 mg/kg (5, 4−5; p < 0.001) but not with 50 mg/kg (6, 5−6; p > 0.05).
Furthermore, only the dose of 200 mg/kg of the essential oil promoted histological grading
attenuation of the pulmonary damage comparable to deflazacort (p > 0.05).
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Figure 4 shows the cytoplasmic positivity pattern of the immunohistochemical ex-
pression of α-SMA and TGF-β antigens in paraffin-embedded pulmonary tissue of the
experimental groups. In group Sham, α-SMA expression in the pulmonary interstitial
space and alveolar septa walls was mild (1.6 ± 0.1 cells/0.0625 µm2). Although strong
positivity was observed in peribronchiolar and perivascular areas, these positive cells were
interpreted as smooth muscle cells or eventual pericytes instead of myofibroblasts. No
positivity was observed in the alveolar epithelial cells. Group Vehicle exhibited significantly
increased α-SMA expression in interstitial cells and type II pneumocytes lining alveolar
spaces (5.3 ± 0.3 cells/25 µm2, p < 0.05). Significant reduction of α-SMA expression was
observed in all of the groups undergone treatment with C. winterianus essential oil and
deflazacort in comparison with the Vehicle group (p < 0.001). No significant difference was
observed between the groups treated with EOCW 100 (2.9 ± 0.2 cells/0.0625 µm2), EOCW
200 (2.7 ± 0.2 cells/0.0625 µm2), and DFC (2.3 ± 0.3 cells/25 µm2) (p > 0.01).
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spaces (al), with thin septa, are seen in group Sham, whereas groups Vehicle and EOCW50 show thickened septa and
fibrotic collapsed alveoli (hyperplasia of type II pneumocytes in detail). Partially obliterated alveoli and alveolar septa of
variable thickness are seen in group EOCW100. Wider and more regular alveoli, with thin septa, are observed in groups
EOCW200 and DFC (Masson’s trichrome, 400×). (B) Assessment of the modified Ashcroft scale of histological gradation
of the bleomycin-induced pulmonary fibrosis in the experimental groups. Data are expressed as median, interquartile
range, and maximum and minimum values. Significant differences compared to group Vehicle are expressed as ## p < 0.01
and ### p < 0.001; significant differences compared to group EOCW50 are expressed as ∆∆∆ p < 0.001 (Kruskal–Wallis and
Dunn’s multiple comparisons test).

In the Sham group, cytoplasmic immunohistochemical expression of TGF-β was ob-
served in alveolar macrophages, endothelial cells, and interstitial fibroblasts. However, in
the groups subjected to bleomycin-induced pulmonary fibrosis, positivity was also seen in
bronchiolar epithelium and type I/II pneumocytes. As expected, the immunohistochem-
ical expression of TGF-β in all of the BLM groups was greater than in the Sham group
(0.55 ± 0.15 cells/0.0625 µm2; p < 0.01). The groups Vehicle (3.17 ± 0.21 cells/0.0625 µm2)
and EOCW 50 (2.661± 0.25 cells/0.0625 µm2) presented the greatest counts of positive cells,
which were both greater than in group EOCW 200 (1.70 ± 0.22 cells/0.0625 µm2) (p < 0.001
and p < 0.05) and DFC (1.40± 0.18 cells/0.0625 µm2) (p < 0.001 and p < 0.001). Although the
intermediate dose of the essential oil of C. winterianus (100 mg/kg) promoted a significant
decrease in the immunoexpression of TGF-β (2.44 ± 0.19 cells/0.0625 µm2) in comparison
with group Vehicle (p < 0.05), it was still significantly greater than in 200 mg/kg of the
essential oil (p < 0.05) and DFC (p < 0.001).
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# p < 0.05, ## p < 0.01 and ### p < 0.001; compared to EOCW50 are expressed as ∆∆ p < 0.01 (ANOVA and Tukey’s multiple
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4. Discussion

Deflazacort is a synthetic glucocorticoid that has few adverse effects on glucose
and calcium metabolism, whose pharmacologic safety profile is similar to that of other
glucocorticoids. This drug presents strong immunosuppressive and antifibrotic activity [33]
and has been used in the treatment of pulmonary fibrosis [34,35]. In addition, the choice
for deflazacort in the current study was also based on two other facts: (i) the least adverse
effects compared to other drugs; and (ii) its rapid absorption by the gastrointestinal tract
when administered orally and immediate hepatic conversion to 21-hydroxideflazacort, its
main active metabolite [36].

