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ABSTRACT
Epidemiological information is expected to be used to develop key aspects of eye care such as to
control and minimise the impact of diseases, to allocate resources, to monitor public health
actions, to determine the best treatment options and to forecast the consequence of diseases in
populations. Epidemiological studies are expected to provide information about the prevalence
and/or incidence of eye diseases or conditions. To determine prevalence is necessary to perform
a cross-sectional screening of the population at risk to ascertain the number of cases.

The aim of this review is to describe and evaluate capture-recapture methods (or models) to
ascertaining the number of individuals with a disease (e.g. diabetic retinopathy) or condition (e.g.
vision impairment) in the population.

The review covers the fundamental aspects of capture-recapture methods that would enable
non-experts in epidemiology to use it in ophthalmic studies. The review provides information
about theoretical aspects of the method with examples of studies in ophthalmology in which it
has been used. We also provide a problem/solution approach for limitations arising from the lists
obtained from registers or other reliable sources.

We concluded that capture-recapture models can be considered reliable to estimate the total
number of cases with eye conditions using incomplete information from registers. Accordingly,
the method may be used to maintain updated epidemiological information about eye conditions
helping to tackle the lack of surveillance information in many regions of the globe.
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Fundamental epidemiology

Epidemiology is an area of medicine concerned with the
number of persons affected by a condition or disease in
a defined population. In other words, epidemiology can
be defined as “The quantitative study of the distribution,
determinants and control of diseases in populations”.1,2

Epidemiologic studies provide, amongst other relevant
numbers, information about the prevalence and/or inci-
dence of diseases or conditions.

Prevalence can be defined as “the proportion of
a population, or sub-population, that has a particular
disease at a particular point in time”.3 For example, the
Coimbra study reported the prevalence of AMD in the
Portuguese population. In addition, the Coimbra AMD
study also characterized risk factors for disease
development.4,5 Prevalence can be reported as crude
prevalence (crude rates), category-specific prevalence

and standardized prevalence.3 Prevalence is commonly
reported as a percentage, such as 1.5%, that is the
number of cases per 100 people in the population.

Incidence can be defined as “the number of new cases
arising in a given period of time in a specified group of
people (population)”.6 The incidence of a disease will
depend on its aetiology, i.e., why it occurs. The inci-
dence of diabetic retinopathy in Portugal,7 incidence of
tuberculosis8 or incidence of prostate cancer9 are exam-
ples of studies conducted in Portugal to monitor eye
diseases or other relevant conditions. The prevalence of
a disease depends not only on the incidence but also on
the course of the disease, how long it lasts, whether it
can be treated, and whether people die as a result of it.6

This review covers a method of ascertaining for the
number of individuals with a disease (e.g. diabetic
retinopathy) or condition (e.g. vision impairment)
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using capture-recapture methods. This method can be
used to determine the prevalence and/or incidence, but
in this review, we cover almost exclusively examples of
prevalence with emphasis on the prevalence of vision
impairment. Once affected by eye diseases that cause
irreversible vision loss, individuals often have to live
with the condition for the rest of their lives. Whilst the
incidence of vision impairment may be low in devel-
oped countries, the prevalence is likely to rise due to
the growing and aging population.10

Methods to determine the prevalence of eye
conditions

There are several strategies to quantify the number of
cases of a particular condition or disease in a population.
However, the most reliable results are those obtained
from a screening of the general population or cross-
sectional studies.2 In this case, a random and represen-
tative sample of the entire population or the target
group, when the population of interest is a subgroup of
the general population, must be screened for the condi-
tion by qualified researchers or clinicians. This method
is reliable but has the disadvantage of being very expen-
sive, time consuming and labour intensive. There are
reports in the literature of studies that stopped due to
budget and time constraints.11 In many instances, this
method represents a cost that is disproportional to the
benefits of gathering the information in particular when
studying rare conditions or events in the general popula-
tion. A good example is the epidemiology of pterygium
in Victoria (Australia) that surveyed 5147 persons and
found only 6 cases of pterygium surgery.12 Therefore,
alternative methods can be and have been used.

An alternative to screening the population is to use
population surveys. In this case information about the
clinical condition of interest is self-reported. The most
basic example of a survey with self-reported data is the
national CENSUS that most countries conduct every 5 or
10 years. According to some authors, such a survey is not
expected to provide data on the number of people with
a disease of interest but is expected to tell how many are at
risk of a disease in the general population.2 However, self-
reported information about disease suffers from several
types of bias and leads to inaccurate estimates.13 Common
causes for this include the lack of knowledge about the
condition and social desirability14,15 but they are still
being used in some instances.16 An example of inaccurate
self-reported information is the number of cases of vision-
impaired individuals reached by CENSUS in Portugal.17 In
2011, 892860 persons reported “difficulties to see even when
wearing optical correction” and 27659 reported to be
“impossible to see”. When taken together, that is, summing

these twonumbers and dividing the result by the number of
individuals living in the country, this would lead to a crude
prevalence of vision impairment in Portugal of approxi-
mately 9%. This crude prevalence would be extremely
alarming but, fortunately, is unlikely to be true. Another
alternative to population studies is to use registers.

Registers are databases where patients or physicians
can enrol cases with a particular condition that needs to
be registered and they are frequently used to determine
prevalence through what is sometimes defined as “case
counting”. Registers are extensively used to monitor
conditions such as cancer, diabetes or tuberculosis.8,9,18

Registers are typically inexpensive and readily accessible
when needed. The disadvantages include, for example,
voluntary registration (in most cases), information dis-
persed through several registers and misdiagnosis. Case
counting has been found to be an ineffective strategy to
estimate the prevalence of conditions in the general
population because many persons fail to register.19,20

Although there are more elaborated ways to use regis-
ters, a methodology that has been shown to be useful in
ascertaining the total number of cases using incomplete
information from registers is capture-recapture (CR).

