
SANet: Scene Agnostic Network for Camera
Localization

by

Ziqian Bai

B.Sc., The Chinese University of Hong Kong, 2018

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Ziqian Bai 2021
SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work is held by the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Ziqian Bai

Degree: Master of Science

Thesis title: SANet: Scene Agnostic Network for Camera Localization

Committee: Chair: Mo Chen
Assistant Professor, Computing Science

Ping Tan
Supervisor
Associate Professor, Computing Science

Yasutaka Furukawa
Committee Member
Associate Professor, Computing Science

Manolis Savva
Examiner
Assistant Professor, Computing Science

ii

Abstract

This thesis presents a scene agnostic neural architecture for camera localization, where model pa-

rameters and scenes are independent from each other. Despite recent advancement in learning based

methods with scene coordinate regression, most approaches require training for each scene one by

one, not applicable for online applications such as SLAM and robotic navigation, where a model

must be built on-the-fly. Our approach learns to build a hierarchical scene representation and pre-

dicts a dense scene coordinate map of a query RGB image on-the-fly given an arbitrary scene. The

6 DoF camera pose of the query image can be estimated with the predicted scene coordinate map.

Additionally, the dense prediction can be used for other online robotic and AR applications such as

obstacle avoidance. We demonstrate the effectiveness and efficiency of our method on both indoor

and outdoor benchmarks, achieving state-of-the-art performance among methods working for arbi-

trary scenes without retraining or adaptation.

Keywords: RGB Camera Localization; Scene Agnostic; Scene Coordinate Regression; Deep Learn-

ing; ICCV 2019

iii

Dedication

Plead for mercy from God, my source of wisdom.

iv

Acknowledgements

I would sincerely appreciate my supervisor Professor Ping Tan for his insightful thoughts, invaluable

support, and patient guidance during the completion of this thesis. Thanks Ping for leading me into

the academic field of 3D computer vision and continuing to shape my research taste. It is my great

honor to work with Ping who always cares for his students.

I would also express my appreciation to Professor Yasutaka Furukawa, Luwei Yang, Chengzhou

Tang, Honghua Li for their collaborations. Thanks Professor Yasutaka Furukawa for fruitful discus-

sions through out the study. Also thanks Luwei Yang and Chengzhou Tang who mentored me during

my first research project.

Deepest appreciation to my loving family. I wouldn’t be able to achieve where I am without

your unconditional love, encourage, and support through out my life.

I’m also grateful to all the people who helped me and shared this journey with me, including but

not limited to, Feitong, Sicong, Zeshi, Jie, Fei-peng, Rakesh, Jamal, as well as all other lab members

and my friends.

Thanks and wish you all the best!

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related Works 3
2.1 Feature Matching & Camera Fitting . 3

2.2 Random Forests . 3

2.3 Convolutional Neural Networks . 4

2.4 Methods On or After the Publication of SANet 4

3 Method 5
3.1 Constructing Pyramids . 5

3.1.1 Scene Pyramid . 5

3.1.2 Query Feature Pyramid . 6

3.2 Predicting Scene Coordinates . 6

3.2.1 Query-Scene Registration (QSR) . 8

3.3 Query Pose Estimation . 9

3.4 Training . 10

4 Experiments 11
4.1 Experimental Setup . 11

4.1.1 Datasets . 11

vi

4.1.2 Training Data . 11

4.1.3 Testing Data . 12

4.1.4 Implementation Details . 12

4.1.5 Comparisons . 12

4.2 Efficiency . 13

4.3 Localization Accuracy . 14

4.4 Scene Coordinate Accuracy . 15

4.5 Detailed Analysis . 16

4.5.1 Compare with Explicit Matching . 16

4.5.2 Scene Reference Feature . 17

4.5.3 Fine-tuning on Outdoor Dataset . 19

4.5.4 Reliance on Retrieval Quality and Number of Images in the Scene Pyramid 19

5 Conclusion 20

Bibliography 21

vii

List of Tables

Table 4.1 Time of each step w.r.t 7000 scene images. 13

Table 4.2 Time of each step w.r.t number of scene images. 13

Table 4.3 Indoor and Outdoor localization accuracy on 7Scenes and Cambridge. . . . 15

Table 4.4 Pose median errors w/ or w/o fine-tuning (F.T.) on outdoor scenes. 19

viii

List of Figures

Figure 3.1 The overview of our pipeline. After the image retrieval (left most), we first

construct the representations (i.e. 2 pyramids) of the scene and the query

image (Yellow region. Section 3.1). Then, given the pyramids, we predict

the scene coordinate map of the query image in a coarse-to-fine manner

(Blue region. Section 3.2). Finally, the camera pose can be computed by

RANSAC+PnP (Section 3.3). 6

Figure 3.2 The coarse-to-fine scene coordinates prediction from level 1 to level 2. For

level l > 2, the process is identical to level 2. We sequentially apply the

pixel-wise operation, named as Query-Scene Registration (QSR), and the

convolutional operation (i.e. cross-pixel), named as Fusing, to produce the

predictions. 7

Figure 3.3 The Query-Scene Registration (QSR) at level l, which learns to register the

feature vector El[p] into the 3D scene space represented by Sl and produce

the scene reference feature Rl[p] that encodes the registration result. For

the initial level l = 1, we have S1
sub = S1. 8

Figure 4.1 Percentage of predicted camera poses falling within the error threshold of

(5◦, 5cm) on 7Scenes indoor dataset by RF1 [4], RF2 [24], DSAC++ [5],

DSAC [3], InLoc(Skip10) [40], and our approaches. 14

Figure 4.2 Cumulative Distribution Function of scene coordinate errors compared

with InLoc [40], DSAC [3] and DSAC++ [5] on 7Scenes. 16

Figure 4.3 Scene coordinate map comparison with InLoc [40] and the ground truth

(G.T.) on 7Scenes, the scene coordinates xyz are encoded in rgb chan-

nels for visualization. The last three columns show the geometry (Geo.)

comparison by reconstructing the mesh from the scene coordinate map. . . 17

ix

Figure 4.4 (a) A pixel Que in the query image is marked in Green. (b) The ground

truth correspondence point Pos in a scene reference image is marked in

Red, while a randomly selected point Neg is marked in Blue. (c) Two sets

of scene reference features from Experiment-1 are projected in 2D space by

PCA. (d) Four channels (i.e., the i-th chanels) of scene reference features

from Experiment-2 are plotted w.r.t. a 1m × 1m × 1m cube, where dark

blue stands for high channel activation. Please refer to the main text for

details. 18

Figure 4.5 Pose accuracy w.r.t Retrieval quality and Number of images in the scene

pyramid. 19

x

Chapter 1

Introduction

The ability to perceive, understand, and analyze our 3D world has been one of the cornerstones for

various intelligence systems such as Autonomous-driving, Augmented/Virtual Reality, Embodied

AI and etc, which makes 3D Computer Vision attract more and more research attentions. Among

various 3D problems, one fundamental task is to answer "Where am I?" based on some visual inputs

such as a query image, named as "Camera Localization". More specifically, camera localization

amounts to determining the 6 degree-of-freedom orientation and position (6 DoF pose) of a camera

from the image it captures in a reference scene. It is a critical component for many applications

such as simultaneous localization and mapping (SLAM), location recognition, robot navigation, and

augmented reality. Conventionally [40, 35, 34, 21, 20, 10], this problem is solved by first matching a

set of feature correspondences between the query image and a reference scene (either represented by

a 3D point cloud appended with feature descriptors or a set of reference images), and then estimating

the 6 DoF camera pose by minimizing some energy function defined over these correspondences

(e.g. re-projection error). This class of approaches are often brittle due to the hand-crafted feature

descriptor matching pipeline.