In this study, the chemical composition of the EOCW was identified by GC-MS and
the monoterpenes citronellal, geraniol, and citronellol were the major chemical compounds
found. The very same major constituents of EOCW have been previously reported in
samples of northeastern Brazil, from Sergipe [37] and Pernambuco [38]. There are some
variations in the chemical composition of the oils obtained from plants of the same genus,
depending on the soil, location, and seasons when the leaves were collected [39–41]. Hence,
this could explain other major chemical compositions found in EOCW, as the one reported
in the Anand region, northeast India, whose main constituents were citronellol (34.25%),
linalool (27.47%), citronellal (11.52%), and emelol (11.15%) [42]. Based on the antioxi-
dant [22–24], anti-inflammatory [19,25], and antifibrotic [26] properties of this essential oil,
we designed the first study on the potential activity of the EOCW on bleomycin-induced
pulmonary fibrosis in a rodent model. In addition, the doses (50, 100, and 200 mg/kg)
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were chosen according to the study previously conducted by Leite et al. (2011) [19], using
EOCW of the same region, with a similar major chemical composition.

As body weight variations are commonly used to monitor an animal’s health status
during the progression of diseases, including bleomycin-induced lung injury [43], we
assessed the body weight gain in the animals at the end of the time course of the experiment.
We found that the administration of bleomycin to induce pulmonary fibrosis promoted
loss of body weight in rats over time, which has been also demonstrated in other studies
using a similar experimental model [44,45]. Chemotherapeutics, such as bleomycin, causes
significant loss of body weight due to the reduction in both muscle mass and as a result of
deleterious effects on the gastrointestinal tract [46], which could explain the data obtained
in the current study. Only the treatment with EOCW at 200 mg/kg prevented body weight
loss, and we hypothesized that such an effect might be related to the high contents of the
chemical constituents of the essential oil at this dose. Geraniol administered orally is a
modulator of the intestinal microbiota, which is able to improve the relative abundance
of Collinsella and Faecalibacterium, well-known bacteria of health-promoting butyrate [47].
Butyrate is a major metabolite in colonic lumen derived from bacterial fermentation of
dietary fiber, responsible for about 70% of energy from the colonocytes [48]. Hence, as
butyrate is currently considered a critical mediator of the colonic inflammatory response,
it is possible to suppose that the beneficial effects associated with EOCW at 200 mg/kg
administration might be related to the high content of geraniol, which was not achieved
in lower doses. In addition, the administration of deflazacort provided no significant
improvement in the body weight loss. This could be explained by the fact that although
the pulmonary inflammatory-induced exudative changes and intense fibrosis can increase
the lung weight ~two-fold, it has not been considered enough to significantly mask the
animal’s body weight loss [49]. However, further investigations are necessary to fully
clarify these theories.

Inhibition of the immune system has been associated with the development of pul-
monary fibrosis [50], which led us to assess the hematological parameters of the animals
in the current study. Although apparently some significant differences were observed
in both red and white cells counts (Table 3), all of the values were within the normal
range, and, therefore, they were considered spurious. Similar data have been previously
reported [51,52]. It is possible that this result might be related to the experimental model
used in the current study, in which the chemotherapeutic agent is applied only once by
direct tracheal instillation, producing only mild systemic damage. Hence, these findings
are suggestive that the assessment of the peripheral blood red and white cells counts can
be unhelpful to evaluate the course of the disease.

