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Abstract
This study approaches the stability analysis and controller design of
Lotka–Volterra and quasi-polynomial systems from the perspective of passiv-
ity theory. The passivity based approach requires to extend the autonomous
system model with a suitable input structure. The condition of passivity for
Lotka–Volterra systems is less strict than the classic asymptotic stability cri-
terion. It is shown that each Lotka–Volterra system is feedback equivalent to
a passive system and a passifying state feedback controller is proposed. The
passivity based approach enables the design of novel state feedback controllers
to Lotka–Volterra systems. The asymptotic stability can be achieved by apply-
ing an additional diagonal state feedback having arbitrarily small gains. This
result was further explored to achieve rate disturbance attenuation in controlled
Lotka–Volterra systems. By exploiting the dynamical similarities between the
Lotka–Volterra and quasi-polynomial systems, it was shown that the passivity
related results, developed for Lotka–Volterra systems, are also valid for a large
class of quasi-polynomial systems. The methods and tools developed have been
illustrated through simulation case studies.
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1. Introduction

Lotka–Volterra systems are widely-used models to describe the dynamic behavior of interac-
tive species or agents [1]. Their properties are continually studied by many researchers, see e.g.
[2, 3]. In the paper [4] the equivalences among the different stability types of Lotka–Volterra
systems were discussed.

The family of quasi-polynomial (QP) systems is regarded as a generalisation of the
Lotka–Volterra form. One important property of the QP system class is that it admits a
partitioning, where each class of equivalence shares the basic dynamical properties with a
Lotka–Volterra model. This advantageous property is a basis of several results in the field, see
e.g. [5–7].

The classical stability result developed for Lotka–Volterra systems relates the positive def-
initeness of a linear matrix inequality with the asymptotic stability to a positive equilibrium
point of the system [8]. This is not applicable when the Lotka–Volterra system model is rank
deficient, i.e. it originates from a QP system.

Passivity theory offers a possibility to overcome this difficulty, that is one of the motivations
of our present work. The idea of applying passivity theory to Lotka–Volterra systems is not
new. Early results related to the passivity-based control in a class of Lotka–Volterra systems
can be found in [9]. Other related feedback control approaches for Lotka–Volterra systems
were presented e.g. in [10–12].

Passivity is an important input–output property of many physical systems. It allows a system
categorisation in terms of energy transfer between the system and its environment. Roughly
speaking a system is passive if it cannot store more energy than it is supplied to it from the envi-
ronment. The internal energy of the system is characterised by a non-negative, state-dependent
storage function assigned to the system. In the passivity theory framework, the rate of the sup-
plied energy is taken as the inner product of the ‘power-coupled’ input and output vectors of
the system.

Stability analysis and control design are two important applications of the passivity
theory [13]. The passivity property of input affine systems involves the stability of the
autonomous part under mild conditions. The passivity can also be applied to achieve desired
dynamic behavior (e.g. disturbance rejection) for the system by appropriately manipulating the
system’s input.

The models of many physical systems do not possess the passivity property. However, there
exist such system models that can be transformed into passive systems using feedback. A
system is called feedback equivalent to a passive system if it can be rendered to a passive
system by performing a proper static, state-dependent, affine transformation of the original
input [13].

Motivated by the above results, the contributions of this paper are as follows. Using the clas-
sical logarithmic Lyapunov function of autonomous Lotka–Volterra and QP systems we derive
passivity conditions of the open version of these systems and show that each Lotka–Volterra
system is feedback equivalent to a passive system. The results were extended to the class of
QP systems, too. In addition, a control design method is presented to attenuate the effect of
death rate or birth rate disturbances in controlled Lotka–Volterra systems.
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2. Basic notions

2.1. Passive systems

In this section relevant definitions and theorems from passivity theory are reviewed, see e.g.
[13, 14].

We consider a dynamic system which is modeled using a non-autonomous, input affine
ordinary differential equation (ODE) in the form

ẋ = f(x) + G(x)u, x(0) = x0,

y = h(x),
(1)

where x = x(t) ∈ R
n, t � 0 is state vector, x0 ∈ R

n, y, u ∈ R
m are the output- and input vectors,

f(·), h(·), G(·) are smooth mappings with appropriate dimensions, and f(0) = 0, h(0) = 0 where
0 = (0 . . . 0)T with appropriate dimension.

