
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-18-2021

Asynchronous Validations using Programming Contracts in Java Asynchronous Validations using Programming Contracts in Java

Rahul Shukla

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/428273038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages

Asynchronous Validations using Programming Contracts in Java

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Rahul Shukla

May 2021

© 2021

Rahul Shukla

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Asynchronous Validations using Programming Contracts in Java

by

Rahul Shukla

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Thomas Austin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Mike Wu Department of Computer Science

ABSTRACT

Asynchronous Validations using Programming Contracts in Java

by Rahul Shukla

Design by Contract is a software development methodology based on the idea

of having contracts between two software components. Programming contracts are

invariants specified as pre-conditions and post-conditions. The client component must

ensure that all the pre-conditions are satisfied before calling the server component.

The server component must guarantee the post-conditions are met before the call

returns to the client component. Current work in Design by Contract in Java focuses

on writing shorthand contracts using annotations that are processed serially.

Modern software systems require a lot of business rules validations on complicated

domain objects. Often, such validations are in the form of a chain of independent tasks

that need to be validated one after another. These tasks are computation-intensive

and often involve numerous database calls and API calls over the web.

This paper presents a validation rule engine framework, Rule4j to facilitate writing

such business rules with the help of programming contracts in Java. The contracts are

organized in a hierarchy similar to the Racket programming language. The programmer

can specify the business rules in the form of a series of higher-order contracts that

form a chain. These chains of contracts are validated concurrently and asynchronously

to present a final validation result to the programmer. A sample scenario of trade

execution is used to demonstrate the performance gain and maintainability of the

framework. The experiments conducted show that validations executed using Rule4J

run four times faster than the traditional approach. A clear separation of business

logic and business validations for the trade execution scenario was achieved using

Rule4J.

ACKNOWLEDGMENTS

I want to thank my advisor Dr. Thomas Austin, for his continuous guidance and

motivation throughout this project. Dr. Thomas Austin taught me CS 252, which

introduced me to Design by Contracts and functional programming. This project

builds on the concepts taught in the course.

I would also like to thank the committee members Dr.Chris Pollett and Dr. Mike

Wu for their support.

Lastly, I would like to thank my friends and family, for their endless support in

the last two years.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

2 Literature Review . 4

2.1 Software Maintainability . 4

2.2 Maintainability Measures . 6

2.2.1 Coupling . 6

2.2.2 Cohesion . 7

2.3 Design By Contract . 8

2.4 Existing Programming Contracts Libraries in Java 10

2.4.1 jContractor: A Reflective Java Library to Support Design
By Contract . 10

2.4.2 Design by Contract with JML 10

2.4.3 Contract4J . 11

2.4.4 Other Libraries . 11

3 Contract Hierarchy in Rule4j . 13

3.1 Contract Hierarchy in Racket . 13

3.2 Design of Contract Hierarchy in the Rule4j 17

3.3 Higher-Order Contracts . 19

4 Contract Processing in Rule4j . 24

4.1 Defining Contract Chains . 24

vi

vii

4.2 Contract Definition . 27

4.3 Design of Contract Execution Engine 28

4.3.1 Method Interception . 29

4.3.2 Contract Execution . 30

5 Experiments and Performance Results 34

5.1 System Configuration . 34

5.2 Use Case - Equity Trade Execution 35

5.2.1 Equity Trade Execution using Traditional Approach . . . 36

5.2.2 Equity Trade Execution using Rule4j 37

5.3 Experiments . 38

5.3.1 Successful Equity Trade Execution 38

5.3.2 Failure in Equity Trade Execution 40

5.3.3 Result Analysis . 43

6 Conclusion . 45

LIST OF REFERENCES . 46

APPENDIX

Code Snippets . 49

A.1 Traditional Approach to Equity processing 49

A.2 Organizing equity trade execution validations in Rule4j 55

A.3 Multiple Failures Reporting using Rule4j 63

A.4 Construction of a Higher-Order Trading Date Validation 65

LIST OF TABLES

1 Annotations to declare contract chains 25

2 Contract Chain Definition Details 27

3 Business Validations for an Equity Trade Execution 36

4 Execution Time for a Successful Validation (in seconds) 40

5 Execution Time to Report a Failed Validation (in seconds) 42

6 Execution Time of Validations 44

viii

LIST OF FIGURES

1 Attributes of Maintainability . 6

2 Single Argument Contract Hierarchy 17

3 Bi Argument Contract Hierarchy 18

4 Contract Factory . 24

5 Contract Factory . 27

6 Contract Chain Execution . 28

7 Contract Wrappers . 29

8 Contract Wrapper Class Diagrams 30

9 Result Object Class Diagrams . 30

10 Preconditions Contract Chain Execution 31

11 Visualization of Contract Processing in Rule4j 32

12 Class Diagram of Rule4j Engine 33

ix

CHAPTER 1

Introduction
1.1 Motivation

The software construction process is getting complicated by the day and has

drastically matured over the last two decades. The scale on which modern software

operates is enormous. Building the highest quality software applications which are

scalable and maintainable is increasingly difficult. According to one of Lehman’s

laws of software evolution, a software system will continue to decline in quality, if its

design is not maintained and adapted to new operational needs.[1]

Software must cater to the dynamic requirements of the business. The cost of

requirements grows at an average of 2 percent, from a software’s inception to its

completion. The total cost of new or modified requirements can go up to 50 percent

of the original estimate.[2] The National Health System (NHS) Connecting for Health

system is described as one of the biggest software failures ever. The NHS system was

supposed to be one of the largest civilian software whose development spanned over 9

years. Changing requirements due to complex regulations governing the health care

system was one of the major impediments to NHS system’s development. The project

cost offshoot from an initial estimate of £6.4 billion to £11 billion and ultimately

abandoned after 9 years from its inception.[3, 4]

Subject Matter Experts (SMEs), Product Owners, and Business Analysts typically

will be involved in the design stage of the requirements as they have been working in

the project domain for a long time. They have the domain knowledge and the business

logic that will form the backbone of the software. The programmer needs to have a

good understanding of the domain and business logic from the SMEs, to construct an

efficient solution. The business rules in most of the domains change frequently, and

due to the constant pressure of frequent releases, these business validations are poorly

1

translated into code. The business validations are scattered throughout the code-base.

The SMEs are at the behest of the software developers, to understand the current

business logic.

Therefore, there is an increasing need for frameworks that expedite the organiza-

tion and maintenance of business validations. In [5] the authors state that 70% of the

total time of Software Development Life Cycle (SDLC) is consumed in maintenance.

Having a framework to organize the validations would greatly increase the development

speed and decrease the time required to debug and enhance the existing system.

1.2 Problem Statement

One of the main problems tormenting modern software construction is separating

the business rules and validations from the core business logic and underlying entities.

Highly effective software is the one that caters to the changes effectively without

compromising on the code quality, readability. Decoupling software validations from

the core business logic promote re-usability and readability. Decoupling also facilitates

the addition of new validations and modification of existing validations.

Design by Contract [6] is a software development methodology that was introduced

by Bertrand Meyer in his design of the Eiffel programming language. The components

interacting within the software system adhere to contracts. The contracts specify

what the server component expects from the client components and vice-versa. Design

by Contract help to construct bug-free software and also provide an alternative to

defensive programming.

The goal of this project is to create a validation rule engine Rule4j in Java based on

the principles of Design by Contract. Rule4j will facilitate the decoupling of business

validations and business logic by the specification of validations as programming

contracts. The programming contracts are processed asynchronously. The library

2

allows the programmer to define a series of dependent validations as a contract chain,

which is validated in parallel. The programming contracts are organized in a hierarchy

similar to contracts in Racket programming language. The hierarchy enables the

construction of higher-order contracts from existing contracts.

The Rule4j framework is a Maven [7] project that is built using the Guice [8]

dependency injection framework. Rule4j allows better organization of business vali-

dations, as contracts that are organized in factory classes. These contracts can be

reused to write higher-order contracts. The preconditions and postconditions are

specified using contract chain definitions using custom annotations on the method

under validation.

Prevailing Design by Contract libraries in Java only cater to primitive checks and

are not fit for complex computations. Rule4j follows a different approach to contract

definition and execution compared to the other programming contract libraries in

Java. Complex business validations that are compute-intensive and memory-intensive

are written as contracts in Rule4j. A series of contracts can be specified as contract

chains, which are then executed in parallel for maximum performance.

Rule4j enables the programmer to wholly concentrate on the business logic without

the concern of the execution of contracts. Rule4j executes the chains of validations in

parallel and asynchronously. Chapter 5 demonstrates the performance benefits that

arise by using Rule4j to perform business validations over the conventional methods.

3

CHAPTER 2

Literature Review

This chapter introduces some of the attributes of software maintainability in

the first section. The second section explains maintainability metrics, coupling, and

cohesion in software construction. The last section lists down and briefly describes

some of the existing programming contract libraries in Java.

2.1 Software Maintainability

The quality standard ISO/IEC 25010:2011 [9] defines software maintainability

as "the degree of effectiveness and efficiency by which a product or system can be

modified by the intended maintainers". Therefore it is important to understand the

impact of software maintainability while designing the Validation Rule Engine. Below,

is the list of all the characteristics of maintainability as described in [10] and how the

Validation Rule Engine adheres to these characteristics.

• Flexibility - Flexibility is defined as the ease with which the architecture of the

system can be changed to accommodate new requirements and environments.

The Rule4j framework is independent of the business domain and can be easily

plugged into existing frameworks. Programming to interfaces along with De-

pendency Injection is used as much as possible to keep the components loosely

coupled.

• Modifiability - Modifiability is defined as the ease with which changes can be

made to the existing system without adding errors and diminishing the existing

quality. A highly modifiable software system is associated with low costs to

accommodate changes. Rule4j can be easily modified to support new annotations,

contract types, and other cross-concerns.