The aim of this review is to cover the fundamental
aspects of this methodology that would enable non-
experts in epidemiology to use it in ophthalmic studies.
The structure that we adopted is expected to cover the
fundamental theoretical aspects of the method and to
provide examples of studies in ophthalmology in which
the methodology has been used. We also provide
a problem/solution approach for limitations arising, in
particular, from the lists obtained from registers or other
reliable sources.

The review is organized in small sections summarized
here: section 3) section capture-recapture methods pro-
vides a brief historical perspective and a definition of CR
methods; section 4) section assumptions and requirements
describes what a researcher needs to know about the
method before deciding on the use of this methodology
to investigate prevalence (before collecting data); section
5) section data analysis describe what problems can arise
during the process of combining information and analyse
it (after collecting data); in section 6) section computation
of prevalence we provide an example of the calculations of
prevalence of vision impairment with three lists, in sec-
tion discussion and recommendations we discuss the key
messages of this review and section 8 section literature
review gives a summary of the literature search.

Capture-recapture methods

CR methods were originally developed and used in ecol-
ogy, but have been applied to characterize prevalence in
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human populations since 1949.21 In ophthalmology, it has
been used to determine the prevalence of a range of con-
ditions including congenital cataracts and vision
impairment.22–31

CR methods use lists from registers (or other reliable
sources) of which the completeness is unknown. In health
applications lists can be obtained from hospitals, labora-
tories, insurers, social service agencies, religious institu-
tions, schools and others. Cases are identified from
multiple sources, with a source defined as any location
or origin where a case is reported. All cases from each
source make up a list. Lists of cases obtained from two or
more registers (or sources) can be combined and used to
estimate the number of unregistered cases. A real-world
example of this calculation is given in section computation
of prevalence.

Estimating the total number of cases allows, in most
circumstances, the estimate of prevalence or incidence of
diseases in a population. The situations in which CRmeth-
ods can be most useful are, for example, when it is too
expensive to perform a screening of the entire population
or when a condition is very rare (or both). There are basic
requirements that need to be attained if the CR methods
are to be utilized, requirements are described below.

Assumptions and requirements

To be used in CR, lists – defined as databases contain-
ing the profile of people with a condition of interest,
need to be obtained at approximately the same time, or
based on different sources that represent approximately
the same population.23 In addition, to obtain reliable
results with CR methods certain assumptions need to
be met: 1) the sources of lists are independent – this
implies that the probability of a subject being in both
list A and list B equals the product between the prob-
ability of being in A alone and the probability of being
in B alone,32 2) the probability of association within
each source (catchability) is equal for all individuals –
the probability may vary from one list to another, or be
constant overall,32,33 3) the population is closed (no
births, deaths or migrants). These assumptions are
restrictive and, when applied to medical conditions,
are unlikely to be met.32 Below we clarify some of the
most important and, eventually, less intuitive concepts:
list (in)dependence and closed populations and we also
explain how to proceed when assumptions are not met.

List requirements

A list is a collection of units from a population and the act
of generating a list is said to be a capture. A list in the
context of human populations needs to include

a minimum of demographic information about the people
with the condition of interest. To be useful, the list most
contained information entered in an organized and reliable
way. Examples of lists are the databases of cases associated
with tuberculosis or human immunodeficiency virus. In
most European countries these are communicable diseases,
meaning that health professionals are required to commu-
nicate them to central health authorities.34,35 One essential
aspect is that each list needs to include accurate identifiers
such as first and last name, date-of-birth and sex. In the
case of diseases, the diagnosis should ideally be confirmed
by medically qualified professionals. All lists must have the
same minimum amount of case-information that can be
used to compare records during prevalence estimation
using CR. Case-information is used to create a unique tag
or a combination of tags that corresponds to a unique
identifier for each subject. Tags are then used to determine
the intersection of records in different lists (see sub-section
issues with tag-loss).

Here we need to distinguish two types of list inde-
pendence: a) the local independence and b) homogene-
ity across individuals. A detailed explanation of these
concepts is provided below.

Local independence considers individuals as fixed
and their presence in a list does not affect their prob-
ability of being included in other lists that are used.
Mathematically speaking the local independence
between lists implies that the event that unit i is in
a certain list is independent of the event that unit i is in
any combination of the other lists.36 Local list indepen-
dence is a theoretical concept that needs to be discussed
by the investigators that know the origin of their lists.
Although there are “diagnostic tools” for list indepen-
dence that are discussed in sections data analysis and
computation of prevalence with numerical examples. An
intuitive example how to use this definition consists of
separated lists from primary eye care providers (e.g.
optometrists, consider this list A) and specialized eye
care (e.g. eye care clinics at hospital, consider this list
B). This procedure can lead to local dependence
between lists because the sources of the lists refer to
each other. That is, the fact that a patient is seen by an
optometrist changes the probability of this patient to be
in the eye clinic at the hospital. Patients seen by opto-
metrists are more likely to be referred to the eye clinic
at the hospital than if they did not look for eye care
with the optometrist.

Local dependence between lists can be positive or
negative.2,37 Positive dependence means that individuals
captured in the first capture, for example list A, are more
likely to be captured in the second list, e.g. list B, than
those that were not captured in list A. That is the type of
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dependence that should be expected in the example above
(local optometrist and hospital eye clinic). This type of
dependence can lead to an underestimation of the true
size of the population.34 In contrast, negative dependence
exists when individuals captured in a list are less likely to
be captured in other subsequent lists. In other words, if
the presence of an individual in list A excludes or reduces
the probability of him/her from being in list B, then this
can be considered negative dependence. This type of
dependence leads to an overestimation of the true size
of the population.33,36 From the previous example, if we
consider list A taken from an eye clinic at hospital A and
list B taken from an eye clinic at hospital B (assuming
equal levels of specialization in both clinics), the presence
of an individual in list A is likely to reduce the probability
of that individual being in list B. That is, because the
patient is already in treatment in one hospital it is unlikely
that he or she is treated, for the same condition, in
a second hospital. The examples given show that
researches need to think carefully about the sources for
their lists before they start to collect data. There are some
solutions when assumptions of independence are not met
and that is discussed in section data analysis.