The condition f(0) = 0 implies that x = 0 is an equilibrium point of the autonomous system
ẋ = f(x).

We assign to the system (1) a continuously differentiable, nonnegative storage function
S(x) : Rn →R�0 such that S(0) = 0.

Definition 1. The system (1) is passive with respect to the storage function S if
Ṡ � yTu, ∀ u, x.

Theorem 1. The input-affine system (1) is passive w.r.t. S if and only if the following
conditions hold:

∂S
∂x

f(x) � 0, (2)

∂S
∂x

G(x) = h(x)T. (3)

Definition 2. The system (1) is zero state detectable if y(t) = 0 and u(t) = 0, ∀t � 0, imply
that limt→∞ x(t) = 0.

Theorem 2. If the system (1) is zero state detectable and passive w.r.t. S, then the equilib-
rium state x = 0 of the unforced system ẋ = f(x) is Lyapunov stable, i.e. ∀ε > 0, ∃ δ(ε) > 0
such that ‖x0‖ � δ(ε) implies ‖x(t)‖ < ε∀t > 0.

Theorem 3. Assume that the system (1) is passive w.r.t. S such that ∂2S
∂x2 exists and it is

continuous. If rank{ ∂h
∂x G(x)} is constant in a neighborhood of 0, then the system has a vector

relative degree {1, 1, . . . , 1} at x = 0.

Theorem 4. Consider that the system (1) is zero state detectable and passive w.r.t. S. Then
the control law u = −Ky, where K = diag(ki) ∈ Rm×m, ki > 0, asymptotically stabilises the
equilibrium state x = 0, i.e. limt→∞‖x(t)‖ = 0.

2.2. Lotka–Volterra systems

The dynamic behavior of an autonomous Lotka–Volterra system is described by the following
ODE [1, 8]:

ẋ = diag (x) (Mx + l) , x(0) = x0, (4)
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where x ∈ R
m
�0 is the state vector in which each entry represents a species population; the

matrix M = (mi j) ∈ R
m×m describes the interactions among the species; l ∈ R

m is the natural
rate vector, x0 ∈ R

m
>0 is the constant vector of the initial states.

Equilibrium points: a natural equilibrium point of the system (4) is x∗ = 0.
If rank[M l] = rank M, the system admits other equilibrium points, which satisfy the

equation

Mx∗ = −l. (5)

Let us assume that the system admits a strictly positive equilibrium point x∗ = (x∗i ),
x∗i ∈ R>0, i = 1, . . . , m. The stability of the system (4) around the positive equilibrium can
be analysed using the storage function:

S =
m∑

i=1

ci

(
xi − x∗i − x∗i ln

xi

x∗i

)
, (6)

where ci ∈ R>0, i = 1, . . . , m.
The time derivative of the storage function reads as [8]:

Ṡ =
1
2

(x − x∗)T(MC + CMT)(x − x∗). (7)

Here C = diag (c1c2 . . . cm).

Definition 3 [15]. A matrix M is Volterra–Lyapunov stable if there exist a positive definite,
diagonal matrix C such that

MC + CMT < 0. (8)

Remarks:

• The notion of Volterra–Lyapunov stability (see [15]) differs from the common Lyapunov
stability definition invoked in theorem 2. The Volterra–Lyapunov matrix stability is used
here to conclude on the asymptotic stability of Lotka–Volterra systems.

• The stability of Lotka–Volterra systems is independent of the offset vector l.
• The strict inequality (8) is a sufficient asymptotic stability condition for the autonomous

Lotka–Volterra system. However, if the coefficient matrix M is rank-deficient (i.e. not
invertible), this condition cannot be applied.

2.3. Quasi-polynomial systems

A generalisation of the Lotka–Volterra system class is the so-called QP or generalised
Lotka–Volterra model (9):

ż = diag (z) (Ax(z) + λ) , z(0) = z0. (9)

In the model (9) z ∈ R
m
>0 denotes the state vector, A = (ai j) ∈ R

n×m. Let B = (bi j) ∈ R
m×n.

