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Abstract

This thesis provides an overview of stochastic optimization (SP) problems
and looks at how the Sample Average Approximation (SAA) method is used
to solve them. We review several applications of this problem-solving tech-
nique that have been published in papers over the last few years. The number
and variety of the examples should give an indication of the usefulness of this
technique. The examples also provide opportunities to discuss important as-
pects of SPs and the SAA method including model assumptions, optimality
gaps, the use of deterministic methods for finite sample sizes, and the accel-
erated Benders decomposition algorithm. We also give a brief overview of the
Sample Approximation (SA) method, and compare it to the SAA method.
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Chapter 1

Introduction

Let us begin by considering a generic optimization problem in standard form:

minimize
x∈S

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

We say that f(x) is the objective function, and the gi(x) ≤ 0 and hi(x) = 0
inequalities and equations are a set of constraints. Given this set of con-
straints, there will be a set of feasible solutions, S, to the program. The goal
of the optimization problem is to find the element of S that minimizes the
objective function.

We now consider a stochastic optimization problem (SP), the area of
optimization that will be focused on for the remainder of this thesis. An
SP is an optimization problem that takes randomness directly into account.
The uncertainty in the problem can show up via random variables in the
objective function, the constraint(s), or some combination of the objective
function and constraints. Typically, this randomness is accounted for using
probability distributions to estimate the way that the variables behave. We
now consider an SP in generic form. Note that the program allows for both
linear and nonlinear constraints and objective function:

Problem 1 Generic Stochastic Optimization Problem

min
x∈S
{g(x) := EP [G(x, ξ)]} (1.1)

2



Let us first define the elements of (1.1):

• P is a probability distribution

• ξ is a random vector with probability distribution P

• S is a finite set of feasible solutions, and x is an element of S

• G(x, ξ) is a real-valued function of x and ξ

• g(x) =
∫
G(x, ξ)P (dξ) is the expected value (or mean) of that function

We are especially interested in SPs that meet the following criteria:

1. The set of feasible solutions, S, is very large.

2. The expected value function, g(x):

• cannot be calculated easily with numerical methods.

• cannot be written in closed form.

3. Given x and ξ, the function G(x, ξ) is easy to compute.

If the first two of these criteria are met, then solving this type of optimization
problem becomes very difficult to do with numerical methods. In addition,
if the final criterion is met, then solving G(x, ξ) via simulation is relatively
easy. This ability to use simulation allows us to utilize methods where we can
approximate the expected value function to come up with good estimates for
the SP.

1.1 Two-Stage Stochastic Optimization

One of the more common types of stochastic optimization problems is the
Two-Stage Stochastic Optimization Problem (TSSP). In such a program, we
break the G(x, ξ) function into two separate functions:

• f(x) is the first stage and is only a function of x so it has no randomness

• h(x, ξ) is the second stage and is a solution to a secondary optimization
problem that can be solved after obtaining a realization of the uncertain
data, ξ, from the probability distribution P
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Let us define several elements of a generic TSSP before continuing:

• x is the First Stage decision variable

• y is the Second Stage decision variable

• ξ is a random vector that contains the random elements T , W , h, and q.

We now outline a generic form TSSP. Note that the program allows both
linear and nonlinear objective functions in the first stage and second stage
problems, as well as linear and nonlinear constraints in the first stage. How-
ever, the constraints of the second stage problem are often linear to facilitate
the ease of solving these types of problems:

Problem 2 Generic Two-Stage Stochastic Optimization Problem

min
x∈S
{g(x) := f(x) + EP [h(x, ξ)]} (1.2)

where h(x, ξ) is the optimal value of the following second stage problem:

min
y

q(y, ξ)

subject to Tx+Wy = h

y ≥ 0

(1.3)

By breaking the SP into two distinct stages, we are able to make decisions
based only on information currently available at the time of the decision
making. During the First Stage, we optimize the function of the first stage
decision variable and the expected value of the second stage problem. We
then obtain a realization of ξ and proceed to optimize the h(x, ξ) function
during the Second Stage.

1.2 Literature and Examples

There exists much literature on the topic of stochastic optimization problems
and how to solve them. Two such examples are a 2002 paper by Kleywegt et
al. [8] and, more recently, a 2014 paper by Homem-de-Mello and Bayraksan
[3]. For background on stochastic programming one can reference the book
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by Shapiro et al. [12]. An article with a focus on two-stage stochastic pro-
gramming can be found in the paper by Shapiro and Homem-de-Mello [11].

