
electronics

Article

Fast Motion Model of Road Vehicles with Artificial
Neural Networks

Ferenc Hegedüs 1 , Péter Gáspár 2,* and Tamás Bécsi 1

����������
�������

Citation: Hegedüs, F.; Gáspár, P.;

Bécsi, T. Fast Motion Model of Road

Vehicles with Artificial Neural

Networks. Electronics 2021, 10, 928.

https://doi.org/10.3390/

electronics10080928

Academic Editor: Cheng Siong Chin

Received: 18 March 2021

Accepted: 7 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and
Economics, H-1111 Budapest, Hungary; hegedus.ferenc@edu.bme.hu (F.H.); becsi.tamas@kjk.bme.hu (T.B.)

2 Systems and Control Lab, Institute for Computer Science and Control, H-1111 Budapest, Hungary
* Correspondence: gaspar.peter@sztaki.mta.hu

Abstract: Nonlinear optimization-based motion planning algorithms have been successfully used
for dynamically feasible trajectory planning of road vehicles. However, the main drawback of these
methods is their significant computational effort and thus high runtime, which makes real-time
application a complex problem. Addressing this field, this paper proposes an algorithm for fast
simulation of road vehicle motion based on artificial neural networks that can be used in optimization-
based trajectory planners. The neural networks are trained with supervised learning techniques
to predict the future state of the vehicle based on its current state and driving inputs. Learning
data is provided for a wide variety of randomly generated driving scenarios by simulation of a
dynamic vehicle model. The realistic random driving maneuvers are created on the basis of piecewise
linear travel velocity and road curvature profiles that are used for the planning of public roads. The
trained neural networks are then used in a feedback loop with several variables being calculated
by additional numerical integration to provide all the outputs of the original dynamic model. The
presented model can be capable of short-term vehicle motion simulation with sufficient precision
while having a considerably faster runtime than the original dynamic model.

Keywords: vehicle dynamics; vehicle modeling; simulation; motion planning; artificial neural networks

1. Introduction
1.1. Literature Outlook

Automation of road transportation is expected to provide several benefits for soci-
ety. Autonomous vehicles are expected to be more energy-efficient and environmentally
friendly [1], while automated road traffic is predicted to improve average travel time
significantly and traffic flow capacity [2], with the information provided by various sensors,
communications and HD maps [3]. One of the most exciting research fields regarding au-
tonomous driving is motion planning. Nonlinear optimization-based techniques have been
used successfully to plan dynamically feasible trajectories for systems with nonholonomic
dynamics. Optimization-based constrained trajectory generation algorithms are used
for robot-assisted surgeries [4], machining equipment [5], and multi-purpose robots [6]
as well as for road vehicles. One of the fundamental works on motion planning for wheeled
vehicles is [7], where authors define an optimization framework suitable for driving a
planetary robot on rough terrain. The winning team of the DARPA Urban Challenge at
Carnegie Mellon University later used a similar nonlinear optimization-based trajectory
planning and tracking algorithm [8]. In [9], the authors present a real-time fast and robust
motion planning framework for urban conditions by combining a hybrid A*-based search
with model predictive approaches to enable continuous re-planning based on current
measurements. An optimization-based maneuver planning and tracking framework is pro-
posed in [10] for low-speed and restricted-space environments using kinematic equations
to describe the motion of cars, trucks, and semi-trailers. The authors of this paper propose
a real-time trajectory planning algorithm in [11], where the dynamical feasibility of the

Electronics 2021, 10, 928. https://doi.org/10.3390/electronics10080928 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8063-6054
https://orcid.org/0000-0003-3388-1724
https://orcid.org/0000-0002-1487-9672
https://doi.org/10.3390/electronics10080928
https://doi.org/10.3390/electronics10080928
https://doi.org/10.3390/electronics10080928
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10080928
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10080928?type=check_update&version=3

Electronics 2021, 10, 928 2 of 28

motion is ensured by model-based simulation of the vehicle. The main difficulty in the case
of all online optimization-based motion planning approaches is that the applied dynamical
models have to be simulated numerous times as the cost and constraint functions need
to be evaluated iteratively during the optimization loop. This means that considering an
online optimization loop of approximately 100–200 ms, the available time for one vehicle
simulation is in the range of 5 ms. Accordingly, there is an elementary need for fast and
accurate short term vehicle simulation techniques in the field of optimal motion planning.

Numerous efficient simulation approaches have been developed for other time-critical
applications such as computer graphics as well. In most cases, computer graphics functions
require real-time performance for visualization, which means that the time available for the
simulation of dynamic systems can often fall below even 1 ms. Position-Based Dynamics
(PBD) directly computes the position-like dynamical quantities instead of time integration
of equations of motions derived from Newton’s second law [12,13]. Subspace simulation
methods are used to reduce the complexity of dynamic models by projecting the equations
of motion into a reduced subspace with the help of, e.g., Principal Component Analysis
(PCA) for a more efficient solution [14,15]. Data-driven physical simulations use data
precomputed offline by accurate dynamic simulation techniques to approximate and/or
accelerate online simulations. Artificial neural network-based data-driven models are an
attractive opportunity for time-critical simulations because they enable faster run-times
at the price of offline pre-calculations and higher memory usage [16,17]. Researchers
at Ubisoft and McGill University are combining subspace simulation techniques with
supervised learning in a computer graphics application where the computation time
available for one object is in the range of 10–100 microseconds to simulate deformation
effects, collisions of objects, and external forces [18].

Artificial neural networks are already used in vehicle simulation and control applica-
tions as well. In [19], authors are using artificial neural networks for modeling the main
combustion metrics of diesel engines as an alternative for parameter tuning of dynami-
cal models. Authors in [20] are simulating vertical tire and suspension dynamics while
traversing road irregularities with recurrent neural networks. Another worthy example
is [21], where deep feedforward networks are used to model and simulate a hovercraft.
A robust neural network-based lateral control method is proposed in [22], which aims to
resolve high-frequency oscillation issues of classical Sliding Mode Control (SMC) with the
application of Radial Basis Function Neural Networks (RBFNN). Similarly, authors of [23]
combine Model Predictive Control (MPC) with RBFNN to robustly handle the nonlinear
characteristics of the steering system. A reinforcement-learning-based integrated planning
and control method is proposed for automated parking applications in [24], which can
simultaneously coordinate the longitudinal and lateral motions to park in a smaller parking
space in one maneuver. Reinforcement learning is also used for high velocity lane change
maneuvering in [25], where a Deep Deterministic Policy Gradient (DDPG) agent is utilized
in an end-to-end method using lidar data. The authors of this paper are also actively
researching this field. In [26], a hybrid motion planning approach is presented that unites
classical optimization with neural networks for the more efficient solution of the planning
problem. A reinforcement-learning-based lane keeping planning algorithm is developed
in [27], where the machine learning agents are applied to support the Monte Carlo Tree
Search (MCTS)-based planning in order to provide real-time performance.

As shown, artificial neural networks have been successfully utilized for physical
simulations in numerous different research fields to enhance simulation speeds or replace
physical models with many parameters.

1.2. Motivation

The motivations to create a neural network based vehicle model are twofold. Firstly,
one can train the neural network based on real vehicle measurement data. This would
enable us to perform simulations that are completely tailored to the vehicle in question,
without having to worry about the correct parametrization of a dynamic model with

Electronics 2021, 10, 928 3 of 28

a high degree of freedom. Secondly, the neural network can also be trained based on
simulated vehicle motion data using a dynamic model of arbitrary complexity. The goal
and expected benefit here is to decrease computational effort and thus runtime of the
simulations using the neural-network-based model. Fast vehicle motion simulations of
several (≤10) s are extremely useful for the application in online optimization-based
motion planner algorithms as the evaluation of cost and constraint functions inside the
optimization loop requires predicting the vehicle’s motion in case of numerous different
values of the optimized variable [28]. This often means several hundreds of simulations
that can be done faster with the neural-network-based model. The plausibility of the
optimization results obtained this way can subsequently be supervised with a simulation
of the original dynamic model. A single simulation does not cause runtime issues, even
with a fairly complex vehicle model.

The contribution of this paper is accordingly a neural-network-based road vehicle
model that is able to substitute a classic nonlinear single-track dynamical model in short-
term simulations, while being faster as well. The paper is organized as follows. First,
Section 2 describes the original dynamic model of the vehicle. In Section 3, a random
trajectory planning algorithm is shown that is used to generate learning data for the neural-
network-based approach. Then, in Section 4, the neural-network-based vehicle model
is presented in details. Simulation results and performance evaluation of the proposed
algorithm are described in Section 5. The limitation and potential issues of this study are
later discussed in Section 6 . Finally, Section 7 contains concluding remarks and proposals
for future research directions.

Figure 1 shows the progress of the presented research from our motivation to create a
neural-network-based vehicle model to the proof of concept of the developed method.

Figure 1. Progress of presented research.

2. Nonlinear Single Track Vehicle Model

In this section, the applied planar nonlinear single-track vehicle model will be pre-
sented in detail. Planar single-track models are widely used for vehicle simulations and
model-based calculations because they can offer sufficient precision in most driving sce-
narios on public roads while having a moderate complexity. Authors use the presented
model in optimization-based motion planning algorithms as well, which makes it a good
candidate for the proof of concept of the proposed neural-network-based model. The
presented model combines literature sources, focusing on either chassis or wheel dynamics
by using a sophisticated dynamic wheel slip model to increase the precision of simulations
and also extends them with practical considerations that enable a stable and efficient nu-
merical solution. Standard notations used for the equations of the vehicle model are the
following. Superscripts differentiate between the same quantities in different coordinate
systems. Specifically, superscript G stands for global inertial coordinate system NWU
(North West Up), superscript V denotes the rotating vehicle-fixed coordinate system, and
superscript W is applied for quantities in wheel-fixed coordinate systems. As numerous
equations have to be calculated both for front and rear wheels the same way, subscript [f /r]
is used many times to indicate that by selecting subscript f or r for the whole equation,
respectively, the equations are shown for both wheels. Similarly, subscript [x/y] is used
when the calculations for longitudinal and lateral directions are equivalent.