The vector x(z) of the so-called quasi-monomials are defined as below:

x j =

n∏
k=1

z
B jk
k , j = 1, . . . , m. (10)

It is an important property of QP systems, that the set of quasi-monomials x(z) admit a
Lotka–Volterra dynamics having the following parameters [16]:
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M = B · A
l = B · λ. (11)

It is also easy to see in (9), that B = I and n = m yields a Lotka–Volterra model with M = A.
Given a QP model with its parameters (A, B,λ) the quasi-monomial transformation is

defined as

z′i =
n∏

k=1

zQik
k , i = 1, . . . , n, (12)

where Q is an arbitrary invertible matrix. It is important to note, that QP models of the form (9)
are form-invariant with respect to the transformation (12). The parameters of the transformed
QP model are given by

B′ = B · Q, A′ = Q−1 · A, λ′ = Q−1 · λ. (13)

The stability analysis of the system (9) is based on the coordinates transformation (12) and
the storage (Lyapunov) function (6), [6, 17], i.e.

SQP(x(z)) =
m∑

i=1

ci

(
xi(z) − xi(z∗) − xi(z∗) ln

xi(z)
xi(z∗)

)
, (14)

where ci ∈ R>0, i = 1, . . . , m are the same parameters as in (6).
It also means that any QP system is dynamically similar [6] to a Lotka–Volterra model

defined by the invariants (11).

Remark. In the usual case, when m > n, the coefficient matrix M = BA of a dynamically
equivalent Lotka–Volterra model of a QP model (A, B,λ) will be rank-deficient and the system
dynamics evolves on a lower (n)-dimensional manifold of the m-dimensional state space. This
results in difficulties in performing asymptotic stability analysis when checking the sufficient
condition (8).

3. Passivity properties of Lotka–Volterra and quasi-polynomial systems

3.1. Passivity of Lotka–Volterra systems

The open Lotka–Volterra system is obtained by extending the natural rate vector with such an
additive component that is set by external actions such as a feedback controller or disturbance
effects:

ẋ = diag (x) (Mx + l + u) , (15)

where u ∈ R
m denotes the input vector.

For passivity analysis define the error state:

e = x − x∗, (16)

where x∗ is a strictly positive equilibrium point satisfying (5).
The dynamics of the error state reads as

ė = diag (e + x∗) (Me + u), (17)
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It can be seen that (17) has an input affine form ė = f(e) + G(e)u, where f(e) = diag (e +
x∗)Me and G(e) = diag (e + x∗).

The storage function (6) as a function of e has the form

S(e) =
m∑

i=1

ci

(
ei − x∗i ln

ei + x∗i
x∗i

)
. (18)

The gradient of S satisfies

∂S(e)
∂e

=

(
c1e1

e1 + x∗1
. . .

cmem

em + x∗m

)
. (19)

The Hessian of S has the form

∂S2(e)
∂e2

= diag

(
c1x∗1

(e1 + x∗1)2
. . .

cmx∗m
(em + x∗m)2

)
. (20)

If e = 0, then f(e) = 0, S(0) = 0 and ∂S(e)
∂e

T
= 0.

By equation (7), if there exists a positive definite, diagonal C such that

MC + CMT � 0, (21)

then the storage function (18) of the system (17) with u = 0 is non-increasing.
If there exists a positive definite, diagonal C such that (21) holds, then the open

Lotka–Volterra system (17) possesses the following passivity-related properties:

• By theorem 1 the open Lotka–Volterra model (17) is passive from the input u to the
(artificial) passive output

y = diag (e + x∗)
∂S(e)
∂e

T

= Ce. (22)

The condition (2) of theorem 1 directly yields from (21). The passive output (22) was
computed based on equation (3).

• Since x∗i ∈ R>0 ∀ i = 1, . . . , m, the rank of the Hessian (20) in a neighborhood of e = 0 is
m. Hence, by theorem 3, the Lotka–Volterra system (17) has no internal dynamics in the
neighborhood of e = 0.

• The conditions u = 0 and y = 0 imply that e = 0. Hence (17) is zero state detectable and,
by theorem 4, the control u = −Ky asymptotically stabilises the equilibrium state x∗. The
matrix K is defined in the statement of theorem 4.