As we briefly discussed after defining a generic SP, these problems are often
solved using simulation techniques. One of the interesting aspects of using
simulation to solve these types of stochastic programs is the wide variety of
applications. One such application is in determining reasonable transporta-
tion routes and optimal resource allocations in the case of national or regional
emergencies, as Chunlin and Liu [2] did for China in response to events like
the SARS outbreak of 2003 and the Wenchuan earthquake of 2008. Another
common area of application is the commercial realm. One example of this is
included in a paper by Xu and Zhang [13] in which they determine an opti-
mal allocation of electricity in a market where options are used as a contract
between buyer and seller. The dissimilarity of these two examples is repre-
sentative of the variability in applications for the use of the SAA method in
solving SPs.

The remainder of the thesis is organized as follows:

• In Section 2, we detail the most common simulation method used in
solving stochastic optimization problems, the sample average approxi-
mation (SAA) method. This section relies on Fu’s [5] review of simu-
lation methods to solve optimization problems, Shapiro’s [10] work on
the use of Monte Carlo methods, including SAA, to solve stochastic
optimization problems, and the guiding overview by Kim et al. [7] of
how and when to use SAA.

The next four sections are examples of applications of SAA in solving stochas-
tic optimization problems:

• An example from El-Rifai et al. [4] in shift scheduling within emergency
departments and some typical assumptions in these types of models can
be found in Section 3.

• Section 4 discusses an example from Ayvaz et al. [1] of electronics
recycling and the use of optimality gaps.

• The next section overviews a vehicle routing application from Kenyon
and Morton [6] and touches on how deterministic methods can be used
for small cardinality of n.
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• In Section 6, we discuss supply chain applications found in Santoso et
al. [9] and the use of the accelerated Benders decomposition algorithm
to help solve problems with many scenarios.

From here we back out of the examples:

• Section 7 gives a brief comparison of the stochastic approximation
method with SAA, as elucidated in Kim et al. [7] and Shapiro et
al. [12].

• Finally, we end with some concluding remarks in Section 8.
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Chapter 2

The Sample Average
Approximation Method

As we touched on at several points during the introduction, simulation is
one of the most common ways that people use to solve the types of stochas-
tic optimization problems of the forms shown in Problems 1 and 2. The
simulation-based solutions that we will discuss here are under the category
of computational algorithms known as Monte Carlo algorithms. In general,
we can define a Monte Carlo algorithm as any algorithm with a determinis-
tic running time, but a random output. We now outline a generic version of
basic Monte Carlo simulation.

Let X be a random variable with mean µ. To estimate µ, follow these steps:

1. Draw X1, X2, ..., Xn iid←− X

2. Output x̄ = (X1 + X2 + ... + Xn)/n

The output x̄ is an estimate for µ. Also, the error in this estimate is ap-
proximated by SD(X)/

√
n, where SD(X) is the standard deviation of the

random variable X. This nature of this error relationship is significant be-
cause it means that the error decreases as n increases. This allows us to often
produce relatively accurate estimates via Monte Carlo algorithms simply by
simulating a large number of trials.

While Monte Carlo simulation can be used to help solve a variety of prob-
lems, including numerical integration and modeling probability distributions
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to name a few, here we are focusing on the algorithm’s application within the
field of numerical optimization (especially for those SPs meeting the three
criteria we outlined in the introduction). In particular, we are focusing on
the use of a Monte Carlo method known as Sample Average Approximation
(SAA).

The basic idea of SAA is to take an independent, identically distributed
random sample from the probability distribution P of our generic stochastic
optimization problem of the form (1.1) to come up with a realization, ξi, of
the random vector ξ. We repeat this process some relatively large number N
times so that we have N different realizations: ξ1, ..., ξN . We then estimate
g(x) := EP [G(x, ξ)] with:

ĝN(x) :=
1

N

N∑
i=1

G(x, ξi) (2.1)

In doing this, we have effectively removed the randomness from the problem
by taking our N realizations as given. This means that the optimal solution
to our stochastic optimization problem can be approximated by the optimal
solution to the deterministic optimization problem:

Problem 3 Generic Sample Average Approximation Problem

min
x∈S
{ĝN(x) :=

1

N

N∑
i=1

G(x, ξi)} (2.2)

where ξ1, ..., ξN is a random sample from probability distribution P .

