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ABSTRACT. Human land-use legacies have long-term effects on plant community composition and ecosystem function. While ancient
and historical land use is known to affect biodiversity patterns, it is unknown whether such legacies affect other plant community
properties such as the diversity of functional traits. Functional traits are a critical tool for understanding ecological communities
because they give insights into community assembly processes as well as potential species interactions and other ecosystem functions.
Here, we present the first systematic study evaluating how plant functional trait distributions and functional diversity are affected by
ancient and historical Indigenous forest management in the Pacific Northwest. We compare forest garden ecosystems - managed
perennial fruit and nut communities associated exclusively with archaeological village sites - with surrounding periphery conifer forests.
We find that forest gardens have substantially greater plant and functional trait diversity than periphery forests even more than 150
years after management ceased. Forests managed by Indigenous peoples in the past now provide diverse resources and habitat for
animals and other pollinators and are more rich than naturally forested ecosystems. Although ecological studies rarely incorporate
Indigenous land-use legacies, the positive effects of Indigenous land use on contemporary functional and taxonomic diversity that we
observe provide some of the strongest evidence yet that Indigenous management practices are tied to ecosystem health and resilience.
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INTRODUCTION

Contemporary human land use tends to result in biodiversity loss
with negative consequences for ecosystem functions and services
(Newbold et al. 2015). For example, ongoing land-use changes
resulting from urbanization and agricultural development are
considered major threats to biodiversity and tend to fulfill short-
term human production needs (Tsiafouli et al. 2015, Beckmann
et al. 2019). More recently, however, increasing recognition of
Indigenous land-use practices has led to a more nuanced and
complex view of how people have affected contemporary
ecological communities in more positive ways (Garnettet al. 2018,
Levisetal.2018, Schusteretal. 2019, Faetal. 2020). For millennia,
human land-use and resource management strategies have
encompassed a broad range of practices with long-term effects
reaching into almost every bioregion of the world (Balée 2013,
Rick et al. 2013, Stephens et al. 2019). Research demonstrates
that some of these practices have led to an increase in plant species
diversity and in nutrient subsidies affecting elements such as
phosphorus and nitrogen (Cook-Patton et al. 2014, Trant et al.
2016, Odonne et al. 2019) and can leave unique genetic signatures
in extant plant communities (Thompson et al. 2015, Kistler et al.
2018). These land-use and management legacies contrast with the
reduced species diversity, habitat loss, and soil depletion often
associated with large-scale industrial land-use and other markers
associated with the Anthropocene (Sanderman et al. 2017).

While there is growing evidence that some ancient and historical
management practices can have long-persisting and positive
effects on plant communities, there has been little investigation
as to whether these legacies favor plants with particular life
histories, or whether they scale up to affect other ecosystem
properties (Mayfield et al., 2010, Mouillot et al. 2013). For
example, although Indigenous peoples’ land-use legacies are well
known to affect biodiversity at various scales (e.g., see Cook-

Patton et al. 2014 for alpha diversity, Odonne et al. 2019 for beta
diversity), increasingly conservation scientists are concerned not
only about the number of species present, but also the diversity
of their functional traits (Heilmeier 2019). Plant functional traits
are readily measurable characteristics of plant species that can
give insights into community assembly processes and ecological
interactions (e.g., drought tolerance, nitrogen-fixing capabilities,
etc.) (Lavorel 2013, Osborne et al. 2018). While functional traits
have been used to study wild ecosystems as well as
anthropogenically altered industrialized and agricultural
landscapes (e.g., Lohbeck et al. 2018), to our knowledge there has
been no previous application of functional diversity metrics to
Indigenous peoples’ managed landscapes.