• Extensibility - Extensibility is defined as the system’s ability to add new features

without affecting the existing features. A highly extensible software comprises

4

various components, which high coupling. Any changes to one of the components

do not affect the other components. Rule4j promotes writing validations as

contracts that can be organized in factory classes, the addition of any new

validations does not impact existing validations.

• Portability - Portability is the ability of the software to run on diverse systems.

Highly portable software is not tightly coupled to the underlying hardware.

Rule4j is a framework built in Java, therefore it can run different platforms.

The thread pool configurations, powering the rule engine can be changed on the

startup for optimum performance.

• Reusability - Reusability is the degree to which the underlying software modules

can be reused in building other components. This is the core focus of in the

deisgn of Rule4j. The validations are decoupled from the core business logic

and organized separately in factory classes. This enables high reusability, as a

same contract could be used in multiple contract chains to validate different

use-cases, avoiding code duplication.

• Integrability - Integrability is the ability of the software to enable different

components of the system to work accurately together as a single component.

The contracts written using Rule4j can be combined together easily to form

different kinds of contract chains. Rule4j also promotes the wrapping of existing

contracts to create higher-order contracts hence demonstrating high integrability.

• Testability - Testability is the degree to which test criteria can be established

for the given system and the ease at which tests can be written to verify the

criteria. Since the contracts in Rule4j are written independently, it is very easy

to write Unit Tests to check the correctness of the validations promoting Test

Driven Development (TDD) [11].

5

These attributes are summarized in the Figure 1.

Figure 1: Attributes of Maintainability

2.2 Maintainability Measures

Software maintainability is challenging to measure as it depends on various

factors, which are not technical. Razina and Janzen [5] present two maintainability

measures while demonstrating the effectiveness of dependency injection to make the

software more maintainable. This section review the two maintainability measures

cohesion and coupling.

2.2.1 Coupling

Coupling is the interdependence of modules in a system. Two objects are said to be

tightly coupled if they interact with each other via instance variables or methods. [12]

Increased coupling is associated with poor readability and maintainability. The parts

of the system that are coupled become more sensitive to changes made in other parts

of the system. One such measure of coupling for a class can be the number of classes

it interacts with. Razina and Janzen [5] demonstrate that using dependency injection

reduces the coupling between interconnected systems. The authors also point out

6

that lower coupling leads to testable components and increased flexibility, thereby

increasing maintainability.

Cerny and Donahoo [13] summarize their four years of experience in building

large enterprise software and present a framework to handle business rules. The

authors give multiple examples of how Aspect Oriented Programming (AOP) [14]

helps to reduce the coupling between involved components. The authors also

presented a framework that decouples the business rules by centralizing them in

a separate component. This component stores all the business rules connected to

the domain object. They also decouple and centralize the exception handling to a

separate component. The authors contrast this approach to business logic integration

tool Drools [15] which has a significant performance overhead.

2.2.2 Cohesion

Chidamber and Kemerer [12] define Cohesion is the degree of similarity between

components in software. There should be high cohesion between methods of a class.

If there is a lack of cohesion between methods of a class, it needs to be refactored into

separate classes. Low cohesion in a class would considerably increase the complexity

and decrease the maintainability of the system. The programmer will have to take

care of interactions between various other components before making changes to

a particular feature, thereby increasing the chances of errors and increasing the

development costs. Low cohesion also decreases the readability, as similar modules

are spread across the codebase. Therefore it is highly desirable to have a system with

high cohesion.

Chidamber and Kemerer [12] present a widely used metric, Lack of Cohesion in

Methods (LCOM), that is defined as follows:

7

For a class C with methods M1, M2, M3, ..., Mn

Let {Ii} be the instance variables of class

C that are being used by Mi

LCOM(C) = {I1} ∪ {I2} ∪ {I3} ∪ ... ∪ {In}

Goswami [16] presents a Rule Engine for automation of validations of a complex

System Configuration File to configure a Real-Time Measurement System. The

framework successfully separated the business rules from the domain objects and

enabled the business users to directly specify the rules. The author created a Rule

Engine to process the rules serially. The Rule Library contains all the rules, that need

to be validated. This leads to a higher cohesion and a more maintainable system.

The rules are defined as a grouping of an object, attribute, and constraint. The

framework also enables the composition of rules using OrRule, AndRule, NotRule,

and IfThenRule. This enables high cohesion, as the existing rules can be reused and

organized together.

2.3 Design By Contract

Bertrand Meyer [6], presents a set of methodological guidelines known as Design

by Contract for constructing reliable software. The approach is different from defensive

programming, which handles each and every edge case and hence is redundant in

nature. The code consequently is verbose and the actual business logic is obfuscated

with error checking code. An approach based on the notion of a contract between the

client and the supplier in software construction is presented.

If the execution of a function depends on another function call, it is necessary

8

to establish the relationship between the client and the supplier(contract). Such

conditions are expressed using assertions. Assertions can be preconditions and postcon-

ditions, that apply to individual routines. Assertions are boolean conditions separated

by semicolons. Any failure(runtime violation) in these assertions would indicate the

presence of a software bug. If a precondition has failed, then the caller did not observe

the contract and if a postcondition fails then the current method did not work as

expected. The author then emphasized that assertions should not be then handled

separately in the method code similar to defensive programming. Assertions, on the

contrary, specify all such cases beforehand, which should be met to avoid any runtime

violations.

In the context of object-oriented languages, the author introduces “class invariants”.

Class invariants are properties/assertions that apply to all instances of the class. Every

constructor/creational-method of the class. Class invariants must be observed by

all the methods of the class. Here the invariants apply to the entire class instead

of one particular routine. We can use various levels of assertion monitoring in

classes. It is expected to turn on assertion monitoring on all levels, as assertion

violations are manifestations of software bugs. In the case of inheritance, the absence

of precondition and postcondition means that the overridden(re declared) method

retains the parent class assertions. We don’t use the forms require and ensure in case

of redeclaration instead we use orElse and then. Invariants are always passed to

subclasses(descendants).

A more disciplined error handling approach, by including a rescue clause is

introduced. Any exception in the method will start the execution of the rescue clause,

which can contain a retry instruction that will attempt a resumption. If an explicit

rescue clause is not present, then a default rescue is assumed.

9

2.4 Existing Programming Contracts Libraries in Java

This section explores some of the existing programming contract libraries in Java.

2.4.1 jContractor: A Reflective Java Library to Support Design By Con-
tract

Karaorman et al. [17] present a library to support Design by Contract specifica-

tions. The library uses Java instrumentation to enforce the preconditions, postcon-

ditions, and class level invariants. The library specifies a set of naming conventions

to specify the preconditions, postconditions, and class invariants. The jContracter

library uses a custom class loader to instrument the concerned classes. The class

loader searches for patterns in the loaded classes, and the with the help of Java

Reflection. jContracter is purely a library-based approach without any modification

to JVM or pre-processor. If the class contains contract methods, it will instrument

the class bytecode, and add the wrapper contract methods to public methods to check

violations. Otherwise, the original bytecode is left unmodified. This is illustrated in

figure [17, Figure 2].

2.4.2 Design by Contract with JML

Leavens and Cheon [18] introduce the Java Modelling Language(JML) to write

programming contracts in Java. JML is a specification language for Java that requires

a JML compiler (jmlc). JML compiler (jmlc) is an extension of the Java compiler,

which can compile Java code with JML specifications into bytecode. This is unlike the

approach in [17] which is purely a library-based approach that relies on Java Reflection

to instrument the bytecode. JML specifications are written with the help of special

annotation comments, which start with @. JML has various clauses like requires,

ensures, \result and signals, that can be used to write contracts. The author

relates DBC contract specification to informal documentation, as it does not have to

be detailed, but specify the assumptions and expectations. Writing the specifications

10

with JML rather than comments is better as they can be checked with the help of

jmlc.

2.4.3 Contract4J

Wampler [19] introduces Contract4j, a Design by Contract library written using

AspectJ [20] which is an AOP extension for Java Programming Language. The

library supports programming contracts using JSR annotations as well as using a

JavaBeans-like method naming convention. Unlike [17, 18] this approach uses AOP

to intercept and execute the contracts. The invariants are specified using annotations

on the methods, and fields. Contract4j annotations like @Contract, @Post, and @Pre

are used to define invariants that are strings. The contracts are specified on the

interfaces. The invariants are evaluated at runtime as Java expressions using a

runtime evaluator, Jakarta Jexl interpreter [21]. The author also provides another

implementation of Contract4j which is called ContractBeans. In this approach instead

of the annotations, we use the JavaBeans-like naming convention to specify the

preconditions and postconditions. Instead of an interface, an abstract class is used

where the preconditions and postconditions are defined. However, the author points

to the drawback of the ContractBeans approach, as it has more verbosity and has a

significant runtime overhead compared to the annotation-based approach.

2.4.4 Other Libraries

Rajkumar [22] presents a programming contract library in Java following a similar

approach as [19]. The contracts are written with the help of custom annotations

which are then intercepted and executed using AspectJ advice. The invariants are

specified as strings in the custom annotations similar to the approach in [19]. However,

the author also supported Java 8 lambda expressions to specify the invariants. The

lambda expression is provided as a string expression, which is converted to a lambda

11

object using the LambdaFromString library [23]. The author points to the limitation

of the library in parsing complicated objects.

Dixit [24] follows a similar approach to [19, 22] to define contracts using custom

annotations and intercept them using AspectJ join points. However, the author uses

Prolog to write the contracts using facts and rules. The author credited this to Prolog’s

declarative syntax, which made it easier to write contracts. The library queries the

Prolog files to validate the contracts which are specified in the annotations.

12

CHAPTER 3

Contract Hierarchy in Rule4j

The business validations are written with the help of programming contracts

in Rule4j. These contracts are organized in a hierarchy similar to the Racket

programming language. This chapter briefly explores Racket’s contract system and

followed by the design of the contract system in Rule4j. I also present examples of

some higher-order contracts that can be constructed using the framework.