BALF analysis, on the other hand, has shown to determine the severity of alveolitis,
and, for this reason, it has been used as a parameter to assess the magnitude of inflammatory
damage caused by bleomycin on pulmonary tissues in rodents [53]. Bleomycin intratracheal
instillation in group Vehicle determined a significant increase in leukocytes in BALF.
Supporting our findings, acute alveolitis and interstitial inflammation, and consequent
increased leukocyte recruitment, have been previously reported to occur after intratracheal
administration of bleomycin in rodents [54]. Although the exchange between inflammation
and fibrosis begins to occur between days 8 and 14, the presence of plasma exudation and,
consequently, leukocytes in BALF, between 21 and 28 days has been reported [55,56], as
observed in the current study. Hence, these data suggest the long-term persistence of the
aggression and the inflammatory response in the lung tissues. In addition, the increase
in total proteins has been demonstrated in BALF 28 days after intratracheal bleomycin
instillation, which supports the hypothesis of persistent pulmonary exudation [57].

A differential analysis of leukocytes in BALF has been used to characterize the nature
of the persistent inflammatory response [58]. We found that both polymorphonuclear
(neutrophils) and mononuclear cells (lymphocytes and macrophages) increased in BALF,
just as previously reported [57]. This leukocyte profile was expected as the BALF analysis
was performed on day 28, when the typical acute phase of the inflammatory response
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had already occurred. Treatment with EOCW reduced the inflammation in BALF in a
dose-dependent pattern. In addition, the therapeutic effect of EOCW at 200 mg/kg was
statistically similar to deflazacort. These findings suggest that EOCW minimizes bleomycin-
induced alveolitis, and that, at a dose of 200 mg/kg, this effect is comparable to the
corticotherapy. In a previous study, EOCW at 50, 100, and 200 mg/kg have demonstrated
dose-dependent anti-inflammatory properties in rodents [37], which helps to support the
hypothesis that the beneficial effects of this natural product might be at least partially
associated to the inhibition of the inflammation.

To investigate the role of the antioxidant properties of EOCW in attenuating bleomycin-
induced pulmonary fibrosis, we assessed the levels of MDA produced by lipid peroxidation
in situ, as well as SOD and CAT activity. We found increased levels of MDA and decreased
activity of SOD and CAT in animals subjected to bleomycin-induced pulmonary fibrosis
treated with Vehicle only in comparison to Sham, as also observed in previous investiga-
tions [59,60]. Bleomycin downregulates phosphorylation expression of mitogen-activated
protein kinases (MAPKs), which increases the production of nitric-oxide synthase and
NADPH oxidase. The level of MDA, a by-product of lipid peroxidation, is closely related
to the oxidative damage of cell membranes that occurs in response to bleomycin-induced
lung injury [59]. The tissue activity of the antioxidant enzymes SOD and CAT are some
of the most important antioxidant defenses against oxidative stress caused by BLM [61],
which could explain the decreased activity of SOD and CAT as observed in the current
study. The results presented here suggest that the bleomycin-induced pulmonary fibrosis
in the murine model is associated to intense oxidative stress. Hence, oxidative stress is a
key pathological process in the development and progression of pulmonary fibrosis, the
inhibition of oxidative stress and enhancement of antioxidative ability could supposedly
alleviate pulmonary fibrosis [62]. In fact, the treatment with EOCW (100 and 200 mg/kg)
reduced MDA levels and increased SOD activity, suggesting antioxidant activity. Support-
ing our findings, the use of geraniol, one of the major chemical compounds of EOCW, has
proved to reduce the lipid peroxidation levels in rat brain tissue homogenates (25–40%) [63].
Geraniol has also been reported to induce activation of nuclear factor erythroid 2-related
factor 2 (Nrf2). As upon oxidative stress, Nrf2 detaches from its cytoplasmic inhibitor
protein and transfers into the nucleus to activate various antioxidant enzymes (e.g., glu-
tathione peroxidase and superoxide dismutase), the activation of the Nrf2 pathway could
be involved in the maintenance of the cellular defense mechanism through antioxidant
properties [64]. Furthermore, previous studies have demonstrated that the administration
of essential oil of Rosa damascena Mill L., whose major constituents are citronellol (38.04%)
and geraniol (26.32%), promotes moderate inhibition of MDA production and increase
in SOD activity in injured brain tissue [65]. So, although the precise mechanisms under-
lying the antioxidant activity of EOCW are not fully clarified, we hypothesized that the
EOCW ability to inhibit or reduce the oxidative stress and inflammatory response could
be involved in the attenuation of the tissue damage that occurs in bleomycin-induced
pulmonary fibrosis.

