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-______________________________________ ABSTRACT

The application of nanoscale zero-valent iron particles (nZVI) for abiotic remediation of 

chlorinated compounds is proving among the most viable technologies for environmental 

remediation. However, although most polychlorinated C2 compounds are easily 

dechlorinated by nZVI, 1,2-dichloroethane (1,2-DCA), has shown resistance to 

dechlorination by this nanomaterial. The present contribution shows how a combination of a 

catalyst and nZVI together with the addition of a hydrogen donor can be used to; achieve 

dechlorination of 1,2-DCA under aqueous conditions similar to those found in the field. The 

best results for dechlorination were observed using formic acid as a H2 donor and Pd as 

catalyst doped onto CMC stabilized nanoscale zero-valent iron particles at a temperature of 

45°C. This leads to significant degradation (close to 18%) of 1,2-DCA at the end of seven 

days. As degradation products, evolution of ethane and propane were observed from the very 

first day of reaction.

Keywords: nZVI, nano-scale zero valent iron, hydrogen donor, catalyst, 1,2-DCA.
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CHAPTER 1
1.0 INTRODUCTIONi

1.1 BACKGROUND

Groundwater contamination problems caused by halogenated organic compounds, heavy 

metals and energetic materials such as hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) and 

2,4,6-trinitrotoluene (TNT) are increasing in Canada. This is mainly due to the large 

number of toxic compounds utilized in agriculture and industry (Zhang et al, 1998; 

Environment Canada, Groundwater). Among these, chlorinated ethylenes such as 

tetrachloroethylene (PCE), trichloroethylene (TCE), trans-dichloroethylene (t-DCE), cis- 

dichloroethylene (c-DCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC) as well 

as chlorinated ethanes such as hexachloroethane (HCA), 1,1,2,2-tetrachloroethane 

(1,1,2,2-TeCA), 1,1,1,2-tetrachloroethane (1,-1,1,2-TeC A), 1,1,2-trichloroethane (1,1,2- 

TCA), 1,1-dichloroethane (1,1-DCA) and 1,2-dichloroethane (1,2-DCA) are the most 

prevalent contaminants in soils and aquifers and have been listed as priority pollutants by 

both the US Environmental Protection Agency and the Superfund National Priority List

(Zhang et al, 1998; Song and Carraway, 2005; Lien and Zhang, 2005). These chemicals
\

are used in dry cleaning, wood preservation, pesticide manufacturing, metal cleaning, and 

paint removal. Accumulation of these chlorinated solvents in the sub-surface results from 

leaking underground or above-ground storage tanks, storage areas or buried chemical 

distribution pipelines, spillage at chemical loading and off-loading facilities or even from 

intentional disposal into the sub-surface. Once these solvents are spilled in aquifers in 

sufficient quantities, they have the capacity to penetrate below the water table and thus 

serve as a long-term source of contamination. The length of time required to dissolve a 

solvent source zone can be hundreds of years under natural conditions. When
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groundwater is used as a source of drinking water, the presence of these compounds 

becomes a serious risk to human health. These risks include liver or kidney damage and 

spontaneous abortions; moreover, some of these compounds are considered carcinogenic. 

Therefore, a great deal of time and effort has been put into the development of 

remediation techniques to treat contaminated sites (Geiger et al, 2009).

Depending on the type and location of the contaminants, both in-situ and ex-situ 

remediation options are being used for their removal from soil and groundwater. 

Electroreclamation, enhanced volatilization, vitrification, bioventing, biostimulation and 

natural attenuation are some of the commonly used in-situ treatment technologies, 

whereas, chemical extraction, dehalogenation, redox reactions, incineration and pyrolysis 

can be classified as ex-situ treatment technologies (Lodolo, 2007). However, the 

application of some of these techniques is hampered due to specific drawbacks associated 

with their implementation such as- high costs, incomplete decontamination resulting in 

formation of more toxic intermediates, slow outputs and complex process control
v

(Lodolo, 2007).

One of the most promising technologies for the remediation of subsurface contamination 

involves the use of zero-valent metallic materials (Zhang et al, 1998; Wang et al, 2008; 

Sakulchaichareon et al, 2010), specifically zero-valent iron. In this case, groundwater 

flows through an iron rich reactive zone, resulting in chemical transformations of the 

contaminants into benign compounds (Wang and Zhang, 1997; Zhang et al, 1998; 

Schrick et al, 2002). Equation 1.1 can be used to express the reactions between
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chlorinated organic compounds and iron in aqueous solution. Here, iron acts as an 

electron donor (reductant) to remove chlorine. V i

CxHyClz + zH+ + zFe° -> CxHy+z+ zFe2++ zCl' . : r (Equation 1.1)

Despite the promising use of iron fillings in permeable reactive barriers (PBRs), there 

still exist some challenges. For instance, the lower reactivity of zero-valent iron powder 

with lightly chlorinated compounds may produce and accumulate by-products such as, 

1,2-dichloroethylene and vinyl chloride which are of even more toxicological concern 

than their parent compounds (Zhang et al, 1998; Wang et al, 2008). To address the above- 

mentioned shortcomings researchers have proposed nanoscale zero valent iron (nZVI) as 

an alternative. (Zhang et al, 1998; Schrick et al, 2004, Li et al, 2006). Indeed, the use of 

nZVI for the treatment of sub-surface chlorinated hydrocarbons is of significant interest 

due to its low toxicity and significant contaminant degradation capabilities (Zhang et al,

1998; Schrick et al, 2004; He and Zhao, 2005; Sakulchaicharoen et al, 2010)
< \

The very small dimension, high surface area to volume ratio, high surface energy as well 

as high surface reactivity is the reason behind the high reactivity of nZVI particles with 

environmental contaminants (ZhangLet al, 1998; Zhang, 2003). As opposed to PBR 

technologies, instead of installing metal walls, nanoparticles, in the form of water slurry, 

can be injected into the contaminated plume requiring treatment by means of pressure or 

gravity or both. Their nanoscale size makes it possible to transport them to a certain 

extent by groundwater flow (Zhang, 2003; Li et al, 2006). Furthermore, the addition of

v
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promoters in the form of catalytic metals such as palladium (Pd), platinum (Pt), silver 

(Ag) or nickel (Ni) can lead to accelerated dechlorination rates and therefore, lead to the 

formation of benign hydrocarbons (Lien and Zhang, 2001; He and Zhao, 2005) rather 

than undesirable chlorinated byproducts. Nevertheless, these doped Fe nanoparticles tend 

to react rapidly with dissolved oxygen or even water, due to their extremely high 

reactivity, leading to quick loss in reactivity (He and Zhao, 2005). Another consideration 

is magnetic and van der Waals attractive forces between nZVI particles 'which cause 

agglomeration and the formation of larger particles or floes (Sakulchaicharoen et al, 

2010; He and Zhao, 2007). This agglomeration decreases available nZVI surface area for 

reaction (Sakulchaicharoen et al, 2010; He and Zhao, 2007). To prevent agglomeration, 

stabilizers such as Carboxymethyl Cellulose (CMC), polyvinylpyrrolidone (PVP) and 

guar gum can be added with iron nanoparticles. The addition of these stabilizers enhances 

dispersion of particles through electrostatic repulsion and/or steric hindrance 

(Sakulchaicharoen et al, 2010). Particle size reduction and the resulting gain in surface 

area leads to more reactive nanoparticles for the degradation of chlorinated solvents.

Despite the successful application of nZVI particles for remediation of chlorinated 

hydrocarbons, nitroaromatics and polychlorinated biphenyls, 1,2-dichloroethane (1,2- 

DCA) is found so far to be totally resistant to degradation using nZVI (Zhang et al, 1998; 

Song and Carraway, 2005; De Wildeman and Verstraete, 2003; Kopinke et al, 2004). 1,2- 

DCA is a chlorinated hydrocarbon that affects human liver and kidneys, neurological, 

cardiovascular, and immune systems (De Wildeman and Verstraete, 2003). Metal-based 

reduction has been found to be marginally successful in 1,2 DC A chemical
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dechlorination whereas catalytic hydrodechlorination and bioremediation are reported to 

be successful. However, the high temperature and molecular H2 requirements make 

catalytic hydrodechlorination inconvenient for field application, whereas the very slow 

anaerobic bioremediation process is unsuited for the rapid dechlorination rate usually 

required in field applications (Ukisu et al, 1998; Klecka et al, 1998). An alternative and 

effective approach for successful dechlorination of 1,2-DCA at field scale is therefore 

required. Though to date iron has been unsuccessful in dechlorinating 1,2 DCA (Larson 

and Weber; De Wildeman and Verstraete, 2003), the process is thermodynamically 

possible. This makes the remediation of 1,2-DCA by nZVI particles through the 

application of an appropriate methodology of huge interest.

1.2 RESEARCH OBJECTIVES

The goal of this research work is to find a nZVI-based formulation able to degrade 1,2- 

dichloroethane (1,2-DCA) and to optimize degradation conditions. As presented in the 

foilowing chapters 1,2-DCA dechlorination is a significant challenge for nZVI based 

remediation technologies. Optimization of the experimental conditions and investigation 

of the degradation pathways are the two other main objectives of this work.

1.3 THESIS OUTLINE

This thesis is written in “Integrated Article Format”. A brief description of each chapter 

is presented below.
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Chapter 1 introduces some general background information and states the objectives of 

the study.

Chapter 2 reviews previous research work focused on the degradation of 1,2-DCA. In 

addition, nanoparticle structure, synthesis and application for remediation of chlorinated 

organic compounds are also discussed.

Chapter 3 presents the experimental methodology as well as the results and discussion of 

the experiments carried on this research work.

Chapter 4 summarizes the research conducted in this study, and presents conclusions and 

recommendations for future work.
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_______________________________ ______________ CHAPTER 2

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

Chlorinated Organic Compounds (COCs) have caused widespread environmental 

contamination in both groundwater and soil since they are persistent in the'environment 

over relatively long time periods and are difficult to directly degrade under'most natural 

or abiotic conditions. Consequently, the environmental engineering community has 

devoted significant efforts to the degradation of these chlorinated organic compounds. 

Both in-situ and ex-situ approaches comprising of thermal, biological, physical and 

chemical treatments are commonly used to remove these contaminants (Wang et al, 

2008).

Thermal treatments utilize high temperature to volatilize, burn and degrade contaminants. 

Specifically, in-situ thermal treatments such as soil vapour extraction, vitrification and 

ex-situ thermal treatments like incineration and pyrolysis have been used for remediation 

purposes. Nevertheless, incomplete combustion giving rise to dioxins and furans and high 

cost and fugitive emissions such as dust and particulates often make their application less 

attractive (Lodolo, 2007). Biological treatment requires optimal conditions -and selective 

microorganisms to decompose COCs by metabolic processes (Wang et al, 2008). 

Bioventing, biostimulation, natural attenuation are some of the proposed in-situ 

biological treatments, whereas, contaminants are treated ex-situ in bioreactors (Lodolo, 

2007). However, this is a relatively slow procedure and COCs often inhibit degradation 

through their toxic effects (Wang et al, 2008). Physio-chemical treatments are a 

combination of physical and chemical treatments. Here phase transfer of the pollutants is 

induced and chemical structure is altered by chemical reactions to produce less toxic
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compounds (Lodolo, 2007; Wang et al, 2009). Electroreclamation and enhanced 

volatilization are two examples of in-situ physio-chemical treatments. Although these 

technologies have been widely : used for volatile organic compound degradation, 

heterogeneities in the treated zone and high concentration of contaminants heavily 

influence their activity (Lodolo, 2007). On the other hand; chemical extraction, 

dehalogenation and redox reactions have been proposed as ex-situ treatments. Chemical 

extraction is less effective for high molecular weight compounds and incomplete
i

decontamination may form more toxic compounds (Lodolo, 2007). Therefore, a more 

convenient technology is required that can be used to remediate the contaminant in-situ 

with the maximum benefits.

' ' ' ' ' ' ' t

Recently, the degradation of COCs by direct reduction-using zero-valent iron (ZVI) 

technology has received- great interest (Zhang et al, 1998; Wang et al 2008; 

Sakulchaichareon et al, 2010). Microscale zero-valent iron, usually applied in permeable 

reactive barriers (PRBs), reacts with contaminants like chlorinated aliphatics, aromatics 

and ; polychlorinated biphenyls to produce mostly benign compounds: hydrocarbons, 

chloride and water (Zhang et al, 1998; Schrick et al, 2002). However, the implementation 

of zero-valent metal technology in the sub-surface still faces various challenges, such as 

the low reactivity of iron particles towards less chlorinated hydrocarbons, in turn leading 

to the production of. chlorinated by-products, which are sométimes even more toxic than 

the parent compounds. Moreover, the time required to complete the dechlorination is 

often very long (Wang et al, 2008). Furthermore, the construction of walls in aquifers at 

depths more than 30m poses engineering difficulties.
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Current research indicates that nano-scale zero-valent iron (nZVI) can be, a very good 

alternative to PRBs (Wang and Zhang, 1997; Zhang et al, 1998; Nurmi et al, 2005). Their 

very tiny dimensions allow them to be injected in the form of water slurry into the 

contaminated plume requiring treatment. The injection is done through pressure, gravity, 

or both. The nZVI-water slurry reacts more rapidly to dechlorinate organic contaminants 

in the sub-surface than the larger ZVI particles (Li et al, 2006). The ability to deliver 

nanoparticles directly to the contaminated zone in the sub-surface, even in areas where 

many conventional methods are inaccessible (such as beneath buildings and airport 

runways) make nZVI a very attractive remediation technology (Elliot and Zhang, 2001).

2.2 NANOSCALE ZERO-VALENT IRON TECHNOLOGY
r

The structure of iron nanoparticles is important for their environmental remediation 

function. These nanoparticles are generally spherical in shape, colloidal in nature and
i

have a strong tendency to aggregate (Li et al, 2006) (Fig 2.1). The very small dimensions
r%

(—1-100 nm), relatively high specific surface area (-30 m /g) and greater density of 

reactive sites are responsible for the high intrinsic reactivity of nZVI particles (Zhang et 

al, 1998; Elliot and Zhang, 2001; Nurmi et al, 2005). Under aqueous conditions, iron 

nanoparticles contain a Fe° core, which is a moderate reducing agent and is slowly 

oxidized in air or water (equations 2.1,2.2) (Li et al, 2006). This core is surrounded by a 

shell of iron oxides, hydroxides or oxyhydroxides (Eqns 2.3, 2.4, 2.5) (Fig 2.1) with a 

shell thickness approximately 5 nm (Liu et al, 2005a). It has been reported that oxidation 

of the Fe° core causes transportation of electrons through the iron oxide shell that in turn
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reduces organic contaminants (Yan et al, 2010). The mixed valence iron oxide shell 

protects the Fe° core from further oxidation (Li et al, 2006).