3.1 Contract Hierarchy in Racket

Racket helps to establish boundaries between modules with the help of contracts.

Whenever a value crosses the boundary, a contract check is triggered to ensure

that the modules adhere to the contract. [25] The contract check can be performed

immediately when a value crosses the boundary, or it can be delayed in the case of

function contracts. Contracts can be thought of as predicate functions that check the

input arguments and return a Boolean value depending on an criteria. Contracts in

Racket ensure only the values that meet the requirements cross the module boundary.

There are two classes of contracts in Racket [26] -

• Flat Contracts

These contracts can be thought of as predicate functions that are checked

immediately at the boundaries. Below is an example of flat contract in Racket,

the function num-between-1-100 checks whether a value is between 1 and 100.

This contract is used to guard fun-sqr which squres the input number. We can

see this in action in the Listing 3.1. The function flat-contract? is used to

identify a flat contract.

13

Listing 3.1: Flat Contract in Racket

(define (num-between-1-100? i) (<= 0 i 100))
(print (num-between-1-100? 50))
#t
(print (num-between-1-100? 101))
#f
(print (flat-contract? num-between-1-100?))
#t
(define/contract (fun_sqr i)

(-> num-between-1-100? any)
(* i i)
)

(print (fun_sqr 50))
2500
(print (fun_sqr 150))
fun_sqr: contract violation}
expected: num-between-1-100?
given: 150
in: the 1st argument of

(-> num-between-1-100? any)

• Higher-Order Contracts

These contracts have wrappers that delay check. These wrap flat contracts with

wrapper functions and delay the contract checking. Higher Order contracts are

further classified into two classes.

– Chaperone Contracts

Chaperone contracts wrap the given flat contract to delay check. The

wrapped values must behave the same as they would without the chap-

eroning. They can be used for checking the inputs to the underlying flat

contract, to perform logging operations, or any other actions that are not

guaranteed to change the underlying values. A chaperone can only restrict

the behavior of the objects they wrap, it must raise an exception or return

14

the same value as the underlying flat contract.[27] The example below

showcases a chaperone contract num-between-1-100?+log which wraps

or chaperones the flat-contract num-between-1-100? in Listing 3.1. The

chaperone adds delay by printing the input and output to the underlying

contract, but return the same value as the underlying contract.

Listing 3.2: Chaperone Contract in Racket
(define num-between-1-100?+log
(chaperone-procedure num-between-1-100?

(𝜆(x)
(printf "called with input - ~s\n" x)
(values (𝜆(res)

(printf "returned - ~s\n" res)
res)

x))))
(define/contract (fun_sqr i)

(-> num-between-1-100?+log any)
(* i i)
)

(print (fun_sqr 50))
called with input - 50
returned - #t
2500
(print (fun_sqr 150))

called with input - 150
returned - #f

fun_sqr: contract violation
expected: num-between-1-100?
given: 150
in: the 1st argument of

(-> num-between-1-100? any)

(print (chaperone-of? num-between-1-100?+log num-between-1-100?))
#t

15

– Impersonator Contracts -

Impersonator Contracts can change the values which they wrap. They can

change the values to the underlying contract with a completely new value.

In the example below the flat-contract in example 3.1 is wrapped with the

impersonator contract num-between-1-150?. The impersonator completely

changes the underlying behaviour by modifying the input argument. The

Listing 3.3 demonstrates this.

Listing 3.3: Impersonator Contract in Racket
(define num-between-1-150?
(impersonate-procedure num-between-1-100?

(𝜆(x)
(printf "called with input - ~s\n" x)
(values (𝜆(res)

(printf "returned - ~s\n" res)
res)

(- x 50)))))

(define/contract (fun_sqr i)
(-> num-between-1-150? any)
(* i i)
)

(print (fun_sqr 150))
called with input - 150
returned - #t
22500
(print (impersonator-of? num-between-1-150? num-between-1-100?))
#t

With the help of Chaperones and Impersonators API in Racket, higher-order

contracts can be implemented in the Racket programming language by using

proxy patterns. [27]

16

3.2 Design of Contract Hierarchy in the Rule4j

The contract hierarchy in the Rule4j Rule Engine is influenced by the contract

hierarchy of the Racket programming language. Since Java is a strongly typed

language, this served as a limitation while designing the contract hierarchy in Rule4j.

Due to this, the contracts in Rule4j have been capped to have a maximum arity of 2.

A validation written in Rule4j can operate on two arguments at max.

Figure 2: Single Argument Contract Hierarchy

Figure 2 and 3 shows the hierarchy of contracts that can be used to write

programming contracts in Rule4j. At the base of the contract hierarchy, we

have a FlatContract<T> interface, which has a method validate, that takes in-

put arguments and returns a boolean. All the other contracts extend from the

FlatContract<T> interface. Here T represents the generic type argument in Java.

Impersonator<T> interface extends the FlatContract<T> interface and exposes an-

17

Figure 3: Bi Argument Contract Hierarchy

other method impersonateArguments which can be used to modify the input argu-

ments to the underlying contract. This facilitates the construction of impersonators

that wrap the underlying flat contracts and change the behavior of the values during

run-time.

The Chaperone<T> interface extends Impersonator<T> interface and exposes method

chperoneArguments which can be used to perform checks and other operations on

the input arguments. Chaperones wrap underlying contracts without changing the

input values to the underlying contract, hence they do not change the behavior of the

underlying contract like an impersonator contract.

The contract library facilitates writing contracts using functional programming. All

the interfaces are functional interfaces and a lambda expression be used to represent a

contract. ImpersonatorLambda<T> and ChaperoneLambda<T> facilitate wrapping up

contracts with the help of the Consumer and Function functional interface introduced

in Java 8. In the next section, we will explore how to build contracts using the

18

contract hierarchy.

3.3 Higher-Order Contracts

The previous section explored the contract hierarchy of the Rule4j framework.

In this section we showcase examples of higher-order contracts that can be written

using Rule4j. The contracts can be categorized into 3 types, similar to the Racket

Programming Language -

• Flat Contract -

A flat contract can be written by implementing the FlatContract<T> interface.

Listing 3.4 below showcases how the flat contract in Listing 3.1 can be written

in Java. The first approach uses the traditional approach by implementing the

FlatContract interface using an anonymous inner class, whereas the the second

approach takes advantage of Functional Interface in Java. The second approach

clearly is less verbose and more intuitive to write.

Listing 3.4: Flat Contract in Java
FlatContract<Integer> traditionalContract = new FlatContract<Integer>() {

@Override
public boolean validate(Integer data) {

return data >= 0 && data <= 100;
}

};
FlatContract<Integer> numBetween1And100 = i -> i >= 0 && i <= 100;
System.out.println(numBetween1And100.validate(50)); // true
System.out.println(numBetween1And100.validate(150)); // false

• Chaperone Contract -

Listing 3.5 showcases a chaperone contract similar to Listing 3.2. The

flat contract in Listing 3.4 is wrapped in the chaperone contract

numBetween1And100AndLog. The LambdaChaperone constructor will only ac-

cept a Consumer, hence not allowing the programmer to change the input values

19

to the underlying flat contract.

Listing 3.5: Chaperone Contract in Java
Chaperone<Integer> numBetween1And100AndLog = new ChaperoneLambda<>(i ->

System.out.println(i),
numBetween1And100);

System.out.println(numBetween1And100AndLog.validate(50)); //50 true

• Impersonator Contract -

Listing 3.6 below showcases how the impersonator contract in Listing 3.3 contract

can be implemented in Java. The flat contract in Listing 3.4 is wrapped in

numBetween1And150. The ImpersonatorLambda accepts 2 arguments, the first

is a lambda function that can modify the input values and the second argument

is the underlying flat contract.

Listing 3.6: Impersonator Contract in Java.
Impersonator<Integer> numBetween1And150 =

new ImpersonatorLambda<>(i -> (i > 50) ? (i - 50) : i
, numBetween1And100);

System.out.println(numBetween1And150.validate(150)); //true
System.out.println(numBetween1And150.validate(200)); // false

Listing 3.7 demonstrates how a cached contract can be built using the contract

library. Rule4j will cater to business validations that will involve a Database call or

an API call and the results of some such validations can be cached. Since the business

validations in the rule engine is written using contracts, there is a requirement to

cache the result of the contract, to optimize performance. Listing 3.7 demonstrates

how a requirement to cache can be solved by building a higher order contract using

the library.

20

Listing 3.7: Implementation of a Single Argument Cached Contract
public class SingleArgCachedContract<ARG1> implements FlatContract<ARG1> {

private FlatContract<ARG1> underlyingContract;
private Map<ARG1, Boolean> cache;
private Lock lock;
public SingleArgCachedContract(final FlatContract<ARG1> underlyingContract) {

this.underlyingContract = underlyingContract;
this.lock = new ReentrantLock();
this.cache = new HashMap<>();

}
@Override
public boolean validate(ARG1 data) {

if (this.cache.containsKey(data)) {
return this.cache.get(data);

}
boolean result = this.underlyingContract.validate(data);
this.lock.lock();
try {

this.cache.put(data, result);
} finally {

this.lock.unlock();
}
return result;

}
}

SingleArgCachedContract is a higher order contract that can be used to used

to cache a FlatContract. The underlying FlatContract is taken as a constructor

argument. Single Argument Cached Contract can help to gain performance benefits

by wrapping other contracts, which is demonstrated in Listing 3.8 and Listing 3.9.