The homogeneity across individuals means that the
probability of capture in a list is independent of the
individual characteristics of the subjects and is the same
to all subjects.38 In contrast, if there is heterogeneity,
then the probability of capture in any sample is an
attribute of the individual and may vary across the
population. Subjects may vary in their capture prob-
ability according to age, sex, disease severity, social
status and other factors.39 Using the previous example,
heterogeneity between individuals may exist if the
probability of being registered at the eye clinic is
a function of the individual’s income and/or the dis-
tance between his home and the clinic.

In short, local dependence between lists means that
probability of capture of a subject i in a list j depends on
his past capture history. Heterogeneity means that the
capture probability of a subject i in a list j depends on
some specific attributes of the subject such as age, sex or
income. These two concepts are linked to the concept of
(equal) catchability. Equal catchability means that all
individuals are equally likely to be chosen in each
capture.40 If local list independence fails, then the prob-
ability of capture in any list depends on the individual’s
prior history of capture and, therefore, the equal catch-
ability assumption is violated. When homogeneity fails
the probability of capture in any list is related with
attributes of individuals and varies across the population,
which makes the equal catchability assumption to be
violated. If the assumption of equal catchability holds,
then the two types of independence are verified.

Population requirements

One requirement of the traditional CR methods is that the
population needs to be closed. That is, during the sampling
period there will be no subjects coming in or out of the
population (no migrations, births and no deaths).41 Strictly
speaking, this may be impossible to accomplish in human
populations. Still, it is sometimes reasonable to admit that
during the capture period the population is closed.41,42

When the assumption of the closed population can be
considered, methods described in sub-sections analysing
list dependence with the Petersen estimator and using log-
linear models with dependent lists can be used to determine
the number of individuals with the condition of the interest
in the population. If the population is open more elaborate
and complicated methods are needed, those are briefly
described in subsection using log-linear models with depen-
dent lists. In this review, we provide only a superficial
overview of complicated theoretical methods.

Data analysis

This section provides a list of procedures that need to be
executed to assess if the lists and population meet the
assumptions discussed in section assumptions and require-
ments. When assumptions are violated, we explain that and
suggest some solutions. This section starts with the intro-
duction of the Petersen estimator. This estimator can be
used when there are only two lists, but it is also important
to analyse dependence amongst pairs of lists when three or
more are available. Then, we describe the use of log-linear
models as an alternative when is desirable to usemore than
2 lists or when the two available lists are dependent. Most
studies use three lists and when more than 3 lists are
available, the recommendations are to merge them.43,44

The other three topics covered in this section are: 1) how
to deal with open populations, 2) how to deal with poor
information to identify subjects in lists (tag-loss) and 3)
how to deal with false negatives or false positives.

Analysing list dependence with the Petersen
estimator

The Petersen estimator is a formula that provides an
estimate of size N of the population or, in other words,
the unknown number of individuals affected by a disease
(within a population) when two lists are available. To use
the Petersen estimator (a) the population need to be
considered closed, (b) the assumption of equal catchabil-
ity holds (the capture probability may change throughout
time, but within each capture, it is the same to all indivi-
duals) and (c) there are no problems with the individual’s
identifiers. If lists are dependent, the Petersen estimator
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should not be used. The bias in N induced by dependent
lists can be significant.22

Now we explain the basis of the Petersen formula with
an example from ecology using two samples (equivalent
to 2 captures). Assume that we want to estimate the total
number of fish (N) in a lake. A sample A with n1 fish is
captured, fish are marked and then released back to the
lake – the marked rate in the population is given by the
n1
N . Next, a sample B with n2 fish is captured and from
those n2, there are m fish that are marked from the first
capture. Thus, the recapture rate is given by the fraction
m
n2
. If samples A and B are independent, then the marked

rate in the population should be approximately equal to
the recapture rate, that is, the equality:

n1
N

¼ m
n2

is likely to occur.36

This equation yields the Petersen estimator of the
population size (N̂):

N̂ ¼ n1n2
m

The Petersen estimator can also be used in human popu-
lations. The captured samples are lists and the probability
of an individual being captured in a certain list is often
defined as ascertainment probability. The Petersen for-
mula is used in computation of prevalence with
a numerical example.

In sub-section list requirements we explained that
two lists may have local dependence and dependence
may be positive or negative. Positive local dependence
occurs when individuals captured in a list A are more
likely to be also in list B than those not in list A. When
this occurs then the two fractions given above are
unequal, n1

N < m
n2
, which is equivalent to N > n1n2

m .
Therefore, in this case, the Petersen formula under-
estimates the true size of the population. In contrast,
if the two lists have local negative dependence, then
n1
N > m

n2
, which yields N < n1n2

m . In this case, there will be

an overestimation of the true size of the population.
At this point, it is important to refresh the concept of

capture history using mathematics. Given two generic
lists, the capture history y for a particular individual may
be (i) y = (1,0) – individual is in list A but is not in list B,
(ii) y = (0,1) – individual is not in list A but is in list B,
(iii) y = (1,1) – individual is in list A and B, and (iv)
y = (0,0) – individual is neither in list A nor in list
B. What CR methods try to estimate is the number of
individuals with a capture history (0,0), that is, the
population not captured in either list.

In this scenario, n1 ¼ n10 þ n11, n2 ¼ n11 þ n01
and m ¼ n11. By replacing these values in the

initial Petersen equation, N̂ ¼ n1n2
m , we obtain

N̂ ¼ n10 þ n11 þ n01 þ n10n01
n11

. This is another expres-

sion to the Petersen estimator, in which n10 is the
number of individuals with capture history 1; 0ð Þ, n01
is the number of individuals with capture history
0; 1ð Þ and n11 the number of individuals with capture
history 1; 1ð Þ.