Fe° '+ 2H20  -> Fe2+ + H2 + 20H' (Equation 2.1)

2Fe° + 0 2+ 2H20  ■» 2Fe2+ + 40IT ; (Equation 2.2)

4Fe2+ + 4H+ + 0 2 4Fe3++ 2H20  (Equation 2.3)

Fe3+ + 30H' Fe(OH)3 (Equation 2.4)

Fe3+ + 2H20  FeOOH + 3H+ (Equation 2.5)

2.2.1 Synthesis of Iron Nanoparticles

Borohydride reduction of an aqueous iron salt is the most commonly used method to 

produce nZVI in research labs (Li et al, 2006; Zhang and Elliot, 2006). This is a very
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simple method, which can be carried out in aqueous phase at room temperature without 

the need for highly specialized instruments. Moreover, this method requires only two 

common reagents, i.e. iron precursor and sodium borohydride (NaBH4). Many studies 

have utilized aqueous solutions of ferric chloride (FeCl3.6H20) and ferrous sulphate 

(FeS04.7H20) as precursors to iron nanoparticles (Lien and Zhang, 2001; Zhang et al, 

2003; Li et al, 2006). For instance, Lien and Zhang (2001) synthesized nZVI by adding 

1:1 volume ratio of 0.25M NaBFL into 0.045M FeCL.ólLO (Equation 2.6). ’

4Fe3+ + 3BH4' + 9H20  4Fe° + 3H2B 03' + 12H++ 6H2 (Equation 2.6)

The excess amount of borohydride accelerates the synthesis reaction as wéll as ensures 

uniform growth of nanoiron (Zhang et al, 2003). Although ferric chloride hexahydrate is 

often used as the iron precursor, ferrous sulphate has been proposed as an alternative due 

to the potential health and safety concerns associated with handling the highly 

hygroscopic and acidic ferric chloride salt. Zhang and Elliot (2006) prepared nZVI from 

0.28M FeS04.7H20 by reducing it with 0.5M of NaBH4 solution (equation 2.7)

• 2Fe2+ + BH4- + 3H20  2Fe° + H2B 03' + 4H+ + 2H2 (Equation 2.7)

Less borohydride is required to reduce ferrous sulphate (stoichiometric excess of 3.6) 

than the ferric chloride (stoichiometric excess of 7.4) (Zhang and Elliot 2006; He and 

Zhao, 2007). Moreover, the use of sulphate allows for an easier monitoring of chloride
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production during dechlorination reactions of chlorinated organic compound (Zhang and 

Elliot 2006, He et al, 2007).

2.2.2 Reactivity of Nano Iron with Chlorinated Compounds

The contaminants that can be treated with nZVI particles include chlorinated ethylenes, 

methanes, ethanes, nitroaromatics, polychlorinated biphenyls, chlorophenols, heavy 

metals and inorganic anions (Zhang et al, 1998; Liu et al, 2005a; Liu et al,'2005b; Song 

and Carraway, 2008). The dechlorination of halogenated compounds by nZVI involves 

several steps: mass transport of the contaminant from the solution to the surface of 

nanoparticles, the adsorption of the contaminant to the reactive surface of nanoparticles, 

reactions at the surface,'desorption of products from the surface and'finally mass 

transport of products to the solution (Matheson and Tratnyek, 1994; Lien and Zhang,

2007) . The slowest reaction step requires the highest activation energy and controls the

kinetics of a reaction (Lien and Zhang, 2007). ;

When Fe° is oxidized to Fe2+ (equation 2.8), it donates two electrons and these can be 

used in a variety of reactions to transform contaminants. The addition of two electrons 

from the reduction of nZVI to a chlorinated ethylene may result in the release of chloride
A ■

ion with the concurrent formation of a new C-H bond (equation 2.9) (Bylaska et al,

2008) . These reactions can follow two different pathways: P-elimination (equation 2.10) 

and hydrogenolysis (equation 2.11). It has been proposed, based on mechanistic studies, 

that the electron transfer to the surface adsorbed molecule is the rate-limiting step 

(Schrick et al, 2002; Bylaska et al, 2008).
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Fe° Fe2+ + 2e' (Équation 2.8)

C2HxC14-x + 2e + H+ -> C2Hx+iC13-x + CF (Equation 2.9)

Cl Cl
] I

q
P-elimination \

Cl—  c— c— Cl + 2H + 2e ----------- >  C =  C + 2HC1 (Equation 2.10)
I

Cl H Cl H

i  ?  hydrogenolys V  V
H

H— C— C—Cl

A A
>H —C— C*------ >H — C —

H H H

H
I

r H
H

(Equation 2.11)

Fig 2.2 shows the possible reaction pathways for trichloroethylene (TCE) dechlorination 

by Fe°.
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Cl H
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Cl
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Cl— C = C  — H 

Chloroacetylene 

Hydrogcnolysis
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H —  C = C  —  H

Acetylene

Hydrogenolysis

v

cis-l,2-DCE

Hydrogenolysis

Vinyl Chloride 

Hydrogenolysis

Y

V  /c =  c

/  \

Ethylene

Fig: 2.2 Pathways of TCE dechlorination with Fe°

Laboratory research has showed that the transformation of chlorinated ethylenes, such as- 

tetrachloroethylene (PCE), trichloroethylene (TCE), cis- dichloroethylene (c1DCE), trans-
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dichloroethylene (t-DCE), and vinyl chloride (VC) using nanoscale iron particles lead to 

fully. dechlorinated products (e.g.ethane) with reactive intermediates like c-DCE, VC, 

ethylene for a short period of time: Liu et al (2005b) studied the reactivity of nZVI with 

TCE at high and low iron to TCE ratios. In both cases, only monometallic iron was used. 

At low iron/TCE ratios (TCE = 290 mg/L and Fe° = 0.035 g/L), complete dechlorination 

took a longer period (several days). Ethane (70%) and C3-C6 coupling products (30%) 

were identified as end products (Liu et al, 2005b). Ethylene was found as a reactive 

intermediate that later transformed into ethane, whereas no acetylene was detected. At 

high iron (monometallic) to TCE ratios (TCE = 4.4 mg/L and Fe° = 0.194 g/L) the end 

products were mainly ethane (80%) and C3-C6 coupling products (20%) and took only 

~1.5 hours to complete the dechlorination (Liu et al, 2005b). Zhang et al (1998) 

investigated the dechlorination of chlorinated ethylenes (20 mg/L) with nZVI (20g/L) and 

found that TCE was completely dechlorinated within 1 hour, while PCE, cis-DCE and 

VC took 2, 3 and 3 hours respectively. Ethylene, ethane, propylene, propane, butylene, 

butane and pentane were identified as end products; organic chlorinated by-products were 

not observed (Zhang et al, 1998). ; ■

Chlorinated ethanes, such as hexachloroethane (HCA), pentachloroethane (PCA), 1,1,2,2- 

tetrachloroethane (1,1,2,2-TeCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) 1,1,1-

trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) along with chlorinated 

ethylenes are another major group of groundwater contaminants with low reduction 

potentials, (~ -0.68 to + 0.15 V) (Song and Carraway, 2005). Their structural stability 

makes, them persistent in the environment. The reactions of chlorinated ethanes with
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nZVI particles form many chlorinated by-products and generally the reactivity rate is 

slower than those of chlorinated ethylenes (Lien and Zhang, 2005). The degree of 

chlorination of the chlorinated ethane controls their reactivity with nZVI particles (Lien 

and Zhang, 2005). When there are more than four chlorine atoms the reaction rates are 

high whereas, lesser chlorinated ethanes with chlorine number less than two show little 

reactivity (Lien and Zhang, 2005). Reactions of chlorinated ethanes with conventional 

iron powders produce mainly chlorinated by-products and no ethane (Lien and Zhang, 

2001). According to Song and Carraway (2005), HCA was one of the most reactive 

chlorinated ethanes and when it reacted with 0.08g/L nZVI, it formed PCE at the end of

1.4 hours. Song and Carraway (2005) also showed that 1,1,1,2-TeCA transformed into

1,1 -DCE and then ethane after an 80 hours reaction with 0.08 g/L of nanoiron. In case of 

1,1,2-TCA the same amount of nZVI resulted in a much slower rate but also formed 

ethane at the end of 110 hours (Song and Carraway, 2005).

During Fe° corrosion in aqueous system, H2 is generated through water reduction
■ ‘ , V

(equation 2.1). The dissociative chemisorption of this H2 generates a new activated 

reductant, atomic hydrogen, on the nanoparticle surface in the presence of a catalyst, 

which is responsible for bimetallic reactivity (Schrick et al, 2002). In a bimetallic nZVI 

system, Fe° acts as the electron donor and the catalyst functions as hydrogen dissociator 

(Song and Carraway, 2008). This hydrogen initiates rapid dehalogenation of the 

contaminant forming benign hydrocarbons and inorganic chlorides (Fig 2.3). However, in 

the absence of a catalyst, hydrogen cannot contribute directly to the dechlorination; rather 

the presence of an excess amount of hydrogen on the metal surface may inhibit the iron
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corrosion (Matheson and Tratnyek, 1994). The large amount of hydrogen gas produced as 

minute gas bubbles might perform as barriers inhibiting the contact of iron particles and 

target pollutants (Wang et al, 2009). Therefore, the catalytic effects of a second metal 

through a direct hydrogen reduction (Schrick et al, 2002) and a galvanic corrosion 

leading to the increased corrosion rates (Zhang et al, 1998) are the main reasons behind 

the enhanced reactivity of bimetallic nZVI particles. The use of catalysts with nZVI 

reduces the activation energy required for hydrogen dissociation over the catalyst surface 

(Lien and Zhang, 2007). The lower activation energy for bimetallic nZVI particles 

indicates the dechlorination reaction to be catalytic, resulting in an increase in the 

dechlorination rate and decreasing the production of toxic intermediates such as 

dichloroethylenes and vinyl chloride (Song and Carraway, 2008; Yan et al, 2010).

RC1 RH + Cl-

%

Fig. 2.3 Schematic of reactivity of Pd/Fe nanoparticles with chlorinated solvents
(Ref: Zhang et al, 1998) .
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Noble metals, such as- Pd, Pt, Ru, or Ni have been found to serve as catalyst for 

dechlorination using nZVI particles (Zhang et al, 1998; Liu et al, 2004). The differences

in the surface atomic structure and electronic properties of Pd, Pt, Ru and Ni give them
\

different catalytic properties when used as part of bimetallic nZVI particles (Zhang et al, 

1998).: Pd/Fe shows the highest activity among bimetallic particle formulations (e.g 

Pd/Fe, Ru/Fe, Pt/Fe) used for dechlorination of TCE as it has low activation barrier for 

hydrogen dissociation (2 kcal/mol) on Pd surface (Lien and Zhang, 2007). It has been 

found that metals such as Pd or Pt have low cathodic hydrogen overpotentials. On the 

other hand metals like Fe° have high hydrogen overpotential (Lien and Zhang, 2007). The 

much lower cathodic hydrogen overpotential of Pd compared to that of Fe° causes easy 

catalyzation of hydrogen dissociation on Pd surface with a slow activation barrier. (Zhou 

et al, 2010). In general, activation energies for Pd/Fe bimetallic nanoparticles and bare

nZVI particles for dechlorination reactions are 31.1 and 44.9 kj/mol respectively (Lien
*»

and Zhang, 2007).

Chlorinated ethylenes (PCE, TCE, 1,2-DCE, cis- and trans- DCE, VC) are completely 

reduced by Pd/Fe forming ethane (60 ~ 90%) and ethylene (3 ~ 20%) (Lien and Zhang, 

2001). Zhang et al (1998) showed that the reaction times using bimetallic Pd/Fe (20 g/L) 

for PCE, TCE, cis-DCE and VC (each with initial concentration of 20 mg/L) 

dechlorination were reduced to 0.25, 0.25, 0.8 and 1.5 hours respectively (i.e., about 100 

times faster than that with monometallic nZVI). In the presence of Pd, the reduction of 

chlorinated ethanes also tends to be more complete leading to ethane formation. With 

5g/L of bimetallic Pd/Fe, ethane was detected as the major end product (-87%) when
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HCA was the reactant (Lien and Zhang, 2005). On the other hand, 1,1,1-TCA with 5g/L 

of Pd/Fe formed ethane (-60%) just after 7 hours.

Table 2.1 gives a summary of the studies discussed above regarding the dechlorination of 

chlorinated ethylenes and ethanes with nZVI particles.
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Table 2.1: Summary of dechlorination reaction of chlorinated ethylenes and ethanes 
with nZVI

Research
Group

Parent
compound

(mg/L)

nZVI
concentration

(g/L)

Type of 
Catalyst

Degradation
time

Degradation
Products
Observed

Liu et al, 
2005b

TCE=290
/

: (

0.035 none Several days Ethane=70%, C3- 
C6 coupling 
products=30%

Liu et al, 
2005b

TCE=4.4 0.194 none 1.5 hours Ethane=80%, C3- 
C6 coupling 
products=20%

Zhang et 
al, 1998

TCE=20 20 none 1 hour Ethene, ethane, 
propene, propane, 
butene, butane 
and pentane

Song and 
Carraway, 
2005

HCA = 24 0.08 none 1.4 hours PCE

Song and 
Carraway, 
2005

PCA = 22 0.08 none 1.3 hours PCE, TCE

,r

Song and 
Carraway, 
2005

1,1,1,2- 
TeCA= 16

0.08 none 80 hours 1,1-DCE, ethane

Song and 
Carraway, 
2005

1,1,2-
TCA=12 :

0.08 none 110 hours Ethane

Zhang et 
al, 1998

TCE=20 20 Pd 0.25 hour Ethene, ethane, 
propene, propane, 
butene, butane 
and pentane

Lien "and 
Zhang, 
2001

TCE=20 - 5 Pd 1.25 hour Ethane =87%, 
Ethylene=
5.8-7.1%

Lien and 
Zhang, 
2001

PCE=20 5 Pd 1.5 hour Ethane =89%

Lien and 
Zhang, 
2001

HCA = 30 5 ' ' Pd 2 hours Ethane=87%, 
ethene = 6%, 
PCE= 7.5%

Lien and 
Zhang, 
2001

1,1,1-
TCA=30

5 Pd 7 hours Ethane =60%
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Therefore, it can be concluded that environmentally benign and highly efficient nZVI 

particles show excellent performance in the remediation of chlorinated ethylenes and 

ethanes. Monometallic nZVI particles, when reacted with TCE, form primarily ethane 

with lesser amount of even numbered saturated hydrocarbons like butane and hexane and 

inorganic chlorides. In casejof HGA, PCA, 1,1,1,2-TeCA, less chlorinated byproducts 

and ethane formed at the end of the reaction. On the other hand, the utilisation of 

bimetallic nZVI particles such as Pd/Fe ensures a complete reduction at a faster rate 

forming mainly ethane as end products; however a smaller amount of chlorinated 

byproducts may be evolved during reaction which disappears instantly.