21

Listing 3.8: Caching a Single Argument Flat Contract.
FlatContract<Integer> computeIntensiveContract = i -> {

try {
TimeUnit.SECONDS.sleep(5);

} catch (InterruptedException e) {
e.printStackTrace();

}
return true;

};

SingleArgCachedContract<Integer> cachedContract = new SingleArgCachedContract<>(
computeIntensiveContract);

long startTime = System.currentTimeMillis();
System.out.println("First Call");
cachedContract.validate(1);
System.out.println("Time Required :: " + (System.currentTimeMillis() - startTime)

+ " ms");
startTime = System.currentTimeMillis();
System.out.println("Second Call");
cachedContract.validate(1);
System.out.println("Time Required :: " + (System.currentTimeMillis() - startTime)

+ " ms");

Listing 3.9: Result of caching a contract with delay 5 seconds
First Call
Time Required :: 5016 ms
Second Call
Time Required :: 0 ms

The contract hierarchy in Rule4j empowers the programmer to build higher-

order contracts by wrapping a flat contract inside another contract. Listing 3.10

demonstrates a how higher order contract by logically combining multiple flat contracts.

Rule4j promotes functional programming and Listing 3.10 showcases how the contracts

are combined in a declarative fashion.

22

Listing 3.10: Combining Flat Contracts

FlatContract<Person> flatContract1 = person -> true;

FlatContract<Person> flatContract2 = person -> false;

FlatContract<Person> flatContract3 = person -> true;

System.out.print(flatContract1.or(flatContract2).or(flatContract3).validate(new
Person("R", "S"))); // true

System.out.print(flatContract1.and(flatContract2).and(flatContract3).validate(new
Person("R", "S"))); // false

These are some examples of how complicated contracts can be build using Rule4j.

The framework facilitates building new contracts using the Open-Closed principle [28]

by using the existing contracts. This promotes the reusability and maintainability of

business validations which can be organized in contracts. The framework promotes

Java functional programming constructs so that the contracts can be built in a

declarative fashion and are readable.

23

CHAPTER 4

Contract Processing in Rule4j

This chapter gives a brief overview of how the contract chains are intercepted

and executed in parallel by Rule4j. The first section describes how contract chains are

defined and attached to the method signature. The second section gives a brief overview

how contract organization. The third section outlines the design and architecture of

the core contract execution engine and describes the approach used for asynchronous

execution of contracts.

4.1 Defining Contract Chains

A contract chain consists of a list of contracts that need to be validated one after

the other sequentially. The order of execution of contracts is the same as the order

in which the contracts are specified in the chain. When a contract fails in the chain,

the chain execution is aborted and all the subsequent contracts are not executed. A

contract chain is composed of different types of contracts which is illustrated in the

Figure 4.

Figure 4: Contract Factory

The methods which are bound by contracts are annotated using the marker

annotation @UnderValidation. This annotation tells the framework that the current

24

method is bound by contract chains and is under validation and the execution is

intercepted to process the contract chains. Table 1 lists the custom annotations

created in Java to define the contract chains. Guice [29] method interceptors are

injected to intercept the arguments and begin contract execution when the following

annotations are used.

Annotation Type Description
@Validate Precondition This annotation specifies all the con-

tract chains containing single argument
contracts.

@BiValidate Precondition This annotation lists contract chains
comprising double argument contracts.

@PostValidate Postcondition This annotation is used to specify single
argument contract chains to validate
function result.

Table 1: Annotations to declare contract chains

@Validate, @BiValidate and @PostValidate are single value annotations and

take in a list of strings that specify the contract chains. Each chain is a string

containing the chain name followed by contracts constituting the chain separated by

->. Each contract is followed by the argument enclosed in parenthesis on which it

operates. The name of the argument must match with the parameter name in the

method signature. The method return value is denoted as *, and the postvalidation

contracts should specify * as the argument. Listing 4.1 showcases the syntax to define

contract chains.

25

Listing 4.1: Contract chain definition
Single Argument Contract chain
"chain-name = contract_1(arg) -> contract_2(arg) -> contract_3(arg) -> ... ->

contract_n(arg)"
Double/Bi Argument Contract chain
"chain-name = contract_1(arg1, arg2) -> contract_2(arg1, arg2) -> contract_3(arg1,

arg2) -> ... -> contract_n(arg1, arg2)"

Listing 4.2 demonstrates an example, how the contract chains can be defined

using the annotations. The preconditions consist of 2 single argument contract chains

and 1 bi argument contract chains which validate the input arguments. The post

condition consist of 1 single argument contract chain that validates the result of the

method generate There are four contract chains in the example, and the contracts

are specified in the order which they will be executed.

Listing 4.2: An Example Demonstrating Contract Chains Definition
@UnderValidation
@Validate(value = {"single-arg-chain1 = personValidator1(person) ->

personValidator2(person)",
"single-arg-chain2 = portfolioValidator(portfolio) -> portfolioValidator2(

portfolio)"})
@BiValidate(value = {"bi-arg-chain1 = biValidator1(person, portfolio) ->

biValidator2(portfolio, person)"})
@PostValidate(value = {"post-arg-chain1 = resultValidator1(*)", "post-arg-chain2 =

resultValidator2(*)"})
public int generate(Person person, Portfolio portfolio) {

System.out.println("Portfolio Generated ");
return 1;

}

Table 2 lists all the contracts involved in the contract chain definition in the

Listing 4.2.

26

Chain Name Chain Type Underlying Contracts
single-arg-chain1 Single Argument personValidator1

personValidator2
single-arg-chain2 Single Argument portfolioValidator

portfolioValidator2
bi-arg-chain1 Bi Argument biValidator1

biValidator2
post-arg-chain1 Postcondition resultValidator1

resultValidator2

Table 2: Contract Chain Definition Details

4.2 Contract Definition

The previous chapter addressed how the different types of contracts are con-

structed. This section will showcase how these contracts can be injected into the

framework and can be used to build chains.The contracts are organized in factory

classes. The hierarchy of factory classes

Figure 5: Contract Factory

The factory classes must implement the ContractFactory interface or

BiContractFactory interface. They contain the mapping of contract names to

the actual contract object instance. These factory classes are then injected into the

ValidatorFactory class. When the method under validation is intercepted by the

27

rule engine, will then query the ValidatoryFactory to get the contracts specified in

the contract chains. The class diagram in Figure 5 depicts this relationship.

4.3 Design of Contract Execution Engine

The previous two sections explained how to define contracts and contract chains.

This section will describe the architecture of the Rule4j contract execution engine.

The core feature of Rule4j is that it executes the contract chains in parallel and all

the contracts are executed asynchronously.

Figure 6: Contract Chain Execution

28

Each contract chain is validated independently, and their result is combined to

create a final validation result. This has a performance advantage over the serial

execution of contracts. Another benefit of this approach is that a contract failure will

not result in the blocking of other independent contracts. Figure 6 gives an overview

of contract chain execution in the Validation Rule Engine.

4.3.1 Method Interception

Guice [29] conforms to AOP Alliance [30] and provides support for Aspect-

oriented programming [14] using method interceptors.Rule4j intercepts the contract

chain definition provided in the annotations. After the interception, a list of contract

wrappers is constructed depending on the type of contract chain. As the name suggests

a contract wrapper is a wrapper around the actual contract instance pared with the

argument values that it operates on. Figure 7 and Figure 8 illustrate the design of

contract wrappers.

Figure 7: Contract Wrappers

29

(a) Single Argument Contract Wrapper (b) Bi Argument Contract Wrapper

Figure 8: Contract Wrapper Class Diagrams

After the interception, a list of contract chain wrappers is constructed from

a contract chain definition. These lists are then executed in parallel by the

ContractChainExecutor.

4.3.2 Contract Execution

The wrapped contract chains are executed in parallel by forking the execution.

The chains are submitted to the ContractChainExecutor, which returns a promise of

ChainResult that contains the detailed execution result of the chain. The promises of

ChainResult are joined together to compute the final execution result of the chains.

(a) Contract chain Result (b) Contract Execution Result

Figure 9: Result Object Class Diagrams

30

Figure 10 illustrates the execution of precondition contract chains. The method

under validation is only executed when the preconditions pass successfully, otherwise

an RuntimeException is thrown with the details of the chain results.

Figure 10: Preconditions Contract Chain Execution

The ContractChainExecutor queues the contract wrappers in each

chain in the execution order and submits the contract wrapper to

ContractExecutionEngine, which returns a promise of ContractExecutionResult.

The ContractChainExecutor will submit the subsequent task if the

ContractExecutionResult is successful. The ContractExecutionEngine con-

tains a ThreadPool that is configurable during startup. This non-blocking execution

of contracts is achieved using asynchronous programming features like FutureTask

,CompletableFuture and CompletionStage in Java. The working of core engine and

the relationship between ContractChainExecutor and ContractExecutionEngine

is illustrated in the Figure 11.

The ContractHierarchyInterceptor intercepts the execution when it finds

31

a method under validation. It then constructs a list of contract wrappers corre-

sponding to the contract chain definitions. The execution is then forked to and the

list of wrappers is passed to the ContractChainExecutor which returns a promise

containing ChainResult for each chain. The ContractChainExecutor queues all

the contracts in the chain submits them to the ContractExecutionEngine. The

ContractExecutionEngine returns a promise containing ContractExecutionResult

to the ContractChainExecutor and executes the contracts asynchronously by sub-

mitting them to a ThreadPool. Finally, the promises of ChainResult are joined to

create the final result. Figure 12 illustrates the Class Diagram of the core engine.

Figure 11: Visualization of Contract Processing in Rule4j

32

Figure 12: Class Diagram of Rule4j Engine

33

CHAPTER 5

Experiments and Performance Results

This chapter highlights the advantages of using Rule4j over the traditional

approach to write business validations. Business validations have plagued large

enterprise software, as they tend to scatter across the entire codebase over time. This

has a detrimental impact on software maintainability and extensibility. Due to the

proliferation of the validations throughout the code, even the business validations that

are independent of each other tend to be executed sequentially. There is a significant

scope of performance gain here, which is demonstrated by the application of Rule4j in

this chapter.

A sample use case of equity trade execution is used to demonstrate the performance

benefits. Experiments conducted in Section 5.3 show that a successful validation

execution using Rule4j run four times faster than validations executed without using

Rule4j. Section 5.2.2 demonstrates how separation of business validations and business

logic is achieved using Rule4j in the trade execution scenario.