The Petersen estimator is subject to bias if n11 is
small or zero.45 Therefore, in 1951 Chapman modified
the Petersen estimator, which resulted in the Chapman
estimator:

N̂ ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þ
n11 þ 1

� 1

Chapman showed that if n10 þ n01 þ 2n11 � N the pre-
vious estimator is an exactly unbiased estimator of N.46

If n10 þ n01 þ 2n11 <N, then the bias of the Chapman

estimator is less than 2% if n10þn11ð Þ n01þn11ð Þ
N > 4.47

However, N is unknown but if n11 > 7 then there is

a 95% chance that n10þn11ð Þ n01þn11ð Þ
N > 4 and the bias of

Chapman estimator is negligible.48,49 In computation of
prevalence we will use both the Petersen and the
Chapman estimators.

In human populations, it is difficult to obtain two
lists that are categorically independent50; however,
they can be considered independent if the dependence
is low.34 There are several methods to assess which, if
any, lists are dependent. For example, some authors
defined the “coefficient of covariation between samples”
that measures the degree of dependence among
them.36 There is also the odds ratio implemented
with capture-recapture methods developed by Wittes
et al.,22,51 that estimates the increased probability of
a case being reported in a first source when it is also
reported in a second source. Often more than 2 lists
are available which is good to CR methods, but when
this happens the formulas given for Petersen and
Chapman estimators cannot be used to estimate the
size of the population (N). Although when using three
or more lists, the Petersen estimator or the Chapman
estimator can be used to detect dependency amongst
pairs of lists. Discrepancies between estimates of
N produced by different pairs of lists are indicative
of positive or negative local dependences, numerical
examples are given in sub-section scenario D. This
method is considered intuitive and can be comple-
mented by investigating the lists, the context sur-
rounding them and how they were built, which can
suggest the dependences amongst them. These last two
intuitive approaches combined are used in section
computation of prevalence.
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Using log-linear models with dependent lists

When dependence between two lists is unavoidable and/
or more than two are available, log-linear models can be
used to estimate the size of the population (N). However,
log-linear models are not the only closed models that
allow unequal catchability.36 An important aspect to
consider in CR is the number of lists. When more than
3 lists are available, researchers should consider merging
them because more than 3 lists lead to complicate mod-
els without increasing significantly the accuracy of its
predictions.43,52

Log-linear models determine the expected value of
nijk, that is, the expected value to the number of indi-

viduals with capture history ijkð Þ. It uses the Poisson
distribution to model the count of a contingency table
computed from the lists (each list has two categories,
captured and not captured).53 It models the logarithm
of the expected value of each observable cell of such
contingency table. If there are three lists and there is
local dependence amongst the three and local depen-
dence between any possible pair of lists, then the log-
linear model is given by equation 1:

logE nijk
� � ¼ u0 þ u1I i ¼ 1ð Þ þ u2I j ¼ 1ð Þ

þ u3I k ¼ 1ð Þ þ u12I i ¼ j ¼ 1ð Þ
þ u13I i ¼ k ¼ 1ð Þ
þ u23I j ¼ k ¼ 1ð Þ
þ u123I i ¼ j ¼ k ¼ 1ð Þ (1)

As a matter of example, in the equation above I i ¼ 1ð Þ
stands for the function that assigns 1 to capture history
1jkð Þ and 0 to all the others. Log-linear models estimate
the logarithm of the expected value for the number of
individuals with capture history ijkð Þ, that is,
logE nijk

� �
. For example, the parameter u12 models

the dependence between lists 1 and 2, and u13 the
dependence among lists 1 and 3 and so on.33

Consider now that only lists 1 and 3 are dependent.
If we want to compute the expected number of indivi-
duals with capture history 101ð Þ, that is, E n101ð Þ, then
we use the formula:

logE n101ð Þ ¼ u0 þ u1 þ u3 þ u13 , E n101ð Þ
¼ eu0þu1þu3þu13

The values of all parameters (in this case, u0, u1, u3, u13)
can be obtained, for example, by using the R package
Rcapture.54,55 This package can be used to estimate the
abundance and other demographic parameters for closed
and open populations using log-linear models. By com-
paring the difference between the estimated value of
individuals with a capture history 101ð Þ and the actual
number of subjects with that capture-history, the bias of

the model can be computed. By doing the same to all
observed capture-histories, the deviance of the model
can be computed. The deviance of the model measures
its quality in terms of how well its predictions fit the
experimental data. Data is the set of vectors with all
observed capture-histories, low deviance values corre-
spond to better model fittings.

The main objective though is to compute an estima-
tion of the size of the population N (e.g. the number of
people with vision impairment) and to do that we need
to determine the expected number of subjects that are
missing from our available lists. That is, we need to
estimate the number of individuals with a capture his-
tory 000ð Þ and that is given by the expression:

logE n000ð Þ ¼ u0 , E n000ð Þ ¼ eu0

The number of individuals with capture history (0 0 0)
is then added to the number of individuals that have
been captured on the lists:

N̂ ¼ n100 þ n010 þ n001 þ n111 þ eu0

When there is an interaction between lists 1 and 2 and
between lists 1 and 3, then equation 1 would yield the
12; 13ð Þ log-linear model:

logE nijk
� � ¼ u0 þ u1I i ¼ 1ð Þ þ u2I j ¼ 1ð Þ

þ u3I k ¼ 1ð Þ þ u12I i ¼ j ¼ 1ð Þ
þ u13I i ¼ k ¼ 1ð Þ:

There are more models, but they are not covered in this
review. Usually, models are denoted as Msubscripts and
the subscripts are t; b; h:33 Models allowing capture
probabilities for a fixed population unit to vary between
lists are indexed by t, with t standing for time. Models
with local list dependence, the behavioural effect, are
indexed by b. Models that deal with heterogeneity are
indexed by h. Therefore, in the more general structure,
we have Mtbh models; Mbh or Mb models and other
combinations are also possible.33,36 There is also the M0

model, in which there is no local list dependence, no
heterogeneity and the capture probability is the same to
all individuals throughout the entire capture time.38,40

Some models include covariates to explain the dif-
ferent capture probabilities among individuals due to
heterogeneity.37,56,57 For example, the probability of
capture in a certain list for an individual may depend
on covariates such as sex age or the severity of
a disease. One possible solution consists of stratifying
the data according to the values of the covariates,
estimating the total number of population units within
each stratum and finally combining these estimates.56