Recently, learning based approaches [24, 4, 15, 3] have advanced the performance of camera

localization with random forests (RFs) and convolutional neural networks (CNNs). Some works [15,

14, 44, 2] directly regress the camera poses using CNNs; while others [13, 42, 36, 3, 5] first estimate

a scene coordinate map, defining the xyz coordinates of each pixel in the query image. The scene

coordinate map constructs the 2D-to-3D correspondences, from which we can perform random

sample consensus (RANSAC) to reject outliers and compute the camera pose with Perspective-

n-Points (PnP), which is a well posed optimization problem. These methods often enjoy better

robustness than the conventional pipeline. However, the RFs or CNNs are typically learned from

images and 3D data for a specific scene and require retraining or adaptation before they can be

applied to a different scene. While online adaptation is possible, it has only been demonstrated on

RFs [8] with RGB-D query images. CNNs typically produce higher localization accuracy, but it is

unknown how a CNN can be quickly adapted to a different scene, which limits their applications

when the scene is novel or progressively updated.

1

We follow these learning based approaches for camera localization and aim to design a scene

agnostic neural model that works on unseen scenes without retraining or adaptation. This capability

is important for online applications such as SLAM and robotic navigation where novel scenes or

scene updates need to be handled in real-time, thus making expensive retraining impossible. We

focus on the problem of scene coordinate map estimation, and adopt a similar method as [5] to

compute the camera pose from the estimated scene coordinate map, while striving to make this

process scene agnostic. The estimated dense scene coordinate map might be further applied for

other applications such as robot obstacle avoidance.

To achieve this goal, we design a deep neural network named as SANet. Instead of learning

to memorize specific scene information in network weights as previous methods, SANet learns to

extract a scene representation, which is a hierarchical pyramid of features appended to 3D points,

from some reference scene images and their scene coordinates (i.e. xyz positions of pixels in the

world coordinate space). At querying time, this scene representation is combined with features from

the query image to predict a dense scene coordinate map in a coarse to fine manner. In order to fuse

the query image feature and the scene representation, we propose a PointNet [27, 28] inspired ar-

chitecture, which can handle unordered 3D point clouds as well as leverage context information in

the query image, to predict the scene coordinate map. Intuitively, SANet can be viewed as learning

to fit the query image onto the 3D scene surfaces in a visually consistent manner. By explicitly ex-

tracting a scene representation, our SANet can be applied to different scenes without any retraining

or adaptation.

To demonstrate the effectiveness of the proposed method, we evaluate our method on several

benchmark datasets including indoor scenes (7Scenes [36]) and outdoor scenes (Cambridge [15]).

We are able to achieve state-of-the-art performance among methods working for arbitrary scenes

without retraining or adaptation. The code is available at

https://github.com/sfu-gruvi-3dv/sanet_relocal_demo.

This work was published as:

Luwei Yang*, Ziqian Bai*, Chengzhou Tang, Honghua Li, Yasutaka Furukawa, Ping Tan.

"SANet: Scene Agnostic Network for Camera Localization". In International Conference on Com-

puter Vision (ICCV), 2019. (* indicates equal contribution)

In the rest of this thesis, Chapter 2 introduces the related works of RGB camera localization

where a 3D model of the reference scene is available. Chapter 3 illustrates the proposed SANet

architecture for performing scene coordinate regression in a scene agnostic manner and how cam-

era poses can be further computed. Chapter 4 shows various experimental results on camera pose

accuracy, scene coordinate map quality, efficiency, and analysis of our method. Finally, Chapter 5

concludes our proposed SANet.

2

https://github.com/sfu-gruvi-3dv/sanet_relocal_demo

Chapter 2

Related Works

As a classic 3D computer vision task, camera localization has been heavily studied, deriving a vast

literature. Thus it is impractical to give a comprehensive review in this thesis. Here we will briefly

discuss related works of localizing an RGB query image in a reference scene whose images and 3D

models (point clouds, meshes or depths + poses) are available.

2.1 Feature Matching & Camera Fitting

In conventional methods, a few neighboring images are first retrieved, a set of 2D-3D correspon-

dences are then matched between the query image and 3D scene points based on some hand-crafted

descriptors, and camera poses are finally recovered by the PnP algorithms [12, 17]. These works

focus on making the hand-crafted descriptor either more efficient [22, 35], more robust [33, 39],

or more scalable to large outdoor scenes [20, 32, 35]. However, the hand-crafted feature detectors

and descriptors only work with well textured images. Recently, InLoc [40] pushed forward this di-

rection by replacing the hand-crafted features by CNNs, i.e. NetVLAD [1] for image retrieve and

VGG [37] for feature matching. While achieving strong performance, it is still based on the con-

ventional pipeline of correspondence matching and camera model fitting. In comparison, learning

based methods (including our work) can regress a scene coordinate map from the query image di-

rectly, which has the advantages of exploiting global context information in the image to recover

3D structures at textureless regions. Besides better robustness, the dense scene coordinate map as a

dense 3D reconstruction might be used for robot obstacle avoidance or other applications.

2.2 Random Forests

Shotton et al. [36] proposed to regress the scene coordinates using a Random Forest, and this

pipeline was extended in several following works. Guzman-Rivera et al. [13] trained a random

forest to predict diverse scene coordinates to resolve scene ambiguities. Valentin et al. [42] trained a

random forest to predict multi-model distributions of scene coordinates for increased pose accuracy.

Brachmann et al. [4] addressed camera localization from an RGB image instead of RGB-D, utiliz-

3

ing the increased predictive power of an auto-context random forest. None of these works are scene

agnostic. A recent work [8] has generalized this approach to unseen scenes with an RGBD camera

and online adaptation. Compared with these works, our method is scene agnostic and only requires

an RGB image for camera localization, which is appliable in both indoor and outdoor scenes.

2.3 Convolutional Neural Networks

CNN based methods have brought major advancements in performance. PoseNet [15] solved cam-

era localization as a classification problem, where the 6 DOF camera poses are regressed directly.

Several follow-up works further improved the training losses [14] or utilized the temporal depen-

dency of videos to improve localization accuracy [44]. The recent work [2] learned a continuous

metric to measure overlap between images, and the relative camera pose was regressed between the

query image and its closest neighbor. Instead of direct camera pose regression, more recent works

use CNNs to regress the scene coordinates as intermediate quantities [19, 3, 5] serving as 2D-to-3D

correspondences, because the following camera pose estimation from a scene coordinate map is a

well-behaved optimization problem. Our method belongs to this categories and use CNNs to predict

the scene coordinate of an image. However, our network extracts hierarchical representations from

scenes rather than learns a set of scene-specific network weights. In this way, our method is scene

agnostic and can be applied to unknown scenes without expensive retraining or adaptation.

2.4 Methods On or After the Publication of SANet

In the section, we briefly summary related works on or after the publication of SANet in ICCV

2019. There are mainly 2 directions: scene coordinate regression, and feature matching.

For scene coordinate regression, Brachmann et al. [6] presented Expert Sample Consensus

(ESAC), an ensemble formulation of Differentiable Sample Consensus (DSAC), to achieve scene

coordinate regression in large scale scenes. Li et al. [18] proposed a hierarchical classification +

regression framework for scene coordinate prediction to improve the performance as well as deal

with large scenes. Zhou et al. [47] designed a temporal localization method by extending scene co-

ordinate regression to the time domain with kalman filtering. Despite the impressive results made on

small scenes, these methods are still inferior to feature matching counterparts on large scale outdoor

scenes, and also require scene specific training.

