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ABSTRACT

Simulation of Pollutant Movement
1n Groundwater Aquifers
by
Raziuddin Khaleel
and

Donald L. Reddell

A three-dimensional model describing the two-phase (air-water) fluid
flow equations in an integrated saturated-unsaturated porous medium was
developed. Also, a three-dimensional convective-dispersion equation des-
cribing the movement of a conservative, noninteracting tracer in a nonhomo-
geneous, anisotropic porous medium was developed.: Finite difference forms
of these two equations were derived. The two models were linked by the
pore water-velocity term,

The computer simulator was developed to handle a variety of boundary
conditions, such as, constant pressure, constant head, a no-flow boundary,

a constant flux, and a time-dependent flux based on rainfall rate. The
two-phase fluid flow equations were solved using an implicit scheme to solve
for water or air pressures and an explicit $cheme to solve for water and

air saturations. The tensorial nature of the dispersion coefficient in a
cartesian coordinate system was recognized and the method of characteristics
‘with a numerical tensor transformation was' used to solve the convective-
dispersion equations.

The numerical simulator was tested on problems for which analytical

solutions, numerical solutions, and experimenta1'data‘are available. - The



two-phase infiltration model yielded excelient results upon comparison
with analytical solutions, numerical simulations, and experimental data.
The inclusion of air as a second phase in infiltration problems led to
interesting results. The infiltration rate decreased rapidly tb a value
well below the saturated hydraulic conductivity. As the compressed air
was released, the infiltration rate increased for a short period of time,
then decreased slightly and remained below the saturated hydraulic conduc-
tivity until the end of simulation, This is in countrast to one-phase flow
problems in which the saturated hydraulic conductivity is considered to be
the lower bound of infiltration rate.

The longitudinal and lateral concentration distributions obtained
with and without tensor transformation in a homogeneous, isotropic medium
and a uniform flow field were compared with known analytical solutions.
Excellent agreement was obtained between the numerical solution with tensor
transformation and the analytical solution. The solution without the tensor
transformation resulted in a steeper concentration distribution than the
analytical solution.

A typical two-dimensional drainage problem in agriculture was solved
in a nonhomogeneous, integrated saturated-unsaturated medium using the
total simulator of fluid flow and convective-dispersion equations. A variety
of outputs, such as an equipotential map or a meoving points' concentration
map showing isochlors were obtained at selected time steps. The Timitations
of the assumptions of a homogeneous and isotropic medium are illustrated
by the accumulation of moving points at a transition from a higher to lower
permeability., A field-size problem describing the migration of septic-tank
wastes around the perimeter of a lake was also considered and solved using

the total simulator.
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This study was an initial thrust at developing a total numerical
simulator for miscible diép]acement in the entire flow domain of saturated
and unsaturated regions. The simulator can be applied to environmental
problems concerning groundwater contamination from waste disposal sites,
provided the values of the input parameters, such as the field disper-
sivities, are known ynder field conditions. The uniqueness of the model
developed in this study are {1) infiltration was treated as a two-phase
(air-water) process, (2) the complete subsurface regime was considered as
a unified whole because the flow in the saturated region was integrated
with that in the unsaturated region, (3) the model allows consideration of
nonhomogenecus porous media and.a combination of a variety of realistic
boundary conditions, and (4} the tensorial nature of the dispersion coeffi-

cients was recognized.
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CHAPTER T~
INTRODUCTION

An optimum soil and water management program should provide for

a minimum of pollution into underground water systems. Major sources
of pollution in‘underground water may result from the runoff of ferti-
Jizers and pther chemicals when applied to cropland, from the wastes
produced by livestock feedlots, and from the disposal of domestic or
industrial wastes on land. Most of these pollutants are miscible with
the native groundwater. A portion of the pollutants will remain in the
unsaturated porous medium or root zone of the soil but, due to deep
percolation, a portion may also percolate deeper and enter the saturated
groundwater aquifer. The movement of these water-soluble pollutants

“underground changes the concentration of the native groundwater, and a
concentration of dissolved salts in excess of a permissible maximum
creates a water quality hazard. It {s important, therefore, to in-
yestigate the processes controlling:the movement of poilutants through
integrated saturated-unsaturated porous media systems. Understanding
the mechanics of miscible fluid displacement makes it possible to moni-
tor the concentration of dissolved contaminants over space and time,

" and to designSoptimum management%schemes<forfprevent1ngior minimizing
soil and water pollution, ot

The mixing of miscible:fluids in a porous medium was named

dispersion by Scheidegger (1954) and'is' the macroscopic outcome of the

- I _,.:C“}u:; ‘;,lf} 12‘ g_::_,'!“"._r _?:_:i "f'i e e

Literature citations follow the style of the Transactions of the
ASAE (American Society of Agricultural Engineers).




actual movements of individual tracer particles through the many pores
of a porous medium. According to Bear (1972), convection and molecular
diffusion are the two processes involved in dispersion. Convection
depends upon the magnitude and direction of [iow velocities within the
porous medium and upon the geometry of the porous structure. Molecular
and ionic diffusion primarily depends on time and is more significant
at low fiow velocities.

The dispersion process 1s described by a second order, nonlinear,
convective-diffusion partial differential equation in which a coeffic-
fent of dispersion replaces the standard coefficient of diffusion.

Even though the porous medium can be homogeneous and isotropic, the
dispersion coefficient is an anisotropic quantity and must be treated
as a second-rank tensor {de Josselin de Jong, 1958). It is formed from
the contraction of é fourth order tensor which depends on the porous
medium and a second order tensor which is a function of flow (Bear,
1961a; Scheidegger, 1961).

The complexity of the partial differential equation describing
the dispersion process invariably limits any analytical solution to
systems with simple initial and boundary conditions, simple geometries
ahd a highly idealized porous media. However, practical problems in-
voive complex flow geometries in nonhomogeneous and anisotropic wedia.
With recent advances in computer technology, an interest in using
computer or numerical simulation to describe the dispersion process has
developed. Numerical technigues used to solve the convective-dispersion
equation are the method of finite differences and the finite element

scheme. The application of the finite element technique g dispersion



problems is rather recent but is quickly gaining momentum,

Objectives .. ., . = ., .

FE T Rk LA S

The objective of this research was to develop a computer simulator
describing the miscible displacement of po11utant§ in an integrated
saturated-unsaturated porous medium. Instead of the traditional one-
phase (water only) approach, a two—phasé (air-water) f1ow"mode1; as
developed in the petroleum industry (Breitenbach et al., 1968a, 19685),
was employed'to solve the fluid flow equations. Specifically, the
objectives were: E o |

. De9e1op a numerical model deséﬁibing the'hiscible displacement
of po11uténtskor salts in a three-dimenéiona], nonhomogeneous ,
~ saturated-unsaturated porous media with'a transient, nonuniform flow
field. A two-dimensional problem in a nonhomogeneous, isotropic medium
with a homogeneous {no density and viscosity variations due to con-
centration changes) and conservative fluid was and]yzed using the
numerical model.

2. Develop a two?phase (air-water) computer simulation model for
solving the fluid flow equations. | |
3. Develop a numerical tensor transformation which considers the

tensorial nature of the dispersion coefficient in a cartesian coordinate

system.

Methods of Investigation

The technigues of this {investigation were directed toward using

the computer as a model simulator. The differential equations



describing two-phase (air-water) fluid flow and convection-dispersion
in a saturated-unsaturateﬂ porous medium were developed and written in
finite difference form (Appendices A through D). A mixed implicit-
explicit technique, in which the water or air pressures are solved
implicitly and the water and air saturations explicitly, was used to
solve the two-phase fluid flow equations simultanecusiy. The fluid
flow velocities were obtained and the method of characteristics
(Garder et al., 1964} with 2 tensor transfermaticn was lhen used to
solve the convective-dispersion equation, The solution of the miscible
displacement probiem was accomplished by solving the two-phase flow
A equations for the water velocities at all points within the flow
domain. The resulting water velocity distribution was then used in
the dispersion equation to solve for the concentration distribution
within the flow domain. The above procedure is described in detatl
in Chapter IV.

The validity of the computer simulation was tested on simple
problems for which exact or analytical solutions are available. Also,
a two-dimensional infiltration problem with simultaneous movement of

water and salt in a saturated-unsaturated porous medium was considered.



CHAPTER. IT -
LITERATURE REVIEW

The 1iterature concerning fluid flow and dispersion in porous
media is quite extensive. This review was divided into two distinct
categories for discussion purposes: one dealing with fiuid flow in
porous media and the other with dispersion in porous media. Further
subdivisions in each category are made for clarity. .w1thin this frame-

work, significant experimentaliworkﬁyare cited.

29 TEyU4d Flow dn Porous Media
L n

The Traditional Unsaturated Approach

Richards (1931) extended:Darcy‘EIIaw to'Unsatﬁrated flow. The
resultingjéﬁhaiion (ﬁowfknowﬁiag'Richards’;equétioh)’has'rémained the
basis for ihévﬁajority of thé work concerning flow in unsaturated
porous mediﬁl 7R1chardspﬁomb1ned Dafcy's law and the continuity equa-
tion for theviiquid énd obtained a one dimensional equation with the

- RIEEEE Y o [ R T

following form:

ek, M
where o = volumetric water content (L3L73),
t = time (T), % ;
z = §pat1a1 dimension (L),T
" =T"pr'es.sur'e potential (L}, t
h - fota1 hydraulic head = ¢+z, (L), and
K = hydraulic conductivity (LT']).



Equation (1) is called the pressure head form of Richards'
equation, The other form of Richards' equation is called the diffusiv-
ity or water content form where 6 is the dependent variable as shown

in equation (2):

- 2 [o 2] 202 @

where D = diffusivity = Téé%%ET

The conversion to either the water content or pressure head form
is accomplished by the use of functional relationships among K, 6 and
¥. The pressure head form is somewhat more general than the diffusiv-
ity form because it can be applied to both the saturated and unsatu-
rated flow domains. In saturated soil, the specific water capacity
(de/dy) is zero and therefore the diffusivity becomes indeterminate.

A series of papers by Philip (1969) presented the classical
analysis of flow in unsaturated porous media. Philip (1969) obtained
an approximate solution to equation (2) subject v boundary conditions
of constant water content at the upper surface and also for a ponded
water boundary condition. The initial conditien treated by Philip was
that of a uniform water content. The equation for the infiltration

rate, i(t), derived from this analysis was

1/2

1’(t)=-52~t' v (A +k0)+%A3t]/2+2A4t+ L 3)

2

A series of ordinary differential equations regquiring numerical
solution was presented from which each of the coefficients S, A,, A3,

Aq, - An can be calculated. The constant KO is the hydraulic



conductivity associated with the initial water content.

Theoretically, Philip's series expansion as given by equation (3)
is valid for short times and diverges as t + =. For times larger than
106 seconds, Philip used an asymptotic solution (the profile at
infinity). : Lo S I

Parlange (1971a, 1971b, 1975 ) proposed another approximate
solution to Richards' equation. He used an iterative approach to
solve for the coefficients S and An (n=1, 2, ...) instead of usjng
the numerical solution for the ordinary differential equations proposed
by Philip. An advantage of Parlange's method is that his solution is
valid for large times and the so-called water content prqf11e at
infinity evolves naturally from his approximations.” This occurs be-
cause his approximation makes use of the steady-state water content
profile which becomes the proper profile-at infinity as the infiltra-
tion rate approaches the saturated hydraulic conductivity.

Analytical work such as that done by Philip and Parlange has
contributed 1mmense1y to understanding the physics of infiltration. It
is unfortunate that such analytical work 1s invariably Timited to
systems with simple initial and boundary conditions, simple geometries
and highly idealized media. .

With the advent of high-ﬁgﬁgédjgita1 computers, the method of
finite differences was applieé:to equatjon (1) and several researchers
(Hanks and Bowers, 1962; Whisler and Klute, 19653 Whisler and Klute,
1967; Hanks et al:, 1969; Bresler et al., 1969; Smith and Woolhiser,
1971} have deve]oped methods to solve problems that'better approximate
the real éituations. For exampIe, whisler and Klute (1965, 1967)



studied infiltration into stratified sonils under conditicns ol a non-
uniform saturation distribution and inciuded the effect of hysteresis
in their calculatiuns. Smith and Woolhiser (1971) numerically solved
Richards® equation for stratified soil conditions and included the

effect of a time-varying boundary condition.

The Saturated-Unsaturated Approach

Soil physicists working in the unsaturated domain have given very
1ittle attention to the saturated flow processes that occur below the
root zone of the soil. In the same manner, groundwater hydrologists
have avoided studies which included consideration of the unsaturated
zone., In recent years, however, several studies have been reported
that included an integrated saturated-unsaturated flow domain (Rubin,
1968, Freeze, 1969; Freeze, 1971; Skaggs and Tang, 1976). An excellent
reference dealing with research in both the saturated and unsaturated
ZOones was prévided by Remson et al. (1971).

The pressure head form of Richards' equation as given by equation
(1) is equally applicable to both the saturated and unsaturated flow

domains. In the unsaturated zone, the flow parameters are:

p <0,

K(8),

-~
1

e(y), and

=+
il

0

In the saturated zone,



’.

K=K

s,
. 6 = 0., and
f R ae -' Dep
a0

where the subscript s refers to the saturated condition.

Rubin (1968) gtudied a two-dimensional, ditch drainage problem
using an alternating-direction implicit (ADI) finite-difference scheme.
His results showed that transient water fldw within the unsaturated
zone and the outflow from.the seepage zone may significantly affect
the progress of:water-table .decline and the total outflow rates.

Using a numerical technique similar. to-that of-Rubin..(1968),
Vauclin et al., (1974) studied .a recharge and a:drainage problem. The
flow domain was two-dimensional and.included an integrated saturated-
unsaturated region. : They compared their numerical results with experi-
ments run. in.the laboratory on a slab of soil 3 m long, 2:m high and 5
cm thick, A fair agreement was generally obtainedq

Luthin et al. (1975) studied a coupled saturated-unsaturated,
transient flow toward a well using an implicit finite-difference
scheme. They also obtained experimental data from a sector tank for the
transient flow toward a well. A good agreement was obtained between
the numerical and experimental water content profiles.

With the extensive literature available on numerical solutions to
flow problems in porous media, it was surprising to note virtually no
mention of mass balance errors in any of them. However, the cumulative
mass balance over time represents an independent check of the accuracy

with which the finite difference equations are being soived. Thus,

- during the course of calculations, it is advantageous to keep a running
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check on the mass balance of all fluids in the system to detect any
machine or programming errors, should they occur. This is simply done
by computing the total mass entering the system, the total mass leaving

the system, and the change in mass storage within the system.

Two-Phase Approach

A1l of the work reviewed so far treated fluid flow in porous media
from a single-phase point of view. In other words, all analytical,
numerical and 1aboratory work centered around the thesis that the move-
ment of water may be defined without reference to the movement of
other fluids (air) contained within the pores. Such assumptions in
most cases are far from realistic. When water enters a soil, air must
be removed and vice-versa. The fluid flow in porous media, therefore,
involves the flow of two laragely immiscible fluids: air and water.

Soil physicists define soil water pressure, PW. relative to at-
mospheric pressure, PA’ and express it as a water height. This
quantity, ¥, which has been given a variety of names (suction, tension,
potential, etc.), is defined by the relation

W A
= e——m—— 4
¥ o s (4)

density of water (ML'B), and

where Py

2) .

[fa]
1

acceleration due to gravity (LT~
For an air (non-wetting) - water (wetting) system, capillary pressure,
Pes is defined as (DeWeist, 1969):

P =P =P, (5)



where Pa is the air pressure in the soil. The quantity ¢ broadened a
growing communication gap between soil physicists and hydrologists on
one side and fluid mechanists and petroleum engineers on the other
(Morel-Seytoux, 1973). Yet ¢ and P. are simply related by the formula

of equivalence

' A
b= -t =-h +-4——2 (6)
pwg pwg c pwg

Equation (6) shows that ¢ corresponds numerically (and in absolute

value) to the capillary pressure (expressed as a water height, hc)

[ $
only when the soil air pressure, P , is equal to the atmospheric
S B NEEE N B ‘ ,
pressure, PA

Free and Pa1mer (1940) conducted extensive experiments to determine

a re]ationsh1p between 1nf11trat1on rate and air movement Thezr
et e e v Ter 1

results shoned that the 1nf11trat1on rate was significantly reduced
when air was trapped and not allowed to escape freer Experiments
by Horton (1940) tended to confirm this. Peck (1965) conducted ex-

periments on vert1ca1 columns c1osed at the bottom. His resu1ts

. indicated that the 1nf11tration rate was #éddééd by a factor of n1ne
| in the bodnded\column.ioixon and L1nden (1972) and Linden and Dixon
(1973, 1975) oonducted!areetiee of exper1ments tojooserne the im-

pedance of 1nf11trat1on rate by a1r pressure bU11d—up Resu]ts 1nd1—

LI LA ¢ e e e

cated that displaced air tended to 1ncrease air pressure during border

: {
1rrigation and 1mpede 1nf11trat1on

Most of the 11terature concerning the numer1ca1 solut1on of

1mm1sc1b]e f1U1d f1ow equations 1s found 1n petro1eum engineering

‘

Journals. Bre1tenbach et a1 (1968a, 1968b) developed mu]tiphase
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flow equations for each of the oil, water and gas phases and combined
them to give equations deécribing fluid flow in porous media. They
also bresented several numerical techniques, such as, Gaussian
elimination, successive overrelaxation (SOR) and the iterative
alternating direction implicit procedure {(ADIPIT) for solving the set
of finite difference equations. Phuc and Morel-Seytoux (1972)
analyzed infiltration as a two-phase (air-water) problem. A mixed
implicit and explicit scheme was employed to solve the appropriate
partial differential equations simultaneously. Brustkern and Morel-
Seytoux (1970) solved the two-phase infiltration problem by introducing
the fractional flow function and the total velocity concepts. The
total velocity is the algebraic sum of the liquid and air phase fluxes
and the fractional flow of water is the ratio of the water velocity to
the total velocity. Thelr analytical approach yields saturation
profiles at various time steps. The significant aspect of their work
was that an increase in infiltration rate after the release of com-
pressed air was obtained analytically and the solution was valid for
Jarge as well as small times. A numerical solution similar to that of
Phuc and Morel-Seytoux (1972) was obtained by Green et al. {1970) to
determine the saturation profile. The equations were solved using an
implicit scheme. Field experiments were conducted and excellent agree-
ment was reported with the numerical resuits.

llsing the fractional flow function concept, an extensive analytical
treatment of the two-phase infiltration problem was conducted by
Mcwhorter (1971) for varjous boundary conditions. His experimental

results showed the infiltration rate curve to have a unique shape when
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the effects of air on the infiltration rate are pronounced. Sonu
(1973) studjgdbwater and air movement 1n bounded layered soils and
obtained analytical solutions for various boundary conditions and
initial saturatibn profiles. Brutsaert et al. (1971) used the multi-
phase flow equations to solve the free-surface gravity well flow
problem. |

The preceding review of literature on fluid flow in pbrous media
has revealed the following facts: . o

1. A fair simulation of the physical process of fiuid flow in
porous media must take into account the simultaneous movement of
fluids in the saturated and unsaturated domains.

2. The theory of transient flow in porous media is governed by
complex non-linear partial differential equations not readily amenable
to analytical solutions. As a result, numerical techniques have been
widely used. - P

3. Flow probiems in a porous medium really involve a two-phase
flow system of air and water and thus i€ is essentially a case of the
simultaneous flow of’two immiscible fluids (air and water). An ac-

curate description of fluid flow in a porous medium must, therefore,
o o A H .

consider the two—phase flow prob]emj ’
4, Numerical fechniques deve1oped:for muntiphase fluid flow in
the petroleum fndustry seem*t% ofﬁerieﬁéellent possibilities for
solving air-water flow problems in porous media. Phuc and Morel-
Seytoux (1972):used a mixed iimplicit-explicit approach to solve an
infiltration problem-in one' dimension. @ This needs to be extended to

other dimensions.: i1 “ouli S Lol i o
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Dispersion in Porous Media

The 1iterature review on dispersion is divided into five
categories: statistical approach, tensorial nature of the dispersion
coefficient, analytical solutions, experimental studies, and numerical

solutions.

Statistical Approach

The basic postulate of the statistical approach is that the rules
of probabi]ity are employed to predict the spatial distribution at any
later time of a cloud of many tracer particles that were initially in a
close proximity, and that move under the same average conditions
(Bear, 1972). Using this approach, Scheideguer (1954} obtained the

normal probability distribution:

POx,yazst) = (4nDt) ™% expi-1(x-3)% + (y-7)2 + (2-2)%]/(40t)) (7)

where D = dispersion coefficient (LZT'I),
X,¥,Z = coordinates in a three-dimensional field (L),
t = time (T),

P = concentration distribution of tracer (ML"3),

VX,Vy,VZ = the components of a uniform velocity field (LT']).
and
X = th, y = Vyt, zZ= Vzt

According to Bear (1972), convection and molecular diffusion are
the two basic phenomena involved in dispersion. Diffusion is a direct

result of thermal motion of the individual fluid molecules and takes
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place under the influence of a concentration gradient. Convection 1is
the result of individual fluid particles frave1ing at variable
velocities through irregular shgped pores andralong tortuous micro-
scopic pathlines of the:porqus_mediu@. $;he1degger (1954) neglected
molecular diffusion in his probabi]ity analysis. He also assumed the
medium was isotropic, and that the probab111ty of a particle moving a
given d1stance was the same 1n all directions. However, De Josselin
de Jong (1958) also used statistical analysis’'to develop a model which
indicated that dispersion was an anisotropic quantity and that
Scheidegger's assumption of isotropic-tracer spreading was erroneous.

* Although the porous medium may be {sotropic,“thE"spreading’of the
tracer 1s not isotropic, but greater in the direction of mean flow
(1ongitudinal dispersion) :and smaller in the direction perpendicular to
mean flow {transverse or lateral dispersion). The concept of longi-
tudinal and transverse d15per§10n is supported by experimental evi-
dence (de Josselin de Jong, 1958; Bear, 1961b).

Saffman (1959, 1960) studied the relationship between molecular
diffusion and convéction'or mechanical dispersion in his model. His
first model (1959) considered dispersion to be large compared to
molecular diffusion and his second model (1960) considered diffusion

and dispersion to be of the same order of magnitude.

Tensorial Nature of Dispersion Coefficient

Several investigators (Scheidegger, 1961; de Josselin de Jong
and Bossen, 1961) have suggested that the dispersion of a tracer in
fluid flow through a saturated, homogenecus porous media.is described

: b
I_:: 4 . ‘!-

by the equation



16

of , 9 = .9 aC .
ot ¥ (Vfc) X (Dij ax.,' ? (8)
i i J
where C = tracer concentration (ML-B),
Dij = second order dispersivity tensor (LZT'1), and
V; = component of velocity vector (LT-l) in a cartesian

coordinate system of Xy (1 =1, 2, 3).

The double summation convention of tensor notation is implied in
the use of equation (8). The inherent difficulty in using equation
(8) is that of determining components of the dispersivity tensor
which depends on the geometry of the medium, the motion of thelf1u1d
and the properties of the fluid and tracer.

Bear (1972) observed, in determining the tracer distribution
resulting from a point injection in a uniform flow fieid, that the
components of Vi of the velocity vector—?; or Li of the disp1acement7?
play no role in the analysis. Therefore, althsugh the vector of mean
disp]acement'f'can be szparated into its components Lcosp and Lsing,
to obtain the dispersion itseif, each component has to be further
resolved to yield displacement vectors in the directions of mean flow
and perpendicular to it (Figure 1}.

The four components Lcoszs, Lsingcosg, LcosBsing, and Lsinzs
thus define the displacement in the X1s Xg coordinates by means of
displacements in the direction of flow and perpendicular to it. Thus
displacement is defined as a second rank tensor which in two dimensions
takes the form:

2 .
= Lcos™8 Lsingcoss ]
[L1J] | [ LsTnBcosp Ls1ngg . (9)
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Figure 1. Resolution of the d15p1acement1:

For a unjfonmif}ow field with L = Vt, equatjonw(g),may be written as

2
[l - b [l ] -] 0

-

[ N Lo \ H .

Bear (1972) expressed the dispersion coefficient. Did’ (a second rank

’; :’\J’j PR ISV B I 2 R Al s
tensor) as the contraction of a fourth rank dispersivity tensor, 344K1°
R B ACTER 2 16 B Cplee

and a second rank velocity tensor, vivj/v.

b V.IVJ RN Y

iy = gkt TV v ()

17
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where the tensor summation convention is employed.

Scheidegger {1961) studied the symmetry properties of 341k (1, 3,
k, 1 =1, 2, 3) and found that in a general three-dimensional space it
had 81 components. However, due to certain symmetry properties, a4kl
only had 36 components in the general case for an anisotropic media.
For an isotropic media, the dispersivity tensor reduced to only two

components, ay and e with

31111 T Y2222 T 9
83122 T %2211 T 11
83,12 = 8221 = 2121 = 2172 = /2 (ap-apy)

and all other a's = 0. (12)

The longitudinal and lateral dispersion coefficients are related

to the dispersivities by

DL aIV

Dy aIIV . (13)

Poreh (1965) showed from physical and dimensional reasoning that

D,.
i

d 2

o
1]

where median grain diameter (L},
F1,F2 = even functions of Vd/v and Vd/Dd, the Reynolds'

and Peclet numbers, respectively,

<
1

kinematic viscosity (LZT'1).

molecular diffusion coefficient (LZT'1), and

kronecker delta.
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Analytical Solutions

Analytical solutions to dispersion problems in porous media have
been obtained by many investigators. Common to these studies is the
assumption of a step function for the 1npu§_conceptrdtion, that is, the
concentration of the dis$1ac1ng f1uid is céanged instantaneously from
zero to some value an& maintained at this concentration thereafter.

In addition, it is commonly assumed thét only mass transport by means
of convection and d1sher$1on takes place; that is, additional mass

transfer mechanisms are neglected.

Longitudinal dispersion. A semi-infinite column (x3 > 0) of

homogeneous and isotropic porous media with a plane source maintained
at x5 = 0 1s shown in Figure 2. The flow is maintained at a constant
specific discharge, q, in the x3-d1rection. For an isotropic media,
the axes of the dispersivity tensor are assumed to coincide with the
velocity vector. Thus eguation (8) reduces to

% aC

aC _,%_._ aC
3

where DL is the longitudinal dispersion coefficient.

L4

Initial and boundary conditions are'given by

c(o,t) = CO 5 t>»0
C(X3;0) =0 ; XB > 0 1t
Clest) = 03 t>0 7 (16)
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C= CO 4
x3 = ) 1.0
C=20
v =0
X3 C'/CO "3 U
Porous Medium

1.0

P TR o |
(=
§ni®
»®
w
H
8

C/C
Vy = /o

Figure 2. Schematic sketch of longitudinal dispersion column setup.
Ogata and Banks (1961) used Laplace transforms to obtain the solution

Xo = Vot VX X, + V.t
erfc (—ji———Ji—) + exp ( g 3) erfc (—ji———¥§—)] (17}
2Dt L 2Dt

L L

C_
Co

where erfc (u) = 1 - erf (u). Ogata and Banks showed that the second
term in equation (17) may be neglected in most cases. For instance, if
DL < 0.002 V3x3, a maximum error of less than 3 percent is introduced
by neglecting the second term. Therefore, unless the region close to

the source is considered, an approximate solution to equations (15)

and (16) is
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Xq = Vot ’
E_.. = ]_ erfc __3.._..._3 . ("8)
C 2 .
0 2Dt ‘ ’

Longitudinal and lateral dispersion. If a vectangular column

(0 < X3 € L3 0 < Xy € n]) is used and a tracer source is maintained
over a portion of the input area (0 < x]'s b) as shown in Figure 3,

then both longitudinal and lateral dispersion will occur.
‘ {

r

C=¢C,f €=20 c=c, =0
» XI . __'x_l
—b — e b —+ \
\
c=20 \
)
/
q j /
SRR vy i i et P H {3
9.3 , R 2‘3
Vi = a/¢ Vy = a/¢

: j
Figure 3. Schematic sketch of Tongtitudinal and lateral dispersion
column setup.
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Assuming a homogeneous and -isotropic medium with undirectional flow in

the x5 direction and aC/ax] = 0, equation (8) becomes

2
2
A, 2C 2°C L
at DL ax32 + D; ax12 - V3 9X3 (19)

The initial and boundary conditions are given by

C(x3, 0, ;) = CO; 0 < Xp<bs t>0

C(x1, 0, t) = 03 b < Xy < &y tx0

aC -

_BX—T(OgX3st)_0, t>/0

aC -

C(x], w, t) = Bounded

C(x], Xq5 0} =0, 0s¢ Xy € 83 X3 0o . (20)

A series solution to equations (19) and (20) was given by Bruch and
Street {(1967). Harleman and Rumer (1963) gave the following approximate

steady-state solution to equations (19) and (20),

X, =b
%"=%—erfc[ 1 _I . (21)

In their work on wastewater recharge and dispersion, Hoopes and
Harleman {1965, 1967) have developed several approximate solutions to
the radial dispersion problem. Shamir and Harleman (1966, 1967) de-

veloped analytical solutions for Jongitudinal and lateral dispersion in

Jayered porous media,
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Experimental Studies

.

Literature describing experimental studies 1s.not quite as
extensive as other aspects of the dispersion phenomenon. However, to
solve the theoretical and analytical equations of &1spersiqn, the
1ongitudfna1 énd lateral d1spersion coefficients are needed.

The ané]ytica] solutioﬁs reported p?evious]y ére mostly used to
experimentall} determine the longitudinal dispersion coefficient,‘DL.

Harleman and Rumer (1963) related DL to the Reynolds number, R = Vd/v,

D 8
L Vdy~1
3 °° (;—) (22)
where Vv = fluid velocity (LT_T),
d = particle size of the porous media (L},
v = kinematic viscosity (LZT']), and:

apaBy = coefficients which are dependent on the porous

medium and flow regime, respectively.

Values ranging from 0.66 to 1.92 for a]nand 1.06 to 1.20 for By were
reported by different investigators (Haf]eman and Rumer, 1963; Hoopes
and Harleman, 1965, Ebach and White, 1958, Bruch, 1970) Harleman and
Rumer also deve1oped a permeab111ty (k) - longitudinal dispersion
coefficient (DL) re]ationship similar to equation (22) 1n which d is
replaced by k. R

An expression similar to equat1on (22) has also been used to |

determ1ne lateral dispersion

tawi D T B, i : o
Tog, 42 . - (23)
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Again, values ranging from 0.026 to G.11 for oy have been reported by
various investigators (Marlcman and Ruwer, 15635 iioupes and Harleman,
1965:; Rruch and Street, 1970). Al of these investigators used a
value of 0.70 for 8,.

A1l the experiments reported here were run under saturated flow
conditions. The flow rates in those experiments were very large com-

pared to those typically measured under unsaturated conditions. The

Reynolds number versus dispersion coefficient relationships are not

valid for all values of R. At small velocities. as found in unsaturated

flow, molecular diffusion is very important (Biggar and Nielson, 1960).
Bear {1972) presented a relationship with a wide range of Peclet
numbers, P (= Vd/Dd) versus D, /D,. A plot of P versus D, /D 4 was
divided into five regions, and characteristics of each region were
discussed by Bear. Fewer experiments are available to characterize
the lateral dispersion coefficient. However, the relationship between
Pe versus DT/Dd is expected to be simijar to the Pe Versus DL/Dd re-
lationship (Bear, 1972). .

Lau et al. (1957) performed some field tests to evaluate various
tracers, and found the chloride ion to be the best. Field-oriented
laboratory experiments have been conducted by Hoopes and Harleman
(1965, 1967) on wastewater recharge and by Rumer and Harleman (1963)

on salt-water intrusion along coastal aguifers.

Numerical Solutions

The problem of miscible displacement has been treated extensively

in the petroleum industry. Peaceman and Rachford (1962) applied a
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'distance-centered' finite difference approximation (CDA)} and a
'backward-in-distance' approximation (BDA). For both approximations,
a Crank-Nicholson scheme was used for the space derivatives. The
truncation error was too high in the BDA, and excessive numerical
dispersion occurred. The CDA solutions showed oscillations that were
barticu]ar]y severe near the'disp1acement front.

Garder et al. (1964) developed the method of characteristics
(MOC) to overcome these difficulties. This technique does not intro-
duce numerical dispersion.’ The development and app]ication of this
technique to groundwater’ problems wasipresented by Pinder and Cooper
(1970), Reddell and Sunada (1970), Bredehoeft and Pinder (1973) and
Konikow and Bredehoeft (1974). The MOC is described in detail in
Chapter IV, o Pt i '

Hoopes and Harleman (1965) used an explicit finite difference
scheme to obtain a solution for the problem of radial flow from a well.
In addition, they §tud1ed dispersion between two wells fu11y pene-
trating a confined aquifer, one pumping and the other recharging at the
same rate.” ‘Y T '

Shamir and Harleman (1966) presented a numerical scheme general
enough to handle any problem of dispersion in a steady flow field, with
any boundary and initial conditions. They used the convective equation
in ¢ and ¢ {¢ = equipotential function and ¢ = stream function)
coordinates and devised a numerical scheme to use Stone and Brian's
(1963) results for one-dimensional dispersion. They kept the scheme
computationally efficient by using an a1ternatinghdirection implicit

(AD1) solution method. Stone and Brian's weighting scheme for the
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convective and time terms was used without modification. This
process took care of convection and longitudinal dispersion. The
lateral or transverse dispersion was also solved by an ADI scheme,
which was more efficient than either an explicit or a fully implicit
scheme.

Lantz (1971) quantitatively evaluated the value of numerical
dispersion (Peaceman and Rachford, 1962; Bresler and Hanks, 1969}.
Over a wide range of spatial and time steps, the truncation error is
presented and can provide a guideline for choosing the spatial and
time increments sucﬁ that the effect of numerical dispersion can be
minimized. Chaudhari (1971) added a negative dispersion term to the
continuity equation to account for the numerical dispersion. Using
an approach similar to Chaudhari (1971), Bresler (1973) used a higher
order finite difference appreach inat supposedly eliminated the
effects of numerical disioosion.

Several investigators (Malluswami. 1971; Cavendish et al.,
1973; Pinder, 1973; Segol et al., 1975: Pickens and Lennox, 1976)
proposed a numerical solution to the dispersion problem based on
variational methods by using a Galerkin-type finite element technique.
Their studies indicated that both gains in spead and accuracy can
be achieved with the finite element technique.

The preceding 1iterature review on dispersion has revealed the
following facts:

1. Even though the porous medium can be homogeneous and
1sotropic, the dispersion coefficient is an anisotropic guantity and

must be treated as a second-rank tensor;
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2. The dispersion coefficient is linearly related to the
components of velocity as given by equation {(11)3

3. An analytical solution to the longitudinal dispersion problem
is given by equation {17);

4, An approximate steady state solution to the longitudinal and
latera} dispersion problem is given by equation (21);

5. The longitudinal and lateral dispersion coefficients can be
obtained by using Pe versus DL/Dd and Pe Versus DT/Dd relationships
(Bear, 1972);

6. The method of characteristics (MOC) appears to be one of the
best numerical techniques currently available for simulating dis-
persion. It has been widely used and tested. Reddell and Sunada
(1970), Pinder and Cooper (1970), Bredehoeft and Pinder (1973) and
Konikow and Bredehoeft (1974) used the MOC for saturated groundwater
filow, while Smajstrla et al. (1975) used it for unsaturated flow; and

7. Finally, to get a cdmp]ete simulation of the dispersion
problem, a combination of the dispersion models used in saturated

and unsaturated porous media is necessary.
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- CHAPTER III
MATHEMATICAL MODEL

The solution of the d15pers1on prob1em requires the simultaneous
solution of a set of coup]ed equat1ohs- (1) the equations governing
two-phase (air-water) fluid fiow, and (2) the equation governing the

convective- dispersion transport of a disso]ved tracer.

Fluid Flow Equations

The equations appropriate for this case are thpse of two-phase
fluid flow in porous media. fhe two fluid phases afe airkand water,
and soil 1s the porous medium. Thus, a fet of fundamental flow equa-
tions for the immiscible movement of air-water through the entire
porous medium (saturated-unsaturated) are (1) Darcy's law for each
fluid phase, (2) continuity equations for each fluid phase, (3) a
total fluid conservation equation, (4) an equation defining the
capillary pressure, and (5) an equation of state describing the density
of air as a fﬁnction of air pressuré. These equations combine to-
gether to yield the Water of Air Pressufe Equation, the Water Satu-
ration Equation, and the Air Saturation Equation. A detailed develop-

ment of these Fluid Flow Equations is gtyen in Appendix A. Using

~shorthand tensor notation, the Water Priésure Equation is written as

2
Pu kx krwAAi aw _
( ]“)Ba[ ; ST b I
pw¢AV 1 Hy Xy
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] 5 M Ow kx1krwAAi ho |
__) [ 20 i -
o 9oV 2% My Xy |
W
2
Pa Ky Kpathy
L) on_| s
p 98V %4 g o5 L
S S
w 39 W W a o
T = (9aV) = (9aV) +
N at Py ot T ot
S, 3p ppl ppl
pag ai P g_ + P ?_ , (24)
d DW¢AV9 Pa¢AV9
ax; (1 =1, 2, 3) = dimensions of volume element (L),
AAi (i =1, 2, 3) = cross sectional area of element perpen-
dicular to X; (that is, AA1 = MXphX3a etc.) (Lz),
t=time T ,
AV = BX,AX,8X3 = volume of element (L3),
X4 (i =1, 2, 3) = cartesian coordinate system (x1,x2,x3)
W,
_ , -3
Py = density of water (ML ),
pg * density of air (ML'3),

dynamic viscosity of water (ML'1T'1),

L]



u, = dynamic viscosity of air (ML'lT—]),

a
o relative permeability to water, dimensionless,
ra ° relative permeability to air, dimensionless
kx1 = absolute permeability in Xq - direction (Lz),

¢ = porosity of the medium, dimensionless,

g = acceleration due to gravity (LT"Z),

p_ = water pressure in head. of water (L),

vy = air pressure in head of water (L),

¥, = capillary pressure in head of water (L),
h = gravitational head above datum (L),

S = water saturation, dimensionless,

W

Sa = a1r saturation, dimensioniess,

Qw = water product1on rate (L3T']),_

Qa = a1r product1on rate . (L T ) and e

Pp * density of fluid passed in the source or sink (ML'3).

The Air Pressure Equation is

2
1 3 W kxikrwAA1 L ;
( ——.) o m &, A"i ¥
pw¢AV " W i
. . rep ko ko AA -
( 1 ) 3 aW Xy W i awa Ay )
oaV/ g | Ya v
2
' P Kx kmAAi o o
( 1 ) 9 i ¢ | ax _
o 087/ 4 Y g
wh i M4
' 2
_p "k, k_AA
( 1 ) 3 WX W LIS A )
o 0807 i [ Mw )
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2
Pa Ky, Kralhy

( 1 ) 3 [ i ah ] AXs 4
p #aV/ ¥4 Ma Xy

S S. 3 S
W 9 W W a 39 T
;E%E'EE'(¢AV) + 5.9 3t + 35 (44V) +

Sq 90, epQ

W, a
P.g at . P -
a b, H8Y9 o VY

pPQ

The Water Saturation Equation is

p. gk, k
ot pw¢AV- Bx1 Py axi ax1 1 1
P Swoa (L ow Pw
- - == 5 (6aV) 3t
p. ¢AV pAY W
The Air Saturation Equation is
PP Ok, Koo o
asa i ( i ) 3 [(/ W7 X, Tra g .
2
p, 9k, kK
a X, ra ppQ
i ?2 )AAi] Axi _ P a__ -
Ya “ p_ oAV
a
S _ S, 9
_a_:% (4aV) - —a——s%
AV a

The following assumptions were made in deriving the above

equations:

(25)

(26)

(27)
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1. Darcy's law is valid for both wetting (water) and nonwetting
(air) phasgs; '
2.  The two fluids, air and water, are homogeneous and
immiscible; v ot E o f
3. The‘watef as a wetting phase fiuid s incompressible and
the air as a nonwetting phase fluid is compressible;
4, The fiow is isothermal; and

5. There is no mutual solubility in two fluid phases.

Convective-Dispersijon Equation

A re1at10nship for determining tracer concgntr?tion was derived
by using a continuity equation for the dtsso]ved tracer. The problem
was formulated on a microscopic basis anq:then averaged over a cross
sectional area of the porous_medium to giye a macroscopic convective-
dispersion equation. “A Qetailed der{vatibn of this equation is given

in Appendix C. The general convective-dispersion equation is

4

- * aC
.——{¢S AVC) [ 1j aXJ¢S AA1] Ax1 siq{cv ¢S AA )Ax
R LTI L NI AR S :
: = CPQ ) ) ) (28)
B T T TSR AR
where D:j = DiJ + D T1‘1 = coefficient of hydrodynamic dispersion,

a second rank tensor (L2T ),

Dij = mechanica1 dispersion coefficient, a second rank tensor

W,

2T)

jor)
=N
|

= molecular diffusiun coeff1c1ent (L
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—
1]

porous medium “tortuesity" factor, a second rank

iJ
tensor, dinonsieniess,

C = mass concentration of tracer (ML"3),

Vi = pore velocity (flow rate per unit pore area) of
miscible fluid in i-th direction (LT“1),

Cp = concentration of tracer in produced fluid (ML—3), and

all other terms are as defined previously. Assumptions made in
deriving equation (28) are as follows:
1. The diffusive mass flux is proportional to the concentration
gradient;
2. The convective mixing (called dispersion} is proportional
to the concentration gradient;
3. Only the wetting phase is considered in the convective-
dispersion section of the problem;
4, Any diffusion due to temperature or velocity gradients is
neglected; and

5. The fluid tracer is conservative.

Assuming further a homogeneous fluid in which there is no variation of
density and viscosity due to changes in concentration, and rearranging

equation (28), the result is

3C _ 1 P [* aC ] 3C
frm e — % | D, 22— S AL | Ax, -V, =
at (¢SwAV) ax1 1 axj wooi i i X

(ep - 2)-2 (29)
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Pore Water Velocity

The convective-dispersion equation is coupled to the fluid flow
equation by the pore velocity. The pore velocity of the miscible fluid

1s related to the vo1Ume'f1uX of water, d@ ., by the relation:
.i

ety D L T .
h : kxikmpwg (N’w 4 2h RIS I (31)
where q, = - )
w_l uw_ ax.i 3)(1

5

Parameters of Dispersion

The coefficient of hydrodynam1c$d1spersion, D:j, appearing in
equation (29) has been analyzed by many investigators. It depends on
the flow pattern and on some basic medium characteristics. In general,
D:j which includes the effects of both mechanical (or convectivej
dispersion and molecular diffusion, is a function of the Peclet

number, Pe’

= Yd
Pe D, (32)
where d = mean grain size diameter or any other characteristic

medium length (L).

i
'

As discussed earlier in Chapter II, the mechanical dispersion

coefficient, Dij’ is

vV
- mn
D45 % 24jmn ~V , (33)
where 25 jmn = dispersivity of the medium, a fourth rank tensor

(L)’ " ‘ i
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VeV, = components of velocity in the m and n directions,
respectively (LT"]), and
V = magnitude of velocity (LT*]).