While it is widely accepted that before colonial invasions
Indigenous societies in the Pacific Northwest of North America
did not develop agriculture per se, Indigenous peoples have
managed plant species and enhanced terrestrial landscapes in
unique and impactful ways (Turner 2014, Anderson 2013). For
millennia, Indigenous peoples increased plant productivity and
availability through long-distance transplanting, controlled
burning, weeding, fertilizing, coppicing, and pruning (to increase
flowering, yields of fruit, promoting health and vigor, and to
control size) (Lepofsky and Armstrong 2018, McCune et al. 2013,
Hoffman et al. 2017). Indigenous forest gardens are one type of
historically managed ecosystem that has left imprints on
contemporary landscapes in the Pacific Northwest. Forest
gardens are ecosystems characterized by perennial fruit and nut
tree and shrub species that continue to grow at archaeological
village sites (McDonald 2003, Armstrong 2017, Lepofsky et al.
2017) (Fig. 1). Despite the extensive evidence of Indigenous
peoples’land use and management practices, we know little about
how management legacies like forest gardens influence
contemporary ecosystem function and diversity.
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Fig. 1. The Village complex of Dalk Gyilakyaw consists of
three discrete villages and is the ancestral home of Gitsm’geelm
(Ts’msyen) people. Note the dramatic vegetation change
between the forest garden and encroaching conifers (“periphery
forests”). Photograph: S. Carroll.

Characterizing the effects of historical land use and management
is challenged by our limited ability to accurately reconstruct land-
use histories centuries or millennia after such activities ceased,
and by the fact that some management practices often mimic
natural processes, thereby obscuring such legacy effects (Lepofsky
and Armstrong 2018). Forest gardens provide a unique
opportunity to analyze functional traits and diversity, given that
many of these ecosystems persist at archaeological village sites,
despite the fact that over a century has elapsed since people last
maintained them. Still, remnant forest gardens on the west coast
of Canada (British Columbia) are slowly contracting due to
encroachment by conifer trees, which tend to colonize disturbed
woodlands in the region (e.g., Deal et al. 2004). Periphery conifer
forests at the interface of forest gardens were not managed to the
same extent and therefore provide an opportunity to examine how
Indigenous peoples’ land-use legacies may affect species
composition and functional diversity relative to naturally
occurring forests. We use plant inventories (n = 46) and examine
species richness and four functional traits, as well as functional
diversity metrics (measures of the range and distribution of
functional traits within communities) at four forest gardens and
periphery conifer forests at archaeological village complexes in
British Columbia (Fig. 2). The selected functional traits—seed
mass, shade tolerance, pollination syndrome, and dispersal
syndrome—represent axes of life history variation that we expect
to be affected by human actions (see Funk et al. 2017 on trait
selection), and thus we predict distinct patterns of trait
distributions between the forest gardens and periphery forests.

Specifically, we predict that understory species in the remnant
forest gardens will have greater functional diversity than those in
periphery forests, as well as distinct mean values for several
ecologically and ethnobotanically important functional traits. We
expect that forest garden sites will contain plants with larger
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average seed mass since larger seeds are associated with larger
fruits, which tend to have economic value for humans. We also
predict that periphery forest understory species will be composed
of more shade-tolerant species because their canopies are more
closed than those in the forest gardens. The open canopy structure
in forest gardens may be a result of these areas being cleared of
larger conifer trees for gardening (tending, weeding, pruning,
etc.), for building, and for defensive viewscapes. We anticipate
that a greater proportion of plantsin forest gardens will be animal-
pollinated and animal-dispersed since many of the edible fruit
and nut species for humans tend to be insect-pollinated and
favored by birds and other large mammals (e.g., bears). In
uncovering the specific effects of Indigenous land-use legacies,
we anticipate a greater understanding of ecosystem function and
productivity. This study provides a unique functional diversity
approach that can be used to consider the importance of
Indigenous peoples in conservation and decision-making,
following global calls to action on this topic (Garnett et al. 2018,
Fa et al. 2020).

Fig. 2. Location of Study Sites. Archaeological village
complexes in this study: (1) Datk Gyilakyaw on the
Kitsumkalum River, a tributary of the Skeena River; (2)
Kitselas Canyon (Gitsaex) on the Skeena River; (3) Say-mah-
mit in Burrard Inlet; (4) Shxwpdpélem on the Harrison River.
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MATERIALS AND METHODS

Study Sites

We adopted the term forest gardens to refer to novel ecosystems
that have been managed and maintained by Indigenous peoples
and thus have no natural analog. Forest gardens in the Pacific
Northwest differ from those in the tropics and subtropics in that
the latter are generally characterized by an emergent layer or
overstory of economically important trees associated with late-
stage succession plants and mixed cropping swidden systems (e.g.,
Ford and Nigh 2016). Temperate forest gardens in the Pacific
Northwest consist of a canopy layer of mostly small fruit and nut
trees, an understory of various berry species, and a forest floor of
herbaceous plants traditionally used for food and medicine
(Armstrong 2017, Lepofksy et al. 2017).