For feature matching, many works [31, 43, 11, 29, 23] were proposed to learn accurate and

robust feature detectors and descriptors. Rocco et al. [30] also included the matching process into the

learning framework. Cheng et al. [9] and Sarlin et al. [31] designed hand-crafted matching processes

for better disambiguation and efficiency. Some works focused on other aspects of the problem,

such as pose verification [41], privacy preserving [38], and scene compression [7]. In general, this

category of methods achieve better performances than scene coordinate regression methods on large

scale scenes, while a thorough comparison on small scenes has not been investigated.

4

Chapter 3

Method

The overview of our pipeline is illustrated in Figure 3.1. The inputs to our method are a set of scene

images {Is}all with its associated 3D scene coordinates {Xs}all and a query image q captured in

the same scene. The output is an estimated 6D camera pose Θq = [Rq|tq] of the query image.

To narrow down the input space for better efficiency and performance, we first use NetVLAD [1]

to retrieve n nearest neighbors of the query image from all scene images. Then, we propose a neural

network to regress the scene coordinate map of the query image by interpolating the 3D coordinates

associated with the retrieved scene images. The interpolation is done by firstly constructing hierar-

chical representations of the scene and the query image respectively through our network, named

as scene pyramid and query feature pyramid (Section 3.1). With two constructed pyramids, we de-

sign two modules: Query-Scene Registration (QSR) as well as Fusing, and apply them iteratively to

regress the scene coordinate map in a coarse-to-fine manner (Section 3.2). The architecture is End-

To-End trainable to perform both tasks of constructing the pyramids and predicting dense scene

coordinate map. In the end, the camera pose of the query image can be estimated by RANSAC+PnP

similar to [5] (Section 3.3). The training process of our model is introduced in Section 3.4.

3.1 Constructing Pyramids

3.1.1 Scene Pyramid

A scene retrieved by NetVLAD [1] contains a collection of n reference RGB images {Is|s =
1, ..., n}vlad (256 × 192 pixels in our implementation), each of which is associated with a scene

coordinate map Xs ∈ {Xs}vlad (either dense or sparse) defined in the world coordinate system. We

represent a scene as a pyramid that encodes both geometry and appearance information at different

scales. Each pyramid level consists of a set of 3D points (i.e. scene coordinates) appended with their

image features extracted by a CNN.

To construct such a scene pyramid, we first extract features from each scene image Is by a

convolutional neural network. Specifically, we use the Dilated Residual Network (DRN38) [46] as

our feature extractor and obtain feature maps at different resolutions by removing all dilations and

applying stride-2 down-sampling at the 1st ResBlock of each resolution level. We extract the

5

…

Scene
Points

feat.xyz
feat.xyz

feat.xyz

level 1

Scene
Points

feat.xyz
feat.xyz

feat.xyz

level 2
…

Scene
Points

feat.xyz
feat.xyz

feat.xyz

level 5
……

Scene PyramidScene Images
256x192

Scene Img.
Subset

DRN38 Scene Img.
Features

Query Feat
Pyramid

level 1
4x3

F F

QSR

Fusing

Coord.

Combined
Feat.

level 2
8x6

F F

QSR
&

Fusing
X2

QSR
&

Fusing
X2

… …

… …

… …

Coord.

Combined
Feat.

Raw Scene Coordinate
Map

D
ow

n Sam
ple

D
ow

n Sam
ple

N
etV

LA
D

N
etV

LA
D

Query Image
256x192

Coord.

Combined
Feat.

level 5
64x48

F F

PnP PnP

Camera Pose

QSR

Shared

Fusing Fusing

QSR

… …

Iterative Scene Coordinate Prediction

Figure 3.1: The overview of our pipeline. After the image retrieval (left most), we first construct
the representations (i.e. 2 pyramids) of the scene and the query image (Yellow region. Section 3.1).
Then, given the pyramids, we predict the scene coordinate map of the query image in a coarse-to-
fine manner (Blue region. Section 3.2). Finally, the camera pose can be computed by RANSAC+PnP
(Section 3.3).

feature maps {Fl
s|l = 1, ..., 5} from DRN38 with resolutions increasing from 4× 3 to 64× 48 by a

factor of 2. The weights of the network are shared by all scene images.

Then, the scene coordinate map Xs is resized to match the resolution of feature maps at differ-

ent levels. Here, we reduce the resolution of Xs by applying Average Pooling with a 2 × 2
kernel, and ignore non-existing points when inputs are sparse. The scaled scene coordinate maps

are denoted as {X̃l
s|l = 1, ..., 5}.

Finally, at each level l, we extract all pixels with valid scene coordinates {x̃l
i} and concatenate

them with corresponding feature vectors {f l
i}. In this way, we get the scene pyramid S = {Sl|l =

1, ..., 5} = {(f l
i , x̃l

i)|l = 1, ..., 5; i = 1, ...,ml}, which is a set of multi-scale point clouds equipped

with image feature vectors, where ml is the number of points at level l.

3.1.2 Query Feature Pyramid

The feature pyramid of the query image E = {El|l = 1, ..., 5} is extracted by the same DRN38

network used for constructing the scene pyramid S, thus with identical feature dimensions as

{Fl
s|l = 1, ..., 5}.

3.2 Predicting Scene Coordinates

Given these two types of pyramids S and E, we predict the scene coordinate map Ŷ for the query

image q. To better encode the global scene context and speedup the computation, we take a coarse-

to-fine strategy. The network first produces a coarse scene coordinate map at the resolution of 4× 3
as a rough estimation, which is then upsampled and refined level-by-level to yield more detailed

predictions.

6

QSR

Query
Feat.

Ref.
Feat.

Scene
Pyramid

Combined
Feat.

Combined
Feat.

up

conv 1x1 conv 1x1

up

Pred.
Coord. Pred.

Coord.

QSR

Ref
Feat.

Scene
Pyramid

level 1 level 2

to level 3
to level 3

Contextual
Info.

Contextual
Info.

ResBlock
ResBlockconcate.

ResBlock
ResBlock

fusingfusing

ResBlock
ResBlock

Figure 3.2: The coarse-to-fine scene coordinates prediction from level 1 to level 2. For level l > 2,
the process is identical to level 2. We sequentially apply the pixel-wise operation, named as Query-
Scene Registration (QSR), and the convolutional operation (i.e. cross-pixel), named as Fusing, to
produce the predictions.

At each level, we sequentially apply two modules to predict the scene coordinate map: (1) The

Query-Scene Registration (QSR) module, which is a pixel-wise operation that learns to register each

pixel of the query image feature into the 3D scene space by interpolating the 3D coordinates of the

scene pyramid based on visual similarity; (2) The Fusing module, which fuses cross-pixel image

context information to regularize the pixel-wise registration given by the QSR. For simplification,

we will treat the QSR module as a black box for now to explain the coarse-to-fine scene coordinate

map prediction. We will discuss the QSR module in detail later. This process is illustrated in Fig-

ure 3.2, where we only show the details of level 1 and 2 since the process of level l > 2 is identical

to that of level 2.