For an isotropic medium, Bear (1960, 1961a) relates the medium's

dispersivity G

mn to two constants: ar = longitudinal

dispersivity and arp = transverse dispersivity of the medium, For

two dimensions:
3111 T Bpp2 T 9 o
22 T %2211 T 31 s

_ _ B 1
Q212 = 221 T B112 T 27 = ag-app)s
and all other a's = 0, (34)

The longitudinal and Tateral dispersion coefficients are related

to the dispersivities by

DL = 2V, (35a}
and Dy = aIIV . (35b)
For an isotropic medium, the diffusion tensor, Dd Tij’ is given
as
DgTy1 = DgTpp = DyTaz = DyT
] -
and all other DdTij s =0 (36)
where T = tortuosity factor, dimensionless.

Expanding equation (33) and using equations (34) through (36), the
following functional relationship for the nine components of the

hydrodynamic dispersion coefficient are obtained for an isotropic
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medium:
Dp=b—Z ¥z *hz i
v,V V.V V.V
* i 2'2 3'3
022- DT -—v-z—'!' DL“\'I—Z'— +DT~?—+Dde
V.V V.V V.V
* 1" 2V7 3'3
Dyg=Or <z *Or-z *hF t o
* * V1V2
Do1 = D12 = (0 - Bg) =7
V.V
* * '| 3
Dgy = Dy3 = (D - Dy) Z
and y
v
* - * _ 2 3
D3y = Dp3 = (D - D) —5— . (37)
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~ CHAPTER IV

NUMERICAL MODEL

e et s ‘

The numerical model consists of finite difference analogs to the
differential equations presented in Chapter 111, The detailed deri-
vation of the finite difference analogs 15 given in Appendices B and
D. Since only two-dimensional problems are dealt with in this study,
the numerical s1mulétor is presented in two-dimensional form. The
grid system used in the following finite difference equation 1s shown

in Figure 4,

t

X1
i gk-].
X3
i-1,k 4,k i+1,k
i k+1

% : ﬁ.t‘ jlr ',g - % |., ;
Figure 4. Two-dimensional grid system used in finite difference
equations. .
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Finite Difference Form of Two-Dimensional F1uid Flow Equations

The fluid flow equations are the Water Pressure Equation (24},
the Air Pressure Equation (25), the Water Saturation Equation (26),
and the Air Saturation Equation (27). Using an implicit, centered-in-
space finite difference scheme to appreximate the Liwe and space
derivatives, the twc-dimensional finite difference form of the Water

Pressure Equation is

+ t+] - t+1
N+ N )y PN FND ) +
x1w X-IB. w'i'*'],k x]w x]a w'i-'l,k
+ + t+1 - - t+1
(N v (N + N )
+ + + + - - t+]
(Nx-lw * Nx]a * NX-IW N 1a * NXBW * Nx3a * '\'X3W x3a) pr'l,k
+ .t -t +  t - 4
- + Ny N + N -
["1“ Ci+1.k X% %1,k %3Skt X3 Gy ko
+ - + - t + ++ +
(N N + N + N )y + (N + N ") ah, 4
x1a x]a x3a x3a ci,k X-IW xla X-t
- - + ++ + - --
(N + N7.) ah, + (N + N '.) ah {N + N."_) ah ]
X-IW' x1a )(1 x3w XBB. X3 . x3W x3a X3
— At At
g{eaV)y | 0 9o, 0
i,k
st {pt ) pt-1 \
Ak DAk A, eli [(E\i) +(E@_) ] . (38)
9t 2t g(ea’ , L\Pw/i Lk \Pa/iLk
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The subscripts i and k 1pd1cate the grid column and grid row number
respectively, and t indicates the time level. The coefficients are
as defined in Appendig 8. The dimension of the volume element, AV, s
evaluated with ax, = 1. ‘

The twq-d{mensiona[!finite-diffgrengg form.of the Air Pressure

Equation is

+ + 4 1] e o E - t+'|
(N, .+ N, . + (N HND D) e
+ + t+1 - - t+1
+ + (N + N ,
(N N g xgH | x3a) Yag kot

XqW X33 T3y k4

+ T ot + -

N + N + N + N + N + N + N+ N +
{ X X2 X X2 XqW ,a¥3a gkr§SWahnux3a
2 =N + N wo .+t
t a X W Cyj X-W'C + N, ¥
(wai,k + 1033.3)Atg i,k 17 2441,k 1 | i-1,k XgW'Cy Kl
- t + - + ) - t - _ + +
++ + - - - + ++ +
N ) Ah - (N + N ) ah, - (N + N } ah -
Xq2 X3 XW x,8 X3 XqW X5 Xq
O ) e ] RGN,
+ A 3 2
x3w x3a x3 g(¢AV)%’k Ato
. . vin ! . . . X o };1 :
t t ot
S (p -p )
"1,k Mok Mik (pp)i’k [(gﬂ) + (Eﬁ) ] . (39)
gp; Aty g(¢AV)§,k w1,k Pa’1,k

1,k
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where 1033.3 is the atmospheric pressure in cm. of water.

A rectangular grid system of m rows and n columns is superimposed
onto the region of interest, and equation (38) or (39) 1s written for
each grid. Since equation (38) or (39) contains unknown pressures from
each of the four adjacent grids plus an unknown pressure for the grid
in question, the result of writing equation (38) or (39) for mxn grids

is a set of mn simultaneous algebraic equations. Equation (38) may be

written in matrix form as

[A] ol = frhs, ) (40)

where [Aw] = mn x mn matrix containing the coefficients of unknown
water pressures,
{ww} = mn column vector containing the unknown water pressures

at time t+1, and

{rhsw} mn column vector containing the right hand side terms

of equation (38).

The implicit solution of equation (40) yiclas water pressures, L at

time level t+1. The air pressures. Uy at time t+] are

t41] t t+1
] = Y + oy . (41)
%,k Cik ik

If the air pressures are solved implicitly, equation (39} is used

instead of equation (38). Equation (39) may be written in matrix form

as
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[A ] { a t” {rhs by - L (42)

it

where [Aa]' fmn x mn matrix containing the coefficients of unknown

air pressures,

mn column vector containing the unknown air pressures

g,
=
=3
———
14

at time t+1, and 1

——
-3
=
w

=1}

[
1]

mn column vector containing the right hand side terms

of equation (39).

The implicit solution of equat1on (42) y1e1ds air pressures, Vg at

time level t+1. The water pressures, ¥, . "at t1me t+1 are

L ot

¥ (43)
Wik Ci,k %,k

‘ 3 |
‘Therefore, either equations (40} and_£41)tare used to obtain the
water and air pressures at time t+l, or eguations (42) and (43) are
used to obtain the air and water pressures at time t+1. Once the
water and a1r pressures are known at new. time t+1 using either one of
the two sets of equations, the next step is to solve explicitly for
the water saturat1ons, S and the air saturations. Sa ,'at time t+1.
The finite difference form of the Hater Saturat1on Equation (26) in
two dimensions 1s = . - '

. !
i v . .
iy g . ‘ 1‘ )

) - ] e
ast = gat [N:_ AL N‘-’¢t+1~ et Y 0k
™

ok LIRS U R
W ¥ - - -t
XHWg L (Nx1w + N§1w;+ N pu +’ﬂx3w) wvi'kn Eg

3N
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+ + - - + + - -
N© aht N ahT + NYaht o+ ND ah ] -
X3N XS X3W X3

ot t-1
At[(ppﬂw )t it {(eaV){ | - GeaV) 7}
2/ R (YO LY

0
pt pt-]
Pw Aty
where ASJ = St+1 - St
ik Yk Yk

The new water saturation, Sw’ at time t+1 is, therefore:

th AS+ + St

S =
Wik Wik Wik

(45)

If equations (40) and (41) are used to obtain the water and air
pressures at time t+1, the finite difference form of the Air Saturation

equation (27) in two dimensions is

+ Yoot - ] vt
ast = qat [N v + N + N ¥
31,k A R 5 TN S Rt B T S L MY
- t+] + - + - t+1
N - {N + N + N + N ) +
++ + - - ++ + haden -
N. .ah, + N _aAh_ + aAh.  + N_ _ah ] -
t[(ppqa )t st (e}, - N
A - 2 -
o a. t
padtV/y o Tk (eaV)y oty
I,
Pa’i,k bty
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where AS+ = St+1 St .

T,k M,k Yk

If equations (42) and (43) are used to obtain the air and water
pressures at time t+1, the finite d1fferen’ce form of the Air Saturation

equation (27) 1n two dimensions 1s

ast = gat [N oV N + N | +
S AR S TAL PR SO S LA IR DL LIS TS

NI MO R L MR I MR ¢t+1

. N *

+ .

.o T e o
Nx]aﬁhx] * Nx]aAth +N 3aﬂhx3 x3a x3] !

-
L2t

t[(ppaa )t' t {um: (- (e
A —_— - 3 » . -
PRTUFTOM UV ) SV LS "
BT TS RN
S, (w - ¥
8,k 24,k 31,3 ]- o R
(1033.3 +,¢: )
| 1,k

(47)

The new air saturation, Sa’ at time t+1 is, therefore,

BL st st | (48)

S
a4,k A,k M,k

 The saturation error at each time step is computed as

=1 - (s¥ sty (49)

(Serror)1,k - Wik aj .k
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If the.right hand side of équat1on (49) does not converge to unity
within the tolerance level, an iteration of the flow equations may be
necessary. The original values of the flow coefficients, N: w '’
N:]a’ etc. need to be updated at each iteration. 1

Finite Difference Form of Two-Dimensional Dispersion Equation

The numerical technique used in this study to solve the
dispersion equation is the Method of Characteristics (MOC) introduced
by Garder et al. (1964). As discussed in Chapter II, the MOC does not
introduce numerical dispersion and the MOC approach can be extcnded to
two or three dimensions. The succeeding discussion follows the develop-
ment by Garder et al. {1964).

In the MOC, instead of solving equation (29) directly, charac-
teristic equations are determined and solved. The second order terms
of equation (29) are regarded as given functions of X1s Xgs x3, and
t, and equation (29) treated as a first order equation. Such an equa-
tion will then have four characteristic curves which are the solutions

to the following ordinary differential equations:

_= V]’ (503)

X3

a - Yy (50¢)
and dc :
(¢5 AA ) ax [D1j 3XJ ¢S AAj . (50d}
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A fifth characteristic curve could be written for the production term,
(CP - CpP/pw) Qw/AVl However, the production term will be treated as a
boundary condition of the moving points described below.

In addition to the usual division ofithe flow region into a grid
system, a set of moving points is introduced into the numerical solu-
tion. Initially, the moving points are uniformly distributed through-
out the grid system with a given concentration. At each time interval,

the moving points in a two-dimensional system are relocated using a

finite difference form of equations (50a} and (50c):

" ‘ _'_J‘la oy S
;:” = xt +AtV.tl-'+1 , | (51a)
R .’P
mt g, e
X = x. + At ' (51b)
32 32 3
where
t + 1 = new time level,
ont.= old time level,
At = time increment, .
Xy and Xg = coordinates of the msth'moviné point in the Xy - and

%
Xq - direct1ons. and

V]‘ and V;' = ve1ocit1es of the z th moving point 1n the Xy - and

L g X Tyt
Xg - directions

" When all the moving points have been‘re1ocﬁted, éaéh grid in the grid
system is temporarily assigned a concentration, Cg+ﬁ s which is the
average of the concentrat1ons C: & of all the moving points lying inside
the grid at time t + 1. Next, the change in concentration due to

dispersion, AC1 K?* is calculated using an explicit, centered-in-space
, .
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Tinite difference approximation to equation {50d}. This equaticn is

developed in detail in Appendix D. The two-dimensional form is

ACy k= E;1x] IS B, CHERHED I
E:3x CHI SR (Ct+A ¢ )+
;1x3 (CTee1 * Gtk ™ Croieer = CHan o1 - Xy CHER
I HINEE i IR G:3x1 G
SRR * (G337, * Civt ket ™ Cit ok ™
ikt (52)

Each moving point is then assigned a concentration according to

tHAL _ tHA
C£ = C2

+ Aci,k . (53)
To compiete the step from time t to t+1, the concentration of the
stationary grid points are calculated according to

t+1 _ +ﬂ

Ciok ™ Bk T ALk (54)
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Finite Difference Form of Velocity Equation

In the method of characteristics describgd above, a dgterminat1on
of seepage ve]ocity'is nécessary fo; re1ocat1n§ the movingrpo1nts at
each time step. The water pressures, ww’ qbtained from either equation
(40) or equation (43) are assigned to the centers of each grid. Using
these pressures (ww) and equations (30) and (31), the seepage velocity
at the interface of two grids may be:ca1eu1atéd. 'Referrihg to Figure
4, a finite difference form of the horizénta] Eeepage velocity at

+

(i+1/2,K) can be written as

Ky KrwPud

v ¥
520 - (i) [( ok 0
174172,k Sy Ae1/2,k 5T *

i

(hisr,k = i) ] . (55)

AX-I

”

where all the-symbo1s are as previously defined. The vertical seepage

velocity at (i, k+1/2) may be calculated as
|

k. k_p.g - -
(V )t+-| } —( X3 rw w ) [g w'i,k‘ﬂ . W.i’k) +
k2T g A ergal iXy
(h .- h ) . ':'g " M . .
19k+1 1’k= . o i )

. The horizontal seepage velocity at (1-1/2,k) 1s B !

ke koo 9y, v WL SRS I SRR RS
(v.)E] . ( o ) A [( Yi,k “’1_.1.k) .
17-172,k BetSy Jia1/2,k My

] |
S - (57)

Ax'l : <

(h1.k - h1-'|,k) ] ”n .



The vertical seepage Ve]ocity at (i,k-1/2) is

k, k.np.g P -
(vt _ ( Xg W [( i,k wi,k-l) N
3 - ol [
k-2 WS i, k-172 4x3
(i M) ]
X, | (58)

Using equations (55) through (58), the seepage velocities of moving
points are obtained using a three-way linear interpolation scheme as

described in the following paragraph.

Let a moving point at any time be positioned on the lower right

]
12’
obtained by Tinear interpolation between the interface velocities,

hand corner of grid (i,k) (Figure 5). The seepage velocity, V is

)iz, and (V)i g0 e

%3, = Uadisaza [

= W2,k " ix3

Vi

) (VT)i—l/z,k - (V1)i—1/2,k+1].
(59)

The seepage velocity, V; » is obtained by linear interpolation between
3

the interface velocities, (Vi)yuy,p o and (Vi)siq /o iy
" *3 ~ (Xadiy2,k
V]g i (V])1+1/2,k B AXq [(V'I)i-F-'I/Z,k ] (V'l)-i+]/2,k+'l]

(60)

The seepage velocity, V] » 0of the g£-th moving point 1s then obtained by
R’ 11
linear interpolation between V; and V] s
L £

X = )yi2,k

v, =y, -2 e (v;2 - V;E ) . (61)
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SimiTarly, the seepage velocity, V3 y of the t-th moving point 1s
L
obtained using equations (62) through (64):

S T (X1)1,k—1/2

o _ e _
V3, = Uadi 12 = = oy [ Vadi ka2 (V3)1+1,k-1/2] '
‘ (62)
. 1, ” (X104, k172 [ L
V3, = WsdiLig2 - iy L Y3tz \“3’1+1,k+1/2] ’
(63)
and
| x32 - (X3)i,k~1/2 ( \ y ) (64)
v, =v.l . V, - ¥ . 6
3 3 AXsg 32 3£,

Description of the Computer Program

The numerical simulator was programmed in FORTRAN IV for the
AMDAHL 470 at the Texas A&M University Data Processing Center, A flow
chart of the program is shown in Appendix E, and a reprint of the
program used in solving the two-phase, two-dimensional infiltration and
dispersion problem in a saturated-unsaturated porous medium is given in
Appendix F.

The MAIN program governs the sequence of operations to be per-
formed, Subroutine READIN reads in the physical data needed to solve
the problem. It reads in the saturated permeabilities, porosity,
initial densities and viscosities for both air and water, initial
water and air pressure distribution, boundary conditions, and the water
saturation - relative water permeability - relative air permeability -
capillary pressure relationships.

Subroutine INICON sets up the number, coordinates, and concentra-
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tion of each of_the moving points in the two-dimensional grid system.
It also reads in the relative concentration, C/CO, of the incoming
tracer. Finally, it computes the initial average grid concentration.

Subroutine INIPRT prints out all of the initial data read in by
subroutines READIN and INICON. A1l of the two-dimensional matrices
are printed out qsing subroutine MATROP.

Subroutine MATSOL sets up the coefficient matrix, [Aw]’ and the
right hand side column vector, {rhsw}, for solving 1mp1iﬁit1y the water
pressure vector, {ww}, at time t+at using subroutine BSOLY. Subroutine
MATSOL, as is presently written, may take care of one or a combination
of the fo11ow1ng boundary conditions: (1) a constant water pressure
boundary, (2) a constant or a variable flux boundary, (3) a no-flow
boundary, and (4) a constant head reservoir boundary. Initially,
MATSOL sets up the coefficient matrix, [Aw]’ for a no-flow boundary
condition arouﬁd;the boundary. grids of the two-dimensional grid system.
MATSOL then‘cpg?ks the boundgry conditions and makes appropriate
changes in [Aw]“gnqq{rhsw},,qﬂpge the water pressures, {y, |, are - -
knoﬁn at t1me§t+At; the air pressures,;{wa}, at, time t+at,:are
calculated using the definition of capillary pressure. If the air
pressures, jnstgad'of}the water pressures, are solved implicitly, a,
procedure analogous, to, the, one, described above,1s. followed. The air.
pressures are solved implicitly using BSOLV and the water pressures.:
~are optajngg g§gpggcap1]}ary19ressqrggefinigion,qujthgthe updated
_ water and ajr pressures, water and air saturation changes are calcu-
lated expligit]x;rlﬂew wgten,apd:a1rtsaguratiops,usw andrsa, at time

t+at and the saturation error,. 1 f,(Sw.t‘Sa) , are.then computed. ,
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If the saturation error is too large, more than one iteration in a
time step may be necessary and the entire set of operations described
under MATSOL is repeated. Also, during the computation of new satura-
tions, the magnitude of maximum saturation change at any grid point is
obtained. If this saturation change is too large, the time step size
is appropriately decreased and the necessary calculations are repeated.
In practice, the rules for selecting the original time step size are
such that this flow péth is infrequently taken, In selecting the

time step size at the beginning of calculations, a maximum change

in water saturation of 0.05 is allowed during any one time step.

Subroutine SLPROP is used to update the water saturation-
capillary pressure and water saturation-relative permeabilities re-
lationships.

Subroutine BSOLV uses a Gaussian elimination technique to solve
the matrix given by equations (40) or (42). The two-dimensional, two-
phase flow equations-when written out result in a coefficient matrix
which is a banded matrix with five diagonals. Thurnau (1963) developed
an algorithm called BANDSOLVE to solve such matrices. Computer
storage is not necessary for the matrix elements above and below the
band. Thus, having a minimum band width is desirabhle. The giids are
numbered along the shorter dimension of the two-dimensional grid system
to reduce the size of the band width.

Subroutine VELOCY calculates the velocities at each grid interface
by use of equations (55) through (58). This subroutine also calculates
the longitudinal and lateral dispersion coefficients using a Peclet

number versus dispersion coefficient relationship. With values for
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the dispersion coefficients and velocity components, equation (37) is
used to calculate the components of the dispersion tensor.

Subroutine MOVPT uses a three-way 1linear interpolation scheme as
given by equations (59) through (64) to obtain.the velocity components
of each moving point.  Each moving point is then moved to a new
Tocation usjng_gquations$(STa):and.(51b). A section of this subroutine

“determines which of the moving points has moved out of the model.

These points are tagged and introduced at an inflow boundary with the
appropriate boundary condition. The coordinates of these.reintroduced
points are assigned'random1y_within the inflow boundary using sub-
routine RANDU, RANDU generates random numbers having a uniform distri-
bution and ranging from O to 1. An attempt is made to keep a minimum
number of moving points in all grids at all times. If, at any time,
the number of moving points in a grid drops below a sbecif1ed minimum
number, new points are introduced in that grid to bring it to a minimum
number. The coordinates of these new points depend on the grid or .
grids from which the fluid is emanating, and their concentrations are
based on a three-way interpolation scheme similar to that used for
velocity. After each point has been moved to a new location, the
average grid cdncentration is calculated by arithmetically averaging
the concentrations of the moving points located in that grid.

Subroutine DISP uses equation (52) and the average grid con-
centrations from subroutine MOVPT to determine the change in concen-
tration due to dispersion. The average grid concentration and the
concentration of each moving point are then corrected for this

dispersion.
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Subroutine MATBAL then calculates a mass balance for both the
air and water phase and the tracer. Both cumiuiative and differential
mass baiance errors are calculated.

To conclude a time step, the density of water is updated for
changes in concentration. A test for printout is made. Subroutine
OUTPUT prints out the results using subroutine MATROP. A set of plot
routines, PLOT1, PLOT2, PLOT3, and PLOT4 are used to plot a moving
points' concentration map. The program, at this point, has gone
through one time step. The total simulation timc is now incremented
and the entire set of operations repeated until a maximum number of

time steps or a finish time has been exceeded.



CHAPTER ¥
RESULTS AND DISCUSSION

The accuracy of the Numerical Model‘was tested on several
problems for which exact or analytical solutions were available.
The two-phase fluid flow and dispersion segments of the computer
program were tested independently with various boundary conditions.
Also, a two- dimen510na1 1nf11trat1on probiem with simultaneous
movement of water and salt 1n a saturated-unsaturated porous medium

was solved using Fhe numer1ca1 simulator.

: I
Ao i
I ! Two-Phase Fluid Flow Mode]s

Constant Pressure Boundary

The accufacy;of the Two-Phase;Numerical Simu1ator was checked
by solving an infiltration problem using Yolo Light clay. Other
s1mu1ation resu]ts ueing Fh:s.particular so1] are ava1lab1e For
examp]e, Philip (1969) obta1ned an analytical’ so1ution using Yolo
L1ght c]ay. The numer1ca1 resu]ts from th1s s1mu1ator could there-

fore be compared w1th Ph111p 5 ana1yt1ca1 so]ut1on.11":

l’ MR B}

T

A schemat1c of this particu1ar 1nf11trat1on probtem is shown
in Figure‘ﬁ Data used for this numerical simu]at1on‘were: Axl =
10 cm, - Axy = 10 cm, ‘depth of model, £, = 120 cm, length of model,

2 = 30 cm, number of rows, NR = 12 and number of:columns, NC = 3.
The total simulation time was 53.3 hours. The upper boundary

condition was that of infiltration into the center column from a

saturated surface layer of zero thickness and zero water pressure
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Figure 6. Schematic sketch of constant pressure boundary
infiltration problem.

head. Air was allowed to escape through the upper boundary of the

two adjacent columns. Mathematically, the boundary conditions were:

W _ = = . =
3;5 = 0, Yy = Varm 0, X3 0, 0 <Xy <a, t>0
39 X3 =0, bexp <ty 20
= __§_= . =
lpw 03 ax3 Os X3 O! aixlf_b’ t?.O
aww _ 3wa
35‘1 O: 3’(1 Os xl _O: 0 f_x3f‘_£3s t>0



= O,r--——..' = 0 Of_ Xl _‘f_.ﬂ.l,lx:’ '_23‘ t > 0.

(65)

The initiatl cond1t10n was that of a un1form water saturat1on of 0.48.

This corresponds to a un1form water pressure potentia1 of -660 cm
of water. )

Although this infiltration problempwas being solved using two-
dimensiona) and two-phase (air-water) flow equations, the resulting
infiltration rates and water saturationlprofiles were not expected
to deviate significantly from those usieg one-dimensional and one-
phase (water) flow equations. Air was allowed to escape at all
times. The effect of air on infiltration rates would, therefore, be
minimal. Water was infiltrating into the center column and although
lateral movement of water was allowed within the system, the
resulting saturation profiles in the center column were not expected
to be significantly different from those using one-dimensional flow.
Therefore, with the assumed boundary cdnditions and physics of the
problem, the two-dimensional, two-phase flow equations collapse into
one-dimensional, one-phase flow equations. The advantage of going
through this exercise was that the results from this infiltration
simulation using the two-dimensional, two-phase flow simulator could

be compared with Phi1ip‘s (i969) en51ytica1 solution using one-

dimensional, one-phase flow equations. A run with this infiltration

problem weuldl therefore, be an indicator of the accuracy of the

- T
two-phase simulator. !

Capillary pressure head and hydraulic conductivity as functions

‘of volumetric water contenf formYoie Lightchay were presented by
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Hiler and Bhuiyan (1971). Those relaticnships were used to determine
the capillary pressure head, relative water permeability and relative
air permeability of Yolo Light clay as functions of water saturation.
The relative permeabilities as functions of water saturation were

determined from the following relationships (Brooks and Corey, 1966):

Sw
2
) dSw/wc
J ds, /v
0
and
1
2
i ds, /ve
Kk =(1-s)2 X (66b)
ra L) 1 :
2
j s, /i?
0
where Se = effective saturation = (Sw - Swr)/(l - Swr)’

S = water saturation,

¥ = capillary pressure head (L),

krw = relative permeability for the wetting phase or
water, and

kra = relative permeability for the nonwetting phase
or air,

Swr = residual water saturation. Swr is the value of

Sw approached astmptotically as the capillary

pressure is reduced. For Sw < S , the wetting

wr
phase may be assumed to be discontinuous and the



61

_ flow to cease.
Evaluation of the relatfve permeabilities, krw and kra’ required
knowledge of the capillary pressure head:water saturation function
wc(sw) and 1ts‘asymptote Swr' The value of swr was obtained by a
trial and error procedure. The effective saturation, S, was plotted
against the capillary pressure head, wc’ on 109-109 paper for several
trial values of Swr' The plot that resulted in a straight line
yielded the torrecf value of Swr' For Yolo Light clay, the value
of swr was found to be equal to 0.125. The 1ntegra1§ in equations
(66a);and (66b) were obtained graphically. A plot was made of |
Sw - ﬁl/wz) ré]ationship. Using the trapezoidal ru1é, the integrals
were then evaluated as the area under the curves.

The resulting functional re]ationships for Yolo Light clay are

shown in Figures 7 and 8. These data were introduced into the
numerical mode] in tabular form. A tabular interpolation scheme

was used in the model to find values of P, K and kra correspond-

r
ing to speéific values of saturation. Additional data needed for
this problem were: kS = 1.085 x 10"10 cmz, and ¢ = 0.50.1

Figure 9 shows a plot of the predicted saturation profiles at
various times in the center column. As expected, the saturation
values obtained using the two-phase (air-water) flow model were
identical with those obtained with a one-phase (water) flow model.
Infiltration rates and cumulative infiltration amounts were also
identical for the two models. This was expected since air was
allowed tb escape upwards from the two-phase model at all times.

Thus, air pressures were never large enough in the two-phase model

to reduce infiltration rates below those of the one-phase flow model.
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~ An ana]ytica] so]ut10n for one-phase infiltration from a
surface layer of 1nf1n1tes1ma1 thickness was developed by Ph111p
(1969), and a p1ot of Philip's soTut1on.at,approx1mate1y 28 hours is
showh in Figure 9. Close agreement betwgen Philip's solution and
the two-phase model was expected since the upper boundary condition
used by Philip was identical with that on thé center column of the
numerical model. Agreement was good at large depths but deviated -
at sha]low.depths. The analytical solution of Philip allowed more
saturation to occur in grids near the sqrface than was allowed by
the numerical two-phase model. ;

Since thé_numerica] results obtained using one-phase and two-
phase flow models were identical, the error in the saturation
profiles at 28 hours was presumed to be the result of using large
spatial dimensions in the x3—d1rect1on . To check this hypothesis, a
run was made using Ax3ﬁand Axl equal tot2 cm. The one-phase flow
model was employed ahd the following functional relationships were
used for gapillary pressure head and re]atiye,yater permeability as

functions qf‘ﬁqter sqturatipn_for Yolo Light clay:

A ;
[y
:[$;]:‘2A' wc 7 wb

ety d 4 ="[ 1 v ""’»? i ‘pc i 'pt; S S A - -'"i?_‘- cord (67a)
. . ; . ,
and
. wb F P
Kew = $_ '4 " 3 lpc > Wy ' |
N RTINS L L qr IREHANN Pgamaninh 72 2fabem: &> gt
= 1 s wc hd wb (67b)
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li

where bubbling pressure = 16.5 cm of water for Yolo Light

‘i’b
clay,
A = pore-size distribution index = 0.244,

2 + 3, and

il

n
all other terms are as defined before.

The bubbling pressure corvesponds closely to the smallest capillary
pressure at which the air phase is continuous. The pore-size
distribution index, A, is a number representing the medium structure.
These parameters were determined in the same manner as the residual
water saturation, Swr' The bubbling pressure, ¥, was determined by
extrapolating, to Se = 1, the linear portion of the be - Se curve

on logarithmic scale. The pore-size distribution index, A, was the
slope of the wc - Se plot.

Figure 10 shows a comparison of Philip's analytical solution
with the one-phase flow model at 28 hours using equations (67a) and
(67b) and Ay = 2 cﬁ. Agreement between the two is excellent. The
use of functional relationships 1ike equations (67a) and (67b) and
the use of a smaller value of Ax, allowed the numerical procedure
to better approximate Philip's solution. No runs were, however,
made to separate the effects of using functional relationships and
smaller grid dimensions. The effect of using functional relation-
ships was believed to be minimal in yielding accurate saturation
profiles. Figures‘ll and 12 show plots of infiltration rates and
cumulative infiltration amounts against time using one-phase and

two-phase models; agreement with Philip's analytical solution was

excellent.
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The constant pressure boundary problem was & first test on the
accuracy of the two-phase flow numerical simulator. As expected,
the results of this study indicated no significant effect of
including air as a second phase in the two-phase flow equations.
The numerical results obtained using one-phase and two-phase flow
models were almost identical. This might lead one to conclude that
inclusion of air in infiltration problems is not worth the effort.
But the physics of this particular problem and the boundary con-
ditions were such tﬁat the effect of air on the numerical results
was negligible. The two-dimensional, two-phase equations collapsed
into one-dimensional, one-phase system and the numerical results
from this infiltration problem could then be compared with Philip's
analytical solution., Excellent agreement was obtained. This indi-
cates that the proposed two-phase numerical simulator was doing a
good job of predicting infiltration rates, cumulative infiltration
amounts and saturatjon profiles. The effect of air on infiltration
is explored further in the following sub-sections and more realistic
boundary condition problems, in which air might have a significant

effect, are considered.

A Time-Dependent Boundary Condition Problem

A primary objective of this research was to study the effects
of including air as a second phase in the Fluid flow equations. The
problem treated in the previous section did not indicate any sig-
nificant effects of including air in the model, and the infiltration

rates, as shown in Figure 11, were identical for both the one-phase
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{water) and two-phase (air-water) fluid flow models. This was due
to the nature of the boundary conditions considered in the previous
problem where water was allowed to enter through only one of the
upper boundary grids while air moved out of all .the other surface
grids.

To study the -effects of air on infiltration, a time-dependent
boundary cpndition'using rajnfall was sgIected. Phuc and Morel-
Seytoux (1972)rused an one-dimensional model to study the effects of
_air movement and compressibility on infiltration rates. The two-
dimén#ioﬁa] qnd two-phase fiow model developed for this study was
used to solve the rainfall-infiltration problem presented by Phuc
and Morel-Seytoux (1972).

A schematic of this particular proQTem is shown in Figure 13.

Data used for this numerical simulation were: Ax3 = 15 cm,

X
l'»’l :
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4 s ket o0 o] R
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Figure 13. Schematic sketch of rainfall-infiltration problem. .
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A%q =-15 cm, Ly = 495 cm,. Ly = 45 cm, NR = 33, and NC = 3. The
upper boundary condition, as described later, was applied across tie
entire upper surface boundary of the two-dimensional model so that
the numerical results obtain~d using the two-dimensional model could
be compared with those of Phuc and Morel-Seytoux's one-dimensional

model. Mathematically, the boundary conditions were:

i(t) = q(t), if i(t) > qt)

i(t), if (1) > 1(t)

q {t) =0 , if 9 (x5

1
L]
—
A
=
mt}
—

>0, if yo(xg = 0) >y,

t >0,
Bwa _ aww
E_WI_O’ X1—0,0<X3<23,t>0
xl = 21, D < Xq 5_23, t >0,
W, N alpw -
5;; —-§§5 = 0; Xy = 83, 0 <X <25 t 20, (68)
where i{t) = infiltration rate at the soil surface, cm/sec,

qw(t) = water flux at the soil surface, as calculated by
Darcy's law, cm/sec,

ig(t) = "feasible" infiltration rate, cm/sec, and is
defined as the sum of the ponding rate and the rain-
fall rate. The ponding rate is defined as the
excess of rainfall rate over infiltration rate.

qa(t) = flux of air at the soil surface, cm/sec,

bayp = threshold air pressure in cm of water and is equal

to the sum of atmospheric pressure head, ponding



depth and the air entry pressure head. The ponding
depth is equal to the ponding rate multiplied by
the time over which‘ponding occurs. The air entry
pressure head correseonds te the capillary pressure
at which air phase ié continuous. It is the same

! -as bubbling pressure, wb, and was assumed to be

20 cm of water for the soil used in this particular
problem. (x3 = 0) denotes the grid immediately
beneath the soil surface.

The upper bound?ry condition is described more in detail. A rainfal]
hyetograph, as #hown fn Figure 14, was chosen and used in combi-
natioﬁ w1§h the;upper time-dependent boundary condition. The
intensities of the rainfall hyetograph were chosen so that the
rainfall rate wﬁu]d exceed the infiltration rate and ponding would
occur. . The sat;rated hydraulic conductivity of the soil, or gravity
flow, was equa??to 0.0005 cm/sec. The maximum rainfall intensity
was, therefore,?more than twice the saturated hydraulic conduc-
tivity of the sbil; If the "feasible" infiltration rate was higher
than the water flux, as calculated by Darcy's law, then the rate of
infiltration wés equal to the Darcian flux only. If, on the other
hand, the ca]cujated value 6f the flux was higher than the
"feasible" infiltration rate, then the infiltration rate was equal
to the "feasible" infiltration rate. If water was available at the
soil surface due to rainfall or ponding, the soil surface was
assumed saturated and the air pressure at the surface was at atmos-

pheric pressure. Air, initially at atmospheric pressure throughout
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the medium, was trapped by the advancing wetting fluid and com-
pressed. If the air pressure in the grid immediately below the soi]l
surface (that is, Xq = Q) exceeded a threshold value, a very small
desaturation equal to 0.0001 of the soil surface was assumed and
air was allowed to escape through the top cf the column.

An initial uniform water saturation profile of Sw = 0,30 was
assumed to exist in the soil. The numerical model described in
Chapter IV was used to solve the fluid flow equations. Air pressures
were obtained implicitly using equation (42) and water saturations
were obtained explicitly from equation (44). Capillary pressure as
a function of saturation was given by Phuc and Morel-Seytoux (1972)

as follows:

1 1 100 - S;
wc = 925.58[53 Y08 "~ 100+ 0.4] + 0.838 arctan o5

(69)

0.5

100 - S;
+ 11.843 arctan s

S -5§
where Sk = 100{—1"“—&—]

Scw - Swr
Swr = residual water saturation = 0.02,
SCw = critical water saturation =1 - Sar’ and
Sar = residual air saturation = 0.088.

The relative permeabilities as functions of saturation were given by
the relationships,

- 3.6113
S -8
k. (S ) = [_ﬂ_ﬁm_ﬂf_] (70)

rw'w Scw - Swr

and
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S -5
ra’-w [Scw - Swr

~
rd
(VAN

The time increment, At, was not allowed i{o excecd f'éfEa or, 112.5
seconds. The following data were also needed: ¢ = 0.10, and
k.= 5.68 x 1070 cn’.

Results from the rainfall-infiitration simulation are presented
in Figures 15, 16, and 17. These figures show the infiltration rate
due to the rainfall hyetograph, the air pressure build-up profiles,
and the water saturation profiles.

Figure 15 shows the changes in infiltration rate with time
resulting from the rainfall hyetograph given in Figure 14. The
infiltration rate equals the rainfall rate for the first 900 seconds
compared to the 1550 seconds obtained by Phuc and Morel-Seytoux
(1972). Beyond 900 seconds, ponding of water occurs at the surface,
In calculating infiltration rates from numerical mode]s, most
previous investigators have encountered some difficulty because of
the scatter of points about the actual infiltration curve (Hanks
and Bowers, 1962). Results from Phuc and Morel-Seytoux (1972} are
also shown in Figure 15, and they exhibited the widely scattered
pattérn discussed by Hanks and Bowers (1962). It is significant to
note that theltwo-phase, two-dimensional model developed in this
study exhibited none of this instabililty problem. On the contrary,
results from the two-phase model of this study gave a very smooth
curve of infiltration rate versus time.

As shown in Figure 15, results from the two-phase model

differ considerably in the initial stages from those obtained by
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Phuc and Morel-Seytoux (1972). The pondina times in the two studies
also differ significantly. This implies that in Phuc and Morel-
Seytoux's model, the infiltration rate followed the rainfall rate
for a longer period of time than was predicted by the two-phase
model used in this study. This is believed to be the result of
slight discrepancies in the treatment of the upper boundary condition.
In the two-phase model used in this study, if water was available at
the soil surface due to rainfall or ponding, the soil surface was
assumed saturated and the saturation was equal to 0.912, The satu-
ration remained at 0.912 until the time of ponding. On the
contrary, in Phuc and Morel-Seytoux's (1972) model, the saturation
at the soil surface started with an initial value of 0.30 and
increased to a maximum of 0.912 at the time of ponding. The value
of the air entry pressure was not given in Phuc and Morel-Seytoux's
work. An air entry pressure of 20 cm was assumed for the two-phase
model used in this study. An air entry pressure less than 20 cm
would reduce the threshold pressure and therefore would result in
highcf infiltration rates than those shown in Figure 15 prior to
the start of air counterflow. |
The infiltration rate curve in Figure 15 has a unique shape
after air counterflow starts. After air counterfliow starts, a hump
was observed in the infiltration rate. Initially, the air pressure
is zero in the column and saturation is equal to 0.912 at the sofil
surface. When water infiltrates the soil, air is trapped inside
and compressed. When the air pressure in the medium exceeds the

threshold pressure, air starts to move in Lhe direction opposite to
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water movement. This results in a desaturation of the medium and
an increase in air permeability. This occurs even though there is
ponding of water at the surface. Because of this desaturation, the
hydraulic conductivity is decreased. Thus, the infiltration rate
must decrease to a value less than the hydraulic conductivity at
(1 - Sar)‘ The infiltration rate curve shown in Figure 15 depicts
this proces very well. . ‘ 'y
As:.soon as the trapped air escapes from the medium, the infil-
tration rate.increases and then finally.reaches a limiting value
. slightly below the saturated hydraulic conductivity. The infiltration
rate decreases to a value below the, saturated hydraulic conductivity
because the air pressure build-up represents a retarding force and
causes a reduced permeability to liquid by increasing the capillary
i pressure. .. All previous studies (Figure 11) using a one-phase flow
model have .shown the saturated hydraulic conductivity or gravity
flow as the Jower limit. for, the. infiltration rate. ! But as shown
in Figure 15, the infiltration rates obtained :from this work and
those obtained by Phuc and Morel-Seytoux (1972) clearly dip below
the saturated hydraulic conductivity: - Experimental evidence is
available to show that the 1nf11trat1on rate does decrease below the
saturated hydrau11c conductivity (Mcwhorter, 1971)
Figure 16 shows the air pressure profiles at various times.
Figure 17 shows the water saturation profiles at various:times. The
: water saturation at the soil.surface decreases below the saturation
-at (1 -5, }.as trapped air escapes from the medium,

. The results from the rainfall-infiltration simulation, unlike



the constant pressure boundary probiem considered in the previous
section, showed that inclusion of air in the two-phase flow model
does have an influence on the infiltration rates. Unlike one-phase
flow, the infiltration rates obtained using the two-phase model
decreased below the saturated hydraulic conductivity. This is in
agreement with the results obtained by Phuc and Morel-Seytoux (1972).
However, in contrast to the results obtained by Phuc and Morel-
Seytoux (1972), in which the infiltration rates exhibited a widely
scattered pattern, a very smooth curve of infiltration rate versus
time was obtained from the two-phase model used in this study. An
excelient agreement was obtained comparing the infiltration rates
from the two-phase model with those of Phuc and Morel-Seytoux (1972)
towards the end of simulation. But in the initial stages, both after
and prior to initiation of air counterflow, results from the two-phase
model deviated considerably from those obtained by Phuc and Morel-
Seytoux {1972). Unlike their results, a dip-and-hump was observed

in the infiltration rates both after and prior to initiation of air
counterflow. This unique shape of the infiltration rate curve is

investigated further in the following section.