There are also finite mixture models and random-effect
models for heterogeneous closed populations.58
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The Bayesian approach to capture-recapture has also
been proposed by some authors and we provide here
a brief explanation and an example.40,59,60 The Bayesian
approach works by taking into account previous estimates
of the population size N, in which N is considered
a random variable with a certain distribution. For exam-
ple, it can be considered that N ¼ N1 with probability
p ¼ p1, N ¼ N2 with probability p ¼ p2, N ¼ N3 with
probability p ¼ p3 and so forth. This will be the prior
probability distribution for N. Then, observations are
collected, that is, a capture is produced. Such empirical
information is used to update the prior probability dis-
tribution of N into a posterior probability distribution of
N. This posterior information will be used as prior infor-
mation to the subsequent capture and it will be again
updated, originating a new posterior distribution to N.
These iterations go on for the desired number of times.
The actual observed data changes our expectations con-
cerning the values of certain population parameters.61

In some cases the population is open and, in those
cases, capture-recapture models for open population
need to be used. For instance, there is a method that has
been proposed by Roberts and Brewer that allows for the
control of admissions and departures of subjects.62 In this
method, and based upon CENSUS information, there are
variables modulating for probabilities of elements depart-
ing or being admitted to the population. Another solution
are the Cormack-Jolly-Seber models that apply Hidden
Markov Models.63 Here, in addition to the capture prob-
abilities (or ascertainment probabilities as it is referred to
in human populations), there are also the survival prob-
abilities, that is, the probability of an individual to remain
part of the population in some time period between cap-
tures. The CR models are expressed as state-space models
in which the survival process is distinguished from the
detection process. It requires a significant dedication and
is mathematically demanding; readers interested to know
more about those are referred to the cited literature.

Issues with “tag-loss”

It is always advisable to use data with good personal
identifiers allowing the linkage of individuals from dif-
ferent registers (lists). Sometimes this is not possible
and we have what can be defined as “tag-loss”. Tag-loss
is the name given to the event that some individuals are
poorly identified and has its origin in ecology when
captured animals lose their tags.

The event of losing a tag, in human CR studies, means
that the subject’s identification has errors due to poor
records caused by, for example, mistyping. Let us suppose
that we have the following record in list 1: initials “JA”,
birth date “13/06/1957”, sex “male”. If male is represented

by the number 1 and female by the number 2, then we can
create an identifier string for this record as
“JA130619571”. Now in list 2: initials “HA”, birth date
“13/06/1957”, sex “male”. This originates the identifier
string “HA130619571”. Let us assume that the first initial
in list 2 was mistyped (“H” instead of “J”) and initials
should be “JA” in both cases. In this scenario, these two
separated records refer to the same subject and this sub-
ject should be accounted as a double capture – in list 1 and
in list 2. However, because of the typo, it will be counted
twice, that is, as a separated record in each list. This is an
example of tag-loss with false-negative matching. When
this happens, it frequently leads to the significant bias of
estimation.60,64 False-positive matching, that is, distinct
individuals being considered as the same is less likely.

Most CR methods as the Petersen estimator and log-
linear models assume that no tags are lost and that all
tags are correctly identified. When researchers suspect of
tag-loss they can use some strategies to reduce bias in
their estimation. One way to circumvent this problem is
to use several combinations of the information provided.
For example, to perform an initial match by last name,
post code and sex and a second match by first and last
initial, date of birth and sex, or other combinations. Still,
tag-loss can always occur leading to errors in the esti-
mate of the population size and its variance.65,66

When tag-loss cannot be avoided, there are models
that can incorporate this effect. For example, Wang and
colleagues proposed a Bayesian model that can deal
with tag-loss by using prior information about the
population.60,67,68 In this model, true and observed
values are considered. For instance, the number of re-
sightings in one list will be replaced with two values:
the observed number of re-sightings on the list and the
true number of re-sightings on the list. Concerning
only the true number of re-sightings, there is no tag-
loss effect. The discrepancy between observed data and
real data is considered to be due to tag-loss and the true
or latent data can be estimated with Bayesian models.

False positives and false negatives

Lists obtained from registers or clinical files can have
false positives and false negatives or misdiagnosis.
A false positive (Fp) for CR exists when someone is
included on the list without having the expected
diagnosis.34 For example, when studying the prevalence
of vision impairment, someone with good vision that is
listed is a false positive. A false negative (Fn) is someone
with vision impairment that is listed as having good
vision (or not listed in the vision-impaired records).

Let us consider a scenario in which list A is prone to
have Fp and list B in which Fp or Fn are inexistent. An
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individual x that is a Fp in list A can cause that either n10
(number of cases in list A only) or n11 (number of cases
in both lists) are inflated one unit. However, despite
individual x could be captured in list B, he or she is
not listed – which classifies x as a Fp in list A only. In
this scenario n01 (number of cases in list B only) and n11
are correct. However, n10 is inflated because includes
one Fp. When we put these numbers in the Petersen
estimator ¼ n10 þ n11 þ n01 þ n10n01

n11
, the first and last

addends have higher values than they should have and
the total number of cases, given by N, will be
overestimated.

When we have a Fn in list A, the effect in the
population estimation will depend on whether the sub-
ject was diagnosed in the source of list B. If individual
x is an Fn in list A, then n10 (number of cases in list
A only) or n11 (number of cases in both lists) are
reduced by one unit. If x is included in list B, then he
was correctly diagnosed and therefore n11 is reduced by
one unit and n01 is inflated by one unit. In this case, the
sum n10 þ n11 þ n01 will be correct, but the quantity
n10n01
n11

will be overestimated. Therefore, N ¼ n10 þ n11 þ
n01 þ n10n01

n11
is overestimated. Finally, if x is not diag-

nosed at the source of B, then only n10 will be reduced
by one unit, and consequently, N is underestimated. In
summary, Fp lead to the overestimation of the popula-
tion and Fn can lead to overestimation or underestima-
tion of the population.