At the initial level l = 1, we predict the coarsest scene coordinate map Ŷ1 from the first level

pyramids E1 and S1. First, we register each pixel of the feature E1 to the 3D scene space by feeding

E1 and S1 into the QSR module, which outputs the scene reference feature R1 that encodes the

registration results. Second, since each pixel of R1 is computed independently and may contain

erroneous predictions (e.g. featureless area), we further regularize the QSR registration by fusing it

with the query image feature E1 that encodes the cross-pixel contextual information as the additional

geometry constraint. Specifically, R1 is concatenated with the query image feature E1, and send to a

ResBlock to yield a combined feature C1, which is decoded by a 1×1 Conv to get the prediction

Ŷ1. Note that both Ŷ1 and C1 will be utilized by the next level.

The finer levels l > 1 share a similar process as the initial one but taking in additional inputs, i.e.,

the combined feature Cl−1 and the prediction Ŷl−1 from the previous level, which are up-sampled

by nearest neighbor interpolation yielding up(Cl−1) and up(Ŷl−1) to match the resolution of the

current level. The QSR module takes the query image feature El, the l-th level scene pyramid Sl (i.e.

7

p

p
centroid

r

xyz feat.

… …

copy &
concate.

……

M
LP

M
LP

PointN
et

PointN
et

pfeat feat

for pixel p at level l

Scene
Ref. Feat.

Query
Feat.

Scene
Pyramid

Pre. Predict.
up-sampled

Samples

xyz xyz

xyz xyz
concate.

FC
FC

B
N

B
N

R
eLU

R
eLU

FC
FC

B
N

B
N

R
eLU

R
eLU

FC
FC

B
N

B
N

R
eLU

R
eLU

R
eLU

R
eLU

M
ax

Pool
M

ax
Pool

MLP PointNet

Figure 3.3: The Query-Scene Registration (QSR) at level l, which learns to register the feature vector
El[p] into the 3D scene space represented by Sl and produce the scene reference feature Rl[p] that
encodes the registration result. For the initial level l = 1, we have S1

sub = S1.

the 3D points with deep features), as well as the previous prediction up(Ŷl−1) as inputs to produce

a scene reference feature Rl. Then, we fuse El with up(Cl−1) from the previous level to better

leverage high-level image context. The resulting feature map is further fused with Rl and decoded

by 1× 1 Conv, producing the combined feature Cl and the scene coordinate map prediction Ŷl of

the current level. To reduce the memory cost and avoid over-smoothed results, we do not fuse the

image context at the final level l = 5. Instead, we directly decode R5 by a 1 × 1 Conv to get the

prediction.

3.2.1 Query-Scene Registration (QSR)

In QSR (see Figure 3.3), the query image feature El is processed pixel-wisely. For each pixel p
in El, the QSR module learns to register the feature vector El[p] into the 3D scene space of Sl,

and encode the registration result as a scene reference feature Rl[p]. Two sub-steps are involved in

this module: (1) Sample a subset of 3D points Sl
sub from the l-th level scene pyramid Sl, denoted

as Sl
sub = {(f l

i , x̃l
i)|i = 1, ..., kl} ⊆ Sl, where kl is the number of sampled points, f l

i and x̃l
i are

feature vectors and scene coordinates as in Section 3.1.1; (2) Execute the registration through a

PointNet [27]-inspired architecture with El[p] and Sl
sub as inputs.

At the level l, to narrow down the solution space and let the network focus on local details,

we sample a subset of 3D points Sl
sub ⊆ Sl from the neighbourhood space of the previous level

prediction up(Ŷl−1)[p], which is inspired by the Sampling & Grouping strategy in Point-

Net++ [28]. More specifically, we define a sphere region centered at up(Ŷl−1)[p] with radius rl as

the neighbourhood space, and randomly select 3D points of the l-th level scene pyramid Sl falling

8

in this sphere. When l = 1, we simply have S1
sub = S1, namely all points of S1 are used. During the

sampling, we normalize the 3D scene space represented by Sl
sub through subtracting up(Ŷl−1)[p]

from the 3D coordinates {x̃l
i} for better generalization.

Given the sampled 3D points Sl
sub and the query image feature vector El[p], we design a net-

work based on PointNet [27] to process the query-to-scene registration. PointNet only processes the

positional information encoded in the xyz coordinates. However, our network needs to filter the

positional information according to the appearance correlation between the query pixel and the 3D

scene. To do so, we adopt an MLP to extract the appearance correlation between the feature vector

El[p] and the scene appearance feature f l of each scene point in Sl
sub. The resulting features are

appended with the 3D coordinates x̃l and fed into a PointNet [27] (without Spatial Transform) to

produce the scene reference feature Rl[p] that encodes the registration result. Note that we addi-

tionally append up(Ŷl−1)[p] to the feature vector output by the PointNet [27] to provide enough

information for recovering the normalization of the 3D scene space represented by Sl
sub.

3.3 Query Pose Estimation

Given the predicted scene coordinate map Ŷ at the highest resolution, the 6D camera pose Θq of the

query image can be estimated by the PnP algorithm [12, 17]. Since the scene coordinate map may

contain outliers, we adopt a RANSAC+PnP pipeline similar to DSAC++ [5] for robust estimations.

First, a collection of k 4-point tuples are randomly sampled from the predicted scene coordinates.

Then, by solving the PnP problem for each 4-point tuple, we can obtain a set of hypothesis poses

H = {hj |j = 1, ..., k}. We then find the best hypothesis h∗ that is most coherent with the predicted

scene coordinate map. In particular, each hypothesis is scored with counted inliers. Given a pose

hypothesis h, the scoring function is defined as:

ξ(h) =
∑

p
sig(β(γ − π(h, Ŷ[p]))), (3.1)

where the hyper-parameter β controls the softness of the sigmoid function sig(·), and the variable

γ is a manually defined parameter indicating the inlier threshold. The function π(h, Ŷ[p]) defines

the reprojection error at pixel p with 2D coordinates xp under the hypothesis pose h as follows,

π(h, Ŷ[p]) =
∥∥∥Kh−1Ŷ[p]− xp

∥∥∥ . (3.2)

To obtain the final camera pose Θq , the hypothesis with the highest score is selected first,

h∗ = arg max
h

ξ(h).

Next, initialized by Θq = h∗, the camera pose Θq is refined by iterating the following two steps

until convergence or reaching the maximum number of iterations: (1) Selecting the inliers from all

9

scene coordinates of which the reprojection error is lower than the inlier threshold γ; (2) Optimizing

the camera pose with PnP by involving all newly selected inliers.

3.4 Training

We train the neural networks for pyramid construction and scene coordinate prediction in a su-

pervised manner with ground truth scene coordinate maps of query images. Here, we apply the

L2-norm loss [5] averaged over all pixels and pyramid levels as bellow,

L =
∑

l

∑
p

vl[p]
∥∥∥Yl[p]− Ŷl[p]

∥∥∥ , (3.3)

where Yl, Ŷl are the ground truth and predicted scene coordinate map respectively; vl[p] = 1 if

the ground truth exists for pixel p at level l, otherwise vl[p] = 0. For a pixel p at level l, if its

ground truth scene coordinate does not locate inside the sphere when sampling Sl
sub (Section 3.2.1),

we discard the gradient of that pixel.