Comparison with Experimental Data

In the previous two sections, the numerical results obtained
using the two-phase model were compared with analytical solutions
or other numerical simulations. No experimental data were available
to compare with the numerical solutions. McWhorter (1971) studied

experimentally the two-phase infiltration process and it is now
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possible to compare the results from the two-phase model with his
experimental work. He studied an infiltration case in which Tiquid
was provided at the soil surface at a constant ponding depth of

0.8 cm.

The numericé] model used in this study to compare with
McWhorter's (1971) experimental data w&é twd-dimensionaT. Data used
for this numerical simulation were: AX3 = 5.61 cm, Axl = 5.61 cm,
Ry =185 cm, £, = 15 am, NR = 33, NC = 3, k, = 2.52 x 102 cnf,
¢ = 0.396, Swr = 0.29, and Yy = 22.0 cm. The upper boundary
condition of constant ponding depth of 0.8 c¢m was applied across
the entire upper surface boundary of the two-dimensional model.

The other three boundaries of the two-dimensional model were
impefvious and the boundary conditions were zero flux fo; both air
and water., Again, similar to the time-dependent boundary condition
problem considered in the previous section, air was trapped inside
the medium unti] the air pressure near the surface reached a thresh-
cld value at which air began to escape from the top of the column.
An air eqtry pressure of 22 cm and a desaturation of 0.0001 of
water satyratﬁon at the soil surface were used in the two-phase
model. 'Tpe p?rous medium was a Poudre sand whose hydraulic proper-
ties are giveniin Figures 18 and 19. The imbibition cycle of the
capillary pressure versus'saturation curve (Figure 18) was used.
The wetting fluid was'a 1ight hydrocarbon ojiéca11ed Philips core’
test fiuid whose .density was 0.756 gm/cm3. The initial condition‘
was of uniform saturation of 0.29. The time step size was not

allowed to exceed a maximum of Ax§/2i
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Variations of infiltration rate and aiv pressure with time are
shown in Figure 20. Excellent agreement was found between the
numerical and experimental infiltration rates prior to the initiation
of air counterflow. Air pressures predicted by the numerical model
prior to air counterflow were higher than those determined experi-
mentally. However, the maximum air pressure predicted by the
numerical model agrees well with the maximum air pressure obtained
experimenta]]y.. There appears to be a time lag in the numerical
and experimental air pressure curves prior to air counterfiow.

The deviation between the numerical and experimantal infil-
tration rate curves-begins when the infiltration rate reaches its
Towest value. At this point, air counterflow starts and the de-
saturation of the soil begins. The upward moving air front breaks
the soil surface and the compressed air escapes from the surface
violently. This changes the hydraulic properties of the media
during the experiment resulting in higher fnfi]tration rates.
Contrary to this, the escape of air from the medium was treated in
the numerical model by a gradual desaturation of the soil surface
resulting in 1ower‘inf11tration rates. This particular boundary
condition, immediately after initiation of air counterflow, is
difficult to simulaté in the numerical model. The discirepancies
between the numerical and the experimental air pressure and infil-
tration rate curves, after the initiation of air counterliow, are
due to problems in simulating such boundary conditions numerically.
However, the fact that the experimentai and numerical curves behaved

in a similar fashion is the most significant aspect of this
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comparison.

The rainfall-infiltration problem considered in the previous
section resulted in a dip-and-hump in the infiitration rate curvé
prior to and after initiation of air counterflow. The presence of
this unique shape of the infiltracion raie curve when the effect of
air en infiltration is pronounced is verified by the experimental
data of McWhorter (1971). The numerical results obtained from the
two-phase model used in this study showed excellent agreement with
McWhorter's (1971) experimental data.

Sonu (1973) also attempted to compare McWhorter's (1971) experi-
mental data with his numerical results for the 185-cm column of
Poudre sand and a constant ponding depth of 0.8 cm. Bui the numeri-
cal results obtained by Sonu (1973) did not show a similar dip and
hump in the infiltration rate curve as is present in the experimental
data of McWhorter (1971). A zero infiitration rate was obtained by
Sonu (1973) and this zero rate continued for about 3.0 to 3.5
minutes before the infiltration rate started to increase. The
experimental data of McWhorter (1971) do not show any zero infil-
tration rate. The air pressure curve obtained by Sonu (1973) also
deviated significantly from the experimental results of McWhorter
(1971). The air pressure curve obtained hy McWhorter {1971) showed
a dip-and-hump similar to the experimental infiltration rate curve.
On the contrary, Sonu's (1973) results predicted no changes in air
pressures both prior to and after the initjation of air counterflow.

It is, therefore, significant to note that the predicted infil-

tration rate and air pressure curves obtained using the two-phase
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numerica] model in this s;udy behave in a similar fashion with those
determined experimentai]y by McWhorter (1971). This study is,
therefore, be}ieved to be a firstlsuccessfu1 attempt at comparing
McWhorter's (1971) experimental data with the numerical results
using a two-phase que1, _Quantitatively, there were some differences
between the numerical and experimental jnfiltration rate and air
pressure curves. 'These differences are believed to be due to
changes in medium characteristics as the compressed air escapes
through thé soil surface resulting in a sharp drop in the air
pressure and Q_corresponding sharp inCﬁgase'in infi]tration rate.
This phenomenon of change in hydrau]ic'properties is present during
the experiment. However, it is difficult to accurately simulate
such drastic changes in boundary conditions in the numerical model.
The fact that the experimental and numerical curves behave in a
similar fashion provides strong evidence for the accuracy of the
two- phase numer1ca1 simulator deve]oped in this study.

In the preceding sections, the accuracy of the two-phase numeri-
cal simulator developed in this study was tested with analytical
solutions, experimental data, and chen‘numerical simulations from
the 1iteratyre. Itzis apparent from tne comparisons that the two-
phase flow model developed in this_stu?y is sufficiently accurate.
The usefu]ness of the two-phase model js a1so_apparent when the
resu1ts‘fr9@”the two- phase mode] were compared with laboratory
exper1mquilof McWhgr;gr (19]1). A1r;1ndee§ has a significant
effect on infiltration when a permeable layer is‘underlain by a

relatively impermeable layer and there is no Tateral passage to
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permit the trapped air to escape. It has been recognized from infil-
tration experiments in the laboratory that an air vent is needed to
allow the air to escape from the medium, minimizing the influence of
the air on the advahcing wetting front. Even in field experiments,
if the soil is covered by a fine and hard crust and the medium is
bounded below by either the water table or an impervious bed rock,
the effect of air on infiltration is pronounced. It is interesting
to quote Philip (1969):
., as this author is well aware from his personal

experiences in the Riverina of Australia, limits to air

escape may well affect infiltration into large inundated

areas. In fact, soil air pressures have been developed

which were great enough to 1ift the pavements of highways
passing through the flooded region.

Numerical Solution of Dispersion Equation using Tensor
Concept

The accuracy of the convective-dispersicn model developed in
this study was verified by comparing the simulation reculic yith
available analytical or exact soiuticens. The method of character-
istics (MOC) was used Lo numerically solve the convective-dispersion
equation. Much can be learned about the accuracy of numerical
solutions for two-dimensional flow fields by examining the one-
dimensional flow case. An exact analytical solution of the one-
dimensional flow problem is available for any input concentration;
in particular for the step concentration input considered in this

work. This solution was given earlier by equation (17).
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Longitudinal Dispersion

A numerical solution was obtained using the data from Garder et
al. (1964): At = 100 sec, Axq = 3.81 cm, D = 2.94 x 10”2 cn® sec™!,
$=0.34, V3 = 0.01411 cm sec™', 2, = 182.88 cm, number of grids = 48,
and moving points per grid = 4. The resuits are shown in Figure 21,
and good agréement is indicated between the numerical and analytical
solutions. éeddel] and Sunada (1970) made extensive sfudies on the
number of moving points required per grid for the MOC to give accurate

results. Contrary to Garder et al. (1964), they concluded that both

the number and relative position of the moving points influenced the
RN t

,a i

average grid%concentration. _
To check the numerical solution using the tensorial form of
the dispersiqh coefficient (eguation 37); a coordinate transfor-
mation was méde similar to the one suggested by Reddell and Sunada
(1970). The|coordinate axes were rotated so that an angle of 45°
existed between the ve]oc1ty vector and the transformed coordinate
axes. The ptobIem was solved numerically in the rotated coordinate
system (xi, Qé). This forced the numerical model to use the tensor
transformation for the dispersion coefficientf However, the physics
of the problém was not changed, and equation (17) still provides an
analytical sq]ution to the problem in the (xl, x3) coordinate system.
A rectaﬁgu1ar region, 0 < x5 < #5 and 0 < x; < 2,, was consider-
ed in which the flow is along the x3—axis with a steady, uniform
seepage velocity, V4 (Figure 22). With the coordinates rotated at
an angle of 45° to the velocity vector y3, the numerical solution

was carried out in the rectangular region defined by 0 5_x§ 5_25
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and 0 < x; 5_21

1
Vy = 0.707 V, and Vj = 0.707 V, existed in the transformed region.

A steady, uniform seepage velocity with compcnents

A fluid with a relative concentration of C/CO = 1.0 was injected
across the entire interface 0 < x; < 2;. Data used to numerically
solve the problem were: Axé = 0.4 cm, Axi = 0.4 cm, At = 2 sec,
V3 = 0.071 cm sec'l, Vi = 0.071 cm sec'l, Vy = 0.10 cm sec'l, grid
dimensions = 20 x 20, D = 0.01 cmzsec'l, B = 0.0ul ensec™t,

23 = 5.66 cm, 21 = 5.66 cm, and the number of moving points per grid
=4,

Two solutions were obtained for this problem; one solution used
the tensorial transformations for the dispersion coefficients, DL
and D, given by equations (37) and the other solution used no
tensor transformation. With the tensor transformation, the longi-
tudinal dispersion coefficient (033) is oriented parallel to the
velocity vector (V3) and the lateral dispersion coefficient (Dll) is
oriented perpendicular to the velocity vecfor (vg). For the case
with no tensor transformation, the longitudinal dispersion coeffi-
cient (033) is oriented parallel to the xé coordinate axis and the
lateral dispersion coefficient (Dll) is oriented paraliel to the xi
coordinate axis.

The results from the numerical solution of this longitudinal
dispersion problem, with and without the tensor transformation, are
shown in Figure 23. The analytical solution as given by equation
(17) is also plotted. The results indicate an excellent agreement

between the numerical and analytical solution when the tensor

transformation is used. The solution without the tensor
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transformation yielded a steeper concentration profiie than the
analytical solution. Thus, a significant error resuits in the
numerical solution of the dispersion equation when the tensor trans-
formation is not used.

Figure 24 shows the lateral concentration distribution after
0.71 pore volumes of fluid were injected. Again, the numerical
solution using the tensor transformation provides more accurate
results than those.without the tenscr transformation. Some error in
the numerical solution occurs near the boundaries (x1 = 0 and X =
21). This occufs because the straight boundaries of the column in
the (xl, x3) coordinate system must be approximated by a series of
rectangles or squares in the rotated coordinate system (xi, xé)

and Ax!

(Figure 22). As Ax! 3 become very small, a better approxi-

1
mation of the boundary conditions can be expected. The numerical
restults for any value of x3/23 were generally the same for 0.3 §_x1/
21_5 0.7. No dispérsion (or mass-flow) was allowed to occur across
the boundary columns Xy = 0 and Xq = 21. This condition was appoxi-
mated numerically by setting the dispersion coefficients aqual to
zero for all grids on these two boundaries. Reddell and Sunada
(1970) reported a better agreement between numerical 35%uLiuns and
analytical solutions when a retlective boundary condition (aC/axi =

0 and BC/axi = () was used instead of setting the dispersion coef-

ficients equal to zero ailong the boundary.

Longitudinal and Lateral Dispersion

A longitudinal and Tateral dispersion problem was also solved
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numerical]y in the rotatgd coordinate system (xi, xé) as shown in
Figure 25. A fluid with a reiative conceniration of Cfco = 1.0 was
injected over the interval a < Xy < b and fluid with a relative
concentration of C/CO = 0.0 was injected over the intervals @ <
Xy Laandb< Xy < %y. Data used to numerically solve this problem
were the same as for the previously described longitudinal dispersion
problem. The dimensions for a and b were 1.98 cm and 3.68 cm
respectively.

The results from the numerical sclubicn of {he Tongitudinal
and lateral dispersion problem, with and without the tensor trans-
formation, are shown in Figures 26 throguh 29 after 2.1 pore volumes
of fluid were injected and an approxinate steady state condition was
achieved. For comparison, the approximate analytical solution for
the steady case as determined from equation (21) is also plotted.
Figure 29 shows that the numerical solution obtained using the tensor
transformation is much closer to the analytical solution than those
without the tensor transformation. However, the accuracy of the
numerical solution is not as good as was achieved in the longitudinal
dispersion problem described earlier. This occurs because of the
very steep concentration in the xl—direction, which approaches a
"step" function. Reddell and Sunada (1970) discussed the problem of
achieving accurate numerical solutions along steep concentration
profiles or when "step-input" functions are used. They reported
that much smaller grid dimensions were necessary in these areas to
achieve accurate answers. It must also be remembered that equation

(21) is only an approximate analytical solution and not an exact
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analytical solution. Also, equation {21) is a steady state solution,
but the numerical solutions are transient. The numerical solutions
were terminated after only 2.1 pore volumes were injected and the
results were changing only slighf1y with each additional time step.
Nevertheless, the results were still changing some, and a true
steady state case had not been achieved.

The concentration profiles as plotted do not show any "over-
shoot" or "undershoot." However, "overshoot" and "undershoot" did

3 4o 107%

occur; but was generally of the order of 10° C/C,. Since
the numerical solution without the tensor transformation did not
produce any "overshoot," the use of the "nine-star" grid pattern to
estimate the cross-derivatives for the tensor transformation is
believed to be the source of this smail amount of "overshoot."

In the preceding section, three different problems were con-
sidered: Longitudinal dispersion in one-dimonsicnal flow, longi-
tudinal dispersion with and without the tensor transformation in
two-dimensional flow, and longitudinal and lateral dispersion with
and without the tensor transformation in two-dimensional flow. A
steady, uniform flow field was assumed and the porous medium was
homogeneous and isotropic. A coordinate transformation was necessary
to check the numerical solution using the tensorial form of the
dispersion coefficient. The MOC was used to solve the convective-
dispersion equationé. The results from the numerical solutions of
the dispersion problems were compared with available analytical or

exact solutions. Excellent agreement was obtained between the

numerical and analytical solutions when the tensor transformation is
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used. This provides strong evidence for the accuracy of the proposed
numerical- tensor transformation and the convective-dispersion seg-
ment. of the total numerical:simulator, . - -1 ;. 0

The MOC appears to be.capable of-solving the longitudinal
dispersion as well as the longitudinal and lateral dispersion
problems. No probiems with "overshoot" occured and no "numerical
dispersion”. resulted from the numerical process. The small amount
of "overshoot" that occured in the numericaf solution is believed to
be the result of using a "nine-star" grid pattern. to estimate the
cross-derivatives.for the tensor transformation.

A major detriment to the numerical:scheme appears to be moving
points. A numerical.solution was obtained using 2 points per grid
for the longitudinal dispersion problem.in a steady, uniform, two-
dimensional flow field. Even though the tensor transformation was
used in both cases, the numerical solution using 4 points per grid
showed much closer agreement with the analytical solution than the
one using 2 points per grid. This indicates that the number and
relative position of the moving points does have an influence on the
accuracy of the results. It also indicates that the method of cal-
culating the average grid concentration,is an important factor in
the numerical scheme. If an adequate scheme for weighting the con-
centration can be developed based on the concept of "area of
influence" of the moving points as a weighting function as suggested
by Reddell and Sunada {1970}, . then a smaller. number of moving points
per grid may be used. :Using this concept, Reddell and Sunada {1970)

obtained accurate results for. the problems where a steady, uniform
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flow field was used. They concluded that if some type of weighted
average is not used, then a sufficient number of moving points must

be used to guarantee a reasonable estimate of the average. The
development of a numerical scheme to determine the "area of influence®
for each moving point in a nonuniform, unsteady flow field would be
difficult.

The applications of the convective-dispersion model developed
in this study are numerous. A few examples are salt-water intrusion
into coastal aquifers, underground waste disposal, and infiTtration
of pollutants from surface sources into aquifers. In the following
sections, the convective-dispersion model will be used to solve the
simultaneous transport of solutes and water under transient con-

ditions in an integrated saturated-unsaturated porous medium.

Saturated-Unsaturated, Two-Phase Infiltration and Dispersion Problem

A1l the problems solved so far have bypassed either the dis-
persion segments or fluid flow segments of the numerical simulator.
No known investigator has attempted a combined numerical solution
of the fluid flow and the dispersion equations in an integrated
saturated-unsaturated flow domain. To study the combined fluid flow-
dispersion numerical simulator, a drainage problem was solved in
which a constant source of pollution was infiltrated from the land
surface.

A schematic diagram of the drainage prebleom is shown in Figure
30. The flow medium consists of a rectangular soil sTab resting on

an impermeable base and drained by parallel dvrains spaced dil 2&1.
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The distance 21 is, therefore, one-half the spacing between the
drains. The elevation HA is the head at one-half the drain spacing
and the elevation Hg is the head at the drain. At time t < 0, the
water table is in hydrostatic equilibrium with the head HA at one-
half the drain spacing. At time t Z 0, an arbitrary time after the
commencement of drainage, the water table is represented by cd. The

distance oc can be simulated as a no-flow boundary.

X1
. a b m
i 3 "x3 1) |
v )
HA c W IR tmtes e i et e et i e ] ! .
f g = H
B T | -8, 2 N
& o -ji ks =_1.3 X 1? cm Axl
: AX '
—i- kS = 1.3 x 1077 cm2 | 3
b o s

Figufe'BO. Schematic diagram of the dréinage problem.

Data used for analyzing the drainage problem were: Ax, = 100 cm,
Ax3 = 50 cm, ¢ = 0.3, number of rows, NR = 13, number of columns,

NC = 18, length of model, £, = 1800 cm, depth of model, %, = 650 cm,
moving points per grid = 4, g = 981 cm sec'z,_pw

- -3 -
. _ | =1gmem?™, Py ©
0.00122 gm'cm‘3, u, = 0.0115 poise, and y, = 0.000191 poise. The

Y

dimensions for oa and ab wefe 400 cm and 100 cm respectively.

Boundary conditions for the problem were:
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where H, and Hg are constant head elevaticns at one-naif the drain
spacing and at the drain respectively. The dimensions of HA and HB
were -250 cm and -300 cm respectively. The initial conditions were
those of hydrostatic air and water pressure distributions. The
initial condition for the tracer was C/C0 = 0 for all grids.

The numerical model can simulate systems with variable permea-
bility. The saturated permeability, ks’ in the unshaded area of the

model (Figure 30) was 1. 3 x 10”7 cm2 and in the shaded area 1.3

X 10'8 cmz. Thus, the saturated permeability in the unshaded area
was 10 times greater than in the shaded area. Howevér, all layers
were assumed to have the same porosity. The dimensions of e and f
(Figure 30) were 150 cm and 600 cm respectively.

Soil hydraulic properties are given in Figures 31 and 32. The
longitudinal and lateral dispersion coefficients, D, and Dy, were
obtained as a functioq‘gf”fsgjetrﬂgm§gr,7Pe‘j§gqr, 1972). : The
resu]ting;réigfionships_are shown' in Figure 33." Equations were
derived from Figure 33 to represent the functional relationships
between dispersion coefficients and Peclet Number. For the longi-

Wy

tudinal dispersion coefficient: ~'"

D/Dg=0.72, P 0.4
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DL/Dd 0.59 exp (0.53 Pe), - 0.4 < Pe < 2

and

1.083 '
DL/Dd = 0.81 P 2 < Pe < 100 - (73)

where Dd is the molecular diffusion coefficient (='1 85 x 10'5 2

sec'l). The mean gra1n size d1ameter d50, was given by Bear (1972)

S
das:

k. ]0.5
deg = |—2—z| . (74)
S0 {6.54 x 107" o

For the transverse or lateral dispersion coefficient:

DT/Dd = 0,72 y . - pe < 1.5:
. 0.499 5 o
D,/Dy = 0.6 PC , LB <P <3
and
DT/D(=0465 PO 746 5. Pg< 100 . (75)
nihom o ’h--- TR R L v

Nateh‘pngssures were obtaxned imp]ic1t1y us1ng equat1on (40)
and waterland_air saturatjohs\were,obtained explicitly using
equations (44) and (46), The numerical simulation was made for 100
time steps or 57.5 hours. A maximhm change in water saturation of
only 0.05 was allowed during any, one t1me step _]f afchangg_inw

Hi31 %

water saturghion'greater than 0. 05 occurred the t1me step size was
redu;ed”qhﬁ,phg?ca1pu1?};op§ ;gdqng.jwwater pressures, and water,
satur§tjonsrwere ;hapgipg“vgry §1ow1y.towards_the end of the simu-
lation. Th?rsfore, the fluid ve]oc1ties were assumed to have .
reached,stead¥ statg The 1nf11trat1on rate of water at ‘the land
surface ah%étehdy_statg was 0.0234 cm/sec.  The total computer time
require§ to_ryh the{ghqgrgmiforﬂphj§f1§ x 18 grid network was£g40

seconds or 2.4 seconds per time step.
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Figures 34 and 35 show the equipotential ]ines and the water
table positions at 9.7 hours and 57.8 hours. The continuity of the
potential field in the entire flow domain of saturated and unsatu-
rated zones is clearly demonstrated in these figures. The water
table position was obtained numerically by interpolating to zero
between negative and positive water pressure heads. If the water
pressures in a column were all positive, the water table position
for that particular.column was defined at the soil surface.

The equipotential lines of -240 cm and -250 c¢m in Figure 34
illustrate the effects of using a Tayered porous mediza. These equi-
potential lines are nearly vertical above the permeability transition.
Within the Tess permeable zone, the slope of these lines changes.

If the porous medium was homogeneous, thesz equipotential Tines would
be nearly vertical through the entire depth of the medium.

Figure 35 illustrates some of the effects of time upon the
infiltration process. As infiltration proceeds, the equipotential
curves move forward and their slopes are changed. Figures 34 and
35 also demonstrate that the water movement involves vertical as
well as horizontal flow components.

To i1lustrate the effect of vertical and horizontal flow com-
ponents, distribution of water fluxes at time t = 57.8 hours is
shown in Figure 36 using a vectorial representation. At each grid
center, the vertical and horizontal pore-velocities are obtained

from the Darcian flux. The resultant velocity vector is then drawn

“at each grid center with a length proportional to its size. Figure

36 shows the magnitude and direction of the pore-velocities at time
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t = 57.8 hours. As expected, the vertical component of the pore-

~velocity is clearly dominant in the column immediately beneath the

infiltrating source. The vertical pore-ve]pcity at the grid center
immediately below the infiltrating source i;l76.0 cm/hr while the
horizontal component is only 0.50 cm/hr. However, the horizontal
velocity is much larger than the vertical velocity at the two out-

flow faces at xl =Q0and x, = 2

1 -

In the unsaturated zone, except close to the water table and
the infiltrating source, both the horizontal and vertical components
of the pore-velocity are almost negligible compared to those in the
saturated zone. The velocities in the saturated zone are several
times larger than those in the unsaturated zone.

The effect of using a layered porous media is illustrated in
Figure 36. The horizontal and the vertical components of the pore-
velocity are negligible within the less permeable zone. This indi-
cates that the majority of the flow is passing over the top of the
less permeable layer. It is obvious that more flow is also taking
place below the less permeable layer.

Figure 37 shows the water saturation profiles as a function of
time for the column immediately beneath the infiltrating source.
The accuracy of the numerical simulator to account for all infil-
trated water was determined by calculating a material balance at
the end of each time step for both water and air phase. The cumu-
lative materia] balance error for éither water or air phase was

defined as:
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Change in _ Total volume _ Total volume
Cumulative material _ |volume storage infiltrated leaving
balance error (%) Total votume _ Total initial

- infiltrated = volume in system

“x 100 (76)
The total amount of water infiltrated into the system was calculated
by integrating the volume of water over the appropriate inflow
boundaries at Xq = 0. The total amount of water leaving the system
was calculated by integrating the volume of water over the outflow
boundaries at X, = 0 and X; = 2. The cumulative amount of water in
the system at any time was calculated by summing the water saturation
at each grid node and multiplying fhe resulting sum by the total
pore volume of the‘system. The initial volume of water in. the
system was calculated by summing the initial water saturation at
each grid node and multiplying the resulting sum by the total pore
volume. The change in water volume was defined as the difference
between the cumulative water storage and the initial water storage.
The material balance error for the air phase was calculated in a
similar manner. Differential material balance errors were also
computed for each time step for both water and air. The definition
of the differential error is analogous to the cumulative material

balance error,

Cumulative and differential errors were of the order of 10'3

percent for the water phase using "single precision” for all the
variables and constants in the computer program. A "single precision"
number can represent a precision of at most seven digits after the

decimal whereas, using "double precision,” over 16 significant digits
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can'be‘recorded, Nhiie_the term "double precision" implies a
doubling of precision, in actual practice, more than a doubling is
achieved. Cumulative and differential errors were of the order of
10~8 percent using "double precision" for all the variables and
constants in_ the computer program. ..However, "double precision"
numbers occupy double the physical space in the computer's memory

and the compq?gtions require;]onger_execution times. "Single pre-
cision” was, therefore, used in the entire computer program. The
differential error for the air phase was of the order of 10'2 percent
towards the end of simulation. . The cumulative error for the air
phase was about 1.0 to 1.5 percent. This was due to the fact that

~ the air{saturq}ioh:at_the end of each time step was obtained by
subtracting the water saturation from one. This resulted in some
error which accumulated over time. This could be improved by
1terqting.wjphin eagh time step, that i;,‘updating_the fluid flow
coefficients and resolving the water pressures and saturations. This
would increase the computation time considerably. Nevertheless, a
cumulative error of 1.0 to 1.5 percent for the air phase at the end
of 57.8 hours of simulation was considered very reasonable and no
further attempts were made to improve it.

Besides the material balance error, an independent check on the
accuracy of the two-phase numerical simulator is provided by calcu-
lating the saturation error for each grid node at each time step.
The saturation error, as discussed in Chapter 1V, is the error
resuiting from the sum of water andtairqsaturations being different

from one at the end of a time step.. A tolerance of 0.01 was allowed
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for the saturation error. If the sum of water and air saturations
does not converge to unity, an iteration of the fluid flow equations
is necessary. This was, however, seldom needed for this problem.

A1l previous investigators working with an integrated saturated-
unsaturated flow domain experienced difficulties in simulating the
moving water table boundary between the two flow regions. This
study was no exception. In the initial phase of this study, con-
siderable difficulties were encountered when a grid changed from a
negative to a positive water pressure head or vice-versa. Most of
these difficulties, as discovered later, were due to an erroneous
assumption. The air pressures were wrongly assumed to be zero at
all times in the saturated flow region. This created a discontinuity
in the capillary pressure and resulted in error in the numerical
solution. The problem was overcome by maintaining a continuous air
pressure distribution in both the saturated and unsaturated flow
regions.

Also, the method of calculating the flow coefficients does have
an influence on the accuracy of the numerical solution. The use of
the "upstream mobility" concept, as discussed in the petroleum
literature (Brutsaert, 1971), to calculate the fluid flow coefficients
resulted in more accurate numerical results. To compute the fluid
flow coefficient between any two grids, the "upstream mobility"
concept uses the relative permeability of water or air of the grid
from which the f?uid emanates. This concept is particularly useful
when a grid is desaturating, that is, changing from positive to

negative water pressures or when a grid is saturating, that is,
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changing from negative to positive water pressures.
The water and air saturations, in this numerical simulator,
were obtained explicitly. An explicit scheme has stability criterion
and, for the numerical solution to be stable, the time step size has
to be lTimited. The time step size in this study was Timited by not
allowing the water saturation at any one time step to be greater
than 0.05. However, as the grids saturated, the explicit nature of
the numerical scheme resulted in "overshoot” in the water saturations
at some time;steps and the water saturations fqr several grids
exceeded onej ‘The "overShoot" was usually of the order of 1072,
Such an "ove?shoot" accumulates over time and gets larger. To
overcome thi% problem, a scan was made of ;11 the grid saturations
at each timeisfeﬁ and the small amount of "overshoot" was distributed
over all uns;turated grids. This created no new prob]ems and the
_"overshoot" Erob]em was not a major obstacle to the numerical
.scheme. %- _
Figure 38 shows the relative concentration of displaced fluid
as a functio; of time, .The relative concentration of the displaced
fluid was defiﬁed as the ratio of the total tracer outflow volume to
the total wafgr outflow volume. The infiltrating tracer massrdid
not reach thé outflow boundafy at X = %4 for a simulation time of
57.8 hours. ﬁherefore, the trace mass leaving the system at the
outflow face ;t xi‘= 0 is only represented in the tracer outflow
volume. For a simulation time of 57.8 hours, the fe1ative concen-
tration of the.displaced fluid reached a maximum of C/CO = 0.64.

Longitudinal concentration profiles atvvariqus‘times-immediate]y
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beneath the infiltratiné source are.depicted in Figure 39. Lateral
concentration profiles at time t = 5.7 hours are shown in Figure 40.
These figures indicate the relative concentrations are very close to
either one or zero. This is because the flow velocities are very
small for this problem; and therefore dispersion is also very small.
Instead of using the concentration profiles shown in Figures 39
and 40, a better form of illustration is to piot the concentrations
of the moving points at various times. Such a plot locates a moving
point with its coordinates and concentration and when all the points
are plotted, a concentration map is generated. Figures 41 through
44 show concentration maps of the moving points at various times.
As discussed earlier in Chapter IV, grid concentrations are obtainéd
by averaging the concentrations of all moving points withjn a grid
at the end of a timg step. Such an‘averaging scheme is sometimes
misleading, particularly when the concentration oflthe moﬁing points
in a grid are either C/Co =1or C/C0 = 0. A more efficient compu-
tational scheme would be one which uses the coordinates of the moving
points to obtain a weighted average for the grid concentration.

Reddell and Sunada (1970) developed such a computational scheme for

~a steady, uniform flow field. A similay scheme would be very diffi-

cult to program for the non-uniform, transient velocity field
developed in this problem. In the absence of a more efficient
averaging scheme, it appears desirable to plot a moving points'
concentration map instead of a grid concentration map.

As the moving points exit the system at x, = 0 or x; = 2y

they are reintroduced at the appropriate inflow boundary. The
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coordinates of the reintroduced points are randomly assigned at the
inflow boundary using subroutine RANDU (Chapter 1V). Subroutine
RANDU generates random numbers having uniform distribution and
ranging from zero to one. The reintroduced points are assigned the
concentration of the appropriate inflow boundary. Also, if the
number of moving points in a grid drops below a specified minimum
number, new points are introduced in that grid to bring it to a
minimum number.  Subroutine RANDU is again used to assign the
coordinates of the new moving points and the grid or grids the fluid
is emanating is taken into account in assigning the coordinates.
The new points are assigned the concentration of the grid or grids
the fluid is emanating. Initially, the new or old points were
introduced with the same coordinates as the initial moving points in
that grid. As a result, the reintroduced points traced essentially
the same flow paths.as the original moving points. This generated
no new flow paths and no new knowledge. Discontinuities in the
concentration distribution were also established. These problems
were corrected by reintroducing or adding points with their co-
ordinates assigned randomly using subroutine RANDU.

The effect of using a layered porous ﬁedia is illustrated in
Figures 43 and 44. As expected, the grids above the permeability

transition zone accumulated moving points with concentrations close

to C/C0 1 and grids below the transition had concentrations close

to C/C0 0. This is due to the fact that majority nf the flgy is
passing over the top of the less permeable layer. This points out

the limitations of assuming a homogeneous and isotropic porous
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media which have been used in many previously developed models. The
times of travel of the moving points are inversely proportional to
the saturated permeability. Freeze (1972} showed that with about the
same length of flow paths, the time of travel in one case was less
than half of the other. This was due to the nonhomogeneous and
anisotropic nature of real aquifers, The flow path with least travel
time traversed high permeability layers and avoided the low gradient,
10w‘permeab111ty layers.

Material balance errors were computed at the end of each time

step for the tracer. The cumulative material balance error for the

tracer was defined as:’ - F [

cumulative tracer Tracer storage _ Total tracer , Total tracer

_ - |change : injected leaving
Zi:g:i?;)ba]a"ce Total tracer Total initial
S  Liveiresinjected .- - oo tracerjin. system
woeoox1000 T A 42

The total amount of tracer injected into the system was calculated

by integrating the infiltrated water volume multiplied by the
relative concentration, C/Co, of the infiltrating tracer. The above
integration was carried out over the appropriate inflow boundaries

at x5 = 0.° The total amount of tracer leaving the system was calcu-
tated by integratfng the water volume leaving the system over the
outflow boundaries at x; =0 and xf = 2, and multiplying it by the
relative concentration, C/Cé; of the outgoing tracer. The cumulative
amount of tracer in the system at any time was calculated by summing

the average grid concentration over all grid nodes in the system.

The initial amount of tracer in the system was calculated by
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summing the average initial grid concentration over all grid nodes

in the system. The change in tracer storage was defined as the
difference between the cumulative and initial tracer storage.
Differential material balance error was also computed for each time
step. The expression for the differential error is analogous to that
of the cumulative error,

The material balance error for the tracer is very much depen-
dent on the numerical scheme of MOC. 1In the first few minutes of
simulation, no moving points with the concentration of C/CO =1
have moved into the system. However, the amount of tracer injected
into the system was calculated by integrating the infiltrated water
volume multiplied by its tracer concentration of C/C0 =1, Since in
the initial few minutes of simulation, the tracer storage change and
the tracer leaving the system are essentially zero, the cumulative
error, using equation (77), is ca]cu]ateq as 100 percent. But as
time progresses, moving points move into the system and the material
balance error begins to decrease. This decay in the material
balance error with time is illustrated in Figure 45. The cumulative
tracer material balance error near the end of 57.8 hours of simulation
was on the order of 2.0 to 2.5 percent. Much better results could
be obtained if the cumulative tracer storage was calculated based on
the area occupied by the isochlors (Figure 44) instead of using the
average grid concentration. Differential tracer material balance
errors were also computed for each time step. They ran about 5 to
10 percent near the end of simulation. Because of the nature of

MOC, it was difficult to keep a check on the differential tracer
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material balance errors.  However, the cumulative tracer errors
obtained near the end of simulation were considered to be very
reasonable.

Figures 41 through 44 show the isochlor, C/CO = 0.9 - 1.0, at
various times. Figures 42 through 44 also show the isochlor, C/C =
0.001 - 0.01, at various times. There were very few points which
had concentrations between the ranges of A and K, indicating that
the concentration profiles are extremely steep.

The above drainage problem was on a small scale. A problem
describing the migration of septic-tank wastes around the perimeter
of a Take was considered and solved using the total numerical simu-
lator of fluid flow and dispersion equations. A schematic diagram
of the septic-tank'problem is similar to Figure 30 of the drainage
problem. The elevation HB represents the constant head at the lake.
The polluting source is at ab (Figure 30) and seeps through the un-
saturated region and into the saturated region.

Data used for analyzing the septic-tank problem were: Axy =
2000 cm, Ax3 = 50 ¢m, MR = 13, NC = 20, Rl = 520 meters, and 23 =
650 cm. The dimensions for aa, ab, and f were 80 meters, 20 meters,
and 120 meters, respectively. Al1 other dimensions and data used to
numerically solve this problem were the same as for the previously
described drainage problem.

The numerical simulation was made for 400 time steps or about
42 .8 days. A steady state was not reached, and the water pressures
and water satuartions were changing at the end of 42.8 days of simu-

lation. The total computer time required to run the program for this
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13 x 26 grid network was 1126 seconds of 2.8 seconds per time step.

Figure 46 shows the initial water table position and the water
table position at the end of 42.8 days of simulation. A moving
points' concentration map at the end of 42.8 days of simulation is
shown in F1gure 47. Since the vert1ca1 dimension of the model was
much smaller éompared to the horizontal scale, the mcv1ng points
moved essentially in a vertical direction. The moQing points did not
reach the dutflow face at Xy = 0 at the end of 42.8 days. It would
take a much 1onger period of time for ‘the moving po1nt5 to reach the
outflow face at x17= %- The problem, therefore, needs to be run for
a longer time'to obtain more results. {he cumulative material S
balance error for fhe water, air, and tracer were of the order of
10'3, 6.0 and 3.5 percent, respectively at the end of simulation.

A typical drainage problem in agriculture and a septic-tank
problem were solvea using the two-dimensional, two-phase, saturated-
unsaturated 1ﬁfi1tfation and dispersionémode] developed in this
study. The nuheri¢a1 results obtained hsing the model indicated
that the movemeﬁt 6f poliutants in an integrated saturated-unsatu-
rated porous mediuﬁ is a valid and reprqducib]e phenomenon. No
analytical so1ption, numerical so]ution% or gxperimenta] data were
available to compare with the numerical |{results obtained using the
total numer1ca1 simulator. 'However, the cumu1ative and different{al
material balﬁqqe errors for the air, water, and tracer provide an
independent check on the accuracy of thq total simulator. The cumu-

lative and differential errors obtained using the model were

reasonable. Th1s suggests that the total numerical simuiator was
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working well.

The model can provide a variety of outputs, such as an equi-
potential map or a moving points' concentration map at any given
time step. The hydrologic results obtained for the drainage problem
indicate most of the flow occurring in the saturated zune. The
behavior of a nonhomogeneous porous media is illustrated by using a
less permeable 1ayef in the model.

Since dispersion was very small and the tracer was moving as a
slug flow, the use of a tensor transformation was believed to have
1ittle or no influence on the concentration profiles for the two
problems solved using the total simulater. Hewever, the error that
might result in the solution of field problems without a tensor
transformation is unknown. Nevertheless, the use of tensor trans-
formation required very little computer time and shouid be included
in the numerical solution of dispersion problems.

In laboratory experiments using relatively homogeneous porous
media, the longitudinal dispersion coefficient is normally found to
be greater than the lateral or transverse dispersion coefficient by
a factor of 5 to 20. Also, in these experiemnts, the values for the

dispersivity are of the order of 1072

to 1 cm. In contrast, values
of dispersivity used in the modeling of field problems are in the
range of 10 to 100 meters, which is 3 to 6 order of magnitude larger
than typical laboratory values. This wide difference in field and
laboratory dispersivity estimates is because of the nonhomogeneous

and anisotropic nature of real ground water flow systems in contrast

to laboratory studies, which are usually performed on homogeneous
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materials (Reddell and Sunada, 1970).

The numerical simulator developed in this study can be applied
to environmental preoblems concerning groundwater contamination from
waste disposal sites, provided the values of the input parameters,
such as the field dispersivities, are known under field conditions.