Computation of prevalence

In this section we provide an example of how to esti-
mate the number of persons with vision impairment
(VI) in the general population of a Portuguese munici-
pality using CR methods. The study was conducted in
the Municipality of Braga, Portugal, that has 181494
habitants.69 After excluding non-residents, we obtained
three lists formed of people with VI: 133 subjects issued
with medical certificates of VI from a Primary Care
Centre or PCC (L1); 556 subjects from Hospital of
Braga or HoB (L2) and a 232 subjects from the blind
association, ACAPO (L3).

The hospital information was collected during
12 months in the year 2014. Patients attending
ophthalmology appointments with VI (acuity in the
better eye equal or less than 0.3logMAR) were regis-
tered in a database. For this analysis, we use only
people with an acuity 0.5logMAR or worse because
people with acuity better than 0.5logMAR were unli-
kely to be registered with ACAPO. Details of the study
can be obtained from our previous publications.70–73

At the beginning of 2015, we collected a list of people

applying for VI certificates seen at the PCC and at the
same time, a list of members of ACAPO for the muni-
cipality was provided by the blind association. Despite
referral between these three institutions not being
a standard part of eye care practice, it is likely that
when people ask, for example, for social support at the
hospital they are directed to ACAPO and/or to the
PCC. Therefore, the dependence between lists is likely
to occur.

A unique identity string was constructed for each
individual in the three lists consisting of the initials of
the name, date of birth and sex. Such a string identifies
each individual. We matched strings from all three lists.
In the next sections, we show how to estimate the
number of individuals with VI in the municipality of
Braga that were not present in any of the three lists
using a scenario-based approach.

Scenario A: using two independent lists

In this section, we apply the Petersen estimator and the
Chapman estimator. It will, for now, be assumed that
all possible pairs of lists are independent and that the
population is closed. After matching lists L1 and L2 we
found 29 individuals that were captured in both that
interception is shown in Figure 1.

Individuals that are in L1 and not in L2 have the
capture history 1; 0ð Þ. The number of subjects with this
capture history is n10 ¼ 104. Individuals appearing in
both lists have the capture history 1; 1ð Þ corresponding
to n11 ¼ 29. Subjects in L2 that are absent from L1 have
the capture history 0; 1ð Þ and n01 ¼ 527. Applying the
Petersen estimator, we have:

Figure 1. Venn diagram representing the matching of lists from
PCC and HoB.
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N̂ ¼ n10 þ n11 þ n01 þ n10n01
n11

¼ 104þ 29þ 527þ 104� 527
29

� 2550

The Petersen estimator can be biased for small sample
sizes74; therefore, we are also using a slightly less biased
estimator of the population size, that is, the Chapman
estimator.74

N̂ ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þ
n11 þ 1

� 1

¼ 104þ 29þ 1ð Þ 527þ 29þ 1ð Þ
29þ 1

� 1 � 2487

The variance of Chapman estimator is given by:

var N̂
� � ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þn10n01

n11 þ 1ð Þ n11 þ 1ð Þ n11 þ 2ð Þ
¼ 104þ 29þ 1ð Þ 527þ 29þ 1ð Þ104� 527

29þ 1ð Þ 29þ 1ð Þ 29þ 2ð Þ
� 146622

Chapman estimates are typically skewed, a log trans-
formation has been used to obtain a confidence interval
for the population size.75 It is assumed that
log N̂ �M

� �
follows a normal distribution, with M the

total number of captured individuals, that is,
M ¼ n10 þ n11 þ n01. The 95% confidence interval for
Chapman estimator is given by:

M þ N̂�Mð Þ
C ;M þ N̂ �M

� �� C

� �
,

with C ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ varN̂

N̂�Mð Þ2
� �s( )

Therefore, a 95% confidence interval for the popula-
tion size can be computed as follows:

C ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ varN̂

N̂ �M
� �2

" #vuut
8<
:

9=
;

¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ 146622

2487� 660ð Þ2
" #vuut

8<
:

9=
;

� 1:5 M þ N̂ �M
� �

C
;M þ N̂ �M

� �� C

" #

¼ 660þ 2487� 660ð Þ
1:5

; 660þ 2487� 660ð Þ � 1:5

� �
¼ 1877; 3403½ �

Doing the same with the list of ACAPO (L3) and the L2
the Venn diagram is shown in Figure 2.

Thus, n10 ¼ 216, n11 ¼ 16 and n01 ¼ 540. Applying
the Petersen estimator

N̂ ¼ n10 þ n11 þ n01 þ n10n01
n11

¼ 216þ 16þ 540þ 216� 540
16

� 8062

Applying the Chapman estimator:

N̂ ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þ
n11 þ 1

� 1

¼ 216þ 16þ 1ð Þ 540þ 16þ 1ð Þ
16þ 1

� 1 � 7633

The variance of this last estimator is

var N̂
� � ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þn10n01

n11 þ 1ð Þ n11 þ 1ð Þ n11 þ 2ð Þ
¼ 216þ 16þ 1ð Þ 540þ 16þ 1ð Þ216� 540

16þ 1ð Þ 16þ 1ð Þ 16þ 2ð Þ
¼ 2909968

Therefore, a 95% confidence interval to the population
size is obtained as follows:

C ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ varN̂

N̂ �M
� �2

" #vuut
8<
:

9=
;

¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ 2909968

7633� 772ð Þ2
" #vuut

8<
:

9=
; � 1:62

M þ N̂ �M
� �

C
;M þ N̂ �M

� �� C

" #

¼ 772þ 7633� 772ð Þ
1:62

; 772þ 7633� 722ð Þ � 1:62

� �
¼ 5048; 11941½ �

The matching of L1 (PCC) and L3 (ACAPO) originates
Figure 3.