Electronics 2021, 10, 928 4 of 28

2.1. Model Components

The presented nonlinear single-track vehicle model shown in Figure 2 is a planar rigid
multi-body model. The term single-track means that the wheels at the front and rear axles
are substituted by one wheel per axle. Single-track models are widely used for vehicle
simulations and model-based calculations because they can offer sufficient precision in
most driving scenarios while having a moderate complexity [29]. The multi-body model
consists of 3 bodies; the vehicle chassis and the two wheels, which are connected rigidly.
Our model is planar, which means that vertical translation and roll and pitch movements
are completely neglected. The vehicle is subject to Earth’s gravitational acceleration g. The
center of gravity location of the vehicle is considered to be constant.

(a) Top view

(b) Side view

Figure 2. Nonlinear single track vehicle model.

Wheel slips are modeled dynamically with respect to the elasticity of the tires. The
longitudinal and lateral tire forces are nonlinear functions of corresponding wheel slips
with respect to their simultaneous presence (superposition of forces is considered). Aligning
torques on the wheels due to lateral slip is neglected. The vehicle has front-wheel steering,
and the dynamics of steering actuation are considered. Driving inputs consist of total
driving and braking torques as well as the steering wheel angle.

The presented model can precisely simulate driving scenarios even with high acceler-
ations at the limit of adhesion and stability while having a moderate computational effort
compared to full four-wheel 3D models. However, it cannot consider vertical dynamic ef-
fects such as road unevenness or load transitions due to road slope. Furthermore, scenarios
where all four wheels’ friction conditions play an important role, such as µ-split cases—
where the left and right side of the vehicle meets with different road surface—cannot
be simulated.

2.2. Dynamics of the Chassis

The vehicle chassis is a rigid planar body with three degrees of freedom: longitudinal
and lateral positions xG

v and yG
v and yaw angle ψv in the global inertial coordinate sys-

tem. The chassis’ equations of motion represent the principles of conservation of linear
and angular momentum (Newton’s second law) and are expressed in the inertial global
coordinate system as follows:

Electronics 2021, 10, 928 5 of 28

ẍG
v =

1
mv

(FG
f a,x + FG

ra,x + FG
d,x), (1)

ÿG
v =

1
mv

(FG
f a,y + FG

ra,y + FG
d,y), (2)

ψ̈v =
1

θv,z
(lv, f FV

f a,y − lv,rFV
ra,y), (3)

where mv is the total mass of the vehicle, θv,z is its the moment of inertia about the vertical
axis, and horizontal distances of vehicle center of gravity to front and rear axles are noted
by lv,[f /r]. Aerodynamic drag forces are first calculated in the vehicle-fixed coordinate
system as

FV
d,x =

1
2

cv,d Av, f ρA ẋV
v

√
(ẋV

v)
2 + (ẏV

v)
2, (4)

FV
d,y =

1
2

cv,d Av, f ρAẏV
v

√
(ẋV

v)
2 + (ẏV

v)
2, (5)

where Av, f is the frontal area and cv,d is the aerodynamic drag coefficient of the vehicle,
while ρA is the density of air [29]. The conversion of arbitrary dynamic quantity γ[x/y] in
the rotating vehicle-fixed coordinate system to the global inertial one is done by

γG
x = + cos(ψv)γ

V
x − sin(ψv)γ

V
y , (6)

γG
y = + sin(ψv)γ

V
x + cos(ψv)γ

V
y . (7)

Similarly, the conversion from the global inertial coordinate system to the vehicle-fixed is

γV
x = + cos(ψv)γ

G
x + sin(ψv)γ

G
y , (8)

γV
y = − sin(ψv)γ

G
x + cos(ψv)γ

G
y . (9)

Accordingly, the aerodynamic drag forces calculated in Equations (4) and (5) are
transformed to the inertial global coordinate system by Equations (6) and (7). As the model
is planar (vertical movements are neglected), one can calculate the tire loads based on
equilibrium of forces and moments in the vertical plane as

FV
f ,z =

mvglv,r − hv(FV
f a,x + FV

ra,x)

lv, f + lv,r
, (10)

FV
r,z =

mvglv, f + hv(FV
f a,x + FV

ra,x)

lv, f + lv,r
, (11)

where hv is the center of gravity height of the vehicle. Driving and braking torques
are distributed ideally according to the load transfer above, which means the resulting
longitudinal slips shall be equalized by torques calculated as

M[f /r],d =
c[f /r],M

c f ,M + cr,M
Md, (12)

M[f /r],b =
c[f /r],M

c f ,M + cr,M
Mb, (13)

with c[f /r],M = r[f /r]FV
[f /r],z where Md and Mb are the non-negative driving and braking

torque inputs [30]. Calculation of the applied longitudinal and lateral tire forces F(·)
[f /r]a,[x/y]

is detailed in Section 2.3.

Electronics 2021, 10, 928 6 of 28

We are often interested in the inertial accelerations not only in the global coordinate
system, but in the vehicle-fixed one as well. To calculate their values ẍV

v,I , ÿV
v,I , from global

accelerations ẍG
v , ÿG

v we can use Equations (8) and (9). Please note that these accelerations
are not equal to the translational accelerations in the vehicle-fixed system, because the
vehicle is rotating.

2.3. Dynamics of the Wheels

The front and rear virtual wheels have a single degree of freedom: rotation about their
own axes ρ[f /r]. Longitudinal and lateral wheel slips s[f /r],[x/y] are calculated according to
a dynamic model considering elasticity of the tires. The dynamic equations of the wheels
are as follows:

ρ̈[f /r] =
1

θ[f /r]

(
M[f /r],d − r[f /r]F

W
[f /r]a,x −M[f /r],ba −M[f /r],rra

)
, (14)

ṡ[f /r],x =
1

l[f /r]a,x

(
v[f /r],r − ẋW

[f /r] − |ẋ
W
[f /r]|s[f /r],x

)
, (15)

ṡ[f /r],y =
1

l[f /r]a,y

(
− ẏW

[f /r] − |ẋ
W
[f /r]|s[f /r],y

)
, (16)

where r[f /r] are the radii and θ[f /r] are the moments of inertia of the wheels. The rolling
velocities of the wheels are calculated as

v[f /r],r = r[f /r]ρ̇[f /r]. (17)

The braking torque shall only be applied to the wheels if they are moving, calculated as

M[f /r],ba =

sign(v[f /r],r)M[f /r],b, if v[f /r],r > vba

sign(v[f /r],r)M[f /r],b
1
2

(
1− cos

(
π
|v[f /r],r |

vba

))
, if v[f /r],r ≤ vba

(18)

where vba = vba,0 + kvba |M[f /r],b| is the rolling velocity at which braking torque damping
should disappear. With this approach, the value of applied braking torque is gradually
built down as the wheel stops, so that it can reach an oscillation-free standstill state. Rolling
resistance torques are first calculated as

M[f /r],rr = sign(v[f /r],r)FW
[f /r],zr f [Arr + Brr|v[f /r],r|+ Crr(v[f /r],r)

2], (19)

where Arr, Brr, and Crr are parameters [31]. Tire loads are the same in the vehicle-fixed and
in the wheel-fixed coordinate systems FW

[f /r],z = FV
[f /r],z due to the common vertical axis.

Then, a damping technique similar to one applied to the acting braking torque is used to
eliminate discontinuity at point v[f /r],r = 0, so that the acting rolling resistance torques are
built up gradually while the wheels are starting to move as follows:

M[f /r],rra =

M[f /r],rr, if v[f /r],r > vrra

M[f /r],rr
1
2

(
1− cos

(
π
|v[f /r],r |

vrra

))
, if v[f /r],r ≤ vrra

(20)

where vrra is the rolling velocity at which rolling resistance torque should be fully applied.
Tire forces are generally calculated as a function of slip according to the Magic Formula

in the coordinate systems of corresponding wheels as

FW
[f /r],[x,y](s) =µ[f /r]F

W
[f /r],zD[f /r],[x,y] sin{C[f /r],[x,y] arctan(B[f /r],[x,y]s−

E[B[f /r],[x,y]s− arctan(B[f /r],[x,y]s)])},
(21)

Electronics 2021, 10, 928 7 of 28

where µ[f /r] is the static coefficient of friction and D[f /r],[x,y] are the maximum factors,
C[f /r],[x,y] are the shape factors, B[f /r],[x,y] are the stiffness factors, and E[f /r],[x,y] are the
curvature factors of the tire model [32]. To improve the low-speed behavior of the model
especially when starting from or braking until standstill, the tire forces are calculated based
on damped slip values [32], which are evaluated as

s[f /r]d,x = s[f /r],x +
k[f /r]d,x

K[f /r],x

(
v[f /r],r − ẋW

[f /r]
)
, (22)

s[f /r]d,y = s[f /r],y, (23)

with slip stiffness being

K[f /r],[x,y] = µ[f /r]F
W
[f /r],zD[f /r],[x,y]C[f /r],[x,y]B[f /r],[x,y]. (24)

The factor of slip damping is calculated with the usual cosine transition as

k[f /r]d,x =


0, if ẋW

f > vsd

k[f /r],x
1
2

(
1 + cos

(
π
|ẋW

f |
vsd

))
, if ẋW

f ≤ vsd

, (25)

where vsd is the rolling velocity at which slip damping should switch off and k[f /r],x is
the initial maximal factor of damping [32]. In case of pure longitudinal or lateral slip
conditions, the tire forces are calculated simply by

FW
[f /r]n,[x,y] = FW

[f /r],[x,y](s[f /r]d,[x/y]). (26)

In case of the mutual presence of longitudinal and lateral wheel slips tire forces are
calculated with respect to their superposition by the friction ellipse method, given as

FW
[f /r]c,x = sign(s[f /r]d,x)