10

Chapter 4

Experiments

4.1 Experimental Setup

4.1.1 Datasets

We train and evaluate our method on both indoor and outdoor datasets, including SUN3D [45],

7Scenes [36], and Cambridge Landmarks [15]. For indoor scenes, our method is trained and eval-

uated with SUN3D [45] and 7Scenes [36] respectively, both capturing raw indoor RGB-D video

sequences with the ground truth camera poses provided. SUN3D contains more than 300 scene se-

quences, while 7Scenes consists of 7 different indoor scenes. For 7Scenes, each scene is further

divided into multiple train and test sequences with a thousand of frames each. For outdoor

scenes, the Cambridge Landmarks [15] is used for fine-tuning and evaluating our method in a cross-

validation fashion. The dataset contains 6 different outdoor scenes with RGB frames, camera poses,

and 3D models available. Each scene is also split into train and test sequences. To obtain

ground truth scene coordinate maps, we use the rendered depths provided by [5], which are trans-

formed with the camera poses given by the dataset.

4.1.2 Training Data

In order to train our model, we need to construct training samples beforehand. Each training sample

consists of 5 scene images with their 3D scene coordinates for building the scene pyramid, and 1
query image with its ground truth scene coordinates for supervision.

For indoor scenes, our model is trained on SUN3D, from which we randomly select 388 video

sequences for training. For each sequence, we randomly choose 10% of all frames as anchors. For

each anchor frame, we sequentially collect 4 other frames in the sequence as scene images, where

each new frame either shares more than 20% pixels with the previous frame, or translates less than

2 meters from the previous frame. In the final step, between the first and the last collected frames,

50 query images are randomly selected to form different training samples. In the end, we have more

than 200K samples.

For outdoor scenes, Cambridge Landmarks is used for fine-tuning as well as testing. We fine-

tune our model (pre-trained on SUN3D) using 5 out of 6 scenes from Cambridge Landmarks, and

11

test on the remaining one (i.e. 6 times of fine-tuning and testing). All frames in the training scenes

are used as query images, and for each query we run NetVLAD [1] to retrieve 100 closest candidate

frames. Among these 100 candidates, we randomly choose 5 frames as scene images, with relative

translations less than 2 meters and relative rotations less than 45◦ to the query image. In this way,

we obtain in total 15K-30K training samples for each time of fine-tuning.

4.1.3 Testing Data

Our model is evaluated on 7Scenes and Cambridge Landmarks for indoor and outdoor scenarios.

As mentioned in Section 4.1.1, the data of each scene in these 2 datasets is divided into train and

test sequences. For each test scene, we use frames from the train sequences as scene images

(i.e. To perform image retrieval and construct the scene pyramid as described in Chapter 3) and use

the frames in the test sequences as queries to fairly compare with previous methods.

4.1.4 Implementation Details

Training: Our network is implemented with PyTorch [26], and trained on GTX1080Ti with 11G

memory. When training our model, we set the sphere radius to r = [1.5m, 0.75m, 0.5m, 0.25m]
for sampling 3D points (Section 3.2.1) at level 2 to 5 respectively. For levels l > 1, the number

of sampled points in QSR is set to kl = 64. For each training sample, we normalize their scene

coordinates by subtracting the scene center, which is computed by averaging all scene coordinates

in 3D space. Due to different scales of outdoor scenes in the Cambridge Landmark dataset, we scale

their scene coordinates into a 5m × 5m × 5m cube. To augment the data, we add random rotation

around the up direction (use y axis for convenience) to scene coordinates, and brightness jittering

to scene RGB images. The optimizer Adam [16] with initial learning rate of 2.0× 10−4 is applied,

and the batch size is set to 6.

Testing: Limited by the GPU memory, for each query image, we retrieve 10 nearest scene frames by

NetVLAD [1] to build the scene pyramid. The retrieval step is accelerated with knncuda library.

We set the sphere radius to r = [0.75m, 0.5m, 0.25m, 0.125m] for both indoor and outdoor scenes1

and set the number of sampled points kl = 64 for levels l > 1. Note that we uniformly scale all scene

coordinates into a 5m × 5m × 5m cube for outdoor scenes. For pose estimation (Section 3.3), we

sample 128 hypotheses from the predicted scene coordinate map. We set hyper-parameter β = 4.0,

the inlier threshold γ = 0.5 for outdoor scenes and γ = 0.75 for indoor scenes respectively. In

terms of pose refinement, the maximum number of iterations is set to 100.

4.1.5 Comparisons

We compare estimated camera poses, method efficiency, and predicted scene geometry against var-

ious scene-agnostic and scene-specific methods. Active Search [35] and InLoc [40] are scene ag-

1Except for Street and Great Court, for which we use r = [1.5m, 0.75m, 0.5m, 0.25m].

12

Steps Ours DSAC++ [5] InLoc [40]
Training CNN or Index. VLAD feat
(all scene imgs.)

427s > 1 day 427s

Retrieval (per query) 171ms - 171ms
Estimate Pose (per query) 0.37s 0.2s 9.38s
Total (per query) 0.54s 0.2s 9.55s

Table 4.1: Time of each step w.r.t 7000 scene images.

Steps 500 imgs. 1000 2000 5000 7000
Index. VLAD feat.
(all scene imgs.)

23s 50s 128s 263s 427s

Retrieval (per query) 16ms 27ms 61.8ms 123ms 171ms
Estimate Pose (per query) 0.37s 0.37s 0.37s 0.37s 0.37s
Total (per query) 0.39s 0.40s 0.43s 0.49s 0.54s

Table 4.2: Time of each step w.r.t number of scene images.

nostic, which utilize traditional feature matching pipelines, with hand-crafted or pre-trained deep

features respectively, for matching query image patches to the 3D points. Random Forest based ap-

proaches [24, 4], DSAC [3], and DSAC++ [5] are scene specific, which train their model and predict

scene coordinate maps on the same scene. The pose regression based method [15] that trained with

3D geometry loss is also compared.

4.2 Efficiency

Our system is efficient enough for real-time scene updates and query pose estimations, enabling

SLAM applications.

Time Costs: Table 4.1 lists the time of each step w.r.t 7000 scene images in 7Scenes, with compar-

isons to DSAC++ [5] and InLoc [40]. Taking the ORB-SLAM[25] as an example, it creates a new

keyframe for approximately every 0.7s for TUM RGB-D SLAM indoor sequences. Our method and

InLoc [40] can index an incoming keyframe on-the-fly by a NetVLAD [1] forward pass (avg. 0.06s),

while DSAC++ [5] runs multiple epochs to train the model, taking several days as reported in their

paper. When the loop detection or the re-localization are activated, assuming 7000 keyframes are

indexed, our method takes only 0.54s to localize a query frame (faster than the keyframe creation),

which meets the real-time requirement of SLAM, while InLoc [40] takes several seconds based on

its public implementation (CPU version, using 6 threads in parallel).

We also investigate how the running time of our pipeline scales w.r.t number of scene images.

As shown in Table 4.2, the time of indexing all scene images and image retrieval increases linearly,

while the pose estimation takes a constant time as we only retrieve a fixed number (i.e. 10) of scene

images.

13

Figure 4.1: Percentage of predicted camera poses falling within the error threshold of (5◦, 5cm) on
7Scenes indoor dataset by RF1 [4], RF2 [24], DSAC++ [5], DSAC [3], InLoc(Skip10) [40], and
our approaches.

Memory Costs: For each scene image, our method requires an RGBD image (256× 192), its pose,

and its VLAD feature, whose memory cost is 248kB.2 With 7000 scene images, total 2.66GB (in-

cluding 1GB for the SANet forward pass) is used. InLoc [40] has a similar memory consumption

with ours as both methods rely on NetVLAD [1]. DSAC++ [5] only needs a small amount of con-

stant memory since the whole scene is compressed into network weights, but cannot handle novel

scenes without retraining.

