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A B S T R A C T

If a malware detector relies heavily on a feature that is obfuscated in a given malware sample, then the detector
will likely fail to correctly classify the malware. In this research, we obfuscate selected features of known Android
malware samples and determine whether these obfuscated samples can still be reliably detected. Using this
approach, we discover which features are most significant for various sets of Android malware detectors, in effect,
performing a black box analysis of these detectors. We find that there is a surprisingly high degree of variability
among the key features used by popular malware detectors.

1. Introduction

From a market share of 2.8% in 2009 [26], Android captured about
75% of the market by 2012 [26]. Not surprisingly, the rapid rise of
Android has resulted in large quantities of Android malware—in the
second quarter of 2016, some 3.5 million examples of Android malware
were detected [14]. This vast amount of Android malware has placed a
focus on Android security and made it imperative to develop more
effective defensive tools for combating such malware. One of the chal-
lenges faced in this area is the use of code obfuscation techniques.
Obfuscation can alter code to hide its actual purpose, without signifi-
cantly affecting its function or performance. There are many ways to
obfuscate code in an Android environment and several software appli-
cations are available that can serve as off-the-shelf code obfuscators [2].

To strengthen malware detectors, there are at least two fundamental
issues that need to be addressed [11]. First, we would like to gauge the
resilience of malware detectors when faced with obfuscated code. Such
analysis will help us to understand the robustness of detectors when
dealing withminor variants of knownmalware samples. The second issue
concerns the possibility of uncovering important aspects of a malware
detection algorithm. Thus, black box analysis of malware detectors can
point towards ways to improve on existing malware detectors.

On the other hand, by studying the behavior of malware detectors,
and how they respond to different obfuscation techniques, a malware
writer can discover ways to defeat a particular antivirus program. This is
extremely useful information for a virus writer, as malware may be made
substantially more difficult to detect, yet other necessary aspects of the
code can be retained, such as compactness, efficiency, and so on.

In this paper, we analyze the effect of selected code obfuscations on

various Android malware detectors. In this way, we can, in effect, reverse
engineer these proprietary algorithms. That is, we can determine which
features a detector relies on for its capabilities. Through this process, we
also gain some insight into the robustness of various detectors when
faced with various obfuscations. While such information is obviously
useful to a malware writer, as mentioned above, this information is also
important to anyone who strives to build a better malware detector.

We emphasize that this paper is based on black box analysis. That is,
we assume that we do not know the inner workings of the malware de-
tectors under consideration. In fact, this is the most realistic scenario, as
the vast majority of antivirus products are proprietary—analyzing such
products would require extensive and costly software reverse engineer-
ing, and would be of questionable legality. These issues make it
impractical to directly analyze a large number of antivirus products. In
contrast, our black box approach is practical, and we can uncover
important aspects of many such products.

The remainder of this paper is organized as follows. In Section 2, we
discuss selected example of related previous work. Then in Section 3, we
briefly consider relevant background topics. Section 4 contains our
experimental results, where we analyze the effectiveness of individual
obfuscations and combinations of obfuscators with respect to a set of
Android malware detectors. Finally, Section 5 contains our conclusions
and provides a brief discussion of future work.

2. Selected previous work

A considerable amount of research has been done on problems related
to code obfuscation as it relates to malware detection. Here, we provide a
brief overview of representative examples of such work.
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An interesting evaluation of real-world antivirus products (as of
1996) is given by Gordon and Ford in Ref. [16]. In their seminal paper
from 2001, Barak et al. [7] formalize the concept of code obfuscation and
show that such obfuscation cannot be as strong as cryptography.
Nevertheless, malware writers have certainly found obfuscation to be
useful for evading detection, which we empirically confirm for Android
malware in Section 4 of this paper.