In order to investigate the functional diversity legacies of forest
gardens, we sampled plant communities from four archaeological
village complexes in British Columbia, Canada (Fig. 2). A village
complex refers to a landscape with two or more adjacent villages
consisting of multiple houses (5-20 houses per village). Two
Ts’msyen village complexes in northwestern British Columbia
(BC) and two Coast Salish complexes in southwestern BC were
chosen for their long-term and consistent occupation (> 2000
years), until around the late 1800s, when people were displaced by
settler-colonialism (e.g., people left villages after smallpox
epidemics, moved to settler forts and canneries for wage labor, etc.).
Three of the village complexes (Datk Gyilakyaw, Kitselas Canyon,
and Shxwpopélem) are situated on major salmon-spawning rivers
in transitional ecological zones between Coastal Western Hemlock
and the Interior Mountain Hemlock biogeoclimatic zones (Pojar
et al. 1987). The fourth village complex, Say-mah-mit, is a shell
midden site in the Coastal Douglas-fir and Coastal Western
Hemlock biogeoclimatic zones on a marine inlet near the city of
Vancouver. The disparate locations of the four archaeological sites
in distinct regions of coastal BC offer opportunity to study
vegetation patterns across varying regional vegetation types and
cultural complexes.

Archaeological village complexes in this study consist of the
material legacies of Indigenous societies that created and
maintained living structures, fish traps, forest gardens, root
gardens, cooking pits, and other features for defense, transport,
and food production. Each of the villages in this study has been
archaeologically investigated (MacDonald and Inglis 1980,
Coupland 1988, Lepofsky et al. 2017, Lyons and Ritchie 2017,
Morinetal.2018)and documented ethnographically (Wright 1962,
McDonald 2003). For each village complex we compare plant
communities in (1) forest gardens directly adjacent to
archaeological features and, (2) periphery conifer forests at the
margins of villages (~300+ m from closest village features such as
house depressions).

Field Sampling Protocol

We conducted botanical inventories in 5 x Sm plots in both forest
gardens and periphery forests. In each plot (n = 46), tree species
were counted, and percent cover was estimated for shrub (woody
species, including small trees under 3 m height), and herbaceous
(non-woody species) layers. Percent coverage was estimated as
expression of canopy cover (of the entire plot) for shrubs and
ground cover (of the entire plot) for herbaceous plants. We
calculated species richness as the number of tree, shrub, and herb
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speciesineach plot. Ateach of the archaeologicalsites, we selected
plots at random and additional plots were sampled until species
richness was recorded to redundancy (i.e., no new species
recorded). A buffer of roughly 50 m between forest gardens and
periphery forests at each site was used to delineate sampling areas.
This resulted in five to nine plots per forest garden and four to
five plots per periphery forest being sampled. Forest gardens and
periphery forests were ecologically comparable, occurring on
similar soil types and topographic positions.

Trait Selection and Database Assembly

To characterize the functional diversity of understory plant
communities, we focused on four traits: seed mass, shade
tolerance, pollination syndrome, and dispersal syndrome. We
chose these traits because they represent important axes of plant
life-history variation and can also have important consequences
for ecosystem functioning, while also having relevance to
ethnobotanical plant uses (Pérez-Harguindeguy et al. 2013). For
example, plants with animal-dispersed seeds may be able to
disperse long distances and may also contribute to wildlife habitat
by providing edible fruits; these plants are also more likely to be
eaten by people. We assembled trait data from the TRY database
(Kattge et al. 2020), the Fire Effects Information Service (https:/
www.feis-crs.org/feis/), and from other studies (Amador et al.
2013, Spasojevic et al. 2014). Traits were collected using standard
protocols (Pérez-Harguindeguy et al. 2013). Dry seed mass was
standardized to grams per 1000 seeds. For shade tolerance, species
were classified as having low, intermediate, or high shade
tolerance. Pollination syndrome was characterized for each
species as wind-pollinated, insect-pollinated, or self-pollinated.
Dispersal syndromes were classified as unassisted, wind-, water-,
or animal-dispersed. Our trait database represented > 80% of
total understory plant cover in each plot.