√√√√√√
(

FW
[f /r],x

(
s[f /r]d,c

)
FW
[f /r],y

(
s[f /r]d,c

))2

(
FW
[f /r],y

(
s[f /r]d,c

))2
+
(s[f /r]d,y

s[f /r]d,x
FW
[f /r],x

(
s[f /r]d,c

))2 , (27)

FW
[f /r]c,y = sign(s[f /r]d,y)

√√√√√√
(

FW
[f /r],x

(
s[f /r]d,c

)
FW
[f /r],y

(
s[f /r]d,c

))2

(
FW
[f /r],x

(
s[f /r]d,c

))2
+
(s[f /r]d,x

s[f /r]d,y
FW
[f /r],y

(
s[f /r]d,c

))2 . (28)

with s[f /r]d,c =
√
(s[f /r]d,x)

2 + (s[f /r]d,x)
2 being the combined slip value. Finally, the acting

tire forces are given by

FW
[f /r]a,[x/y] =

FW
[f /r]c,[x/y] if s[f /r]d,[x,y] > sda,

FW
[f /r]n,[x/y] if s[f /r]d,[x,y] ≤ sda,

(29)

where sda is the minimal value of wheel slips where superposition of forces shall be consid-
ered. This limit is important for the numerical calculations, as Equations (27) and (28) are
singular at zero slip values. The acting tire forces of the front wheel given in its own coor-
dinate system FW

f a,[x/y] can be transformed to the values in the vehicle-fixed frame FV
f a,[x/y]

by substituting the yaw angle ψv with steering angle δ f in Equations (6) and (7). Since the
vehicle has front wheel steering only, conversion for the rear wheels is not necessary as
FV

f a,[x/y] = FW
f a,[x/y]. Further conversions from forces in the vehicle-fixed coordinate system

FV
[f /r]a,[x/y] to the ones in the global inertial coordinate system FG

[f /r]a,[x/y] can be performed
directly according to Equations (6) and (7).

Electronics 2021, 10, 928 8 of 28

To be able to evaluate the dynamic equations of the wheel, slip-dependent acting
relaxation lengths of tires have to be calculated as

l[f /r]a,[x/y] = max
(

l[f /r],[x/y]

(
1−

K[f /r],[x,y]

3D[f /r],[x,y]
|s[f /r],[x,y]|

)
, l[f /r]m,[x/y]

)
, (30)

where l[f /r],[x/y] and l[f /r]m,[x/y] are the relaxation lengths at standstill and at wheel spin
or lock, respectively [32]. Furthermore, the velocities of wheel center points are needed
in wheel-fixed coordinate systems. To obtain these, the velocities of the vehicle center of
gravity in the global inertial coordinate system ẋG

v ẏG
v are first converted to the vehicle-fixed

coordinate system ẋV
v ẋV

v with Equations (8) and (9). Then, wheel center point velocities
are calculated as

ẋV
[f /r] = ẋV

v , (31)

ẏV
f = ẏV

v + lv, f ψ̇v, (32)

ẏV
r = ẏV

v − lv,rψ̇v. (33)

The wheel center point velocities finally have to be transformed to wheel-fixed co-
ordinate systems. For the rear wheel, no real transformation is necessary as ẋW

r = ẋV
r

and ẏW
r = ẏV

r . As the front wheel is steered, Equations (8) and (9) can be used with the
substitution of yaw angle ψv with steering angle δ f to get the values ẋW

f and ẏW
f .

2.4. Steering Actuation

The vehicle model uses a simple first-order transfer function to consider the steering
actuator. The steering dynamics are given by

δ̇ f =
ks

Ts
δsw −

1
Ts

δ, (34)

where δsw is the steering wheel angle input, ks is the steering ratio, and Ts is the settling
time of the steering mechanism. The trajectory tracking behavior of the vehicle is much
more realistic, even with this very simple actuation model, than with the direct application
of steering angles calculated by the tracking controllers.

2.5. Closed Loop Control

In order to follow a selected reference trajectory, we need tracking controllers to drive
the presented vehicle model with control inputs—driving and braking torques and steering
wheel angle. Longitudinal speed tracking control is performed by a state feedback LQR
(Linear Quadratic Regulator) controller according to

Mdb = −Kv1 ẋV
v − Kv2 zv (35)

where Kv1 and Kv2 are gain values and zv is the integral of velocity tracking error. The
longitudinal controller computes a signed torque value which is then transformed to the
non-negative driving inputs as

Md = max(Mdb, 0), (36)

Mb = |min(Mdb, 0).| (37)

Electronics 2021, 10, 928 9 of 28

Path tracking is realized by a Stanley controller. This is a nonlinear feedback control
that ensures asymptotic tracking of the reference path. According to the control law,
the wheel level steering angle of the front axle is calculated as

δ f = eψ + arctan(Kst
elat
ẋV

v
), (38)

where eψ is the yaw angle offset between the path and the vehicle, elat is the lateral distance
of the front axle center-point from the path, and Kst is a tunable gain parameter [33]. The
reference point for tracking error calculation is the closest point of the path curve to the
center of the front axle.

2.6. Simulation of Model

The motion of the presented dynamic nonlinear single-track vehicle model must
be calculated numerically by an Ordinary Differential Equation (ODE) solver with an
appropriate time resolution. As a solver, we recommend second (Heun) or fourth-order
(RK4) explicit Rungke–Kutta methods as they provide stable and fast computations. For
reproducibility and convenient manageability of simulation output, a fixed step-size is
used. Due to the wheels’ relatively fast and complex dynamics (especially in drive-off or
brake-still scenarios), a relatively small step size ∆tv around 1 ms is required.

3. Random Trajectory Planning

Overall, the presented vehicle dynamics model has 15 states and five inputs, which
have to be provided to the state equation to calculate state derivatives. With this number of
variables, training sample generation by parameter sweeping is impossible. Considering
only ten values for each input, the number of samples would reach 1.024 × 1013, which is
very difficult to handle. Instead of the parameter sweeping, learning data are generated
based on simulated scenarios. When defining the driving maneuvers, our goal is to create
a wide variety of dynamic situations. Regarding longitudinal dynamics, sections with
intensive acceleration and braking and smaller variations around a constant traveling
velocity are necessary. Considering lateral dynamics, mild curves, as well as sharp turns,
are essential to reach an extensive range of lateral acceleration. Combinations of curves
with acceleration and braking are also desirable. Definition of these simulation maneuvers
manually would be, on the one hand, a massive effort. On the other hand, it would
probably also not provide the required diversity. Thus, a randomized motion planning
approach is applied to generate the reference data for vehicle dynamics simulations.

3.1. Motion Planning Based on Piecewise Linear Curvature and Travel Velocity Functions

The idea of path planning based on a piecewise linear curvature function comes
from the real world, as horizontal geometry (alignment) of public roads in most cases
consists of straight segments and circular arcs, connected by clothoid curves for a smooth
transition [34]. While straight segments have zero curvature, and circular arcs have a
constant curvature, the clothoid’s curvature is changing linearly with the arc length. Thus,
road geometries in question can be defined by assigning a piecewise linear curvature
profile as a function of the arc length along the path. Naturally, continuous derivative
profiles could also be used, but their implementation would increase the complexity of the
algorithm without giving a real benefit for the current application [35]. To get a driving
trajectory, we also have to specify the traveling speed of the vehicle. This can be done simply
and sufficiently by defining a piecewise linear speed profile as a function of time. Naturally,
the curvature and speed profiles must be connected to provide a feasible trajectory—e.g.,
we have to slow down before high-curvature (low radius) sections.

Accordingly, the input of the trajectory planner is

Xp =
[
σi

p κi
p ẋi

p

]T
, i = 1 . . . Ni

p, (39)

Electronics 2021, 10, 928 10 of 28

where σi
p are the arc length, κi

p are the curvature, and ẋi
p are the traveling velocity knot

points of the curvature and velocity profiles. The meaning of the input parametrization is
that at arc length σi

p, the curvature of the path shall be κi
p and the travel velocity shall be ẋi

p.
Figure 3a (in blue) shows the input of the planning.

(a) Motion planning input and resulting path (b) Motion planning output

Figure 3. Motion planning input and output.

The time needed to travel along each path section can be calculated by

∆ti
p =

∆σi
p

˜̇xi
p

, (40)

where ∆σi
p = σi+1

p − σi
p and ˜̇xi

p =
ẋi

p+ẋi+1
p

2 for i = 1 . . . Ni
p − 1. The travel time at each knot

point is then

ti+1
p =

i

∑
1

∆ti
p, (41)

for i = 1 . . . Ni
p − 1 with t1 = 0. The constant longitudinal acceleration along each path

section is given by

ẍi
p =

∆ẋi
p

∆ti
p

, (42)

where ∆ẋi
p = ẋi+1

p − ẋi
p for i = 1 . . . Ni

p − 1. For any arc length such that σp ∈ [σi
p, σi+1

p] the
travel time can be expressed as

tp =


σ−σi

p

ẋi
p

+ ti
p if ẍi

p = 0,

−ẋi
p+
√
(ẋi

p)2+2ẍi
p(σ−σi

p)

ẍi
p

+ ti
p if ẍi

p 6= 0,
(43)

Based on the time information, travel velocity is calculated as

ẋp = ẋi
p + ẍi

p(tp − ti
p). (44)

Electronics 2021, 10, 928 11 of 28

By obtaining curvature with a simple interpolation

κp = κi
p +

κi+1
p − κi

p

σi+1
p − σi

p
σp, (45)

yaw rate and centripetal acceleration are

ψ̇p = ẋpκp, (46)

ÿp = ẋpψ̇p. (47)

To be able to evaluate path coordinates, yaw (heading) angle is first calculated as

ψp = ψp,0 +
∫ σp

0
ψ̇p, (48)

where ψp,0 initial yaw angle is assumed for every trajectory. Then, longitudinal path
coordinates can be calculated as

xp = xp,0 +
∫ σp

0
cos (ψp)ds, (49)

and lateral path coordinates are evaluated as

yp = yp,0 +
∫ σp

0
sin (ψp)ds, (50)

with the assumptions of xp,0 = 0 and yp,0 = 0. In practice Equations (40)–(42) are first
calculated for each input knot points. Then, the total arc length domain is split with
equidistant steps as

σ
j
p = jσp,s, j = 0 . . . N j

p (51)

where σp,s (0.1 m) is a suitable step size and N j
p = d σ

Ni
p

p
σp,s
e. Equations (43)–(50) are then

numerically calculated for the resulting arc length series. The output of the planner
accordingly is

Yp =
[

xj
p yj

p ψ
j
p ψ̇

j
p,
]T

, j = 0 . . . N j
p, (52)

and contains a series of path coordinates as well as yaw angle and yaw rate values along
the trajectory that can be used as reference for vehicle dynamics control. The outputs of the
trajectory planner can be seen on Figure 3b.