The paper by Christodorescu et al. [11] considers various ways to test
and implement program obfuscation. An analysis of their proposed
obfuscation methods is also provided, and the authors attempt to

quantifying the effectiveness of individual obfuscators.
One powerful evasion technique employed by malware writers is

metamorphism, where code is morphed at each infection. In the paper by
Rastogi et al. [22], the authors propose and develop a framework that
they refer to as DroidChameleon, which provides a way to transform
Android applications into different forms, each having the same func-
tionality. This is shown to be an effective means of evading signature
detection. As shown in Fig. 1, the authors apply various transformations
on a malware sample dataset. The output of all these transformations are
processed by a malware detector.

Fig. 1. Evaluating malware in [22].

Fig. 2. AndroSimilar [15].

Fig. 3. Top 20 permissions in Android [36].
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Yan et al. [34] propose a technique in which a virtual machine is used
to analyze an application. In most virtual machine based detection ar-
chitectures, the antivirus program and the malware execute in the same
environment. This makes it possible for the malware to detect the virtual
machine and take evasive action. The authors of [34] claim that their
virtualization environment, which they refer to as DroidScope, can detect
malware without being detectable by the malware it is monitoring.

Malware analysis often relies on statistical methods. In the Android
context, we can typically decompile an executable file (which has
extension apk) to obtain the original source code. The Android applica-
tions in our dataset are written in Java, and hence for these applications it
is generally easy to reverse engineer the apk file to recover the source
code. This opens the door to many types of statistical analysis. For
example, Faruki et al. [15] propose a technique that they refer to as

AndroSimilar, which decompiles an apk file and extracts features based
on the source code, as outlined in Fig. 2. These features are fed into an
algorithm that automatically generates a signature for a given malware
sample.

Unfortunately, the ability to easily decompile code also makes it easy

Table 1
Android obfuscators.

Number Obfuscation

1 resigned
2 alignment
3 rebuild
4 fields
5 debug
6 indirections
7 renaming
8 reordering
9 goto
10 arithmetic branch
11 NOP
12 lib
13 manifest
14 reflection

Table 2
Software used.

Software Version

Java 1.8.0_45
Python 2.7.11
apktool 2.2.1

Fig. 4. VirusTotal detector results for unobfuscated malware samples.

Table 3
Top 11 malware detectors in VirusTotal.

Company Product

ALWIL Avast-Mobile
Avira Avira
Cyren Cyren
Eset Software ESET-NOD32
Ikarus Software Ikarus
K7 Computing K7GW
Kaspersky Lab Kaspersky
Intel Security McAfee
Symantec Symantec Mobile Insight
Tencent Tencent
Zoner Software Zoner Antivirus

Table 4
Tested obfuscators.

Number Obfuscator Encoding

1 rebuild 100000
2 indirections 010000
3 renaming 001000
4 reordering 000100
5 goto 000010
6 manifest 000001

Table 5
Tested benign applications.

Google Gmail Google Maps Facebook Messenger
Facebook Google Google Text-to-Speech
Instagram YouTube Samsung Push Service
Google Chrome Google Play Games Google TalkBack
Google Play Music Google Street View Google Play Movies
Google Drive Hangouts WhatsApp Messenger
Android WebView Google Photos Google Play Newsstand
Skype Slack –
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for Android malware writers to repackage existing applications, while
inserting unwanted malicious behavior. Such Trojans appear to comprise
the vast majority of Android malware today.

As far as the authors are aware, the most similar work to that pre-
sented here is [18]. In this previous work, black box analysis techniques
are applied to the Drebin Android malware detector [3]. The research in
Ref. [18] highlights relevant local features, and utilizes support vector
machines (SVM). This differs substantially from the present paper, as
[18] is focused on attacks that target the machine learning models, rather
than specific detectors. In addition, the Drebin detector is described in
detail in Ref. [3], so Drebin is not a black box in the same sense as the
VirusTotal [32] detectors that we consider in this paper.

3. Background

In this section, we turn our attention to background topics that are
relevant for the experimental results that we present in Section 4. Spe-
cifically, we focus on Android malware and the various obfuscations that
we consider in our experiments.