Functional Diversity Metrics

Functional diversity can provide insight into ecosystem
functioning, resilience, productivity (Whittaker 1960), and the
processes underpinning community composition (Mouillot et al.
2013). To assess functional diversity, we calculated three
functional diversity metrics using the R package FD (Mason et
al. 2005). To avoid redundancy given the strong correlations
between some functional diversity metrics (Mouchet et al. 2010),
we analyzed only three metrics: functional evenness (the evenness
of functional trait distribution in niche space; Villéger et al. 2008),
functional divergence (the degree of divergence in functional
traits within niche space; Villéger et al. 2008), and functional
dispersion (the average distance to the abundance-weighted
centroid of functional trait values; Laliberté, and Legendre 2010).
We omitted functional richness, a functional diversity metric often
analyzed alongside functional divergence and functional
evenness, as it does not account for dispersion or relative
abundances and is somewhat correlated with functional
dispersion (Mason et al. 2005).

Statistical Methods

To characterize community-level functional trait patterns, we
used linear mixed models, which have higher power and lower
type L error rates (i.e., fewer false positives) than other commonly
used trait-environment analysis approaches (Miller et al. 2018).
We ran a separate model for each of the four traits we analyzed
(See Supplementary Materials). Square-root-transformed species
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Table 1. Indicator species and ethnobotanical significance of forest gardens and periphery forests based on Turner (2014). Indicator
species differed significantly between both site types. Key: X, extensive use; X, some use; -, use not determined.

Species

Ethnobotanical Significance Indicator Values

Edible Edible Fuel  Technology Medicine Confidence P-value
(stored)
Forest Garden
Corylus cornuta (Beaked hazelnut) X X X X X 0.97954 0.001
Malus fusca (Pacific crabapple) X X X X - 0.97693 0.001
Viburnum edule (Highbush cranberry) X X - X X 091132 0.027
Sambucus racemosa (Red elderberry) X X - X X 1.0000 0.029
Maianthemum racemosum (Solomon's plume) - X - - X 1.0000 0.031
Rosa nutkana (Nootka rose) X X - X X 0.71933 0.034
Cornus sericea (Red osier dogwood) - - - X X 1.0000 0.04
Rubus spectabilis (Salmonberry) X X - X - 0.7563 0.042
Crataegus douglasii (Black hawthorn) X X - X X 1.0000 0.043
Lonicera involucrata (Black twinberry) - - - X X 1.0000 0.05
Periphery Forest
Tsuga heterophylla (Western hemlock) X X X X X 0.91442 0.001
Alnus rubra (Red alder) - - X X X 0.90114 0.004
Thuja plicata (Western redcedar) - - X X X 0.88835 0.008
Rubus armeniacus (Himalayan blackbelrry)T - X - - - 0.93166 0.035
Epilobium angustifolium (Fireweed) - X - X X 0.86155 0.045

+ . . .
recently introduced / invasive

abundance was used as the response variable. Site history (i.e.,
forest garden or periphery forests), the functional trait, and their
interaction were included as fixed effects. Species and site history
were included as random effects, and slopes of different species
were allowed to vary in response to site history. We evaluated
whether traits responded to site history by the significance of the
trait-site history interaction term (Miller et al. 2018). We
calculated P-values for interaction terms using 4000 bootstrapped
simulations per model with the bootMer package, as
recommended by Milleret al. (2018). The functional trait analyses
included only herbs and shrubs since our goal was to characterize
functional traits of the understory community.