4.3 Localization Accuracy

We first measure localization accuracy in terms of the percentage of predicted poses falling within

the error threshold of (5◦, 5cm). Figure 4.1 shows comparisons with other methods on 7Scenes.

Our method outperforms the Random Forest based methods [24, 4], and DSAC [3]. Since the in-

ference of InLoc [40] takes a considerable amount of time for all query frames, we only run InLoc

algorithm on 1 out of every 10 testing frames, whose performance is denoted as InLoc (Skip10).

Under the same setting, our method Ours (Skip10) outperforms InLoc (Skip10) by 1.6%. Note that

DSAC++ [5] still performs the best as it is trained for each scene specifically. Ours(Baseline)

is a conventional feature matching approach utilizing features from our network, which will be

discussed in Section 4.5.

Secondly, localization accuracy is measured in terms of the median translation and rotation

errors. Comparisons on the 7Scenes indoor dataset are listed in the top half of Table 4.3, where re-

ported numbers of other methods are cited from the original papers. Comparing with scene specific

methods, our approach outperforms PoseNet [14] on most scenes, while is slightly inferior to the

state-of-the-art method DSAC/DSAC++ [3, 5]. Comparing with scene agnostic methods, we outper-

2120kB for PNG compressed RGBD frame, 128kB for VLAD feat.

14

Scene Specific Scene Agnostic
PoseNet

(Geo) [14]
DSAC [3] DSAC++ [5] Active

Search [35]
InLoc [40] Ours

7Scenes
Chess 4.5◦ 0.13m 0.7◦ 0.02m 0.5◦ 0.02m 1.96◦ 0.04m 1.05◦ 0.03m 0.88◦ 0.03m

Fire 11.3◦ 0.27m 1.0◦ 0.03m 0.9◦ 0.02m 1.53◦ 0.03m 1.07◦ 0.03m 1.08◦ 0.03m
Heads 13.0◦ 0.17m 1.3◦ 0.02m 0.8◦ 0.01m 1.45◦ 0.02m 1.16◦ 0.02m 1.48◦ 0.02m
Office 5.6◦ 0.19m 1.0◦ 0.03m 0.7◦ 0.03m 3.61◦ 0.09m 1.05◦ 0.03m 1.00◦ 0.03m

Pumpkin 4.8◦ 0.26m 1.3◦ 0.05m 1.1◦ 0.04m 3.10◦ 0.08m 1.55◦ 0.05m 1.32◦ 0.05m
Kitchen 5.4◦ 0.23m 1.5◦ 0.05m 1.1◦ 0.04m 3.37◦ 0.07m 1.31◦ 0.04m 1.40◦ 0.04m

Stairs 12.4◦ 0.35m 49.4◦ 1.9m 2.6◦ 0.09m 2.22◦ 0.03m 2.47◦ 0.09m 4.59◦ 0.16m
Cambridge

Great Court 3.7◦ 7.0m 1.5◦ 2.80m 0.2◦ 0.40m - - 0.62◦ 1.20m 1.95◦ 3.28m
King’s College 1.1◦ 0.99m 0.5◦ 0.30m 0.3◦ 0.18m 0.6◦ 0.42m 0.82◦ 0.46m 0.54◦ 0.32m

Old Hospital 2.9◦ 2.17m 0.6◦ 0.33m 0.3◦ 0.20m 1.0◦ 0.44m 0.96◦ 0.48m 0.53◦ 0.32m
Shop Facade 4.0◦ 1.05m 0.4◦ 0.09m 0.3◦ 0.06m 0.4◦ 0.12m 0.50◦ 0.11m 0.47◦ 0.10m

St. Mary’s Church 3.4◦ 1.49m 1.6◦ 0.55m 0.4◦ 0.13m 0.5◦ 0.19m 0.63◦ 0.18m 0.57◦ 0.16m
Street 25.7◦ 20.7m - - - - 0.8◦ 0.85m 2.16◦ 0.75m 12.64◦ 8.74m

Table 4.3: Indoor and Outdoor localization accuracy on 7Scenes and Cambridge.

form Active Search [35] on most scene except for Stairs, as our model is trained with the SUN3D

indoor dataset that is lack of such extreme repetitive patterns. Our method yields comparable overall

results to the InLoc [40] algorithm, while slightly better on Chess, Office, and Pumpkin.

Table 4.3 also shows the localization accuracy on outdoor scenes. Comparing with scene spe-

cific models, our performance is inferior to DSAC [3] and DSAC++ [5] while still better than

PoseNet [15]. Comparing with scene agnostic methods, our method yields comparable results with

Active Search [35], and slightly better results than InLoc [40] on 4 scenes, i.e., King’s College,

Old Hospital, Shop Facade and St. Mary’s Church. We produce inferior results on

Great Court and Street, due to the ambiguous patterns in large-scale scenes and sharp illu-

mination changes in query images. Note that we resize the input scene frame resolution to 480×270
to speed up the InLoc algorithm.

4.4 Scene Coordinate Accuracy

We compare the accuracy of scene coordinate maps against InLoc [40] and DSAC/DSAC++ [3,

5] on the 7Scenes dataset. Figure 4.2 shows the cumulative distribution function (CDF) of errors

of the estimated scene coordinates. For a given error threshold, this CDF gives the percentage of

pixels whose estimated scene coordinates are within the error threshold (i.e., the recall rate). We

outperform DSAC [3] after the 4cm threshold, even though DSAC [3] is specifically trained for each

scene. Note that while DSAC++[5] demonstrates the best localization accuracy, its scene coordinate

is comparable to DSAC[3], as DSAC++[5] is trained with the less accurate rendered depth from

a fused mesh. In addition, it indicates that the scene coordinate precision may not reflect the final

pose accuracy, since the outliers are filtered by RANSAC. InLoc [40] removes invalid matchings

by consistency check and produces the highest precision over remaining pixels as shown by InLoc

15

0 5 10 20 30 40 50

Coordinate Error (cm)
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f P
ix

el
s

(%
)

Cumulative Coordinate Error (%)

Ours
Inloc (all pixels)

Ours (Baseline)
InLoc (pred. pixels)

DSAC
DSAC++

10%

20%

30%

Figure 4.2: Cumulative Distribution Function of scene coordinate errors compared with InLoc [40],
DSAC [3] and DSAC++ [5] on 7Scenes.

(pred. pixels), but those predicted pixels are limited to semi-dense level, as the CDF of errors over

all pixels InLoc (all pixels) quickly saturates at around 38%.

Figure 4.3 visualizes several predicted scene coordinate maps as color coded coordinates as well

as triangle meshes. In constrast to InLoc [40], our method produces dense predictions and is robust

at featureless areas, because our network exploit global context in the query image when predicting

the scene coordinate maps. For example, InLoc [40] cannot produce reasonable results on the wall

and the ceiling, while our method can. The dense prediction enables potential applications other

than localization, such as robotic obstacle avoidance.

4.5 Detailed Analysis

4.5.1 Compare with Explicit Matching

We evaluate the effectiveness of our network against the conventional feature matching pipeline.

Specifically, we design a baseline approach, where features El[p] from the query image are di-

rectly matched to sampled features f l
i ∈ Sl

sub in the scene pyramid by their angular similarity. Such

baseline approach has two drawbacks comparing with our network: firstly, it processes pixels in-

dependently thus cannot take advantages of the global image context during the scene coordinate

prediction; secondly, the distance metric of angular similarity might not be optimal. We report the

accuracy of the estimated camera pose in Figure 4.1 and that of the scene coordinate map in Fig-

ure 4.2, both are denoted as Ours (Baseline). It is clear that our proposed method surpasses this

baseline approach with unnegligible margins on both evaluation metrics.