The asymptotic Lotka–Volterra stability of passive Lotka–Volterra systems with diagonal
output feedback (u = −KCe) directly follows from the inequality (21). The interaction matrix
of the controlled system is M = M − KC. The stability condition (8) has the form

MC + CMT < 0,

MC + CMT − 2 KC2 < 0.
(23)

Since KC2 is negative definite, the asymptotic stability directly yields. It was exploited that
the sum of a negative definite matrix and a negative semidefinite matrix having the same
dimensions is a negative definite matrix.

Note, that the full rank of matrix M is not necessary for passivity. On the other hand, the
passivity of the dynamics (15) implies the stability of its autonomous part.
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3.2. Special Lotka–Volterra systems

As follows, the passivity properties of two important classes of Lotka–Volterra systems are
analysed.

Example 1 (Lotka–Volterra predator–prey model). Consider a two-dimensional open
Lotka–Volterra system which describes the dynamics of a coexisting predator and prey
population:

ẋ1 = x1(l1 − m12x2 + u1)

ẋ2 = x2(−l2 + m21x1 + u2),
(24)

where l1, l2 ∈ R>0 represent the constant prey birth rate and predator death rate respectively.
The coefficients m12, m21 ∈ R>0 determine the inter-influence of the predator–prey population.
The entries of u = (u1 u2)T ∈ R

2 are the input rates.
The autonomous system (u = 0) always admits a positive equilibrium point

x∗ = (l2/m21 l1/m12)T.
The interconnection matrix of the system is

M =

(
0 −m12

m21 0

)
. (25)

The matrix inequality (21) with C = diag (c1 ∼ c2) has the form

(
0 m21c2 − m12c1

m21c2 − m12c1 0

)
� 0 (26)

The passivity of the system yields e.g. by choosing C = diag(c ∼ m12
m21

c), c ∈ R>0.

Example 2 (Competitive Lotka–Volterra model). In this case the two-dimensional
Lotka–Volterra model reads as

ẋ1 = x1 (l1 − m11x1 − m12x2 + u1)

ẋ2 = x2 (l2 − m21x1 − m22x2 + u2) ,
(27)

where l1, l2 ∈ R>0 are constant linear growth rates, m11, m22 ∈ R>0 are the intra-species
competition rates, m12, m21 ∈ R>0 represent the inter-species competition rates.

It is known [18] that the autonomous part of the system has a positive equilibrium point

x∗ =

(
l2m11 − l1m21

m11m22 − m12m21

l1m22 − l2m12

m11m22 − m12m21

)T

(28)

if l2m11 > l1m21, l1m22 > l2m12 and m11m22 > m12m21.
In this example the passivity condition (21) with C = diag c1c2 takes the form

(
2m11c1 m21c1 + m12c2

m21c1 + m12c2 2m22c2

)
� 0. (29)

The system is passive if ∃c1, c2 ∈ R>0 such that 4m11m22c1c2 � (m21c1 + m12c2)2. If
2m11m22 < m21m12, then the inequality does not hold. If 4m11m22 � (m21 + m12)2, the inequal-
ity holds for c1 = c2 = 1.
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Hence the passivity condition of the competitive Lotka–Volterra system related to the error
state is model parameter dependent. As will be shown in section 4, in such cases the passivity
can be assured by state feedback control.

3.3. Passivity of quasi-polynomial systems

The generalisation of the passivity-related results for Lotka–Volterra systems to the QP case
is based on the joint storage function family of the two system classes.

Suppose a QP system with an additive general input:

ż = diag (z)
(

Ax(z) + λ+ uQP
I

)
, (30)

where uQP
I = B+v, and B+ denotes the pseudo-inverse of matrix B. The passivity of the QP

system (30) can be investigated in the monimial space, i.e. through the Lotka–Volterra vari-
ables, by analysing the Lotka–Volterra model that corresponds to (30). It is easy to see that
the Lotka–Volterra model of (30) is in the form (15). The error state of the QP model is then
defined using the Lotka–Volterra states [i.e. the QP quasimonomials of the QP system (30)].
This way, the passivity of the QP model can be handled using the above results on the passiv-
ity of Lotka–Volterra models and on the fact, that QP and Lotka–Voltera models share their
storage functions (6) and (14).