We used simpler linear mixed models to test whether species
richness and functional diversity metrics responded to site history.
In these models, species richness or functional diversity metrics
were response variables, site history was the fixed effect, and
village was the random effect. We performed all analyses using
the Ime4 package in R (Bates et al. 2014). To identify species that
are characteristic of different land-use histories, we conducted an
indicator species analysis using the R package indicspecies (De
Caceres and Jansen 2015).

RESULTS

Plant communities in forest gardens and periphery forests were
found to be conspicuously distinct from one another even > 150
years after people left their villages following colonial-settler
invasions. One hundred and nineteen plant taxa were recorded
across the forest gardens and periphery forests at our four study
sites. Fifteen plant species were strongly associated with either
one type of site or the other (i.e., with no cross-over). Across all
archaeological village sites, ten plant species were found to be
significant indicators of forest gardens (P < 0.05), and these are
all ethnobotanically important plants (Table 1; see also Turner
2014). At two village sites, Robintown and Kitselas Canyon, two
indicator species—hazelnut (Corylus cornuta) and Pacific
crabapple (Malus fusca)—fall outside of their natural geographic

range, and both have well documented ethnographic evidence for
anthropogenic influence on their distributions (McDonald 2003,
Armstrong et al. 2018). It is likely that transplanting was a
significant management practice in the establishment of forest
gardens (Turner, Armstrong, and Lepofsky unpublished
manuscript). The co-occurrence of all ten indicator species has
yet to be observed outside of archaeological contexts (e.g.,
Klinkenberg 2020) and is therefore unlikely to be the result of
natural succession. Edible fruits, including hazelnut, Pacific
crabapple, highbush cranberry (Viburnum edule), red elderberry
(Sambucus  racemosa), Solomon’s plume (Maianthemum
racemosum), nooka rose (Rosa nutkana), salmonberry (Rubus
spectabilis), and black hawthorn (Crataegus douglasii) represent
80% of the forest garden indicator species — all ethnobotanically
salient and storable foods (Turner 2014). Five plant species,
predominantly conifer trees, are significant (P < 0.05) indicators
of the periphery forests, including western hemlock (7suga
heterophylla) and western redcedar (Thuja plicata) (Table 1).
Indicator species in periphery forests are typical dominant species
in the study region (Coastal Western Hemlock and the Interior
Mountain Hemlock Biogeoclimatic zones, Pojar et al. 1987). The
greater richness and diversity of plant foods in forest gardens than
in the periphery forests may reflect the fact that Indigenous
peoples encouraged some plants close to home for specific
properties like edibility and storability.

Forest gardens had significantly higher species richness than the
periphery forests (P < 0.001, Fig. 3). There was no significant
difference in the number of herbaceous species between village
forest gardens and periphery sites (P = 0.81); forest gardens
contained significantly more shrubs (P < 0.001), while periphery
forests contained more tree species (P = 0.02). Site history (forest
garden or periphery) influenced community functional trait
patterns for all four traits we examined. Forest garden plants had
larger seeds (P = 0.003), more animal-dispersed species (P <
0.002), more shade-tolerant species (P < 0.001, Fig. 4), and more
insect-pollinated species (P= 0.005) than periphery forests. Forest
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Fig. 3. Total Species Richness and Species Richness by

Lifeform. Richness is indicated overall between forest gardens

and periphery forests (averaged across the four of the study
areas) and among the three growth forms (trees, shrubs and

herbs).
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Fig. 4. Functional Trait Measures between Forest Gardens and

Periphery Forests. Comparisons of average seed mass, shade
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for herbs and shrubs across forest gardens and peripheral
forests — all are significantly higher in the forest gardens.
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gardens also had higher functional evenness (P < 0.001) and
functional dispersion (P = 0.001) than periphery forests, but they
differed only marginally in functional divergence (P = 0.07) (Fig.
5).