3.1. Android and malware

From Fig. 3 we see that there are significant differences between the
set of permissions typically requested by benign and malicious Android
applications [36]. In the research literature, this simple observation often

Fig. 5. Obfuscation results for three malware families (based on top 11 detectors).
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forms the basis for effective Android malware detection results [17].
It is worth noting that there are practical limitations when performing

malware detection on an Android device. In a mobile environment,
processing power, memory, and, especially, battery usage are significant
constraints [4]. However, offline malware detection is also possible—in
particular for Android applications that are available online—in which
case these issues are much less of a concern. In this research, we are
assuming this latter scenario, and hence Android device limitations are
not considered to be a constraint on the analysis that we perform.

From a high level perspective, malware analysis can be based on static
or dynamic features. Static features can include bytecodes, or any other
features that can be extracted without code execution or emulation.
Dynamic features often include behaviors that are exhibited when the
code executes. Generally, static analysis is more efficient, but dynamic
analysis can be more revealing, since many obfuscation techniques are
rendered moot once the code executes. From our experimental results, it
will become clear that the Androidmalware detectors that we analyze are
based primarily—if not exclusively—on static features.

3.2. Android obfuscators

In this section, we discuss the various obfuscators that we consider in
the experiments presented in Section 4. By systematically obfuscating
different aspects of the code, we can gain insight into which features
contribute most to a given Android malware detector. This information
can, in turn, be used to determine the most effective ways to make
malware detectors more effective and more robust.

For this project, we developed a modified version of Another Android
Malware Obfuscator (AAMO) [21], that we refer to as Modified AAMO,
or simply MAAMO. Our MAAMO tool is available to any researchers who
would like to conduct experiment similar to those discussed in this paper.

MAAMO implements a wide variety of obfuscators for Android code.
The obfuscators available in MAAMO can be used independently or in
any combination. To apply the selected obfuscators, we first decompile
an Android application, then we perform the desired obfuscations, and
finally, we recompile the code—the resulting application will have the
same functionality as the original.

In MAAMO, there are 14 obfuscators available. These obfuscators are
listed in Table 1, and each is discussed briefly below.

3.2.1. Resigned
The resigned obfuscator resigns the apk file prior to recompilation.

Although this obfuscator has essentially no effect on the code itself, it
could serve to defeat a malware detector that relies on a specific signa-
ture that was applied to a known malware sample. In addition, if an
application is expected to be signed, this obfuscation will serve to make it
less obvious that the code has been modified.

3.2.2. Alignment
The alignment obfuscator makes use of the zipalign utility in Android.

This utility applies an optimization technique to apk files whereby all
uncompressed data starts at a particular alignment relative to the
beginning of the file. The alignment obfuscator changes this alignment
before recompiling the apk file, which could affect any detectors that rely
on a specific alignment.

3.2.3. Rebuild
The rebuild obfuscator rebuilds the application file without per-

forming any other changes. The unpacking and repackaging of the apk
file affects the timestamp and related metadata that might help to iden-
tify a specific application.

3.2.4. Fields
The fields obfuscator renames fields that are used in the application.

The application is analyzed to locate the fields that appear in the source
code and these fields are renamed.

3.2.5. Debug
The debug obfuscator removes all debugging related information

from the application, with this operation is performed throughout the
source code. Without the debug information, the apk file will typically
becomes slightly smaller in size, and it may differ in other minor aspects.

3.2.6. Indirections
Call indirections is an advanced obfuscation technique in which

various function calls are directed through different values. This obfus-
cator has a variety of effects, including changing the register count,
changing method calls, and also redirecting all calls to methods. For
typical code, this obfuscation will heavily alter control flow information.
This would likely have a significant effect on many types of dynamic
analysis, and hence should be a powerful obfuscation for detectors that
rely on dynamic information.