4. Feedback equivalence of Lotka–Volterra systems to passive systems

In the case of a Lotka–Volterra system that is not passive or it is passive only for some set of
its parameters, one can use the notion of feedback equivalence to ensure and investigate the
passivity.

Definition 4 [13]. The system (1) is feedback equivalent to a passive system if there exists
an input in the form u = α(x) + β(x)up, α(x) ∈ R

m, β(x) ∈ R
m×m such that the system

ẋ = f(x) + G(x)α(x) + G(x)β(x)up, x(0) = x0

y = h(x)
(31)

is passive.

The notion of feedback equivalence introduces a class of input-affine systems, that are not
necessarily passive, but they can be made passive by applying suitable state feedback to them.
As follows, we show that an open Lotka–Volterra system is feedback equivalent to a passive
system, and we construct the feedback that makes it passive.

Consider an open Lotka–Volterra system in which the state dynamics is defined by (17) and
the output is given by (22).

Passivity with skew-symmetric interaction matrix: consider that the interaction matrix of the
Lotka–Volterra system M = (mi j) is skew-symmetric, i.e. mi j = −m ji, ∀i �= j.

In this case the matrix inequality (21) has the form:

MC + CMT = MC − CM � 0. (32)

The inequality (32) with skew-symmetric interaction matrix directly yields e.g. by choos-
ing C = Im, where Im ∈ R

m×m is the identity matrix, i.e. the skew-symmetry property of the
interaction matrix implies the passivity of the open Lotka–Volterra system.
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In the general case, the skew-symmetry property of the interconnection matrix of the
controlled system can be assured by choosing

u = Kpe + up, Kp ∈ R
m×m. (33)

With this input the interconnection matrix Mp of the system yields as

Mp = M + Kp. (34)

A possible choice for Kp which guarantees that Mp is skew symmetric is

Kp(i, j) =

⎧⎨
⎩

−m ji − mi j, if |mi j| � |m ji| and i �= j
−mi j, if i = j
0, otherwise.

(35)

Accordingly, the Lotka–Volterra system is equivalent to a passive system where the input
is defined in equations (33) and (35).

It is important to note, that applicability of the LMI sufficient condition (32) can be extended
by means of time-reparameterization transformation [19]. This method includes extra param-
eters into the Lotka–Volterra coefficient matrix M in a bilinear way and turns the LMI (32)
into a bilinear matrix inequality, which belongs to an NP-complete problem class. Although
it is computationally more demanding, in some cases the time reparameterization yields
result even when the LMI (32) is infeasible. This method is not necessary in the present
case.

5. Disturbance attenuation

Passivity theory opens the possibility to design powerful controllers not only for stabilising but
also for disturbance rejection purposes [20]. This section proposes a physically meaningful yet
realisable controller for disturbance attenuation of Lotka–Volterra systems.

5.1. The control problem

In realistic Lotka–Volterra systems the natural rate cannot be considered constant, its nominal
value may change in time. The deviation of the rate vector from its nominal value can be viewed
as an additive, non-constant, bounded disturbance.

It is also considered that the rate vector has a component that can be externally manipulated
by a control mechanism.

Let an open Lotka–Volterra system both with control- and disturbance inputs in the form

ẋ = diag (x) (Mx + l + uc + w) , (36)

where uc ∈ R
n is the control input rate vector, w ∈ R

n represents the unknown disturbance rate
vector.

Control objective: let xSP ∈ R
n
>0 a prescribed setpoint for the system (36) and

y = Ce = C(x − xSP), (37)

where C = diag(ci) ∈ R
m×m, ci ∈ R>0. Design a control input uc, which assures that

limt→∞y = 0 if w = 0. Otherwise, ensure that
∫ t

0
yTydτ � γ

∫ t

0
wTwdτ + σ0 (38)
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for a prescribed γ ∈ R>0. σ0 ∈ R is an initial condition-dependent constant.
To achieve the control objective, formulate the control input as

uc = Kpe − Ky + uff, (39)

where y is given in (37), Kp is given by (35), K ∈ Rm×m and uff ∈ Rm is a constant feed-forward
control term.

With such a feedback design, the model of the controlled Lotka–Volterra system has the
form

ė = diag (e + xSP)
(
Mpe + l + MxSP − Ky + uff + w

)
, (40)

where Mp is given by (34).