Fig. 5. Functional Diversity Measures between Forest Gardens
and Periphery Forests. Comparisons of functional diversity at
forest gardens and peripheral forests, functional divergence did
not show a significant response to site history (P = 0.07).
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DISCUSSION

Understanding drivers of plant traits and community diversity
and composition has posed a long-standing challenge for
ecologists because plant communities are influenced by multiple
factors operating at different spatial and temporal scales (Miller
et al. 2017, 2018). Human land-use legacies are a potentially
important driver of contemporary plant community structure
and function that is often rarely considered in ecological studies
(in part because historical and ancient activities are often difficult
to document). Our findings highlight that historical Indigenous
land-use legacies can support long-persisting (e.g., 150+ years)
high functional and taxonomic plant diversity relative to less
intensively utilized or managed landscapes nearby. Notably, this
contrasts with most studies of land-use legacies of human impact
which often find negative effects from human influences (e.g.,
industrial land-use; Newbold et al. 2015). The taxonomic diversity
of forest gardens in our study region is similar to that in
biodiversity studies of Indigenous village sites and forest gardens
in other parts of the world, including the Amazonian neotropics
(Balée 2013, Heckenberger et al. 2007), eastern Mexico (Gémez-
Pompa 1987), and northwestern Belize (Ford and Nigh 2016),
where people increased the diversity of desired food plants or
overall landscape (beta) diversity (Ross 2011, Odonne et al. 2019).
This research builds on an increasing awareness among scientists
that biodiverse ecosystems globally have been formed and
maintained by Indigenous peoples (Garnett et al. 2018, Fa 2020).
There is therefore a greater need to understand the role of
Indigenous management practices, including their impacts and
effects, and to comprehend the many variables that support the
resilience and other functions of managed forest systems.

Since forest gardens have greater functional diversity than
periphery forests, they likely provide a suite of ecosystem
functions that periphery forests do not (Whittaker 1960). The
higher functional evenness in forest gardens may indicate more
effective use of locally available resources (Mason et al. 2005),
while the less even distribution of functional traits in periphery
forests suggests that niche space may be underutilized. This could
potentially lead to lower productivity and higher susceptibility to
invasion (Mason et al. 2005). Indeed, Himalayan blackberry
(Rubus armeniacus), an invasive and non-native species, was an
indicator of village periphery sites (Table 1).
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The greater functional evenness observed in forest gardens
indicates a greater likelihood of resilience in the face of succession
(conifer encroachment). This may help explain the long-term
persistence of forest garden ecosystems, even after over a century
of disuse (see Petchey et al. 2004). Furthermore, the slow (~150
years) encroachment of conifers into forest garden openings is
notable, especially when compared to the rapid encroachment of
conifers into other anthropogenic gaps (Banner and LePage
2008). One hypothesis is that the slow encroachment is due to
underground processes (soil formation, mycorrhizal associations,
etc.) created by the long-term tending of these ecosystems.

Ironically, the resilience of forest gardens may also be related to
the reservation system imposed on Indigenous peoples.
Reservations typically account for less than 1% of Indigenous
peoples’ territories in British Columbia, but they are often
exempted from large-scale industrial logging that otherwise
occurs on adjacent lands. All four study sites are on reserves and
therefore, typical disturbances common in other parts of the
region — erosion, flooding, slope failure from logging, and other
linear developments that alter hydrology and vegetation — are
not present. Forest gardens growing on reserves remain under
Indigenous control and are generally protected (if only passively)
from destructive colonial land use. Indigenous agency — often
ignored in discussions about resilience — is often a major driver
of ecosystem resilience (e.g., Rotarangi and Russell 2009).
Understanding the many social and ecological reasons for the
resilience of forest gardens would be a worthwhile focus of future
research.

The greater abundance of large-seeded fruits in forest gardens
compared to periphery forests likely reflects the importance of
perennial fruit (e.g., huckleberries [Vaccinium spp.], highbush
cranberries, crabapples, saskatoon berries [Amelanchier alnifolial,
wild plum [Oemleria cerasiformis]) and nut species for people in
the Pacific Northwest. Management of perennial shrubs was an
essential and pervasive practice among Indigenous societies in the
Pacific Northwest (Turner and Peacock 2005). In habitats with
periodic disturbances, large-seeded plants typically have more
consistent reproductive success (Venable and Brown 1988),
perhaps making them an especially reliable food source near
home. However, in addition to the economic viability of larger
seed mass for humans (larger edible fruits), management practices
that have selected for large-seeded plants may have also conferred
long-persisting ecological effects. For example, large seeds tend
to be more tolerant of stressful conditions like drought and
competition in juvenile life stages (Westoby et al. 2002), which
may be another explanatory factor for the persistence of forest
gardens and an important feature of future conservation,
management, and land-use plans.