3.2.7. Renaming
The renaming obfuscation renames all variables in the source code.

Note that this is a far more extensive renaming than occurs with the fields
obuscation, as all variable names can be affected. Renaming could be
expected to alter signatures and adversely affect other pattern matching
techniques that rely on names of variables and functions.

3.2.8. Reordering
The use of reordering changes the order of the code in the application.

This obfuscator changes the location of certain parts of the code and
adjusts the control flow accordingly, so that the code executes in the
proper order. Such reordering can make it possible to evade signature
detection, since signature detection typically depends on the order of
instructions.

3.2.9. Goto
The goto obfuscation changes the control flow by inserting forward

and backward jumps into the code. Such jumps can drastically alter
program flow and should have a negative impact on any malware
detection technique that relies heavily on control flow information. Such
information is often used in dynamic analysis.

3.2.10. Arithmetic branch
The arithmetic branch obfuscator inserts a branch condition, where

only one branch can actually execute. This can greatly complicate anal-
ysis that relies on control flow, and it has the effect of inserting dead
code, which can negatively impact static analysis. As with all other ob-
fuscations considered here, this operation leaves the function of the
original code unchanged.

3.2.11. NOP
Inserting a do-nothing or no-operation (NOP) instruction is the

simplest means available for breaking signatures. In our MAAMO

Table 6
Malware detection results.

Malware Minimum Maximum Average

BankBot 0.2727 0.5000 0.3975
CopyCat 0.8000 0.9000 0.8192
Godless 0.4545 0.5455 0.4993
Judy 0.3636 0.5455 0.4450
Mazar 0.4286 0.5455 0.5429
Operation Electric Powder 0.4545 0.9091 0.7879
PluginPhantom 0.8182 0.8182 0.8182
SecureUpdate 0.4545 0.6000 0.4828
SonicSpy 0.8182 0.9091 0.8352
TubeMate 0.3000 0.4545 0.3919
WireX 0.5455 0.5556 0.5456
Ztorg 0.4545 0.5455 0.4949
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implementation, such instructions are inserted at random throughout the
code.

3.2.12. Lib
In the lib obfuscation, MD5 hashing is used to rename the file and

associated paths. A proxy method is created, which serves to deal with
the hashed values.

3.2.13. Manifest
The AndroidManifest.xml file is modified by the manifest obfuscator.

The manifest file contains a variety of important information—from a

malware detection point of view, most significantly, it deals with per-
missions. Among other operations, this obfuscator encrypts the values of
resources and also replaces characters in user-defined identifiers.

3.2.14. Reflection
The reflection obfuscator takes advantage of the Android dynamic

code loading API. Specifically, all static method calls are converted into
reflection calls and the reflect method is invoked on a string that contains
the target method. It is not clear that this would have a large impact on
most malware detection techniques.

Fig. 6. Detector-based results for three popular antivirus (based on 12 malware samples).
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4. Experiments and results

In this section, we briefly discuss our experimental setup, and we
provide details on the data and malware detectors used in the experi-
ments. Then we present our experimental results in some detail.

4.1. Environment and setup

In our experiments, each apk file is decompiled into its source code
which is then obfuscated before being repackaged. To decompile the apk,
we use apktool [33]. As discussed in Section 3.2, we use our MAAMO tool
to perform all obfuscations. A list of the various software used to conduct
the experiments reported in this research appears in Table 2.

4.2. Malware samples and preliminaries

To evaluate and analyze malware detectors, we performed experi-
ments on known Android malware. As discussed above, obfuscators were
applied to perform a black box analysis of malware detectors, and to
obtain an understanding of the state of the art in Android malware
detection in general.

The Contagio dataset was used as our source of Android malware
samples [13]. This dataset has been used in many recent research studies,
including, for example, [17].