This work is a first step in developing a numerical simulator
for miscible displacement in the entire flow domain of saturated and
unsaturated regions. The uniqueness of the model is shown in the
following set of properties:

1. The model is three-dimensional. However, only two-
dimensional problems were solved using the numerical simulator;

2. The model considers infiltration as a two-phase (air-water)
process;

3. The model has its upper boundary at the ground surface. It
treats the complete subsurface regime as a unified whole because the
flow in the saturated region is integrated with that in the un-
saturated region;

4. The model can handle a combination of a variety of realistic
boundary conditions;

5. The model recognizes the tensorial nature of the dispersion
coefficients; |

6. The model can handle transient as well as steady state
conditions; and

7. The model allows consideration of nonhomogeneous porous

media.
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CHAPTER VI
. CONCLUSIONS AND RECOMMENDATIONS

A three-dimensiona] mode1 describing the two-phase (air-water) fluid
flow equations in an integrated saturated- unsaturated porous media was
developed. Aiso. a three—dimensiona] convective dispersion equation de-
scribing the movement of a conservat1ve. noninteracting tracer into a
nonhomogeneous , anisotropic. integrated saturated—unsaturated porous
medium was derived Finite difference forns of these two equations were
deve]oped. The two models were 1inked by the pore- ve]ocity term,
| Using the two- dimensional form of the total 51mu1ator, a computer
program was written in FORTRAN IV to solve the two-phase f1u1d flow and
convective- disper51on equationslin a nonhomogeneous. isotropic porous
media. The computer program was developed to handlela—variety of bound-
ary conditions;_such as, constant pressure, constant head, constant flux,
a time-dependent flux based on rainfall rate, and a no-flow boundary!
The two-phase‘fiuid flow equations were solved using an implicit scheme
to solve for water or air pressures and an‘expiicit scheme to solve for
water and air saturations. ; A numerical tensor transformation for an iso-
tropic medium developed by Reddeil and Sunada (1970) was used to treat
the dispersion coefficient as a tensor. The method of characteristics
as presented by Garder et a1 (1964) was used to solve the convective-
dispersion equations. | |

The fiuid flow and convective—dispersion segments of the simu]ator

were tested independently with success. The numerical results obtained

from two-phase fluid flow problems were compared with analytical solutions



144

or experimentaT data. Thé method of characteristics (MOC) with numeri-
cal tensor transformation Was used to test the convective-dispersion
cagment of the simulator for a uniform flow field and the numerical
results were compared with analytical solutions for a homogeneous and
isotropic media. A typical two-dimensional drainage problem in agri-
culture was solved in a nonhomogeneous, integrated saturated—dnsaturated
medium using the total simulator of tluid flow and convective-dispersion
equations. A variety of outputs, such as an equipotential map or a
moving points' concentration map showing isochlors were obtained at
selected time steps. The limitations of the assumptions of a homo-
geneous and isotropic medium are illustrated by the accumulation of
moving points at a transition from a higher to lower permeability. A
field-size problem describing the migration of septic-tank wastes

around the perimeter of a Take was also considered and solved using

the total simulator,

The following specific conclusions can be drawn as a result of this
study:

1. The numerical results obtained by using a two-phase fluid flow
model were compared with those using a one-phase model. Excellent
agreement was obtained with respect to infiltration rates, cumulative
infi1tratidn amounts.and water saturation profiles when these results
were compared with Philip's (1969) analytical solution, The numerical
results indicated no significant differences using one-phase and two-
phase flow mode]s since the boundary conditions were such that there

was no appreciable air pressure build-up.



2. To investigate the effect of existence of air in the porous
medium, a time-dependent boundary condition problem in which the infil-
tration rate was a function of rainfall, ponding and flux at the soil
surface was considered. The infiltration rates obtained were compared
with those of Phuc and Morel-Seytoux's (1972) work. Unlike theirs, the
infiltration rates did not show any scatter of points but followed a
smooth curve. However, immediately after air counterflow starts, the
curve behaved differently from theirs and dropped rapidly to a minimum
value well below the saturated hydraulic conductivity. As soon as air
was released from the medium, the infiltration rate increased to a value
below the saturated hydraulic conductivity and continued to remain be-
Tow after 10 hours ot simylation. This is in contrast to one-phase
| flow in which the saturated hydraulic conductivity is the lower bound
of infiltration rate, The infiltration rates, after the initial stage,
showed excellent agreement with Phuc and Morel-Seytoux's work.

3. An attempt was made to compare the experimental data obtained
by McWhorter (1971) with the numerical results. The boundary condition
was that of a constant ponding depth of 0,8 cm. Qualitatively, both
the numerical and experimental infiltration rates and air pressure
curves pehaved in a similar manner before and after air counterflow
starts. The deviation between the numerical solution and experimental
data, after air is escaping from the medium, was believed to be caused
by change in medium properties and the hysteresis effect.

4. The longitudinal dispersion prob1em considered by Garder et al.
(1964) in a uniform flow field was solved using the MOC and excellent

agreement with his results was obtained.
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5. The proposed numerica1 tensor transformation by Reddell and
Sunada (1970) was tested on dispersion problems in uniform flow field.
The longitudinal and lateral concentration prefiles obtained with and
without tensor transformation were compared with known analytical solu-
tions. Excellent agreement was obtained between the numerical solu-
tion with tensor transformation and analytical solution. The solution
without the tensor transformation resulted in a steeper concentration
distribution curve than the analytical solution. The use of "nine-star”
grid pattern to estimate cross-derivatives resulted in a small amount
of "overshoot" in the numerical solution,

6. A two—dimensiona] infiltration problem was solved in a non-
homogeneous, integrated saturated-unsaturated medium using the total
simulator of fluid tlow and convective-dispersion equations. The limi-
tations of the assumptions of a homogeneous and isotropic medium are
illustrated by the accumulation of moving peints at a transition from
higher to lower permeability. No analytical solutions or experimental
data are available to compare with numerical solution. Therefore, much
of the validity of the numerical solution for this particular problem
had to be based on material balance errors. However, laboratory ex-
periments are presently well underway to validate the numerical simu~

lator.

Suggestions for Future Research

Concerning this research, further work is recommended in the fol-

lowing areas.
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1. As demonstrated, inclusion of air as a second phase in infil-
tration problems led to interesting results., The two-phase fluid fiow
problems should be investigated more under a variety of boundary con-
ditions and tor nonhomogeneous, anisotropic porcus media. Also hys-
teresis effect should be included in the numerical solution,

2. Very little experimental data are available on studies involving

air-water movement in porous media. Laboratory and field experiments
should be performed to study two-phase flow problems.

3. Several other numerical techniques, such as, ADIPIT, SOR need
to be investigated -in solving the fluid flow equations.

4. A scheme based on coordinates of moving points should be in-
vestigated in calculating average grid concentration for transient,
nonuniform flow fields.

5. While the method of characteristics is a valid numerical scheme
and does not generate numerical dispersion, MOC requires much programming
etfort especially for transient, two-, or three-dimensional, nonuniform
filow field. Numerical techniques developed by Chaudhari (1971) and
Tagamets and Sternberg (1974) should be investigated for possible use.
Also, the finite element technique {Nalluswami, 1971; Segol et al.,
19753 Pickens and Lennox, 1976} should be considered in solving con-
vective-dispersion brob]ems.

6. A study of dispersion in nonhomogeneous, anisotropic porous
media should be undertaken.

7. The numerical simulator should be used to solve an actual field

problem.
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APPENDIX A
DERIVATION OF FLOW EQUATIONS

A set of1fundamental flow equat1ons are derived describing the

behav10r of the two f1u1d phases, water and air, that are present in
the saturated‘as well as in the unSaturated zone. The nonlinear,
partial differential equat1ons for transient, saturated-unsaturated,
three- d1mensiona1 flow through porous med}a are obtained by combining
the continuity princ1p1e for each fluid phase, Darcy's law for each
phase, a fluid conservation equation, an equat1on defining the

capiliary pressure, and an equation of state for air.

..“.
s~

Continuity Equation

SN st
The principle of conservation of mass when applied to a dif-
ferential volumé element ‘of porous mgﬂta!fjﬁeg 1n gggce may be stated
as: | -
(Rate of mass inflow) - (Rate of mass outflow) =

(Rate of change of massiinside the volume e]ement)f"

Applying this princip]g-tp the volume element shown in Figure A-1

resu]ts in
LAl R £ Y L ‘ B

Mo - M + M - M +

X AX1/2 ﬁxltAxlfz_ ”xz-ﬂ.xz/2 x2+tx2/2

oM
VE

M - M R L (A-1)
x3-Ax3/2 x3+Ax3/2 5t p °*
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Figure A-1. Volume element of a porous medium used for developing
continuity equation.

where Mx

1“Ax1/2, sz—ﬂxz/Z' M, ~Ix /2 are rates of mass inflow

3

across faces x]—Axl/Z, x2—6x2/2 and xS-Ax3/2 respectively,

M

X X /2, Mx2+Ax2/2 and M re rates of mass outflow

a
| 3+Ax3/2
across faces x1+Ax1/2, x2+ax2/2 and x3+Ax3/2 respectively,

MVE is the mass contained inside the volume element, and

Mp is a mass source or sink term which is negative for a

source and positive for a sink.
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- Applying Taylor:series expansion about a point (x;, X,, x4) of Figure

A-1 gives: - . o - T
2

M 3°M L2

Mx ~AX,/2 = Mx - azi E;i'+ %T‘ ; (—éiJ - ..y i=1,2,3
L i i axg

and ) |

M 3IM ?
My sax.s2 = My * axi AZT*‘JQT ’2‘1 (f‘;l) R
Xi X_i x'i xi ] ax.i

C g e (

1 = .Ig 2’ 3- (A_Z)

Neglecting second order terms and higher, the following relationships

are obtained from equation (A-2):-

aM
X,
= 1 . )
Mxi'AinZ.' Mx1.+Ax1./2 = - 3X1- Axi, y 1 1,2, 3. (A 3)

Substituting equation (A-3) into equation {A-1) gives:

3 oM
X aM
13 —a-,&ﬂx; R R R ()

:,;”.,." 4 R R ! : 1

Expressing 1nd1v1dua1 mass f]ow components in terms of the f1u1d
Crrmnpee R 3]

density, the d1mens1ons of the vo]uTe element and the vo]ume f1ux ,
[T e ~ \J fr! i.!fr -!14‘ g

M*i = 00,0 ; | i= 1,:2,'3 | : f : (A-5a)
Mye = 0934V, and B (A-5b)
‘:Mp) ?hPPQ9wih dr b ans v deseang atite e ; (A-5¢)
where  p = mass de"51ﬁyﬂqfa§hg15019tioﬂa(ﬁL;%lg{ﬁi r
q; = the volume.fiux component in the i-th direction wrhy,
¢ = porosity of the medium, -
S =

saturation of the .fluid,
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AR; = area (L2) of the volume element perpendicular to q.,
the volume flux in the i-th direction such as, AA1 =

Ax26x3 and so on,
AV = dxy Myhg, (L7,

Q = production rate (LT7'), and

pp = Mass density of fluid passed in the source or gink

(ML”3),

Substituting equation (A-5) into equation (A-4) and using short hand

tensor notation gives

9 = . 2 7y - -
3;; (pqjaA dax, = - =% (peSaV) - opQ (A-6)

where i=1,2, 3 is a cartesian coordinate system (x], Xos x3).

Fundamental Flow Equations

To develop the flow equations, an expression for the volume flux
terms is required. Assuming the axes of the coordinate system (x1, X0 s
x3) to coincide with the axes of the permeability tensor, the volume

flux terms are given by Darcy's law as:

k. k
X
- i 3P ah _ - -
gy = - — (axi * 09 3 ) , i=1,2,3 (A-7)
where k, = absolute permeability in the i-th direction (LZ),
.i
kr = relative permeability to fluid,
4 = dynamic viscosity of fluid (ML™'T1),
P = fluid pressure (ML'1T'2),
g = acceleration of gravity (LTZ), and
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h = elevation of the volume element above an arbitrary
datum which is perpendicular to the direction of gravity
(L). |
Substituting equation (A-7) into equation (A-6) results in. .

1
[RERR ¥4

k k o : oy
X;r . . »
.8 i AP ah s _ _
5 [: . (ax1 pg axi]AA;] Ax, = SE'(?¢SAV)§+ pPQ;F_ (A-8)

By analogy, equations similar to equation (A-8)'may be written for both

water and air phases. For the water phase:; ci

, P |
ax1 W x; PX: P9 321] AR, | AXy
- (0,85 AV) + 000, | | | - (A-9a)
and for the air phase: w
Ny kx;:ra SLRPRER ‘“";l . -
3 (095,07 + 0p0, | . (A-sb)

where the subscript 'w' refers to the wetting phase or water and the

subscript 'a' refers to the nonwett1ng phase or air,

\
The fluid conservation equat1on states

= (A-10a)
Sw + 5 1

Differehtiating equation (A-10a) ¢

2. __w (A-10b)}
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"~ From the definition of capillary pressure

Po =Py - Pw = PC (Sw) . (A-11a)

Differentiating equation (A-11a)

aPa _.aPC . an .
IX.  OX. ax,
i i i

i=1,2,3 : (A-11b)

The six dependent variables are:

Kew = Kp (S) (A-12a)
Kpg = Kpg (5,0 = kg (1-5,) (A-12b)
Pa T Py (Pa) , (A-12c)
oy = Py (BL) s (A-12d)
uy = oy (o) (A-12e)
and by =y (P (A-12f)

Using product rule of differentiation, the first term on the right

hand side of equation (A-9a) yields:

39
9 - T W 3 T3
=5 (0,95,07) = (p,00V) 5z + (p,S)) 5¢ (eaV) #
__ . 9P,
(¢AVSW) el (A-13)

Substituting equation (A-13) into equation (A-9a) and dividing through-

out by (pw¢AV) gives:
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‘ wkx K
1 3 jrv P h :l
(DW¢AV) My [: My .{Bxi Pud ax; o BAL L BX, -

pPQw S S 9p 3S

___W_ = W
o 08V TV a el - Py Pt Bt (A-18)

Using the product of differentiation for the first term on the right
hand side of equation (A-9b), substituting equation (A-11b) into

equation (A-9b), and dividing throughout by (paqu) yields:

: , ‘P,g!(xikr‘a'l aPc_ AP, . ah
loaquV} o AR R e

S ap
a a_ 3 (.. a Pa w ,
Pa _a ~ala. W | A-15
0.6V  4aV 3t (8V) Py Ot ot~ ( )
a .

Adding equations (A-14) and (A-15) and rearranging yields:

T ax U X, ]
lpwq)AV i ":thﬂﬁ { m'\'.' s IO A : st
(1 2 akx kraAA P R I LI I
7| 2 : ax Axi =
lpa¢AV X3 3 i | , |
. 1 \ | xikraAAi LN l r RO R P
- ol 9Xs " axs | M F
adav i a i
2gk. kAR, = |.» .
1 ) Pw Xgmio 1 Pt b
AX, = !
[DW¢AVJ dxX, | o axﬂ i
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. , agkx Kpalfy oh
| 8x. X Axi *
0.6V i ua j
P

=0 o (oaW) e BB () + 22y
0a7 o8 R o, ot
ppQ ppQ

P w + p a__ _ (A-16)

P ®Y AV

Defining all pressures in terms of pressure head of water:

=

= W
¢w pwg s
e
YVa" 59
and
P
C
lp | . (A"]?)
c Pwd

Substituting equations (A-17) into eguation (A-16) and factoring out the

acceleration of grayity g:

2
\ Pukx . KBy aw_l
1 3 i AX +
0,447 94 M axij
N 020Ky Kpath 3y, |
1 Wioax, = -
[pa¢AVl Xy L omy Xyl 1
1) s [0 4Pk, X5 Kpalh; By
Cl ax, -
[ oa¥) i My 8%y
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-y —
p ko ko AA.
3 3 W OX. w1 3h
| 9x. I ax Axi -
o OAY i W
LW - -
) r—pgl;x kraAAi | S S 9
1 ) 9 i sh w3 <y Py
| Xy N e | 25 Y oo 5t (¢aV) + p.g ot
pa¢AVJ A A R il . dAVg , Coywe
S ' S ap, p,0 p,Q
+ 2 g%-(¢AV) + aq ataq- Pw_,+ P3 (A-18)
dAVg Pa® P, PAVY - adaVg

Equation (A-18) henceforth will be called the Water Pressure Equation.

Expressing equation (A-14) in terms of pressure head of water

and factoring out "g":

2

85 pwkx.krwAAi oy
W g 9 1 _ Wl oAx. +
ot (pw¢dV) X, My axi i
2
pok, k.. AA
g aa WX, W gh Ax p Qw _
7 X b X, i N
(p,paV) 7 W i 0, ¢V
S S, 9p
W ] ( ATl W W
W2 (gaV) - M KN (A-19)
oAV at p, ot

t
Equation (A-19) will be called Water Saturation Equation.
Simitarly, equation (A-15) may be expressed in terms of pressure
head of water as

5S RS pv Tp.p. K k__AA,

Ba. g 3 aw X, ra i Bwa .+
ot (Pa¢5V) BX ¥y axi i
cegel Ve R A L B L 14 ;
o5k, koA ] 0.0
g 2 ,i ah Ax, -~ EP._Q._-_a__ i(q,A_) -
(0, 047) Xyl - Mg - Wy p 08V ¢V at
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> 3 ¢ .o ' (A-20)

Equation (A-20) will be called Air Saturation Equation.
The Air Pressure Equation can be derived using a similar
procedure as employed in obtaining the Water Pressure Equation

(A-18):

2
1 ) 5 pwkxikrwAAi awa
il 9X ax Axi *
0. AV i My i
W ) ¥
1 ) 3 papwkxikrwAAi Bwa
— Ax, =
lpa¢AV axi B Ha %y T
-5 —
(1 5 pwkxikrwAAi ch
- AX: -
|  9X M X 1
pr¢AV] T ] W 1)
-5 -
k. k. AA,
(1 ;WX gy A
X, =
w1 98X, u X 1
LOW¢AV} i | W i
-5 -
p k. k__ AR,
1 I e B WD T
| 93X, U ax.| Mt o ot (¢aV) +
pa¢AV L a i dAVg
Sy Py X S, 'QE (687) 4 EE__ fﬁﬁl \ prw R pra
g 9t $aVg 3 Pag dt p, PAVg RINT

(A-21)
Equation (A-21) will be called the Air Pressure Equation.
Air is assumed to behave as a perfect gas and equation (A-12c)

for density of air as a function of air pressure is given by the



perfect gas law:

Pa
,,‘.)a_ ) ﬁ ’. T ; (A-ZZ)
where P a1r pressure 1n dynes cm. 2

as

O

7.gas constant, = - 2,71, X 10ﬁ dyne -cm gm (°K) 1

= temperature in °K.
The gas constant, R, may also be given as:

R

8.3144 x 10’ erg (gm mote)™! (°x)71,

where 1 erg = 9.86923 x 107 cu cm - atm,

1 atm

1033.26 cm 'of water at 4°C, and
1 gm mole of air = 28.9 gm.
Therefore, R can also be given as:
R =2.9337 x 103 (cu cm)(gm)'l(cm water)(°K)”1.
If the air pressure is in ¢m. of water, then equation (A-22) may

be written as:

v, 9
_ 'a atm
Py = TR ° ven | (A-23)
where Y, = air pressure in cm of water,
Yatm = atmospheric pressure = 1033.3 cm of water,
R = ?as)c?nstant 2.9337 x 103 {cu cm)(gm)_l(cm water)
ML
T = temperature in °K.

Using chain rule:

9 - EEE. . Efé. = 1 Ma (A-24)
ot Bwa ot RT at
Sa Bpa
The term o9 | O the right hand side of equation (A-21), after
a

substituting equations (A-23) and (A-24), becomes:

167.
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Sa EEQ _ S Bwa

d
5.0 3t~ T, %9 dt (A-25)

The Water Pressure Equation (A-18), the Air Pressure Equation (A-21),
the Water Saturation Equation (A-19), and the Air Saturation
Equation (A-20), combined together will be called Fluid Fiow

Equations.
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APPENDIX B

Finite Difference Equations for Flow Egquations

The Water Pressure Equation (A-18), the Air Pressure Equation
(A-21), the Water Saturation Equation (A-19) and the Air Saturation

Equation (A-20) are rewritten. The Water Pressure Equation is:

2
1 5 Pl KBy oy PaPukx. Kra®hi sy
! W Ax. + 1 3 1 W A,
0,08V °i Hu s 0 00V| *Xi Ha i
1 3 papwkx1kraAAi AU .
== AX
[pam} 9 Hy aX 3
pzkx kr AAi ]
1 3 WXy Ty 3h | , ;
i vl 9% H X x]
p OV] TP | Tw i
B R
- ,oh w3
ot8¥) i L ta ll ¢AVg
3
P B ey Pl B o eaVg
2t oot tannd pntMavetal anrel A0
p,.Q
vt TR (8-1)
P, PAVY i we g e , 7 :

where xi(i =1, 2, 3) ihdicates a cartesian coordinate system.

The Air Pressure Equation is:
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2
1 3 pwkx krwAAi alpa
vl 9% ax ax;
pwquV i W i
1 3 papwkxi kr-wap'i aq;a
* - 8;( u ax Ax;
Py 9oV il a i
o2k kM, .|
1 3 WX, T i al,bc
= — AX,
[p ¢!’-‘-V] ax1 W X i
W - -
V_2 ]
ook AA.
i 1 5 WXy W T o N
0 oAV axi M, ax i
w . | —
o -
1 3 pak"ikraMi ah
- AX .

Sw 3 T Sw apw Sa 3
to— gp (V) + oo 5 o 3t
¢AVg W $AVg

S. 3
+y a2 _aia_ + DpQw + prW i
r.9 T, v
a p,PAVg p,94vY
The Water Saturation Equation is:
2
o k., k.. AA.
Eiﬂ i} q 5 WX, W a¢w A,
at Dwd?ﬁv axi Uy, axi i

(B-2)
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T2
| : p k., k_ AA,
+ a - 3 wxi rw ! ah AX T
pw¢AV B | W N i
Pyl S s iS.dp -'
W 3 7
- B S () - S (B-3)
p 08V 4V e Py o :
The Air Satufation Equation is: ‘ ,
aS papwkx kraAAi o
“Ta g 9 i Al ax
ot oAV X, My X ; i
a . 1 .
q 5 pakxikraAAi ah
+ —— X X ‘Ax1 U
pa¢AV i ua i \
% %23y - a2 (B-4)
- e g (V) - o g )
p 6AV AV a

The finite difference grid system used for equations (B-1)

7
IS

through (B-4) is shown in Figure B-1.

. Y .[
i,j-1,k
T dk-1 ]~ .
[} * u ] 7 » . s ’ S x}
i-1,3,k| 1,3,k 1i+1,3,k o
——— iy -_..-—---:. k+.| “ ‘//
N _j__,']_’___._ | 3 XI
i,3+1,k 2

i ‘rf‘ _q’.'

Figure B-1. Central grid and six adjacent grids with the
1. i i Subscripting used in the finite difference
equations.
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Because of the symmetry of the spatial derivatives in equations
{B-1) through (B-4)? only a detailed description of the finite
difference equations in the x1~d1rection will be given.

The spatialvderivative at a point on the boundary between the

grids (i, j, k) and (i+1, j, k) may be approximated by

ot ) P -
% = w-i"']-s:.i,k wi 3j:k (B-5a)
%0 i,k O0TIAX Dy gy FIBx )y 5 ]
) v -
% - C1+1sjsk c-i !\j!k (B_Sb)
¥ ingg,k O PLIBR gt B g
(3h ) hist,d,k = MiLiLk (
an = s s vy . B-5C)
La"1 i ik O OLIBXpdyaq g * 8%y 5 4

Likewise for a point on the boundary between the grids
(i -1, J,k) and i, J, k):

v - ¥

ma_lﬂi = wisjak wi'lsjsk . (B-5d)
Y PR I SO I I C S IR

3 P -0
E_Ui_(i = Cisjsk Ci“lsjsk (8-59)
%1 Jio35, 3,k 0-510ax 5 5, * %)y 5
oh ) ML M1k . (5-5F)
By iogd,k O BHIAX) g g ¥ 8%y g 5 ]

The xl-component on the left hand side of equation (B-1) may be

appxoimated by:

AX
[ehs] = 1 2
1 PudBV] 4 3k
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B papwkxl ra
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1 aq;w !
; _ 3x1 .

14%,J,k'

k

_H

Lo
g

a

AA ;
W x1 ra_ 1 aww
Bxl

Ui"%sj 3

Defining the following notations::

[

+ '
axy = 0.50(xp) 5 q 5,k ¥
Ax+ =

T

.|.
Ax3

1}

Ax3

+ (Axl)'i,j,k] s

(8x)4,9,1] »

2 0.5[(sz)i’j+1,k + (sz)i,aj:k] ’

0.5[(AX3)1,j,k+1 + (AXB)f,j,k] ’

0. 5[(Ax3)1 k-1 + (Ax3)1 i k]

a

0.50(axp) 5 5.0,k * (X245,

AAlso the f0110w1ng notat1ons are used

£

1+;§9jsk.i,:‘

!

(8-6)

(B-7a}

(B-7b)

{B-7¢c)

~(B-7d)

(B-7e)

(B-7F)
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(8Rp)5 g,k = (8xidxgdy 5= (Bxg)q 5,0 (Bxgdy 50 (B-7h)
(AA3)i,j,k = (Ax1Ax2)1’j’k = (Axl)i,j,k (AXZ)i,j,k , (B-71)
(A 5k = (Bxgdxptxg)y 5y = (Bxpdy 5 4 (B%o)5 gy (BXg)y 5y
(B-73)
Substituting equations (B-5) into equation (B-6) and using
equations (B-7):
2y KA
Ax Putx, “rw
- 1 1 1
fehs], = —
"1 pw‘mV o i,d.k | Pw i+,d,k
1,3,k s 1%z
rlpw " \ pikx KAy
i+1,d,k _ "i,d,k| 1
+ U
O.SAX]‘ ) ¥ 1-12:\].)‘(
r - lIJ . R
Wik Mi-ndkl o, A4 [L]
- T Ax
0.5Ax AV 1 .
\ 1 / pa¢ -i,j’k Tstk
p.p. k., k__AA P -
JjAxpra 1 Wisl, ik "i,d.k
u ¥
a .i+!§,j,k ‘ O.SAX].
(0.0 k, k_ OA | b - _
a"w'x,ravl i3,k Wil1.3.k (5-8)
L ua 1_1/2’j,k 0.5AX1

The concept of "upstream mobility" will be used in calculating the
flow coefficients. According to "upstream mobility" concept, the

relative permeability of the grid from which the fluid emanates is
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used in calculating the fluid flow coefficjents. Therefore, using
the harmonic mean concept and the conéept of "upstream mobility," the
flow coefficients at grid interfaces may be calculated as:

2
pwkxlkrw

u

AAl

W i+h,3.k
2(pzk AA Yo o5 2k AAS) .
woxy " 17,3,k Py %217 141,3 .k : (
- k
7 7
(b A0 1,5,k Pdisn gk Ok Mliong e B

)

rw’u

(B-9)

b

where (k) is the relative permeability of the grid from:which the

fluid emanates. Also the following notat1ons are implied for
! IR ) " :
combination:qfavaniablqs!such as:. -

‘ I T ;3fi .v.
! or LIC IR | L
2 C_ 2 : ,
(Puke B)4,5,k 1,5,k e 4,9, (Ry)4 5.k (B-10a)
and
(DW¢AV)1,j’k. = (pw)igj?k”(¢)i’jgkﬁ(AV)igjfk -‘ (B-10b)
SANUEARICIES DY RN (NI

- e e s

Defining the_golléwing termsi”
) . ‘ W : . : * 7

: I
T -

7] +
i’jsk R &‘H ;'H';iajsk A?]-

| o !
LSRN [ 1 ] 1
o AX + .
(o #8V) 5,k U Vig 0 (8%) - 7

]

2 :{,- Y RV . r*: . ‘:if?' B
20oke B4,k (Pukx MV is1,5,6 " T |
' (k..)

rwu

xlw

, : e | =
: ok, k. AR '
+ Axl . [ 1 WXy r'wA 1 [ 1 ]

N = —
p. $AV
LR I N

3 7
(pwkxlﬁAl)i,j,k (ndie1,5,k * (pwkxIAA1)i+1,j,k ()i .5,k

2
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2 2
2(pwkx1AA1)1,j,k (pwkxlﬂA1)1+1,j,k

]

(K

2 P rw’u
(pkaIAAl)i,j,k (mdien,d,6 (pkaIAA1)1+1,j,k (mgdi .3,k

IUo, )4 5 8X71 (B-11a)

2 2
2(°wkxIAA1)i,j,k(pwkxIAAl)i-l,j,k

XiW 2 2

1 (o 24,5,k Bdi,g 6 (oyky B0, 5,k )i,k
(e u| 7 Loy 08V 5 5 o 2% s (B-11b)

+ z(papwkxlﬂAl)i,j,k (papwkx1AA1)1+1,j,k
N =

3 | Par i BT 5k (Ml i,k T Pafulx M) 1413,k el 1,5k

- b
(kra)u / [(paq)AV)'l,J,k Axl] ’ (B-llC)
] 200a0ky MA1)4, 5, kPaPukx P11,k
N =
X,@ (oapykx B4 5,k (Madion, g (oaoykx M)i-1,5,k M 1,5,k
(kra)u / [(Daft’AV)i,j’k Axl] s (B“lld)
2(p2k. AR,) (0Zk. AR,)

N P, 21,3,k Pwix, 21,541,k
N =

X2W

3 7
(pwkszAZ)i,j,k (i o1,k ? (pwkxzﬂAz)i,j+1,k (di5.k
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— + . ' .
(Kol !l 7 [;PW?Ay)i’j’k‘szll,{. et (B-11e)
2002k, M). 5y (02K, BA)
_ WXy 20,05k WX, 2 i,J-1,k
Nxzw o2k, ARy 5y (s s g * 2y CARS) s 4 {n): s
Woxyo 2 1,3,k Mw/i,3-1,k 7 Puix, 201,31,k Ywli,i.k
o o S o ‘ N
(| 7 Loty g d51s - (eun
+ (papw kxzmz)i,j,k (papwkszAZ)i,jH,k
N =
X52 (aPyk, o)1, 5,k Mal 4,541,k * CaPyky,BR2) 1 541,k Mal 1,5,k
- T +
(kr‘a)u / [(paMV)i,j,kAxZ] ) ¥ : (B-11g)}
_ (papwkxzmz)i,j,k (papwkxzﬁAZ)i,j—l,K
N =
xg2 TPk B 1,5,k MaT i, 5- 1,k FPaPuki, M) 151,V 1,5k
(keadul 7 [logétWly 5 M1 0 (B-11h)
2002k, AA,) s & o (09K, AAS):
. Puixs ™ 374, 3,k P xg" 371,35 kH
Nx3W i (pzk V.79 JPIE (TR P (05K, BAs)s 5 1oq(i)y s
SRR WXy 34,3,k W 1,3,k+1‘:,i;s WoXg 34,3k \y_1,.],k
(| 7 Lo gty 5 8x31 : | (B-111)
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2 2
z(pwkx3AA3)i,j,k (pwkx3AA3)i,j,k-1

g (02K, 8A5)s 5 (1) + o2k, MAZ) (u)
Pu Xy 31,3,k Heli,5,k-1 7 ‘Py Xy 371,5,k-1 Muli.d Lk
(ko )yl 7 [logdt¥)y 5, 8x31 (B-113)
+ 2(papwkx3m3)1‘,j,k (papwkx3AA3)i,j,k+l
N -
X32 (papwkx3‘m3)i,j,k(”a)i,j,kﬂ + (papwkx3AA3)i..]',k+1(ua)1',j,k
- +
(kpadul 7 [log98V) 5 5 o dxgl s (B-11k)
} (papwkx3AA3)1‘,j,k (papwkx3AA3)1’,j,k-1
N = : :
X32 (°a°wkx3A53)i,j,k(“a)i,j,k-l * (papwkx3AA3)i,j,k-1(ua)i,J,k
(kra)u / [(pa¢AV)i,j,k Axa] s (B-llf_)
2002k MA)s « o (00K, BAL). .t s
o Pax 17,0,k Patx T 1 141,3 .k
N = 7 7
X4
1 (pakxlAAl)i,j,k(”a)i+l,j,k + (pakxlAA1)1+1,j,k(”a)i,j,k
- +
(kpadyl 7 Do ¢aV); 5 8x1 (B-11m)
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B 2logky B4, 5,k Pake MM )4-1,5 4k

N -
X.d . 7,
1 (oake 8104, 5,kMa) 11,5,k * (Pako PR ) ig, 5,k lba i 5k
(kra)u / £(pa¢AV)i,j,k Axi] s bl ‘ (‘B-lln)
2(p2k_ AA,) (02K, MA): 4ol
4 Da xz 27,3,k pa X2 21,341,k
N = 2 - 2
X,ad
2 (pakaAAZ)i,j,k(”a)i,j+1,k + (pakszAZ)i,j+1,k(“a)i.j,k
b ' T T TR
- +
Skra)u / [(pa¢AV)‘i,j,k sz] ) . (B-_IIO)
2002k, AM,) (02k. AR): ¢ & o
- pa x2 2 ‘i,.jgk pa XZ 2 1,j"1§k
T PO P ST + (p%k, AA) (1)
Parx, M2’ 4,5,k Mal1,3-1,k T tPax, " 2]1,3-1,k el 1,3,k
(kpeglu] 7 [(pa¢AV)1?J,k Ax, ] (B-11p)
2(p%k. AA) (02K, ARL): é
" Pafxy 37 1,4,k Patxg™ 374,37,k
N = 7 5
)N |
3 (pakx3AA3)i,j,k(“a)i,j,k+1 ¥ (pakxaAA3)i,j,k+1(“a)i,3,k
A
- +
(Kodyl 7 Togot0; 5 4 53] (B-11q)
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2 . 2
z(paRXBAAB)i,j,k (pakx3ﬁA3)i,j,k-1

" (02K, MAL): 4 )i g + (pk, OAY) ()5 4
Pa Xy 3/ 1,3,k Malti i, k-1 7 ‘Pa Xy 3 i.i,k-1"Ha’i,3,k
(kra)u / [(pa¢AV)i,j,k AX3] . (B-11r)
pefining the following notations:
ant h - h B-12
Xl .i+19j$k i’j’k (— a)
Ahxl hi-lsjsk - hisjgk (B'lzb)
ant h - h (B-12¢)
Xy | hdHLk T LIk o
Ahxz h.i’j_l’k " h.i’jgk B (B_12d)
AT he' s b = hy (B-12e)
Xq i,3,k+1 7 Mi,3.k -lce
My, = Mgk T Mgk (B-12f)

The derivatives with respect to time are evaluated as follows:

ot i-1
D (AT = (eaV)y 5 1 - (9AV): 3
Bt (¢AV) I,J)zt 1,\} ’k ,b (B"13a)
od -
}
t t-1
p .. " Pw. .
Bpw = wingk wistk (B-13b)
ot Ato&d
ot - it '
04 ag 3.k 24,3,k
5T AT . (B-13c)



Where At . is the time increment used in the preceding time step.

Combining equations (B-11), (B-12) and (B-13), an implicit
finite difference representation of the Water Pressure equation

{(B-1) is:

Atozd
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+ + t+1 - - t+1
(N, + N, )0 + (N + N Yy
QWX Mgk Y 1 MieLg 0k
+ + t+1 - - t+1
+ (N + N ] + (N + N
P 22 I -yt
+ (N +N ¥ + (N, N, )Y
X W X3 wi,j k+1 XqW X32', wi,j k-1
+ + - - + + - - +
- (lew + lea + lew + lea + NXZW * Nxzﬂ * ngw * Nxza + NX3W
+ - - t+1
+ N, .+ N +ND )y
ot -t t - gt
R S N + N + N _
X3 °‘+1,j k0 %1 Ca1,3,k 0 %2 SLaenk X2 CLi-1,k
+ t. - .t + - + -
+ N /NN | v - (N, .+ N + N + N
T IR TS B LR I X1a T Xga  Xpa o TXoa
+ - t) ool e + - - -
N, .+ N )w + (N + N7 ) ah, .+ (NJ O+ N ") Ah
x3a x3a 'i,J,k . xlw ’xla Xl- xlw rxla Xl
+ . + ++ +
+ (N ++)Ah + (N }y ah o+ (N, + N ) ah
X W+ N Xy Xp _xzw x2a 2‘ X4W X 32 X3
= -y = 4 7 “; ' R Al
* (Nx3w * Nx3a) qhx ] o T
'y + '
.y ( F’) Ty .1 ‘ ' -':3 : o f-‘r A mvnefye
+ lt i (¢Av)1 o> kt (MV)] 2dakK (Swl1 sJ oK i it -
- A
90V 5,k ° 94,5,k
: t-1
(o )1 Gk T (p,);5 .k
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t t t-1 t t
C Bsk Padisgict Padigae , PpliLik [19!]

t At t
9leali g,k ot 948V 5k Lo, ok
q,)*
b2 _ (8-14)
R A

The equation (B-14) is solved implicitly for water pressures at time
t+1. These pressures are then used in equations (B-3) and (B-4) to
solve for water saturation and air saturation, respectively.

An explicit form for water saturation equation (B-3) is:

(ASW)J‘Y’J"" "ot [N:1‘" l"‘1':‘;41r1.3',k ' -N;lw 'ﬁil,j,k
' sz‘*’ wﬁ:tjﬂ,k * Mg q}xﬁj-l,k N :3”‘::13,“1
¥ N;3w wx:fi’k_ll - (N;lw * N;lh +§N;2w ¥ N;zw * _N;3w
R A
* N:3w Qh;éz+' N;SN Ah;3] - %E%ﬁ% F" - (Sw)g,j,k
o
TS Tt S B 0 R - 0T34 (5e15)
(d"mm?,j,k Btogd PWii, 5.k ) At°_’“‘
ore 05,08 54 = 5 - 50

Similarly, an explicit form for air saturation equation (B-4)

is:
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| t+1 - t+l +  t+l
(AS ) = gAt [N + N ¥ + N
1,3,k Sty 1f1,j,k X1 .k %2t %L,k
£ s . o S )
N £t A o
+ N + N + N - (N
X8 24 5-1,k X3 "8y 4,k X3 "8 §,k-1 X,a
L + N + -y L tHle ++
+ N +N, . + N + N +N vy + N
xlg o X8 Xoa X42 X4a ai,j,k X2
-- - ++ + - - +4
Ah . + N x,a Ahx1 + Nx2a .t\.hx2 + Nx2a Ahxz + Nx3a Ahx3
— - P05 t ot oWt - (oW} %,
+ N ang Jr- 232 L. (Sa)ijk 1_’_ ”
. LI
¥ i PR (féy)f'i’k Houd
v o c
t t-1
s (05 4.6 = (Py) 1 |
. E! w'i,j.k - witeg okl ay ! (B-16)
1,3,k otd
t+l t
where (AS )1 3ok (Sa)i,j,k - (Sa)i,j,k and
t+1 - t t+l
)P = Wiy T Wk
The finite difference form of equation (A-25) is:
t +
s ay st ¥ -t
W, 7 ; ‘ata = ook - Ladok 1,04k (g-17)
sJs

The finite difference form of the Air Pressure Equation (B-2)

“t

when combined with equation (B- 17) is
- ..': . t+1

t+l

(N o+ N oo N )b i
ol %2 441, .k XWX 50k

MRS N R bON, N ) uE

X" X227 T84,541,k XM 22 "34,5-1,k
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+ + t+1 - - t+1
+ (N + ¥ + (N N )
X3 X327 T84,5,k+1 X3W X" "85 5,k-1
+ + - - + + -
- (N + N + N + N + N + N + N
xlw xla xlw xla X2W xza XZW
55
- + + - - i,3.k
+ N + N + N + N + N + 2 s
X2 XgW X3 X @ (g + 1033.3)Atg
i3,k
V3.K ™ 41,4,k 1™ Ci-1,5.k 2 yi+1,k
- t + t ey t +
+ + Ny N - (N
XoW €4 3-1,k XW "Cq gkl MY L5,k X
- + . + t +
+ N + N + N + N + N Yy - (N
xlw sz X2W X3W X3W C_i ,j ,k xlw
++ + - -- - + ++ +
+ N7y AL - (N N""_) Ah (N N7 ) ah
xla Xl xlw xla Xl X2W xza Xz
- - - 4 ++ + - -
(N + N_7_.) Ah - (N + N_ _.) ah - (N + N.7.)
XZW x2a )‘(2 X3W x3a X3 X3‘W x3a
t st
X - At
3 9(¢Av)i,j,k 0 ‘ g(p )1 ,Jsk
(05 - p&fl ) (o) Q Q
1,3,k LIPS P SRR Y- 3. [l] + [_a]
At - P p
9,5k [TWa5k Va5
(B-18)

{

If equation {B-18) is used to solve air pressures implicitly at time
- 1
t+1, the water pressures at time t+l is obtained as:

O T R L
.J,k ,J,k 1,3,k
o

oL (w )
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APPENDIX C
DERIVATION OF THE DISPERSION EQUATION

In deriving the dispersion equation, the concept of representa-
tive elementary volume (REV) is used. The REV at a point in the
porous medium is defined with respect to some medium properties such
as porosity: .it.is the smallest volume element containing that point,
such that wﬁen several channels are added or subtracted, the globail

"variation of volume leaves the porosity invariant.