The conifer-dominant periphery forests contain fewer shade-
tolerant species compared to forest gardens, a finding which was
not consistent with our hypothesis that closed-canopy conifer
forests would favor shade-tolerant species. One explanation for
the pattern of more shade-tolerant species in forest gardens is that
shade-tolerant species tend to form in more structurally complex
communities, with multiple layers of vegetation (e.g., more plant
species simultaneously occupying canopy, understory, and shrub
layers, and forest floor). There are numerous species in the lower
layers of forest gardens (e.g., wild ginger [Asarum caudatum] and
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wild sarsaparilla [4ralia nudicaulis]) that are therefore sheltered
from the sun, despite the lack of a closed upper canopy. Another
potential explanation for this pattern is that periphery forests are
dominated by species in the emergent and canopy layers but have
few species in the understory or shrub layers, perhaps because
their environments are too dark for even many shade-tolerant
shrubs and herbs. Finally, we recognize that shade-tolerant plants
are not necessarily shade obligates, and may grow well in more
open environments as well.

The significantly greater number of animal-dispersed and
pollinated species in forest gardens relative to the periphery forests
is likely a result of people tending and translocating plants near
their villages (many animal-dispersed species are consumed by
humans). However, after people departed from their villages
during settler-colonial invasion (~1870), forest gardens continued
to provide habitat and food for mammals like moose, bear, and
deer, and still do today. Ts’msyen Elders have remarked that “old
villages” were the best places to hunt. This is unsurprising as forest
gardens create patchworks of diversity in otherwise conifer-
dominated landscapes. Functional traits like animal-dispersal
and pollination help us interrogate how forest gardens provided
ecosystem services to humans in the past, but also, how they
continue to provide ecosystem functions in the present (e.g.,
animal habitat and food). Furthermore, such traits may help us
understand how animals and other pollinators contribute to
biologically and functionally diverse ecosystems (e.g., animals
frequenting forest gardens are likely dispersing new seeds into
them).

Our findings suggest two important lessons for ecologists: (1) the
effects of land-use legacies on functional diversity may vary
culturally and temporally and (2) ecological studies that do not
consider Indigenous peoples’ land-use legacies may be missing a
major factor contributing to contemporary plant species
composition and functional diversity. Indigenous peoples’ land-
use legacies have produced contemporary plant communities with
substantial ecological importance, highlighting their potential
conservation value, and these landscapes also have historical,
cultural, and economic significance (e.g., Fa et al. 2020).
Indigenous land management created a resilient force against
some invasive species (e.g., Rubus armeniacus) and its effects
persist 150+ years after management, showing how people may
be drivers of relatively stable landscape changes. We encourage
archaeologists to treat contemporary plant communities around
archaeological sites as potentially part of the cultural landscape
(Lepofsky et al. 2020)

The cultural significance of forest gardens for many Indigenous
communities today is that they link people to their traditional
homelands and represent vestiges of their ancestors. Small-scale
and opportunistic berry harvests still occur at Gitseax and
Sts’ailes. Legacy plants and associated traditional management,
harvesting, and preservation activities also offer descendant
communities an important basis for intergenerational knowledge
sharing and potential models for food sovereignty initiatives
(Nabhan 2014, Wilder et al. 2016). We are only beginning to
understand complex eco-human dynamics and as such, future
studies should address other plant traits that might have been
affected by traditional land-use practices and also consider other
lines of evidence (e.g., edaphic and paleoethnobotanical studies,
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etc.). Traits related to resource acquisition and stress tolerance,
such as specificleaf area, might be especially important predictors
of how plant community composition will shift under global
pressures such as climate change (Sayer et al. 2017); further
research into such traits could give insight into whether specific
traditional management practices can confer plant community
resilience in a changing world.

Responses to this article can be read online at:
https://www.ecologyandsociety.org/issues/responses.

php/12322
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