5.1 System Configuration

The experiments were conducted on a system with following configurations -

• Operating System - Windows 10 Pro 64-bit(10.0, Build 19042)

• Processor - Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz(8 CPUs), 2.0GHz

• System Memory - 16 GB

• Java Version - 12.0.2

• Executor Service - Fixed Thread Pool of size 3

• Initial JVM Memory Allocation (Xms) - 256 MB

• Maximum JVM Memory Allocation (Xmx) - 2 GB

34

5.2 Use Case - Equity Trade Execution

Consider a software module to execute an equity trade. Since day trading is a

highly regulated, it requires various restrictions and defensive checks before placing

an order. These restrictions are modified regularly depending on external factors like

market volatility and investor behavior. There are additional validations that are

in place to restrict the day trader’s activity in the market. These restrictions are

based on the seniority of the trader and the diversity of the trader’s portfolio. These

validations in the trade execution scenario mimic the validations that programmers

encounter while programming various use-cases.

A sample Java module is built around this scenario, by implementing such

checks and mocking the required APIs. A noticeable delay is introduced in the mock

validations to simulate a real-time scenario. Table 3 lists down all the validations,

grouping them by their dependencies. The validations listed in Table 3 are exposed as

API by creating a mocked service. These services have been given a delay of 2 seconds

using a thread sleep. The contracts make calls to these APIs to perform validations.

35

Group Name Details
PRECONDITIONS

Trader should not
be empty

Trader object in the Trade
Object should not be null.

Id should be valid The Trader Id in the Trader
Object should be valid identifier.Trader Credentials

Trader is authorized The Trader should be authorized
to make a trade.

VaR exposure
permissible

The Trader’s Value-at-Risk
exposure is permissible.

VoE exposure
permissible

The Trader Equity exposure is
permissible.Trader Margins Daily limit not

exceeded
The Trader’s daily trading limit
is not exceeded.

Should be
a Business Day

The Trade date should be a valid
business day.

Trading Date Should be a valid
Value Date

The Trade can be valued on the
date.

Trade security
should be valid

The Trade security is publicly
traded on the exchange.

Permitted to trade
security

The organization is permitted to
trade the security.

Trading Security Security trading under
limit

The organization has not
exceeded the daily trading limit
of the security.

Trader is owner of
the Trade

The Trader executing the trade
should own the trade.

Trader authorized to
trade on date.

The Trader is authorized to trade
on the date.Trader Consistency Trader margin is

available for trade.
The Trader’s margin balance is
available for trade.

POSTCONDITIONS

Trade Confirmation Trade not overpriced The trade price and commission
should not exceed the daily limit.

Table 3: Business Validations for an Equity Trade Execution

5.2.1 Equity Trade Execution using Traditional Approach

Listing A.1 shows how these validations would be implemented traditionally

without Rule4j. The validations are organized in a large sequence of if-else statement

36

blocks. One can easily imagine a scenario where there is a complicated nesting of

if-else statements. This will degrade the readability and maintainability of the

code.

5.2.2 Equity Trade Execution using Rule4j

Listing 5.1 shows how the equity trade processor can be implemented with the

help of the Rule4j. The validations listed in the Table 3. are organized in factory

classes as explained in section 4.2. The contract chain definition lists all the validations

that need to be taken care of as preconditions and postconditions.

Listing 5.1: Equity Trade Processing using Rule4j
public class NewEquityBuyOrderExecutor implements OrderExecutor {

private TradeProcessor tradeProcessor;
@Inject
public NewEquityBuyOrderExecutor(final TradeProcessor tradeProcessor) {

this.tradeProcessor = tradeProcessor;
}
@UnderValidation
@Validate(value = {"trader-credentials = TraderShouldNotBeEmpty(trade) ->

TraderIdShouldBeValid(trader) -> isAuthorizedTrader(trade)",
"trader-margins = tradersVaRExposurePermissible(trader) ->

tradersVoEExposurePermissible(trader) ->
tradersDailyLimitNotExceeded(trade)",

"trading-date-validations = isBusinessDay(trade) -> isValidValueDate(
trade)",

"trading-security-validations = isValidSecurity(trade) ->
orgPermittedToTradeSecurity(trade) -> orgTradeLimitExceeded(trade)"
})

@BiValidate(value = {"trader-consistency = traderExecutingTradeShouldOwnTrade(
trade, trader) -> traderAuthorizedToTradeOnDate(trade, trader) ->
traderMarginAvailableForTrade(trade, trader)"})

@PostValidate(value = {"trade-confirmation = tradeConfirmationNotOverpriced(*)"
})

public TradeConfirmation executeOrder(Trade trade, Trader trader) throws
Exception {
//only business logic
return this.tradeProcessor.executeTrade(trade);

}
}

37

Listing A.6 demonstrates an alternative approach approach by combining contracts

in chain trading-date-validations and replacing them with a single higher-order

contract. This approach can be used to shorten the contract chains by constructing

higher-order contracts. The programmers can use this approach to make their contract

chains more concise without degrading the performance.

5.3 Experiments

This section shows the output along with the total execution time of both

approaches to execute the trading validations. This is done by writing unit test cases

that simulate the various use-cases. The unit tests are written using JUnit4 [31].

5.3.1 Successful Equity Trade Execution

In this scenario all the preconditions and postconditions are satisfied and this

results in successful execution of the trade. Listing 5.2 shows the output and execution

time of successful equity trade execution without using Rule4j. Listing 5.3 shows the

output when Rule4j is used to execute the trading validations. The output shows in

detail the name of the Chain and its status. The output also presents the time taken

to execute each contract. Table 4 lists the execution time for both the approaches.

38

Listing 5.2: Output after executing the trade using traditional approach
Trader is not empty.
Trader Id Valid.
Trader is authorized to Trade.
The Trader owns the trade
Trade is authorized to trade today.
Trader has minimum margin balance to trade the security.
Trader’s VaR exposure is permissible.
Trader’s VoE permissible.
Trader’s daily limit not exceeded.
Trading date is a valid business day.
Trade has valid Value date.
The Trade security is valid and publicly traded.
The Trade security authorized by the firm.
Trade limit not exceeded.
Trade commission not over priced.
Trade Executed Successfully
Time required for execution - 24136.7762 ms

Listing 5.3: Output after executing the trade using Rule4j

PRE-CONDITIONS (6079.87 milliseconds)

CHAIN NAME - trading-date-validations STATUS - PASS

|Contract Name |Status|Execution Time(mills)|
--
|isBusinessDay | PASS | 2002.7476|
|isValidValueDate | PASS | 4007.6596|

CHAIN NAME - trading-security-validations STATUS - PASS

|Contract Name |Status|Execution Time(mills)|
--
orgTradeLimitExceeded	PASS	2020.0318
isValidSecurity	PASS	2039.5496
orgPermittedToTradeSecurity	PASS	2005.6059

CHAIN NAME - trader-consistency STATUS - PASS

|Contract Name |Status|Execution Time(mills)|

39

--
traderAuthorizedToTradeOnDate	PASS	2008.1244
traderMarginAvailableForTrade	PASS	2012.0686
traderExecutingTradeShouldOwnTrade	PASS	0.032

CHAIN NAME - trader-credentials STATUS - PASS

|Contract Name |Status|Execution Time(mills)|
--
TraderIdShouldBeValid	PASS	0.0173
TraderShouldNotBeEmpty	PASS	0.8664
isAuthorizedTrader	PASS	2011.3714

CHAIN NAME - trader-margins STATUS - PASS

|Contract Name |Status|Execution Time(mills)|
--
tradersDailyLimitNotExceeded	PASS	2001.6636
tradersVaRExposurePermissible	PASS	2013.1303
tradersVoEExposurePermissible	PASS	2012.5087

POST-CONDITIONS (2.14 milliseconds)

CHAIN NAME - trade-confirmation STATUS - PASS

|Contract Name |Status|Execution Time(mills)|
--
|tradeConfirmationNotOverpriced | PASS | 0.0509|

Traditional Approach Rule Engine Approach
24.136 6.079

Table 4: Execution Time for a Successful Validation (in seconds)

5.3.2 Failure in Equity Trade Execution

In this scenario, there is a failure in one of the validations, which results in a

failure to execute the trade. Listing 5.4 shows the output and execution time without

the use of Rule4j. Listing 5.5 shows the final output when Rule4j is used to manage

the trading validations.

40

Listing 5.4: Failure Details when executing the trade using traditional approach
Trader is not empty.
Trader Id Valid.
Trader is authorized to Trade.
The Trader owns the trade
Trade is authorized to trade today.
Trader has minimum margin balance to trade the security.
Trader’s VaR exposure is permissible.
Trader’s VoE permissible.
Trader’s daily limit not exceeded.
java.lang.Exception: Trade Date is not a valid date.
at org.rahul.dbc.use_case.trade_processing.TraditionalEquityBuyOrderExecutor.

executeOrder(TraditionalEquityBuyOrderExecutor.java:76)
at org.rahul.dbc.UseCaseDemoTest.executeTradeWithError_TraditionalMethod(

UseCaseDemoTest.java:55)}
Time required for execution - 14044.8799 ms

Listing 5.5: Output after executing the trade using Rule4j
java.lang.RuntimeException:

PRE-CONDITIONS (6080.01 milliseconds)

CHAIN NAME - trading-date-validations STATUS - FAIL
|Contract Name |Status|Execution Time(mills)|
--
|isBusinessDay | FAIL | 0.0|
Failed Due to Underlying Exception -
java.lang.RuntimeException: Trade Date is not a valid date
at org.rahul.dbc.use_case.trading_validations.TradeContracts.lambda$init$0(

TradeContracts.java:36)
at org.rahul.dbc.engine.ContractExecutionEngineImpl.lambda$submitTask$0(

ContractExecutionEngineImpl.java:22)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java

:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(

ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(

ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:835)