3.2. Random Planning

It is evident that we cannot just specify any input to the trajectory planner described in
Section 3.1 to get a feasible trajectory. The calculations in the planner are solely geometric
and are assuming that the traveling object is precisely following the given path and velocity.
This means that the random trajectory planning must be constrained to provide a feasible
reference to the vehicle simulation. The number of road sections Nr (500) is chosen in
advance (this means that number of profile knot points Ni

p will be 501). The planning is
carried out as follows.

1. The knot points ẋi
p of the traveling velocity profile are chosen randomly between

allowed lower ẋp,min (10 m/s) and upper ẋp,max (30 m/s) limits.
2. Minimal allowed radii are calculated for each section based on maximal allowed

lateral acceleration ÿp,max (5 m/s2).

ri
p,min =

(ẋi
p)

2

ÿp,max
(53)

Electronics 2021, 10, 928 12 of 28

3. Radii ri
p of each section are chosen randomly in such a way that the values are between

ri
p,min and mrmin ri

p,min. The factor mrmin (10) is a planning parameter.

4. Lengths ∆σi
p of each section are chosen randomly in such a way that the values

are between pcmin 2πri
p and pcmax 2πri

p. The factors pcmin (0.1) and pcmax (0.2) are
planning parameters.

5. Curvature values κi
p = 1

ri
p

are calculated, and half of them are inverted to provide left

and right turns with equal probability.
6. A ps (0.35) proportion of the curvature values κi

p is nulled out to provide straight
segments in a way that neighboring straight segments are not allowed.

7. Transitions are calculated between each of the previous sections in such way that the
proportion of their lengths to the segments lengths pt (0.4) is given.

8. Arc length knot points σi
p are calculated by a cumulative sum of segment lengths ∆σi

p.
9. The curvature and travel velocity profile calculated in 1–8 is then provided to the

planner described in Section 3.1 to get the random reference trajectory.

Example trajectories designed with the algorithm detailed in this section are shown in
Figure 4.

Figure 4. Random trajectories.

4. Neural Network Based Vehicle Model

In this section, the developed neural-network-based vehicle model will be presented
in detail. Our main goal with the presented algorithm is to provide quick neural-network-
based vehicle simulations of maximally about 10 s, which can be obtained faster than the
original dynamic model’s solution to use them in the online optimization loop of motion
planner algorithms. First, the input–output structure, as well as the method of learning
sample generation, is explained. Then, the architecture of used neural networks as well
as the training process is shown. Last, the algorithm for vehicle motion simulation based
on the trained neural networks is presented. For the modeling and training of artificial
neural networks, we use the Python programming language and its packages tensorflow,
keras and scikit-learn. The training is performed on a desktop computer with an Intel®

Core™ i5-7600 CPU, 32 GB of RAM, 500 GB of NVME SSD storage, and an NVIDIA®

GeForce GTX 1050 Ti GPU.

4.1. Input–Output Concept

The first important aspect of artificial-neural-network-based vehicle modeling is the
input–output structure of the model. On the one hand, the artificial neural network could
be used to estimate the equations of motion of the vehicle Equations (1)–(3), (14)–(16). With
this approach, the output of the neural network consists of the same translational and
angular accelerations that the original dynamic equations provide and thus must still be
integrated the same way with an ODE solver and 1ms time step. As explored in earlier

Electronics 2021, 10, 928 13 of 28

stages of the research, this approach has two significant disadvantages. As described in
Section 1.2, the main goal of the neural-network-based model would be to decrease run-
time of motion predictions. Firstly, the computation time of recalling the neural network
should be less than the computation time of the original state equation, which strongly
restricts the number of neurons usable in the network. Secondly, the estimation errors
of the neural network are amplified by the ODE solver, causing the solution to diverge
quickly. Due to the mentioned drawbacks, this approach is not presented in the paper.

On the other hand, direct estimation of the solution of the equations of motion of the
vehicle is also possible. The aim here is to predict the vehicle’s state at time t + ∆tnv based
on its state and input at time t, namely, to provide the solution of the ODEs for a time
span of multiple 1 ms steps. Four different input–output variants were examined for this
concept in the research, which are noted with V0, V1, V2, and V3, respectively. The input
vector of the neural network consists of the inputs and a subset of state variables of the
dynamic model at a given time t and is represented as

XV0,V1
nv (t) =



Mdb(t)
δsw(t)
ẋV

v (t)
ẏV

v (t)
ψ̇v(t)
ρ̇ f (t)
s f ,x(t)
s f ,y(t)
ρ̇r(t)
sr,x(t)
sr,y(t)
δ f (t)



, XV2,V3
nv (t) =



Mdb(t)
δsw(t)
ψv(t)
ẋV

v (t)
ẏV

v (t)
ψ̇v(t)
ρ̇ f (t)
s f ,x(t)
s f ,y(t)
ρ̇r(t)
sr,x(t)
sr,y(t)
δ f (t)



. (54)

The only difference in the input vectors of different variants is that yaw angle ψv(t)
is additionally provided for the V2–3 networks. The output vector of the neural network
consists of the changes of a subset of vehicle state variables as time reaches t + ∆tnv,
calculated as

∆ξ(t) = ξ(t + ∆tnv)− ξ(t) (55)

for a general state variable ξ, and is represented as

YV0
nv (t) =



∆ẋV
v (t)

∆ẏV
v (t)

∆ψ̇v(t)
∆ρ̇ f (t)
∆s f ,x(t)
∆s f ,y(t)
∆ρ̇r(t)
∆sr,x(t)
∆sr,y(t)
∆δ f (t)


, YV1.V2

nv (t) =



∆ψv(t)
∆ẋV

v (t)
∆ẏV

v (t)
∆ψ̇v(t)
∆ρ̇ f (t)
∆s f ,x(t)
∆s f ,y(t)
∆ρ̇r(t)
∆sr,x(t)
∆sr,y(t)
∆δ f (t)



, YV3
nv (t) =



∆xG
v (t)

∆yG
v (t)

∆ψv(t)
∆ẋV

v (t)
∆ẏV

v (t)
∆ψ̇v(t)
∆ρ̇ f (t)
∆s f ,x(t)
∆s f ,y(t)
∆ρ̇r(t)
∆sr,x(t)
∆sr,y(t)
∆δ f (t)



. (56)

The difference in the output vectors of different variants is that networks V1–3 directly
estimate the heading angle difference ∆ψv, and network V4 directly estimatwa the changes
in position ∆xG

v and ∆yG
v as well.

Electronics 2021, 10, 928 14 of 28

4.2. Learning Sample Generation

As the first step of the learning sample generation, random reference trajectories are
generated by the motion planner described in Section 3. For current work, an equivalent
amount of 10 h (∼680 km) driving was generated for training and another 4 h (∼270 km)
for testing purposes, which means a 70–30% train-test split, approximately. Then, vehicle
simulation was performed with the model described in Section 2 with a sample time of
∆tv =1 ms. In order to provide the same amount of left and right turns to the learning
process, data augmentation was used by mirroring (inverting the lateral motion compo-
nents of) the simulated trajectories. Accordingly, an equivalent of 28 h of driving data were
generated in total.

For the next step, the prediction time ∆tnv of the neural-network-based model has to be
decided. On the one hand, the bigger this value is, the faster the motion prediction with the
network will be. On the other hand, as the model is intended to be used in a motion planner
algorithm, a certain resolution is necessary for reliable collision avoidance calculations.
From the feasible set of prediction time values of 5, 10, 20, and 50 ms, ∆tnv =10 ms was
chosen as it provides a sufficient trade-off between run-time and resolution. The complete
matrices of training input and output samples are then

Itr
nv =

[
Xnv(0) Xnv(∆tv) Xnv(2∆tv) . . . Xnv((Ntr

v − 1)∆tv − ∆tnv)
]T , (57)

Otr
nv =

[
Ynv(0) Ynv(∆tv) Ynv(2∆tv) . . . Ynv((Ntr

v − 1)∆tv − ∆tnv)
]T , (58)

where Ntr
v is the total number of training vehicle simulation samples. Testing input Itt

nv
and output Ott

nv samples are generated in the same way from the corresponding vehicle
simulation samples. Maximum absolute values are calculated for each input and output
variables separately for scaling as

cXnv = max
t

Xnv(t), (59)

cYnv = max
t

Ynv(t), (60)

commonly for training and testing samples. Both the input and output samples are then
scaled in each variable (along each column) with these scales so that they only contain
values in range of [−1, 1]. From the 28 h of driving data, approximately 70 million training
samples as well as 28 million test samples were generated.

Since vehicle simulations are written in C++ for better performance and data prepara-
tion is mainly done in MATLAB, learning data must be written into files to be able to use
them in Python for the training. Due to a large number of learning data (more than 16 GB),
samples do not all fit into computer memory at once. For efficiency, learning input and
output matrices Itr

nv and Itt
nv as well as Otr

nv and Ott
nv are written into multiple binary files in

a column major order with one binary buffer containing 1024 batches of 8196 samples. The
scaling vectors cXnv and cYnv are also written to column major binary files for uniform data
handling. Training metadata (number of inputs, outputs, samples, batch size, buffer size,
variable names) are written to a JSON (JavaScript Object Notation) file for convenience.