5.2. Equilibrium point shift

The feed-forward term is meant to ensure that the original positive equilibrium point of the sys-
tem is shifted into the setpoint by additively modifying the natural rate vector. It is formulated
as

uff = −l − MxSP. (41)

With this choice the controlled Lotka–Volterra system takes the form

ė = diag (e + xSP)
(
Mpe − Ky + w

)
. (42)

As it was presented in section 3, the control guarantees the objective limt→∞y = 0 provided
that w = 0.

5.3. Disturbance attenuation

Choose the feedback gain matrix K as a diagonal matrix with positive entries:
K = diag(ki), ki ∈ R>0.

If disturbances are present in the control system (w �= 0), due to the passivity property, the
time-derivative of the storage function (18) of the controlled system (42) satisfies

Ṡ � yT (−Ky + w) , (43)∫ t

0
yTKydτ �

∫ t

0
yTwdτ + S(0). (44)

Let k = mini{(ki)}. Since k
∫ t

0 yTydτ �
∫ t

0 yTKydτ and yTw � 1
2

(
yTy + wTw

)
it follows

that

2k
∫ t

0
yTydτ �

∫ t

0
yTydτ +

∫ t

0
wTwdτ + 2S(0), (45)

∫ t

0
yTydτ � 1

2k − 1

∫ t

0
wTwdτ +

2
2k − 1

S(0). (46)

Let the prescribed attenuation gain be γ. It yields that, if the controller gain matrix is chosen
such that

k >
1
2

(
1 +

1
γ

)
, (47)
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then the disturbance attenuation control objective is achieved.

Remark. The controlled system (40) preserves the structure of the open Lotka–Volterra
model (17) where x∗ = xSP, the interaction matrix is Mp − KC and the input vector is w.

5.4. Generalisation to quasi-polynomial systems

Due to the close connection between the two system classes, the results of this Section can be
generalised to QP systems.

Suppose an open QP system of the form (48) below:

ż = diag (z) (Ax(z) + λ+ u) , (48)

where

u = B+
(

Kpx(z) − KC
(

x(z) − x(zSS) + uQP
ff

))
+ w (49)

is the input applied to the system, where uQP
ff = −λ− (A + B+Kp)x(zss). It is easy to see, that

the corresponding Lotka–Volterra dynamics of the closed loop QP system (48) and (49) is in
the form (40) with a rescaled disturbance Bw:

ẋ = diag (x)
(
Mpx + l − Ky + uff + Bw

)
. (50)

Using the feedback form (49) the proposed method of passivity based control and setpoint
design can be directly applied to a subset QP systems for which the exponent matrix B is
invertible.

By using B+, i.e. the pseudo-inverse of the exponent matrix in (49) instead of the inverse,
the method can also be applied to QP systems for which m �= n. However, it is important to
note, that this generalisation works only if BB+ = I [21].

The disturbance rejection properties of the controller extended to QP systems can be derived
in the same manner as in section 5.3.

6. Case studies

The performances of the developed passivity based controller design methods are illustrated
in this section using simulated case studies.

6.1. Lotka–Volterra model

A three-dimensional Lotka–Volterra predator–prey system is considered which describes the
behavior of three coexisting species: two predators and one prey. The dynamics of this system
reads as

ẋ1 = x1 (−m12x2 − m13x3 + (l1 + u1 + w1))

ẋ2 = x2 (m21x1 + (−l2 + u2 + w2))

ẋ3 = x3 (m31x1 + (−l3 + u3 + w3)) ,

(51)

where mi j, li ∈ R>0, i, j = 1, 2, 3.
The system with uc = w = 0 admits non-zero equilibrium points for all the three popu-

lations only if m21/l2 = m31/l3, which is an eminently restrictive condition. Otherwise, one
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Figure 1. State trajectories of the Lotka–Volterra system without control (section 6.1).

of the predator species dies out [22] and the dynamics of the system degenerates to a two-
dimensional Lotka–Volterra system, see example 1. However, using feedback control, the
non-zero equilibrium for all the three species’ populations can be assured.

The interaction matrix M of the system is

M =

⎛
⎝ 0 −m12 −m13

m21 0 0
m31 0 0

⎞
⎠ . (52)

The rank of M is 2. The equilibrium states of the predators’ populations always satisfy m12x∗2 +
m13x∗3 = l1.