Figure 2. Venn diagram representing the matching lists from
ACAPO and HoB.
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The diagram shows that n10 ¼ 89, n11 ¼ 44 and
n01 ¼ 188. Applying the Petersen estimator:

N̂ ¼ n10 þ n11 þ n01 þ n10n01
n11

¼ 89þ 44þ 188þ 89� 188
44

� 701

Applying the Chapman estimator:

N̂ ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þ
n11 þ 1

� 1

¼ 89þ 44þ 1ð Þ 188þ 44þ 1ð Þ
44þ 1

� 1 � 693

The variance of the estimator is

var N̂
� � ¼ n10 þ n11 þ 1ð Þ n01 þ n11 þ 1ð Þn10n01

n11 þ 1ð Þ n11 þ 1ð Þ n11 þ 2ð Þ
¼ 89þ 44þ 1ð Þ 188þ 44þ 1ð Þ89� 188

44þ 1ð Þ 44þ 1ð Þ 44þ 2ð Þ
� 5370

Therefore, a 95% confidence interval to the population
size is obtained as follows:

C ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ varN̂

N̂ �M
� �2

" #vuut
8<
:

9=
;

¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ 5370

693� 321ð Þ2
" #vuut

8<
:

9=
;

� 1:47 M þ N̂ �M
� �

C
;M þ N̂ �M

� �� C

" #

¼ 321þ 693� 321ð Þ
1:47

; 321þ 693� 321ð Þ � 1:47

� �
¼ 575; 866½ �

Values of N obtained with each pair of lists vary signifi-
cantly and this suggests that there may be dependence
between lists. Because of that, we consider Scenario B.

Scenario B: using two dependent lists

We are now going to assume that the PPC (L1) and
HoB (L2) have local dependence. The population size
will be estimated by the 12ð Þ log-linear model, that is
expressed by:

logE nij
� � ¼ u0 þ u1I i ¼ 1ð Þ þ u2I j ¼ 1ð Þ

þ u12I i ¼ j ¼ 1ð Þ:
Because we want to ascertain the expected value for the
number of subjects with capture-history 0; 0ð Þ, that is,
E n00ð Þ, then logE n00ð Þ ¼ u0, which yields E n00ð Þ ¼ eu0 .
Then, the estimation can be done using the expression:

N̂ ¼ n10 þ n11 þ n01 þ eu0

To compute u0 we can use the R package Rcapture.54

Using Rcapture with lists L1 and L2 we get N̂ ¼ 2550,
95%CI = 1751; 3349½ �. Assuming also other possible pairs
of dependencies, we obtain with the same package for L3

(ACAPO) and L2 (HoB) N̂ ¼ 8062, 95%CI =

4305; 11819½ � and for L1 and L3 we get N̂ ¼ 701,
95%CI = 549; 854½ �. Estimations obtained with pairs of
lists using log-linear models are similar to the estimations
obtained in scenario A and this is indicative that depen-
dences between lists may not be significant. However,
Rcapture retrieves a warning message informing that the
three models are unreliable because the algorithm does
not converge. Therefore, the next step is to consider all
the 3 lists in a single model, that is, Scenario C.

Scenario C: using three independent lists

Now, the three lists are going to be used simulta-
neously. If we consider that the three lists are indepen-
dent (the three lists among themselves and every
possible combination of two), then we can estimate
the population size by applying the following log-
linear model:

logE nijk
� � ¼ u0 þ u1I i ¼ 1ð Þ þ u2I j ¼ 1ð Þ

þ u3I k ¼ 1ð Þ:
In this model, there are no parameters to model any

dependence amongst lists. We will now obtain new para-
meters values using the Rcapture package to this new
model N̂ ¼ n10 þ n11 þ n01 þ eu0 . We provide the code
in a supplementary methods file. The final result is

N̂ ¼ 2879, 95%CI = 2409; 3511½ �. The model has

Figure 3. Venn diagram representing the matching lists from
PCC and ACAPO.
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a deviance of 120.5 and the AIC is 167.7. The goodness of
fit test indicated that the model fit is not good because the

p� value ¼ Pr χ2df � deviance
� �

¼ 0, df represents the

degrees of freedom of the saturated model minus the
degrees of freedom of the proposed model. We have
seen in scenarios A and B that different combinations of
2 lists were providing relatively inconsistent values and
that would be caused by possible dependences between
lists. In Scenario D we do a diagnostic analysis of the
dependence and compute again estimates considering
the dependences that we think are likely.

Scenario D: using three dependent lists

Values obtained in scenario A are summarized in Table 1.
A brief analysis of the estimates leads us to suspect of two
possible dependences. The first possible dependence is
a local negative dependence between the ACAPO (L3)
andHoB (L2). That is because the estimated population is
too high when compared to the values reached when this
same estimation is used with different pairs of lists. In
addition, if this estimate of the number of people with
impaired vision is used to compute prevalence, we would
obtain values that are higher than expected for European
countries, which is approximately 2.74%.76 We can also
suspect a positive dependence between L1 and L3 because
the population size obtained by applying the Chapman
estimator using these two lists is low and would lead to
lower than expected prevalence.

Therefore, considering the values obtained in Scenario
A, we are going to use the 13; 23ð Þ log-linear model, that is:

logE nijk
� � ¼ u0 þ u1I i ¼ 1ð Þ þ u2I j ¼ 1ð Þ

þ u3I k ¼ 1ð Þ þ u13I i ¼ k ¼ 1ð Þ
þ u23I j ¼ k ¼ 1ð Þ:

To use the Rcapture package, we organize the infor-
mation from Figure 4 in a matrix summarized in Table
2.In Table 2 the first three columns define the capture
history and the fourth column is the number of cases
with the correspondent capture history. Using the

Rcapture package we obtained N̂ ¼ 2741, 95% CI
1997; 4110½ �. This yields a crude prevalence of vision
impairment of 1:51%, 95%CI = 1:10; 2:26½ �. The model
has a deviance of 16.13, the AIC is 67.34 and
p-value<0.001. We choose this model over the one
obtained in scenario C (deviance equals to 120.5,
AIC = 167.7 and p-value<0.001) in which we assumed
that all lists were independent of each other.