2.2.3 Stabilization of Iron Nanoparticles

In an aqueous system, direct inter-particle interactions such as Van der Waals forces and 

magnetic interactions cause nanoiron particles to form larger floes and1 thus; induce 

agglomeration, which in turn decreases chemical reactivity of nZVI particles (He and 

Zhao, 2007; Sakulchaicharoen et al, 2010). Supporting nanoparticles with selected 

stabilizers can diminish , agglomeration, decrease particle size and thus result in a 

substantial gain of net reactivity by either electrostatic repulsion or steric hindrance 

(Schrick et al, 2002; He and Zhao, 2005; He and Zhao, 2007; Sakulchaicharoen et al, 

2010). Schrick et al (2002) used carbon nanoparticles and poly acrylic acid (PAA) as 

supports for nZVI particles. Saleh et al (2007) utilized triblock copolymer (PMAA- 

PMMA-PSS) and the surfactant sodium dodecylbenzene sulfonate (SDBS) for modifying

commercial nZVI to dechlorinate DNAPLs. Starch-stabilized bimetallic nanoparticles
!

were prepared for degradation of chlorinated hydrocarbons in water by He and Zhao
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(2005). In a different study, He and Zhao (2007) successfully used carboxymethyl 

cellulose (CMC), a water soluble, low-cost and environmentally friendly polyelectrolyte 

for the same purpose. The starched nanoparticles in the study of He and Zhao (2005) 

displayed much less agglomeration and greater dechlorination than bare nZVI; however a 

stronger interaction and higher dechlorination rate was observed when CMC is used 

instead of starch with nZVI particles. (He and Zhao,:2007). CMC molecules adsorb onto 

the surface of the nanoparticles forming a thin negatively charged layer that suppresses 

agglomeration and exhibits higher reactivity compared to nonstabilized nanoparticles (He 

and Zhao, 2007). Sakulchaicharoen et al (2010) found that bimetallic.Pd/Fe (Fe=0.1 g/L, 

Pd=0.1 wt%) encapsulated with 0.2% (w/w) CMC700K completely degraded TCE 

(nZVI/TCE=2 wt ratio) within 6 hours whereas Pd/Fe without CMC was able to 

dechlorinate only 37% of TCE at the end of 24 hours. He and Zhao (2007) showed that 

0.2% (w/w) CMC-stabilized Pd/Fe transformed 50 mg/L of TCE (nZVI/TCE=1.17) into 

ethane and Cl- within 40 minutes. On the other hand, in the same study non-stabilized 

Pd/Fe took 2 hours for about 40% TCE dechlorination (He and Zhao, 2007). Thus
. V

compared to non-stabilized nZVI partcles, supported nZVI particles display faster 

reactivity, which enhances their efficacy for groundwater remediation.

2.3 DEGRADATION OF 1,2-DCA

The degradation of 1,2-dichloroethane (1,2-DCA) or ethylene dichloride (EDC) is of 

particular interest in this study because unlike other halogenated alkanes, 1,2-DCA shows 

no response to nZVI treatment. 1,2-DCA is a chlorinated hydrocarbon, highly flammable 

and colorless liquid with a chloroform like odor. It is used in chemical manufacturing as
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an intermediate in the synthesis of polyvinyl chloride and as a solvent in pharmaceutical 

products synthesis (Klecka et al, 1998; Marzorati etal, 2005). The health risks associated 

with 1,2-DCA are linked to acute' and long-term. toxic effects affecting-human liver, 

kidneys^ neurological, cardiovascular, and immune systems. Chloroacetaldehyde, 

produced in vivo due to oxidative conversion of 1,2-DCA, has established carcinogen 

effects. (De Wildeman and Verstraete, 2003). The drinking water standard of 1,2-DCA in 

Canada is 0.005 mg/L (Health Canada). Because of its relatively high water solubility 

(8,700 mg/L), high density (1.253 g/cc), its potential for migration in soil and high 

resistance to reduction reactions, the residence time of 1,2-DCA in the environment can 

range from months to decades depending on environmental conditions (eig. oxidation- 

reduction potential, pH, dissolved oxygen, temperature, conductivity etc.) (Marzorati et 

al, 2005). For these reasons, the development and implementation of reliable and 

effective remediation strategies for 1,2-DCA is a matter of great importance.'

2.3.1 Degradation Pathways of 1,2-DCA

In the subsurface, under both aerobic and anaerobic conditions, specific microorganisms 

are able to transform 1,2-DCA into non-toxic end products (Zaan et al, 2009; De 

Wildeman and Verstraete 2003; Dyer et al, 2000; Klecka et al, 1998). Fig 2.4 describes 

dechlorination reactions of 1,2-DCA following different pathways depending on the 

prevailing: reductive-oxidative conditions of an aquifer. Under aerobic'conditions, 

through the oxidation process, 1,2-DCA is completely mineralized into CO2, H2O and Cl' 

forming 2-chloroethanol and 2-chloroacetate as intermediates but these are not easily 

detectable in the field (the left hand pathway of Fig 2.4) (Zaan et al, 2009; Nobre et al,
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2004; Klecka et al, 1998). Under anaerobic conditions, 1,2-DCA may also be oxidized 

under denitrifying conditions, with nitrate as the electron acceptor, forming CO2, H2O 

and Cl' (the middle pathway in Fig'2.4) (Dyer et al, 2000; Nobre et al, 2004). Anaerobic 

degradation can take place through both biotic and abiotic processes (the right hand

pathways of Fig 2.4). Reductions such as reductive dechlorination (equation 2.12) and
. >

dihaloelimination (equation 2.13) are involved in biotic process whereas hydrolysis 

(equation 2.14) takes place under abiotic conditions. Vinyl chloride, formed as an 

intermediate during the abiotic process of hydrolysis under alkaline condition, needs to 

undergo anaerobic oxidation to form CO2 because of its low oxidation state (Dyer et al, 

2000). Although anaerobic biological remediation can lead to successful dechlorination 

of l‘;2-DCA, it is a very slow process and may take years to decades to complete the 

dechlorination reaction in the sub-surface environment.
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Fig-2.4- 1,2-DCA Transformation Pathways under Different Conditions (Nobre et al, 
2004)

2.3.2 Degradation of 1,2-DCA with metals

1,2-DCA has shown slight dechlorination in abiotic systems by metals due to its extreme 

recalcitrance to reduction whereas other halogenated alkanes were successfully 

remediated through this method (Ferrey et al 2004; Zhang et al 1998; Song and Carraway 

2005; De Wildeman and Verstraete 2003). While a variety of chlorinated ethanes (e.g.,
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HCA, PC A, .1,1,1,2-TeC A, 1,1,2,2-TeGA and 1,1,2-TCA) have been degraded easily 

using Fe°, Zn° as well as bimetallic nZVI particles, attempts to degrade 1,2-DCA have 

been only marginally successful (Arnold et al, 1999; Vanstone et al, 2008). Zn° is known 

< to be a highly reactive zerovalent metal with a standard reduction potential of -0.76V, 

facilitating experiments with slowly reacting chlorinated compounds (e.g. 1,1-DCA, 1,2- 

DCA) (Vanstone et al, 2008). However, even when a very large amount of Zn° (Zn°/1,2- 

DCA = 8000 wt ratio) reacted with 1,2-DCA, it degraded very slowly. About 30% of 

total 1,2-DCA was degraded at the end of 12 days, forming ethylene as the degradation 

product; though chloride evolution test was not carried at (Vanstone et al, 2008). On the 

other hand, 1,2-DCA has been found so far to be absolutely resistant to reduction by iron 

(Ferrey et al. 2004; Zhang et al 1998; Song and Carraway 2005; De Wildeman and 

Verstraete 2003, Kopinke et al 2004). For instance, Song and Carraway (2005) failed to 

show any measurable reduction (<5%) of 1,2-DCA with nZVI within 40 days.

It has been proposed that the average oxidation state of the carbon atoms that bear
V

chlorine atoms aids to analyse the recalcitrance of C2-C4.chloroalkanes in reductive or 

oxidative environments (De Wildeman and Verstraete, 2003). The lower the oxidation 

state of the carbon atoms, the less susceptible they; are to reduction (De Wildeman and 

Verstraete, 2003). :

Table 2.2 presents the nominal oxidation states for several chlorinated hydrocarbons and 

their dechlorinated products.
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Table 2.2- Redox Table (Ref: De Wildeman and Verstraete, 2003)

■ - , +2 +1 0 -1 -2

Ethylenes PCE -» TCE cis-l,2-DCE ■» VC-» Ethylene

Ethanes 1,1,2-TCA-» 1,2-DCA-» Ethylene

Table 2.2 reflects a zone, moving to the right from oxidation state 0, where reductive 

dechlorination is uncommon. For instance, carbon atoms associated with PCE have an 

oxidation state of +2 that makes reduction very easy but oxidation difficult. On the other 

hand, cis-l,2-DCE and VC with oxidation state of 0 and -1 respectively show 

comparatively slower reduction than PCE (De Wildeman and Verstraete, 2003). 

Although VC, with an oxidation state of -1, is susceptible to slow reduction, 1,2-DCA 

despite having the same oxidation number (-1) exhibits stability to reductive 

dechlorination (De Wildeman and Verstraete, 2003). Almost no degradation in the 

reductive conditions has been discussed for lower chlorinated alkanes containing 2-4 

chlorine atoms (De Wildeman and Verstraete, 2003). The role of halogenated compounds 

as electron acceptors in anaerobic environments has also been rationalized by the Gibb’s 

free energy (AG°) of reactions. Table 2.3 reflects the half reaction Gibb’s free energies 

for reductive dechlorination. Here PCE, having a AG° -55.4 kJ/electron, reduces more 

easily than TCE (AG°-53.1 to -50.9 kJ/electron) and 1,2-DCA is placed at the bottom of 

the table with AG° = -36.2 kJ/electron acting as the weakest electron acceptor that
v

supports the data provided in Table 2.2. Although 1,1-DCA being just above 4 ,2-DCA in 

table 2.3 with a AG° value of -38.3 is transformed at a very slow rate by reacting with
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nZVI producing ethane as end product (Song and Carraway, 2005), 1,2-DCA has so far 

failed to breakdown by reacting with nZVI.

Table 2.3: Half Reactions Gibb’s Free Energies of Reductive Dechlorinations. The
AG° electron values are calculated at standard conditions partial pressures latm , pH=7.0 
and [Cl]'=lmM. (Ref: Dolfing and Mueller)

Electron
Acceptor

Half-reaction of reductive transformation AGU
(kJ/electron)

Eu
(mV)

P d" • Pd" + 2e Pdu -88.3 915

PCE C2C14 + H+ + 2e C2HCI3 + c r -55.4 574

1,1,1-TCA CCI3-CH3 + H++ 2e '/ CHC12-CH3 + Cr -54.1 561

TCE C2HCI3 + H+ + 2e' C2H2CI2 + c r -53.1JO -50.9 550 to 
527

1,1,2-TCA CHCI2-CH2CI + H++ 2e' C2H4CI2 + c r -51.9 to -49.8 538 to 
516

VC C2H3C1 + H+ + 2e' •> c 2H4 + c r -43.4 450

1,2-DCE C2H2C12 + H+ + 2e‘ C2H3C1 + c r -40.6 to -38.3 420 to 
397

1,1-DC A C2H4C12 + H+ + 2e' C2H5CI + c r -38.3 397

1,2-DCA CH2CI- CH2C1 + H+ + 2e' c 2h 5ci + c r -36.2 375

Fe2+ !•: Fe2+ +2e Fe° ; +42.5 •' -440

Z n" . Z n" +2e Zn° +73.6 -763

Moreover, the dechlorination reactivity of chlorinated hydrocarbons is expected to be
N»

affected by the bond strength of the carbon-chlorine bond, the electron affinity of the 

carbon chlorine bond and the stability of the carbon-radical species resulting from an
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initial electron transfer pathway (Larson and Weber, 1994). Table 2.4 illustrates the 

dependence of reactivity on structures of chlorinated ethanes where the order of reactivity 

of HÇA, 1,1,2,2-TeCA and 1,2-DCA is linked to differences in the dissociation energy of 

the C-Cl bond. (Larson and Weber)

Table 2.4 Relative Rates for the Vicinal Dechlorination of Chlorinated Ethanes in 
Reducing Sediment-Water Slurry (Larson and Weber, 1994)

Compound kobs (m in1) ti/2 Bond dissociation 
energy (C-Cl; 
kcal/mol)

Electron Affinity 
of Associated 
chlorine(kcal/mol)

Hexachloroethane 1.9 x 10'^ 36 min 72 83

1 ,1,2,2-
Tetrachloroethane

7.3 x 10° 6.6 d 69.8 ' 77.5

1,2-Dichloroethane <1.4 x 10° 735 d <47 70.5

Under the experimental conditions of the study by Larson and Weber, alkenes were 

formed at the end of reactions through the pathway of vicinal dechlorination (equation 

2.15).  ̂ ,

H- I Cl

---- G— H

H

_s_
- c f

C-

Jl

(Equation 2.15)

Vicinal Dechlorination
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2.3.3 Degradation of 1,2-DCA with hydrogen and a catalyst

Although metal-based reduction has been found to be marginally successful in 1,2 DC A 

chemical dechlorination, catalytic hydrodechlorination (a dechlorination reaction in the 

presence of H2 gas and a catalyst where chlorinated organic compounds are dechlorinated 

" into benign compounds) has been reported to be successful in this respect (Vadlamannati 

et al 1999; Choi and Lee, 2000; Kovalchuk et al 2004; Orellana et al 2005). Here, the 

dechlorination reaction occurs between an organic molecule containing a C-Cl bond and 

gaseous H2 in the presence of a highly selective metal catalyst, leading to the formation 

of HC1 and a new C-H bond (Orellana et al 2005). It has been found that, for the process 

to be successful, the metal must be able to catalyze the dissociation of hydrogen 

(Kovalchuk et al 2004). According to Vadlamannati et al (1999), the catalyst participates 

in a catalytic cycle where the chlorinated molecules cover the metal surface. The 

5 reduction of highly reactive hydrogen adatoms remove the chlorine atoms and eventually: . _ i _

form ethane (Vadlamannati et al, 1999). Group VIII-B metals (e.g. platinum, palladium, 

’ rhodium etc.) satisfy this condition and have shown good performance in the 

: hydrodechlorination of 1,2-DCA forming ethane as end product (Fig 2.4) (Kovalchuk et 

al 2004; Vadlamannati et al 1999; Orellana et al 2005) when the temperature lies within 

the range of 200-250°C at a pressure of 101.325 kPa. '■

Fig 2.5: Reaction Scheme for Catalytic Hydrodechlorination of 1,2-DCA (Ref: 
Kovalchuk et al, 2004)
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Monochlorinated aliphatic hydrocarbons are also susceptible to catalytic 

hydrodechlorination; for example, methyl chloride dechlorination catalyzed by silica 

supported Ru, Rh, Pd, Pt, Ag lead to methane and hydrochloric acid (HG1) in the 

presence of H2 (equation 2.16) (Fung and Sinfelt, 1987). Although Pd, Pt, Rh, Ni, Ru, Cu 

can effectively dechlorinate 1,2-DCA to ethane, the best performance of catalysts in 

terms of conversion of 1,2-DCA (-30%) has been found with Pd (Table 2.5).:

CH3CI + I-l2 -> CH4 + IICl (Equation 2.16)

Table 2.5: Summary of Catalytic Hydrodechlorination of 1,2-DCA

Research
Group

Temp (°C) Catalyst Conversion Final Product

Heinrichs et al 
(1997)

350 Pd/Si02 30% 90% Ethane

Vadlamannati 
et al (1999)

200 Pt/C 4% 92% Ethane, 2% 
Monochloroethane

Vadlamannati 
et al (1999)

200 Cu/C 0.6% 100% Ethylene

Srebowata et al 
(2007)

230-250 Ni/Si02 4% 70% Ethylene, 
30% Ethane

Srebowata et al 
(2007)

230-250 RU/SÌO2 2% 25% Ethylene,; 
55% Ethane

Therefore, it can be found that although the reductive treatment with nZVI particles failed
i

to dechlorinate 1,2-DCA, catalytic hydrodechlorination in the laboratory at very high 

temperature, in the presence of a catalyst and gaseous hydrogen could transform 1,2- 

DCA into ethane and ethylene.
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2.3.4 Modified Approach to Degrade 1,2-DCA with nZVI, Catalyst and Hydrogen
\

So far, the beneficial application of zero-valent iron nanoparticles in aqueous phase for 

remediation of chlorinated hydrocarbons has been discoursed. However, 1,2-DCA has 

been found to be an exception in this respect due to its recalcitrance to reduction. On the 

other hand, gas-phase catalytic hydrodechlorination at an elevated temperature using an 

adequate catalyst could dechlorinate this compound. Nonetheless, the requirement of high 

temperature and gaseous H2 makes this approach impractical for field remediation. 