To efficiently provide the learning data from the binary buffers, an own generator
algorithm is necessary, which reads in the files only once per training epoch in a subsequent
order. To achieve this, shuffling of learning data must be switched off in keras’ Model.fit
method so that the training algorithm asks for the samples in increasing order. By knowing
the number of samples per binary file from the metadata, it is easy to decide if a new file
must be loaded. The generator algorithm also takes care of the shuffling of samples per
buffer file by creating random indices for samples.

4.3. Neural Network Architecture

The estimation of vehicle simulation output is a regression task. For this, fully con-
nected feed-forward deep neural networks are used with three or four intermediate layers

Electronics 2021, 10, 928 15 of 28

and 256 neurons in total. Trying networks with a total neuron count of 96, 128, and 384
shows that with fewer neurons, the fitting results are much worse, and with more neurons,
the slight improvement in performance is not worth the increased computational effort. For
each I/O variant V1–4, four different networks are trained with layouts shown in Table 1.

Table 1. Neural network layouts.

Name Layout

n256l3v1 [64, 128, 64]
n256l3v2 [32, 192, 32]
n256l4v1 [32, 96, 96, 32]
n256l4v2 [64, 128, 128, 64]

As an activation function, ReLU (Rectified Linear Unit) is applied for each layer except
for the output layer using linear activation. Experimenting with other activation functions
such as sigmoid, hyperbolic tangent, or SELU (Scaled Exponential Linear Unit) shows
worse performance without exception.

4.4. Training Process

To compute the loss during the training, a custom weighted mean squared error
function is used as

Lnv =
1

nYnv

nYnv

∑
i=1

wi
Lnv

(Yi
nn − Ŷi

nn)
2, (61)

where nYnv is the number of elements of the output vector, wi
Lnv

are custom weighting
factors for each output variable, and prediction of neural network is denoted with Ŷnn.
The rationale behind using this weighted loss instead of the standard mean squared error
loss is that the precision of velocity and position predictions is more important than, for
instance, the slip variables.

The Adam optimizer waschosen, which is a stochastic gradient descent method that
is based on adaptive estimation of first-order and second-order moments. Adam optimizer
is generally recommended as “computationally efficient, has little memory requirement,
invariant to diagonal rescaling of gradients, and is well suited for problems that are large
in terms of data/parameters” [36]. Learning rate multipliers 0.1, 0.3, 0.5, and 1 are applied
to the default value of learning rate 0.001 to search for optimal training results.

Learning progress of the neural networks reaching the smallest final loss is shown
in Figure 5. On the left side, the best results are shown for each topology in Table 1. On
the right side, the results for the best network overall are shown. The number of training
epochs is chosen as 100 for a balance between training time and performance. Batch size is
selected for 8196 samples. The training time of a network with a single set of parameters
is approximately 1 h due to the learning samples not fitting into memory at once. With
the selected number of training epochs, no overfitting is visible. An increased number of
140 training epochs shows no real performance improvement.

Electronics 2021, 10, 928 16 of 28

Figure 5. Learning progress of neural network.

4.5. Motion Prediction in Feedback Loop

As explained in Section 4.1, at a certain time t, the neural network is capable of predicting
the changes in vehicle state variables and thus the new state of the vehicle at a ∆tnv = 10 ms
later time. This is a nice result, but the final aim of the research is to predict several seconds
of vehicle motion as stated in Section 1.2. To enable this, an iterative calculation is necessary,
where the neural network acts in a feedback loop. In this loop, the estimation of the new state
at t + ∆tnv is fed back to the input of the neural network to predict the new state at t + 2∆tnv,
and this goes on for the whole period of the simulation. Depending on the I/O variant, it may
also be necessary to compute the yaw angle ψnv (for V0) as well as the position coordinates
xG

nv and yG
nv (for V0–2) with numerical integration, as they are not estimated directly by the

neural network. State derivatives of the original dynamic model also need to be calculated
numerically for all network variants. Initially, total simulation time tnv is split into equidistant
steps of ∆tnv, denoting the resulting time series as tj

nv with j = 0 . . . d tnv
∆tnv
e. The initial value

of input vector Xnv(t0
nv) is assembled from initial values of vehicle inputs and states. Then,

simulation happens in the following loop:

1. Input vector Xnv(t
j
nv) is applied to the neural network to compute output Ynv(t

j
nv).

In practice, input and output vectors must be scaled with the scaling vectors in
Equations (59) and (60), but this is not reflected to in the equations for the sake
of simplicity.

2. Vehicle state variables for which estimations ∆ξ(tj
nv) are available in the neural

network output Ynv(t
j
nv) are calculated by

ξ(tj+1
nv) = ξ(tj

nv) + ∆ξ(tj
nv) (62)

for general state ξ.
3. For variant V0, yaw angle is calculated by numerical integration as

ψnv(t
j+1
nv) =

∆ψ̇nv(t
j
nv) + ∆ψ̇nv(t

j+1
nv)

2
∆tnv. (63)

Electronics 2021, 10, 928 17 of 28

4. For variants V0–2, position coordinates are calculated by numerical integration as

xG
nv(t

j+1
nv) =

ẋG
nv(t

j
nv) + ẋG

nv(t
j+1
nv)

2
∆tnv, (64)

yG
nv(t

j+1
nv) =

ẏG
nv(t

j
nv) + ẏG

nv(t
j+1
nv)

2
∆tnv, (65)

where velocities ẋG
nv and ẏG

nv are calculated from ẋV
nv and ẏV

nv by a rotation with −ψnv.
5. Vehicle state derivative variables for which estimations ∆ξ(tj

nv) are available in the

neural network output Ynv(t
j
nv) are estimated directly with differences

ξ̇(tj+1
nv) ' ∆ξ(tj

nv)

∆tnv
(66)

for general state ξ.
6. Inertial accelerations in momentaneous vehicle frame are evaluated as

ẍV
nv,I(t

j+1
nv) =

∆ẋV
nv(t

j
nv)

∆tnv
− ẏV

nv(t
j
nv)ψ̇nv(t

j
nv), (67)

ÿV
nv,I(t

j+1
nv) =

∆ẏV
nv(t

j
nv)

∆tnv
+ ẋV

nv(t
j
nv)ψ̇nv(t

j
nv), (68)

to take the rotating frame of reference into account.
7. Input vector of next step, Xnv(t

j+1
nv) is assembled from vehicle inputs and results of

Equation (62).
8. Steps 1–7 are repeated until simulation is finished.

Accordingly, our neural-network-based vehicle model consists of the network itself,
which can predict the state of the vehicle for 10 ms, and the feedback loop algorithm
described above, which uses the network to provide simulation results for several seconds.
The presented approach can provide all the outputs that are available when using the
original dynamical model. It is important to mention that the results coming from the
presented simulation loop differ from the output of the original dynamic model even when
assuming that the neural network is providing a perfect regression fit. The reason for this
difference is, on the one hand, that state variables in Equations (63)–(65) are calculated
with the forward Euler method (compared to the more sophisticated ODE solution of the
dynamic model) and also on a sub-sampled dataset. On the other hand, state-derivative
variables in Equation (66) are estimated with numeric differences (instead of the dynamic
equations) and on a sub-sampled dataset as well.

5. Simulation Results

This section presents the simulation results of the neural-network-based vehicle model
described in Section 4. The evaluations and comparisons in this chapter were mainly
made in MATLAB, which can utilize the trained neural networks from keras. First, an
example of the regression fit of the standalone neural network is presented and analyzed.
Then, a closed-loop vehicle motion simulation example is shown to give a picture of the
performance of the proposed algorithm in terms of output signals. Finally, the performance
of different variants is evaluated.

5.1. Regression Fit

Figure 6 shows the regression results of the trained neural network for a sequence
of testing samples that are coming directly from the dynamic vehicle simulation without
shuffling. The number of 10,000 samples is the equivalent of 10 s dynamic simulation with
a sample rate of 1 ms. As the output of the neural network consists of the changes in states
∆ξ(t), these values are proportional to the derivative values of the corresponding states ξ̇(t).

Electronics 2021, 10, 928 18 of 28

Please note that all outputs are normalized to the range of [−1, 1]. Accordingly, the selected
sequence of samples contains a scenario with considerable acceleration and braking as
well as moderate steering and has an intermediate complexity from a dynamics point of
view. The estimation of the neural network fits well to the output samples. The estimation
error is, in all cases, more than one order of magnitude smaller than the estimated signal
itself. Overall variables are shown, the maximal estimation error is 0.0727, and the mean
estimation error is 0.0196.

Figure 6. Regression fit of the trained neural network.

Table 2 shows the typical values of estimation errors for a trained neural network
for the most important output variables. The notation EMAX stands for maximal absolute
error, while MAE (Mean Absolute Error) is used conventionally. We can see the biggest
estimation errors in the case of changes in wheel speeds and longitudinal slip values. This
behavior is logical, since the piecewise linear travel velocity profile that is used for the input
sample generation results in a square-shaped longitudinal acceleration (and wheel angular
acceleration) signal with jumps (this can be seen in Figure 6 as well). Learning these jumps

Electronics 2021, 10, 928 19 of 28

is complicated for the neural network. While EMAX values are very high for these variables,
they are only reached for a minimal number of samples. As MAE values show, average
estimation error remains very small even in these cases. In comparison, changes in lateral
slip values are much slower since the clothoid transition segments between the circular
arcs and straight sections enable lateral tire forces (and wheel slips) to build up gradually.
Accordingly, corresponding EMAX values are much slower. In general, we can say that
while the regression provided by the neural network is not perfect, it is sufficient to be
used for short-term vehicle simulations presented in Section 5.2.

Table 2. Regression fit error statistic of a typical trained neural network.