We use the VirusTotal [31] website as our source for malware
detection results. At the time of our experiments, VirusTotal included 64
applicable malware detectors that we tested on each sample. These de-
tectors include products from virtually all of the leading anti-virus
companies, including Kaspersky, McAfee, Microsoft, Sophos, Symantec,
and Trend Micro. In a few sporadic instances, VirusTotal did not return a
result for a particular detector.

The VirusTotal website uploads a malware file to its database and
then performs a scan using the various malware detectors available at the
website. Each uploaded file is hashed and stored in the database to
reduce duplicate effort and minimize scan times. We used VirusTotal to
scan each malware sample, and each obfuscated variant of a given
sample.

The experimental results provided below are all based on the
following Android malware families.

BankBot is a credential stealing malware that mimics banking sites to
trick users into revealing confidential information [23]. This malware
has repeatedly found its way onto the Google Play Store [20].

CopyCat is a highly advanced form of adware that is estimated to
have infected some 14,000,000 devices and to have generated an
impressive amount of fraudulent advertising revenue for its developers
[9].

Godless is also a very sophisticated malware that is the Android
equivalent of an exploit kit for a PC. This malware primarily serves ads,
but it is capable of significantly more [8].

Judy is adware that is often claimed to be the most widespread
malware that has yet appeared on Google Play [10].

Mazar pretends to be a generic “MMS Messaging” application, but is
actually a botnet application that can erase data from an infected device,
and perform other malicious activities [27].

Operation Electric Powder is spyware that is distributed as a the
seemingly harmless application pokemon.apk. The name of the malware
derives from the fact that it plays a role in an attack on the Israel Electric
Company (IEC) [12].

PluginPhantom is an information stealing Trojan that uses multiple
plugins, making static detection difficult [35].

SecureUpdate acts as a downloader, that serves primarily to fetch
additional malware-. Some versions of SecureUpdate include a credential
stealing feature [6].

SonicSpy is spyware that has infected a large number of applications
[24].

TubeMate is a legitimate applications, but some versions of it have
been Trojanized and act as aggressive forms of adware [30].

WireX is a botnet that is capable of launching a DDoS attack. This
malware was recently found to have infected hundreds of apps on the
Google Play Store [1].

Ztorg can cause infected phones to send premium rate SMS messages
[28,29],

We tested each of the 64malware detectors in VirusTotal on examples
of the 12 malware types discussed above. Without MAAMO obfuscation,
we obtained the results in Fig. 4, where the hollow bars represent the
detectors that flagged all 12 samples as malware. All of the remaining
detectors failed on at least one of the samples—with 19 of the 64 failing
to flag any of the malware samples as malicious.

Again, of the 64 relevant detectors that were available in VirusTotal at
the time of our testing, only the 11 corresponding to the hollow bars in
Fig. 4 were able to correctly identify all 12 of the (unobfuscated) malware
samples discussed above. These 11 detectors are listed in Table 3.

For the experiments discussed below, we focus our attention on the 11
detectors that appear in Table 3. With respect to our malware sample set,
these are themost effective detectors available, and hence should provide
the greatest challenge for the various obfuscation techniques considered.

Intuitively, it would seem that the 6 obfuscators listed in Table 4 are
likely to be the most effective at evading malware detection. And, based
on preliminary experiments [19], we found this to be case when
considered in isolation. Hence, it would appear that the features affected
by these obfuscators figure more prominently in the malware detectors
considered, as compared to the features affected by the remaining
obfuscators. Therefore, in the experiments discussed below, we focus on
these 6 obfuscators. In Section 4.4 we analyze the effect of each of the 64
different combinations of these obfuscators on the detectability of each
malware sample. The goal is to determine which of features (or combi-
nations of features) are most influential with respect to Android malware
detectors. Then in Section 4.5 we consider these results per detector,
instead of per malware. These latter results give us an inside look at each
of the Android malware detectors listed in Table 3.