Therefore, the study of an alternate methodology for in-situ 1,2-DCA degradation in 

contaminated aquifers is a worthwhile task. Since the main concept of 

hydrodechlorination to remediate 1,2-DCA lies in replacing the chlorine atoms by 

hydrogen, liquid phase reduction using an alternate source of hydrogen presents an 

interesting alternative to gas phase reduction of 1,2-DCA. This type of reduction has been 

favourably applied for dechloritation of polychlorinated biphenyles, chlorobenzenes and 

chlorotoluenes (Ukisu et al, 1997; 1998). In this case, relatively mild conditions with 

reaction temperatures rarely exceeding 100°C have been proved adequate for the 

dechlorination to take place. Moreover, instead of H2 gas, various sources of hydrogen, 

like formic acid and formates, phosphinic acid and phosphinates, phosphorous acids and
t

phosphates, alcohols, hydrazine or borohydrides, can be used (Ukisu et al 1998, Urbano 

and Marinas, 2001). The use of hydrogen donors has potential advantages on hydrogen 

transfer reduction compared with catalytic reduction with molecular H2. The H2 released 

from the hydrogen donors is transformed into atomic hydrogen (H*) onto the catalyst 

surface through catalyzed decomposition of H2 (Zhou and Lim, 2010). This H* reacts 

with chlorinated compounds, releases Cl- and forms hydrocarbons (Fig. 2.6) (Urbano et
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al, 2001). According to Urbano et al. (2001), the hydrogen transfer mechanism may take 

place in various ways: the H2 may serve as a proton, atom or hydride during its transfer 

from donor depending on the reagents and conditions.

RH + Cl-

Fig: 2.6 Schematic of Proposed Hydrogen Transfer Mechanism on Pd (Ref: Zhou 
and Lim, 2010)

When formic acid is used as the H2 donor and Pd is used as catalyst to~dechlorinate RC1, 

Kopinke et al (2004) proposed that, in the presence of Pd, RC1 utilises directly the 

hydride hydrogen from the chemisorbed formate and breaks into RH and Cl' (Fig 2.7a). 

In fact, under alkaline conditions, it is found that the relatively slow hydride mechanism 

dominates (Fig 2.7a), while at lower pH values the fast radical mechanism through H 

atoms is favoured under acidic or neutral conditions (Fig 2.7b) (Kopinke et al, 2004)

. c T

f

C
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Fig 2.7: Possible mechanism of Pd-catalyzed hydroechlorination in the presence of 
formic acid a) hydride mechanism b) radical mechanism (Kopinke et al, 2004)

V

Literature reports indicate the combination of HCOOH, used as a H2 donor, with Pd, is a 

powerful reductant. Under acidic or neutral conditions, formic acid was found to be as 

reactive as H2. Kopinke et al (2004) observed that at 23°C and a pH -  3.5, 0.05mM 

chlorobenzene was completely dechlorinated using 5.5mM HCOOH arid 250 mg/L 

Pd/Al203, forming benzene and chloride at the end of 20 hours. When isopropanol was 

used as hydrogen source, only 15% of chlorobenzene was converted to benzene after 2 

weeks. The activity of the catalyst was tested and found to be reactive even after 2 weeks. 

Therefore, the partial dechlorination might be because the combination of Pd and

\  ;
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isppropanol was not an appropriate reductant under the applied mild conditions due to its 

kinetic nature and not because of the thermodynamic nature (the driving force for
s

isopropanol reaction mechanism, AG° = -212 kJ/ mol) (Kopinke et al, 2004). In another 

study, Ukisu et al (1997) used 2-propanol as hydrogen donor, for hydrogen transfer from 

2-propanol to p-chlorotoluene in the presence of Rh/C, Pd/C and Pt/C at temperatures 

below 82°C. Although Pd has been proven to show the best catalytic properties in 

catalytic hydrodechlorination, Ukisu et al (1997) showed that, in . this case, Rh exhibits 

better performance than Pd and the reaction was completed within 180 minutes while Pd 

showed only 20% degradation in that time period (Ukisu et al, 1998). Ukisu et al (1998) 

explained this difference in the dechlorination activity as a ‘result of efficiency of

hydrogen transfer process from 2-propanol on the catalyst surface.

'■■ ■ ') '

Although nZVI itself performs as a source of hydrogen in aqueous phase for reduction of 

chlorinated solvents, it was completely unsuccessful to dechlorinate 1,2-DCA. Being 

encouraged by the idea of liquid phase reduction, along with nZVI, a suitable hydrogen 

donor and catalyst have been used in this research work to create a reducing environment 

that could degrade 1,2-DCA to a certain extent. The choice of hydrogen donor and 

catalysts were selected by analyzing the literature. Details of this selection to formulate 

different experimental conditions for 1,2-DCA has been resolved in the next chapter.

i
2.4 SUMMARY

Nanoscale zero valent iron particles have been proposed as a preferred option for 

remediation of chlorinated solvents, such as chlorinated ethylenes and ethanes. The high
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surface area, nanoscale dimensions and high density of reactive sites on the surface
s'

enable nZVI particles to degrade contaminants at a faster and more complete manner than 

micro or macroscale iron systems/ In aqueous environments, Fe° is oxidized and this 

causes reduction of H2O into H2. Addition of noble metals to nZVI particles enhances the 

reactivity, the noble metals serving as catalysts. In a bimetallic.nZVI system, the catalyst 

performs as the dissociator of H2; absorbing and dissociating it into atomic H. This highly 

reactive form of hydrogen then attacks the adsorbed contaminants on the iron surface, 

replacing chlorine leading to the formation of benign products. However, in the1 absence 

of a catalyst, H2 cannot contribute directly to the dechlorination. Moreover, the presence 

of a catalyst on the iron surface preserves the Fe° core from being oxidized and thus 

maintains its reactivity for dechlorination. Both mono and bimetallic nZVI particles 

showed excellent performance in remediating chlorinated compounds like PCE, TCE, 

cis-DCE and VC. The final products were mainly saturated hydrocarbons. Although a 

number of chlorinated ethanes responded to the treatment with nZVI particles, 1,2-DCA 

was an exception because its chemical-physical properties did not allow it to respond 

positively towards the treatment involving nZVI. However, catalytic hydrodechlorination 

could successfully remediate this compound. The main strategy of this study is to create a 

nZVI based formulation combing the concept of catalytic hydrodechlorination and liquid- 

phase reduction that will provide a positive, methodology to dechlorinate 1,2-DCA 

successfully. . . ;

)
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CHAPTER3

3.0 DEGRADATION OF 1,2-DCA WITH NZVI PARTICLES
i

3.1 INTRODUCTION

Chlorinated Organic Compounds (COCs) are difficult to remediate directly under most 

natural or abiotic conditions and are persistent in the environment for decades to 

centuries, causing widespread contamination in both groundwater and soil. The 

application of nanoscale zero-valent iron particles (nZVI) for abiotic remediation of 

chlorinated aliphatics, aromatics and polychlorinated biphenyls is a promising technology 

(Zhang et al, 1998; He and Zhao, 2005; Li et al, 2006; Wang ’et al 2008; 

Sakulchaichareon et al, 2010). Nanoscale zero-valent iron particles-are very effective 

electron donors possessing a standard reduction potential (Eo) of - 0.44 V. In an aqueous 

solution, Fe° is oxidized to Fe2+ and forms H2 by reduction of H2O (equations 3.1 and 

3.2). When iron particles are doped with a catalytic metal (e.g., Pd, Pt, Ni or Ag), the 

catalyst adsorbs the H2 and dissociates it into atomic H (equation 3.3) which then attacks 

the adsorbed chlorinated contaminant (RC1 in equation 3.4) bn the iron surface, leading to 

dehalogenation of the organic substrate (equation 3.4). :

Fe° +2H20  Fe2++ H 2 + 20H'  ̂ (Equation 3.1)

2Fe° + 0 2+ 2H20  2Fe2+ + 40H‘ (Equation 3.2)

H2 —- yst>2H* (Equation 3.3)

Fe + H20  + H» + RC1------- > RH + HC1 + FeOx (Equation 3.4)
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Many COCs of concern (e.g., tetrachloroethylene PCE, trichloroethylene TGE, cis- 

dichloroethylene cis-DCE) are rapidly and completely dechlorinated without the 

formation of toxic by-products (e.g., vinyl chloride) using nZVI doped with a catalytic
3

metal known as bimetallic nZVI systems (He and Zhao, 2005; Lien and Zhang, 2001). 

Both mono and bimetallic nZVI particles exhibited a good performance in degradation of 

chlorinated ethanes like hexachloroethane (HCA), pentachloroethane (PGA), 1,1,2,2- 

tetrachloroethane (1,1,2,2-TeCA) and 1,1-dichloroethane (1',1-DCA) forming ethane at 

the end of the reaction (Lien and Zhang, 2005; Song and Carraway, 2005). :

Although chlorinated ethanes like HCA, PC A, 1,1,2,2-TeCA and 1,1-DC A showed 

response to nZVI dechlorination, 1,2-dichloroethane (1,2-DCA) has been resistant to 

degradation using nZVI technology (Ferrey et al. 2004; Zhang et al 1998; Song and 

Carraway 2005; De Wildeman and Verstraete 2003, Kopinke et al 2004). For instance,
t

Song and Carraway (2005) found no measurable reduction of 1,2-DCA (conversion 

below 5%) even after 40 days of reaction (nZVI/l,2-DCA=83 wt ratio). The limited 

reactivity of nZVI to 1,2-DCA has been ascribed to factors such as bond strength of the 

carbon-chlorine bond, the low electron affinity of the carbon-chlorine bond and the low 

stability of the carbon-radical species resulting from the initial electron transfer step 

required for dechlorination (Larson and Weber, 1994). Generally, the higher the 

oxidation state of the carbon atom, the more responsive it is to reduction, and the more

resistant to oxidation (De Wildeman and Verstraete, 2003). 1,2-DCA with an oxidation
.1

state of -1 exhibits a low tendency to reduction under conventional conditions.
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As discussed earlier, in the nZVI system the source of H2 is water. Hydrogen generation 

occurs through Fe° corrosion and this hydrogen is used during the transformation of the 

chlorinated compounds into benign products. Therefore, introducing a more efficient H2 

source in the dechlorination ; system could potentially enable a more effective
s

dechlorination process. Previous studies have shown that a H2 source coupled with an 

active hydrogenation catalyst (such as, Pd, Rh, Ni or Pt) can reduce reticent organic 

halides such as- chlorotoluene, chlorobenzene, and polychlorinated biphenyls. (Johnstone 

and Wilby, 1985, Ukisu et al 1998; Kopinke et al 2004). The adsorption of hydrogen 

released from the hydrogen donors, onto the catalyst surface influences the dechlorination
J

rate f(Urbano et al, 2001). Formic acid has been found as an effective, hydrogen;source 

and a combination of formic acid and Pd acts as a powerful reductant to dechlorinate 

compounds like chlorobenzene (Kopinke et al, 2004). Alcohols have been proposed as 

hydrogen sources as well. In this case, the alcohol acts both as a hydrogen source and 

solvent for the dechlorination reaction. However, in this case, the addition of a base (e.g. 

NaOH, KOH, NH4OH) is necessary to neutralize the HC1 formed because HC1 can 

deactivate the catalysts. (Urbano and Marinas, 2001; Ukisu et al, 1998). The use of 

alcohols as hydrogen donors coupled with a hydrogenation catalysts such Rh, Pd and Pt 

has been proved successful in the dechlorination of contaminants like p-chlorotoluene 

(Ukisu et al l998). Nonetheless, the literature lacks reports on the use of these systems
k

for the dechlorination of 1,2 DCA. , ■ ■

The studies discussed in Chapter 2 and briefly discussed in this section indicate that, 

while thermodynamically feasible, the right conditions for dechlorination, of 1,2 DCA are

1
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yet to be found. Based on results observed on the dechlorination of other organic species, 

it can. be hypothesized that a combination of liquid-phase reduction using hydrogen 

donors, a catalyst and nZVI should be able to initiate the degradation of 1,2-DCA under 

the right experimental conditions. In our study formic acid and isopropanol (IPA) were 

selected as hydrogen donors while Rh and Pt along with Pd were used as catalysts. The 

selection of these specific systems were based on reports indicating that both Rh and Rh- 

Pt catalysts showed significant performance in dechlorinating chlorotoluene in the 

presence of 2-propanol and NaOH (Ukisu et al, 1998) whereas HCOOH catalyzed by Pd 

was as reactive as gaseous H2 to completely degrade chlorobenzene (Kopinke et al, 

2004). The objectives of this study are i) to find the nZVI-based formulation to 

dechlorinate 1,2-DCA under aqueous conditions similar to those in the field, ii) to 

optimize the experimental conditions for this process and iii) to investigate the 

degradation pathways under which 1,2-DCA dechlorination takes place.

3.2 MATERIALS AND METHODS

3.2.1 Chemicals

The following chemicals were used for experiments as received: 1,2-DCA(>99%, A.C.S. 

Reagent, Sigma-Aldrich), TCE (99+%, extra pure, stabilized, ACROS Organics), n- 

hexane (>95% GC, Fluka Analytical), formic acid (98%, GR ACS, EMD Chemicals Inc), 

isopropyl alcohol (for GC, HPLC, Residue Analysis, Spectophotometry; EMD Chemicals 

Inc ), FeS04.7H20  (99+%, A.C.S. Reagent, Sigma-Aldrich), NaBH4 (98+%, ACROS), 

K2PdCl6 (99%, ACROS Organics), Pd-acetate (99.98%, trimer, Pd min 47%; Alfa Aesar),
' • y - '
Rh-acetate (dimmer, 99.99%; Alfa Aesar), PtBr2 (99.9%, Pt min 54.5%; Alfa Aesar),
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sodium carboxymethyl cellulose (90K, Sigma*Aldrich), sodium chloride (EMD 

Chemicals Inc), Scotty Analyse Gases, N2 (ultra high purity, PRAXAIR), Gas Mix (5% 

H2 balance Ar, PRAXAIR), He (PRAXAIR), Compressed air (PRAXAIR), 5% CH4 

balance Ar (PRAXAIR).