The derivation is conducted in three steps: (1) derivation of
the continufty equation for the dispersing tracer, (2) development of
microscopic mass flux equations, and (3) development of macroscopic
mass filux equation by averaging the microscopic equations in a REV of
the medium, It is assumed that;on]y ﬁPe water phase.contains the

tracer. ;

Continuity Equation for the Tracer

The continuity equation;for the tracer is §1ven ast.

|
(Rate of mass inflow of'tracer) - ‘ !

(Rate of mass outflow of tra@er) =

(Rate of change of tracer mass inside the REV)..,

!

'When applied to a REV of porous media with the dimensions of BXq s sz,
and Ax3, as shown in Figure C-1, the results are:

(»

A T

) - (M) + (M) -
t x]—Ax]/Z t x]+Ax]/g t xz-Ax2/2
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oM, pEy
+ (M - = et -
(Mt)x2+ax2/2 ( t)x3—Ax3/2 (Mt)x3+Ax3/2 at ¥ Mtp i (C-1)
where (r'1t)x1._Ax1_/2 = rates of mass inflow of tracer
(i =1, 2, and 3),
(Mt) 1+Ax1/2 = rates of mass outflow of tracer
' ({ =1, 2, and 3),
MtREV = mass of tracer contained inside the REV, and
Mtp = tracer mass flow rate of source or sink which
js positive when a sink and negative when a
SN source. -
(M)
oy v
i
|
1
] (xy2p079
Xq s Xn s X
— 1272273 g (M)
(Mt)xl-Axl/Z ‘ //1——-—-—-—" ' : t X1+AX1/2
//
e |
- [
(M) 1
t x2+Ax2/2 (Mt)x3+Ax3/2

Figure C-1. Representative elementary volume (REV) of a porous medium
to develop continuity equation for tracer.
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Expanding each one of the mass flow rate terms in a Taylor series

about the point (x1, Xy 4 x3) of Figure C-1 gives

- o g g0 (Mt) axg 2
(Mt)xi-axilz - (Mt)x1 B ax1 (M t) _ﬁ't 27 ax% (7 -
: ’ 1=1,21_3,
and Ax 1 82(Mt)x x4 2
(Mt)x1+Axi/2 3 (Mt)xi ¥ ax1 (Mt)xi -2 * 2 ax% 1 (-5 I
=1, 2, 3. (C-2}

The tracer mass flow rates may be expressed in terms of the

tracer mass. f1ux, the dimensions of the volume e1ement, and the
W !
porous media propert1es, that is,

=4S A, ;3 1=1,2, and 3 (c-3a)
(Mt)xi - i¢ WA i ’ - ]’ s an ’ -34
MtRVE = aSwAVC, (C-3b)
and
Mtp = CPQw {C-3c)
where
t = average tracer concentration in the REV, mass of tracer

per vo1ume of so]ut1on (ML™ ),

PR

. .
i = macroscopic tracer mass flux components in the 1-th

direction (ML™ T ),

¢ = porosity, |
Sw =-saturation of water phase containing tracer, |
Q, = production rate (W3l o o

¢ = 1. Cpo=itracer concentration of: production:fluid (ML"3)

.

U e e
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AAi = cross-sectional area (Lz), perpendicular to the mass

*
flux component, J1 , and

AV = bxyBx,8% 4 = volume of the REV (L3).

*
J1 's {i =1, 2, and 3) are defined as the mass flow rate per unit

pore area. The reason for choosing a flux per unit pore area is be-
cause the microscopic fluid elements will be averaged over a cross-
section of the volume element to yield J: . Since the fluid elements
exist only in the pores, the results are a flux in terms of the pore
area rather than gross area.

Substituting equations (C-3} and (Cwé) into equation (C-1) and
neglecting the second order terms in equatfon (C-2), and using short-

hand tensor notation:

3 * _ B - )
x; (,05,0A,)8x, = 55 (45,4VC) - CpQ,, (c-4)
where i= 1; 2, and 3 corresponds to X1 sXgs and X3 coordinates.

Microscopic Analysis

The diffusive volumetric flux with respect to volume-averaged
velocity, assuming no volume phanges uponrmixing is (Qear, 1972,

p. 69). i -

T-8 0, -0 = . (c-5)
where T = diffusive mass flux of the tracer (ML72T),
C = concentration of tracer in fluid element (ML'S),
_3; = velocity of tracer in fluid element with respect to a

fixed coordinate system (LT-1).
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-1
V = volume-averaged velocity of fluid element (LT '}, and

Dd = coefficient of molecular diffusion (L2T*1).

Let the tortuous path followed byla fluid element in porous media
be represented bx the axis of qhanne] gs.shown 1n_Figure C-2. The dif-

i, t

fusive mass flux may be written as

d do

[ K SYr . frgromeet s Ty

Coewo o cpodeit e ~ (c-6)

axis of channel

o = length along axjs of channel
£ = length along streamline

Figure C-2. Model of tortuous path of a fluid element.
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Using chain rdle, equationl(C-G) may be written as:

\

= -

>
oo
Q

Dy (c-7)

aja
Ul

[ 3]

To obtain the components of J in the Xy (1 - 1, éc 3) éoordinate
system, a transformation is needed. Th1s transformation 15 carried
out in two steps. First the flux J as given by equation (C-7) is
projected on the direction of the streamline, g and then in the

direction of the X4 coordinate system. The result is

. dcgg )
Ji - ((' Dd dE ) ) dE ) . (C 8)
By the definition of a total derivative,

gt _ac %, o P2, aC %3

= (C-9)
dE ax, dt Iy dE dxy d&
Equations (C-8) and (C-9) combine to give
dx, dx, ,A
Ev2 ~ 71 77§ dC . -
3y = - 0y (@) g T o (c-10)

where the double summation convention of tensor notation has been
jnvoked. The term (dxi/dﬁ)(dxj/ds) represents a matrix whose nine
elements (for 1,j = 1, 2, 3) are products:of cosines of angles between
the direction of a-stream11ne at a point and the coordinate axis. The
term (dE/dc)2 (dxildz)(dxj/dﬁ) is analogous to the reciprocal of a
term commonly referred to as tortuosity, and is a tensor of rank two
which "deflects" or "twists" the gradient of concentration to form a

\ 1
new vector oriented in a different direction. By definition, let
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dx, dx
T dey2 bth B |
Tyt @ w® w (c-1)
Substituting equations (C-10) and {C-11) into equation (C-5):

iJ axj

- Macroscopic Analysis

The objective here is to obtain a relationship for the components,
J:, of the tracer mass flux vector corresponding to the REV shown in
Figure C-1. The value of a variable, a, at a point in the porous
medium may be represented as the sum of theraverage value of the REV

‘,}

and a loca) deviation:
L 5
9=9* g, 9=0 | (C-13)

where g is the averaged value of the var1ab1e over the cross -sectional

H 4 A

area, AA.i and g 15 the deviat1on of the varuab1e at a po1nt from the
< f
cross-sectional averages.

The average, g of g over a cross-sectiona’l-area,hA1 of the REV

is expressed for a point in the porous medium by:
. i G -

gdh, , (C-14)
SWAA1 ¢S ﬁ{~ e P AU

where (¢SWAA1) is the pore argé%through,which_the fluid moves and g is
defined in accordance with the continuum approach of REV described at
the beginning of this appendix. We assume that for the properties 6
considered here, ¢ ié.differentiable up to second order, © 7 e

Using the equation (C-13) for E,‘Qi,iand %1j and introducing them
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into right hand side of equation (C-12)

ehs = (+8) (vad) - oy (7448 v (64E)

oV, + v o+, + &Y. -0, T &
i y 1704 Ti5 9 C~DgT457

'0_6'

Multipiying each term of equation (C-15) by AA1,1ntegrat1ng over
(¢SwAAi) and dividing the result by (¢SWAA;), an average for each term
over the REV is. obtained. Multiplying thel1eft hand side of equation
(C-12) by AAf, 1ntegrat1ng over (¢S AA, } and d1v1d1ng the result by
(¢S8R, ) gives the tracer mass flux, J1 for the REV:

* _ 'l AN
J1 = ¢SWAA1 f C Vti AAi . {C-16)
¢SWAA1
= 0’

. 0 o] )
Assuming that 1) C=V, = T1j. o
2) average of a gradient gradient of the average. and

3) there 1is no correlation between VC and Tij’
equation (C-15) results in:
.

o [ . B .

Equating equations (C-16) and (C-17):

J -.c V, + €V, - Dy Tgy VC ' (C-18)
i~ Y R EET : -
Thus, the averaged mass flux of the tracer over a cross-sectional area

of the REV 1s composed of three different flux terms. The first is a

flux, CVi, due to convection with the average velocity of the fluid.
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The second is the dispersive flux, E“?i, and it expresses the rate at
which the mass 1sitransported dye to velocity,variations in the void
space of the REV, where the solute's concenpration:distribution may
be taken 1nstantanebusly as stationary, i.e., 3C/a3t = 0. The third

is the diffusive flux, D T,,vC, due to molecular diffusion.

1] ‘
The dispersive fiux, 831, in analogy to diffusive fluxes in

general, may be expressed as (Bear, 1972, p. 605):

'

55 ] -B-C—- ) .

[ .

where D1j is a second rank tensor called the coefficient of mechanical

dispersion.

Introducing equation (C-19) into equation (C-18) gives

* A . -
9i = OV = {05+ D Tiy) g (c-20)

Dispersion Equation

The resuits of the flux determination given in eduation'(c-zo)

are now introduced into equation (C-4)} to yield

3 Vo) = <0 K -
SE'(¢SWAVC) = %, [.(D1j + Dy Tij) axj ¢SWAA1]Ax1
)

(CV1¢SWAA1)AX1 - CPQw :Q | (C—?])

3
i
Equation (C-21) is the general form of the‘dispersion equation. The
- yolume flux for water flowing through a porous medium may be expressed
as

R RS PO T Cian

G, = V1S s | (czzz)
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where qw1 is the volume flux for water, in the i-th direction.

Substituting equation (C-22) into equation (C-21) and chaining out the

derivatives of concentration results in

J 3 v 2 - _L_A_.[ * a0 i
Y [(qwié.ﬁ\i)zsx1 T (¢SWAV)] Ty D1j % .¢S AA1]

Tt T ax; T oy (€-23)
*-—
where D1j = Dij + Dd T1j

From Appendix A, equation (A-9a) for the water flow equation is

9 — 7y - -
axy (pwqwiAAi)Axi ot (°w¢swﬂv) pPQw (C-24)
Chaining out the derivatives of density in equation (C-24) gives

1 3 ¢Sw %, qwi %, fp
L 3fta, amgan + 5 2 (g5, AT =t M Ao P (e
AV %4 Pw ¢ P % Py oaY

The left hand sides of eguations (C-23) and (C-25) are equal. Thus,

the right hand sides must be equal also, f.e.,

] |
45y 3Py Wy B9y, EE_Qw T
T o 3t P 3Xy  Pu AT AV OX Dia ax $S AR 1A%y -
W w PwaV CaVv ' 3ot
q
Syae  Mise S | (C-26)
C 5t~ € %x; T ap

Collecting 1ike terms gives
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% - 5 T ol 5 esan ] -
ap p C Q
C
I (S . o

Assuming homogeneous fluid, i.e., Py = constant, u, = constant, and
‘using 9. = V1¢Sw, equation (C-27) yields
: j
c Q '
. _ 1 3 [p*aC ] aC_ o PPy §
3t (#S,8A.)ax, [Dij axj CrJSw‘“\i \ aX (CP Pw AV ' (C-28)



APPENDIX D

-

FINITE DIFFERENCE EQUATION FOR THE DISPERSION EQUATION

The dispersion equation as given by equation (C-28} 1is

reproduced

.1 3 ot 3 g2 i
at ¢SWAA1 X [Dijq’swmiaxj] Viaxi ? (D-1)

*
where Dij = D1j + DdTij

A numerical solution to the dispersion equation will be obtained
by the method of characteristics. Following the development of Garder
et al. {1964), the second order terms of equation {D-1) are regarded
as given functions of X, X5, X5, and t, and equation (D-1) treated as
a first-order equatipn, Such an equation will have four character-
{stic curves which are the solutions to the following ordinary dif-

ferential equations:

o i E N

i "q.‘_dx B TS RN SRRSO L E o] SRR i .
gy o (0-2)
dx, - |
=V (0-3)

d . N H

| TB' = V3 s and ’ b i ‘k:?- -""f‘:)“;?f' i ! (0'4)

“ dc___1 3 % -
t o oS,MAy Bxy [0y 65 &, 1 - (0-5)
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In addition to the usua] division of the flow region inteo a grid
system, a set of moving points is introduced into this numerical
solution. Each one of the moving points has associated with it a
concentration, which varies with time. Within each time interval, the

moving points are relocated using the finite difference equations,

t+1 t t+1

xF1 = xt ity , (D-6)
1, 1, Ty

t+1 t t+]

X = X%, +AtV . (D-7)
2y 2q 2y

and

t+1 t t+1

X =x; +AtV ; {D-8)
3, 3 3y

where t+1 is the new time level and t is the old time level. Each
cell in the grid system is assigned a concentration equal to the
average of the concentrations of the moving points located inside the
cell at time t+1. The concentration of the cell is then modified
for dispersion by solving the explicit form of Equation (D-5).

Because of symﬁetry, only a detailed description of the finite
difference form of Equation (D-5) in the X, f direcE1on will be given.

Expanding the x1—der1vative on the right hand side of Equation (D-5)

gives
1 3 * aC * aC
(rhs), = Dy, ¢S, AX,AXq== + Dy, ¢S Ay AXqoo— +
X4 (45, Mxpax5) Xy HH1TW 2% 3x,y 127w 2 33X,
* aC | _
Dy 305,,8x, 8% 5 =] . (D-9)

33(3
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As can be seen, Equation (D-9) involves three cross-derivatives and
six second-order derivatives of concentration.

To develop 3 finite difference form of Equation (D-9), consider
the cell (1. j, k) as shown in Figure D-) and the 18 indicated adjacent
cells. 'The spat1a1 derivat1ve at a point on the boundary between cells

(1, j, k) and (1+1, j» k) may be approximated by

aC C S0k - Sak
X = X ’ (D-—]Oa)
¥ fi+1/2,5 & 5%
2 ) L Sia2,00 0k " Si1/2,0-1 4k
= 24 2l (D-10b)
¥2|141/2,3,k 285
and .
%%Lf | _ Ci+1/2,jlk+]-- C1+1[%,j,k-1 _ (0-10¢)
X3}141/2,5,k 204 | \ »
i
Using a linear interpolation scheme,
c C gkt ik
i+1/2,3+1,k 2 ’ (D-11a)
L C., . + Coin 4 :
S . _i,J-1,k i+1,3-1,k _
Ci1/2,3-1,k 5 =, (D-11b)
C, . + Cyrn s
- _d.d.kH i+, k1 . ‘ .
Ciu1/2,5.kH ulo ¥ . (0-11c)
and c .
_ Ciadak=17 “i+1,4,k-1 _
Ci41/2,5,k-1 3 1 : (D-11d)
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i,j-1,k-1

1,21,k | i+1,3-1K

Y
>
—
e
1
—
w»
[N
1
) i
fan

i,3-1,k4

X5 | X3 S

i-1,3,04,3,k-1 |i+1,5k-1
i-1,3.k | 1.5,k [i+1,i,k
§o1,3.00 4,5, k+1 [i+1,3,k+1

-
e
s

/

i,j+1,k-1

i-1,5+LKi, 540k 41,34,k

1,+1,K+1

Figure D-1. Three-dimensional grid system with subscripting used to
develop the finite difference form of dispersion equation.

Substituting equations (D-11) into equations (D-10) gives

i._ = C.H'] !j!_k i Ciajsk s (D_'Iza)
1 its2,d,k .o B

3 Gk gk T gtk T Stk
|2 )141/2,3,k &ixa

(p-12b)
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Ci5.k-1 "
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Ci+1,5,k-1

[gg__] _ bk
4Ax
1+ 3

(D-12¢)

Similarly, for a point on the boundary between cells (i,j,k) and

{(i-1,3,k), the spatial derivatives are

¢ - Sadak ” Me1,00k (0-132)
X } e A . LI

1i=172,3,k 1 -t
3 St S Sgank T Ggek
™o lia1/2,4,k L Ay -

- ' (D-13b)
and

3 G T G,k T St~ S,k
*313-1/2,3,k 40x4

, © (D-13c)

S N Tl

By using a centrél finite difference scheme, equation (D-9) may be

written as ' 77 o

. I(DH‘PS MXoBX4 ax1)1+!§ i,k

(r‘hs),,(1 = (¢SwM2M3)1,j.k l Axy

(0¥ 65, Ax,Axy 26 (D¥, 05, Ax )
117w 273 ax] 1-1/2.1, k, 127w Z 3 3—_

X2 1+1/2,1,k

Ax1 ‘ Ax

aa
aC - : )
(D ¢S, Ax ) (D ¢sAx
12w233x2”/2ij 13

S .

- aC

B o &y N

) -



202

(D05 AX,AX, 2E-)
1392273 Bxg 1445k

Axl

(D-14)

Introducing Equations {D-12) and (D-13) into equation (D-14) gives

*
_ 1 (031 85,8%58%3) s, 3,k Caat,g k= 4,510
(rhs)x (¢S AX X ) 2 ’
: 1 2°73'1,34k ‘ (Axl)
Y N GRS R U

4
(ax;)

*
(D205, 8%o0Xa) iun 5y (€4 41 * C1+1,J+1 k- Cilenak T Sie1,3-1,K
AAX . A
18%;

*
(D188, M%p8%a) 5 1 5 1 (€4 31,k * Cio1, 01,k = Caug-1k = Gim1,9-1,K)
4Ax1ax2

(013¢5wA*2“x3)1+g,3 K15 ken * Cqa1,g ket~ Ciagkel T Cind,g ko)

+
4Axléx3

- G5kl ci-lsj,k—l)}

(D-15)
& 3 * .
Coefficients of the form (Dll¢swax26x3)i+%,j,k will be calculated

*
(03305, A%p0%3) 18, 5,k (Cigaken * ©

4Ax1Ax3

i-1,j,k+l

using arithmetic mean, i.e.:

(D 113 szAx3)1+y 5.k = 0, 5[(Dll¢s szAx3)1+1 ikt (D 1¢Swa2Ax31 F;]
D- 16

Thus, the coefficients of concentration in Equation (p-15) are of

the form H ‘
* * *
(D 1¢S szAx3)1+/ ik . [(011¢Sw)1+1,j,k * (D11¢Sw)i,j,k] (D-17)

In a completely analogous development to that used in equations
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(D-10) through (D-16), the xz-derivative and xs-derivative on the
right hand side of equation (D-15) may be obtaiﬁed. An explicit
form of the left hand side of equation (D-5) is

cttl e L y
€L ko Lk (D-18)
To simplify notations, the following definitions are made:
) L
+ _ [(Dll¢5w)i+]_’j,k + (Dllq)sw)'i,j:k] At
e - 5 , (D-19a)
11 ZAX1(¢Sw)i,j,k
* *
- _ [(Dgy95,)51 h t(D598,)5, 5,60 A (D-19b)
o ; ’
1*1 | (0505 50 |
+ [(Dy05,,) +(Dpp85,)5 5,00 &
£ - gt Cotidigd (0-15¢)
_ [(D #S. ). + (D ¢S, ). ] At
Exzxz _ 227w i,3-1,k 2277w 1,k , (D-19d)
213)(2(<15$W).I 3.k
* : * '
e - [(Dasq’sw)m,k{l * (O33%)i,5,6d (p-19e)
XX ,
3%3 ZAX3(¢Sw)i ik
£ - [(0385,)5,5, SH + (D08, a2 © (D-19f)
XX ,
3*3 2Ax3(¢sw)1,‘],k
M BAx, X145 » ’ (b-1%9)
X1%2 2 ¢ W 1sds k 'ﬁ ' |

* :
LS )i g (0108,)g 5 0 At _

Fxx, = BAX AX, (S Vs + s (D-18h)
S1M2cree gy 11 1R Tedokennrsmyain ariny gniiuise
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* ' *
L D009 g+ (D504 ,5,] 2
XoXq P 8Ax1Ax2(¢Sw)1 .3,k
* * '
- i [(0,165,)5, 5.1,k * (Pp19S,)4 4,4d AF
XoXq 8Ax1Ax2T¢S )1 3.k
o - (03398, i1,k * (P138)i,3,40 8¢
X1%3 8Ax Ax3(¢S )1 ik
g - [(D13¢S )1 ].J k + (D 3¢S ) k] At
XqX3 8AX Ax3(¢S )1 .3,k
* *
¢ o M)t (O 3195 11g 4
X3¥1 BAx %3085, )5 5,k
*
G; w. - [(D31¢Sw) + (D 31¢Sw)1 J k] At
371 BAxle3(¢S i.3.k
* * At
oo 008y s+ (PaatSy)y g
XoXq i 8Ax2Ax3(¢S )1 .k
*
o HPatSy)i 51 (Dp385,) 1,54 ¢
XX 3 _ BszAx3(¢S )1 J k
%*
H: w. = [(D3Z¢Sw)1 ,ktl * (D32¢S )1 vJs k] At
372 BszAx3(¢Sw)1 L3 .k
and
* ) . .14 * o :;..:
. [(D3088,05, 5,617+ (D3p98,)¢ j,4d B

(D-191)

(D-19j)

(D-19k)

(D-192)

(D-19m)

(D-19n)

(D-190)

(Dflgp)

(D-19q)

(D-19r)

Using equation {D-18), the notation of equations (D-19) and sub-

stituting finite difference approximations for all concentration
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derivatives, the explicit form of equation (D-5) becomes:

t+1 t y ot t

Sk = Sak P Box (Ciagk T Gigad -
- t t + t t

By gk = Songd b Bgx, Gk = Gignd -

11 2%2
- t t + t t
. . - Cv . + C. . -C7 . -

- t t + t t

Exxs C,5.k = S4L5.k-1) * Fxox, (€4, 41,k * Cien, 341,k
3%3 1%2

t t - t t

Ci,3-1,k = Cis1,j-1,K’ Fx % (5 541,k * Ci-1,5+1,k
t t + t t

Ci -1,k - Ci-1,j-1,k} * Fxpx, (Cian,5.k * Ci+1,541.k
t ot . t i

R N R L R N D S
t t + A » t

“ngie TG T S gk T Gy e

t t -t t

Ciy.k-1 = Cit1,5,k-1 - Sy x, (Ci1,5.k¢1 * Ci,3,k+1
t t + -t . t

Ci5.-1 = Ci-1,5,k-1) ¥ Gx3x1 (Ci1,5,k01 Cis1,5.k
t t - t t

Cangoket  Ciengkd T Sgxg gk T Ciegker C
t t ¥ t t

Gtk - Cianikel) t Hx2x3 (€5 5,41 & Cf,5+1,k+1
t t - t £

Cigk-1 - Ci,je1k-1) - Hx2x3 (Ci j-1,k#1 ¥ C4,3,k+1
t t + t t

i 5-1,k-1 = Ci,j.k-1) F My %, (Cf ge1,ke1 + G j+1,k
ct ct y - Ho . (ct + ¢t
i’j-19k+]— ijj-]-’k XBXZ .i,j+1,k .i,j"l'l’k-].
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t

. s Ct : )s (D-20)
'i,j-l,k 1sj'lsk'1

C
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APPENDIX E

FLOW CHART OF PROGRAM

( Rt ?

Read Data

Call READIN to in soil and fluid properties,
1n1t1a] conditions and boundary conditions

,l

Establish the two-dimensional grid system,
i' constants and other parameters

Call INICON to initialize the

{ coordinates and concentration of each
: ~ moving point

Call INIPRT to print
) all initial, information...

S A P

o A - b
-

Calculate 1n1tié] mass storage for
T water, air and tracer .

' I I

DRI LT A

O—
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#

Calculate a time step size based
on assumed maximum allowable change
in water saturation

Set number of iterations on
the flow equations equal to zero

®

Increment the
number of iterations

o T

Update the relative water and air permeabilities
using an average value of water saturation based on
the present time step and previous time step or iteration

L

Set up matrix for flow
equatfons using MATSOL

'

Call BSOLY to solve the
flow equations by Gaussian elimina-
tion to obtain water pressures

1

Update the air pressures using the
capillary pressure at the previous time
step or iteration and new water
pressures

I

Solve explicitly for water and air
saturation changes at new time level:
using just computed water and air pressures

&




l

:"saturat1ons using the old saturat*dns ‘,
and saturation changes this time step

i

Compute new water and air |

g
-

.

FRREE

Compute saturation er}or,_;
that s, 1 - (5,#S.)

209

Is Too
saturation many
error too

iterations?
big? ' i

Yes

Compute maximum change
in water saturation

Too
much
saturation

Decrease time
step size

hange?

No ‘\

Call VELOCY to calculate velocities at each
grid interface, Peclet number, the longitudinal
and lateral dispersion coefficients, and the

components of dispersion tensor

step size used
in flow equations
too big for dis-~
persion

Decrease the time
step size into sev-
eral increments

ection?
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I

call MOVPT to determine velocity of each point using a

three-way interpolation scheme and move the point to a

new location. Points moving out of the system are re-
entered at inflow boundaries. Also, new points are
added to the system as points tend to move faster at
inflow section. The average grid concentration is

determined based on the moving points
concentration in each grid.

Call DISP to compute change in
concentration due to dispersion. The
average grid concentration and each mov-

ing point concantrgtion are corrected for
this dispersion

increments for

No dispersion section

completed?

Increment the
simulation time

Call MATBAL to perform a material
balance for air, water and tracer

Need
a printout
. on material Yes | Print material
© . ;. balance - balance errors

- errors?




No

No

Need
an output an
plot of moving
points' concentra-
tion map?

No

Total
number of
time steps
exceeded?

‘Has
finish
time been
exceeded?

Yes

STOP

211

v

Print water & air
pressures, water satu-
ration & saturation
error maps, veloci-
ties, components of
dispersion tensor,
average grid concen-
tration & moving
nggts' concentration

Yes] stop




APPENDIX F

FORTRAN IV COMPUTER PROGRAM

-

i

b

Clittit..““i."l..‘l‘.it‘.tt#tl.t.i‘t“t‘tttt#littt‘#“tttt*#‘tt.ttttt

C
[ <
C
c
[4
[ o
c
C
C
C
[
C
C
C
C
C
C
C
[
C
C
[
14
C
c
[
C
c
-
[+
C
c
<
C
Cc
C
C
[
=
C

c
c
c
c
c
c

.
c. .
<
c
c
<
<
<
¢

(RN E R RN ]

NUMERICAL SIMULATION OF TwO-PHASE FLOW AND DISPERSION
IN SATLRATED-UNSATURATED POROUS NEDIA

THIS PROGRAM SIMULATES TWO-DIMEANSIONAL, TwO-PHASE
LAIR-WATER) FLOW AND M1SCIBLE DISPLACEMENT OF TRACER
(N A SATURATED-UNSATURATED: NONHGMOGENEOUS.ISOTROPLC
EOROLS MEDEA WITH A HOMOGENEDUS FLULDs THE HOUNDARY
CCADITICNS ARE: INFILTRATING SCURCE ON THE UPPER
G6GUNCARY OF ONE UR MORE OF SUHFACE GRIDS: CCNSTANT
FEAD RESERVOLRS CN THE LEFT & RIGHT HAND SIDES UF
TFE MGDELe THE INITIAL CCADITICAS AHE! NON-UNIFORM
WATER PRESSUHE £ CCNSTANT ATMUSPHERIC PRESSURE AND A
NCR=DIVENSEONALIZED TRACER DISTRIBUTIGN. THE MAIN
PECGRAM [5 THE CCNTROL PROGRAM AND DIRECTS THE
SECUENCE OF DPERATIGNS FGR SOLVING TwO-PHASE FLOW
EGLATICNS AND THE DISPERSICN LCULATION. APFRCPRIATE
SLERCUT INES ARE CALLED AS NEEDED TO MAKE THE NECESSARY
CALCULATICNS. i

THE PROGRAM LISTING THAT FOLLOWS AND ThE DIMENSION
STATEMENTS ARE SPECIFIC TO THE DRAINAGE PRCBLEM
CESCRIBEL IN CHAPTER V. FOR A DETAILED DESCRIPTIUN OF
TFE ENIT1AL AND BOUNCARY CONDITULONS, REFER TU CHAPTER V.
THE FRGGRAM WRITTEN IN FGRTRAN LANGUAGE w#AS RUN TN
ANCAHL 470¥/6 AT TEXAS AEM UNIVERSLTY DATA PROCESSING

) CENTER ?

¥

T+HE FOLLOWING VARIABLES ARE USED THROUGHOUT THE MAILN €
SLUBRCUTINES Gasssnneer “

e

o NUMHER OF COLUMNS

.., WNR = NUMBER OF ROWS
DEL Z = SPATIAL INCRENENT [N Z=-OIRECTICK (CM)
DELX = SPATIAL INCREMENT 1IN X-DIRECTICN (CM}

. DELT = TIME INCREMENT (SEC) :

" DELMLT = MULTIPLYING FACTOR FOR TIME SYEP SIZE

DSWMK & MAXTMUNM ALLOWAHLE wATER SATURATION CHANGE
IN CNE TIME STEP SR .

1STEP 4 NUMBER CF TIME 5TEPS :
1TER = |TERATLIUN NUMBER [N‘A TLME STEF
MAXIT % MAXIMUM NUMBER OF LTERATIONS PER TIME STEP
MAXST = MAXIMUM ALLOWABLE WUMBER OF TINE STEPS

IN THE SIMULATION
. P = WATER PRESSURE ICM CF WATER) AT THE
' PRESENT TIME LEVEL ~ = TR

u
-
W

AIR PRESSURE (CM OF WATER) AT THE
U PRESENT TIME LEVEL" " oo ®
PC 2 CAPILLARY PRESSURE ' {CH OF ‘WATER) AT THE

PRESENT TIME LEVEL E

“T'odcaAvE 4 WATER PRESSURE (CM OF WATER) AT THE

Taf LI

\ .. " PREVIDUS TIME STEP OR ITERATIGA B
S "' GATER SATURATLON AT PRESENT TUIME STEP

.
*
*
&
-
*
*
"
*
*
»
*
*
.
*
*
L ]
*
[
*
*
*
'
*
L}
&
]
-
»
*
*
»
»
*
*
»
*
*
*
*
&
*
*
.
&
-
*
%
»
*
-
*
*
*
]
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[ SA = AIR SATURATIUN AT TRE PRESENT TIME STEP *
[ 55 = WATER SATURATION AT FREVIOUS TIME STEP oRr L
c previous 1 TERATLON *
c FINTIM = TOTAL SUMULATICN TIME {SEC) "
C TIME = CUMULATIVE SIMULATION TIME {5EC) *
C HOURS = CUMLLATIVE SIMULATICN TIME {HCURS) *
C WKTAB = TAUULATED HEL . WATER PERMEABILITY VALUES () *
C AKTAB = TAUULATED REL. AIR PERMEABILITY VALUES (.1} *
[« PCTAB = TABLLATED CAPILLLARY PRESSURE (CM OF wATER) *
C SWTAB = TABULATED WATER SATURATION VALLES () *
< wK = RELATIVE WATER PERMEABELITY () *
c AK = RELATIVE AIR PERMEABILITY (.) *
C viSw = WATEH VISCOSLTY (GM/CM/SEC) *
C viSA = AIR VISCUSITY [GM/CM/SEC) *
C RhOwW = WATER DENSETY I[GM/CW*63) *
C R+0OA = ALR DENSETY (GM/CM®#3) *
C SATPER = SATURATED DR ABSDLUTE PERMEABILITY (CM/SEC) *
C SATP = SATULRATED PERMEADILITY {CM/SECY « 2-D ARRAY *
C G = ACCELERATLION CF GRAVITY [CM/SECH®2) *
< PHI = PURCSITY B *
Cc PSOURC = WATER PRESSURE OF INFILTRATING SOURCE {CM) -
C NC1 = BEGINNING CCOL. NO. CF UPPER SURFACE UUUNUDARY *
c NC2 = ENDING CULs NRCo OF UPPER SURFACE BOUNDARY *
c IERINT = COUNTER TU WRITE ouTPUT -
C [FAC = INTERVAL AT wHLCH SUBROUTINE GLTPUT IS CALLED *
C ITENSR = 0 FOR NU TENS0R TRANSFORMAT EUN *
[ 1 WITH TENSOR THANSFGRMATICN *
c I5K = @UMBER OF DATA POINTS 1IN SOIL PROP. TABLE *
C DELMAX = MAXIMUM ALLOWABLE TIME STEP SIZE {SEC} *
C DELMIN = MINIMUM ALLOWABLE fIME STEP SIZE {SEC) -
C - TOLRNC = CONVERGEMNCE CRITERICN *
C HA = LEFT HAND CONSTANT HEAD RESERVGIH ELEV. {CM} *
(= HB = RIGHT HAND CONSTANT HTAD RESERVOLIR ELEV. {(CTHI *
c NR2 = STARTIMG ROW NGe. FOR LEFT AESERVOIR *
[ NH3 = STARTING ROW NO« FOR HIGHT RESERVOIR *
C F ¥4 = ELEVATION HEAD AT CENTER OF GRID (CM) *
C *

Ctitt‘t#it“i‘i#‘*#i#‘n*t####tt‘t.#ti“lt*“‘t##‘l#ti#?ilttttit#t##‘t.ti

c a
C M A I N P R 0 G R A M *
C .

C.‘t##*‘*"t‘1“i““"#i#ti*i‘..*‘*‘*‘.‘t.‘*t‘#“*‘t*‘#‘*t*“"#t‘.‘.t*
C .
INTEGER 1STEP
DIMENSICKN PCTAE(Zz).ShtABlzzi.lKTAB(ZZI.AKTAB(22].PC(l?.lZl-Pu(l?-
lIZl.PSAME(l?.lzl-PA{I7.12).5H(I?.12lo55{l?-lzl;SA(lT.IZ!.hKl17.12)
Zc‘KIITQIE)onsh(l?lIZ’tVlSA‘lTnIZ..RHU"17012)nﬂhﬂﬁ(l?le’-S‘TP(IT
3.'2’-‘.(l?llthBﬂ‘l?'lZ).UTlIT,OSERRGRIl7.[2}941‘l7912’QSIAEIZZ'QC
40N511|I?-2).CCRET2Il?.zlncﬁNST(ITolzi . .
DIMENSICN vxl19.13).VZ(IB.l#!.x(45003.2(45Q0icC(ASOO).SUMC(18613).
lCOUNI(lEaIJlsCAVGIlB-l3D.DxIIT.JZJ.DZIl?.lzl.Dlel?-IZI-DELC(IB.IJ
21 ‘
DLMEANSICA CAVGSVILB.12)
COMMON PCTAB.S'rAE"KTAanﬂKTAB.PCan|PSAVE|PA-5V055nSA.ﬂKOAK.V
- IS'OVISA.RHGW.RHOA.SATPaAI:B'-WT.SE“RUR.ZZOCCNSTI.CONST
ZIXQZOC.VXOVZQSU“C.CCUNTOCELC‘CAVG.DKODZ.D‘ZoSTABoDELK-
DELZ'OELT'SAIP&HOPHIOG'C“HCIPSOURCIHACHH'DELMLT.TCLRNCG
DSUPK'DSNHAK'AXQﬂz-‘XZ.ALENX.ALENZ.CONST.UNEQT“D.FOURlH
ALF y2ZERO,DELTL, DELTZoDlAvBIFFISOLNC‘lslf.hﬁﬂloNcnloNRN
2.5CM20NR2,NR3|NCI.NCE.NDELTU!S‘.IF“IBT.IFACQLUGCIIERQI
A-lﬂulC.lD.lE.lUMl.lDFI-NﬂMl.TSTEP-IPC-ISK.ISH.ITENSR.I

~NORAREWN-
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] CHECK s ISWICH, IRES . 1STEDY » IFPLOT 4 IWRITE NN+ EVEL 4 ICLUG
DATA TA‘NtTﬂUL'oTAUT|T-INUTIUUTQTHEN.T'UToTSlﬁo?SUUT.US.AS.CSn'IS
1 2AIS SIS 7/ 0e00v0+0eCe000e0e080+040:000s0404040:50.040.04
2 0s040s0s0eCh 020 /

READ (S+1) NRs ANC
READ {S+2) ODELXs DELZ
READ (S+2) ALPHA
NRM1=NK=1
NCM1=NC=-1
NRM2=NR=-2
ACM2=NC=2
NCPi=NCH+1 o o o
NRPL=NA41 R e
NG=RRMZSNCH2
tF {NC .CE+ NR) GO TO 60
NW=2¢NCNZ+]
1IC=NCMi+]
Go TC 21

. 60 NW=2%NRNZ+1
LC=NRMZ +1

21 tB=tc~1
10=1C+1
1A=1
IE=NYW
NWMI=Nw=1
[uML =IE=-1
{OP1=LO+1L
ONE=1,.0
TwO=2.,0
ZERO=0 .0
FOUR=8,0
HALF=0,2
CALL REACIN {MCs N2, NMAXIT, MAXST, TINE, FINTIM, DELMAX, DELMIN)
AX=TWOsLDELX/DELX "
AZ=TwO/CEL2/DELZ
AXZ=HALF/CELX/DELZ/FOUR
DO t01 1=2.NCM1

101 ZZ(Ll,2)=HALF*OELZ
DO 102 [=2.hCM1
D0 102 K=3,MRM1

102 ZZ(1 K)=2Z(1.X=-1)¢DELZ
TSTEP=0
FINTIM=FINTIN®I6O00,
CALL INICCN (NCs NH: NCPLs NRPLs NPZ, NPXs CAVGSV)
CALL INIFRT {RCs NRs NG+ NW,MAXIT, MAXSYs NPZs NPXeTIME, FINTIN. D
1 ELNAX, DELMLN) )
AR=DELX#CELZ#CNEAPHIL

C
C evesdns CCMPLTES THE INITIAL MATERIAL EALANCE FOR AIR+ WATER
C AND TRACER sesessasbessrIbre ’

D0 430 K=2:ARMI1 _
DO 430 [=2.ACMIL : '
SA{L +K)=CNE=SW{I+K)
SIS=STIS+CAVGL LK )*SWL LK} ‘ !
WIS=slS4Sn{l+K}
430 AIS=ALSH+SALL4K)
WISTRISHAR
AES=ALIS+AR
$15=SIS4AR
DSWMAX=2ERD
DELT=DELMIN/DELMLT
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SAREA=DELX#DELZYG
1000 CGNTINUE
TSTEF=T1STEF+1
DETOLO=CELT
[ o
C sssehen
DELT=DELT*DELMLT
IF (DSaMAXSDELT/DETOLD +GTV »
SMAX)
IF (CELT LT,
IF (DELT «GT.
IF (DELT+4+TIME
TAEN=TAILM
TAUT=TACLY
TWEN=TRIM
TaLT=TwELT
w51=WS
ASt=AS
Cs1=CS
ITER=D
DO 6& k=22 4MRM]
DO 66 [=25sMCM1
PSAVEL I +K)=PwillK}

CELMIN}

b6 SSUI1.K)=Swlil.K)
52 [TER=IYTER#1
I[Sw=0
CALL MATSOL (NC, NRs
IF {ITER .CE. MAXET) GO TO
IF (ISw +EG. 1) GU TO %2
500 CCATINLE
DISAVE=DELY
DwIN=ZERC
UwOUT=2EFOQ
DALN=ZERCG
DAQUT=2EFRD
DSIN=ZERC
DSQUT=ZERQ
NDELT=1 :
CALL VELCCY {NKCys NRs ANCPL,
DO S000 KKKK=],ADELT
iIF (LSTECY «EQs 1) GO TO &5
DO S4) K=E1+NR
DO 5S4t §=14NC
CAVGSV(1.K)aCAVG(T K]}
SUMC{14+k)=0.0
541 COUNTII+K)=0.0
IF [NDELT +EQs 1} GO TO 656
IF (KKKK «EQ« 1} DELT=DELTI
IF (KKXK #2GE« 2) DELT=DELT2
656 CChTINUE
CALL MOVET {NCy MRs N
CALL DISF (NCs AR)
650 CALL MATEAL (NCs NRs TAOQUT,
1 TSOUTs WS, AS,
2 As ARy TAIN,
3 KKKK, DTSAVE.