One piece of information that is important to note about SAA is that it
is not an algorithm in and of itself. The sole purpose of SAA is to replace
the original SP with its sampling approximation of the form (2.1). However,
the generic algorithm for solving these types of problems, while not very
specific, is easy to write down. We outline it here for completeness:

Problem 4 Algorithm for Solving Generic SPs Using SAA

1. Start with a stochastic optimization problem of the form (1.1).

2. Draw a random set of N realizations ξ1, ..., ξN from P .
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3. Use this set of realizations to reformulate the SP into a problem of the
form (2.2).

4. Use any of a number of deterministic methods to solve this reformulated
problem to come up with specific estimates for both the optimal element
of the feasible set and optimal value of the original SP.

In the following four chapters, we will see various applications of the SAA
method for solving stochastic optimization problems. Each of these exam-
ples will provide insight into some of the many other interesting aspects of
the SAA approach that were not touched in this section, including typical
assumptions within the model, the use of optimality gaps to ensure we find
an appropriately optimal solution, and how the number of scenarios in a
problem might change the way we go about solving that problem.
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Chapter 3

Model Assumptions

One of the areas of application for solving SPs by using the SAA approach
is in shift scheduling, especially in an important and complicated setting like
an emergency department. Increased demand and scarcity of resources in
the health industry has led to issues with overcrowding and unacceptable
waiting times in many French emergency departments during recent years.
A paper written in 2014 by El-Rifai et al. [4] worked to address this problem.

We will outline a simplified version of the SP from this paper, but first
we must define a few variables:

• Let x be an employee schedule.

• Let 1 ≤ t ≤ T be a time period during the day.

• Let 1 ≤ q ≤ Q be the queue numbers of the Q nurses working at any
particular time t.

• Let ξ be a random vector drawn from probability distribution P that
models patient entry to the emergency room.

• Let Wt,q(x, ξ) be a real-valued function that gives the number of pa-
tients waiting in queue q at time t given some employee schedule x and
random patient entry vector ξ.

• Let gi(x) ≤ 0 for i = 1, . . . ,m be a set of m constraints that ensure
employee schedule x allows for adequate resource allotment throughout
the emergency room.
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We now have the information needed to consider this example SP:

Problem 5 Emergency Room Scheduling Stochastic Program Example

minimize
x∈S

EP [
T∑
t=1

Q∑
q=1

Wt,q(x, ξ)]

subject to gi(x) ≤ 0, i = 1, . . . ,m

(3.1)

3.1 Building the Model

The authors chose to model the emergency department environment using
a mixed-integer SP and went about solving the SP using the SAA method.
While the use of stochastic programming and the sample average approxima-
tion approach may provide a generic structure to the problem, the specific
assumptions made are of the utmost importance to the quality and fit of
the model to the reality of the ongoings at the hospital. As such, it is very
important to choose appropriate assumptions and to choose metrics that ac-
curately reflect the problem at hand.

In this particular example, the authors decided to address the problem of
overcrowding in the emergency department by finding the shift distribution
for employees that minimizes patient waiting time. This choice is important,
as they had to choose variables that they had control over (i.e. employee
shift distribution) and an objective function that was functional as a met-
ric of how to solve the issue of overcrowding (i.e. minimize patient waiting
time). Without these targeted choices accurately reflecting the environment
of the emergency department, the math in the model would be unlikely to
capture and help solve the problem of overcrowding.

The point that we would like to get across is that the assumptions and
variable choices of a model are important. Without carefully considering
and testing these attributes, it can be very easy to pick ones that do not
accurately reflect the important aspects of the environment that a person
wishes to model.

Many of the decisions regarding model assumptions that must be made have
to do with the level of detail and specificity that are put into those assump-
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tions. The authors must be careful to provide enough detail so that they can
strike the balance between a system that accurately models the real-world
environment but also solves the problem efficiently. This can be seen in the
hospital example as the authors chose to divide patients into two classes,
those who require auxiliary exams and those who do not. The authors felt
that this was an appropriate level of classification, as these two types of pa-
tients have distinct trajectories within the emergency department. However,
the authors did not feel the need to separate the patients any further, as
they reasoned that having more specific classifications would not improve
the quality of the solution enough to justify the decrease in efficiency.