-t >
3.2.2 Synthesis of non-stabilized nZVI Particles

The non-stabilized nZVI particles were synthesized using NaBH4 to reduce an aqueous

solution of FeS0 4.7H20 following the protocol of Schrick et al (2002). The synthesis
/  r ;

procedure was carried out in an anaerobic chamber to avoid Fe oxidation. In order to 

remove dissolved 0 2, deionized (DI) water used for the experiments was purged with 

purified N2 for at least 2 hours before synthesis. FeS0 4.7H20 was added to DI water to 

achieve 0.161M iron. The reaction mixture was homogenized using a magnetic stirrer 

operating' at 600 rpm. After complete dissolution of the iron , salt, an equal volume of 

0.322M aqueous solution of NaBH4 was added drop wise (1 drop/ sec) to the iron solution
• i "

to reduce ferrous iron to its zero-valent form (Equation 3.5): ,

V : 2Fe2+ + BH4‘ + 3H20  ^  2Fe° + H2B 03‘ + 4H+ + 2H2 (Equation 3.5)

✓
Upon addition of the NaBH4 solution, the clear yellowish solution rapidly changed to a 

dark black suspension, indicating the fprmation of Fe nanoparticles. After complete 

addition of NaBH4, the solution was mixed for about 30 minutes until H2 gas evolution 

ceased. The resulting nZVI particles were thoroughly rinsed with DI water (100 mL/g).
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In order to prepare Pd/Fe bimetallic nanoparticles, an aqueous slurry of Fe nanoparticles 

was equilibrated with an 3.38 x 10‘6M ethanolic solution of [Pd(C2H302)2]3- This mixture 

was stirred for 30 minutes. This resulted in the reduction and subsequent deposition of Pd 

on the iron surface (equation 3.6): .

Pd2+ + Fe° -> Pd°+ Fe2+ (Equation 3.6)

The palladium-doped nanoiron particles were then washed with DI water, collected in 

120 mL reaction vials and capped with Teflon Mininert Valves.

Transmission Electron Microscopy (TEM) images give information about the shape, size 

and size distribution of particles. A very dilute solution of Pd/Fe nZVI particles was 

prepared in acetone or IPA in order to take their TEM images. This solution was then 

dispersed for 20 ~ 30 minutes. On a copper lacey carbon grid, a few drops of nZVI 

solution was deposited, stored in the fume hood until the acetone or IPA is completely 

evaporated from the grid and then it was analyzed by the TEM. TEM analysis was 

performed using a FEI Titan 80-300 Cryo-in situ Transmission Electron Microscopes. Fig ^ 

3.1.shows the TEM image of Pd/Fe bimetallic particles, . .
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10 0  nm

Fig 3.1 TEM image of Pd/Fe bimetallic nZVI particles with scale bar 100 nm.
(Fig Courtesy: Nataphan Sakulchaicharoen) '

For the preparation of Rh/Fe bimetallic particles, Rh-acetate (CgHieOsRl^) dissolved in 

DI water (4.82 x 10'4 M) was added to the aqueous slurry of Fe particles and then 

equilibrated for 30 minutes. In some experiments, a mixture of catalyst precursors (Rh-Pt 

and Pd-Rh-Pt) was used following a co impregnation protocol. PtBr? served as the 

precursor of Pt. However, since this compound is insoluble in pure water, it was first 

dissolved in a 1M NaBr solution (through comlexation by Br' ions) and then mixed with 

the aqueous solution of Rh-acetate (Rh-Pt/Fe) and/ or Pd-Rh-acetate (Pd-Rh-Pt/Fe). This 

mixture was then added to slurry of Fe nanoparticles and then collected following the 

same procedure described above for the Pd-Fe material.
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3.2.3 Synthesis of CMC-stabilized nZVI Particles

The synthesis procedure was carried in an anaerobic chamber. CMC was added to the 

solution mixture before the reduction step with borohydride. Before synthesis, both DI 

water and 3% CMC (90K) stock aqueous solution were purged with purified N2 for at 

least 2 hours to remove dissolved O2. '

A volume of 50mL of an aqueous solution of FeSC>4.7H20 (0.161M) prepared in DI 

water was added to 125 mL of 3% aqueous solution of CMC to give a final concentration 

of 1.5% of CMC. This mixture, was stirred continuously with a mixer for about 15 

minutes to complete the formation of the Fe-CMC complex where the carboxylic groups 

of CMC, after being almost fully disassociated, interacted with the Fe2+ cations. After this 

period, 50mL of an aqueous NaBFL solution (0.322M) was added drop wise (ldrop/ sec) 

to the' CMC-Fe2+ solution. After addition of the total volume NaBH4, the mixture was 

allowed to homogenize for about 30 more minutes and then 25 mL of 2.35 x 10' M of 

K2PdCl6 dissolved in a 0.005M NaCl solution was added to the CMC-nZVI solution in 

order to prepare bimetallic nanoparticles. Pd was deposited on the nZVI surface 

according to equation 3.7: ..........  \

*

PdCl62' + 2Fe° Pd°+ 2Fe2++ 6Cf (Equation 3.7)

The synthesized iron particles were collected in a 120 mL reaction vial and were 

immediately capped with Teflon Mininert Valves. Fig 3.2ishows the TEM image of CMC 

(90K) stabilized Pd/Fe nZVI particles.
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Fig 3.2 TEM image of CMC (90K) stabilized Pd/Fe bimetallic nZVI particles with 
scale bar 5 nm (Fig Courtesy: Nataphan Sakulchaicharoen)

3.3 BATCH EXPERIMENTS

Batch experiments were carried out in 120 mL amber bottles to test the reactivity of the 

laboratory synthesized nanosized zero-valent iron particles for the dechlorination of 1,2- 

DCA and TCE. The purpose of using amber bottles was to restrict any kind of 

photodegradation of the chlorinated solvents. Along with the reaction vials, blank 

experiments were conducted without metal particles. Stock solutions of both 1,2-DCA 

and TCE were prepared in isopropanol and appropriate volumes of the stock solutions 

were spiked through gas-tight syringes in both vials to achieve the desired concentration 

of the chlorinated solvents. In those experiments requiring formic acid, an appropriate 

amount of this chemical was added to the vials before 1,2-DCA spiking. About 25-50% 

of inert headspace was maintained in the vials to allow for good homogenization of the
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reaction mixture. The vials were shaken either byv'wrist action shaker at room temperature 

or in a temperature controlled orbital shaker at 165 rpm. _ ! \

Table 3.1 indicates the different experimental conditions for 1,2-DCA and TCE 

dechlorination testing. -
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Table 3.1: Experimental Conditions for 1,2-DCA and TCE Dechlorination

Exp #. Chlorinated
Compound

(mg/L)

Fe cone 
(g/L)

Catalyst 
(wt % of Fe°)

Temp
(°C)

H2 donor/ 
Stabilizer added

Degradation 
.after 7 days

1. TCE=100 1'.5 none 25 none 25% after 6 
days

• 2- TCE= 100 L5 Pd=0.1% 25 none 100% after 
3 hours

3. 1,2-DCA= 50 1.5 Pd=0.5% 25 none none

4. 1,2-DCA= 5 20 Pd=0.2% 25 none 7%

5. , 1,2-DCA= 10 20 Pd=0.2% 25 none 8%

6. 1,2-DCA= 5 2.5 Pd=0.2% 25 HCOOH= 
250 mg/L

7%

7. . 1,2-DCA= 10 5 Pd=0.2% 35 HCOOH= 
500 mg/L

11%

8.
. - •/

1,2-DCA= 10 10 Rh=0.5% 35 IP A  and NaOH none

9. 1,2-DCA= 10 10 Rh=0.2%, Pt 
= 0.1%

35 IPAandNaOH none

10. 1,2-DCA= 10 10 Rh=0.7%, 
Pt= 0.35%

35 IPA and NaOH none

11. 1,2-DCA= 10 10 Rh=1.42% 
Pt= 1.42%

,3 5 IPAandNaOH none

12. 1,2-DCA= 10 10 Rh=0.2%
Pd=0.2%
Pt=0.1%

35 HCOOH=
500mg/L

12%

13/ 1,2-DCA= 10 
TCE= 10 (after 

7 days)

5 Pd=0.5% 25 HCOOH= 
500 mg/L 

CMC=1.5%

9%

14. TCE=10 5 Pd=0.5% 25 HCOOH= 
500 mg/L 

CMC=1.5%

not detected

15/ 1,2-DCA= 10 5 Pd=0.5% 45 HCOOH= 
500 mg/L 

CMC=1.5%

17%

16. 1,2-DCA= 10 10 Pd=0.2% 35 HCOOH=
500mg/L

12%

i
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3.4 ANALYTICAL METHODS

3.4.1 Solvent Extraction Analysis

The concentrations of 1,2-DCA and TCE were analyzed using the Solvent Extraction 

method. n-Hexane was used as the extracting solvent. At selected time intervals, 0.25-1 

mL of an aqueous aliquot was collected from both the reaction and blank vials and 

transferred to a 2-mL GC vial containing 1 mL of n-Hexane. This GC vial was shaken for f  

about 10 seconds and then kept undisturbed for about 2 hours, to allow for equilibration. ' —  

After this time, the organic phase was removed for GC analysis. A 1 pL of extract was 

withdrawn by the autosampler for GC analysis. :

The sample was analyzed for the determination of the concentration of 1,2-DCA and
v  t '•

TCE using an Agilent 7890 Gas Chromatograph equipped with a DB-624 capillary 

column (75m x 0.45 mm x 2.55 pm) and an Electron Capture Detector (ECD). The 

temperature program used for the analysis was: 35°C for 12 min, then 5°C / min to 60°C 

held for 1 min; il°C / min. to 200°C held for 5 min. A sample volume of 1 pL was 

injected in split less mode. Standard calibration curves for 1,2-DCA and TCE were used 

to calculate the aqueous concentration of the solvents in the reaction mixture. The 

standards were prepared using isopropanol and DI water and were analyzed using the t  

same method as the samples. The retention time of 1,2-DCA and TCE found.were about 

15.77 min and 18.21 min respectively for this temperature program. Along with 1,2-DCA 

and TCE, 1,2-DCE was also quantified during the analysis for identification of the 

formation of chlorinated intermediates during the dechlorination reaction.

?

t
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3.4.2 Headspace Analysis ;

Static headspace analysis was done to detect the hydrocarbons produced during 

dechlorination reactions on an Agilent 7890 GC equipped with a 7693 Auto sampler, a 

Mass detector (5975C MSD) and Flame Ionization Detector (FID). A GS-Gas Pro 

Column (3.0m x 320, pm) was used for this analysis. The temperature. program used 

under this program was 35°C for 5 min, then 10°C / min to 220°C held for 7 min. Sample 

injection was carried out using both manual injection and auto-sampling. For the case of 

manual injection, a 250pL gas-tight syringe was used to take the gaseous sample from the 

headspace of the reaction and blank vial. For the case of auto sampling, two different 

methods were used. In the first case, 1 mL of aqueous sample withdrawn from the 

reaction mixture was put into a 2mL GC vial. This sample was heated at 50°C for 1 min 

and stirred at a speed of 1000 rpm before a 250pL headspace sample injection into the

GC. The second case involved 2 mL of liquid sampling from the reaction mixture into a
(

10 mL autosampler GC glass vial. This was followed by heating the vial at 85°C for 28 

min and stirring at 1500 rpm followed by injection of a 2.50 mL headspace sample to the
V „

GC. The hydrocarbons were identified based on their mass spectra. Quantification was 

carried out by performing a calibration using a , gaseous mixture of ethane, propane, 

butane, pentane, hexane, ethylene, propylene, 1-butylene, 2-butylene, peritylene and 1- 

hexylene of known concentration in nitrogen. ' ; L

3.4.3 Chloride Analysis V

The production of chloride from the dechlorination reaction of 1,2-DCA and TCE was 

monitored for selected experiments. For this purpose, the aqueous phase left in the 2 mL

S
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GC vial after n-Hexane extraction was used. The evolution of chloride was monitored 

using a Waters 717 plus Autosampler High Performance Liquid Chromatograph (HPLC) 

equipped with a conductivity detector and an IC pak™ anion column (4.6m x 50 mm). 

An isocratic program was used. The eluant used was a mixture of 12% acetonitrile in 

deionized water and the flow rate was set to 1.2 mL/min at a pressure of 595 psi. The 

injection volume was 100 pL. The calibration for chloride evolution was done using 

different standards of NaCl solution (0.01,0.05,0.5, 1 and 5 mM).

3.5 RESULTS AND DISCUSSION

3.5.1 The Formulation for 1,2-DCA Dechlorination
\

Before attempting 1,2-DCA dechlorination, a number of experiments were carried out to 

confirm the general appropriateness of the nZVI synthesis procedure for dechlorination 

of chlorinated hydrocarbons and to compare results to those reported in the literature. 

TCE was selected as the representative contaminant since it is well known that TCE can 

be readily reduced by nZVI (Zhang et al, 1998; Kim and Carraway, 2002; Schrick et al, 

2002; Liu et al, 2005; Lien and Zhang, 2007). In these initial experiments, TCE was 

dechlorinated with both mono and bimetallic nZVI. In the case of monometallic nZVI 

(TCE = 100 mg/L,|nZVI/TCE = 15 wt. ratio, Exp # 1, Table 3.1), about 25%.of TCE was 

degraded at the end of 6 days (results not shown) whereas with bimetallic nZVI (TCE = 

100 mg/L, nZVI/TCE = 15 wt. ratio, Pd=0.1 wt%, Exp .# 2, Table 3.1) TCE was 

completely dechlorinated in one hour (Fig. 3.3)2 Observed degradation products were 

mainly ethane with a significant amount of ethylene. This is in agreement with the results 

obtained by Lien and Zhang (2001).' They used a higher ratio of nZVI/TCE (250) with

\
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0.05wt% Pd and obtained ~50% TCE degradation at the end of 12 minutes while, in this

study, (nZVI/TCE= 15, Pd=0.1wt%) it took ~30 minutes to achieve the same % of
\

degradation. This difference in rate of reaction is mainly due to the different nZVI/TCE 

ratio. A small amount of 1-butylene and 2-butylene also appeared as coupling products as 

the reaction proceeded further in this study; these products have been previously 

observed by others (Liu et al 2005). Unfortunately, due to analytical error’only 32% of 

carbon mass balance was recovered in the experiment. The total recovery of chloride ions 

was 86.5% of the total expected chloride based on the disappearance of TCE (Fig 3.4). 