The occurrence of severe pathological alterations in the lung tissue in response to
bleomycin intratracheal instillation is well established [66], and, for this reason, we inves-
tigated the effects of EOCW on the prevention or attenuation of the histological changes
of the injured lungs. Hyperplasia of type II pneumocytes, massive infiltration of alveolar
macrophages, and thickening of the alveolar septa, leading to total or partial obliteration of
the alveoli, were some of the morphological features found in the bleomycin-injured lungs,
which are in accordance with other studies [60,67]. As the modified Ashcroft scale has
been widely used to grade the severity of the histological damage associated to bleomycin-
induced pulmonary fibrosis [31], it was applied in the current study. Attenuation of the
pulmonary histological damage resulting from the administration of EOCW at doses of
100 and 200 mg/kg was found in the current study, which might be possibly related to
the anti-inflammatory and antioxidant properties of the major chemical compounds of
the essential oil [68–70]. In fact, citronellal has shown to inhibit 5-lipoxygenase and nitric
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oxide production [23], whereas citronellol inhibits COX-2 and prostaglandin-E2 (PGE2)
expression, and impairs TNF-α-induced neutrophil adhesion, as well as increases SOD
production, reduces NO release, and decreases inducible nitric oxide synthase activity [24].
Furthermore, geraniol inhibits prostaglandin E2 and tumor necrosis factor alpha (TNF–
α) [71], and has been considered a potential drug to be used in inflammatory lung diseases,
where oxidative stress was a critical point [22]. Therefore, the control of the inflammatory
response and oxidative stress will be instrumental to prevent or attenuate the progression
of the histological damages that features the pulmonary fibrosis. Supporting this theory,
the progression of the histological damage was also achieved using corticosteroids (deflaza-
cort). At 50 mg/kg, the EOCW was unsuccessful in preventing BLM-induced pulmonary
fibrosis, supposedly due to the low concentrations of the chemical compounds at this
dose. In addition, although the results obtained with 100 mg/kg were significantly better
than using the Vehicle only, they were not comparable with deflazacort. Taken together,
these data pointed at a dose-dependent effect played by EOCW on the prevention of the
pulmonary fibrosis induced by BLM.

There are significant parallels between inflammatory response and myofibroblast
differentiation in fibrosis of different tissues [72], and myofibroblasts play a key role in
fibrogenesis via the accumulation of an excessive amount of extracellular matrix in lungs
with idiopathic PF [14,73]. Hence, the development of effective therapeutic interventions
against idiopathic PF have focused on the reduction or prevention of myofibroblast over-
differentiation [74]. As in histological sections, myofibroblasts can be easily marked
and quantified by the immunohistochemical detection of cytoplasmic filaments of α-
smooth muscle actin (α-SMA) [75]; we assessed the pulmonary immunohistochemical
expression of α-SMA-positive cells in the current study. Increased counts of α-SMA positive
myofibroblasts were found in animals with bleomycin-induced pulmonary fibrosis, which
is in accordance with previous studies using the same experimental model [54,76]. These
data suggest that the pathogenesis of pulmonary fibrosis can be associated with increased
recruitment of myofibroblasts.

