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PREFACE

The purpose of this investigation was to develop techniques
to assist water planners in the optimum implementation of their
plans. Specifically, techniques useful for continual evaluation
of water plans and for scheduling the sequence and timing of needed
project additions were sought,

Considerable effort has been directed toward developing water
plans for meeting Tong range needs for water both in Texas and
around the United States. These long range water plans have
consisted of fixed systems of development projects deemed necessary
at some future point in time - usually 50 years. Plans such as
these are considered flexible quides to serve as water development
goals. However, water planners also néed implementation plans
which specify the sequence and timing of construction for specific
prajects which are a part of the Tong range water plan. Previous
researchers have studied the application of operations research and
optimization techniques in the planning of fixed systems to meet
water needs at specific times in the future. This investigation
seeks the development of optimization techniques which can be
used by planners and developing implementation plans.

In this research, techniques were $tudied to determine those
which best met the research objectives. A stochastic programming

formulation for obtaining an operating policy for single, multi-purpose



reservoirs based on the continuity equation, stochastic inflow and
demand, and chance constraints was developed. The chance constraints
were converted to an equivalent linear programming problem. This
formuTation was then extended to a linked system of multi-purpose
reservoirs. Both Tinear and quadratic objective functions were
used with the equivalent linear constraint set.

The problem facing water resource planners during implementation
of water plans was then addressed. The objective used in this
problem was to select reservoir storage capacities, schedule a time
for construction, and establish an operating policy such that the
total cost of the linked reservoir system is minimized. In solving
this problem which is in fact a mixed integer-continuous linear
programming problem, an analyst defines the feasible reservoir segments
in storage capacity for each time period in which expansion is
possible. The resulting problem size and general structure lend
themselves well to the use of a specialized decomposition technique.
Use of this decomposition technique permits the problem to be separated
into a linear programming problem and an integer programming problem.

This approach makes the problem more computationally tractible.
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CHAPTER 1

INTRODUCTION

Water resource planners face the problem of developing and
evaluating alternative water resource systems at different points
in time. The evaluation ultimately leads to an investment decision.
The problem for the analyst is to investigate how the relevant
variables affect the investment decision. The analyst is also faced
with many types of uncertainties, two of which are economic uncer-
tainty and hydrologic uncertainty.

Fconomic uncertainty refers to the fact that the water resource
analysts often do not know the relevant benefit and loss functions
necessary to evaluate the performance of various system designs
and operating policies. Since water resource projects are durable,
their time horizon can extend into the distant future. The benefit
function will probably shift over time and it is usually impossible
to determine exactly how benefit functions may effect future
planning.

The dynamic variations of the benefit functions lead to ques-
tions concerning the time phasing of investment planning in water
resource development. As demand grows at a steady rate over time,

capacity expansion models must be used to determine an optimal
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investment program. Since investment programs are usually legis-
lated, capacity expansion can only occur at finite points in time.
With capacity fixed for certain time frames and demand growing
almost continuously the optimal operating procedure of a reservoir
system is quite dynamic.

A methodology is proposed for the analysis of time phasing of
reservoir system operation with capacity expansion. The objective
is to select reservoir capacities, construction timing and to
establish an operating policy such that the total cost associated
with a system of linked reservoirs is minimized. The formulation
of this procedure is a mixed integer-continuous Tinear programming
problem. The analyst defines the feasible reservoir segments and
capacity for each time period where expanion is possible. Due to
the size of the resulting problem and its general structure Benders'
decomposition technique (Lasdon, 55) is applied.

Benders' method allows for the problem to be separated into
a pure linear program and an almost pure integer program. The
integer program is necessary due to capacity segments being added
at fixed time intervals. Once the capacity segment is added a new
reservoir system must'be solved.

Each reservoir system has associated with its operating policy
hydrologic uncertainty. The hydrologic uncertainties dealt with are
the stochastic nature of streamflow and demand. The stochastic
variables must be considered in order to develop models of reservoirs

and reservoir systems. Since the performance of a reservoir or



system of reservoirs cannot be predicted with absolute certainty
chance-constraints are developed which will allow the analyst to
predict with some degree of certainty a set of operating rules.

Two types of chance-constraints are presented. The first
constraint is for the probability of the storage Tevel in a reser-
voir not to exceed the maximum capacity of the reservoir. The
second constraint is that the storage in the reservoir must exceed
the minimum pool Tevel by an allowable probabjlity. Both constraints
are based on the current ending storage or inventory level., The
chance-constraints are converted to an equivalent linear determin-
istic set of constraints by a material balance equation. The Tinear
constraints are used along with maximum and minimum downstream
release constraints to form a linear system of time related release
and pumping variables.

A continuity or material balance equation is proposed which
relates the current ending storage volume to the previous time
periods storage volume. The ending storage volume also considers
input of random inflow, possible pumping and upstream reservoir
release flow. The release or Toss of inventory is due to demand,
downstream release, and pumping to other reservoirs. The material
balance equation allows the analyst to investigate many types of
objective functions associated with a reservoir or system of reser-
voirs.

