GDD ($\mathrm{n} 1, \mathrm{n}, \mathrm{n}+1,4 ; \lambda 1, \lambda 2$) for $\mathrm{n} 1=1$ or 2

Kasifa Namyaloa, Dinesh G. Sarvateb and Li Zhang c Mbarara University of Science and Technology,Uganda

Abstract

The main subject matter for this paper is GDDs with three groups of sizes $1, n,(n \geq 2)$ and $n+1$, respectively, and block size four. A block has Configuration (1, 1, 2), means the block has the point from the group of size 1 and one point from one of the other two groups and the remaining two points from the third group. A block has configuration $(2,2)$ if the block has exactly two points from each of the two groups of sizes n and $n+1$. First, we prove that these GDDs do not exist if we require that the number of the blocks having Configuration $(1,1,2)$ is equal to the number of block shaving Configuration $(2,2)$. Then we provide necessary conditions for the existence of a GDD ($\{1, \mathrm{n}, \mathrm{n}+1\}, 3,4 ; \lambda 1, \lambda 2$) and prove that these conditions are sufficient for several families of GDDs. We also prove several nonexistence results, where these usual necessary conditions are satisfied.

Key words: Group Divisible Designs (GDDs), Blocks and Configuration.