Variable EMAX
MAE Variable EMAX

MAE
×10−2 ×10−2

∆ẋV
v (t) 0.17043 0.08441 ∆s f ,x(t) 0.93073 0.09424

∆ẏV
v (t) 0.16793 0.07394 ∆s f ,y(t) 0.16374 0.08827

∆ψ̇v(t) 0.24512 0.08250 ∆sr,x(t) 0.42943 0.08377
∆ρ̇ f (t) 0.82452 0.15126 ∆sr,y(t) 0.13317 0.05913
∆ρ̇r(t) 0.51242 0.14104 ∆δ f (t) 0.15871 0.04865

5.2. Prediction of Vehicle Motion

Figure 7 shows the performance of the neural network based vehicle motion simulation
in the case of the most important state variables.

Electronics 2021, 10, 928 20 of 28

Figure 7. Motion prediction with trained neural network.

Electronics 2021, 10, 928 21 of 28

The selected scenario is a 10 s long part of the test dataset and has an average dynami-
cal complexity with longitudinal acceleration reaching −4 m/s2 and lateral acceleration
exceeding 2 m/s2. The output of the neural network based model is able to nicely repro-
duce the output of the original dynamic model. The maximum error of position estimation
is below 60 cm, and the maximal yaw (heading) angle estimation error remains under 2◦.
Prediction error of longitudinal velocity does not exceed 0.03 m/s, while yaw rate pre-
diction error is below 0.6◦/s. Inertial accelerations are also calculated with a maximal
error of 0.2 m/s2. The biggest error can be observed in the case of lateral velocity, where
the neural-network-based solution occasionally has a large offset of 0.05 m/s. However,
the importance of this state variable from the motion planning point of view is not as
high as that of the other ones listed above. The results show that with the application
of appropriate safety boundaries applied to the position of the vehicle, the output of the
neural-network-based model can be used for motion prediction in the online optimization
loop of trajectory planner algorithms.

5.3. Evaluation of Input–Output Concept

It is also important to investigate the estimation errors for the whole test dataset to
get a complete picture of the proposed method’s performance. To find the best choice of
variants V0–3, a comparison of these is also necessary. Figure 8 shows the EMAX (maximal
absolute error) values calculated for the whole test dataset and all vehicle simulation output
quantities in case of the different variants V0–3 considering a 3 s long simulation time.
Figure 9 shows the same information considering 10 s long simulations. The values labeled
with ODE represent the estimation error that is present even if we assume perfect neural
network performance. For these data, the worst case, considering the V0 variant with the
maximal number of variables obtained by numerical integration, is selected. Please note
that a logarithmic scale is used for the axis of error values.

As expected, the magnitude of overall estimation error is growing with the simulation
time. On one hand, the value of state variables that are available in the neural network
output is calculated by a cumulative sum according to Equation (62). In this way, the
estimation error of these values accumulates with the number of steps in the estimation
loop. As this cumulative sum of previous network outputs is also used to calculate the
input of the network, the error spreads further.

Figure 8. Maximum estimation error of neural network based models for 3 s simulation.

Electronics 2021, 10, 928 22 of 28

Figure 9. Maximum estimation error of neural network based models for 10 s simulation.

On the other hand, the error of numerical integration for state variables that are not
part of the neural network output also increases with the number of integration steps.
For the state derivative quantities, the estimation errors’ speed of growth with simulation
length is much less, as these are calculated directly from the neural network output.

From comparing the different variants, it is interesting to observe that direct position
estimation with the V3 network massively underperforms the other variants with the
numerically integrated position in the case of 3 s simulation time. Still, this performance
gap disappears in the case of 10 s simulation, as the integration error grows faster. Be-
sides this finding, there is no elementary difference between the performance of different
variants. On average, variant V2 performs the best with direct yaw angle estimation and
numerical position integration. The maximal position error remains under 1.5 m, and the
maximal yaw angle error does not exceed 4◦ for the complete test dataset. These results
are not much worse than the guaranteed performance of fused GNSS (Global Navigation
Satellite System), and INS (Inertial Navigation System) localization solutions for global
positioning [37]. Naturally, the most significant deviations can be observed in the case of
the scenarios that are the most dynamically demanding with the largest longitudinal and
lateral accelerations. This meets expectations, since the behavior of the vehicle becomes
strongly nonlinear while moving closer to the adhesion limits of the tire–road contact. This
nonlinear behavior is then harder to estimate, also because the very high acceleration events
are rare compared to the average situations in the simulated realistic driving scenarios.
With appropriate safety margins on the position results, the neural-network-based model
can be used for simulations of approximately 10 s. For feasibility supervision, the original
dynamic model can be used at any time.

Another important aspect of our evaluation is runtime, since the main goal with
the presented dynamic-model-based training is to provide faster simulations with the
neural-network-based model than with the original one. Figure 10 shows the runtime of
the dynamic model and the different neural-network-based variants as to how many times
faster they are evaluated than real-time (a ratio of simulated time and runtime). Due to
the same total neuron count, almost all variants have the same runtime. Small differences
can be observed due to the different number of state variables that have to be calculated
by numerical integration. The dynamic model provides better performance with longer
simulations because the initialization overhead remains the same in all cases. With short
simulation times, the neural network based model is more than two times faster than the
original one. Still, the advantage is clearly visible for the total domain of intended usage.

Electronics 2021, 10, 928 23 of 28

Figure 10. Runtime of neural-network-based models.

6. Discussion

It is important to discuss the limitations and possible issues of the proposed model.
The main use case for the presented method is short-term vehicle motion simulation, partic-
ularly for the application in optimization-based motion planning algorithms. Accordingly,
the proposed model cannot provide accurate results for simulations longer than approx-
imately 10 s, as the regression error of the neural network is propagated inside the
simulation loop.

The learning dataset comes from vehicle dynamics simulations with a planar sin-
gle track model, which we would like to replace with the neural network based model.
This dynamic model provides plausible results in the overwhelming majority of driving
scenarios that happen on public roads. However, it also has some important limitations.
Vertical dynamic effects such as road unevenness or load transitions due to road slope are
not considered. Furthermore, scenarios where the friction conditions are important at all
four wheels, such as when the left and right side of the vehicle meets with different road
surface, cannot be simulated. The neural-network-based model will accordingly inherit the
same limitations.

The driving maneuvers that were used to generate learning data also restrict the
capabilities of the trained neural network. Because of this, a great emphasis is put on
the definition of realistic random scenarios, which involve calm constant velocity parts
and dynamically demanding high acceleration sections as well. However, the training
maneuvers do not include parts where the vehicle is sliding or drifting or where the wheels
are spinning or locking completely. This means that the neural-network-based model
also cannot be expected to provide sufficient precision in such scenarios. The number of
learning data is selected in a sense that the length of the resulting training process is feasible
for experimenting. To increase the robustness of the proposed model, a final training with
even more learning data could be performed as well in the future.

7. Conclusions and Future Work

This paper presents a novel method for short-term (≤10 s) vehicle motion simulation
with an artificial neural-network-based approach. Firstly, learning samples are generated
based on a classical nonlinear vehicle model for a dynamically diverse set of driving
maneuvers. Reference data of these driving maneuvers are created by a numerical mo-
tion planning algorithm based on the assignment of piecewise linear travel velocity and
curvature profiles similar to public road designs. The input of the trajectory planner is com-
puted randomly to ensure that the resulting motions are realistic and contain demanding
high-acceleration cases. Supervised learning techniques are then used to train the fully
connected deep neural network to estimate a future state of the vehicle on the basis of its
current state and driver inputs. The state variables that are not present in the output of the
neural network are subsequently calculated by numerical integration. This algorithm is
later used in a feedback loop to simulate the motion of the vehicle over time, where the

Electronics 2021, 10, 928 24 of 28

output of the network is used to calculate its input for the next time step. For short-term
simulations, the resulting neural-network based vehicle simulation algorithm is capable of
fully replacing the classical dynamic model while being considerably faster. This speed
gain can be especially useful in the online optimization loop of dynamically feasible opti-
mal motion planner algorithms, where the required duration of simulations is typically
inside the range where the new approach delivers plausible results. In this application,
supervision of the neural-network-based results is possible by a one-time execution of the
dynamic model.

The proposed algorithms are naturally not perfect. Investigation of the usage of differ-
ent neural network architectures like cascade neural networks or recurrent neural networks
like LSTM (Long Short-Term Memory) to estimate future vehicle state(s) to reach better
regression performance would enable longer simulation times; this is a natural extension
of the presented work. Another interesting future direction could be the application of
transfer learning to adapt the presented model to changing vehicle parameters and friction
conditions. As a next step towards a measurement-based training, sensor noises and errors
could also be added to the perfect simulation data to examine their effect on the perfor-
mance of the model. Training the neural networks based on real vehicle measurements
afterwards is also an exciting opportunity to provide even more realistic simulations.

Author Contributions: Conceptualization, T.B. and F.H.; methodology, P.G. and F.H.; software, F.H.;
validation, T.B and, P.G.; resources, P.G. and T.B.; writing—original draft preparation, F.H. and T.B.;
writing—review and editing, P.G.; visualization, F.H. and T.B.; supervision, P.G.; funding acquisition,
P.G. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Autonomous Systems National Laboratory Program. The research was
also supported by the Hungarian Government and co-financed by the European Social Fund through
the project “Talent management in autonomous vehicle control technologies” (EFOP-3.6.3-VEKOP-
16-2017-00001).