We can also perform the statistical test for the inde-
pendence between lists conditioned to the universe of
all individuals captured at least once. It is a chi-square

Figure 4. Venn diagram representing the matching lists from
Primary Care Centre (PCC), ACAPO and Hospital of Braga (HoB).

Table 2. Number of individuals presenting each possible cap-
ture history, except the unknown capture history (0 0 0).
[L1] [L2] [L3] [Freq]

1 1 1 10
1 1 0 29
1 0 1 44
1 0 0 70
0 1 1 16
0 1 0 521
0 0 1 182

Table 1. Prevalence values computed in Scenarios A, C and D.
Scenarios Prevalence (%) Estimate N

_

95% CI Residual deviance AIC p-value

A: L1 and L2 1.37
(1.03–1.87)

2487 1877–3403 - - -

A: L1 and L3 0.38
(0.32–0.48)

693 575–866 - - -

A: L2 and L3 4.21
(2.78–6.58)

7633 5048–11941 - - -

C 1.59
(1.33–1.93)

2879 2409–3511 120.5 167.7 0

D 1.51
(1.10–2.26)

2741 1997–4110 16.13 67.34 <0.001
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test of independence between two categorical variables,
for example, the variable first capture and the variable
third capture (levels 1 and 0). Regarding L1 and L3, we
obtained χ2 1;N ¼ 842ð Þ ¼ 2:10, p ¼ 0:15. Regarding
L2 and L3, we obtained χ2 1;N ¼ 842ð Þ ¼ 495:67,
p< 2:2� 10�16. These results do not reject indepen-
dence between L1 and L3 and strongly reject indepen-
dence between L2 and L3. However, this result should
be evaluated with caution because the value in cell
0; 0ð Þ of the contingency table is not, for example, the
true number of uncaptured individuals in L2 or L3. The
value in cell (0,0) is the number of individuals not
captured in either L2 or L3 within the universe of the
subjects captured at least once, the subjects detected by
our system. This test is not equivalent to test whether
u13 and u23 are statistically different from 0. The test for
the coefficients of the Poisson regression is a z-test.

We can now compute completeness which corre-
sponds to the proportion of cases in our three lists
(L1, L2 and L3) obtained from Primary Care Centre,
Hospital of Braga and ACAPO. Completeness is given
by the expression:

n100 þ n010 þ n001 þ n111 þ n101 þ n011 þ n110
N̂

� 100

¼ 70þ 182þ 521þ 10þ 19þ 6þ 34
2741

� 100

� 30:72%

The results of completeness indicate that the
observed data correspond to about 30% of the entire
population.

In summary, in this section we have shown how
to estimate the number of people with impaired
vision in the municipality of Braga. Using all possi-
ble pairs of lists, assuming that lists were indepen-
dent of each other, produced differing results, which
suggests the existence of dependence between lists.
When we used pairs of lists, assuming independence
between the lists, the models were not reliable in the
sense that the algorithm did not converge. When we
used three lists, considering all independent of each
other, we got a model with a deviance of 120.5,
AIC = 167.7 and p-value<0.001. When we used the
three lists with the dependences we suspect might
exist, we obtained a model with a deviance of 16.13,
AIC = 67.34 and p-value<0.001. We are led to
believe that our dependence analysis is accurate
and that the estimate of this last model is the most
reliable. The best estimate was produced in, scenario
D. However, the goodness of fit test of the model
remains unsatisfactory and we will include more
data in future estimations.

Discussion and recommendations

Capture-recapture methods are an alternative to tradi-
tional prevalence study methods such as case counting
or cross-sectional studies of the population. The method
allows the estimation of the number of individuals in
a population that are missing from captures (registers).
The method represents a fast and economical strategy to
study the prevalence of diseases or conditions such as
vision impairment. However, CR methods rely on
assumptions that can easily be violated and researchers
need to be careful when using the methodology other-
wise unrealistic values will be produced.77 Some recom-
mendations for the presentation and evaluation of CR
estimates should also be considered.78

One important aspect that may lead to significant
estimate bias is dependence between lists. It is important
to explore the dependence scenarios thoroughly because
the independence assumption is unlikely to hold in an
epidemiological study. CR methods may be of limited use
when there is a small overlap between the lists because
that can lead to unstable log-linear models.79 Another
important factor that needs to be considered is tag-loss.
Poor 'tags' or unique identifiers may impact significantly
the estimates as well as false-positives and false-
negatives.65,66 Also, CR methods are more likely to pro-
duce a biased estimate of the population size if one source
captures very few cases.80

There are several CR models, applying different
approaches, either classic or Bayesian. The models can
vary, depending on whether the population is considered
open or closed during the sampling period. Models can
incorporate one or two types of dependences and they
can even incorporate the tag-loss effect. Some studies
advocate that the inclusion of capture-related covariates
improves the accuracy of the estimate of the population
size compared to estimates from simple models.56 For
example, some specific methodology can be used to
identify patient characteristics related to the probability
of capture by the different sources.56 Thus, this techni-
que can be used to identify both subsections of the
population who are unlikely to be captured and popula-
tion subsections who are more likely to be captured.
Open population models try to produce estimates con-
sidering the population dynamics during the sampling
period. The most common methodology regarding open
populations use multistate CR models formulated as
Hidden Markov Models.

Literature review

During the year of 2018, we searched PubMed andWeb of
Science to identify published articles using CR methods.
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Search terms focused mainly on “capture-recapture mod-
els”, “sample independence”, “heterogeneity”, “mixed cap-
ture-recapture models”, “log-linear models”, “tag-loss”,
“completeness”, “Bayesian capture-recapture models”. In
addition, we searched Pubmed for publications using com-
bination of keywords as “prevalence visual impairment
capture recapture”, “prevalence causes vision loss”, “pre-
valence visual impairment Portugal”. We obtained 6391
results from which we selected 22 possible inclusions listed
in the Supplementary Table 1, 10 of these publications used
CRmethod for estimating the prevalence of ocular diseases
and are listed with comments in Supplementary Table 2.
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