4.3. False positives

Before giving our main experimental results, we briefly consider false
positives. Antivirus products are generally tuned so as to generate an
extremely low false positive rate [5], in spite of the fact that this will tend
to result in a significantly higher false negative rate. While this may seem
counterintuitive, false positives can be disastrous for any antivirus
product, since customers will lose confidence in a product that flags a
known clean application as malware. Another concern is that a developer
whose application is incorrectly flagged as malicious might suffer a major
financial loss, and thus any such developer has an incentive to publicize
such failings. Such cases would serve to damage the reputation of the
offending antivirus product.

Because we expect the false positive rate to be negligible, here we
focus entirely on false negatives in our experiments presented in Sections
4.4 and 4.5, below. To verify that this is indeed a reasonable approach,

Table 7
Summary of results for top 11 detectors.

Detector Minimum Maximum Average

Avast-Mobile 0.5833 0.5833 0.5833
Avira 0.2500 0.3636 0.3280
Cyren 0.2500 0.3333 0.2861
ESET-NOD32 1.0000 1.0000 1.0000
Ikarus 0.9167 1.0000 0.9947
K7GW 0.1667 0.3333 0.2169
Kaspersky 0.8182 0.9167 0.8741
McAfee 0.2500 0.9091 0.6160
Symantec Mobile Insight 0.5000 0.5455 0.5007
Tencent 0.1667 0.2500 0.2024
ZoneAlarm 0.8182 0.9167 0.8741
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we first tested all of the 23 well-known benign applications listed in
Table 5 against all of the malware detectors in VirusTotal. We found that
all of these benign Android applications were correctly classified as
benign by every malware detector in VirusTotal.

4.4. Obfuscator-based results

In this section, we present results for the set of 12 malware samples
discussed above. In each case, we test every combination of the 6
obfuscators listed in Table 4. For selected cases, we give the results in the
form of bar graphs, and for all cases we summarize the results in tabular
form. In the graphs below, the obfuscations employed are encoded as a
binary 6-tuple, where a 1 indicates that the corresponding obfuscation is
used, and a 0 indicates that the obfuscation is not used. For example,
000001 indicates that only the manifest obfuscation was employed,
while 010100 indicates that both the indirections and reordering ob-
fuscations were used.

Fig. 5 (a) gives results for all possible subsets of the obfuscators listed
in Table 4 for the BankBot malware. In each case, the obfuscated BankBot
samples were tested against each of the 11 detectors listed in Table 3. In
Fig. 5(b) and (c), we give the analogous results for Operation Electric
Powder and SonicSpy, respectively. Note that in each of these bar graphs,
the hollow bar on the left-hand side (the bar labeled “000000”) gives the
detection rate in the case where no obfuscation is applied. Since we are
only using detectors that had a 100% detection rate on our malware
samples, this bar is at 1.0 in each case. The other bars represent the
detection rates when the specified obfuscations are applied, with the
maximum, minimum, and average cases indicated. Each of the
maximum, minimum, and average is computed over the 63 obfuscations
“000001” through “111111.” Note that the unobuscated case of
“000000” is not included in the average case calculation.

From the BankBot results in Fig. 5(a), we see that the when any
obfuscation is applied, BankBot is only detected by half or fewer of the
detectors. For example, if we apply only the rebuild obfuscation (denoted
as “100000”), then only about 27% of the detectors correctly classify this
obfuscated form of BankBot as malware. Over all possible obfuscations,
we see that on average, only about 40% of the detectors were able to
recognize the obfuscated version of BankBot.

In Fig. 5(c), we see that obfuscations have a minimal impact on
detection results for SonicSpy. This provides a sharp contrast to the
BankBot results in Fig. 5(a).

The results in Fig. 5(b) illustrate yet another distinct case. Specif-
ically, for the malware known as Operation Electric Powder, most ob-
fuscations have little effect, but selected obfuscations (e.g., “001000”)
are able to significantly reduce the detection rate.

The detection rates for each of the 12 malware samples—over all 64
combinations of the obfuscations under consideration—are given in
Table 6. Again, these results were obtained by restricting our attention to
the top 11 detectors listed in Table 3.