16

Query Inloc[40] Ours G.T. Inloc (Geo.) Ours (Geo.) G.T. (Geo.)

Figure 4.3: Scene coordinate map comparison with InLoc [40] and the ground truth (G.T.) on
7Scenes, the scene coordinates xyz are encoded in rgb channels for visualization. The last three
columns show the geometry (Geo.) comparison by reconstructing the mesh from the scene coordi-
nate map.

4.5.2 Scene Reference Feature

We further design two experiments to explore physical meanings of the scene reference feature Rl.

Experiment-1: Rl encodes the scene coordinates of correspondence points. We randomly se-

lect a pixel Que from the query image feature map, whose location is marked by the green dot in

Figure 4.4 (a). Its ground truth correspondence point Pos in the scene image feature map is marked

by a red dot in Figure 4.4 (b), while Neg is a random irrelevant point marked by the blue dot. Now,

17

(a) (b)

2 1 0 1 2 3

2

1

0

1

2

Fix Pos.
Fix Neg.

i=50 i=68 i=143 i=183

x

y

z

x

y

z

Po
s

N
eg

(c) (d)

Figure 4.4: (a) A pixel Que in the query image is marked in Green. (b) The ground truth corre-
spondence point Pos in a scene reference image is marked in Red, while a randomly selected point
Neg is marked in Blue. (c) Two sets of scene reference features from Experiment-1 are projected
in 2D space by PCA. (d) Four channels (i.e., the i-th chanels) of scene reference features from
Experiment-2 are plotted w.r.t. a 1m × 1m × 1m cube, where dark blue stands for high channel
activation. Please refer to the main text for details.

we encode only two points, Pos and Neg, in our scene pyramid, and pass the query pixel Que

through the network to generate its scene reference feature R3[Que]. Here, we choose l = 3 with

resolution of 16× 12 for the experiment, and each feature pixel has 256 channels.

We add noise to the xyz coordinates of the Pos or Neg point while fixing the other to see how

the scene reference feature R3[Que] will be affected. Specifically, we first fix Poswhile varying the

position of Neg within an unit cube, which is centered at its original location with an edge length of

1m. This way, we obtain a set of scene reference features {R3[Que]}fix-pos. Accordingly, fixing Neg

and varying the position of Pos generates another set of scene reference features {R3[Que]}fix-neg.

Figure 4.4 (c) shows both sets of scene reference features by projecting them in 2D space via

PCA, where {R3[Que]}fix-pos and {R3[Que]}fix-neg are visualized as red and blue dots respectively.

It is clear that the red dots vary much less than the blue dots. In other words, changing the position

of the ground truth correspondence point leads to much larger variation of the scene reference

feature. This is a strong evidence that our scene reference feature encodes scene coordinates of the

correspondence points.

Experiment-2: Each channel of Rl is responsible for a particular region in 3D space. In the

second experiment, we encode one single point Pos in the scene pyramid. We uniformly sample

18

K. College O. Hospital S. Facade S.M Church
w/o F.T. 0.76◦ 0.39m 0.47◦ 0.34m 0.56◦ 0.15m 0.84◦ 0.23m
w/ F.T. 0.54◦ 0.32m 0.53◦ 0.32m 0.47◦ 0.10m 0.57◦ 0.16m

Table 4.4: Pose median errors w/ or w/o fine-tuning (F.T.) on outdoor scenes.

k=1 k=3 k=5 k=7 k=1030%

40%

50%

60%

70%

(5
°,

5c
m

) E
rr.

 R
at

io
quality
number

Figure 4.5: Pose accuracy w.r.t Retrieval quality and Number of images in the scene pyramid.

a set of positions X within the 1m × 1m × 1m cube centered at Pos. Given the point Pos at

position x and the query pixel Que as inputs, the QSR module generates a scene reference feature

R3[Que]pos(x). This way, we can collect a set of scene reference features {R3[Que]pos(x)|x ∈ X}.
In the top row of Figure 4.4 (d), we plot 4 channels of these features w.r.t. the set of positions X in

a cube. The values are normalized for visualization, where the darker blue color stands for higher

channel value. As we can see, each channel is correlated to a particular spatial region, for example,

the 68-th channel has high response on eight corners of the cube. We run the same experiment for

the Neg sample, and plot the same four channels in the bottom row of Figure 4.4 (d). Comparing

with the positive sample Pos, it shows similar activation patterns but with different magnitude. This

further verifies that our scene reference feature encodes spatial information.

4.5.3 Fine-tuning on Outdoor Dataset

We investigate the effect of fine-tuning on outdoor scenes in this section. The fine-tuning is neces-

sary due to the distribution gap between indoor and outdoor images. As shown in Table 4.4, without

fine-tuning (F.T.), the performance degrades gently on 4 outdoor scenes. In principle, if sufficient

outdoor data is given, a common indoor/outdoor model could be trained.

4.5.4 Reliance on Retrieval Quality and Number of Images in the Scene Pyramid

To quantify the influence of retrieval quality, we simulate different levels of retrieval quality by

keeping the top k retrieval results and replace the rest of the 10 retrieved images with least scored

ones. To test the effect of the number of images in the scene pyramid, we use the top k retrieved

images to construct the scene pyramid. The performances are measured by the ratio of pose errors

that are less than (5◦, 5cm) on 7Scenes. As shown in Figure 4.5, even with the worst retrieval quality

or only 1 image in the scene pyramid, our method could still localize more than 50% queries.

19

Chapter 5

Conclusion

This thesis presents a scene agnostic neural architecture that predicts the dense scene coordinate

map of a query RGB image on-the-fly in an arbitrary environment. The coordinates prediction is

then used for estimating the camera pose. Our model learns to encode the scene environment into

a hierarchical representation, and predict the scene coordinate map of a query image based on the

scene representation. In particular, we design a learnable module that iteratively registers a query

image to the scene at different levels, and yields the dense coordinate map regularized by contextual

image information. Our method is validated on both indoor and outdoor datasets, and achieves state-

of-the-art performance among scene agnostic methods.

20

Bibliography

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pages 5297–5307, 2016.

[2] Vassileios Balntas, Shuda Li, and Victor Adrian Prisacariu. Relocnet: Continuous metric learn-
ing relocalisation using neural nets. In Proc. of European Conference on Computer Vision
(ECCV), September 2018.

[3] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel, Stefan
Gumhold, and Carsten Rother. Dsac-differentiable ransac for camera localization. In Proc. of
Computer Vision and Pattern Recognition (CVPR), pages 6684–6692, 2017.

[4] Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan Gumhold, et al.
Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image. In Proc.
of Computer Vision and Pattern Recognition (CVPR), pages 3364–3372, 2016.

[5] Eric Brachmann and Carsten Rother. Learning less is more-6d camera localization via 3d
surface regression. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 4654–
4662, 2018.

[6] Eric Brachmann and Carsten Rother. Expert sample consensus applied to camera re-
localization. In Proc. of Internatoinal Conference on Computer Vision (ICCV), pages 7525–
7534, 2019.

[7] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and Torsten Sattler. Hybrid scene com-
pression for visual localization. In Proc. of Computer Vision and Pattern Recognition (CVPR),
pages 7653–7662, 2019.

[8] Tommaso Cavallari, Stuart Golodetz, Nicholas A Lord, Julien Valentin, Luigi Di Stefano, and
Philip HS Torr. On-the-fly adaptation of regression forests for online camera relocalisation. In
Proc. of Computer Vision and Pattern Recognition (CVPR), pages 4457–4466, 2017.