Data Availability Statement: The data and source is available at the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

Abbreviations
The following abbreviations and notations are used in this manuscript:

DDPG Deep Deterministic Policy Gradient
I/O Input–Output
JSON JavaScript Object Notation
MCTS Monte Carlo Tree Search
MAE Mean Absolute Error
MPC Model Predictive Control
NWU North West Up
ODE Ordinary Differential Equation
PBD Position Based Dynamics
PCA Principal Component Analysis
RBFNN Radial Basis Function Neural Network
ReLU Rectified Linear Unit
SELU Scaled Exponential Linear Unit
SMC Sliding Mode Control

Electronics 2021, 10, 928 25 of 28

Nomenclature
γG
[x/y] Dynamic quantity in inertial earth-fixed north-west-up coordinate system

γV
[x/y] Dynamic quantity in rotating vehicle-fixed forward-left-up coordinate system

γW
[f /r],[x/y]

Dynamic quantity in rotating front or rear wheel-fixed forward-left-up
coordinate system

Md Driving torque (non-negative) [Nm]
Mb Braking torque (non-negative) [Nm]
δsw Steering wheel angle [rad]

xG
v , yG

v
Position of vehicle center of gravity in x (north), and y (west) directions in
earth-fixed coordinate system [m]

ẋG
v , ẏG

v
Velocity of vehicle center of gravity in x (north), and y (west) directions in
earth-fixed coordinate system [m/s]

ẍG
v , ÿG

v
Acceleration of vehicle center of gravity in x (north), and y (west) directions in
earth-fixed coordinate system [m/s2]

ẋV
v , ẏV

v
Velocity of vehicle center of gravity in x (forward) and y (left) directions in
vehicle-fixed coordinate system [m/s]

ẍV
v,I , ÿV

v,I
Inertial acceleration of vehicle center of gravity in x (forward) and y (left)
directions in instantaneous vehicle-fixed coordinate system [m/s2]

ψv Yaw angle (rotation angle around up axis) in earth-fixed coordinate system [rad]

ψ̇v
Yaw rate (angular velocity in z (up) direction) of vehicle in vehicle-fixed
coordinate system [rad/s]

ψ̈v
Yaw acceleration (angular acceleration in z (up) direction) of vehicle in
vehicle-fixed coordinate system [rad/s2]

ρ[f /r] Turning angle of front and rear wheels [rad]
ρ̇[f /r] Angular velocity of front and rear wheels [rad/s]
ρ̈[f /r] Angular acceleration of front and rear wheels [rad/s2]
s[f /r],[x/y] Slips of front and rear wheels in x (longitudinal) and y (lateral) direction

ṡ[f /r],[x/y]
Slip derivatives of front and rear wheels in longitudinal (x) and lateral (y)
direction [1/s]

δ f Steering angle of front wheel [rad]
δ̇ f Steering angle derivative of front wheel [rad/s]

FG
[f /r]a,[x/y]

Acting tire forces of front and rear wheels in x (north) and y (west) directions in
earth-fixed coordinate system [N]

FV
[f /r]a,[x/y]

Acting tire forces of front and rear wheels in x (forward) and y (left) directions in
vehicle-fixed coordinate system [N]

FW
[f /r]a,[x/y]

Acting tire forces of front and rear wheels in x (longitudinal), and y (lateral)
directions in wheel-fixed coordinate systems [N]

FW
[f /r]n,[x/y]

Tire forces of front and rear wheels in x (longitudinal), and y (lateral) directions in
wheel-fixed coordinate systems in case of pure longitudinal or lateral slip [N]

FW
[f /r]c,[x/y]

Tire forces of front and rear wheels in x (longitudinal), and y (lateral) directions in
wheel-fixed coordinate systems in case of combined slip [N]

FG
d,[x/y]

Aerodynamic drag forces in x (north) and y (west) directions in earth-fixed
coordinate system [N]

FV
d,[x/y]

Aerodynamic drag forces in x (forward) and y (left) directions in vehicle-fixed
coordinate system [N]

FV
[f /r],z Tire load forces in z (up) direction in vehicle-fixed coordinate system [N]

M[f /r],d Driving torques of front and rear wheels [Nm]
M[f /r],b,
M[f /r],ba

Intended and acting braking torques of front and rear wheels [Nm]

M[f /r],rr,
M[f /r],rra

Calculated and acting rolling resistance torques of front and rear wheels [Nm]

c[f /r],M Torque distribution factor to front and rear wheels

ẋW
[f /r], ẏW

[f /r]
Center point velocities of front and rear wheels in x (longitudinal) and y (lateral)
directions in wheel-fixed coordinate system [m/s]

ẋV
[f /r], ẏV

[f /r]
Center point velocities of front and rear wheels in x (forward) and y (left)
directions in vehicle-fixed coordinate system [m/s]

v[f /r],r Rolling velocity of front and rear wheels [m/s]

Electronics 2021, 10, 928 26 of 28

s[f /r]d,[x/y] Damped slips of front and rear wheels in x (longitudinal) and y (lateral) direction
K[f /r],[x/y] Slip stiffness of front and rear wheels in x (longitudinal) and y (lateral) direction
k[f /r]d,x Actual longitudinal slip damping factor

l[f /r]a,[x/y]
Slip dependent actual relaxation lengths of front and rear tires in x (longitudinal)
and y (lateral) direction [m]

Xv State vector of vehicle
Ẋv Derivative of vehicle state vector
mv Total mass of vehicle [kg]
θv,z Moment of inertia of the vehicle around z (up) axis [kgm2]
hv Center of gravity height of the vehicle [m]
lv,[f /r] Horizontal distance of vehicle center of gravity and the front and rear axes [m]
Av, f Frontal area of the vehicle [m2]
cv,d Aerodynamic drag coefficient of the vehicle
ρa Density of air [kg/m3]
θ[f /r] Moment of inertia of the front and rear wheels [kgm2]
r[f /r] Radii of the front and rear wheels [m]

vba,0, vba
Minimal and actual rolling velocity at which braking torque shall be fully
applied [m/s]

kvba Braking torque dependent factor for vba [1/Ns]
A[f /r],rr,
B[f /r],rr,
C[f /r],rr

Rolling resistance coefficients [1], [s/m], [s2/m2]

vrra Rolling velocity at which rolling resistance torque shall be fully applied [m/s]

D[f /r],[x/y]
Maximum values of Magic Formula for front and rear wheels in x (longitudinal)
and y (lateral) direction

C[f /r],[x/y]
Shape factors of Magic Formula for front and rear wheels in x (longitudinal) and
y (lateral) direction

B[f /r],[x/y]
Stiffness factors of Magic Formula for front and rear wheels in x (longitudinal)
and y (lateral) direction

E[f /r],[x/y]
Curvature factors of Magic Formula for front and rear wheels in x (longitudinal)
and y (lateral) direction

µ[f /r] Coefficient of friction at front and rear wheels
k[f /r],x Initial longitudinal slip damping factor
vsd Rolling velocity at which slip damping should switch off

sda
Minimal value of wheels slips at which superposition of forces shall first
be considered

l[f /r],[x/y],
l[f /r]m,[x/y]

Initial and minimal relaxation lengths of front and rear tires in x (longitudinal)
and y (lateral) direction [m]

ks Steering ratio
Ts Settling time of steering mechanism
∆tv Sample time of vehicle model solution [s]
tv Time of vehicle motion simulation [s]
σp, σi

p Arc length, arc length knot points [m]
κp, κi

p Curvature of path, curvature profile knot points [1/m]
ẋp, ẋi

p Travel speed along path, travel speed profile knot points [m/s]
Ni

p Number of knot points specified for curvature and travel speed profile
∆ti

p Time needed to travel along path section i [s]
∆σi

p Length of path section i [m]
˜̇xi

p Average travel speed of path section i [m/s]
tp, ti

p Travel time along path, time needed to reach end of path section i [s]
ẍp, ẍi

p Longitudinal acceleration along path, and at path section i [m/s2]

ψ̇p , ψ̇
j
p

Yaw rate (angular velocity in z direction) along path, yaw rate output
samples [rad/s]

ÿp Centripetal acceleration along path [m/s2]

ψp, ψp,0, ψ
j
p

Yaw angle (rotation angle around up axis) along path and initially, yaw angle
output samples [rad]

Electronics 2021, 10, 928 27 of 28

xp, xp,0, xj
p

yp, yp,0, yj
p

Position in x (north), and y (west) directions in earth-fixed coordinate system
along path and initially, position output samples [m]

σp,s Arc length resolution for numeric calculations [m]
N j

p Number of reference trajectory points
Nr Number of road segments
ẋp,[min/max] Maximal and minimal allowed travel speed [m/s]
ÿp,max Maximal allowed centripetal acceleration [m/s2]
ri

p Radius of path section i [m]
ri

p,min Minimal allowed radius for path section i [m]
cr,min Multiplier factor for minimal allowed radii
cc,[min/max] Multiplier factor path section length in proportion to circumference
cs Proportion of straight sections compared to curved sections
ct Proportion of transition section length to normal section length
∆tnv Prediction time of neural network based vehicle model [s]
ξ General state variable
∆ξ Change of state variable in ∆tnv time
XVAR

nv Input vector of neural network variant VAR
YVAR

nv , Yi
nv Output vector of neural network variant VAR. Element of output vector

Itr
nv, Itt

nv Matrices of training and testing input samples
Otr

nv, Ott
nv Matrices of training and testing output samples

Ntr
v Total number of vehicle simulation samples generated for training

cXnv Vector of input scales (maximum absolute value of each variable in Xnv)
cYnv Vector of output scales (maximum absolute value of each variable in Ynv)
Lnv Training loss
nYnv Number of elements of output vector Ynv

wLnv , wi
Lnv

Weighting vector for squared error in estimation of Ynv. Element of
weighting vector

Ŷnv, Ŷi
nv Estimation of Ynv by the neural network. Element of estimation vector

tnv , tj
nv Time of neural network based vehicle simulation. Time at simulation step j [s]

ψnv
Yaw angle (rotation around up axis) in earth-fixed coordinate system. Computed
by neural network based vehicle model [rad]

xG
nv, yG

nv

Position of vehicle center of gravity in x (north), and y (west) directions in
earth-fixed coordinate system [m]. Computed by neural network based
vehicle model

ẍV
nv,I , ÿV

nv,I

Inertial acceleration of vehicle center of gravity in x (forward) and y (left)
directions in instantaneous vehicle-fixed coordinate system [m/s2]. Computed by
neural network based vehicle model

EMAX Maximum absolute estimation error of neural network
τr Run time as factor to real-time speed

References
1. Watzenig, D.; Horn, M. Automated Driving: Safer and More Efficient Future Driving; Springer: Berlin/Heidelberg, Germany, 2016.
2. Tettamanti, T.; Varga, I.; Szalay, Z. Impacts of Autonomous Cars from a Traffic Engineering Perspective. Period. Polytech. Transp.