Though some TCE could be lost due to volatilization it is more likely that chloride is 

adsorbed onto the nZVI surface (Barnes et al, 2010).

l  f-
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Fig 3.3: Degradation of 100 mg/L of TCE with 1.5g/L of nZVI and 0.1 wt% Pd at 
25°C (Exp #2) ■■
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— Total expected Cl-
•  TCE associated Cl + Cl evolved due to TCE degradation •
♦  Cl-evolved due to TCE degradation 
▲ TCE associated Cl
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Fig 3.4: Evolution of Chloride due to degradation of 100 mg/L of TCE with 1.5g/L 
of nZVI and 0.1 wt% Pd at 25°C (Exp #2)

The initial set of 1,2-DCA experiments were designed based on the successful TCE 

dechlorination experiments with Pd/Fe bimetallic particles. Experiments were carried out 

for the degradation of 50 mg/L of 1,2-DCA (nZVI/ 1;2-DCA = 30 wt. ratio, Pd = 0.5 

wt%, Exp # 3, Table 3.1). Pd loading was increased to 0.5 wt% based on the work of 

Orellana et al (2005) using 0.5 wt% Pd supported on Si02 to catalytically dehydrogenate

1,2-DCA at 300°C in the presence of gaseous H2. After 3 days, no 1,2-DCA degradation 

was observed in this experiment. This unsuccessful result might be due to a lower 

nZVI71,2-DCA ratio, compared to' Lien and Zhang (2005) (where, nZVI/l,2-DCA = 250 

wt. ratio, though this high ratio was unable to degrade 1,2-DCA). It should also be noted 

that the temperature used here was much lower than Orellana et al (2005) used. As such
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t
the kinetic barrier needed for dechlorination under these specific conditions may not have 

been achieved. To address these two issues, a new set of experimental conditions were 

developed; these include the use of a higher nZVI/1,2-DCA ratio and increased 

temperature to decrease the reaction time and cut experiment time down.

As discussed in Chapter 2, Vanstone et al (2008) degraded about 30% of I5.mg/L of 1,2- 

DCA at room temperature in 12 days using large quantities of Zn° (Zn/1,2-DCA = 80,000 

wt. ratio). They selected Zn° for this experiment because it is known as a highly reactive 

zero-valent metal with a standard reduction potential of -0.76V, which facilitates 

experiments with slowly reacting chlorinated compounds (e.g. 1,1-DCA, 1,2-DCA) 

(Vanstone et al, 2008). The one electron reduction potential for Zn° when reacting with

1,2-DCA is -0.558V at {Cl-} =lmM in the presence of all other species at unit activity 

(Arnold et al, 1999). However, Zn° becomes easily oxidized in the sub-surface affecting 

its dechlorination capacity (Wang et al, 2010). Moreover, the use of Zn° in the field is 

limited as it releases Zn2+, a harmful metal ion (Vanstone et al, 2008). On the other hand, 

the application of nZVI to dechlorinate COCs is a preferred option due to its high 

efficiency and environmentally benign nature; though the reduction potential for the 

reaction between 1,2-DCA and nZVI was not quantified because of its resistance to nZVI 

reactivity. Furthermore, Pd doped nZVI corrodes at a lower rate than Zn° (Wang et al, 

2010). The use of Pd together with Fe° reduces the activation energy for dechlorination. 

For instance, for dechlorination of PCE with nZVI, the activation energy is 44.9 kJ/mol 

whereas, the use of Pd/Fe reduces the activation energy to 31.1 kJ/mol (Lien and Zhang, 

2007). Therefore, instead of Zn°, in this study Pd/Fe bimetallic nZVI has been selected. .
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Since Vanstone’s results indicate that a very large excess of reductant is required to carry

1,2-DCA dechlorination, a'set of experiments were designed using a high concentration 

of highly active bimetallic. Pd/Fe particles (1,2-DCA= 5 mg/L, Fe°/1,2-DCA = 4000 wt 

ratio, Pd = 0.2 wt%, Exp #4, Table 3.1), The result of this experiment is shown in Fig 3.5.
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Fig 3.5: Degradation of 5 mg/L of 1,2-DCA with 20g/L of nZVI and 0.2 wt% Pd at 
25°C (Exp # 4)

Comparison of 1,2-DCA in the reaction and blank vials suggests disappearance of 1% of 

the 1,2-DCA after 7 days; however no chloride was detected in the reaction vials. The 

amount of chloride that would have been evolved due to 7% of 1,2-DCA dechlorination 

is 0.125 mg/L; which is lower than the detection limit of the chloride analysis method 

used (0.5 mg/L). Hydrocarbons were not measured in this experiment. To confirm 

whether degradation was indeed taking place a second experiment under similar 

conditions was carried out; however, in this case, the 1,2-DCA concentration was
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doubled (1,2-DCA = 10 mg/L, Fe°/1,2-DCA= 2000 wt ratio, Pd = 0.2 wt% Exp #5, Table 

3.1). Here, 8% of the initial 1,2-DCA disappeared after 7 days (Fig 3.6) and ethane and 

propane were detected in the reaction vial as degradation products. This indicates that

1,2-DCA degradation was taking place, though at a relatively slow pace.
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Fig 3.6: Degradation of 10 mg/L of 1,2-DCA with 20g/L of nZVI and 0.2 wt% Pd at 
25°C (Exp # 5) • ;

These results indicate that 1,2-DCA degradation can be achieved using Pd. doped nZVI

particles at relatively high loadings (e.g., nZVI/l,2-DCA= 2000 wt. ratio, nZVI= 20g/L),

which is rather high compared to typical field applications that can go as high as 10 g/L.

Given this, alternate nanometal formulations that include the addition of different

hydrogen donors and catalysts were explored to lower nZVI loadings while increasing

dechlorination rates.

u ■ I  s •  •  <

■ Reaction Vial 

•  Blank
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3.5.2 Formic Acid as H2 Source

Previous reports indicate that formic acid (HCOOH) is an efficient H2 donor under acidic 

and neutral conditions (Kopinke et al, 2004). When formic acid is used together with Pd 

for dechlorination it has been observed that the relatively slow hydride mechanism 

dominates while under acidic or neutral conditions the fast radical mechanism through H 

atoms' is favoured (Kopinke et al, 2004) Indeed, it is reported that a combination of 

formic acid and Pd is very active for chlorobenzene dechlorination (Kopinke et al, 2004).

1 .
Based on the results reported in the literature, a suite of experiments was designed to 

decrease iron loadings and achieve dechlorination of 1,2-DCA using H2 donors. The first 

system evaluated was formic acid/Pd. Thus, the next set of experiments were carried to 

dechlorinate 5 mg/L of 1,2-DCA in the presence of HCOOH as a H2 source (nZVI/1,2- 

DCA=500 wt. ratio, Pd=0.2 wt%, HCOOH/l,2-DCA = 50 wt ratio, Exp #6 in Table 3.1) 

These; conditions were selected based on a report by Kopinke et al (2004) (HCOOH/ 

Chlorobenzene = 45, wt ratio, Pd/Al203= 0.5 wt.%, 23°C). Our results using this 

formulation (Fig 3.7) show that at the end of 7 days, around 7% dechlorination of 1,2- 

DCA was achieved in the presence of HCOOH. This is similar to the results obtained in 

Exp #5 which required large ratios of nZVI/1,2-DCA (2000 wt. ratio) and definitely 

offers a better and more economic methodology. The presence of ethane and propane in 

the headspace analysis of reaction vial' confirmed the degradation as no. hydrocarbons 

were detected in the blank vials. A chloride analysis was unsuccessful because of 

interference by formate ions.
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Time (Days)

Fig 3.7: Degradation of 5 mg/L of 1,2-DCA with 2.5g/L of nZVI, 0.2 wt% Pd and 
250 mg/L IICOOH at 25°C (Exp # 6)

To get a faster rate of dechlorination, the reaction temperature was increased to 35°C. 

(1,2-DCA=10 mg/L, nZVI/l,2-DCA=500 wt ratio, Pd=0.2 wt%, HCOOH/1,2-DCA=50
. t

wt ratio, Exp #7 in Table 3.1 and Fig 3.8). At the end of 7. days, 11% degradation was 

observed (compared to 7% observed when running the same experiment at 25°C).
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Fig 3.8: Degradation of 10 mg/L of 1,2-DCA with 5g/L of nZVI, 0.2 wt% Pd and 500 
mg/L HCOOH at 35°C (Exp # 7) '

3.5.3 Optimization of Experimental Conditions

The experiments done so far showed that when HCOOH was used as a hydrogen source 

and Pd as a catalyst with nZVI at a temperature of 35°C, it was possible to, degrade 1,2- 

DCA up to 11% at the end of 7 days. The next objective was to optimize the experimental 

conditions to get even better results. For that purpose, instead of HCOOH, isopropanol 

was selected as hydrogen source. This selection was based on a study done by Ukisu et al 

(1997) where 2-propanol was used as a hydrogen donor in the presence of NaOH and Rh 

as catalysts to dechlorinate chlorobenzene. This system displayed the ability to fully 

degrade chlorobenzene within 3 hours. Based on this specific results we attempted to use 

Rh-doped Fe nanoparticles for 1,2-DCA degradation (1,2-DCA= 10 mg/L, nZVI/1,2-

DCA= 1000 wt ratio, Rh=0.5 wt%, reaction medium isopropanol (IPA), NaOH/Cl'=3

" * I *

■ Reaction Vial 

•  Blank



molar ratio, Exp # 8 in Table 3.1). The reaction temperature was kept at 35°C. However, 

at the end of 5 days, no 1,2-DCA degradation was observed in the reaction vial.

Previous reports indicate that the mixture of Rh-Pt as a catalyst (Rh=2 wt%, Pt=l wt%) 

leads to successful dechlorination for the specific case of p-chlorotoluene at 27°C (Ukisu 

et al, 1998). The activity of the catalyst was shown to increase at higher Rh loadings (1 -  

3 wt.%) (Ukisu et al, 1998). Thus, different amounts of Rh and Pt (Rh=0.2%, Pt=0.1%; 

Rh=0.7%, Pt=0.35% and Rh=1.42%, Pt=1.42%) were used to prepare several doped- 

nZVI formulations (Exp #9, 10 and 11 respectively in Table 3M) in the presence of IPA ’
V :

and 0.61M NaOH but neither of these formulations could successfully dechlorinate 1,2- 

DCA (Appendix A). Ukisu et al (1998) have proposed that dechlorination activity is 

intimately linked to H2 transfer and adsorption efficiencies. Therefore it can be proposed 

that the activation of H2 by Rh and Pt might not be as efficient as that of Pd, leading to 

poor results in 1,2-DCA dechlorination.

Another nZVI formulation, containing 0.2 wt% Pd, 0.2 wt% Rh and 0.1 wt% Pt was 

tested as well. In this particular case HCOOH was used as hydrogen donor for the 

catalytic hydrodechlorination of 10 mg/L of 1,2-DCA at 35°C (nZVI/l,2-DCA= 1000 wt 

ratio, Exp #12 in Table 3.1) instead of IPA. This particular formulation yielded 12% 

degradation of 1,2 DCA at the end of 7 days (Fig 3.9). This result is very similar to Exp # 

7 suggesting that dechlorination takes places due to the presence of HCOOH and Pd 

rather than due to the use of Pt and Rh in this , formulation. To confirm this, Exp#16 

(nZVI/l,2-DCA= 1000 wt ratio, 0.2 wt% Pd, HCOOH= 500 mg/L, Table 3.1) was done

65
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and 12% degradation was found after 7 days supporting the’result of Exp # 12 (Appendix
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Fig 3.9: Degradation of 10 mg/L of 1,2-DCA with lOg/L of nZVI, 0.2 wt% Pd, 0.2 
wt% Rh, 0.1 wt% Pt in 500 mg/L HCOOH at 35°C (Exp # 12)

Thus, up to this point, our results indicate that the most active formulation is nZVI/1,2- 

DCA=500 wt. ratio, Pd=0.2 wt% and HCOOH/ 1,2-DCA=50 wt ratio (Exp# 7, Table 3.1). 

Our next step was to improve the observed reaction rates through stabilization of the iron 

nanoparticles. It is well known that nZYI particles have tendency to form larger floes and 

induce agglomeration which in turn, decreases reactivity. Several stabilizers have been 

used with nZVI to diminish agglomeration, decrease particle size and therefore increase 

reactivity (Ponder et al, 2001; He and Zhao, 2005; Saleh et al, 2007;-He and Zhao, 2007). 

Among different stabilizers, carboxymethyl cellulose (CMC) has been proved to be the 

most effective (He and Zhao, 2007). As a result, the next set of experiments for this
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project was conducted using CMC stabilized Pd/Fe bimetallic particles in the presence of 

HCOOH along with increasing the Pd content to 0.5%.(1,2-DCA=10 mg/L, nZVI/1,2- 

DCA=500 wt ratio, Pd=0.5 wt% HCOOH/ 1,2-DCA=50 wt ratio, CMC (90K) 1.5 wt% of 

nZVI, Exp # 13 in Table 3.1) It is expected that the addition of the stabilizer during 

synthesis would lead to smaller iron particle size, in turn increasing the available surface 

area of the nZVI formulation (Schrick et al, 2002; He and Zhao, 2005; He and Zhao, 

2007; Sakulchaicharoen et al, 2010), leading to a higher 1,2-DCA degradation rates. 

Under these conditions, around 9% of 1,2- DCA degradation was observed after 7 days 

(Fig 3.10). Though it was expected that inclusion of CMC will make the particle size 

much smaller which will increase reactivity (Sakulchaicharoen et al, 2010) and a higher 

dose of Pd would give a faster reactivity of 1,2-DCA, it was observed that the rate of 

degradation was lower than that achieved in Exp #7 (11% dechlorination after 7 days)
3

. . _ - ' ; i .
where no CMC was added. The failure of CMC to increase reactivity can be rationalized 

using the explanation by Phenrat et al (2009) who proposed that when stabilizers are 

adsorbed on nZVI surfaces, reactivity is decreased primarily due to blocking of the iron 

active sites. On the other hand, according to Wang et al (2009) though an increase in Pd 

loading increases the rate of dechlorination, this is true only at loadings below 0.2% Pd 

weight. A further increase in Pd content might hinder Fe° corrosion and thus hydrogen 

formation by covering the active reactive sites of nZVI particles (Wang et al, 2009). 

Unfortunately no experiments were done without CMC and with Pd=0.2% at 45°C 

keeping all other experimental conditions same to confirm the role of temperature on 

increase in reactivity.
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Fig 3.10: Degradation of 10 mg/L of 1,2-DCA with 1.5% CMC stabilized 5g/L of 
nZVI, 0.5 wt% Pd, in 500 mg/L HCOOII at 25°C (Exp # 13)

The next set of experiments was carried out at 45°C, while keeping all other experimental 

conditions unchanged (Exp #15, Table 3.1), to check if increase in temperature could 

improve the rate of degradation.