5000 CCNKTINUE
WRITE {(€,1%%) TETERP, LOG
WRITE (€.,425) MNOELY
[d .
C CHECKS IF A PRINTOUY

SELECTS A TIME STEP SILZE

NG

DSWMX } DELT=DELT*DSwMX*0Q,9/({DELMLTADSW

LDELT=DELMIN
DELMAX) CELT=SDELMAX
+GTe FINTIM)} DELT=FINILM=-TIME

My ALPHA)

500

NRPL)

[+ ]

CP1+NFPLy MPZ,y NPX)
TWEN»
wiSe

DWOUT 5

TWUTs TSIN,
AISs SIS« SARE
D51IN. DSQUT,

TAUTs TWiN, TWwCUT,
CSs mS1. ASls CSl.
DAIN, DAOUY. OWIN,
TIME, CAVGSVs TAEN)

1S NEEDEO

[ EXERNNERERNRY ]



IF (ISTEF «NE. IPRINT®IFAC) GO YO 900
IPRINT=IFRINT#1
CALL GCLTPLT {NC. Nde NCP1s NRPL)
900 CONTINLE
1F (TSTEF .EC. MAXST) STOP
IF (TINE +LTs FINTIM} GO TG 1000
sTaP
1 FCRMAT (4110)
2 FORMAT (ZF10,3)
199 FGRMAT (71X, *TUTAL NUMEER GF MOVING PULINTS IN THE SYSTEN AT T
SHE END CF TIME STEP',I[5, * 15 =*¢, [ }
425 FCRMAT [ LXs * AUMBER GF TIME [NTERVALS ON DISPERSICON SECTION IN D
SELTA-T a2¢, [4/} )

END
c ’
Cttt#‘t‘*ttit0'!‘*‘#..‘t“l*#*t‘tt#.#####ttittii#i#.##t‘t#ttiﬁlt‘t*tt#it
c i *
c § u 8 R 0O U T I N E R E A D [ N *
c ‘ ’ *
C##tii‘*t#““tt.“*‘Ql*##‘#“‘i‘i‘t‘t*‘ttt#ittt#ttt#ttttttitttt**‘tt#t*
c C o . . 3
c THIS SUBROLTINE REACS IN THE PHYSICAL LATA NEEDED TO *
= SCLVE THE PROBLEM 7 o E *
C ) " -

SUBROUT INE READIN (NCé NRe MAXIT: MAXST. TIME, FINTIMs DELMAX,s DEL

1 et : MIN)

INTEGER TSTEF

DIMENSICN PCTAE(22),SWTAB(22 ), WKTABL22) 4AKTADI22),PCILT412).PWIIT,
1123 PSAVEC 174120 +HAL1 7412} 45WLLT 12 sSSUIT412)sS5A01Ta12)swkilTy12)
2o AKIET ¢ 12)oVISWIITL 121 VISALETe12) +RHOWCL7412)+RHCALLIT12)405ATPLLY
3,120 3Aul174128BRI17,412)sWT{17)+SERROACIT12).ZZ1tT+12)4STAE(22).C
ACNSTIL1742)CCNST20174209CONSTELT0 12}

DIMERSICN VX(15+13)4VZL1B8413),X{3500)4Z1a500),C{a5G023UMCLL80ET00
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lCDUNT(le;l!}-CAVG(13013)|DX(17-12}-DZ(l?-lZ)-Dlei?-lZ)uDELCGIB-IJ

2)
COMMON © PCTAB4SWTAB UKTABAKTABPCsPW PSAVE ,PAsSW 1SS eSA WK AK oV
L ISWeVISAIRHCWiRHOASATP ) AMHW s WT s SERRORS Z2Z,CONSTY JCONST
M 2iXi2iCeVXeVZ 4 SUMCCOUNT s DELC i CAVGsDX4D2.DXZs STAD,DELX
* DELZ,DELT s SATPERPHL ¢ G+CRHC 4 PSCURC oHA o+HB s DELMLT s TCLRNC s
Fiv % NEynK sDSWMAX s AX s AZ s AXZ e ALENK 4 ALENZ 4 CORST «ONE s TWU s FOURWH
ALF «2ERQ +DELT s DELT2iDIADIFF.SCLNCs ISAT¢NRMLINCML s NRM
Tt TR a N CM24NRE GNRI,NEL s NC2NDELT 4 ISLLIPRIAT 4 IFAC.LOG [TERW L
T TR N B IC IO IE41EML . IDPL ¢NWM] 2 TSTEP . IPCo ISK. ESWa ITENSR I
CHECK s 1SWICHs IRES« ISTEDY, IFPLOT . IWRLTENNLIVEL,.ICLOG
READ {%,1) IPRINT, IFACi ITENSR+LRES+ ISTEDY. IFFLOT: IWRITE
READ {£4Z) Phle. G PSOURCe NNy LVELs ICLOGs ICHECK, ISWICH
READ (%,1) IPCs [SKe NC1, NC2 ’
READ (%,1) TINE, FINTIM; DELMAX; DELMIN
READ (54+01) MAXITs MAXST - e
READ (S.%¢) TOLANC erE o
READ [S4+11) KA, FB:s NA2, NR3s DSWMX, DELMLT
READ [5:6) [SWTAE{L) oWKTABII)+AKTAB(I},PCTABLI}s E=120E5K}
DO 12 K=Zu.hRMIL
12 READ (5,10} (PW{l«K)se I=2,NCH1)
DO 14 k=2,ARM1
14 READ (2,8) (SATPLIIsK)s 1=2,NCML}
RETURN "' : : ,
FORMAT (7110) v - fano
FCRMAT (3IF10.3, S5110) ot g !
FORMAT (aF10.3) '
FCRMAT {Q8EL10.3)

BRI -
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5 FORMAT{F1€&.3)

9 FCRMAT (4F10.4)

10 FORMAT (EF10.0)

11 FORMAT {2F10.2+,2110.,2F10.5)

END
C
Ci#tt##.‘*tt#ili1‘.‘4#*###'ttttt‘ttt*tttttttt#tt.#t##tt#ttt#ttttttttt#tt
c *
C s U B R O U T I N FE 1 ~ I € © N -
[ *

Ct#i*#t‘t.'tii#..itt#ti‘!i*t‘t*tttt‘tt#ttl.‘tttitttt?tiitttitt##tt#t#ttl

THIS SLOBRCUTINE DETERMINES THE INITIAL Xx-2Z COORDINATES

GF THE MUVING POINTS AND ASSIGNS AN. INITIAL CCNCENTRATICN
1C EACH CF THE MOVING POINTS, ThE MOVING FOINTS ARE
INITIALLY UNIFORMLY DISTRAIULTED THRUUGHCULT THE GRID
€EYSTEN,s INCLUDENG THE BOUNCARY GRIDS.

Is1 = RANDCM SEED MLMBER

DIFF 2 MUOLECULAR DIFFLSLON COEFFICLIENT [CM*¥2/5EC)

DIA = MEDIAN GRAIN SIZE CIAMETER (CM}

SCLNC = NUON-DIMENSIGNALLZED CONCENTRATION OF THE
INF ILTRATEING SOLUTICN . '

x = X-CCORDINATE UF MOVING POINT

Z = I=-CCGRDINATE GF MOVING POINT

c = NON-OIMENSICNALLZED CONCENTRATICN OF
MOV ING POINT

NP X = NUMBER OF MOVING PCINYS PER GRID IN

. X=D IAECT ION
NPZ = NUMBER OF MOVING PCINTS PER GRIC IN
. . Z~DIRECTILOUN
NEX#NPZ IS THE NUMBER OF MOVING POINTS PER
GRID EINTTLALLY e

X 2 FLOATING PQINT DES IGNATION OF NPX

Pl = FLOATING POINT DESIGNATICN OF MFZ

NP1 = NUMUER OF MOVING POINTS [N 2-DIRECTYION

- NF2 = NUMBER CF MDVING PCINTS IN X-DIRECTIONS
NP1 #NP2 15 THE TUTAL NUMUER OF MOVING
PAINTS INITLALLY IN THE SYSTEM

SUMC = SUMMATICN OF CONCEATRATICN OF MGVING POINTS

IN A GRID :
CEUNT = A CCUNT OF NUMBER OF NOVING PCINTS IN A GRID
CAVG = AVERAGE MNON=-DIMENS ICNALIZED CCNCENTRATICN

OF TRACER = SULMC/CCUNY

CAVGSY = CAVG AT PREVIOUS TIME STEP

DELC 2 CHARGE IN CCNCENTRATION DUE FO DISPERSION

NIl = COLUMN NUMBER OF GRID 1IN wHICH THE MOV ING
POINT IS LOCATED

NL2 =

**Ql!.i’ll"}**l‘i"ki*!f‘l"iillﬁ."il’lll‘

ROW NUMBER OF GRID IN WhiCh TFHE MOV ENG
POINT 1S5 LOCATED <. .

Of\ﬂlﬂﬂf\n(ﬁf\ﬂr\ﬂf\ﬂt\n(ﬁﬁf1ﬂt\ﬂlﬁﬂt\h!1n¢\ﬂf\nf\nlﬂhlﬁﬂlﬁn

SUBRCUTINE INICON {NC, NRy 'NCPLles NRP1, NPZs NPXs CAVGSV)

INTEGER TSTEP :

DIVENSICM FCTAE(ZZ!nShTAE(ZZ)-!KTAB(ZZ’.AKTAEIZ2)-PC(I?.12)-PH(ch
llal.PSﬂVE(IT.lal.PAll?.lE)-Sﬂ(IToIZ)-SSIl?elElcSA(lT.l2loUK(l?olZi
Z-AK(l?-lZi-VISW(l?olZ).VlSAllTolZ)-RHBH(I?.I?J.RPDA(I?.IZ}.SATP(IT
3;I2).Ah(l7-lEl-BHll7olZ)uthl?)uSEHROR(l?;lZ).&lllTolZl-STAE(ZZ!-C
BONSTL{1T7+2)CCNST2(174+2)2CONSTI17,82)

DIMENSICN VX(I?.IJ"VZ(IB.IQ)-X(4SQOJ-Z|4SOD)-C(&EOO)-SUMC(IB-IJ).
lCﬂUNF(lEoIJ)-CAVG(IS.IJ).DXI17.12}-DZ(lT.IZ).DxZIITanJ.DELClIB-IJ
2) '




DIFERNSICKh CAVGSVI18,13)
COMMDN . PCTAEsSWTAE +WKTARAKTAHPCoP R PSAVEsPAISH 55 45A: WK AKWY
ISWVISAsRHUM +RHOA+SATP AWsBW s #T ¢ SERRCH, £Z4CONST1 ,CONST
C2aXed WCe VX s VZ s SUMC 4 CCUNT .BELCcCAVG.DXquZ|DKZ.ST‘H.UELK'
DELZsDELT o SATPERPHI +GsCRHOWPSCURCsHA +HD ¢ DELMLT . TOLRNC »
DSWNX +DSWMAX s AX e AZ o AXZp ALERK s ALENZ s CONST ¢ CNE» TWU o FOURGH
ALE s ZERO+OELT1s DELT2+DIA¢DIFF «SCLAC + [SAT ¢ NHMT o NCMT o NRM
2 NCHMZ oNR2 sNRIsNCLoNC2aNDELT s 151« IPRINT, [FAC,LOG, ITER
A-lB-!C.ID-IEoIDMl.lDFl.NuNI.TSTEP.IPC.!SK.!SI.!VENSR.l
CHRECK ISWICH. IRESs ISTEDY s IFPLUT LWRITE s RNo I VEL 4 TCLOG
HEAD [E.1) NPZ, NPX, 151 ' . . ;
READ (S£4+2) DI1FFs SOLNC
NP I=NPZéNR ‘
NE2=NP R #RC
LOG=L-AhF1
NOG=0
PX=NPX
PZ=NPZ
ADISZ=CELZ/PZ
ADLSX=CELR/PX
ALENXZDELX¢NC
. ALENZ=CEL2Z¥NR
DO 37 kzlehR
00 37 I=1sNC
SUNMCI{E eKk)=04
COULNT(I.K)=0.
37 DELC(T+K)=0.
DD 90 I=14NP2
DOG= -1
XD=ADISX#{HALF +DODG)
LDG=LOGHNPI i
NCG=NOG1hP1 _
00 90 K=zLCG.NOG .
DOG=K-LLCE
ZIK)I=AC ISZ&{hALF +D0OG)
Xt{K)=XD
IF (X{K]} «LTs { NCl-1 )*DELX} GO TO 35
IF [2{K) +GT. DELZ) GC TO 35 :
IF (X{K) aGT. NC2+DELX) GO TO 35
C{KI=1.0
GO TG 3¢
35 C(KI=0.0
36 CONTINLE
o NII=X{K)}/DELX+1,
NI 2=Z(Kk )/DELZ#1»
SUMCINI1sNI2I=SUMCINTI 1 +NI2IHCLK)
CCUNTINELaNE2)TCOUNTINLLSNTI2) 40,
90 CONTLINLE
DO 30 K=1,MR
DO 30 1=1.hC
IF {COLNTU{L+K} +EQe 040} COUNTULsK)=1,8
CAVGLI s R I=SUMCL 1 +K)/CCUNTL LK)
30 CAVGSVLII+KISCAVGLLI LK)
LCG=NP1#AP2
. RETURN
"4 FDRMAT t2110)
2 FORMAT { EL10.S, Fl0.2) . L
END ' -

CNOBPUN~

[
1

R T [ . : - -
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CREORAEREIRRN IRV AR AN UBRNEREEN AN A AN S SRR RN A ANR R Dbk h b b bAS bR R e bha bk a R
< . .
C s v 8 R 0o u T I N E 1 ] F R T »

C : *
Y I RN R R NN I T R R RN P Y2 PSR PR L R I E R T ]
[ "
[ THIS SUBFLCUTINE WRITES OUT ALL CF THE INITIAL DATA *
c '

C

E¥y LSE OF SUBROLTINE MATRCP ) L]

SUBROUT INE ENLPRT {NCe RRy NGy NWsMAXIT, MAXS5Te NPZsy NPX+TIMEs FIN
1 TIMy DELMAXe DELMIN}

INTEGER TSTEP

DLMENSICN FCTAEU22).SwTAE(22) JWKTABL22)AKTAB{Z22),PCi17,412).PWlLT,
L12)sPSAVELLT o 12)4PAT172123 50l ETal12)0S5S017.12)SALLT12) 4wk 17,12}
2eAK(17 4 12)oVISK{17 3120 VISA(LIT A l2)RHOWIL7422)RFUACITS12)sSATPLY
Fe12)aAWC17422) o IWCLT7012) WPl 1T) +SERRCALI17412)422(17412).STAE(22)4C
ACNSTIC(LT7+21+CCNSTRIET +2)4CENST(1T7,22)

DIMENSICHA YXTNS o131 4VZ(tB,18).,X14500),2(4%00),C(4500).5UMCLLIB.13),
1CCUNTLIB413)+CAVGILEBs13)sOXII7,12)3.0Z017482) 4 DXZ{17+121DELC{18,13
2)

CCMMON PCTAB +SWTAD +WKTAB s AKTAU s PC sP W, PSAVE s PALSW ¢SS eSA WK AK Y
ISAsVISALRBEWsRHOASATP s AR BW e AT o SERROR ZZs CUONSTY «CONST
23 XaZ2sCoa VN sVZaSLMCeCOUNT s DELC yCAVG DX B2 oDXZsSTASJDELX s
DELZ,DELT. SATPER,PHEwGoCRHC, PSOURC ¢HA 4 HE ¢DELMLY o TCLANC .
DSWMX sDSUMAX s AX o AZ s AXZ s ALERX JALENZ yCENST b ONE L+ TWO s FOURH
ALF2ZERDDELT1s DELT2.DIAsDIFF 4SOLNC, ISAT ¢KRML «NCHML 4 hRM
2sNCM2sNR2 shRIGNCE s NC2 s NOELT 4 ISL1.IPRIAT.IFAC,LOG.1TERW |
AsEBsIC e IDSs1EIOML L IDP LI NWF1 s TSTEP L IPCISK+ ISWITENSR, I
CHECK s ISWICHs IRES s 1STEDY . IFPLOT s IWRITE NN IVEL,ICLOG
WRITE (€41
WRITE (6+2) NRJNCsNGs hNWy ITENSR, IRES 1STEDY, IFPLOT,IWRITE
WRITE (€43) DELXDELZ+NCLyNC2+NNy IVEL, ICLOG
WRITE {€+4) Prls Gs» FSOURC
WRITE (€25) TIMEs FINTIN,DELMAX, DELNIN
WRITE {6+6) MAXITs MAX3T. TOLRANC
WRITE (6+12) HA, HBs AR2s NR3I, CS5WMX,s DELMLT
WRITE (£41C) NPZ, NPXs [S%1s DIFFs SCLNC
DO 30 K=Z.MRM1 !
DO 30 1=Z.hCNIL
PALL+K )=ZERC
IF (Pw(l:K) .GE. ZERO) GO TO 87
PC{IsK}z=Pu{[+K)
GO TC 30
B7 SW(LeKIZC.S9S
PClL+K)=ZERD
30 COKTINLE
CALL SLFROP (MRCe NRs O0s 1)
DO 40 K=Z.MIMI
D0 40 [=z2.,hCM1
PALLsKI=FC{IsKI¢Pu{LsK}
SS{]l eK)}xSWil oK)
VISW 1 K)=11SE~-02
RHCW (L +KE)=0.9567
VISA{T sk )=1.51E~08
40 RHOALLI.«K)=0,001224
CALL SLFROP INC, NRs 1, Q)
WRITE (€,21)
WRITE (6+18) (1 SWTAB{I) WKTABCL),AKTAB(I )} ,PCTAE(L), [=1.15K)}
WRITE (€.22)°
CALL MATRCF (MRCNLl,; NRNi. PW)
WRITE (£.11)
CALL MATROF (NCM1, NRM1s PA)
WRITE {(647)

TN W -

2y
M
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CALL MATRUP (ACNLl, NRNLl, PC)

WRITE (&.,8)

CALL MATYRGP [NCMLa NRML, Su) :
WRITE (6.49) ' .
CALL MATROP (NCHMEs MNRML4 WK} i :
WRITE {£.13) ‘ 4
CALL MATFOP LINCNLe NRMLG AK) t
JRITE (€414) ‘ i o
CALL MATRCF IMCMls NRNL, VISW) o
wRITE (€41%) '

CALL MATKRCFP (NCWM1e NRM1, VISA)

WRITE (€4+1£) ' o

CALL MATROP (ARCMEes NRM1: RHOWD 75
WRITE (€417

CALL MATROF (ACN1, NRAN1,: HHOA)

WRITE (€,2%) :
CALL MATROF (NCN1, NRNMLs SATPR) E J
RETURN :

1 FORMAT (1HL, 36Xs * #30d¥kskékTWO-DINENSIUNAL» TWO-PHASE VERTICAL
S$ELOW PRCELEMA®Idshnsss ¢/7)

2 FCRMAT (1Xs 'AR=F4[S45X+tTNC=24 15 ,5X, *NGRIVDS=® 4 [E4SXK+"NWIDTH=* 415
$4X,V 1TENSOR =-.|3.3x.'lnts =-.1:.3x.'tsrsov =-.13.3x.'|FPL0r =t,[3
S +3XL"TARITE =451 37) o

3 FORMAT (1% SDELTA=X {(CM) ¢ ;FB4038X4'CELTA=2 (CV) =*,FB8.7.+4Xi"NC1
8 =V, 184, 4XKeNC2 29,8 IXy VNN 0 o LI INGVIVEL =0 g1 34XV 1CLOG =Y413/)

4 FOHMAT {(1X4*PORCSITY =% ,FB+5,4Xi'G =" ,F104344%, "FSUOURC 2% E10.3)

S FORMAT L1Xs'TIME ([SECI45® oFt04f X' FINTIMISEC) =! 4F12,54¢3Xe"DELMAX
$(SECI=*yF1041 s IX,*DELNMIN ' {SEC) =*yFlO.1/} ‘ c
FORMAT {IX) *MARITZ ¢, 15.SRIMARST=T 1 [5.5X 4 TOLRAC="4E10s4/)
FORMAT [/74SXs *INITIAL CAPLLLARY PRESSURE (CM} MAP*/)

FOURMAT (/45Xs *INITIAL WATER SATURATICN MAPY/)

FCRMAT {(/765X%+ fINITIAL REL. WATER FPERMEAHILITY MAP!/)

FORMAT {(L1Xs*hPZ =¥ 133X NPX =9, L3 3Xs"RANDOM SEED NO [S1 =%, 1
194/7/1%Xs L i IDIFF 4 ='¢E14-5.' CCME#2 ) /SEC* 43X,
29C/CC Ih =0, FS,.2/) '

"It FORMAT (/4%5X, *INITIAL ALR PRESSURE ((H)'/l
12 FOHMAT C1Xs °HA (CM} =%, F10+3,5X, "HEB ICM) =%; Fl0.3:.5Xs"'NR2=",15

$55Xe "NRA=,[5,5Xs'DSUMX2? s FLOWS5 43X DELMLT=* ,F5.2/)

13 FOHMAT (/1X, aS5Xe *INITIAL REL, ALR PERMEABILITY MAP®*/}

14 FOHMAT (745X, *INITIAL WATER VISCOSITY MAP=- GM/(CM-SEC)?)

15 FORMAT (/45X, *INITIAL AIR VISCOSIYY MAP= GM/(CN=SEC)")

16 FCHMAT (/45Xs *INITIAL WATER DENSITY MAP = GM/LCM*k1)}4/)

17 FORMAT (/45X. *INITIAL ALR ODEKSLITY MAP ~ GM/LCNRA3)V/)

18 FORMAT [SX,15.,4EL6.7) E

19 FCRMAT (EX+15.2E16.7)

20 FCRMAT (Z10Xs*"WATER SATURATION = CAPILLARY PRESSULRE {(CM«}'/)

21 FCRMAT (/1Xs °*WATER SATURATION - RELe+ WATER PERVFEASILITY - REL «

SAIR PERMEAEILITY = CAPILLARY PRESSURE (CM)*/) e

22 FORMAT (445X, "EINITIAL WATER PRESSURE (CM) MAPY/)

25 FORMAY (/4S5X, 'SATURATED PERMEAELLITY MAP - CMkx21/)

QO &~

END

C Pt

CHEIRARASR IR RS AR AR AR R BRREAE PSR RS RREERB RS RSB AR KO T AR SRR R RN EER R RS bR bk $
[+ : *
c s U B AR 0 v T 1 N E M A T 5 0O L *
< *
CEEARNRRER R RN IR R R P AN R E R AR IR IR AR IR R S Sk kb N kbbbt R bR
C ) *
C THIS SUBRCUTINE SETS UP TFE COEFFICIENTY MATRIX AND L]
C TFE RIGHT HAND SIDE COLUMN VECTORS. [T ALSQO CALLS L]
c SLERQUT INE BSOLVE TO SOLVE FOR THE FLOW EGUATIONS. *
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AN OADOONN AN AN ON

S00

63

34
64

16

10

"
CHMATHX = ELEMENTS OF COEFFICIENT MATRIX (OF SIZE NGENW *
NG = NUMBEHR CF GRIDS = (Nd=2)%(NC~2) *
N®w = BANCwIDTH OF BANDED CGEFFICEENT MATRIX b
R+S = ELEMENTS OF RIGHT HAND SIDE COLUMN VECTOR -
DSw = WATER SATURATICN CFANGES IN TINE DELTA~-T -
CSA = AIR SATURATION CHANGES [N TIME DELTA-T *
SERROR = SATLRATICN EKRUR = fa — (SW+SA) *
RFOwWS = WATER DENSETY IN PREVIQUS TIME STEP *
RFOAS = AIR DENSITY IN PREVIOUS TIME STEP -
tSTELY =1 3 STEAUY STATE PRCBLEM BEING SCLVED. *
= 0 § TRANSILENT STATE PROULEM DEING SOLVED *

IRES = 0% NOQ CCASTANTY HEAEL RESERVCIH Lh LeH.5+ OF -
"MGDEL., *

= 13 CCNSTANT HEAD RESERVOIR CN LeHeSe *

ALPRA = CONSTANT RELATING RHGW TO CAVG : -
PSURFC = WATER PHESSURE HEAD (CM OF WATER) AT THE *
UPPER SURFACE BOUNCARY OF THE (N ILTRATING *

SOURCE. THIS VARLABLE 1S SAME AS PSOURC *

SUBRCUT INE MNATSCL {NCs NRe NGs Mws ALFHA)

INTEGER T1STEP

DIMENSECH PCYAElzz'.SIT#B(EZ]"KTAB(ZZ'0&KTABI22'|PC(‘?;I2’opU{IT-
llZ).PSAVEtl?.lZloPA(l?.lZl.SU(!?-lal.SStl?.l?l.SA(l?.lzﬁ.wxl17.123
Z.AK{lT.lZlovlbhll?-lziovlSA(IT.IZI-RhcwIl?.lZ).RHUA(!7-12).5A1Pt17
3-!2'0A.(|7012’¢B"l7|IZ)I'T(lr'OSERHGRllTanlOZt‘l?ll?)ISTAL‘?Z'OC
AQGNSTIU17+2)sCONST2017+2) e CUNSTINT12)

CIMENSICN CMAYRX{E76423)s HHSLLTE])}

DIMENSICAM CU(l?ul2)tE‘{l?olE”“‘l?llzilDAll?nlz):BA(lTlla)uEA‘l7n
:IZl-DSH(lT.lZ).DSA{l?.lZ}.RHGAS(l?.lz).RHan(IT-IZ'

DIMERSICKN WX{19+13) VZ!18.I4).x(u500l.t!4500).ctn500)-SUMC(18.131-
ICDUNTIle-IJJ.CAVG{I&oIJJ.DxlIT-IZ)|DZ(17.szl.n17(l7:12‘.DEL’(!8.13
2)

COMMCN pc"e'S“‘AB.‘KTABDAKY‘B.P(.P‘OPSAVEUP‘.S'.SS.SA.“KIAK.V
lshoVISA.RHU'.RFU‘.SATP.AW|BN'WTQSERRUﬂlZZ.CUNSTIoCUNST
2lxoz'CUVX-VZQSUMCQCUUNT.CELCICAVGlostZ-DxZ.STAB|DELXQ

’DELZ.DEL'.SATPER-PHIQGOCRHC.pSUURCcHA-HB-UELMLT|YCLRNC-
DSWMX yDSWMAX s AX sAZ s AXZ s ALERX o ALENZ s CONST sUNE + TWU L FOURSH
ALF ¢ ZEROJDELT Y. DELTZ2+01ADIFFSCLACs LSATsNRML JNCMLE, NRM
2¢NCM2.NRZ.hHJ-NCioNCZ.NDELT.ISl.IPthT.IFAC.LUG.ITER.I
'At‘HulCllDllEan"lllet-NWMIoTSTEPn‘PC!ISKtlS“Q[TENSR.l
CFECK-ISHICH-IRES.ISIEDY.lFPLDT.l#RlTE.NN.lVEL.ICLDG

CCNTINUE *

DD &4 J=1:he

oR 63 L=2.08M1

CMATRX{J,L)=2ERD

DO 66 L=LCFL,hwMl

CMATRX{J LI)=7EFRD

CCNT INUE

DD L€ k=24MAM1 "

DO 16 I=Z+hCMY

HHOW (1 JK}=RRCM{14K) & ALPHA*CAVG(L.K)

RHOWS( [ eK }=RFONT{ I +K]} s

AHOASTI I sK)=RhCA{ T4K)

PSURFC=ZERD

D0 10 K=Z.MAM]

DO 10 I=2:MCHL !

Sull.Ki= HALF #{SW{I X)+5S(1+K})

COCNTINUE

CALL SLFROP (NC,e NR, 14 1)

IF (ISTECY .EG. 1) GO 7O 1%

B~y E N~
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a1
65
15

82

14

83
12

52

53

ai
42

43

a4
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K=2

DO &5 [I=NCl.NC2

DHLW=PSCLAC-PWL{ I +X) +HALFSDELZ

{F (DHZw .GT. ZERO) GC TO 81

AVKRR=wK(l4K]

GO YO &%

AVKRW=CNE .
CCNSIE(chl=RHOU{l.K3/VESH{loK)tSArP(I'K)tIHU/DELZIDELZ*AVKRn
CCNTINLE

IF (IRES .EG. Q) GO TC 14

1=2

DO 11 K=NRZ,hRN]

DHXW=HA4ZZ(1eK)=FwllsK)

IF [DHXw .G¥. ZERO} GO TO B2

AVERB=WEL{LoK )

GO Y0 11}

AVEKRW=CNE

CONST (l-K)=RHCi(I-K)/VISwII.KIOSATP(l.Kl*TUU/DELX/DELx#AVKRh
CONTINLE

I=NCNL

DO 12 K=MR3I,NRNM] at

DEXw=P R (L KI—(+FB+ZZLT4K)) ’

IF (DHxw +GT. ZERQ) GC 30O 83

AVKRW=CAME

GO TC 12

AVEKRW=WK{I +K) E

CONST ([sK)= RHC#Il.K)/VlSUII-KItSATP(!.K!irwuluELX/DFLx#AVKRh

sevee  INITIALLYs MATSOL SEIS UP THE BCUNDARY CCADITICAS ASGUAD THE
ECUNCARY GRIDS FOR NO-FLOW CONDITIONS., AFPROPRIATE DOUNDARY
CCADITICNS ARE THEN INTRCDLCED ANC THE CUEFFICIENT MATRIX,
CFMATRX ANE ThE RIGHT HAND SIDE;NATRIX. HHS AHE UPUDATED 44..
DO 52 I=2,NCML : '
AWlI,2)=2ERQ ;
AAll«2)=2ERD -
EA{I+NRN1)=ZERO
EW(I+NRNI1)=ZERCD
DO §3 K22 MAM1Y
Bwil2.XK)=2ERD -
BA{2,K)»ZERQ .
CA{NCM1 4K }=ZERO :
DWw(NCME +K)IZERC |, ., .\, ... -,
‘DO 301 KdA,ARNL
OC 301 1=2,NhCM1 4 : i
CRHD-RHchfl.K)/FHDA(I.Kl
KNz=K-1
DHZW=Pall+KM)~Ful{l4K) +DELZ
DHZA=PALL,XM)~PA{L+K)+DELZ/CRHO
IF (DHZw 4GT. 2EKC) GC TO o1
AVKRN=BRX(L oK) o
GG YO 42 T RL TR IR
AVEKRW=RKIT kM) S
AWLL K b= RHBH(I-KD#RHDE(I.KMI*SATPlI.KJ*SATF(likﬂlil(Vlswlltk)tRHDl
SUL.XMI4SATECT M), & ivlSutl.xn:tRHuu(l;K)tSATP(laKl))OAZlAVKRI
EwWCl+KN)zAR(TsK) s
IF (DFZA «GT. ZERQO) GO TO 43
Avan:Au(l.Kl
GD TC A4
Avknl=ﬁktl;xn) ‘ :
AA::.K)::HOA(i.n)thoAtt.KMJtSAfP(l.KJtsArpl:.xw)zitvISA(I.K)*nHoa

RS % R O B
1 I IR L T

stlsxuiis‘tn(l.xu)) o+ tvisAtl.KM)oanA(I KI®SATPL 14K} })RAZEAVKRAS
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[
C

301

45
406

47
o8

o2

SCRAHO

EA(LKNIZAALIK)

CCATINLE

DO 302 k=2,MAN]

DO 202 1=3,NCML

CRHO=RHCW LI 2K} /RFOACL oK)

tM=-1

DHXW=PuLIN K)I=-FullsK}

DHXA=PA{ IM K)-PA(L.K)

IF {DHXW .CT,. ZERO) GO TO a5

AVEKRw=uwK (1K)

GO TO 4€

AVKHRW=wK{IN4K) .

BWLT K )=RHEWT L oK I SRHOWE [M oK) #SATP I JKI*SATPIIN K}/ IVISWLT K )IERHOW
SCIMiR)ISSATREOIMoKI) ¢ (VISW{IMeKI*AHOWE 2K I*SATP { [.K 1} DEAXKKAVKRW

DwlIM.K)=Bull.K)

EF (DFXA +GT. Z2ERC) GG TO AT

AVKRA=ZAK(T 4K)

GO TO 448

AVKRAZZKL{IN KD

BA{I +KIZRHCAC I pK JRRHUALIN sKI4SATP (L. KIESATO(IMIKI/LIVISA{],K)*RHOA
SUIMAKISSATPOIMAK)Y 4 (VISACIMIKISRHOALL oK) XSATRL L4K) I IRAXKAVKRAS
SCRHO

DALIN X IZEA{L.K)

CGRTINLE

IF (NC «LE. NR) GO TO 200 .

J=0 ' ’

IN=2 :

DO 240 [=2.NCMIL

Kp=2

IF (I «GTs 2) IN=l~]

1F 11 +LT4 ACML) IP=14#1

DO 250 K=2,NRM1

IF (K «CTs 2) KM=K-1

LF (K 4LTe NRME) KP=K+1

FENTS]

CRECERFONL 4K} /FRDACL LK)

CMATAX(JoLA)=B0(1,KI+BA{ LK}

CMATRX (Js LEY=AWL I K )I+AAL] KD}

CMATRX(J+IB)=ERl 1 4KI+EA(L,.K]}

CMATRX{J+IEI=Dw{ Lok Y+ DAL L 4K}

CMATAX (ws1CI==(CMATRX (Jy TA) +CMATRX{J + LB 4CMATRX(J2 ID)4CMATRX{ I, LE)
$) )

IF {K +EQs 2 +ANC. ISTEDY .EQs 1) GO TO 421

IF (K +EQe 2 +ANDs I ol.Te MCI o0Re K +EQ. 2 +AND. I .aGTe. NC2) GO T
s0 a21 o . e

[F ( K «EGs 2) GO TG 422 . )

RHS(J)==(EA{ L +K}RPCLI +KPI+AAL L o KIRPC LI JKMIHEALL o RI®PCUIMaKI+DAL (4K
$IEPCIIP oK) = [AACTILKIFEALT KIFBALL,RI4DALLIKII®PCIT oK) + {AM(T4KD 4+
#AACL WK} /CRHO=EWLL4KI—EALL+K) /CRHODADELZ)+ SWwlE+KI/RHOW(L
$.KI/G/CELTHPHIFIFHOW( I +K)=RHOWS(I4K) ) + [ONE—-Sw( [.K))/RHOALI +K}/G/
SDELT*Ph[* (RHOA(I +K)=RHKOASI [+K))

IF 1 I +EQGs 2 «ANDs K +GEs NR2) GO TG tOB

IF { 1 +EQ. NCNl 2ANDe K +GEs NR3) GO TO 109

GO TO 2£0 :

¢ L]

sseas INCORPORATES THE B+Ces FOR ALR AT THE SOIL SURFACE eessvansres

421 RESLI)IS—(EA{I+KIBPCLLKPI*BA(LX)I*PCILIMK)+DALL +K)&PCLIPK} -(CUNS

STLLI JKIHEALL o KIFEACISKIHDALL+K)IHPCUL4K) + (1 HALF*CONSTL{E.KI~-EAL
$1,K})/CRHO=EW( 1+X ) I4DELZ)I-CONSTI(L,K)IKPSURFC+SWI 14K} /RHOW(14K)/G/D
SELT*PHI®(RPOW (L +K)=RHCUS( [+K)) ${ONE=-SW{I14K)I/RHOA( 1.K)/G/DELT*PHI

-



$S¢{RHCA(L+KI-RhCASII,K)) - ’
CMATRX(JsRCI=CMATRX LS4 ECH=-CONSTL(I4K ) P o
GO YO %0 . . O i H
tecssese IMCURPORATES THE Be+Cs FUR WATER AY THE INFILTRATING SOURCE
322 RHstJ)=~(EA(laK)$PCII.KPi+AA(l.xltPC(l.KMI&sA(l.k)*PCIlM.K)fDAt!.K
SIEPCUIP oK) ~ (AACT KIFEALLIKD*EALLKI4DACTK) IRPCIL K} + { HALF=CO
SNSTZ!I.K)##‘(laKI/CRHO~Ei(l.Kl-EAil.K!/CRHD)#DELZ!OSH(l;K!/RhDHIIo
SK}/G/DELItFHli(RHuw(I.K)»RHUUS(I-K))+(l--5u(l.xll/MHUAll.Kl/G/DELI
S*PHIS(RECA(L +K)-KHOAS LT +K) )
CMATRX u s LCI=CMATHX (I s IC)-CONST2( LK) ¢
G0 fo z2:c . : .
s#sssses  INCOFPORATES THE CCNSTANT HEAD Be Co CN THE L aHeSe OF MODEL
10B RHS{JI=RES{JI-CONST (L K)&(HA$ZZL] .K))
CMATRX o ICI=CNATRX (IS IC)=CONST [leK} -
GO TO 2%¢

esveees INCOFPORATES THE CONSTANT HEAD He Co ON THE RaHeSe OF MODEL
109 RHSLJISREFS(II=CONST (14KINIHO+22{1 4K})
CMATRXLu e ECI=CMATRA( I o 1C)-CONST (EaK )
250 CONTINLE ’ Ce e P
2640 CCATINUE

essbans CALLS SUBROUTINE BHSULY E SCLVES FOR WATER PRESSURES esednese
CALL BSCLV (CNATRX NG +NWRHS ) . !
J=0 : B ) i v
DO 310 I=2.hCM1
DD 310 k=2 4ARNIL
Jzded ) .
PWIllsK}2RHS{J) . H

4sessssr CCMPUTES NEW AIR PRESSURES LR A SR O
PALTLoRI=PCLEWKI+PWIT k)
J10 CCKNTINUE

GO 1O 4060
300 CONTINLE
J=0
KM=2
DO 350 kx2.hRMI1
[M=2

IF (K «aCTe 2) KMNmK~]

IF (K LT, NRML) ‘KP=Ke1

DO 340 [=2.MACM1 : P

IF (L +CFe 2) IM=[~1 Ty

IF (I «LT. NCML) IP=1+1

J=J+1

CRhO=RFIWlI,K}/RFCALTL.K)

CMATAXC U2 IAI=AR( T K)I+AALT,K)

CMATRX{JSIEI=EW( I,K)+BA(L,K)}

CMATRX{ e IC)=Cu{l1.K)+DA{L,K)

CMATRXL J+ IE}=EW(I4KI+EALL.K)

CHATRX (o 1CI=—LCMATRE(Js TADHCMATAX LI o[BI +CMATRX [ JS ID}+CMATRX{ J41E}
$) ‘

IF (K J4ECs 2 +AND. ISTEDY LEQ. 1) GO TO 32t

IF {K +ECe 2 osANDs 1 «LTe NCl +0Fs K «FQ. 2 JAND. 1 .GT. NC2) GO T
sQ 2@

LF { X +€Ce¢ 2) GO TO 322
RHSUJ)I=~(EAL14R)*PCLI KPI+AAL L 4 KI¥PC{LoKMI+BATL 4KISPCIIMaK) DAL K
B)EPCUIF oK) = (AACLWK)HEALTJKI4BALTKIIDALTK)I*PCIL oK) ¢ {Anl(I+K)+
$AAL 1K) /CRHO=EW(L 4K)—EAL 1K) /CRRO)*DELZ ) + Swil.K}/RHCwl L

225
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n0nnn

S KI/G/CELTAPHI®(RHOW( LeK)I-RHOMS{14K) ) & (CNE=-SW({ [:+K))/HHOALL K}/G/
SOELTAPRIS{RHMCA(L +K)—RHGASII 1K) )

IF ( I .EQs 2 «ANDs K +GEe NRZ2) GO TO 308

{F {1 <EQe NCML ANDs K +GEe NR3} GO TO 3U9

GO TO 340

svasens INCORPORATES THE B.Ca FOR ALR AT THE S0IL SURFACE seevenn e

RHS{ JIS=(EALT JK}*PCL L KPI+BALL(KIWPCUIMiKk}4DA(T +K)*PC(IP,K) ~I[CONS
STICT K)AEALT +KISEALLKIFCALT +KIISPCUT o) + (1 HALF#CONSTL(I+KI-EAL
SLsK))/CRHEC~EWL LeK)II*DELZI~CONSTI(L K I*PSURFC+Sw( Lok )/HHOW(L K}/ G/D
SELT*PHI®(RHOWC 2 oK) ~RHOWS{ Lok I) +{UNE-SWIi{ R)}}I/HFUALL+K)}/G/DELTHPHIE
3k {RHROA{ [ +KI-RHCAST LK })

CMATRX Lo LCIZCMATRX(J1CI=CONSTI{L,,K}

GO TO 240

teses e INCUFPORATES THE B.Ce FOR WATER AT THE INFILTRATING SOURCE
322 RHSLII==(EA(LKIFPCUI+RPIFAALT JKIHPCIL KM +BA(L «K)IXPCIIM,KIFCALTWK

SIIPCLIF k) = (AM{EKI4EALLWKI+BA(LKISCA(L.K)I*PC(1,K} + ( HALF=*CO
SNSTZ2(1 4K IHAAL LK) /CRHO-EW( L+ K)-EALLKI/CRHUISDEL2I#SWIT 4K )I/HHOWIL
SK)I/G/0ELT*FHI® (RHOWI Y KI=RHUOWSE T aKII#L1e=SWII+KII/RHDALL12KI/G/DELT
SHPHIF(RHCA LT oK )}-RHUAS [ [+K) ) - '

CMATRX LW+ ICH=CMATRXLJ+ IC)-CUNST2{1,.K}

GO TO a0

caass s INCCRPOSATES THE CONSTANT HEAD B, Ce ON TFE L eHeSs 0Of MODEL
308 RHS(JI=RHS(J)-CONST (LsKIF{HA#Z2IL +K}}

CMATAX {2 ICI=CMATRAX (I 2 1C)I-CONST (LK)
GO TOo 240

YTy INCOFRPORATES THE CLCASTANT HEAD Be Co CGN THE ReHeSe UF MODEL
309 RHS{J)I=RKS{II-CONST (L KI*X{HB+ZZ(L sK}}

CMATRA(u s TCH=CMATRX{J: [C}-CONST (1.K)

340 CONTINUE
3590 CCONTINUE

evssase CALLS SUHROUTINE BSOLY & SULVES FOR WATER PRESSURES sseesre

CALL BECLY (CMATRX NG sNWRHS)
J=0

DO 410 k=2.hAMI

DO A10 1=2.ACME

J=J41

Pw(l .LK}=RHS{J)

sesesss CONMPUTES NEW ALR PRESSURES atvedrersnsas

PALL eK)=PC (Lo KI+PW(Ek oK)

410 CGNTINLE
400 CGNTINUE

DSwHAXSZERQ !