Eng. 2016, 44, 244–250. [CrossRef]
3. Barsi, Á.; Csepinszky, A.; Lógó, J.; Krausz, N.; Potó, V. The Role of Maps in Autonomous Driving Simulations. Period. Polytech.

Transp. Eng. 2020, 48, 363–368. [CrossRef]
4. Colan, J.; Nakanishi, J.; Aoyama, T.; Hasegawa, Y. Optimization-Based Constrained Trajectory Generation for Robot-Assisted

Stitching in Endonasal Surgery. Robotics 2021, 10, 27. [CrossRef]
5. Beschi, M.; Mutti, S.; Nicola, G.; Faroni, M.; Magnoni, P.; Villagrossi, E.; Pedrocchi, N. Optimal Robot Motion Planning of

Redundant Robots in Machining and Additive Manufacturing Applications. Electronics 2019, 8, 1437. [CrossRef]
6. Zhang, X.; Ming, Z. Trajectory Planning and Optimization for a Par4 Parallel Robot Based on Energy Consumption. Appl. Sci.

2019, 9, 2770. [CrossRef]
7. Howard, T.M.; Kelly, A. Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 2007,

26, 141–166. [CrossRef]
8. Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.N.; Dolan, J.; Duggins, D.; Galatali, T.; Ferguson, D.; et al.

Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot. 2008, 25, 425–466. [CrossRef]

http://doi.org/10.3311/PPtr.9464
http://dx.doi.org/10.3311/PPtr.15852
http://dx.doi.org/10.3390/robotics10010027
http://dx.doi.org/10.3390/electronics8121437
http://dx.doi.org/10.3390/app9132770
http://dx.doi.org/10.1177/0278364906075328
http://dx.doi.org/10.1002/rob.20255

Electronics 2021, 10, 928 28 of 28

9. Ajanovic, Z.; Lacevic, B.; Shyrokau, B.; Stolz, M.; Horn, M. Search-Based Optimal Motion Planning for Automated Driving. In Pro-
ceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 4523–4530. [CrossRef]

10. Diachuk, M.; Easa, S.M.; Bannis, J. Path and Control Planning for Autonomous Vehicles in Restricted Space and Low Speed.
Infrastructures 2020, 5, 42. [CrossRef]

11. Hegedus, F.; Bécsi, T.; Aradi, S.; Szalay, Z.; Gáspár, P. Real-time optimal motion planning for automated road vehicles. In Proceed-
ings of the 21th IFAC World Congress, Berlin, Germany, 12–17 July 2020; pp. 15856–15861.

12. Bender, J.; Müller, M.; Macklin, M. Position-Based Simulation Methods in Computer Graphics. Eurographics 2015. [CrossRef]
13. Müller, M.; Heidelberger, B.; Hennix, M.; Ratcliff, J. Position based dynamics. J. Vis. Commun. Image Represent. 2007, 18, 109–118.

[CrossRef]
14. Harmon, D.; Zorin, D. Subspace integration with local deformations. ACM Trans. Graph. (TOG) 2013, 32, 1–10. [CrossRef]
15. von Radziewsky, P.; Eisemann, E.; Seidel, H.P.; Hildebrandt, K. Optimized subspaces for deformation-based modeling and shape

interpolation. Comput. Graph. 2016, 58, 128–138. [CrossRef]
16. Xu, W.; Umetani, N.; Chao, Q.; Mao, J.; Jin, X.; Tong, X. Sensitivity-optimized rigging for example-based real-time clothing

synthesis. ACM Trans. Graph. 2014, 33, 107:1–107:11. [CrossRef]
17. Luo, R.; Shao, T.; Wang, H.; Xu, W.; Chen, X.; Zhou, K.; Yang, Y. NNWarp: Neural network-based nonlinear deformation.

IEEE Trans. Vis. Comput. Graph. 2018, 26, 1745–1759. [CrossRef]
18. Holden, D.; Duong, B.C.; Datta, S.; Nowrouzezahrai, D. Subspace neural physics: Fast data-driven interactive simulation.

In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA,
USA, 26–28 July 2019; pp. 1–12.

19. Hu, S.; d’Ambrosio, S.; Finesso, R.; Manelli, A.; Marzano, M.R.; Mittica, A.; Ventura, L.; Wang, H.; Wang, Y. Comparison of
Physics-Based, Semi-Empirical and Neural Network-Based Models for Model-Based Combustion Control in a 3.0 L Diesel Engine.
Energies 2019, 12, 3423. [CrossRef]

20. Guarneri, P.; Rocca, G.; Gobbi, M. A Neural-Network-Based Model for the Dynamic Simulation of the Tire/Suspension System
While Traversing Road Irregularities. IEEE Trans. Neural Netw. 2008, 19, 1549–1563. [CrossRef]

21. Liu, X.; Hu, D.; Xiao, J.; Hu, J. Modeling and simulation on movement of air cushion vehicle based on neural network.
In Proceedings of the 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, China,
29–31 December 2017; pp. 513–516.

22. Swain, S.K.; Rath, J.J.; Veluvolu, K.C. Neural Network Based Robust Lateral Control for an Autonomous Vehicle. Electronics 2021,
10, 510. [CrossRef]

23. He, Z.; Nie, L.; Yin, Z.; Huang, S. A two-layer controller for lateral path tracking control of autonomous vehicles. Sensors 2020, 20, 3689.
[CrossRef]

24. Song, S.; Chen, H.; Sun, H.; Liu, M. Data Efficient Reinforcement Learning for Integrated Lateral Planning and Control in
Automated Parking System. Sensors 2020, 20, 7297. [CrossRef]

25. Hu, H.; Lu, Z.; Wang, Q.; Zheng, C. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep
Deterministic Policy Gradient Algorithm. Sensors 2020, 20, 5443. [CrossRef]

26. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gáspár, P. Motion Planning for Highly Automated Road Vehicles with a Hybrid Approach Using
Nonlinear Optimization and Artificial Neural Networks. Stroj. Vestn. J. Mech. Eng. 2019, 65, 148–160. [CrossRef]

27. Kővári, B.; Hegedüs, F.; Bécsi, T. Design of a Reinforcement Learning-Based Lane Keeping Planning Agent for Automated
Vehicles. Appl. Sci. 2020, 10, 7171. [CrossRef]

28. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gáspár, P. Model based trajectory planning for highly automated road vehicles. IFAC-PapersOnLine
2017, 50, 6958–6964. [CrossRef]

29. Schramm, D.; Hiller, M.; Bardini, R. Vehicle Dynamics; Springer: Berlin/Heidelberg, Germany, 2014.
30. Luhua, Z.; Qinggui, C.; Yushan, L.; Naixiu, G. An optimization technique of braking force distribution coefficient for truck. In Pro-

ceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun,
China, 16–18 December 2011; pp. 1784–1787.

31. Hall, D.E.; Moreland, J.C. Fundamentals of rolling resistance. Rubber Chem. Technol. 2001, 74, 525–539. [CrossRef]
32. Pacejka, H.B. Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 355–401. [CrossRef]
33. Snider, J.M. Automatic Steering Methods for Autonomous Automobile Path Tracking; CMU-RITR; Robotics Institute: Pittsburgh, PA,

USA, 2009.
34. Cantisani, G.; Del Serrone, G. Procedure for the Identification of Existing Roads Alignment from Georeferenced Points Database.

Infrastructures 2021, 6, 2. [CrossRef]
35. Parlangeli, G.; Ostuni, L.; Mancarella, L.; Indiveri, G. A motion planning algorithm for smooth paths of bounded curvature and

curvature derivative. In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki,
Greece, 24–26 June 2009; pp. 73–78.

36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Dong, Y.; Wang, D.; Zhang, L.; Li, Q.; Wu, J. Tightly Coupled GNSS/INS Integration with Robust Sequential Kalman Filter for

Accurate Vehicular Navigation. Sensors 2020, 20, 561. [CrossRef]

http://dx.doi.org/10.1109/IROS.2018.8593813
http://dx.doi.org/10.3390/infrastructures5050042
http://dx.doi.org/10.2312/egt.20151045
http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://dx.doi.org/10.1145/2461912.2461922
http://dx.doi.org/10.1016/j.cag.2016.05.016
http://dx.doi.org/10.1145/2601097.2601136
http://dx.doi.org/10.1109/TVCG.2018.2881451
http://dx.doi.org/10.3390/en12183423
http://dx.doi.org/10.1109/TNN.2008.2000806
http://dx.doi.org/10.3390/electronics10040510
http://dx.doi.org/10.3390/s20133689
http://dx.doi.org/10.3390/s20247297
http://dx.doi.org/10.3390/s20185443
http://dx.doi.org/10.5545/sv-jme.2018.5802
http://dx.doi.org/10.3390/app10207171
http://dx.doi.org/10.1016/j.ifacol.2017.08.1336
http://dx.doi.org/10.5254/1.3547650
http://dx.doi.org/10.1016/B978-0-08-097016-5.00008-5
http://dx.doi.org/10.3390/infrastructures6010002
http://dx.doi.org/10.3390/s20020561

	Introduction
	Literature Outlook
	Motivation

	Nonlinear Single Track Vehicle Model
	Model Components
	Dynamics of the Chassis
	Dynamics of the Wheels
	Steering Actuation
	Closed Loop Control
	Simulation of Model

	Random Trajectory Planning
	Motion Planning Based on Piecewise Linear Curvature and Travel Velocity Functions
	Random Planning

	Neural Network Based Vehicle Model
	Input–Output Concept
	Learning Sample Generation
	Neural Network Architecture
	Training Process
	Motion Prediction in Feedback Loop

	Simulation Results
	Regression Fit
	Prediction of Vehicle Motion
	Evaluation of Input–Output Concept

	Discussion
	Conclusions and Future Work
	References