During the simulation experiments the following parameters were chosen: m12 = 0.1,
m13 = 0.2, m21 = 0.3, m31 = 0.4 and l1 = 4, l2 = 5, l3 = 6.

Figures 1 and 2 show the dynamic response of the Lotka–Volterra system with no input, i.e.
uc = w = 0, and with initial values x1(0) = x2(0) = x3(0) = 10. Without control, the extinc-
tion of one of the predator populations can be observed. The trajectories of the prey population
and the surviving predator population converge to the trajectories of a typical two-dimensional
predator–prey system having concordant parameters.

During the control experiments, the disturbance was modeled as increased death rate in
the case of the predators and decreased death rate in the case of the prey. The entries of the
disturbance vector w were set as: w1 = w2 = w3 = −0.5.

The setpoint was chosen as: xSP = (20 20 20)T.
The matrix KP in the control law (33) was computed using equation (35). The control was

tested for three prescribed disturbance attenuation gain values: γ = 10, γ = 1 and γ = 0.1.
The diagonal control gain matrix was chosen as K = diag (ki), where ki = γ, i = 1, 2, 3.

The simulation results presented in figures 3 and 4 show that the proposed disturbance
attenuation approach ensures the convergence of the controlled states to the setpoint. Smaller
prescribed disturbance attenuation level ensures smaller steady-state error.
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Figure 2. Phase portrait of the Lotka–Volterra system without control (section 6.1).

Figure 3. State trajectories of the Lotka–Volterra system with control (section 6.1).

6.2. Quasi-polynomial model with m = n

The examined QP system belongs to the same equivalence class as the Lotka–Volterra
model (51) of the previous example. For the sake of simplicity, the numerical parameter val-
ues of section 6.1 has been used here. The ODE form of the QP system is given in (53)
below.

1892



Nonlinearity 34 (2021) 1880 L Márton et al

Figure 4. Phase portrait of the Lotka–Volterra system with control (section 6.1).

ż1 = z1

(
−0.1090z1z

1
2
2 − 0.1090z2z

1
4
3 − 0.2180z

1
3
1 z3 + 5.9946

+ 1.0899(u1 + w1) − 0.2725(u3 + w3)

)

ż2 = z2

(
0.3545z1z

1
2
2 + 0.0545z2z

1
4
3 + 0.1090z

1
3
1 z3 − 7.9973

− 0.5450(u1 + w1) + (u2 + w2) + 0.1362(u3 + w3)

)

ż3 = z3

(
0.4360z1z

1
2
2 + 0.0360z2z

1
4
3 + 0.0719z

1
3
1 z3 − 7.9782

− 0.3597(u1 + w1) + 1.0899(u3 + w3)

)
.

(53)

It can be seen, that the state space of the QP system (53) is three dimensional, i.e. m = n. The
QP exponent matrix B1 that describes the monomial structure is

B1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0
1
4

1
2

1 0

1
3

0 1

⎞
⎟⎟⎟⎟⎟⎠

, (54)

the coefficient matrix has the value

A1 =

⎛
⎝−0.1090 −0.1090 −0.2180

0.3545 0.0545 0.1090
0.4360 0.0360 0.0719

⎞
⎠ . (55)

1893



Nonlinearity 34 (2021) 1880 L Márton et al

Figure 5. State trajectories of the QP system without control (section 6.2).

It can be easily checked, that M = B1 · A1, i.e. the QP system (53) belongs to the same class of
equivalence as the Lotka–Volterra model (51). This also means, that they are dynamically sim-

ilar. The monomials of the QP system are z1z
1
2
2 , z2z

1
4
3 , z

1
3
1 z3, according to the rows of matrix B1.

These quasimonomials correspond to the Lotka–Volterra system (51)’s state variables x1, x2

and x3, respectively. Figures 5 and 6 show the dynamic response of the QP system with no
control input, i.e. uc = w = 0. It is important to note, that the state trajectory (figure 6) evolves
on a two dimensional manifold, just like in the Lotka–Volterra case, since the rank of the
Lotka–Volterra coefficient matrix is two.