[9] Wentao Cheng, Weisi Lin, Kan Chen, and Xinfeng Zhang. Cascaded parallel filtering for
memory-efficient image-based localization. In Proc. of Internatoinal Conference on Computer
Vision (ICCV), pages 1032–1041, 2019.

[10] Michael Donoser and Dieter Schmalstieg. Discriminative feature-to-point matching in image-
based localization. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 516–
523, 2014.

21

[11] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and
Torsten Sattler. D2-net: A trainable cnn for joint description and detection of local features. In
Proc. of Computer Vision and Pattern Recognition (CVPR), pages 8092–8101, 2019.

[12] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete solution
classification for the perspective-three-point problem. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 25(8):930–943, 2003.

[13] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie Shotton, Toby Sharp, Andrew
Fitzgibbon, and Shahram Izadi. Multi-output learning for camera relocalization. In Proc. of
Computer Vision and Pattern Recognition (CVPR), pages 1114–1121, 2014.

[14] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with
deep learning. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 5974–
5983, 2017.

[15] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Proc. of Internatoinal Conference on Computer Vi-
sion (ICCV), pages 2938–2946, 2015.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[17] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n) solution
to the pnp problem. International Journal of Computer Vision (IJCV), 81(2):155, 2009.

[18] Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene
coordinate classification and regression for visual localization. In Proc. of Computer Vision
and Pattern Recognition (CVPR), pages 11983–11992, 2020.

[19] Xiaotian Li, Juha Ylioinas, and Juho Kannala. Full-frame scene coordinate regression for
image-based localization. In Robotics: Science and Systems (RSS), 2018.

[20] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. Worldwide pose estimation
using 3d point clouds. In Proc. of European Conference on Computer Vision (ECCV), pages
15–29. Springer, 2012.

[21] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. Location recognition using prioritized
feature matching. In Proc. of European Conference on Computer Vision (ECCV), pages 791–
804. Springer, 2010.

[22] Hyon Lim, Sudipta N Sinha, Michael F Cohen, and Matthew Uyttendaele. Real-time image-
based 6-dof localization in large-scale environments. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pages 1043–1050. IEEE, 2012.

[23] Zixin Luo, Lei Zhou, Xuyang Bai, Hongkai Chen, Jiahui Zhang, Yao Yao, Shiwei Li, Tian
Fang, and Long Quan. Aslfeat: Learning local features of accurate shape and localization. In
Proc. of Computer Vision and Pattern Recognition (CVPR), pages 6589–6598, 2020.

[24] Daniela Massiceti, Alexander Krull, Eric Brachmann, Carsten Rother, and Philip HS Torr.
Random forests versus neural networks—what’s best for camera localization? In Proc. of
International Conference on Robotics and Automation (ICRA), pages 5118–5125. IEEE, 2017.

22

[25] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: A versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[26] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pages 652–660, 2017.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information Processing
Systems (NeurIPS), pages 5099–5108, 2017.

[29] Jerome Revaud, Philippe Weinzaepfel, César Roberto de Souza, and Martin Humenberger.
R2D2: repeatable and reliable detector and descriptor. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[30] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelović, Akihiko Torii, Tomas Pajdla, and Josef
Sivic. Neighbourhood consensus networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 1651–1662, 2018.

[31] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to
fine: Robust hierarchical localization at large scale. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pages 12716–12725, 2019.

[32] Torsten Sattler, Michal Havlena, Filip Radenovic, Konrad Schindler, and Marc Pollefeys. Hy-
perpoints and fine vocabularies for large-scale location recognition. In Proc. of Internatoinal
Conference on Computer Vision (ICCV), pages 2102–2110, 2015.

[33] Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc Pollefeys. Large-scale location
recognition and the geometric burstiness problem. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[34] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization using direct
2d-to-3d matching. In Proc. of Internatoinal Conference on Computer Vision (ICCV), pages
667–674. IEEE, 2011.

[35] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized matching for
large-scale image-based localization. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence (PAMI), (9):1744–1756, 2017.

[36] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and An-
drew Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d im-
ages. In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 2930–2937, 2013.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] Pablo Speciale, Johannes L Schonberger, Sing Bing Kang, Sudipta N Sinha, and Marc Polle-
feys. Privacy preserving image-based localization. In Proc. of Computer Vision and Pattern
Recognition (CVPR), pages 5493–5503, 2019.

23

[39] Linus Svarm, Olof Enqvist, Magnus Oskarsson, and Fredrik Kahl. Accurate localization and
pose estimation for large 3d models. In Proc. of Computer Vision and Pattern Recognition
(CVPR), pages 532–539, 2014.

[40] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea Cimpoi, Marc Pollefeys, Josef
Sivic, Tomas Pajdla, and Akihiko Torii. InLoc: Indoor visual localization with dense matching
and view synthesis. In Proc. of Computer Vision and Pattern Recognition (CVPR), 2018.

[41] Hajime Taira, Ignacio Rocco, Jiri Sedlar, Masatoshi Okutomi, Josef Sivic, Tomas Pajdla,
Torsten Sattler, and Akihiko Torii. Is this the right place? geometric-semantic pose verifi-
cation for indoor visual localization. In Proc. of Internatoinal Conference on Computer Vision
(ICCV), pages 4373–4383, 2019.

[42] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew Fitzgibbon, Shahram Izadi, and
Philip HS Torr. Exploiting uncertainty in regression forests for accurate camera relocalization.
In Proc. of Computer Vision and Pattern Recognition (CVPR), pages 4400–4408, 2015.

[43] Lukas von Stumberg, Patrick Wenzel, Qadeer Khan, and Daniel Cremers. Gn-net: The
gauss-newton loss for multi-weather relocalization. IEEE Robotics and Automation Letters,
5(2):890–897, 2020.

[44] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sattler, Sebastian Hilsenbeck, and
Daniel Cremers. Image-based localization using lstms for structured feature correlation. In
Proc. of Internatoinal Conference on Computer Vision (ICCV), pages 627–637, 2017.

[45] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. Sun3d: A database of big spaces re-
constructed using sfm and object labels. In Proc. of Computer Vision and Pattern Recognition
(CVPR), pages 1625–1632, 2013.

[46] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Proc. of
Computer Vision and Pattern Recognition (CVPR), 2017.

[47] Lei Zhou, Zixin Luo, Tianwei Shen, Jiahui Zhang, Mingmin Zhen, Yao Yao, Tian Fang, and
Long Quan. Kfnet: Learning temporal camera relocalization using kalman filtering. In Proc.
of Computer Vision and Pattern Recognition (CVPR), pages 4919–4928, 2020.

24

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Works
	Feature Matching & Camera Fitting
	Random Forests
	Convolutional Neural Networks
	Methods On or After the Publication of SANet

	Method
	Constructing Pyramids
	Scene Pyramid
	Query Feature Pyramid

	Predicting Scene Coordinates
	Query-Scene Registration (QSR)

	Query Pose Estimation
	Training

	Experiments
	Experimental Setup
	Datasets
	Training Data
	Testing Data
	Implementation Details
	Comparisons

	Efficiency
	Localization Accuracy
	Scene Coordinate Accuracy
	Detailed Analysis
	Compare with Explicit Matching
	Scene Reference Feature
	Fine-tuning on Outdoor Dataset
	Reliance on Retrieval Quality and Number of Images in the Scene Pyramid

	Conclusion
	Bibliography