CHAIN NAME - trading-security-validations STATUS - PASS

41

|Contract Name |Status|Execution Time(mills)|
--
orgTradeLimitExceeded	PASS	2009.659
isValidSecurity	PASS	2047.4333
orgPermittedToTradeSecurity	PASS	2009.3355

CHAIN NAME - trader-consistency STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
traderAuthorizedToTradeOnDate	PASS	2000.4417
traderMarginAvailableForTrade	PASS	2010.2296
traderExecutingTradeShouldOwnTrade	PASS	0.0333

CHAIN NAME - trader-credentials STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
TraderIdShouldBeValid	PASS	0.0194
TraderShouldNotBeEmpty	PASS	1.0732
isAuthorizedTrader	PASS	2003.2864

CHAIN NAME - trader-margins STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
tradersDailyLimitNotExceeded	PASS	2009.475
tradersVaRExposurePermissible	PASS	2006.0442
tradersVoEExposurePermissible	PASS	2010.2055
at org.rahul.dbc.interceptor.ContractHierarchyInterceptor.executePreConditions(

ContractHierarchyInterceptor.java:63)
at org.rahul.dbc.interceptor.ContractHierarchyInterceptor.invoke(

ContractHierarchyInterceptor.java:46)
at org.rahul.dbc.UseCaseDemoTest.executeTradeWithError_WithContracts(

UseCaseDemoTest.java:69)

Traditional Approach Rule Engine Approach
14.04 6.08

Table 5: Execution Time to Report a Failed Validation (in seconds)

In the traditional approach, a short circuit evaluation is carried out and an

Exception is thrown as soon as there is a validation failure. All the other validations

which are independent of the failed validation do not execute. This is not the case

42

when Rule4j is used to execute the validations, only the contract chain which has the

failing validation is stopped from executing, while all the other chains continue to

execute normally. Due to a failure in one of the contract chain, a RuntimeException

is thrown with the combined result of all the contract chains and their details. Table 5

lists the time taken for both the approaches.

One of the major advantages of using Rule4j is that it can report multiple

validation failures that take place in different chains. This allows extensive feedback in

the first attempt of execution of the method under validation. Listing A.5 demonstrates

this for the equity trade execution scenario.

5.3.3 Result Analysis

The experiments performed in Section 5.3.1 and Section 5.3.2, conclude the

superiority of Rule4j over the traditional approach to perform business validations.

Experiments conducted in Section 5.3 show a performance improvement by a factor of

4, for successful validations as illustrated in Table 4. Rule4j reports a failed validation

much faster as illustrated in Table 5. Rule4j reports multiple failures without increasing

the processing time of execution, which is demonstrated in Section 5.3.2. The execution

time of validations performed using Rule4j is similar in the case of success and failure

scenarios. This is attributed to the parallel processing of contract chains in Rule4j.

The total execution time is approximately equal to the execution time of the longest

successful contract chain.

Table 6 lists the execution time of all the validations that are performed before

executing an equity trade. The execution time of the traditional method in Table 4

is approximately equal to the sum of all the validation execution times in Table A

since the validations are performed sequentially. The execution time of validations

using Rule4j in Table 4 and Table 5 is approximately equal to the execution time of

43

contract chain Trader Margins and Trading Date.

Execution Time in MillisecondsChain Name Validation Name Traditional Rule4j
Trader not be empty 0.315 0.013
Trader Id valid 0.038 0.592Trader Credentials
Authorized trader 2005.789 2015.042
VaR exposure permissible 2013.012 2010.823
VoE exposure permissible 2005.715 2000.777Trader Margins
Trader’s daily limit 2000.609 2012.534
Business day valid 2014.259 2005.791Trading Date Value date valid 4021.293 4022.530
Valid Security 2022.772 2012.529
Security permission 2010.349 2011.026Trading Security
Security limit 2013.396 2001.299
Trade ownership 0.047 0.0264
Trader authorized on date 2000.606 2012.5682Trader Consistency
Trader Margin Balance 2002.1092 2011.0552

Trade Confirmation Confirmation overpriced 0.059 0.018
Table 6: Execution Time of Validations

Since all the chains are validated in parallel, the run time of validations would be

approximately equal to the execution time of the longest chain. The Trader Margin

contract has 3 validations, each taking 2 seconds to complete the validation. Therefore

the total execution time of the chain is approximately equal to 6 seconds. The average

performance overhead due to Rule4j was found to be 38 milliseconds. This additional

time can be attributed to the forking and joining of contract chain promises, creation

of contract wrappers, instantiating contract chains, and the performance overhead of

the underlying thread pool of execution.

Listing 5.2.2 describes how the trading validations are defined using contract

chains in Rule4j. Rule4j enforces a clear separation of business validations from the

business rules. Section A.1 demonstrates the traditional approach to write business

validations. Section A.2 describes how these trading validations are organized using

Rule4j, promoting reusability and maintainability.

44

CHAPTER 6

Conclusion

The current implementations of Design by Contract libraries in Java focus on

writing short-hand contracts. The invariant specifications only perform rudimentary

checks and are not capable of handling most of the business validation scenarios

that large enterprise software encounter. The libraries run the contracts serially, as

they intended to perform simple checks on the method arguments and results. The

Rule4j library presented in this paper enables the programmer to write complicated

and nested contracts using a contract hierarchy similar to the Racket programming

language. The programmer can use the library to build validation chains that can

be easily maintained and extended as the business requirements grow. Rule4j aims

to achieve high cohesion and low coupling while organizing business validation for a

system.

Rule4j executes the contract chains in parallel in a Fork-Join manner to achieve

maximum performance. This offers greater flexibility to the programmer to organize

validations in chains to achieve optimal performance. The contract hierarchy in Rule4j

enables the programmer to write higher-order contracts and promote the reusability

of existing contracts. The results of using Rule4j to write validations for equity trade

execution scenarios demonstrate significant performance gain over the traditional

approach. The experiments conducted show that validations performed using Rule4j

run 4 times faster than the traditional approach.

The scope of future work to enhance Rule4j is to include marshaling and serializa-

tion of contracts, enabling sharing of existing contracts over the network. The current

implementation of Rule4j supports contracts with a maximum arity of 2. The Rule4j

framework can further be enhanced to support contracts with arity greater than 2.

45

LIST OF REFERENCES

[1] M. W. Godfrey and D. M. German, ‘‘On the evolution of lehman’s laws,’’ Journal
of Software: Evolution and Process, vol. 26, no. 7, pp. 613--619, 2014.

[2] C. Jones, ‘‘Social and technical reasons for software project failures,’’ CrossTalk,
vol. 19, no. 6, pp. 4--9, 2006.

[3] ‘‘Nhs connecting for health,’’ Jan 2021. [Online]. Available: https:
//en.wikipedia.org/wiki/NHS_Connecting_for_Health

[4] ‘‘Abandoned nhs it system has cost £10bn so far,’’ Sep 2013. [Online]. Available:
https://www.theguardian.com/society/2013/sep/18/nhs-records-system-10bn

[5] E. Razina and D. S. Janzen, ‘‘Effects of dependency injection on maintainabil-
ity,’’ in Proceedings of the 11th IASTED International Conference on Software
Engineering and Applications: Cambridge, MA, 2007, p. 7.

[6] B. Meyer, ‘‘Applying ’design by contract’,’’ Computer, vol. 25, no. 10, pp. 40--51,
1992.

[7] B. Porter, J. v. Zyl, and O. Lamy, ‘‘Welcome to apache maven.’’ [Online].
Available: https://maven.apache.org/

[8] Google, ‘‘google/guice.’’ [Online]. Available: https://github.com/google/guice

[9] ‘‘iso/iec 25010:2011 - systems and software.’’ [Online]. Available: https:
//www.iso.org/standard/35733.html

[10] M. Mari and E. Niemelä, ‘‘The impact of maintainability on component-based
software systems,’’ in Euromicro Conference. IEEE Computer Society, 2003,
pp. 25--25.

[11] D. Astels, Test driven development: A practical guide. Prentice Hall Professional
Technical Reference, 2003.

[12] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented design,’’
IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476--493, 1994.

[13] T. Cerny and M. J. Donahoo, ‘‘How to reduce costs of business logic maintenance,’’
in 2011 IEEE International Conference on Computer Science and Automation
Engineering, vol. 1. IEEE, 2011, pp. 77--82.

46

https://en.wikipedia.org/wiki/NHS_Connecting_for_Health
https://en.wikipedia.org/wiki/NHS_Connecting_for_Health
https://www.theguardian.com/society/2013/sep/18/nhs-records-system-10bn
https://maven.apache.org/
https://github.com/google/guice
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, ‘‘Aspect-oriented programming,’’ in European conference on object-
oriented programming. Springer, 1997, pp. 220--242.

[15] ‘‘Drools - business rules management system (java™, open source).’’ [Online].
Available: https://www.drools.org/

[16] D. Goswami, ‘‘Rule engine for validating complex business objects,’’ in Pro-
ceedings of the 20th Conference on Pattern Languages of Programs, 2013, pp.
1--18.

[17] M. Karaorman, U. Hölzle, and J. Bruno, ‘‘jcontractor: A reflective java library
to support design by contract,’’ in International Conference on Metalevel Archi-
tectures and Reflection. Springer, 1999, pp. 175--196.

[18] G. T. Leavens and Y. Cheon, ‘‘Design by contract with jml,’’ 2006.

[19] D. Wampler, ‘‘Contract4j for design by contract in java: Design pattern-like
protocols and aspect interfaces,’’ in Proceedings of the Fifth AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software, 2006, pp. 27--30.

[20] T. y. n. here, ‘‘The aspectj project: The eclipse foundation.’’ [Online]. Available:
https://www.eclipse.org/aspectj/

[21] ‘‘apache commons jexl overview.’’ [Online]. Available: http://commons.apache.
org/jexl/

[22] N. Rajkumar, ‘‘Designing a programming contract library for java,’’ 2015.