El

ssess e SCLVES EXPLICITLY FOR THE wATER €& AIR SATURAT [ONS. THEN

CCMPUTES THE SATURATION ERROR tsstvsesssassase e
KM=2 , .;
DO 72 K=Z+MRM] o
In=2

IF (K WCTe 2) KRN=K=1 i
IF (K o«LTs NRAML) KPp=Kél. '
DO 72 1=22.MCNIL

IF (1 +GTe 23 Ib=L~l

IF (1 .LT. NCM1) IP=[+}
CRHO=RHCW (LK) /FHOA(] +K)

IF (K 4EGe 2 &AND+ ISTEDY EGQ. 1) GO 1O TQ



C
c

C
C

c
c
[~

IF (K +EC. 2) GO TO 96
IF (K .CE. NH2 JAND« L +EQ. 2) GU TO 75
EF (X «GEe NH3I ANDs I +EQ«NCM1) GO TO 76
GD TC 7C
96 IF (I-NCLl) 70,74.69
69 tF {I-NCZE} Ta,74,70
70 DSWlL.K)} = DELTHG/PHI®(AME [oKIXPWI L oRMIFEWI 1K) #Fw ([ +KP) +BW( I
SeXIRPWA IN oK) ¢TI L sk IS PW(IP oK)= (AWCE s KI+EWI T KI4BWIL oK) +DWI LK) ) *Pw
SOLeKY + (AW{ LoKI~EWL L oK) IRDELZ) = SS{L+K)/RHOW( [ oK I *{RAUWLT o &) —RHO
$uS{l+})
GO TQ 77

CSssss e B+sCe FOR MATER AT THE INFILTRATING SOURCE ss seasscnpaas

74 DSWIL E+K = CELT#G/PHI®{CONST2{ 1K) SPSURFC+ERL] ¢K) AP W] +KP)+8W
SELaKINFR{IMN K I4CWCT sKIEPWE LP oK)= [CONST2{LaRIMEW{LeKI+EW{ Lo I4DWLE
SeR))*PWLLok) + (CUNST2{14K)% HALF-EWC I +K) I*DELZ) =S5 {1 eK)7RHOW{I+K)
$E{RHCW (L aK)-RHCUS{1:iK))
GO YO 1?

tsr e e CCMASTANT FEAD Be Co AT THE L+H.S5: OF MODEL avsssmnsassas

75 OSWILWKI=DELT2C/PHI®IAWL oK) SP U (L KMIFEWTL+KIXPR( L+ KPIHCONST (I ,X)
$ C(HA+LZILWRIISCWI LK IPPWIIP oK)= 1AW Lo KD 4EW(T K I+CUNST (1.KI4OW(T,
SKPIEPW{LeK) + (AWliIsRI“EW(I4KIISDELZ) < S5SILIKIZRHOWILKIEIRFCW (T,
SK)=RHCWECT 4K } i :

GuU TQ 77 ot

* T

sesen e CCASTANY READ Bs Co AT THE R.HeSs. OF MODEL tressussee s
76 DSw{l.+x) = DELY*G/PHTI S (AW L +KI*P UL T KMI4EWT LK) *Pw( KPP} +BWIL
SoKIPPWLINGK)+COAST {1 «X)P{RD+ZZ{T1 +KII~{AW(LsKI+EN{ Lo K)+BW{ 1K) +CO
SNST {LoKIVPNLIT K¢ (AWC T oK)=~EWLT oK)} I*DELZ) =~ SS{1+K)/RHOW( L ,K)*{R
SHOW( [ X )=RHOWS(1.K)) '
T7 CONTINLE .
IF K +EGs 2 +ANDS ESTEDY .EGs L) GO TO 208 .
IF (K +EGe 2 +ANDs I LT+ NC1 +ORe K +EQs 2 I%qu 1 WGt ﬂcg, Go ¥
s0 208
DSA[1.,K} = DELT/PHISGRIAALL+KI®PA{T KMI4EALI XK I2PA{ L KP)+UALlL
SsKILPALINSKISDAL I KINPACIPIK) = (AALLKIHEALT «RI*BA(LaKI+DALT K] )&
SPA{1.K) ¢ LAA(L.K)-EALL,K))/CRHODEL2Z) - (ONE-SS{LaK}I/RHOALL K)*¢
SRHOA (1 +K}=RHGAS({ LK) ) ' ) '
G0 TC 2&9

i- H v

seenens De Co FOR AIR AT ThE UPPER SURFACE HCUNDARY st ssste s
208 DSA[ LK) = DELTAG/PHI®{CONSTL( I + X1 EPSURFCH+EAIL +K)%PA{ ] +KP)+BA
SELeKISPALINKIADALL o KIMPBALTIP K} = {CONSTILTIKJEEACTWKI+BALT«XK)+DAL
SLeK}ISPRLLI+K)Y + { HALF ACONSTIL{L+KI-EAL14K) ) /CRHO*DELL) = {CNE=SS
S$CLWKI)V/Z/RFOALT s KI®{RHOA[L oK) ~RHOAS{L X))
209 CONTINLE
SERRDR{ 1 sK)I=DSW{ IK} & DSA{I.K)
IF (SERFOR(IK) +GFe TOLRNC) ISu=1
XXX=DSWlleRKIF+SSUIeK)
XX = Tal *SW{IL.K}=-5S({Ll.K)
IF ( AES{XX=XXX):- «GTe TOLRNC) 1Sw=1l
IF ¢ ABS{DSW(I.Kk)} LT. DSWMAX} GO TO 58
DSWMAX= ABS{DSW(I.«X)}
11=1 ) '
KK=K
58 CCATINGUE 7
T2 COMNTINLE

boar s b b . s e

L T, no o

sevsesss CHECKS [F DSWMAX EXCEEDS 1.25%#DSwWMX. IF SO REDUCE THE TINE
S1EP SIZE & RESCLVE THE FLULD FLOW EQUATIGNS sevcsvevssacsns

227
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IF (DSaMAX LT, 1.,25%LS5dMX) GO TO 59
XXXX=DSBMX®0.9/CSHMAX
DU 61 K=Z+hRM1
DO 61 [=22.NCM)
PR{T+KIFSAVE(1.+K)

Bl SWELKIZES{I.K)
YYv=CEL T
DELT=DELTHXXXX .
ITER=ILTER+] . .
WRITE (€,7C1l} .
WRITE (6+710) LHeKK DSwlIIsKK)»YYYL DELY
1F (ITEFR +GT» 2) GO TC S%
Gt TC s¢€¢

59 CONTINLE

sssvsse FREM FERE THRU STATEMENT 97:CHECKS LF SATURATION OF ANY
GHIDS EXCEEDS ONEs IF S0» THE EXCESS WATER SATURATION IS
DISTRIBUTED OVER ALL UNSATURATED GRIDS PesssBssEREIREIBIEIL DS
ISAT=0
DELSwW=2EFQ
DO 92 k=Z,ARMY
DO 92 [=ZsMhCM1L
SWET+KI=ES(TKIHOSWE LK)
SALL K I=CNE-Swil oK)
SwSAVE=Sullek)
IF {Swil+K)} +GTe+ ONE} GC YO 923
GO TC $2 o L PRI
93 Sw{l,K)=CNE C e e
SA{1.x)=ZERO
ISAT=1 ) e
DELSW=DELSW+SKREAVE-SWII.K)
92 CCNTINUE
IF LISAT +EGC. 0) GO TC 100..
NCOUNT=GC
DO 97 K=24MAM1
DO 97 1=Z.hCMYL .
IF (SW{LsK) +LTe ONE) NCCUNT=NCOUNT#I .
$7 CONTENLE . . Sy
DELSW=DELSW/NCOUNT
DG 98 K=z ;MANL
00 98 I=Z,MhCM1
IF {Swill«K) +CE. ONE) CO TO 98
SWlL.K)=Swil.K)¢DELSW
SA{IsK)=CNE-Su ] sK)
98 CONTINLE | . . L B
100 CENTINUE
HE TURN
701 FORMAY (/2Xst===== TIME STEP REDUCIICN DUE TD DSw TOO BIG =====!)
710 FORMAT (2Xs ‘DSwi®s [24%0%¢124+%) =%, E14,645X¢°0LD DELT = ',Eld4.b,
$SXs*REw CELT ='43EL8.6//) -
END ’ P .

sl Nalal

[

CoRha bR e db 43034 R DRSNS AR Rt kR kR RN kR bbbt hkikkkkhkhbkhkrrkeke
C L
C s ¥ 8 R 0 VUV T 1 N E S L P R O P *
C »
CREr AR AR ERR A SRR RN R AR RS AR R kAR R IR R IR R P NS ARSI IR SR R ARk R ARy
C *
[= THIS SUBRCUTINE CALCULATES THE SOLL PRCPERTIES *
C *

SUBROQUTEMNE SLPFROP INC, NR.s IXN, LCP)



c
C
C

(s e Na N2l

(2K 2 Nal

INTEGER TSTEP

DIMENSICN PCTAE{22),SWTABL 221+ WKTAD(22) +AKTABL22)4PCCIT12),Pwl17,
PL23ePSAVELLIT 1 2)ePAlLTR2)2SWILTo12)4SS{1Ta12)+SAILT7412)uK{LT7,412)
2 AR LT 1Z) o VISWLIT312) o VISATLT 2 12) sRHOW(LT o 12)4FRFOACIT»12)45ATPILT
B3a12)sAnl17012)0BWIL T2 12 awTU17)SERRORILIT LZ)+Z22{1T7412).STAELZ22)4C
QONSTIL1742)+COMNET2L1T742)COCNSTFLLT12)

DIMEASICN VX119513),VZ(18412)+X(4500)+2(4500),CLa500),5UMCI1B,13),

FCGUNTULIE LI oCAVGILED oI 4UXC1T412),D20L7.12)4DXZ(1T7,22),DELC(18,13

2) .

CCMMCN PCTAE+SWTAB s hKTAB s AKTABsPCoPNsPSAVE s PAISWS5S5:SAs WK AKY
TSR o VISAIRHGW RHOA s SATP s AR+ D s WT 4 SERROR, 22, CONST 1 +CUNST
2eXoeZeCoaVReVZsSUMCsCOUNT s DELC s CAVG DX WDZLWDXZsSTAD DELX
DELZWDELT s SATPERWPHI 4 GuCHHC o PSOUHC o HAsHIADEL ML T o TCLRNC .
DSWMX sDSWMAX s AX s AZ 4 AXZ 4 ALENX yALENT o CERST yONE o THO W F LI 1
ALF «ZERUODELT1, DELTZsDIAWUIFF oS5CLNC s ISAT s NRML JHEML o NHM
2aNCM2Z 4y N2 s NRIJNCLIMC2 4 NDELT wy ISLAIPHIRT L IFACWLOG, ITER,I
As IEICI IDJIE [HML s IOPL s NWML o TSTEP 2 IPC4ISKsISWs ITENSRWI
CRECK ISWICH s IRES+ISTEDY» IFPLOT« IWRETE+NNy IVEL, [CLLOG

IF ¢IXN +EGCe 0) GO TD 55

SINC=SHTAE(1)}-SuTAB(2)

DNOW L WN -

ssss e FRCM FEHRE THRU SYATEMENT B0 WK, AK £ PC ARE CUMPUTED AS
FULMCTICN CGF 5w LSENG LINEAR INYERFCLATICN SsvsssbeaanBserRa

DO 60 KaZ,ARMY
DO 60 13Z.MCHM])
IF LSW{1.X) +GE. ONE) GO TO 61
IA=1SHTAEL{L1)~Swl{ LeK)I/SINCH+2
IF (IN +LTs 2) IN=2
IF (IN 4GT. I5K) IN=ISK
INMI=1IN~-1
ZMC={Sn(1,K)=SuTABLIN)}/SINC
WRILWK)I=uKTAE(TIN)S$ZMCHLWKTAB{INML)~-WKTABIEN})
AKCL+KI=AKTABL IN)+ZMC# [ AKTABCINML)I-AKTABLEINY)
XX =Su{l,K1¥2.D+00~-55{ 4K} )
IN={SWTAE(L)- XX F/SLNCH2
IE (IN LT, 2) IN=2
IF {IN +GT. ISK) IN=[EK
INMI=IN~-1
INC=( xX =-SwIABLINI}/SINC
PCILsKIZFCTABUINI+ZMC*{PCTAB{INMI)=-PCTABLIN)})}
GO T4 &40

6] WKl KI=wKTAB{1)
AKILsK)=AKTAE(L)
PCIL+K)=FCTAB( L}

60 CONTENUE
IF (ICP +EG+ 0} GO TO S00
K= 2 _
PSURFCaC .3C400

4

¥

issisie FRCM RERE THRU STATEMENT 5%, THE UPPER BOUNDARY CONDITICN
“ch AIR 1S TRAEATEL AND SuwSURF,. AKSURF ARE OETAINED AS A
FLNCTIGN OF PCSURF: THAT 15i PC AT THE SURFACE sssssscscass
DO S9 [zZ4hCMY . b e .
sssanea PCSURF [S DBT‘INED COMBINING ThE DEFINITICN DF CAPILLARY
FRESSURE WITH ThHE NO-FLOW BsCs FOR WATER FOR THESE GRIDS sse
PCSURF=PELAFC-Pu{ l+K)+0:5SD+0C2DELZ
SWSURF=S8TAB(1)
1IF (PCSULRF LT+ PCTABUI))} GO TO 102
DO 1L J=24 15K
“H=J

229
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IF {PCSLRF +LT, PCTAE(J)) GO TO 51
IF (PCSLRF .ECs PCTAE{J)} GO TQ 101
11 CCHTINLE
51 CCATINLE
SWSURF=SATABIN~1)+ ABS({PCSURF=PCTAB{A-1})/(PCTAB(N)}~PCTABIN-1))}*
SISRTABI(N)=-SWTAEIN~1))
G TC 1C2
10t SYSURFE=SaTABLJ)
102 CONTINUE
INS(SHTAELL)-SHSURF )} /SINC+H2
IF (IN J+LTae 27 IN=2
IF 1IN +GTe [SK) EN=]SK
IApI=IN=1
ZMC={SWSURF-SaTABCIN)I/SINC
AKSURF= AKTAS{ IN)#ZMC*{ AKTAB( INML)—~AKTABLINY})
CENSTI{L+K)=AHCALL 4K} /VISALL 4K} *SATPLI LK) #AKSURF*TWO/DELZ/DEL#RHO
Swi{lsK)/s7RFCALI K]
59 CCANTIMLE
GO TO %200
55 CONTINUE
C AETEEE TFE FOLLEWING SEGMENT OF SLPROP IS USED ChLY INITIALLY TO
[ CETAIN Sw AS A FUNCTICN OF PC esssrssassiasn v
PG 56 K32 MHM]
DO 58 I=xZ.MCM]
IF (TSTEF +EGes 0 AND. PW{1l.,K) .GE. ZEROD) G4 TO Sb
Sull.K}2SuTABC(L)
IF (PCLI4K) «LTs RCTABI(L)) GO TO S6
oD 10 J=2.15K
N=J
IF (PC{l.X) +LTe PCTAELJ)) GO TO S0
IF (PC{L+.K)} +EQs PCTAE(J)) GO TO 100
10 CCATINUE
SO CCNTINULE
SWI1KIZSRTAB(N=1)+ ABSLI{PCLIK)-PCTABIN-1})/(PCTABIN}-PCTAB(N=-1))
S)IKISHWTAEINI-SuTAE(N-1))
GO TO £¢€
100 SWiL.K)=SuTAB(J)
56 CONTINLE
500 RETURN

.

END
c
ct##t‘ttltttli1!"Ottit‘ltttitt##tttitﬂtt#t‘ttt‘t##tt#.#ttittt#tttttt*tt
< . *
= $ v 8 R 0 U T 1 N E ¥V E L € € ¥ *
C *

Cttlt‘t“i..t‘l.#“t#‘ll#ttt#“#t#‘tt#‘##ll‘t‘t0ti‘t*ttittitttitlt#ti‘#‘

c *
c THIS SUBRCLTINE CALCULATES THE SEEPAGE VELOCITIES AT *
c EACh GRID INTERFACE: THE LCNGITUDINAL AND LATERAL *
C CISPERSICN CUEFFICIENTS AS A FUNCTION OF PECLET NUNMHER *
(d ANC THE CCMPUNERTS CF DISPERSIGN TENSOR USING THE *
C APFACPRIATE TRANSFORMATIONS. *
c *
c vx = VELOCITY IN X~DERECTIQON {CM/SEC) *
c vz = VELGCITY [N Z-DIRECTIUN {CM/SEC) .
c VX = R=VELCCITY AT CENTER OF GRID . . «
c vilz = Z=VELQCITY AT CENTER OF GRID . . .
c oL = LONGITUDINAL CEISPERSIGN COEFFICIENT &
c o7 = LATERAL DISPERSION COEFFICIENT *
c PE = PECLET NUMBER *«
c DX ° = COMPONENT OF DESPERSION COEFFICIENT TENSOR *

i

P SO I ]
7 R L . -

t
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DZ = COMPONENT CF OCISPERSICN COEFFICIENT TENSUR [
Lre = COMPONENT OF DISPERSICN COEFFICIENT TENSOR *

SUBROUTIAE VELOCY {NCs NR: NCPls NHPL)

INTEGER TSTEP

DINMENSICN FCT‘E(ZZ’ISUYAE(ZZ’Q‘KTAEI22)-AKTAB(22).PC(I?olZl-lel?b
F12VPSAVELLT+12)4PACL 7512 oSWILTal2) 455017 ,12) 5801 7+12)ywK(17412)
25AKE17412)aVISRIL7a12)sVEISA{LT 12 4RPCWIETH 12 eRMUALLTL12) SATR(LT
Tel2)0Awl 173120 Wl 17512V anT(17)sSERRURL 17 31P)eZ201T7 o12)45TAE(Z2)4C
BONSTIL1742)sCOCRST2(17+2)+CONSTIL7,12)

DIMENSICN VWXE1G413)eVZI18:14)+XL4500)342(4500),Cla4500)4SUMCILIH13)4
ICCUNT{ B 4131 sCAVGI18e13)+DXT2T21234DZ{17412)4DXZ{174+12);DELC(16,13
2)

CCMMCN PCTAE s SWTAE s WKTAB s AKTAB sPCiPW +PSAVE sPASW 55 sSA WK AK, Y
' ISR eVISAGRHCHW sRhUAJSATP AW IUW o WT s SERRDRI ZZ4CONSTY 4CUNST
2oKeZaCa VX IVZISUMCHCCUNTIDELC 4 CAVG DX 4DZ,,DRZ4STARLDELX »

DELZ'DELTy SATPERPHIL» G4 CRHC PSOURC jHA sHA 4DELML T TOLRNC 4

DSAFX ¢DSWMAX s AX s A2 4 AXZ o ALENX y ALENZLCONST yONE , T WO, FOURH
ALF+ZERODELT s DELT2+0IA0OfFF L SOLNC s ISATsRRML (NCME ¢ AIM

2eNCV24NR2 sARI+NC L o NC2 NDELTY 4 ISLIPRINT 4 [FACsLUDG [TER, I

As BEs ICHID 2 IEWIBML L, IDFL 4 NWN] 4 TSTEP s IPCLISKy ISWel TENSH, I

~ton

NI L LN -

45
46

92

a2

93

a3
12

94
98

91

CHECK s ISWICH s fRESISTEDY s LFPLOT . IWRITESNNLIVEL , 1CLOG
DU 91 K=214hR
I[v=2
DO $8 I=Z.+MC
IF (L «GTs 2) IN=[~]
1F (K +ECe 1| +CRe K +EQes NR) GO TO 94
IF {1 sECQ. 2 +AND: K oGEs N2 LAND. K +LE« KMRMI) GO TO 92
IF (1l +ECs NC sAND e K 2GEe NRI JAND. K «+LE. NRM1) GO TO 93
IF € 1 «EQes 2 +0Rs 1 +EQe NC) GO TO G4

sess WATER SATURATION OF THE GRID ThF FLUID IS EMANATING FROM
IS LSED IN COMPLUTENG PORE- VELOC[TY eetenavttBsbutae

DHXw=Pu IV K)-Fu{l K} ’

IF (DHXwn .GY¥, ZEFRO) GC TO a5

SwAVCE=SW([ .X) .

GO TO aé¢ .

SuAvG-‘nlln.Kl

VXLT oKISER(I sK)SDELXEGXOHXW/ (PHLASWANG)

GO 10 S& .

ORXW=HASZ2Z{1+K)=Pu{lsK)

IF {DHXxw +GTe. ZEHRO)} 50 TO 82

SHAVG= Sl LK)

GC TC 11t

SWAYG=CAE

VXILeK}= CChSTiIoK)*DELKtG*DHXII(PH[#SHAVG}

GO TD SE

DhXW=P#{ [IMK}={FrB+ZZ{ACMI1,4K})

LF tDHXWw .CT, ZEFQ) GG TO B3

SKRAVG=CAE :

GO TC 12

SWAVG=SwilN.K)

VXCL oK I=CORSTINCML 4K } PDELX*G*DHXW/ (PHI®*SWAVG)

G0 Ta S8

VXIl.K)}=ZEFROQ

CCATINGUE

VXL LK )=y X(2:K) : N o :

VXINCP 1 4K )=VX{NC 1K) T . ‘ !

CCNTINLE ;

DO 95 [=lehC

Ku=2
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00 99 kx=Z .M
IF {K oCTe 2) KM=Kw-]
IF { I +EQe. L «ORs I +€0Qe NC) GO TO 97
IF (K J+ECs 2) GO YD 96
IF (K +EC. MR} GG YO 97
DHZW=Pw ([ L.KM}-PwllsK)+DELZ
IF {DHZW L,GT. ZERO) GC 70 41
SWAVGEEwi{l 4K) b
GO TO Az !
41 SwAVGESa(KM) .
42 VZIULK)=AW{[sKI*DELZ22GEDHZW/{PHI®SWAVG)
GO TC SS ) :
$6 LF (ISTECY +EQ. 1) GO 10 7
IF {1 «LT+ NC1) GO TO S§7
IF (I +GY¥e NC2) GO TD S§7
DHIW=PSCULRC~-Pw{l+K)+HALF *DELZ
IFf (DHZw .GT, 2ERG) GG TO 81
SWAVG=Ew( X}
GG YO €82
81 SWAVG=LME
65 VZUI.K)=CONSTZ2(1K)XDELZ*GEDHZR/LIPHI dSWAVG)
GG TC %%
€T vZI(1.K)22ERD
99 COANTINLE
VZI{Llel)=2vZUl1.:2)
VZIL+NRF1)}=VZ{1+4NR)
95 CCNTINLE
fF (ISTECY .EQ. 1) GO TO 655
DSTHAX=2C .00
DJ 822 kKx14NR
DO 822 =) NC
VXXZVM{ foK)= HALFE(VX{IRI-VX(I+1sK)})
YEiZavilleK)= HALFRIVZII+K)=VZ{T K+1))
IF (K +ECe 1 ,0Rs K +EQs NR 20Rs L +EQs 1 JORs 1 +EQs NC} GO TO
$826 .
VAXSQBVIXSVXX
VIZSQ=vIlevlX
VEL= SGRT(VXXSQ#+VZZISQ)

C sesswase FCAM DIMEMSIONLESS PECLEY MUMBER RN ]
DIA= SCRTISATP{I.K)/6.54E~Qa)
PE=VEL*C [A/DIFF

€ ssssevs CALCULATE LONGITUDINAL DESPERSICN COEFFICIENT s esvcentonons

IF (PE +GTe+ 0.400) GO TO 720
DL=DIFF#0.72
GO TQ 7z4

720 IF (PE .GT, 2.80) GO TQ 722
DL=D IFF4C .5900% EXP(0.5300%PE)
G0 TO 7z4 !

722 DL=DIFF¥C.81004FE®*1,08274

724 CONT INGE

C aessasse CALCULATE TRANSVERSE DISPERSION CAEFFICIENT Tssatssesesanss

IF (PE +GTe+ 1.500) GO TO 726
DY=DIFF*C .72
60 TO 728

726 IF {(PE +CTe 3.00) GO TG 730
DYT=DIFF*C.6000%PE+%0, 4991
GO TO 728

T30 DTI=DIFF#C+A5S0CHPER D L T4 64



728 CONTINGE
[F (ITEREK +EC. 0) GO TC 825
IF (VXXEG .EG. ZERU JAND. VZZSG +EU. 2ERD) GO TC 82a
VELSC=VEL®VEL
c
€ essesves TRANSFORM DL E CT TO GENERATE DISPERSICN TENSOHS
DX(l+K)=CLO®VXKEC/VELSCH+DTHVZ25Q/VELSQ
DZUT+K }=CTPYNKEGC/VELSQ+DL*VZZSU/VELSQ
DXZI Lok )=ICL=DT)RVXX®VZL/VELSQ
GU TO EZ€
825 0Z(I.k)=DL
DX{1+K)=CT
OXZ{ 14K 12ZERD
GC 1O £26
824 OXU11,K)=2ERQ
DZ(1+K}=ZERD
DXZ(teX)I=ZERD
826 CCNTENLE
IF { AESIDELT®*VXX) +LT. DSTMAX) GO TO 745
OSTMAX= AHS{DELT#VXX)
VSAVE=VxXX
DSAVE=C. 1 #0EL X
745 [F { AES(DELT#VZZ) .LT. DSTMAX) GO YO 822
DSTMAX= ABS(CELTRVZZ) !
VSAVE=V 22 :
DSAVE=Q.190EL2
822 CCANTINLUE i
IF {DSTMAX LT+ DSAVE) GD tQ &5S i
DTINC=CSAVE/VSAVE ’ ’
DELTN=CSTMAX/LSAVE
NDELT=DELTh
DELT1=({CEL TN=NDELT)*D TINC
DELT2=CTINC - ’ )
NDEL T=NDEL T+1 oo '
655 CCONTINUE

3

RETURN e - . .

END T o .
c ) ‘i . \ e . . L :
ctttttatt#ttttitttttttttttt-tittitttta:ttto,tttwtti#ttitt#tt&ttttto-tttt

. ) ) | ; s ]

C : *
C $ v B R D U T 1t N E M O ¥ P T *
C *

Ctttttt.i*0““‘1#‘i*iO‘*#i‘..l‘*tti#lt_t*ttt*ttt*t“ttt*####**l.*t*tttti

YHIS SUBRCLTINE DETERMINES THE VELOCITY OF EACH MOVING
FCINT AND NOVES THE MOVING POINTS ACCORDINGLY. THE
VELGCITIES ARE DETERMINED USING A THREE-WAY INTERPD-
LATICN SCFEME. FOINTS MOVING OUT OF THE MGDEL ARE RE-

"1 ENTERED AT APPROPRIATE INFLOW BCUNDARYs AN ADDLT LONAL

 STCRAGE IS CREATED FCR MCVING PCIATS. AN ATTEMPT IS
NADE TC KEEP A MINIMUM NUMBER OF MOVING POINTS IN EACH
‘GRIDs' = POLNTS ENTERING THE SYSTEM WITH A NEW NUMBER
ARE ASSIGNEC COORDINATES RANDOMLY WITHEN A GRIU USING
GANDCM AUNBER GENERATOR RANDUs THEIR CONCERTRATIONS ARE
- ASSTCNED LSING ' A TRREE-wAY [NTERFOLATICN SCHME. A RECORD
OF SUMC AND CUUNT 1S MAINTAINEC AND CAVG RECALCULATED
FCR EACh GRID. [

LEG = LOG OF MCVING POINTS IN SYSTEM

vEX & X-VELOCITY COMPONENT OF MOVING POINT

w2z = Z-VELOCITY COMPGNENT OF MOVING POINT

ANAAAARAANANABANAAD
***'*'I"**.'..'..'*

4
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IVEL = ¢ IF vXX €& VIZ UBTAINED LSING STANDARD LINEAR
INTERPOLATICNG L

= 1 IF A THREE-WAY [NTERPULATICN SCHEME ULSED -

ICLOG = 0 IF THE CONCENTHATION OF THE MEWLY [INTRODUCED #
POINTS ARE BASED Ch THE GRID ThHE FLUID 15 b
EMANATING FROMS *

= | IF BASED ON A THREE-wAY [INTERPOLATION SCHEME =

*

NN aNaNa N N2

SUBROUTIME MOVPT {NCs ARe NCPLsNFPles NPZ, NPX)

INTEGER YSTEP

DIFENSICM FCTAE[22) SWTAEL22) e WKTABIZ2)AKTARIZZ2)oPCILTe12)PW{17s
l'z'-PSAVE‘ITIIQ,OPA(|7n12,'5N(170|2]055(|7-lz‘.5ﬂ(l7i12)|NK(17||.2)
2o AKI LT 4 123V ISWIL7412)eVISA(LI7402)+RHCWELT412),AHOALL7,12)+SATP(LT
30123 eANL1T412)BWILITo12)+wTU17) ¢SERRORINI7412)4ZZ{17+12)4STAE(22).C
AONSTI(1742)4CORSY2( 1742} ,CONSTC(L7,12)

ODIMEMSICA VX(LS 213} eVZC1B8.08)4X{4500),72{4500),C14500),5UMC(LB,13),
TCCUNTUTE212) s CAVGILBa L) sUXI17012)4DZ017212)+DXZ2(17 +12)DELC{1B,13
2)

CCMMCN PCTAE s SWTAE ¢ WKTAH G AKTAB ;P C PR PSAVE s PAISW 55 +SAs WK AK gV
ISHsVISAsRHOWsKHUA»SATP ;AW WT 4 SERRGR ZZ2CANSTL 4 CONS T
23X el eCoVXoVZoSUMCLCOUNT s DELC 4 CAVG 4DX o DZ 43X Lo STAB,DEL X«
DELZWDELT s SATPER ¢ FHI ¢GoCRHC + PSOURC o HA JHE DELML T, TCLANC »
DSWMX DS WMAX s AX s ALo AXL o ALENX s ALENZ o CONST o ONE o TWOa FOURS H
ALF 2 ZERUSDELT 14+ DELT24DIADIFF sSULRC 5 ISAT o AHML JNCM1 4 NAM
2sMCM2oNRZ sNR3¢NCL 4 NC2oNDELT 4 IS, IPRINT, LFAC,LOG, LTER:1
AslBsTCoEDIIEsIBML o IDF I oNWNL 4TSTEPIPCsISKeISW. ITENSR, T
CFECK+ ISWICH: IRESs [STEDY, 1FPLUTSIWRITE NNy IVEL +ICLUG

DO 200 [=1,L06G

NLISX{D)/0ELX+1,

NI2=Z{[)/DELZ+]. .

IF (NL1 +GTe NG «ORs NI2 +GTe MR} GC TO 200
IF (N1 JLE. O .0Rs NI2 J,LE. 0) GO TQ 200
AL=NT1-1§

ALL=NhLEn]
IF (IVEL +ECs 0) GO TC 650
IF (Z201) oLV, CELZ +ORs X{1) +LT. DELX +ORs X{1) oG¥s (ALENX-DELX)
$.CRa Z{I[) «GV: {ALENZ~DELZ)) GO TU 638
IF [ZUI) «LTe 1+5%DELZ +ORs ZUL} +GT o ALENZ-1S*DELZ) GO ¥O 632
IF (Z01) oLTe (ALL40.S)#DELZ) GO TO 63
A=(Z(1)=-(ALL#+0.S)Y*DELZ)/DELZ :
VEXUSVX{ATLeNEZ2)-AR(VXINIL)NIZ2)~VX{NIL1,NLI2%1})
VXXD=VXCAL L4 Lo NT2)—AR(VXINTI+E s NI2)=VXINIZ#1,NIZ2#1))
VXX2VXXL~{IX(L )=AL®DELX) ZDELX) # (VXXU-VXXD)
GO TO &34 .
630 A=(Z(1)-[ALL-0.S)®DELZ)/DELZ
VXXUSYXINTLaNI2=0)=AIVXINELyNI2=1)=VXINTILsNTI2Y)
VEXD=VRENLE+ 1 oNE2=L ) =A% (VXINTL+E4N12~1)=VXINIL+LEaNI2)}}
VXXSVXAY={IX{ L P=ALSDELX ) /DEL X} #{ VX XU~ NUXXD)
GO TO €134 .
632 VEXSVXIATILNI2)=tLIX{L)=CALDELX))/DELXI*{VXINILaNI2)=VXINTL #2,HNI2
&)1
634 CONTINUE
IF (XLI) oLTs 1.S%DELX «0OR¢ X{I) +GT+ {ALENX-1,S#ELX)) GO 10 638
EF (XEI) +LT. [(AL#0.5)%DELX) GO TOD 637
Az {X{L)=(AL+0 .S )*DEL X )/DELX
VZZUV2ARTLsNT2)Y =A*{VZINILE sNL2)=VZINLI+1,NI2})
VZIZO=VZINILNTZ41)=A% (VZINIL NI2+1)=VZI(NIL 41 .NI241))
VZZavZIu=-((Z(1)- ALL*CELZ)}/DELZI*IVZZU-VZZD)
GO TO €40 '
637 ASI(X{I)-(AL-0.5)%DELX}/DELX
VZZUSVZUIMIE~1 oNI2)~ARIVZINIL =L ¢NIZ)-VIINTILNI2))}

DN P wWwN -



[N a2 el

C
c

VZZO=VZIMII=2oNI241 )-AS{VZINILI~LeNIZ+1}-VZINEL.NI2¢1))
VZZ=VZ2L-{(ZLL)~ ALLECELZ)/DELZ)S{VZIU-VZZO}
GO TQ ¢ag _
638 VZZEVZIATL oNI2)=U{{ 20 L)~ (ALLSDELZ)I/OELZ)#(VZINT1sNEI2)=-VZINI]1 .NI2+
$1) 1) ) '
GO TO &aC
6356 VaIX=VX{NI]NIZ)
VZZ=VZL{NI14NLE2)
€40 CCATINLE
GO TO €co
650 VXXSVXL{MILoNIZ)-CLIXCL)-CAL®DELX})ZDELX) € IVXINT L JNT2)~VX{NI1+3 NL2
E¥))
VZZ=VZIRIL N2~ (UL ZI1)-{ALL*DELZ) }/CELZ)A{VZINIT NI2)-VZI{NI1NI2+
sL))
660 CONTINLE

sesssns FRCM FERE THRU STATEMENT 277, B.C.'S ARE CFECKED & MOVING
FCINTS CLCSE TU THE NO-FLCw BOUNDARY ARE ASSIGNED A ZERD
VELCCITYY dpsbdesanssadaang .
IF tVX{MIL1aNL2) +EUs ZERD +ANDe VXX oLT. ZERO) GC TO 270
GC YC a7t A v
270 AL=NI1=-1
DESTA=X{[}~AL $CELX
DISTE= JESC(DELTHVXX)
IF (DISVE +GT4 GISTA) ¥XX=(-DISTA+0,0100) /DELT
271 IF (VX{NIE+1sN1I2) EQs ZEHU +AND. ¥YXX_ oGTa ZERO) GO TO 272
GO TC 273 ’
272 AL=NI1
DISTASAL#QELX~-X{1)
DISTE= AES(DELT#uXX)
[F {(DISTE «GTs. CISTA) VXX=(DISTA-0.0100)/0ELT
273 IF (VZ{NIL4NI2) LEQ. ZERU «ANDe V22 «LTe ZERG) GO TO 274
co TC 21%
274 ALL=NL1Z-1
DISTA=Z(1)~-ALL #0ELZ
DISTE= AES{DELT*VZIZ)
IF (DISTH +GTas DISTA) vZZS(~-DISTA+0.0100) /DELY
275 IF {VZIMNILoNE241) EQ. ZERO +AND, VIZ «GT. ZEHO) GO TO 278
Ga Tg 2717
276 ALL=NI2
DLSTASALL*®DELZ~2Z(I)
DISTE= AES(DELT®VZIZ}
IF (CL1STE LGV, DISTA) VZI=(DISTA-0.0100)/0ELT
277 CONTINLE .
ZLI)=ZL{ L)+CELT#V22 !
X([)=X(1)+CELTOVXX

-

1

.