4.5. Detector-based results

Fig. 6(a) gives results for all possible subsets of the 6 obfuscators
under consideration, with respect to Kaspersky antivirus. The specified
obfuscations were applied the same set of malware as in the previous
section, and these obfuscated samples were then tested against the Kas-
persky antivirus. Fig. 6(b) and (c) give the analogous results for McAfee
and Tencent antivirus, respectively.

From the results in Fig. 6, we see that Kaspersky is the most robust of
these three detectors, in the sense that obfuscations have relatively little
effect on its accuracy. In contrast, Tencent in Fig. 6(c) is the most fragile,
as any obfuscation decreases the detection rate to a very small percentage
of the unobfuscated case. Finally, from Fig. 6(b), we see that McAfee is
somewhat in between these two extremes—some obfuscations are very
effective, while other obfuscations cause only a minor reduction in
accuracy.

In Table 7, we summarize the results for all 11 of the detectors
considered in this section. From these results, we see that the effect of the
obfuscations under consideration varies widely over this set of malware
detectors.

4.6. Discussion

Not surprisingly, the results in this section clearly show that obfus-
cation can be highly effective. We find that to a large degree, the optimal
obfuscation depends on the specific malware detector, as well as the
actual malware under consideration. This indicates that the malware
detectors considered here are fairly diverse, in the sense that they
apparently rely on different features or combinations of features for
detection and, furthermore, the precise set of features appears to vary
somewhat for different malware samples.

Remarkably, one of the tested virus detectors (ESET-NOD32) was able
to classify all obfuscated samples as malware, while two additional de-
tectors (Ikarus and Kaspersky) also yielded impressively high detection
results. At the other extreme, 19 of the 64 detectors available in Viru-
sTotal failed to detect any of the original (unobfuscated) malware sam-
ples in our tests. These results indicate that there is an extremely wide
range of capability among the detectors in VirusTotal.

Perhaps more surprising than the range in detector capabilities is the
range in the malware samples themselves. Some samples (e.g., BankBot
and TubeMate) seem to be extremely easy to obfuscate, in the sense that
virtually any obfuscation has a large impact. On the other hand, we found
that some samples (e.g., CopyCat and SonicSpy) were not effectively
obfuscated with any combination of the obfuscators under consideration.
And, for at least one application (Operation Electric Powder), selected
obfuscations were effective, while most obfuscations had only a limited
effect.

5. Conclusion and future work

Our results clearly show that fairly straightforward obfuscation
techniques can be highly effective against a collection of strong malware
detectors available on VirusTotal. Our results also indicate that there is a
high degree of diversity among these malware detectors, in the sense that
no single feature—or even a combination of features—seems to dominate
the overall detection results. In addition, there appears to be some di-
versity even within a single malware detector, in the sense that different
malware samples often yield different obfuscation profiles with respect to
a given antivirus.

There are several possible avenues for related future work. First, it
would be useful to conduct large-scale experiments. The problem here
lies primarily with the VirusTotal API, which is slow and difficult to use,
making it challenging to accumulate large numbers of useful results [32],
even with access to a higher data rate than is typically publicly available.

We performed exhaustive experiments on 6 of the 14 obfuscators
listed in Table 1. The 6 we chose appear to be the most effective indi-
vidually, but it is possible that in combination, some of the other 8
obfuscators might yield good results.

Another interesting area of related research would consist of carefully
analyzing the strengths and weaknesses of various machine learning
based malware detectors when facing obfuscations of the type considered
in this paper. Malware detectors based on hidden Markov models
(HMM), support vector machines (SVM), deep learning, and a wide va-
riety of other machine learning techniques have recently shown great
promise [25]. It would be useful to quantify the robustness of such
techniques, while comparing machine learning based results to existing
antivirus products. Our MAAMO tool, along with the results presented in
this paper, could form the basis for such research.
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