Although the precise origin of myofibroblasts in pulmonary fibrosis is controver-
sial, studies have suggested that they likely derive from TGF-β activated preexisting peri-
bronchial and perivascular adventitial fibroblasts and pericytes, migration of smooth muscle
cells from adjacent areas, as well as EMT of type II pneumocytes and endothelial cells [77,78].
As a response of EMT, these immotile epithelial cells are converted into motile mesenchymal
cells with a myofibroblastic phenotype, characterized by the loss of expression of typical
epithelial markers (e.g., E-cadherin) and increased expression of mesenchymal and contrac-
tile markers (e.g., vimentin and α-smooth muscle actin, respectively) [79]. There is recent
evidence that EMT-derived myofibroblasts present higher rates of proliferation and collagen
production than conventional fibroblasts, and, therefore, they play an important role in
the pathogenesis of idiopathic PF [10]. The major cytokine involved in the myofibroblast
differentiation, irrespective to its origin (mesenchymal or epithelial), is TGF-β released by
T cells, macrophages, activated endothelial cells and smooth muscle cells, and fibroblasts
under stress conditions [80]. In addition, enhanced in situ release of TGF-β1 promotes dereg-
ulation of the Wnt-β-catenin signaling pathways, which confers resistance to apoptosis and
proliferative advantages to myofibroblasts. Thus, an imbalance between profibrotic and
antifibrotic mediators is created, maintaining an environment supportive of exaggerated
myofibroblast activity and chronic fibroproliferation [2].

Myofibroblast differentiation was reduced in response to the treatment with EOCW
and deflazacort. The precise mechanisms underlying the negative modulation of my-
ofibroblast differentiation by EOCW is not fully clear. Inhibition of in vitro and in vivo
myofibroblastic differentiation potential through blockage of TGF-β1 expression exerted by
corticosteroids in palmar fibromatosis-derived stem cells has been previously reported [81].
As the corticoid used in the current study also reduced myofibroblastic differentiation, this
inhibitory activity might have been a result of TGF-β1 suppression. Inflammatory cells
and other epithelial and mesenchymal cells activated by inflammatory cytokines are the
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major sources of TGF-β. Therefore, drugs such as steroids and cyclooxygenase inhibitors
have been considered effective in reducing inflammatory cytokines, such as TGF-β, and
consequently attenuate collagen deposition [82].

As far as we know, no previous study has focused on the inhibitory effects of the major
chemical compounds of EOCW on myofibroblastic differentiation, but we hypothesized
that it might be related to their anti-inflammatory activity and suppression of TGF-β
expression—just as demonstrated with corticosteroids. To prove this theory right, the
immunohistochemical expression of TGF-β was assessed in histological sections of lungs
with BLM-induced pulmonary fibrosis. As expected, untreated animals presented the
greatest counts of TGF-β-expressing cells, which agrees with other studies previously
reported [56,82,83]. The significant decrease in pulmonary cells expressing TGF-β in
EOCW-treated groups at 100 and 200 mg/kg, as well as in the deflazacort-treated group,
is fully supported by the analysis of α-SMA-positive cells, attesting to the close relation
between this cytokine and myofibroblast differentiation. In addition, as also observed in
the current study, other investigations have demonstrated the attenuation of the severity of
the pulmonary fibrosis through the use of drugs that suppress TGF-β expression, such as
halofuginone, crocin [79], and amitriptyline [9]. Oral administration of angiotensin 1–7, a
heptapeptide with anti-inflammatory activity, in a model of BLM-induced lung fibrosis
in mice, decreased inflammation and collagen deposition, as well as ameliorated lung
function [83], whereas the incubation of human lung fibroblasts with A779, an angiotensin
1–7 agonist, has shown to reduce levels of TGF-β and collagen type [84]. These data seem
to support the relation between anti-inflammatory agents and downregulation of TGF-β,
with consequent reduction of fibrosis.

5. Conclusions

Oral administration of EOCW attenuates the histological changes associated to the
progression and severity of bleomycin-induced pulmonary fibrosis in rodents, likely due
to inhibition of TGF-β immunohistochemical expression and the consequent decrease in
the myofibroblast differentiation. We also provide evidence that this antifibrotic activity
could be associated with the anti-inflammatory and antioxidant properties of the essential
oil. Therefore, EOCW is a potential candidate to be used as a phytotherapeutic in further
clinical trials for the treatment of pulmonary fibrosis.
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