1 P [l

ssasses FCINTS MCVING OUT ARE REINTRODUCED AT THE INFLOW BDUNDARY
IF IX{L) +GTe ALENX +0ORs Z{1) +GT. ALENZ} GO TO 280
IF (XI1) «tTe 2ERD +0Re Z{L[} LT ZERG) GD Ta 280
GO TOD 43 : o
280 CONTINUE

seanusna RANDU IS A LOCAL LIBRARY SUBROLTINE ssasasss e b
CALL RANCU (IS1: ISe UNP)
I€1=18S
XCI)=({MNCI=1+UNF I HDEL X )
CALL RAMNCU {ISls [Se UNP) o '
1s1=1s :
Z{L)=UNP#DEL2
Cli1)=SCLNMC
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44 NII=X(I)/DELX*1,
NI2=Z(1)/0DELZ+1.
IF (Al1l GTs NC +OR. NE2 «GY¥s NR) GO TO 200
IF INTLl «LE. O +0ORs NI2 .LE. 0) GO YOG 200
COUNTINMIL o NIZ2)=COUNTINILANIZ2)4 1,

200 CCNTINLE

ssssves FRCM HERE THRU STATEMENT 464 THE NUMBER OF POINTS PER GRID
MRE CHLCKELC ANO IF IT FALLS SHCRT OF TrHE REQUIRED MINEMUM
’NE‘ PIJINIS ARE INTQODUCED B8 & 08 S A SEESBEREESBEED
DO 46 kx14AR
ALL=K=-1
DO 4¢6 1=1.AC
AL=1~1 © T
ITRIP=0
IF (CCLAT(I+K) «+GE« NN} GO TO 486
IF {VXUI41,K) +LTe ZERD +ANDs 1 +LTe ACL) GO TO S
IF (VX({1.K) .GV ZERQ +AND. 1 .GTs NC2) GO TO 7
IF {vZL1.K} +GTe ZERQ) GO TO S
IF (VvXLleK}) +GTe ZERO ANDS 1 JLTe HCY) GO TO 12
ETRIP=TTRIF+1
IF {(ITRLIP «CT. MN) GU TO 46
IF (CCULAT{I+K) +LTe NA) GO TO 8
9 LLG=1L 0G4
X{LGC)=[#0ELX=0.001
CALL RAMEUL (1S1+ 15, UNP)
1St=1S
ZILDGI=(ALLGUNPD*D§LZ
IF {ICLCG EGs C) GO 10O 402
IF {1 «EGse 1 JANDs K EQ. NRZ AND. Z(LOG) oLTs (ALL#0,5)*%0DELZ)
$GO TO £01 _
IF (ZELCC) LT 1.5%0DELZ +O0R, ZfLOG) GTe (ALENZ-1,.S*DELZ)) GO TO
34601
GO TO £C2
601 ClLOGI=CAVElLsKI~{IX{LOG)—(AL+0+SI4DELX}I/DELXISLCAVGIT+K)=CAVGLI+]
$eK1)
GC TC €10
G002 IF (ZILCG) +LTe (ALL+0.5)*DELZ) GO TO 603
ADN=(ZILCG)~(ALL +0.,5)*DELZ)/DELZ
Cl=CAVGI[+K)~ADNSICAVGII +KI-CAVG(I,K%1))
C2=CAVGCI+ 14K I=ADNEICAVG(I+1 4K )~CAVG{L+1.K+L))
CILOG)=C 1t (XLLCGI—(AL#0 +S)I*DELXIADELXN)*(C1=-C2)
GO 7O €10
603 AUP=(ZILLG)-(ALL-0.5)*DELZ)/DELZ
CL=CAVG{I+K~1)=AURR{CAVG(I XK=1)-CAVG(L1.K}}
C2=CAVGLI+I+K~1)-AUP*{CAVGI{L[+1,K=1}-CAVG{1+1,K))
CLLOG)I=C1~{{X(LLCG)=(AL+0«S)*DELX)/DELX)*(C1-C2)
GO 1O €190 C :
501 C1=CAVG(Il.K)
C2=CAVGLI41 K= )=({Z{LOG )~ (ALL~0+5)%DELZ)/DELZI*{CAVGIL+1,K-1)~
$CAVGI1+1.X))
ClLOG)=C1={LX(LCG)~(AL+0.5)*DELX)}/DELX)*(L1-C2)
610 CONTLNLE - ) . :
GO TC 403
402 CLLOGI=CAVGII+].K}
403 CCATINUE
COUNTL L o R)=CCUNT( EsK}21»
IF [COUNT{IsK) «LTs NN) GO TO 4
GO ¥C a6
7 LOG=LAOG+H1
CALL RAMNCU (ISle IS. UNP)

[a R aNa N

&0 b0

N



605

60&

607

621

622

404
8405

611

624
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Is1=15

ZLLOG)=FALLAUNF I2DELZ

XILOG)=AL*CELX+C 4,001

IF LICLCE «E0e €) GO TO 404 ‘

IF (I 4EGCe NC +ANDs K +EGe NRI +AND. ZILDG) +LT+ {ALL+0.5)%DEL2Z)
GO TO €21

IF {ZELCG) +LTs 1.54DELZ JORs ZILOG) +GTa (ALENZ-1.S5*DELZ)} GO TU
$605

GO YO £C£

CLLCGI=CAVEL I~1 4K )=(IX(LOGI—(AL-C+S) *DEL X }/DELXIM{CAVGI =1 K}-CAVG
${i.xk))

GC TC €22

IF (Z(LLCG) «LT. (ALL+0.5)%DELZ) GO TO 607

ACN=[Z(LCGI-(ALL +0+S)RDELZI/DELZ

Cl=CAVGLI=~1 4K I=ACN*(CAVGILI—1+K)~CAVGI I~1,K+1)}

C2=CAVG UL oK) =ALN®(CAVGI T +KI=CAVGI L K +1})
ClLOGI=CL+UIX(LCG)=(AL-0.5)*DELXI/DELX)I*({CI~C2)

GO TO €z2

AUP=(Z(LCG)~{ALL-0.5) *DELZ) F/DELZ : :

C1=CAVGIL=14K=1)~AUP¥ [CAVG(I=1,K=1)=CAVGL[~1}WKk})

C22CAVC LT +K=1)—AUPRLCAVGIL JK=1)=CAVGIL K} }
CILOG)=CL-({XILOGI~(AL~-DIS)*DELXJ/DELXI*(C1-C2)

G TO €:2

C2=CAVGlak]} |

C1=CAVG(I=1ls K=1) = ({Z{LOG)—LALL-0.5)%0ELZ)/VELZ)I®(CAVGII-1+K—~13-
$CAVG(L-1+K})

ClLUG)-CI—((x(LGG) (AL—O-S)*DELX)IDth)‘(CI c2)

CONTENLE | i

GO TC a0% A Ty oSt

clLoGi=cAaveli-=- l-Kl L L ' :

CUGNTINLE ’ ’

COUNTLL «RI=COCUNTILI kI 4]s

IF (COULNTLLsK) +LTs NN) GO TO &

GO TC 4t ‘

LOG=LOG+1

CALL RAMCU (ISL, 1Ss UNP)

181=18S

X{LOG)={ AL +UNP ) PDELX

ZILOGY=ALL*DEL2+0,001

[F (K <ECs 1) GO TO 387

1F (LCLCE .EG. 0) GO TO 401

IF (K +ECas 2 +ANDe I +EQGs NC1 2AKND. X{LOG) LY. (AL+0,3)20ELX) GO
$Y0 611 '

IF (K +ECe 2 oARDs 1 Qs NC2 AND. XILOG) +GT. [AL#0.5)%DELX) GO
$TO 612 : : :

GO TO £24

CI=SCLMC -

C2=CAVGII=1+K)=([XELOGI={AL~0 +SIVDELX}/DELX)*{CAVG(T~ I.K) CAvc(l.x
$})}

clLOG)=Ci- l(Z!LDGI-(ALL—O.SItDELZ)/DELZI*lCI c2)

GO TO &2%

C1=SCLMC '

C2=CAVG UL+ ®)={{X(LOG}=CAL+0+S)SDELXI/DELRI P (CAVGII+KI=-CAVGL{I +14K))
CLLOGI=C1=-{{ ZILOG)={ALL-0+S)*DELZ)/DELZ)*{Cl-C2)

GO 7O €z%

IF {X(LCG) LT+ (AL+0+S)%DELX) GO TO €13

ADNs={X[LCG)-(AL+C .5 )*DEL X} /DEL X :
C1=CAVELLsK=1)=ADN®{CAVGIE+K=1)=CAVGEI+1,K~-1})

C2=CAVG LT «KI-ADNK(CAVGLT +K)—CAVGI{L+1l oK) )
CILOG)I=Ci=((2{LEG)~{ALL=~0.5)*DELZ)/DELZ)*ICL-C2)

GO TO e2%
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387
625

401
&48

12

s11

519

510
520

46

201

205

85

AUP=(XILCGI-LAL-0.5)%DELX) /DELX
CL=CAVGILl=1.K=1)~AUPR{CAVG{I=1sK=1)=CAVG{ L, ,K=1))
C2=CAVE (I~ 14K }=AUP*[CAVGII =1+ K)I=CAVG (1 eK})
CLLOG)=C1=¢LZ(LCG)=1ALL=04+S)*DELZ)/DELZ)I¥{CI~C2)
GO TC ezs
C{LOGI=SCLMC
CONTINLE
GO TO €ag
CILOGI=CAVG(T sK=1)

CCNT INLE

CCUNTE E oK ISCOLATIL K41,

IF (COULNT{1.K} +LTs NN) GO TO 14
GO TC #é&

LOG=LOG+1] :

X(LOG)= ALSCELX#C,001

CALL RARNCU (IS14 IS UNP)

Is1=18

Z(LOGI= (ALL+UNF)SDELZ T

IF (1 <ECes- 1) GO TO S10

LF LICLLC +EC. 0} GO TO 510

IF {ZILCG). +L.Te loS®DELZ +O0Rs Z(LOG) +GT+ {ALENZ-1.5%*DELZ)) GU TO

$511 ’ L
GC TC %1%

CILOG)ZCAVGL I~ 1 eKI=({XILOG)~({AL“0+5) SDELX)/DELXIS(CAVGLI=14KI-CAVG
${1.X))

GO TQ =20 :

IF (ZILCG) LT« (ALL+0.,S)*DELZ} GO TC 513
ADN={ZILCG)I-{ALL #0,.S)#DELZ)/DELZ
CI1=CAVGLE=1,K)~ADNS(CAVGII=1 4KI-CAVGLI=LsK¢L))
CT2=CAVCL{IaK)~ACNS(CAVGL I +KI-CAVGlL sk +1})
CILOGC)=Cl-{{XfLCGI-(AL=-0+5)*DELX)/DELX)*{C1-C2}
GO YC £20

AUP=(Z(LCG)-(ALL-0,5)*DELZ)/DELZ .
CI=CAVG{I=1,K=11—AUPH (CAVG (I ~1+X=13-CAVGL{ L=L,K))
C2=CAVE (I, K= J=AUPS (CAVG{ L K=1)=CAVGITI:K) )}
CILOGI=CI={({X{LOG)-(AL~0+5}*DELX)}/DELX)#*{C1~C2)}
GO YO £20

ClLOGY=CAVGIL oK)

CONT INLE

CCUNT{1,K)=CCURT(EeK) 41,

IF [COuUNT{1sK) +LTs NN) GO VO B8

CCATINUE

D0 201 K=l NR

DO 201 [I=]1«NC

CCULNTILIsK3=0.

DG 205 I=},L06

N1l1=x{l)sDELX#*1s

N12=2{1)/DELZI*1.

IF (NLI «GTs NC +ORs NIZ +GF« NR} GO TO 205
IF (RI1l +LEe O «GRe NIZ +LEs O} GO TC 2095

SUMC (NTL+NI2)=SUMCINIL.,NL12)+CL])
COUNTINILh12)=CCUNTINTLNI2)H1,

CONTINLE

DO 85 K=14MAR

DO 8% I=2lehC

IF (COULATELeK) +EQe 0.0} CCUNTLEKI=140

CAVGLT oM D)ZSUMC( I 4K)/CCUNT{EoK)

RE TURN

END
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C *
C §$ L B R O U T 1 N E Dt s P -
C *
X L e I R R N R R RN F I R SRR R R IR VIR TR AR SRR R RRD L 2T
C *
[ THIS SUBRCUTINE CALCULATES THE CHANGE IN CCNCENTRA- L]
C T11CN DUE TO DISPERSICN: CAVG 1S THEN CORRECTED FOH THILS *
c " CLISPERSICN EFFECT. *
C

SUBRCUTIAE DISP (NCs WNR)

INTECER TSIEF

DLMERSICA FCTAEL22) »SWTAEL22) s WKTAHI22) s AKTABL22)4PCIL7412)4Pw( 17,
I12)ePSAVEC LT ¢ 12)+PALLT412SW{1T212)eS5(17,12)+5A0017,12)euk(17412)
Do AK{ LT o 12) oVISWITITH12) 4 VISALLT o 12)+RHCWILT12)4RFOALTLT12)SATPIL7Y
Fel2Y+AW(L7 0120 +BW{1 7422}, wT(17),SERRCRI17412)+s2Z(17,12),5TAEL22).4C
AONSTI(ET742) sCONST2{ 17420 CCNSTLLT12)

DIMERSICHN VX(L1Se13)oVZ{18s14)4X04500)4Z2(4500)CL4500),SUMCEIER,13),
ICCUNTEL 8353 CAVGILIEa13)3DXI17412)sD2117432)DX201T+12)4DELCI1AL1T
2) .

CCMMCN PCTAR+SWTABsWKTAB ¢ AKTAB+PC 4P W PSAVE +PAsSW eSS sSAs WK JAKe Y
ESHIVISARHEWsRFUASSATP AR eEW s WT s SERROR. 22, CUNST L+ CONSY
2eX o2 sCoaVAIVZ e SUMC 4 COUNT+DELC s CAVG DX sDZ+DXZ+s5TABWDELX s
DELZ+DELY+SATPEH PRI +G o CRHC, PSCURC yHA 4 HO 4 DELML T, TCLRNC 4
DSWMX ¢DOSWHMAX s AX 4 AZ g AXZAALENX ALENZ yCONST oCHNE s TWOWFOURWH
ALF s 2ZERO+DELT Ly DELVZ4UIADIFFSCLNC » [SAT  NAML ¢NCH 1 4 NRM
2uNCN2 NR2 sNRIsNCE eNCR2sNDELT oIS IPRINT A IFAC L OGITER,I
AsLEsICs IDGIESIBML+ [IOPEsNWM]L s TSTEPIPCISK,, I SWsl TENSRGIT
CHECK » ISWICHLIRES»ISTEOY . IFPLOT+ IWRITE oNN,y IVEL . ICLOG

NP EWN -

sasssas FRCM +ERE THRU STATEMENT 337, B.C'S ARE ChECKED £ CAVG OF
T+HE GOUNDARY GR1DS ARE BASED ON THF APPRUPRIATE BeC?5  cesee

annn

K=1
DO 334 1=2,.NCM1
IF {VvZ(1+K) .GTs LEROJ GC TO 347
CAVGLT + XK )=CAVGL I 4K+1}
GG TE 3234

347 CAVGLE+K)=SLLNC

334 CONTINUE
K= Nt
DO 335 f=2,hACM1

335 CAVGLI,ARI=CAVGLL,NRML)
1=
DO 336 Kz=24hAMI
IF (vX{l4K} «GT. ZERQ} GO TO 345
CAVGC(L +K)I=CAVGU L4l 4K)
GO TO 33& .. PR

345 CAVGIT.K)=Qe : .

336 CCKTINUE L. o K .
t=KC - N
DO 337 k=2,NRMI1
IF (VvX{lsK) LT. ZERD) GO TO 346
CAVGLL K y=CAVGINCM] 4K )
GG TC 3137 ’

346 CAVGI{LsK)=0,

337 CONTINLE

c
€ eseeceeces CAVG OF THE CORNER GRIDS ARE ASSIGNED esissescncans

CAVGILa1)=CAVG1{2,2)
CAVGINC + 1 )=CAVGINCML, 2}
CAVGL1+NR)3CAVGL2.NRM1)

239



240

CAVGINC « MR I=CAVGLNCML o NRNME )

Khm3
00 312 Kx2+NRM]
[wn2
IF (K «GT1. 2) Kimg=]
IF (K «LT. RRM1)} KP=K+1
DO 332 =2 .NCM1
IF ([ +CTs 2) IM=(~}
IF (I +LTs NCMI) IP=1#1
DCZZASAZRICLZUT JKMIRSWILoKMIFDZLILKIASUEL oK) IR{CAVEITK=1)-CAVG{I,.K
$))
DCZZB=AZ#LCZL 1.KkP)ESWILsKPI+DZ(LaKI RSN I KIIR[CAVGLT 4K+ 1 )-CAVG(T,K
$)) .
DCXXC=AXNRLCXC INaKIASH (IMoKI4DXL 14K )®SRLT, K} ) {CAVGI[=1,K)-CAVGII,K
$)) '
DCXXC=AXA{CXLEP o KI*SW{ TP sK)I+DXL LK) & Sul Lo KIIE(CAVGIT+] +KI-CAVCLI WK
$))
IF [ITEMER EC. 0) GO TQ 13)
DEXZA=AXZHALDXZL IN K IR SWLIMaK)$DOXZL{T o KIESWIT K} I H{CAVGIL 4K#1) +CAVGH
$I=14sKt1)=CAVGII=1:K~1)~CAVGLTsX=-1))
DCXZE=AXZ¥(CXZUIP K JRSWL IP 4K I+OXZLE K} xSWIL K} I s {CAVG(L +K+1)}+CAVGL
S$1 4L oK+l }=CAVGLI+1sK=]1 }~CAVG(TIsK~1)])
DCZXC=AXRZH (DXZL Lo KMIxSWI L KMISCXZL LK I®SWIT,K))®{CAVGII+1.K)+CAVGL
SI+14K~1)~CAVGLI=1+K)—CAVGLE-LlsK—1))
DCZXD=AXZHRLDXZL [ oKP ¥ SWEE KIS+ UXZLT o KIXSW L oK) P ¥ {CAVGITI #1 4K+ 1) +CAV
$GUI+1 4K )=CAVGLI-L+KI-CAVG{LI-LsK+1)})
DELCII +k)={DCZZA+DCZZB+DCXXCHDCXXDIDCXZBE-DCXZA+CCIXD-DCIXCIHDELT
$/7SHiMeK)
GO TO 332
330 DELC(I+K)=(DCZZA4DCZZUIDCXXCHICCXRDI*CELT/SHIIK)
332 CONTINUE
DU 126 KxlshR
DO 326 {x14NC
326 CAVGILI o KI=CAVGILI+K)+DELCIL K}
DO 320 t21,.,L0G
NI1=X{1)}/7DELX#*]l.
NL2=ZL1)/DELZ4).
ClIN=CLIY+CELCIMIL,NIZ)
320 CCNTINLE
RETURN
END
C
CREERERRRAIAR AR RSB IRRRE IR ERRE RN R IR ER R R R RE SRR R A AR AR e Rk kb bk bk
C *
c S Uy B R O U T I N E B A T B A L *
¢ *
CREAESSRESERIRSIRA RN SERAEIIRRERRARARRNARIARAE A IR NSRS nbddsb st bdbst s
*®
r
TH1IS SUBRDUTLINE CALCULATES THE MATER[AL BALANCE FOR THE
WATERs AIR AND THE THACER.

ICHECK = COUNTER TU PRINT MATHAL ERRQRS. INTEGER
ISWICH = INTERVAL AT wHICH MATHAL ERRCRAS ARE PRINTED,
INTEGER

noantnnnnn
L3R 2% 3R 2% 2%

SUBROUT iANE MATBAL ( NCs NRs TACUTs TAUT, TulIN, TaQUT, TwEN, TuUT,
1 TSINe TSCUTbS, ASs CS, W51, AS1l. C51, WISs AIS,
2 SiSe SAREA, ARs TALIN, DAIN,; DAQUT: DWINs DWOUT,
3 DSIMs DSCUT, KKKKs CTSAVEs TIMEs CAVGSV. TAEN)

ENTEGER TSTEP



DIMERSICN ECTAEL22) SWTAE(22 ) owKTASLZZ2) sAKTAR(22).PCI17412),PwilT,
112).PSAVELIT A2 PALITo 12D o517 2123455(107412145A0LT7412) wK{17,412)
2oAKLITe1Z) oVISWEIT 122 VISALLI7 412}, RHOWILTE2)2RHOALL7412)+3ATRPO1T
B2 s ARL17412)3RI1T512) e nT (17} SERRORILIT12)3+Z2C1T412),5TAEL22).0

4CNSTLILET.2)

+COCRST2017+2)+CUNSTILT12)

DIMERSICN wX({15 4130 .v2108,14).X14500),2(a500),C14500),5UMC(18,130,

LCCUNTL 16,12
2)
DIMENSICA C
CCMMON

NP P LU=

TAIN=TAEN

TACUT =TALTY

TuwiIN=TWEMN

TwOUuT=TuebT
<

YeCAVGELIB13)aDX{17,12),D2ZL17,120,0X2017+212)0DELC(18,+13

AVGEViLa,s13)

PCTAE +SHTAB s WKTAH G AKTAB WP C PRePSAVE s PAsS5WeS5S5+5A WK AKe Y
I1Sw e VISAsHHCWsRMOA+SATP AR oW o WT ¢SERRCH, 22+ CUNST L 4 CONST
2e4XeZeCoVXsVZ e SUMCyCLUNT 4 DELCsCAVGsDX+Z DXL STABSDELX
DELZ+DELY s SATPER 4 PHIL sG o CRHCs FSCURC o HA o HA s DELMLT s TCLHNC »
DSWMN sDSWMAX g AX o AZ o AXZ sALENK s ALERZ 4CCAST oCNE « TWUWFOURGH
ALF ¢ 2EAD ,DELTE s DELT2:DIAsDIFF4SOLNC s [SAT¢NRMENCML s NRM
2-NCF2.NQ2.KR3|NCIQNCZQNDELT.ISIQIPRINTQlFlCoLUG.[TERoI
AsIEstCe IDLIES[OML, IDPIsNWML 4 FSTEP 4 IPCISKs TSW4ITENSR
CrECK s ISWICHIRESe ISTEDY + IFPLOT LWRITEoNNo IVEL 2 ICLOG

[ vesssee CCNPLTES ALH INFLOW OR ULTFLOW THRUUGH THE UPPER BOUNCARY s

K=2

DO 110 1=2,

ChED=RFCulIL

IF (I(STECY

IF {1=-nC1)
113 IF (1I-NC2)
152 QA =

NCMIL

WK)/RFOALL «K)

+EQe 1) GO TO 112

112s110,112

1101004012
CCNST'(]|K,‘DELZ*G¥(PSGURC‘PA(l-Kl)‘DELX‘DELT*CCNStl(

ST KIDELZHC/CRIOHL HALFSDELZ)*CELKSDELT

IF (CA «GTo.
DAQUY=CACLT
GQ TO0 110

2ERC) GO TO 20
-GCA

20 DATN=DALIM+CA

110 CCNTINLE
1F {ISTECY

C
L= reeseae CCLWPL
c LFFER

K=2

«EQs 1) GO 7O 111

1ES WATER & TRACER INFLOW OR OUTFLOW THROUGH THE
BLCUNDARY arssas e ben

00 114 I=xKhC1.NC2
Qw= LESCURC-FW{[+K)4& HALF4CELZ)*CONST2{ 1 +K) *SAREA®DELT

IF (Qw «GTo
OwOUT=CWCUT
G0 TO 12

11 OWIN=DwIh+C

12 SM=QwW*SCLMC

IF (SM +GT.

ZERC) GO TG 11t
-Cu

ZERO) GO 1O 19

DSOUT=CSCUT-SN

GO TO 114
19 DSINzDSIN+S
1314 CONTINLE
111 CONTINUE
IF (IRES. €
=
c [ B N N chFL

M

Q. 0) GQ TO 150

TES wATER €& THRACER [ALOW CR OUTFLOW THROUGH THE

C LeFeS., OF THE MODEL smevsassesben

DO 120 K=hR

2.MRN1

Qw= (HA-PUL24KIH$ZZL2+K))FCONST L 24K 3 *SAREA*DELT

241
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IF (QGw «GT. 2EFC) GO TO 13
OWOUT2DRLUT -GN
GO TO 14

13 DWINSDULN+CW

14 SM=0OR*sRALFR(CAVG{2sK) +CAVGSVLI2sK]))
1F (S5M +GVa ZEKC) GO 10 IS
DSAQUT=CSCLT-SM
GO TO 120

15 DSIN=DSIA4SM

120 CONTINLE

150 COUNTINUE

c
€ esessenss CCMPUTES WATER £ TRACER INFLOW OR OUTFLOw THROUGH THE
C 5"“'5. UF THE MUDEL * S8 2B B0P PSS
DO 130 Kk=NAJLNRNI
Qw= (PWINCN]4K)~Z2(NCMLsK}-HBISCCAST (NCMLKISSAREA®DELT
IF (Cw «GYV. ZERQ) GO TO L&
DOWIN=Dutlr=-Cw
GO TC 17
16 DwCLT=CueCUT+GW
17 SM=OWRhALF#(CAVGINCML s K)Y+CAVGSVINCHML 4K} )
IF {SM .GT. 2EFC) GO TO 18
DSIN=DSIA~SM
GQg TC 130
18 DSOLT=DECLT+5M
130 CCNTINUE

.

C cesssnnae CCNPLTES CHANGE IN AIRy WATER & TRACER STCRAGE IR L
IF (KKEKK JANCe NDELT) GO TO S00
wWS=ZERQ
AS=2ERQ
CS=2EALC
D0 140 KsZ2,NAMI]

DO 140 [=2.MNCMIL
CE5=CS+Sul 1, X)I2CAVGL] K]}
AS=AS+SALL.K)
140 WS=uS+Sw{1.K)
wiZ2=u5% IR
ASZ2aAS AR
CS2=CS5¢AR
wWS=wS2-% 1S
AS=AS2=-ALS
€s5=C52-¢15
DaS=uS5=-881
DAS=AS~AS]
DSALT=CS5-CS1
TWEN=TRIM+EWIN
TwGUT=TWCUT+DuOUT
TAINS=TAIN+CAILIN
TAQUT=TACLTI+DAQUT
TSIN=TSIMCSIN
TSOUT=TS5CLT+DSOUT
DADIFF=CAIN=-CACQUT
TADIFF=TALMTACLT
ODWOIFF=CwIN-DaCUT
TWOIFFaTwln-THCLT
DSDIFF=CSLA~DSOUT
TSDIFFsTSIN=-TSCULT )
DERRW= ABS(OWS=-DWDIFF}/{Du0UT+NS2)
RERRW= AES (MS=TWDIFF}/Z(TWOUT+uS2)
DERRA= AES{DAS-DADIFF }/{DAGQUT +AS2)

%



RERRA= AES{AS-TADIFF)/ZITAQUTH+ASZ)
IFf (LSTECY +EQ. 1) GU TO 300
DERRS= AES(CSALT-DSDIFF)/DSIN
RERRS= AES{CS-1SDIFFI’TSIN
GO 70O 2%0
300 CONTINUE
RERRS=ZERUG
DERRS=ZEFD
350 CCNTYINLE
DELT=DTSAVE
TIME=TINVE#CELT
HOURS=TIME/Z3&CC.0
IF (YSTEF WNE. ICHECK#*iISwICH) GO Tva SO0
ICHECK=ICHECK +1
WRITE (£4+4715)
WRITE (€.a71)
WRITE (£.472) TSTEP.ITERWDELT+HOURS,,D5WNMAX
WRITE (€.473) CWwIN,OWNCUT,DOWDIFF ,DWS s TWIN s TROUTsTWOIEF guS.ulS.nsS
12 ,DERRW sRERAW
WRITE (6&+4474) CAINDAQUY CADIFF ;DAS rTALNLTACUT ) TADIFF+AS, AIS5,AS
12.DEFRAJFRERRA
WRITE (€4876) CSIN'DSCLUTSDSDIFF yDSALT +TSINGTSOUTTSUIFF,CS5.5154CS
12 .0ERRS +KERRS
500 RETURN
471 FORMAT (/1X4T30s%% % % * M ATERI AL B AL ANCE ERKOR
1 ANALY ST S % & % %4 )
AT2 FORMAT ( I1Xy3*TSETEP =4 ,[a4T30,*1ITER =% ,14,TH0,"DELTY {(SECS) =%,E12.5
LoTOS54'CLUN,y, HCURS =9 4F 106244 X s " MAX ' o /1X»*"WATER SAT, CHNG =%',E1245)
‘474 FORMATY (/ tX4'INCs AIR IN =% 4D11 .44 4sT30.*INC. AL OUT =*,D11 o8,
1T604*INC. AIR IN € CUY =25 ,D11+4:sT9S54*INCse AIR STRGs CHANGE =%,
2D11.4,4/1%°CUM,  AlR IN =7 ,D11+8,7T30,°CUM, AIR UUT =¢,011.4,T60
A, CUN, AR IN £ OUT =7 ,D11.4,T55,*CUN, AIR STRG. CHANGE =1',D11
44471 Xe? INTL AIR STRG =* 301144+ T30+'CUMs ALR STRG =4 4011831804 INC
S5¢ AIR ERRORs 0/0 =*,D1144:T95,*CUMs AIR ERRGRs 0/0 =*,DIl44 )
4T3 FCRMAT (7 1X.*INCe WATER IN =*,C1l1.4,7T30,*INC, WATER OUYT =*',D11.8,
1760 *LACe WATER IN & GUY =*%4D114+8,T95,*INCs WATER STRG. CHANGE =1,
2D1) a8/ X CUM. WATER IN =*,01144,T304*CUM, WATER OUT =%,.D11.4,.T60
3+'CUNs BATER I'N £ OUT =% D11 .4 ,T95," UM WATER STRGe CHANGE =',011
4,470 Xs " INTL WAT STRG =*3DE1+8sT30,'CUM, WAT STRG =%4D11.4:T7T5650,"INC
Se WATe ERROR. 0/0 =*5011.44T95,°CUM, WAT, ERHORs 070 =9,011.4 }
476 FORMAT (7 1Xs 8 INCs SALT 1IN 29 ,011+4,;T30,%LNCs SALT CGUT =*,:011.4,
IT60.*INCe SALT IN & OUT =0,D11.4,T95,"INCa SALT . STRG+ CHANGE =%,
201144, 7104°CLM, SALT IN =*,D11+4-T30,°CUM, SALT OUT =%*,D11.:3,T60
3e'CUMs SALT tN £ DUT =% 401144795, *CUM, SALT STHGs CHANGE =¢,D11
B,47/1%Xy *IATL SLT STRG =*,DI1¢45T30,9CUNs SLT STRG =9 4D11¢4+T60,°* INC
e SLTe ERKCR, 0/0 =°,D101,4,T95,*CUNM, SLT. ERROR, 0O/0 =',Dt1.4/)
475 FORMAT (26(%==2=az1)) '

ENDC
c
CEIEREARIRRA A RAR IR AR ASRAEEI R AR AR R R OIRRR SRS S SRR B R R AL TR TSI AR kR e
C *
c § L 8 R O U T I N E e s o0 L ¥ *
C *

CHERSEERRRIR DA AR A4 404 A 2FR IR AN AR A ARRE SRRk I AR B RRESRAEEIRERE R
*

TH1IS SULBRCLTINE SOLVES ThE MATRAIX SET UP M MATSOL BY

CALSS ELIMINATICN.

CMATRX & RHS NEED TO BE DIMENSICNED AS TO THELIR EXACT

S12ES

N aWaEaNalsel
LI 3 O

SUBROUT INE BSCLY {CMATRX +N+MyRHS}
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DIMEMSICN CMATRX({NsM} yRHMSIN)

ZERD=0.0

LR = {N~-L3r2
00 2 L=1.+LR
IM = LR=L+]
DO 12 1 =2l,.,IM
DO 1 J=ZeM

CMATRXIL+J-1) = CMATRX{L.J)

1 CONTINLE

KN = N-L
KM = M-
CMATAXIL «M) = ZEROD .
CMATRX(Kh#1, KM4I1) = ZERO

13 COCNTINLE
2 CCNTINUE
LR = LA+]
{M = N~}
DO 10 I=ls(IM
NP lv=l
LS = 141
DO 3 L=LE4LA
IF { AES{CMATRX{Ls1))
3 CCNTINLE
IF {(NPIV LLE.
DD S J=1l.M
TEMP=CNATRRE{L +J}
CMATRX( L, J)SCHNATRXINPIVJ)
CMATRXINFEVsJ)ZTEMP
5 CCATINUE
TEMP=RKE(1)
RHS{ 1)=RrSINPIV)
RHS{APLV I=TENMP
& CONTLINLE
RHS(I) =
DO 7 Ja2.M

+GT.

1t} GO TG &

CMATRX{I+sJ)} = CMATRX( Lo JI/CMATRNLL.1)

T CONTINUE
00 9 L=LEWLR
TEMP = C(NMATRXIL.1)

RES{T}/CMATRX(E 1)

ABS(CMATRXINFIV. L)) ) NBIVmi

AHS{L) = RHSIL) - TENP*RHS{1)

00 8 J=Z.M

CHMATRX{LsJ=1) = CMATRAXI{L+J)

B CONTINLE
CMATRX{Ls+M) = Z2ERQ
9 CONYINLE
IF [LR «LTs h)
10 CCNTINUE
RHSI(N)
JMx2
DO 12 1zl.IM
L = N+~1
DO 11 J=24JN
KN = L+J
RHS{LY = RHS{L)
11 CCNTINLE
IF (UM LT,
12 CCMTINLE
RETURN
END

LR=LR+1

M) JIM=IMEL

2 RhS{N)/CMATRXI(N,1}

~TEMPSCMATRX{ 144}

= CMATRX(Ls JIPRHS(KM-1)




CREPRTRER R E NI AN A IRRER PR R A AR TR AR R AR RR AR A A SRR AR R RNt AR

c x
c S U B R 0 U T I N E M A T R 0O P *
c *
A S 2 RS L R R I ERE RS R RS LI R R R RN R R R SRR E R FFE SRS IS SRR YT SRS RS LY
C *
C THIS SUBFGLTINE CHGANIZES THE INITLAL CATA TR QUTPUT *
€ INTO A SUITABLE FORM FOR PRINTOLT . *
C MATRICES A & B NEED TD BE DIMENRSIGNEC AS TO THEIR *
¢ EXACT SIZES *
<
SUBRCLTIME MATFCP (hA., KBy B) .
CIMENSICA ELNASNBYs ALL12)
DO 11 1=Z.NAW12. ’
ILL=0
Ih=1/12
00 9 J=2,NB
IF (LEN41)412,CEWNAY GO TO 23
Bo 2 Ji=tet2
JJI=IN# 12400410
2 AtJII=ECLaded)
GO 1D &
3 LL={NA=-1) - L241IN
ILL=1
IF (LL J+EC. O0) GO TG §
DO 4 JJi,LL
JII=INPLE+II4 1
8 ALJJITELLdInd )
6 CONTINLE
IF CIN) 77, 77+ 88
77 IF (1LL «ECe+ 1) GO TD 7
WRITECE12) Jo CATLIL}o0I=1,12)4J
GC TC 4
7 WRITELEL1T) Je (ACLEDLEI=1,LL)
GC TC §
88 1F (ILL +ECs 1) GO TO 8
WRITE(E.12) INJIA(LL) TL=1+12),1N
GG 10 &
8 WRITE (£.17) INs(A{IT s I11=14LL)D
9 CCNTINUE
IF [NACLE.(IN+#E)%12) GG TO 11
WRITE(E.13)
11 CCATINLE
RETURN
12 FCRMAT (1H,14,12E10.34+14)
t3 FORMAT (LHG.//})
1?7 FORMAT (1H,18, 12E10.3)
END
C .
ct‘###ttt*.t.iitiiittiltt!ttitttt*#t##t*#iti##tt#tttt.iiﬁttt#tt‘tt!t#tt*
c *
c S L 8 R 0 U T &I N E o u T P U T *
c »

CHERRB SRR SN 400D RR RN ARBEARANIREB AR ER SR IR RS IR bbbkt dtidanss

THIS SUBRCUTINE WRITES CuT ALL NECESSARY CUTPUT USING
SUERCUTINE MATROP. IT ALSC MAKES APPROPRIATE PLOTS
LSING LGCAL LIBRARY PLOT RUUTINES

ananbonn
R R E RN

IFPLCT = 0 § IF NO PLOT NEEDED,
= 1 i IF PLOT MEEODED

o
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-

non

[ 4
C

111

52

SUBROUT INE QUTPLUT {(NCs NHs NCPIL,
INTEGER TSTEP

LOGICAL®: C{10)
DATA Q 7
DIMENSICN IMAGE(45000s LABEL(9),

DIMENSICA FCTAE(22) o SWTABIZ22)+wKTAH(Z22)sAKTABI(22),PCLLTo212)sPW LT
sl2) oSHULT7412)sSALITL12)YeuMK(17,12)
EoAKRILT o123 oVISKILT 41202 VISALL7412)eRECWLL17412)4REDALL7312)45ATP(LT7
o l2 oAWLL1T7412)a8WIL17412) enTILT)+SERRCRIL7412)+2Z117,12),STAL{Z2)sC

E12)sPSAVE(L17+12}PALLTH12)+5SWLT

ND SERROR PRINTED,
SERROR PRIANTED

NRPL ) T

CAF AR B0 DY REN PET G Wt 8 e gy

NSCALE(S)

4CASTI(1742)CONST2117¢2)CUNSTH(L1T7,12)

DIMENSICA YX(1S+13}4VZU1B,148)4X(4500}42(45C03,Cla500)+5UMC(18,13},
ICOUNT I 1841 2),CAVGILIB413)sDXI17412)e02(17412)DX2017,12) DELC(18,413

2)
DIMEASTICK CAVGSVILEIB.13)
COMMCN
1
2
3
4
5 ALF »ZERU.DELTY1,s DELT2
6
7
]

WRITE (6.71%)

CALL MATROF [(NCMLls hRFL, Pw)
DO 111 I=2.MCME

DO 1Ll k=2,NRM2

IF (PW(1sK) oLTae ZERQO <AND.

EWTL{II=Full«KI/A(FWlTLsXK)}-PulleK+l)
CONTINUE
WRITE (€449)
WRITE (€472)
CALL MATROR (NCN1,
WRITE (6.74)

CALL MATFOP (NCN1L,
WRITE (E.72})

CALL MATFOF (NCH1L,.
IF (IWRITE +EGCe D)
WRITE {(&47¢€)

CALL. MATROFP (MNCML,
CUNTINLGE

WRITE (€.413) TSTEP
CALL MATFCF (NCF1ls NR,s VvX)
WRITE (€£.+414) TSTEP

CALL MATFQF (NCs NRPL1l, VvZ)
IF {ISTECY «EQ. 1) GO TEO 350
IF LIFFLCT +EGC. 0) GO TC 300
WRITE (€+5)

(aTLE)s1=2.MCM1)
NRMLy FC)
NRN1+ PA)

NAN1,
GO TO

Sw}
52

NRM1, SERRUR}

5 FORMAT (1H1)

NSBH=]

N5BV=5

NSCALE{(t)=1
NSCALE(Z)=0
NSCALE( 2)=0
NSCALE(4)=0
NSCALE{(Z2)=0

sesessse THFE FOLLCWING SUBROUTINES

PWw(l.K+1)

PCTAE +SHTAD ¢ WKTAB s AKTARsPCaPW s PSAVE+P A3 SWeS5S+SApnKiAKW Y
I1Sw s VISAsRHOWsHHUA 2 SATP s AW +BW oW T 4SERRCR+ ZZsCONST ) ,CONST
2eX022Co WX+ VIsSUMCsCOUNT s DELC +CAVGsDX+DZ +OXZ+STAY JDELX
DEL ZwDEL T SATPER o PHI sG+CRHLC ¢ FSCUHRC sHAFB +DELMLT 4 TCLRNC,
DSEWNMXSDSWMAX g AX s AZ s AXZ s ALERX ¢ ALENZ CCAST s ONE « TWO L FOURH
¢DIAJOIFF,SCLNC,: ISAT NRML,NCMI, NRM
2INCHMZ2sNRZ2 yMRIJNCLeNC2LNDELT L IS1EPRIMT IFACLOGH LTER, !
AsIBsLCoIDIIE+IBML s IDPLoNWML ¢ TSTEP s IPC4ISKs ISWe ITENSR,1
CrECK S ISWICH . IRESHISTEDYy IFPLOT:IWRITE sNNJIVEL W ICLCG

+»GTs ZERC)
YRDELZ4ZZ14K)

2 PLOTL, PLOT3, PLOTA ARE

PLOT2,



01

902

$C3

9C4

905

906

907

908

509

gto

920

arz2

700

300

54

350
a9
71
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LCCAL LIERARY SLHUROUTINES AND CAN BE USED CALY IN FORTRAN ..
CALL PLCT 1 ¢NSCALE. MRP1l.s NSBHe NCPLl, NSBV}
CALL PLCT Z2 (IMAGEs ALENXs 040, 0.0, =ALENZ)
DO 920 1=1. LOC
IF (CtI) +€EQ. Ce0) GO YO S20
zit)==2t 11
IF (C(l} +€Es G.9%SO0LKC) GO TO 901
IF (C(1) +GEs+s 0+8#SOLANC) GO YO S02
IF {C(l} <CE, Q. .7450L.NC)Y GO TO 903
IF (ClI) +CGE. C6450LMC) GG TO S04
IF 1C(I) «CE. C+5#SOLNC) GO TO §05
ILF {C(Ll) «CE. 0.3%SGLAC) GO TO 906
IF [C(L) +CEe Q+1*S50LMC) LD TO SO7
IF [C(I) JCE. Q.01%SULNC) GU TO 908
IF (C{1) +GE. 0.001%SCLNC) GC YO 909
CALL PLCT 3 (0QC10)e x{1)s 2(1}. 1. &}

GO TC %10

CALL PLCY 3 (Q(13s XIL)y ZUE)a Le &)
GO TA 10

CALL PLCT 2 (Ci2)s X{I), Z(EYe Ls B)
GO TC 910

CALL PLCT 3 (OQ(2)s X(L1)y ZUDDs L, &)
GO YC s10 '

CALL PLLCT 3 (CGla}, X{1)s ZL03, 1, &)
GG TO 510

CALL PLECT 3 (C{S)s XILL)e 2Z{U)s 1, 4)
GO 10 s10

CALL PLECT 3 (QU(6)s X{I)s ZUT)e 14 41}
GO TO $1¢

CALL PLCT 3 (G770 X4 L)y ZUN1De 14 4)
GO TC 91¢

CALL PLOT 2 (GUE)s XUL}s Z(1)s 14 4}
GC TC $10 '

CALL PLCY 2 (GCfS)s XL}, ZiX)e 1. &)
Z4I1)==21(1)

CCNTINLE

CALL PLCT 4 (S, GHX IN CM)

WRITE (€+472)

FORMAT { /50X, 'X 1IN Ckt/ )

WRITE (6.7C0} :

FCRMAT {//15+ *AIC/C0O = 0,9 = 1,0',T30,*B8:C/C0 = 08 ~ 0.9',T55,'C

13C/7C0 3 047 — CuBP,TBOL*0IC/C0 = 0atd ~ Q744 TIOS,*EIC/CO = 0.5 =~ 0
2.6 3 /TS +*F2C/CC = De3 = 0s5%s 13047GIC/7C0 = 0l ~ 0.3',7855,*H:C/CO

= 0401 = 041727802 %JIC/C0 = 04001 = Co01°,T1054*K2C/CO0 = 0.0 - 0,

4001 ./)

CONT INVE

IF LLWAITE +EC+ Q) GO TO 5%

WRITE (€+415) TSTEP

CALL MATROP (ACKH1.+ NRNM1, DX}

WRETE (£+416) TSTEP

CALL MATFOP {ACN1s NRML1. DZ}

WRITE (E+.417) TSTEP

CALL MATROR ([ANCW3i, NRML, DXZ)

CONTINGE

wRITE (&,a1l) TSTEP

CALL MATRCOP (NC, NRy CAVG)

WRITE (€,2412) TSTEP

CALL MATROF (NCs NRs CCUNT)

RETURN

FORMAT (71X%s "LOCATION OF WATER TABLE 2 "/5X.16E8.2)
FORMAT {s45Xs *THE wWATER PRESSURE MAP [5%/}
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T2 FORMAT
T3 FAORMAT
74 FURMAY
76 FORMAT
43l FORMAY
412 FORMAT
413 FORMAT

{/45%,* THFE WATER SATURATIGN MAP 1S*/)

{745%,
(785X,
(f4EX|
{/45X,
/745X,
(/35X

$ =7,14/)

414 FORMATY

(735X,

$ ='.14/)

413 FORMAT

418 FORMAT

417 FORMAT
END

(745X,
(745X
(748X,

‘THE CAPILLARY PRESSURE MAP [5'/)

*THE ALR PRESSURE MAP [5*/)

STHE SATURATIGN ERROR MAP 15/}

*THFE CAVG MAP AT TSTEP =',14/)

*THE COUNT MAP AT TSTEP =',14/)

*VELOCITY IN X~DIRECTICN AT GRID INTERFACES AY TSTEP

*YELOCITY LN Z=~DIRECTICN AT GRID INTERFACES AT TSTEP

ICX TENSOR AT TSTEP =% .[4/)

*CZ TENSQKR AT TSTEP =*,:14/)
DXZ TENSQR AT TSTER =*,14/)



	tr81cover.pdf
	TR- 81
	1976
	Simulation of Pollutant Movement
	in Groundwater Aquifers