I
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Fig 3.11: Degradation of 10 mg/L of 1,2-DCA with 1.5% CMC stabilized 5g/L of 
nZVI, 0.5 wt% Pd, in 500 mg/L HCOOH at 45°C (Exp #15)

Fig 3.11 shows the results of this experiment. 17% of 1,2-DCA degradation was observed 

at the end of 7 days. A replicate of this experiment was done at the same time which also 

gave i7% degradation (Appendix F). To the best of our knowledge, this is the first time 

in which significant degradation of 1,2-DCA using nZVI has been achieved. The 

dechlorination reaction lead to the formation of ethane and propane as degradation 

products from the very first day of reaction; the amount of these gases increased as 

dechlorination progressed (Fig: 3.11). However, no vinyl chloride was present in the 

reaction vial.

Since the experiments continued up to 10-12 days, it was necessary to check the 

reactivity of nanoscale iron particles towards the end. For that purpose, about 10 mg/L of

%
 of H

ydrocarbon Evolution
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TGE was spiked in the reaction vial (1,2-DCA= 10 mg/L, nZVI/l,2-DCA=500 wt. ratio, 

Pd=0.5 wt%, CMC=1.5%, HCOOH/1,2-DCA=50 wt. ratio) after 7 days (Exp #13, Table 

3.1). GC analysis demonstrated instant dechlorination of TGE just after its spiking in the 

reaction vial, which confirmed the reactivity of nZVI particles even after 7 days. That 

means, bimetallic nZVI particles stabilized with CMC stay active even after 7 days of 

reactivity with 1,2-DCA. However, despite being highly reactive towards TCE, the nZVI

particles could not do any further degradation of 1,2-DC A after 10-12 days. This might
\

be explained by proposing a tendency for utilization of specific nZVI reactive sites by

1,2-DC A.

3.5.4 Degradation pathways during the dechlorination of 1,2-DCA

According to our results it can be concluded that the combination of nZVI, Pd as catalyst, 

HCOOH as hydrogen source, CMC as stabilizer at a temperature of 45°C (1,2-DCA=10 

mg/L, nZVI/l,2-DCA=500 wt. ratio, Pd=0.5 wt%, CMC=1.5%, HCOOH/1,2-DCA=50 

wt. ratio Exp #15, Table 3.1) produced the best performance of all experiments done to

dechlorinate 1,2-DCA. The dechlorination of 1,2-DCA evolved about 44% of ethane and
(

56% of propane (Fig:3.11). After 7 days, a very small amount of ethylene, propylene, 

butane and butylene were also observed as coupling products. The observed formation of 

ethane is consistent with previous reports where if has been demonstrated that the use of 

Pd'with nZVI as a catalyst for dechlorination of C2 halocarbons yields ethane (Lien and 

Zhang, 2005) Moreover, catalytic hydrodechlorination of. L2-DCA also forms ethane as 

an end product when only Pd is used as catalyst (Kovalchuk et aL 2004; Orellana et al, 

2005). Arnold et al (1999) have proposed a scheme for the dechlorination of vicinal (a
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term used to describe the location of two identical atoms which are bonded to adjacent 

carbon atoms) chloroethanes and chlorinated ethylenes with Zn°. According to their 

hyp9thesis, reductive P-elimination is the only pathway through which species containing 

the requisite a, p pair of chlorine atoms react with Zn°. Therefore, the pathway of 1,2- 

DCA degradation on highly reactive Zn° is reductive P-elimination (vicinai elimination) 

involving net transfer of two electrons to the organohalides and the net loss of two 

nucleophiles (Cl') from neighbouring atoms (Fig 3.12).

H H 2e 2C1' H H

1,2-DCA Ethylene

Fig 3.12: Dechlorination of 1,2-DCA (Ref: Vanstone et al, 2008).

However, ethylene was not observed during the first 6~7 days in our experiment. This 

can be explained based on the fact that Arnold et al (1999) used Zn° without any catalyst, 

while in our case Pd, a very powerful hydrogenation catalyst was used. It is plausible to 

hypothesize that though ethylene was formed' through p-elimination, it was immediately 

hydrogenated by the Pd catalyst. However, the pathway for the formation of propane has 

not been explained in the literature. In case of one molecule of ethane production, 2 

hydrogen replaces 2 chloride ions from one molecule of 1,2-DCA. Whereas, it might be 

proposed that, when the degradation product is propane, 4 hydrogen replaces 4 chloride 

ions'from 3 molecules of 1,2-DCA and forms 2 molecules of propane. Since both ethane
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and propane are evolved from the very first day of degradation, it plausible to assume that 

propane is not coming from ethane.

Figuré 3.13 shows a proposed reaction scheme that can be used to rationalize the 

observed results we obtained for dechlorination of 1,2-DCA with Pd/Fe in the presence of

HCOOH:
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Fig. 3.13: Proposed 1,2-DCA transformation pathway while reacting with bimetallic 
Pd/Fe and HCOOH.
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In'order to compare the degradation products from dechlorination of both TCE and 1,2- 

DCA,- the hydrocarbon evolved during TCE degradation were monitored along with that 

for 1,2-DCA. When TCE reacted with bimetallic Pd/Fe nanoparticles, (Exp#14, Table 

3.1), the degradation products formed were 97% ethane, 1.17% propane and 1.19% 

butane. Due to the relatively high Pd concentration if some amount of ethylene was 

formed, it. would rapidly be hydrogenated to ethane. No chlorinated byproducts like VC 

were observed during the reaction period. This contrasts with the results obtained by Lien 

and Zhang (2001) where with bimetallic Pd/Fe nanooparticles, TCE formed -87% of 

ethane and 5.8-7.1% of ethylene within two hours (Lien and Zhang, 2001). On the other 

hand, Liu et al (2005) found 80% ethane and 20% C3-C6 coupling products due to TCE 

dechlorinatioin with nZVI.

One main drawback in this project during hydrocarbon analysis was that it was not 

possible to get a 100% carbon mass balance due to analytical error. Instead Of 100%, only 

~33% of carbon mass balance was possible to calculate. This might be explained as the 

fact, during calculation of amount of hydrocarbons, PV=nRT has been used were P= 1 

atm pressure has been considered.: But in reality, in the reaction vial with sample the 

pressure of hydrocarbons evolved after reactivity is likely to be more than 1 and that 

changes the hydrocarbon quantity affecting the carbon mass balance. In our case for 1,2- 

DCA dechlorination ethane comprised -44% of the observed degradation products 

whereas for TCE, ethane was the main product covering (97% of total the hydrocarbons 

generated at the end of reaction). On the other hand, for the case of 1,2-DCA degradation
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propane was the main end product (-56%). However, only 1.17% of TCE converted to 

propane.

3.6 SUMMARY AND CONCLUSIONS

The lower C-Cl bond dissociation energy (<47 Kcal/mole) of 1,2-DCA makes its 

dechlorination difficult in reductive environments. Nonetheless the thermodynamic free 

energy dechlorination value (-36.2 KJ/electrons) indicates that 1,2-DCA dechlorination is 

thermodynamically possible. Though different researchers report the inability of nZYI 

particles to dechlorinate 1,2 DCA, by exploring and adopting proper'experimental 

conditions, 1,2-DCA can successfully be dechlorinated using nZVI formulations.

A very high concentration of nZVI (20g/L) catalyzed by 0.2 wt% Pd degraded 1,2-DCA 

by -8% after 7 days of time. But this amount of nZVI is very high for field application. 

Therefore, to find a more convenient methodology, the combination of a hydrogen donor, 

nZVI and a catalyst was used. The use of formic acid as hydrogen donor with a lower 

concentration of nZVI (5g/L) and 0.2% Pd at 35°C was mildly successful in degrading

1,2-DCA (11% after 7 days ). The reactivity was even higher (-18% after 7 days), when 

both the temperature and the Pd content were increased to 45°C and 0.5 wt% respectively 

and nZVI was stabilized using 1.5% CMC. It can be postulated that 1,2-DCA is breaking 

following dihaloelimination into ethylene and propylene; but due to the utilization of a 

high concentration of Pd, the ethylene and propylene get instantly hydrogenated into 

ethane and propane. Both ethane and propane evolve from the very first day of reaction 

and increase progressively.
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In-this study, the present nZVI based dechlorination methodology offers a 1,2-DCA 

degradation of about 17%. Therefore the future step of this study should be to improve 

the rate of degradation by modifying the current experimental approach. Through an 

improvement in the experimental conditions such using different hydrogen donors (e.g. 

formates instead of formic acid), maintaining a lower pH during the reaction period as 

well as raising the temperature might develop a better dechlorination methodology.



77

3.7 REFERENCES

Arnold, William A., William P. Ball, A. Lynn Roberts “Polychlorinated ethane 
reaction with zero-valent zinc” Journal of Contaminant Hydrology. 1999,40, 183- 
2°0.

Barnes J. Robert, O.Riba, M.N.Gardner, T.B.Scott, S.A.Jackman and I.P Thompson, 
“Optimization of nano-scale nickel/iron particles for the reduction of high 
concentration chlorinated aliphatic hydrocarbon solutions”. Chemosphere, 2010, 
79, 448-454.

Bulushev, A. Dmitri, Julian R.H. Ross, “Vapour phase hydrogenation of olefins by 
formic acid over a Pd/C catalyst”. Catalysis Today. 2011.163.42-46.

Campbell,T.J, D.R.Burris, A.L.Roberts, J.R.Wells, “Trichloroethylene and 
tetrachloroethylene reduction in a metallic iron-water vapour batch system”, 
Environmental Toxicology and Chemistry. 1997. 16.625-630.

De Wildeman, S., W. Verstraete, “The quest for microbial reductive dechlorination of 
C2 to C4 chloroalkanes is warranted”. Appl Microbiol Biotechnol. 2003, 61, 94- 
102.

Dyer, Mark, Erwin Van Heiningen, Jan Gerritse, “In situ bioremediation of 1,2-DCA 
under anaerobic condition” Geotechnical and Geological Engineering. 2000, 18, 
313-334. '

Garson, Anthony and Florence Epron, “Use of formic acid a sreducing agent for 
applicatioin in catalytic reduction of nitrate in water”, Water Research. 2005, 39, 
3073-3081.

He, Feng, Dongye Zhao, Chris Paul “Field assessment of carboxymethyl cellulose 
stabilized iron nanoparticles for insitu destruction of chlorinated solvents in 
source zones” Water Research. 2010. 44. 2360-2370

He, Feng, Dongye Zhao, “Manipulating the size and dispersibility of zero-valent iron 
nanoparticles by use of carboxymethyl cellulose stabilizers” Environmental 

1 Science & Technology. 2007.41. 6216 -  6221.
He, Feng, Dongye Zhao, “Preparation and characterization of a new class of starch- 

stabilized bimetallic nnanoparticles for degradation of chlorinated hydrocarbons 
in water”. Environmental Science & Technology 2005. 39. 3314 - 3320

He, Feng, Dongye Zhao, “Stabilization of Fe-Pd nanoparticles with CMC for 
enhanced transport and dechlorination of TCE in soil and groundwater”. Ind. Eng. 
Chem. Res, 2007, 46, 29-34.

Johnstone R.A.W and Anna H. Wilby, “Heterogeneous catalytic transfer 
hydrogenation and its relation to other methods for reduction of organic 
compounds”. Chem. Rev. 1985, 85, 129-170.

Kim, Y-H, Elizabeth R Carraway, “Reductive dechlorination of TCE b'y zero-valent 
bimetals” Environmental Technology. 2003. 24. 69-75.

Klecka, G.M, C.L. Carpenter, S.J.Gonsior, “Biological transformations of 1,2-DCA 
in sub-surface soils and groundwater” Journal of Contaminant Hydrology. 1998. 
34, 139- 154. ;

Kopinke Frank-Dieter, Katrin Mackenzie, Koechler,; Robert Georgi Anette, 
“Alternative sources of H2 for hydrodechlorination of chlorinated organic



78

compounds in water on Pd catalysts”. Applied Catalysis A: General. 2004, 271. 
119-128.

Kovalchuk, Vladimir I., Julie d’ltri, “Catalytic chemistry of chloro- and 
chlorofluorocarbon dehalogenation: from macroscopic level understanding”. 
Applied Catalysis A: General. 2004. 271. 13-25.

Larson, A.Richard and Eric J. Weber, “Reaction Mechanisms in Environmental Organic 
Chemistry” Lewis Publishers, 1994. \

Li, X.Q., D.W. Elliott, and W.X. Zhang, “Zero-valent iron nanoparticles for 
abatement of environmental pollutants: Materials; and engineering aspects”. 
Critical Reviews in Solid State and Materials Sciences. 2006, 31, 111-122.

Lien, Hsing-Lung, Wei-Xian Zhang, “Hydrodechlorination of chlorinated ethanes by 
nanoscale Pd/Fe bimetallic particles”. Journal of Environmental Engineering. 
2005, 131. ' ,

Lien, Hsing-Lung, Wei-Xian Zhang, “Nanoscale iron particles for complete reduction 
of chlorinated ethenes” Colloids and Surfaces A: Phvsiochemical & Engineering 
Aspects ,2001. 191. 97-105.

Lien, Hsing-Lung, Wei-Xian Zhang, “Nanoscale Pd/Fe bimetallic particles: catalytic 
effects of palladium on hydrodechlorination”. Applied Catalysis B: 
Environmental. 2007,77. 110-116.

Liu, Y.Q., S.A. Majetich, R.D. Tilton, D.S. Sholl, and GW. Lowry, “TCE 
dechlorination rates, pathways, and efficiency of nanoscale iron particles with 

, different properties”. Environmental Science & Technology. 2005.9.1338-1345.
Omole, A.Marcells, Isaac O. K’Owino, Omowunmi A. Sadik, “Palladium 

nanoparticles for catalytic reduction of Cr(VI) using formic acid”. Applied 
Catalysis B: Environmental. 2007, 76, 158-167.

Orellana, F., G. Pecchi, P. Reyes, “Selective hydrodechlorination of L2-DCA over 
Pd-Sn/Si02 catalysts”. J. Chil. Chem, Soc. 2005, 50.

Phenrat, Tanapon, Y.Liu, R.D.Tilton and G.V.Lowry,”Adsorbed polyelectrolyte 
coatings decrease FeO nanoparticle reactivity with TCE in water: conceptual 
model and mechanisms” Environmental Science & Technology. 2009, 43, 1507 -  

' 1514.
Sakulchaicharoen, Nataphan, D.M.O’Carroll and Jose .E. Herrera, “Enhanced 

Stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd 
particles”. Journal of Contaminant Hydrology. 2010, 118, 117-127.

Schrick, B., J.L. Blough, A.D. Jones, and T.E. Mallouk, “Hydrodechlorination of 
trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles”. 
Chemistry of Materials. 2002. 14. 5140-5147. >

Song Hocheol, Elizabeth R Carraway, “Reduction of chlorinated ethanes by nano
sized zero-valent iron: kinetics, pathways and effects of reaction condition”. 
Environmental Science & Technology, 2005, 39, 6237 -  6245

Ukisu, Yuji, Satoshi Kameoka, Tatsuo Miyadera, “Rh-based catalysts for catalytic 
, dechlorination of aromatic chloride at ambient temperature” Applied Catalysis B: 

Environmental. 1998, 18, 273-279.
Urbano, F.J., J.M. Marinas, “Hydrogenolysis of organohalogen compounds over 

palladium supported catalysts”. Journal of Molecular Catalysis A: Chemical 2001, 
173,329-345.