This is just one example showing the importance of modeling assumptions.
Once these assumptions are properly tested and validated through means like
numerical experiments, we can begin to understand the potential accuracy
of our model. Once we have an appropriate model we can begin to look into
some of the more interesting aspects of the SAA method, as we will do in
the next few chapters.
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Chapter 4

Optimality of Solutions

Another common area of application for using the SAA method to solve
SPs is in the field of reverse logistics within a supply chain. There is a high
amount of uncertainty involved in the recycling of electronics in reverse logis-
tics; there are often multiple unknown factors in a robust electronic recycling
model, including the quantity of items that will be returned, the conditions
of those items, and the transportation costs associated with returning those
items. This uncertainty often makes setting up these types of problems in the
form of an SP a strong approach. One specific example of this can be found
in the paper by Ayvaz et al. [1], where the authors present a two-stage SP
model for recycling materials, which they choose to solve using a variation
of the SAA method. The authors then test their model on a case study of a
Turkish electronic recycling firm.

Before presenting a simplified version of the two-stage SP created by Ay-
vaz et al., we must first define several variables:

• Let x denote some combination of collecting, sorting, and recycling
centers that the firm is considering opening. Note that the number
and locations of the centers varies with each x.

• Let ξ be a draw from a probability distribution P that models the
uncertain income and transportation and processing costs associated
with x.

• Let hi(y) = 0 for i = 1, . . . ,m be a set of m constraints associated with
properly regulating the flow of product and the capacity of the centers.
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• First Stage Costs (certain)
F (x) = fixed costs of building centers

• Expected Second Stage Costs (uncertain)
I(x, ξ) = income
T (x, ξ) = transportation costs
P (x, ξ) = processing costs of collecting, sorting, and recycling

We can now consider this type of profit-maximizing two-stage stochastic
program:

Problem 6 Profit-Maximizing Two-Stage Stochastic Optimization Problem

max
x
{EP [q(x, ξ)]− F (x)} (4.1)

where q(x, ξ) is the optimal value of the following second stage problem:

max
y

I(y, ξ)− T (y, ξ)− P (y, ξ)

subject to hi(y) = 0, i = 1, . . . ,m

y ≥ 0

(4.2)

While this problem was specifically tailored to the electronic equipment re-
cycling example, one can easily see how it could serve as an example of a
more generic profit-maximizing problem. In more general terms, the goal
of the first stage problem is to maximize an estimated income minus some
estimated variable costs and any known fixed costs over the set of feasible
solutions. The estimation of the income and variable costs is determined by
finding the optimal solution to the second stage problem.

4.1 Optimality Gaps

One of the most interesting aspects of this paper is the use of an optimality
gap, a tool used in conjunction with the SAA method, to measure the quality
of a solution to a stochastic program. Optimality gaps allow the quality of a
solution to be held to a certain standard. This is done by solving a problem
of the form (2.2) until a specified stopping criterion is met. This stopping
criterion is often of a form where the sample size N must be increased by a
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certain amount until the estimated optimality gap is less than some appro-
priate value.

We will now outline one of the more commonly used procedures for estimat-
ing the optimality gap and show how the gap gives insight into the quality of
the candidate solution x̂ ∈ S given by the SAA approach for a sample of size
N . In order to do this, we must define several important terms and state a
lemma related to finding the upper bound of the optimality gap:

• Let v∗ be the optimal value of a problem of the form
minx∈S{g(x) := EP [G(x, ξ)]} from Problem (1.1).

• Let vN be the optimal value of the equivalent SAA problem of the form
minx∈S{ĝN(x) := 1

N

∑N
i=1G(x, ξi)} from Problem (2.2).

• The optimality gap of a candidate solution x̂ is equal to g(x̂)− v∗.

Lemma 4.1 E[vN ] ≤ v∗

Proof E[vN ] = E[minx∈S{ 1
N

∑N
i=1G(x, ξi)}] ≤

minx∈S E[ 1
N

∑N
i=1 G(x, ξi)] = minx∈S

1
N
E[
∑N

i=1 G(x, ξi)] =

minx∈S
1
N
NE[G(x, ξ)] = minx∈S E[G(x, ξ)] =

minx∈S g(x) = v∗

We now have the tools to understand the optimality gap for a specific can-
didate solution x̂ ∈ S produced by the SAA method. First note that the
value of v∗ is unknown. However, this value can be estimated via a number
of sampling and bounding techniques. In this case we choose to estimate the
optimality gap using a technique called the Multiple Replications Procedure
(MRP) outlined in a paper by H. de Mello and Bayraksan [3]:

Lemma 4.1 allows us to estimate an upper bound of g(x̂)− v∗ as

GN(x̂) := ĝN(x̂)− vN .
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Then we can use a realization of N draws from ξ, along with the fact that
vN = minx∈S{ĝN(x)}, to estimate GN(x̂) as

ĜN(x̂) := ĝN(x̂, ξ1, ..., ξN)−min
x∈S
{ĝN(x, ξ1, ..., ξN)}.