The setpoint was determined from the Lotka–Volterra case using the quasi-monomial trans-
formation corresponding to the QP system, its value is zSP = (11.5748 5.8786 8.9140)T.
The simulation results presented in figures 7 and 8 show that the proposed disturbance atten-
uation approach ensures the convergence of the controlled states to the setpoint. Similarly
to the Lotka–Volterra case, smaller prescribed disturbance attenuation level ensures smaller
steady-state error.

6.3. Quasi-polynomial model with m �= n

Usually, the Lotka–Volterra and the QP systems has state spaces of different dimensions [7].
The typical situation is when the QP system is embedded into the Lotka–Volterra form. The
Lotka–Volterra embedding inflates the originally n dimensional state space to an m dimen-
sional Lotka–Volterra dynamics. The QP system of this example also belongs to the same
equivalence class as the Lotka–Volterra model (51) of the previous example, however, in this
case the dimension n of QP state vector is two, i.e. m > n. The ODE form of the QP system is
given in (56) below.
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Figure 6. Phase portrait of the QP system without control (section 6.2).

Figure 7. State trajectories of the QP system with control (section 6.2).

ż1 = z1 (0.5z2 − 7.8 + 0.6(u2 + w2) + 0.8(u3 + w3))

ż2 = z2

(
−0.1z

3
5
1 − 0.2z

4
5
1 + 4 + (u1 + w1)

)
.

(56)

The QP exponent matrix B2 that describes the monomial structure is given in (57).
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Figure 8. Phase portrait of the QP system with control (section 6.2).

B2 =

⎛
⎜⎜⎜⎝

0 1
3
5

0

4
5

0

⎞
⎟⎟⎟⎠ . (57)

The QP coefficient matrix A2 is given in (58) below:

A2 =

⎛
⎜⎝

1
2

0 0

0 − 1
10

− 2
10

⎞
⎟⎠ . (58)

The monomials of the system described by the matrices (57) and (58) are z2, z
3
5
1 and z

4
5
1 accord-

ing to the rows of matrix B2. Figures 9 and 10 show the dynamic response of the QP system
with no input, i.e. uc = w = 0. The simulation results presented in figures 11 and 12 show that
the proposed disturbance attenuation approach ensures the convergence of the controlled states
to the setpoint which was determined from the Lotka–Volterra case using the quasi-monomial
transformation corresponding to the QP system. Similarly to the Lotka–Volterra case, smaller
prescribed disturbance attenuation level ensures smaller steady state error.

7. Discussion and conclusions

Using the classical logarithmic Lyapunov function of autonomous Lotka–Volterra and QP sys-
tems we derive passivity conditions of the open version of these systems. Because of the joint
Lyapunov function of an equivalence class of QP systems and its Lotka–Volterra canonical
form, we could extend the results to QP systems, too.

It is important to note that one should extend the classical Lotka–Volterra and QP system
models with suitable input and output variables for which passivity properties hold. This means
that one considers the possibility of manipulating the death/birth rate vectors of the species as
inputs.
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Figure 9. State trajectories of the QP system without control (section 6.3).

Figure 10. Phase portrait of the QP system without control (section 6.3).

The condition of passivity in (21) is less strict than the classical one by requiring only semi-
definiteness. By using the input-extended model of the system, it was shown that the asymptotic
stability i.e. the convergence into the equilibrium point, can be achieved by using diagonal state
feedback having arbitrarily small gains.

Moreover, passivity theory provides a novel and powerful approach to design linear
static feedback control laws for Lotka–Volterra systems. Based on our result that each
Lotka–Volterra system is feedback equivalent to a passive system, a constructive approach was
given to compute the passifying state-dependent affine input transformation. This control also

1897



Nonlinearity 34 (2021) 1880 L Márton et al

Figure 11. State trajectories of the QP system with control (section 6.3).

Figure 12. Phase portrait of the QP system with control (section 6.3).

assures the Lyapunov stability of Lotka–Volterra systems. Asymptotic stability of the closed-
loop system, i.e. the convergence into the equilibrium point, can also be achieved by extending
the previous control with diagonal small gain state feedback. Finally, a proper relation was
given to design the feedback gain such to attenuate the effect of unmodelled disturbances on
the asymptotic convergence.
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