79

Vanstone, Nancy, M. Eisner, G. Lacrumpe-Couloume, S. Mabury, B.S. Lollar, 
“Potential for identifying abiotic chloroalkane degradation mechanisms using 
carbon isotope fractionation” Environmental Science & Technology, 2008, 42, 
126-132.

Wang, Xiangyu, Chao Chen, Huiling Liu, Jung Ma, “Characterization and evaluation 
of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles” Ind. Eng. 
Chem. Res 2008. 47. 8645-8651.

Wang, Xiangyu, Chao Chen, Ying Chang, Huiling Liu, “Dechlorination of 
chlorinated methanes by Pd/Fe bimetallic nanoparticles” Journal of Hazardous

" Materials 2009. 161. 815-823.
Wang Zhiyuan, Weilin Huang, Pingan Peng, Donna E. Fennell,’’Rapid transformation 

of 1,2,3,4-TCDD by Pd/Fe catalysts”. Chemosphere, 2010, 78, 147-1'51.
Zaan, Bas van der, J.De Weert, Hubb Rijnaarts, W.M.de Vos, Hauke Smidt, Jan 

Gerritse, “Degradation of 1,2-dichloroethane by microbial communities from 
river sediment at various redox conditions”. Water Research. 2009. 43, 3207- 

■. 3216. ■
Zhang, W.X., “Nanoscale iron particles for environmental remediation: An 

overview”. Journal of Nanoparticle Research. 2003. 5. 323-332.
Zhang, W.X., C.B. Wang and H.L. Lien, “Treatment of chlorinated organic 

contaminants with nanoscale bimetallic particles”, Catalysis-Today. 1998, 40, 
387-395

Zhang, Wei-Xian, Daniel W Elliot, “Application of iron nanoparticles for 
groundwater remediation” Remediation Spring 2006.



_̂____________ _____________________ CHAPTER 4

4.0 SUMMARY AND RECOMMENDATIONS

4.1 SUMMARY AND CONCLUSIONS

Through a combination of nZVI, a hydrogen source, a hydrogenation catalyst, and a 

nZVI suspension stabilizer a suitable reductive environment to dechlorinate 1,2-DCA has 

been created. This particular approach can be applied in the field relatively easily since it 

requires neither high temperature nor gaseous hydrogen, unlike catalytic 

hydrodechlorination. In addition reaction times are fast meaning it will not take decades 

to centuries to breakdown 1,2-DCA, as required for subsurface microorganisms.

The results from this study indicate that:^

• nZVI by itself cannot initiate 1,2 DC A dechlorination, even at unusually high 

Fe°/1,2 DCA ratios. The presence of a hydrogenation catalyst is required in order 

to provide highly active hydrogen species able to carry out 1,2 DCA degradation.

• A hydrogen donor and a noble metal catalyst is required to decrease the amount of 

nZVI required to degrade 1,2-DCA. This is because, in the nZVI system, 

hydrogen generation occurs through Fe° corrosion that is used during the 

transformation of the chlorinated compounds into benign products. Introducing 

an efficient H2 source along with an active hydrogenation catalyst can substitute a 

part of the hydrogen required from nZVI and reduce reticent organic halides
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through reaction with the active form of hydrogen adsorbed in the catalyst. This 

will need less excess iron making the process more economical.

• As demonstrated in this work when compared to the other catalysts (e.g., Rh and 

Pt) Pd is the most effective, removing chlorines from 1,2-DCA thus yielding 

ethane. Rh and Pt were unable to catalyze 1,2-DCA degradation despite the 

presence of another hydrogen source (i.e., isopropanol). This might be due to the 

inadequate activation of hydrogen by Rh and Pt for 1,2-DCA dechlorination.

• The degradation pathway observed for 1,2-DCA followed a P-elimination 

mechanism followed by a very rapid hydrogenation of the unsaturated products 

formed (e.g. ethylene and propylene) leading to the formation of ethane and 

propane.

4.2 RECOMMENDATIONS

This work found an appreciable amount of 1,2-DCA dechlorination using nanoscale zero- 

valent iron particles, which was, to date, almost impossible. After 7 days -17% of the 

1,2-DCA was dechlorinated and little additional was degraded up to 12 days. Under the 

existing experimental conditions this was the highest observed conversion. However, it 

can be proposed that by optimizing the experimental conditions, 1,2-DCA conversion can 

be increased even more. For that purpose, a number of steps can be taken for future work.
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• Since hydrogen donor plays a vital role in the dechlorination of 1,2-DCA, a more 

appropriate hydrogen source could be examined. Some reports indicate that 

formate salts are superior to formic acid as hydrogen donors (Rajagopal and 

Spatola (1995). Therefore, a next step in improving 1,2 DC A dechlorination 

efficiency is to carry out the experiments using formate salts instead of formic

; acid (e.g., Cs and K).

• Since the rate of chemical reaction increases with an increase in temperature, the 

next step of the experiments in the lab can be carried over at higher reaction 

temperatures. This will help in reducing the duration of the experiments when 

evaluating different nZVI formulations.

• Another important factor controlling the reactivity is the pH. At low pH, Fe° 

corrosion is faster leading to the production of more hydrogen through reduction 

of water which can potentially increase the dechlorination rates. Therefore, if the 

pH can be controlled throughout the duration of the reactivity, that might help to 

improve the dechlorination rate.
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APPENDIX A

Comparison of reactivity between 1,2-DCA and different catalysts

1.2
Comparison of Different Catalysts
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Figure A: Comparison of reactivity of different catalysts when nZVI=10 mg/L, 1,2- 
DCA=10 mg/L, temp=35°C i) Rh=0.5% 1% ii) Rh=0.2%, Pt=0.1%, iii) Rh=0.7%, 
Pt=0.35%, iv) Rh=0.2%, Pd=0.2%, Pt=0.1% v) blank
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APPENDIX B

Chromatogram from GC/MS during dechlorination of 1,2-DCA

Fig B: Chromatogram for degradation products of 1,2-DCA:- retention time for i) 
ethane = 3.15 min ii) propane = 7.6 min, iii) 1,2-DCA
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APPENDIX C

Calibration Curves for TCE and 1,2-DCE

Calibration Curve for TCE

Fig C-l: Calibration Curve for TCE

Fig C-2: Calibration Curve for 1,2-DCE
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APPENDIX D

Calibration Curves for 1,2-DCA

Calibration for 1,2-DCA (Headspace)

Fig D-l: Calibration Curve for 1,2-DCA (Headspace Analysis)



87

APPENDIXE

Calibration Curves for Hydrocarbons

Calibration fo r Ethane

Area of Peaks

Fig E-l: Calibration Curve for Ethane (Headspace Analysis)

Fig E-2: Calibration Curve for Propane (Headspace Analysis)
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APPENDIX G

Comparison of Experiment # 8 and 11
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Fig G: Degradation of 10 mg/L of 1,2-DCA with 20g/L of nZVI, 0.2 wt% Pd, at 25°C 
(Results of Exp # 8 & 11)
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APPENDIX H

Comparison of Experiment # 10 and 13
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APPENDIX 1-1

Table 1-1: Experiments with 1,2-DCA

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone
ofFe0
(gm/L)

%
of
Pd

% of
CMC

Cone of 
HCOOH 
(mg/L)

Temp
(°C)

% of
Degradation 
after 7 days

Degradation Products

C-H Cl-

1 1,2‘ 25 
DCA= 1 0.1 0.8 X 25

!

no
degradation not done not done

2 1,2_ 25 
DCA= 1.5 0.5 0.8 X 25 no

degradation not done not done

3 1,2_ 50 
DCA= 3 5 0.2 X X 60 no

degradation not done . 0%

4 1,2_ 50 
DCA= 1.5 0.5 X X 60 no

degradation not done 0%

5 1,2_ 5 
DCA= 20 0.2 X X 25 ; 8% Ethane and 

propane

below 
det.' ■tion 

limit

6 1,2- , 
DCA= ' 2.5 0.2 X 250 25 7% Ethane and 

propane

below
detection

limit

7 1,2- , 
DCA= 20 0.2 X X 25 6% not done not done

8 1,2_ 10 
DCA= 20 0.2 X X 25 8% Ethane and 

propane not done
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APPENDIX 1-2

Table 1-2: Experiments with 1,2-DCA (contd)

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone
ofFe0
(gm/L)

% of
Pd

% of 
CMC

Cone of 
HCOOH 
(mg/L) 3

.3
...

...
.

■

% of
Degradation 
after 7 days

Degradation
Products

C-H Cl-

9 1,2_ 10 DCA= . 5 , 0.2 X 500 25 9% not done not done

10 1,2_ 10 
DCA= 5 ; 0.2 X 500 25 8% not done 8 times 

more

11 S
.-

>
 v II t—* O 20 ! 0.2. X X 25 8%

Ethane
and

propane

2.6 times 
more
A: '

12 1,2‘ 10 
DCA= 10 0.2 X 500 35 ” ; 12%

Ethane
and

propane
60%

13 1 2- .... 10
DCA= 5 0.2 X 500 . 25 8%

Ethane
and

propane
not done

-14 1 2-? 10 DCA= 20 0.2 X X 25

17% 
decrease 
after 25 

days

Ethane
and

propane
riot done

15
TCE = 10

5 0.5 X 500 25

nP0s-OO

not done not done

y!j ''
1,2- ,  

DCA=
9%
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APPENDIX 1-3

Table 1-3: Experiments with 1,2-DCA (contd)

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone
ofFe0
(gm/L)

%
of
Pd

% of
CMC

Cone of 
HCOOH 
(mg/L)

Temp
(°C)

% of
Degradation

Degradation
Products

C-H Cl-

1 1,2_ 10 
DCA= 5 0.5 1.5 500 25 12%

40%
ethane,

60%
propane

not
done

2 1,2_ 10 
DC A - ' 5 ,i; 0.5 1.5 500 45 17%

44%
ethane,

56%
propane

not
done

3 1,2‘ 10 
DCA= 5 0.5 1.5 500 45 15%

49%
ethane,

51%
propane

not
done
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APPENDIX 1-4

Table 1-4: Experiments with 1,2-DCA (contd)

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone 
of Fe° 
(gm/L)

% of
Pd

% of
Pt

% of 
Rh

Temp
(°C)

% of
Degradation

Degradation
Products

c -h Cl- .

1 1,2-
DCA= 5 X X 0.5 35 no

degradation
, i" ■

not done not
done

2 1,2‘ 10 
DC A - 10 X 0.1 0.2 35 no

degradation not done not
done

3 1,2_ 10 DCA= 10 X 1.42 1.42 35 no
degradation not done not

done*

4 1,2_ 10 
DCA= 10 X 0.35 0.7 35 no

degradation not done not
done

5 1,2- 10 
DCA= 10 0.2 0.1 0.2 35 12%

Ethane
and

Propane

not
done
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Table J-l: Experiments with TCE

_______________________________ APPENDIX J-l

No.

Cone of 
Chlorinated Cone

ofFe0
(gm/L)

% of % of HCOOH % of
Degradation Products

Solvent
(mg/L)

Pd CMC (mg/L) Degradation
C-H Cl-

1 TCE = 700 10 X X X 32% not done not done

2 TCE = 700 10 X X X 26% not done
33%of

expected
Cl-

3 TCE = 100 1.5 X X X 61% not done nti.Jone

4 TCE = 100 1.5 X X X 37% Ethane and 
- Ethene not done

5 TCE = 100 1.5 X X X 31% Ethane and 
Ethene

11% of ' 
expected 

Cl-

* 6 TCE = 4.4 1.9 X X X 31% not done not done

7 TCE = 100 1.5 .0.1 X X 100% not done not done

8 TCE = 100 1.5 0.1 X X 100%
.; : \ 

not done
50% of 

expected 
Cl-

9 TCE = 100 1.5 0.1 X X 100% not done not done

10 TCE = 10 5 0.2 X 500 100% not done not done

11 TCE = 100 1.5 0.1 X X 100% not done not done

-12 TCE = 100 5 0.2 X 500 100% not done not done
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APPENDIX J-2

Table J-2: Experiments with TCE (contd)

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone
ofFe0
(gm/L)

% of 
Pd

% of
CMC

HCOOH
(mg/L)

% of
Degradation

Degradation Prod; icts■> ;

C-H Cl-

13 TCE = 100 1.5 0.1 X X 100%

Ethane, 
Ethene, 1- 
Butene, 2- 
Butene

H 7% of
expected

Cl-

14 TCE = 100 1.5 0.1

j

X X 100%

Ethane, 
Ethene,1- 
Butene, 2- 

' Butene

118% of 
expected 

Cl- s

15 TCE = 100 1.5 0.1 X x 100%

Ethane, 
Ethene, 1- 
Butene, 2- 
Butene

98% of 
expected 

d -

16 TCE = 100 1.5 0.1 X X J00%  ;

Ethane, 
Ethene,1- 
Butene, 2- 
Butene

; 84% of 
expected 

Cl-

17 TCE = 100 1.5 0.1 X X 100%

Ethane, 
Ethene, 1- 
Butene, 2- 
Butene

126% of 
expected 

Cl-

18 TCE = 100 1.5 0.1 X X 100% ;

Ethane, 
Ethene, 1- 
Butene, 2- 
Butene ,

•V

not done
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APPENDIX J-3

Table J-3: Experiments with TCE (contd)

No.

Cone of 
Chlorinated 

Solvent 
(mg/L)

Cone 
of FeO 
(gm/L)

% of
Pd

% of
CMC

HCOOH
(mg/L)

% of
Degradation

Degradation Products

C-H Cl- "

19 T“  100 5 0.2 X 500 100%

Total = 31.26% 
(Ethane = 

31.11%, Propane 
= 0.073% Butane 

-  0.307 )

wjt
côiie

20 TCE= 10 5 0.5 1.5 500 100%

Total = 31.26% 
(Ethane = 

31.11%, Propane 
= 0.073% Butane 

-  0.307% )

not
done

21 TCE= 10 5 0.5 1.5 500 100%

Total = 30.44% 
(Ethane = 

30.33%, Propane 
= 0.089% Butane 

-  0.023% )

not
done

>

22 TCE- 10 5 0.5 1.5 500 100%

Total = 25.34% 
(Ethane -  

24.26%, Propane 
= 0.199% Butane 

-  1.073%)

not
d v :ie

23 TCE- 10 5 0.5 1.5 500 100%

Total = 34.79% 
(Ethane = 

34.41%, Propane 
= 0.144% Butane 

= 0.232% )

not
done

24 TCE- 10 5 0.5 1.5 500 100%

Total = 54.81% 
(Ethane = 

54.37%, Propane 
= 0.403% Butane 

= 0.44% )

not
done

25 TCE- 10 5 0.5 1.5 500 100%

Total = 31.197% 
(Ethane = 

31.06%, Propane 
= 1.512% Butane 

= 0.136%)

not
d'Te
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