We can then generate k different realizations of ξ and repeat this process for
each of those k realizations to come up with k different values of ĜN(x̂). We
then find the average of these k values to come up with our final estimator
of the optimality gap:

Ḡ(x̂) :=
1

k

k∑
i=1

Ĝi
N(x̂)

If this estimate of the optimality gap is sufficiently small, then the candidate
solution can be deemed sufficiently optimal. If the gap is too large, a new
candidate solution can be found using the SAA method with a larger value
of N , and the optimality gap of the new candidate solution can then be es-
timated.

Despite the need to solve k different SAA problems to come up with Ḡ(x̂),
the MRP is widely used to estimate the optimality gap due to its flexibil-
ity. Problems can contain continuous or discrete decision variables, nonlinear
terms in the constraints or the objective function, and functions do not need
to be convex. This flexibility allows the MRP the ability to be applied to a
large variety of problems.
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Chapter 5

Small Cardinality of Scenarios

Stochastic vehicle routing is another type of problem that is often modeled
using an SP and solved using the SAA method. The typical stochastic vehicle
routing problem takes some number of vehicles and optimizes their routes
given a goal of servicing some number of locations under random service
times and travel times.

The routes are often outlined by a directed graph of N nodes and A arcs, and
the stochastic elements (like the travel and services times) are often assumed
to have known distributions. Usually these optimization problems deal with
objective functions related to completion time, which is defined as the time
that elapses from the first vehicle leaving the point of origin to the last vehi-
cle returning to that point after completing their service route.

One interesting example of stochastic vehicle routing is outlined in a jour-
nal paper by Kenyon and Morton [6]. In this case, the authors set up and
solved two different models of the same vehicle routing problem. The two
models were identical other than their respective objective functions, one of
which minimizes the completion time for the fleet of vehicles while the other
maximizes the probability of completing the task by some desired completion
time T .

Which of these objective functions is most appropriate depends on the prob-
lem at hand; for example, if the fleet of vehicles is leased and needs to be
returned to the origin by a certain time before some substantial late fee is
incurred, then maximizing the probability of completing by that time might
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make more sense. These details and hypotheticals should serve as a reminder
of the importance of customizing these types of generic models to the problem
at hand.

5.1 Finite Sample Size

One of the details that this paper addresses is the idea of altering the solution
method to the problem depending on the size of sample space. Specifically,
the authors indicate that if the cardinality of the sample size is small enough
(i.e. finite), then the stochastic program can be rewritten in an equivalent
deterministic form.

In order to outline the differences between a generic stochastic vehicle rout-
ing problem and its deterministic equivalent we must first define a few useful
terms:

• Let c̃ be the vector for random travel times.

• Let τ̃ be the vector for random service times.

• Let the random vector ξ = (c̃, τ̃) be composed of all of the model’s
random elements.

• Let (i, j) ∈ A be the set of arcs and i ∈ N be the set of nodes in the
directed graph G used to model the possible routes and locations to be
serviced.

• Let xijk be a binary decision variable equal to 1 if vehicle k includes
the arc (i, j) as part of its route, and equal to 0 otherwise.

• Let uik be a binary decision variable equal to 1 if vehicle k services
node i during its route, and equal to 0 otherwise.

• Let W be the set of values that the decision vector (x, u) can take on
to satisfy the constraints of the SP.

• Finally, let h(W, ξ) = maxk∈K(
∑

(i,j)∈A c̃ijkxijk+
∑

i∈N τ̃ikuik) be a mea-
sure of the completion time T .
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We can now consider a generic stochastic vehicle routing problem:

Problem 7 Generic Stochastic Vehicle Routing Problem (GSVRP)

min
(x,u)∈W

E[h(W, ξ) = max
k∈K

(
∑

(i,j)∈A

c̃ijkxijk +
∑
i∈N

τ̃ikuik)] (5.1)

Finding the solution to this problem essentially entails minimizing the ex-
pected value of the completion time while still ensuring that x and u satisfy
the specific constraints of the problem.