[23] Greenjoe, ‘‘greenjoe/lambdafromstring.’’ [Online]. Available: https://github.
com/greenjoe/lambdaFromString

[24] Y. Dixit, ‘‘Library for writing contracts for java programs using prolog,’’ 2017.

[25] [Online]. Available: https://docs.racket-lang.org/guide/contract-boundaries.html

[26] R. B. Findler and M. Felleisen, ‘‘Contracts for higher-order functions,’’ in Pro-
ceedings of the seventh ACM SIGPLAN international conference on Functional
programming, 2002, pp. 48--59.

[27] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt, ‘‘Chaper-
ones and impersonators: run-time support for reasonable interposition,’’ ACM
SIGPLAN Notices, vol. 47, no. 10, pp. 943--962, 2012.

[28] R. C. Martin, ‘‘Getting a solid start,’’ Robert C. Martin-objectmentor. com, 2013.

[29] R. Vanbrabant, Google Guice: agile lightweight dependency injection framework.
APress, 2008.

47

https://www.drools.org/
https://www.eclipse.org/aspectj/
http://commons.apache.org/jexl/
http://commons.apache.org/jexl/
https://github.com/greenjoe/lambdaFromString
https://github.com/greenjoe/lambdaFromString
https://docs.racket-lang.org/guide/contract-boundaries.html

[30] R. Pawlak, ‘‘The aop alliance: Why did we get in,’’ White Paper draft, 2003.

[31] ‘‘About.’’ [Online]. Available: https://junit.org/junit4/index.html

48

https://junit.org/junit4/index.html

APPENDIX

Code Snippets
A.1 Traditional Approach to Equity processing

Listing A.1: Equity Trade Processing without Rule4j
package org.rahul.dbc.use_case.trade_processing;

import org.rahul.dbc.use_case.services.ValidationServices;
import org.rahul.dbc.use_case.trade.Trade;
import org.rahul.dbc.use_case.trade.TradeConfirmation;
import org.rahul.dbc.use_case.trader.Trader;

import javax.inject.Inject;
import java.util.Optional;
import java.util.function.BiConsumer;

public class TraditionalEquityBuyOrderExecutor {

private ValidationServices validationService;
private TradeProcessor tradeProcessor;

@Inject
TraditionalEquityBuyOrderExecutor(ValidationServices validationService,

TradeProcessor tradeProcessor) {
this.validationService = validationService;
this.tradeProcessor = tradeProcessor;

}

public TradeConfirmation executeOrder(Trade trade, Trader trader) throws
Exception {

// Trader credentials

this.logTime((t, tr) -> {
if (Optional.ofNullable(trade.getTrader()).map(Trader::getTraderId).

isEmpty()) {
throw new RuntimeException("Trader cannot be empty in a Trade.");

}
System.out.println("Trader is not empty.");

}, trade, trader);

49

this.logTime((t, tr) -> {
if (trader.getTraderId() == null) {

throw new RuntimeException("Invalid trader executing the trade.");
}
System.out.println("Trader Id Valid.");

}, trade, trader);

this.logTime((t, tr) -> {
if (!this.validationService.isAuthorizedTrader(trade.getTrader())) {

throw new RuntimeException("The trader is not authorized to trade");
}
System.out.println("Trader is authorized to Trade.");

}, trade, trader);

this.logTime((t, tr) -> {
if (!trader.getTraderId().equals(trade.getTrader().getTraderId())) {

throw new RuntimeException("Invalid trader executing the trade.");
}
System.out.println("The Trader owns the trade");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.isAuthorizedToTradeOnDate(trade.getTrader(),
trade.getTradeDate())) {

throw new RuntimeException("The trader id not authorized to trade on
date " + trade.getTradeDate());

}
System.out.println("Trade is authorized to trade today.");

}, trade, trader);

// Trader exposure

this.logTime((t, tr) -> {

if (!this.validationService.traderMarginBalanceAvailableForTrade(trader,
trade.getQuantity(), trade.getSecurity())) {

throw new RuntimeException(("The trader’s margin is not sufficient
to make the trade"));

}

50

System.out.println("Trader has minimum margin balance to trade the
security.");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.tradersVaRExposurePermissible(trader)) {
throw new RuntimeException("The trader’s VAR exposure is above the

permissible limits to execute trade");
}
System.out.println("Trader’s VaR exposure is permissible.");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.tradersVoEExposurePermissible(trader)) {
throw new RuntimeException("The trader’s Value of Equity is above

the permissible limits");
}
System.out.println("Trader’s VoE permissible.");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.tradersDailyLimitNotExceeded(trader, trade.
getQuantity(), trade.getSecurity())) {
throw new RuntimeException(("The traders daily limit exceeded"));

}
System.out.println("Trader’s daily limit not exceeded.");

}, trade, trader);

// Date

this.logTime((t, tr) -> {

51

if (!this.validationService.isBusinessDay(trade.getTradeDate())) {
throw new RuntimeException("Trade Date is not a valid date.");

}
System.out.println("Trading date is a valid business day.");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.isValidValueDate(trade.getValueDate(),
trade.getTradeDate())) {
throw new RuntimeException("Trade Value date is not a valid date");

}

System.out.println("Trade has valid Value date.");
}, trade, trader);

// Organization Permission

this.logTime((t, tr) -> {

if (!this.validationService.isValidSecurity(trade.getSecurity())) {
throw new RuntimeException(("Security Invalid and not Traded"));

}
System.out.println("The Trade security is valid and publicly traded.");

}, trade, trader);

this.logTime((t, tr) -> {

if (!this.validationService.orgPermittedToTradeSecurity(trade.
getSecurity())) {
throw new RuntimeException("Security cannot be traded by the firm");

}
System.out.println("The Trade security authorized by the firm.");

}, trade, trader);

this.logTime((t, tr) -> {

52

if (!this.validationService.orgTradeLimitExceeded(trade.getSecurity()))
{

throw new RuntimeException("Trade Limit exceeded");
}
System.out.println("Trade limit not exceeded.");

}, trade, trader);

/*
* ==> Trade Execution Logic goes in here
* ==> Serial execution of validations/contracts
* ==> Clean code due to the extracting the validation to a different

services
* ==> if statements
* ==> will get complicated pretty soon as the business logic expands
* ==> The business rules are not organized and hence the product owner
* and developer will waste a lot of time going over the logic
* ==> No asynchronous execution, special efforts required to parallelize

the validations
* ==> SHORT CIRCUIT VALIDATION - lot of changes in the trade.
*
*/

TradeConfirmation tradeConfirmation = this.tradeProcessor.executeTrade(
trade);

this.logTime((t, tr) -> {

if (tradeConfirmation.getCommissionPaid() > 1000d) {
throw new RuntimeException("Trade Overpriced");

}

System.out.println("Trade commission not over priced.");

}, trade, trader);

return tradeConfirmation;
}

53

public void logTime(BiConsumer<Trade, Trader> validation, Trade trade, Trader
trader) {

try {
long startTime = System.nanoTime();

validation.accept(trade, trader);

long endTime = System.nanoTime();

System.out.println("Total time for validation - " + (endTime -
startTime) / 1000000);

} catch (RuntimeException e) {
e.printStackTrace(System.out);

}
}

}

54

A.2 Organizing equity trade execution validations in Rule4j

This section showcases how the validations are organized using Factory Classes

in Rule4j. The equity trade validations are distributed amongst Factory Classes, i.e,

TradeContracts, TraderContracts and TradeExecutionContracts. This enables

the reuse of existing validations in different contract definitions.

Listing A.2: Trade Contracts for Equity Trade Execution
public class TradeContracts implements ContractFactory {

public static final String TRADE_DATE_IS_VALID_BUSINESS_DAY = "isBusinessDay";
public static final String VALUE_DATE_IS_VALID = "isValidValueDate";
public static final String VALID_SECURITY = "isValidSecurity";
public static final String SECURITY_PERMITTED = "orgPermittedToTradeSecurity";
public static final String SECURITY_UNDER_TRADING_LIMIT = "

orgTradeLimitExceeded";

public static final String TRADE_CONFIRMATION_NOT_OVERPRICED = "
tradeConfirmationNotOverpriced";

private ValidationServices validationService;

private Map<String, FlatContract<?>> contracts;

public TradeContracts(final ValidationServices validationService) {
this.validationService = validationService;
this.init();

}

private void init() {

this.contracts = new HashMap<>();
this.contracts.put(TRADE_DATE_IS_VALID_BUSINESS_DAY, (Trade trade) -> {

if (!this.validationService.isBusinessDay(trade.getTradeDate())) {
throw new RuntimeException("Trade Date is not a valid date");

}

return true;
});

this.contracts.put(VALUE_DATE_IS_VALID, (Trade trade) -> {

55

if (!this.validationService.isValidValueDate(trade.getValueDate(),
trade.getTradeDate())) {
throw new RuntimeException("Trade Value date is not a valid date");

}

return true;
});

this.contracts.put(VALID_SECURITY, (Trade trade) -> {
if (!this.validationService.isValidSecurity(trade.getSecurity())) {

throw new RuntimeException(("Security Invalid and not Traded"));
}

return true;
});

this.contracts.put(SECURITY_PERMITTED, (Trade trade) -> {
if (!this.validationService.orgPermittedToTradeSecurity(trade.

getSecurity())) {
throw new RuntimeException("Security cannot be traded by the firm");

}

return true;
});

this.contracts.put(SECURITY_UNDER_TRADING_LIMIT, (Trade trade) -> {
if (!this.validationService.orgTradeLimitExceeded(trade.getSecurity()))

{
throw new RuntimeException("Trade Limit exceeded");

}

return true;
});

this.contracts.put(TRADE_CONFIRMATION_NOT_OVERPRICED, (TradeConfirmation
tradeConfirmation) -> {
if (tradeConfirmation.getCommissionPaid() > 1001d) {

throw new RuntimeException("Trade Overpriced");
}

return true;
});