Now, assuming that ξ is finite with sample size Ω, we can write:

• ξ = (ξ1, ..., ξΩ) where ξω = (c̃ω, τ̃ω) with corresponding probability mass
function pω = P (ξ = ξω).

• We also introduce the continuous decision variable θω, which gives the
length of the longest route for sample ω.

• Finally, let V be the set of values that the decision vector (x, u, θ) can
take on to satisfy the constraints of the linear program.

Using this information, we can rewrite Problem 7 as a deterministic integer
linear program:

Problem 8 Deterministic Equivalent to GSVRP

min
(x,u,θ)∈V

∑
ω∈Ω

pωθω

subject to θω ≥ (
∑

(i,j)∈A

c̃ωijkxijk +
∑
i∈N

τ̃ωikuik),

k ∈ K,ω ∈ Ω

(5.2)

The deterministic equivalent problem can then be solved using a branch-
and-bound algorithm. However, this approach is often not practical because
there may be a very large number of constraints. If that is the case, we
can instead solve a sequence of relaxations of the deterministic equivalent
problem using what is known as a branch-and-cut approach. Details of this
type of algorithm can be found in the paper by Kenyon and Morton [6]. We
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will also provide details of another type of solution method, the accelerated
Benders decomposition algorithm, in the following chapter.

While only able to handle a relatively modest sample size and potentially
computationally unwieldy, the deterministic equivalent approach provides
certain advantages by allowing us to find an exact solution to the problem,
rather than estimating a solution as we do when solving using the SAA
method. It is important to keep these advantages and limitations in mind
when deciding how to solve a problem of this variety.
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Chapter 6

Large Number of Scenarios

In the previous chapter, we considered the use of a deterministic equiva-
lent problem in solving the generic stochastic vehicle routing problem. In
this chapter, we will again consider the use of deterministic equivalents, this
time in relation to a generic two-stage stochastic linear programming prob-
lem. We will introduce a solution method known as an accelerated Benders
decomposition algorithm outlined in a paper on supply chain configuration
applications by Santoso et al. [9]. The advantage of this algorithm is that
it is able to quickly find high quality solutions to stochastic programs with
very large numbers of scenarios.

First consider the generic form of a two-stage stochastic linear program.
This is identical to Problem 2 from Chapter 1 with the extra stipulation that
the objective functions in each stage must be linear:

Problem 9 Generic Two-Stage Stochastic Linear Optimization Problem

min
x∈S
{g(x) := cTx+ EP [h(x, ξ)]} (6.1)

where h(x, ξ) is the optimal value of the following second stage problem:

min
y

qTy

subject to Tx+Wy = h

y ≥ 0

(6.2)

Now we will formulate this two-stage problem as its deterministic equivalent,
just as we did with the vehicle routing problem in the previous chapter. It
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is important to recall that each ξi = (Ti,Wi, hi, qi) is drawn with probability
pi from probability distribution P , and the ξi for 1 ≤ i ≤ N encapsulate all
of the randomness in the problem.

Problem 10 Deterministic Equivalent of Stoch. Two-Stage Linear Program

min
x,y

cTx+
N∑
i=1

piq
T
i y

subject to Tix+Wiy = hi

y ≥ 0

(6.3)

6.1 Benders Decomposition Algorithm

Now that we have outlined the deterministic equivalent of the generic stochas-
tic two-stage linear program, we can get into detail about the accelerated
Benders decompostion algorithm and how it is used to solve a problem that
can be written this way.

The basic premise of this algorithm is to use dual information from a series of
sub-problem linear programs to compute optimality cuts. These optimality
cuts serve to improve our estimated solution by helping to tighten the gap
between our lower and upper bounds until we have a small enough gap to
conclude optimality. This allows us to quickly find a solution to the SAA
problem when we have a very large number of scenarios.

• Step 1: Set the iteration counter to j := 0. Also set UB := ∞ as an
upper bound and solve to find a lower bound

LB := min
x∈S

(cTx) (6.4)

Let x̂j be the optimal solution to the above problem.

• Step 2: For i = 1, ..., N solve the sub-problems associated with xj and ξi

h(xj, ξi) := min
y

qTi y

subject to Tix+Wiy = hi

y ≥ 0

(6.5)
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Let f̂N(xj) := cTxj+ 1
N

∑N
i=1 h(xj, ξi). If f̂N(xj) < UB, then let UB :=

f̂N(xj) and let x̂ := x̂j be the current candidate solution.