}

56

@Override
public Map<String, FlatContract<?>> getContracts() {

return this.contracts;
}

}

57

Listing A.3: Trader Contracts for Equity Trade Execution
public class TraderContracts implements ContractFactory {

public static final String TRADER_SHOULD_NOT_BE_EMPTY = "TraderShouldNotBeEmpty
";

public static final String TRADER_ID_SHOULD_BE_VALID = "TraderIdShouldBeValid";
public static final String TRADER_SHOULD_BE_AUTHORIZED = "isAuthorizedTrader";
public static final String TRADER_HAS_ENOUGH_MARGIN_BALANCE = "

traderMarginBalanceAvailableForTrade";
public static final String TRADER_VAR_EXPOSURE_WITHIN_LIMIT = "

tradersVaRExposurePermissible";
public static final String TRADER_VOE_EXPOSURE_WITHIN_LIMIT = "

tradersVoEExposurePermissible";
public static final String TRADER_DAILY_LIMIT_NOT_EXCEEDED = "

tradersDailyLimitNotExceeded";
private ValidationServices tradeValidationServices;
private Map<String, FlatContract<?>> contracts;

public TraderContracts(ValidationServices tradeValidationServices) {
this.tradeValidationServices = tradeValidationServices;
this.initContracts();

}

private void initContracts() {

this.contracts = new HashMap<>();

this.contracts.put(TRADER_SHOULD_NOT_BE_EMPTY, (Trade trade) -> {
if (Optional.ofNullable(trade.getTrader()).map(Trader::getTraderId).

isEmpty()) {
throw new RuntimeException("Trader cannot be empty in a Trade.");

}
return true;

});

this.contracts.put(TRADER_ID_SHOULD_BE_VALID, (Trader trader) -> {
return trader.getTraderId() != null;

});

this.contracts.put(TRADER_SHOULD_BE_AUTHORIZED, (Trader trader) -> {
if (!this.tradeValidationServices.isAuthorizedTrader(trader)) {

throw new RuntimeException("The trader is not authorized to trade");
}

58

return true;
});

this.contracts.put(TRADER_HAS_ENOUGH_MARGIN_BALANCE, (Trade trade) -> {
if (!this.tradeValidationServices.traderMarginBalanceAvailableForTrade(

trade.getTrader(), trade.getQuantity(), trade.getSecurity())) {
throw new RuntimeException(("The trader’s margin is not sufficient

to make the trade"));
}
return true;

});

this.contracts.put(TRADER_VAR_EXPOSURE_WITHIN_LIMIT, (Trader trader) -> {
if (!this.tradeValidationServices.tradersVaRExposurePermissible(trader))

{
throw new RuntimeException("The trader’s VAR exposure is above the

permissible limits to execute trade");
}

return true;
});

this.contracts.put(TRADER_VOE_EXPOSURE_WITHIN_LIMIT, (Trader trader) -> {
if (!this.tradeValidationServices.tradersVoEExposurePermissible(trader))

{
throw new RuntimeException("The trader’s Value of Equity is above

the permissible limits");
}

return true;
});

this.contracts.put(TRADER_DAILY_LIMIT_NOT_EXCEEDED, (Trade trade) -> {
if (!this.tradeValidationServices.tradersDailyLimitNotExceeded(trade.

getTrader(), trade.getQuantity(), trade.getSecurity())) {
throw new RuntimeException(("The traders daily limit exceeded"));

}

return true;
});

}

59

@Override
public Map<String, FlatContract<?>> getContracts() {

return this.contracts;
}

}

60

Listing A.4: BiContracts for Equity Trade Execution

public class TradeExecutionContracts implements BiContractFactory {

public static final String TRADER_EXECUTING_TRADE_SHOULD_OWN_TRADE = "
traderExecutingTradeShouldOwnTrade";

public static final String TRADER_AUTHORIZED_TO_TRADE_ON_DATE = "
traderAuthorizedToTradeOnDate";

public static final String TRADER_MARGIN_AVAILABLE_FOR_TRADE = "
traderMarginAvailableForTrade";

private ValidationServices validationService;

private Map<String, BiFlatContract<?, ?>> contracts;

public TradeExecutionContracts(final ValidationServices validationService) {
this.validationService = validationService;
this.init();

}

private void init() {
this.contracts = new HashMap<>();

this.contracts.put(TRADER_EXECUTING_TRADE_SHOULD_OWN_TRADE, (Trade trade,
Trader trader) -> {
if (!trader.getTraderId().equals(trade.getTrader().getTraderId())) {

throw new RuntimeException("Invalid trader executing the trade");
}

return true;
});

this.contracts.put(TRADER_AUTHORIZED_TO_TRADE_ON_DATE, (Trade trade, Trader
trader) -> {

if (!this.validationService.isAuthorizedTrader(trade.getTrader())) {
throw new RuntimeException("The trader is not authorized to trade");

}

return true;
});

this.contracts.put(TRADER_MARGIN_AVAILABLE_FOR_TRADE, (Trade trade, Trader
trader) -> {
if (!this.validationService.tradersDailyLimitNotExceeded(trader, trade.

61

getQuantity(), trade.getSecurity())) {
throw new RuntimeException(("The traders daily limit exceeded"));

}

return true;
});

}

@Override
public Map<String, BiFlatContract<?, ?>> getContracts() {

return this.contracts;
}

}

62

A.3 Multiple Failures Reporting using Rule4j

Listing A.5: Output listing multiple failures while executing the trade

java.lang.RuntimeException:

PRE-CONDITIONS (6026.18 milliseconds)

CHAIN NAME - trading-date-validations STATUS - FAIL

|Contract Name |Status|Execution Time(mills)|
--
|isBusinessDay | FAIL | 0.0|
Failed Due to Underlying Exception -
java.lang.RuntimeException: Trade Date is not a valid date
at org.rahul.dbc.use_case.trading_validations.TradeContracts.lambda$init$0(

TradeContracts.java:36)
at org.rahul.dbc.engine.ContractExecutionEngineImpl.lambda$submitTask$0(

ContractExecutionEngineImpl.java:22)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java

:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(

ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(

ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:835)

CHAIN NAME - trading-security-validations STATUS - FAIL
|Contract Name |Status|Execution Time(mills)|
--
|isValidSecurity | PASS | 2033.413|
|orgPermittedToTradeSecurity | FAIL | 0.0|
Failed Due to Underlying Exception -
java.lang.RuntimeException: Security cannot be traded by the firm
at org.rahul.dbc.use_case.trading_validations.TradeContracts.lambda$init$3(

TradeContracts.java:60)
at org.rahul.dbc.engine.ContractExecutionEngineImpl.lambda$submitTask$0(

ContractExecutionEngineImpl.java:22)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java

:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)

63

at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(
ThreadPoolExecutor.java:1128)

at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(
ThreadPoolExecutor.java:628)

at java.base/java.lang.Thread.run(Thread.java:835)

CHAIN NAME - trader-consistency STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
traderAuthorizedToTradeOnDate	PASS	2009.1499
traderMarginAvailableForTrade	PASS	2000.5315
traderExecutingTradeShouldOwnTrade	PASS	0.0257

CHAIN NAME - trader-credentials STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
TraderIdShouldBeValid	PASS	0.0224
TraderShouldNotBeEmpty	PASS	1.8709
isAuthorizedTrader	PASS	2012.1312

CHAIN NAME - trader-margins STATUS - PASS
|Contract Name |Status|Execution Time(mills)|
--
tradersDailyLimitNotExceeded	PASS	2001.405
tradersVaRExposurePermissible	PASS	2002.4082
tradersVoEExposurePermissible	PASS	2000.8661
at org.rahul.dbc.interceptor.ContractHierarchyInterceptor.executePreConditions(

ContractHierarchyInterceptor.java:63)
at org.rahul.dbc.interceptor.ContractHierarchyInterceptor.invoke(

ContractHierarchyInterceptor.java:46)
at org.rahul.dbc.UseCaseDemoTest.executeTradeWithMultipleError_WithContracts(

UseCaseDemoTest.java:78)

64

A.4 Construction of a Higher-Order Trading Date Validation

Listing A.6: Higher Order Contract for validating Trading Date
FlatContract<Trade> validBusinessDay = (Trade trade) -> {

if (!this.validationService.isBusinessDay(trade.getTradeDate())) {
throw new RuntimeException("Trade Date is not a valid date");

}

return true;
};

FlatContract<Trade> validValueDay = (Trade trade) -> {
if (!this.validationService.isValidValueDate(trade.getValueDate(), trade.

getTradeDate())) {
throw new RuntimeException("Trade Value date is not a valid date");

}

return true;
};

FlatContract<Trade> validTradingDay = validBusinessDay.and(validValueDay);

65

	Asynchronous Validations using Programming Contracts in Java
	Introduction
	Motivation
	Problem Statement

	Literature Review
	Software Maintainability
	Maintainability Measures
	Coupling
	Cohesion

	Design By Contract
	Existing Programming Contracts Libraries in Java
	jContractor: A Reflective Java Library to Support Design By Contract
	Design by Contract with JML
	Contract4J
	Other Libraries

	Contract Hierarchy in Rule4j
	Contract Hierarchy in Racket
	Design of Contract Hierarchy in the Rule4j
	Higher-Order Contracts

	Contract Processing in Rule4j
	Defining Contract Chains
	Contract Definition
	Design of Contract Execution Engine
	Method Interception
	Contract Execution

	Experiments and Performance Results
	System Configuration
	Use Case - Equity Trade Execution
	Equity Trade Execution using Traditional Approach
	Equity Trade Execution using Rule4j

	Experiments
	Successful Equity Trade Execution
	Failure in Equity Trade Execution
	Result Analysis

	Conclusion
	LIST OF REFERENCES
	Code Snippets
	Traditional Approach to Equity processing
	Organizing equity trade execution validations in Rule4j
	Multiple Failures Reporting using Rule4j
	Construction of a Higher-Order Trading Date Validation