• Step 3: If UB − LB < δ for some pre-defined δ ≥ 0, return UB as the
optimal objective value and x̂ as the optimal solution. If not, continue
to Step 4.

• Step 4: For i = 1, ..., N , let yi be the optimal values and πi be the
optimal dual values for each of the sub-problems associated with xj

and ξi in Step 2. Now solve the following master problem to find a new
lower bound

LB := min
x,y

cTx+ θ

subject to θ ≥
N∑
i=1

pi(−πl[Tix+Wiy
l − hi]), ∀l = 1, ..., j

(6.6)

Now let j := j + 1 and return to Step 2.

By adding more constraints as it moves closer to a solution of some pre-
defined level of optimality, this cutting plane algorithm provides a relatively
efficient way to find a solution even to some of the larger finite stochastic
programs.
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Chapter 7

The SA Method

We now briefly consider the Sample Approximation (SA) method for solving
SPs, one of the most popular alternatives to the SAA method. Rather than
solving an SP by estimating the expected value of the objective function via
simulation, the SA method takes an iterative and recursive approach. There
is an established literature on the subject and we will use works by Kim et
al. [7] and Shapiro et al. [12] in our short review of the topic.

Consider an unconstrained stochastic optimization problem in Rd. The SA
algorithm is an example of recursion that requires:

• An initial point X̃0.

• A positive gain sequence {an} where n ≥ 0.

• A sequence of vectors {Zn} ∈ Rd where n ≥ 0 and Zn is an ap-
proximation of 5f(Xn). With this type of problem, we often use
Zn := 5f(X̃n, ξn) as our estimate.

The output of the algorithm is a sequence of points {X̃n} ∈ Rd for n ≥ 0.
The following is the basic recursive structure of the SA approach applied to
a generic stochastic minimization problem for some number of iterations n:

Problem 11 Sample Approximation Method

X̃n+1 = X̃n − anZn (7.1)

X̃n is our estimate of the optimal solution to the SP after the nth iteration.
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The book by Shapiro et al. [12] demonstrates that the sample size guarantee-
ing an ε-optimal solution with a certain probability p for a typical SP is very
similar for both the SAA method and the SA method. However, the authors
also point out that the cost complexity of solving the problem is much higher
for the SAA method, meaning that for the sample sample size N , it will take
less computation time for the SA method to achieve a similarly optimal so-
lution to that produced by the SAA method.

It is also important to note that the performance of the recursion in the SA
method is heavily dependent on the smoothness of f(.) as well as the choice
of the gain sequence {an}. We believe that this, along with the relative sim-
plicity and ease of use of the SAA method, may explain our observation that
the SAA method is often preferred in practicical application (at least by the
authors we have read) to the SA method.
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Chapter 8

Conclusion

We have attempted to provide an overview of some of the most interesting
points in regards to solving stochastic optimization problems using the sam-
ple average approximation method. We found examples of the application
of this approach within fields such as health care, supply chain, and vehicle
routing. These examples were used to highlight details of the SPs, like the
importance of understanding your model and establishing the proper assump-
tions. The examples also highlighted details of the SAA method, including
the use of optimality gaps to ensure high quality solutions. We also looked
at the usefulness of deterministic equivalencies and the Benders decomposi-
tion algorithm. Finally, we briefly touched on the stochastic approximation
(SA) method, and explored why it seems to be less prevalent in application
literature than the SAA approach. We hope that this exposition helped to
further general understanding of the flexibility and prevalence of the SAA
method as a problem solving technique.
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The main sources for my thesis are [3] and [8]. I use these as the backbone
and focus of my expository paper, as they tie together most of the ideas
that I want to discuss, namely the manner in which the Sample Average
Approximation method is generally used to solve stochastic optimization
problems. I use [12], [11], [5], [10], and [7] as the mathematical foundation for
the concepts discussed in the two main sources. More specifically, I use [11]
to focus on two-stage stochastic optimization problems, [12] for background
on stochastic programming, and [5], [10], and [7] for background on Monte
Carlo Methods and the Sample Average Approximation method. I use [2]
and [13] as initial examples of these concepts in the introduction. Finally, I
use [1], [6], [4], and [9] as my four main application examples to demonstrate
and discuss the wide variety of applications of using the SAA for stochastic
optimization problems.
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