Bicriteria objective functions associated with the stochastic

reservoir models are considered. This analysis includes additional



variations to the cost function associated with certain decision
variables. Application of postoptimal objective function analysis
js applied to both linear and quadratic cost functions. From the
resulting set of optimal solutions the analyst can select the solu-
tion which best meets his budget requirements. He is also able to
eliminate the variables which will produce little or no return for
additional expenditures.

As hydrologic uncertainty or the stochastic nature of stream-
Flows is of essential consideration for developing models of water
resource systems, a model is developed from the Cypress Creek
Basin. An example problem is formulated based on a set of stochas-
tic constraints.

Two types of constraints are considered for this model. The
first is the uncertainty assoeiated with meeting a downstream
demand. A scheduled release is placed on each reservoir with flow
into the downstream reservoir. The downstream reservoir must meet
a fixed demand a certain percentage of the time. Associated with
the‘schedu1ed release for each reservoir are stochastic variables
which represent the actual flow supplying water to the downstream
reservoir.

The second constraint imposed on this model is that the maximum
capacity of the downstream reservoir must not be violated by more
than a specified percent. The constraint set is converted to a
1inear deterministic equivalent set. This results in a linear

constraint set which allows for different types of objective



functions to be appended. Two technigues are investigated based on
a linear objective function. The two techniques are parametric
programming and linear programming and contraction mapping.

A guadratic objective function is then formulated for the
Jinear constraint set. The objective function presented represents
the cost deviation from the target releases. Two techniques
similar to the Tinear routines are presented. The techniques are
parametric quadratic programming and gquadratic programming and

contraction mapping.




CHAPTER II

A REVIEW OF THE APPLICABLE LITERATURE

Water resource planners have attempted to adapt techniques such
as simulation, linear programming, dynamic programming, stochastic
linear and dynamic programming, network analysis, queuing theory,
jnventory theory and combinations of these techniques to the planning
of water resources systems. This review will consider past efforts

in each of these areas and jndicate further research needed.

Simulation

Pioneering Work

Pioneering work by Morrice and Allen {78) and Huffschmidt and
Fiering (43) of the Harvard Water Program have made simulation the
most nearly operational technique. The remaining research using
simulation involves principally how to make the most effective use
of the technique in an actual planning situation. One of the major
disadvantages of simulation still remains in the large amount of
computer time necessary to obtain a solution to the more complex
models. In addition, even with systematic sampling of the response
surface, it is very difficult to make statements concerning the
optimality of the simulation results. Blanchard (10) has shown
that linear programming models could be used to reduce the number
and range of variables to be used in a simulation model. The concept

of combining optimization techniques with simulation appears to have



merit for further research.

Texas Water Development Board

The Texas Water Development Board (91} has designed, for the
Texas Water Plan (90), deterministic simulation and optimization
techniques. These techniques can be used by a planner to find
the minimum cost physical system and operational criteria for
satisfying fixed water demands with a single set of prespecifiad
hydrologic conditions.

Report 131 (92) presents a water resource planning methodology
which systematically and simultaneously relates planning variables
in mathematical models to simulate and optimize over time the
oparation of a network of storage reservoirs, pump-canals, and river
reaches in a multi-basin water resource system.

The objective function of the mathematical model in the report
is formulated so as to permit optimization of a network configuration
by finding a set of storage reservoirs and pump-canals that will
permit a prespecified level of annual water production at least cost.
The report defines the problem in such a way that the future time
series of water demands can be brought to bear in the consideration
of current and future alternative investments to supply the quantities
demanded. Initial investment costs, operation and maintenance costs,
and the possibilities of substituting investments in storage
facilities at some point for costs of pumping water to another point

are considered.



The procedures and methodologies presented could be further
developed and refined so that they can be applied to additional
water resource planning problems. More attention could have been
given to defining problems where systems analysis and optimization
techniques are more effectively applied in the planning and design of
real systems to idenfify needed modeling improvements. Also needed
is the incorporation of multi-level optimization and simulation
procedures which would permit varying computational precision from

preliminary to detailed project planning.
Mathematical Models

Linear Programming and Stochastic Design Models

Linear programming has been utilized by a number of specialists
in water resources planning. Dorfman (22) considers a river basin
system consisting of two possible reservoir sites, an irrigation
project and a run-of-the-river power plant. Dorfman indicates that
a method for piecewise linearization of the objective function is
often necessary to apply linear programming. In this manner,
nonlinear problems subject to 1inear constraints can often be
efficientiy solved. Although linear programming models are some times
criticized for their abstraction of nonlinear problems, the fact
remains that the simplex due to Dantzig {18) is one of the most
efficient programming algorithms and should be used as a preliminary

screening tool.



Another interesting application of linear programming is found
in a discussion by Ramaseshan (81), which is a response to an article
by Hall (35). 1In this paper the linear programming model takes into
account monthly variation of inflow and outflow, a curvilinear cost

function for canal and reservoir, and a convex benefit function

given as follows:

3 3 16
k=1 3=1 i=1
subject to:
discharges less than canal capacity
3 3
T <
PGy - @ )
k=1 j=1
2 .3
£ I G55 < Q' > i = 1,2,...,12
k=1 j=1
3
gy 2 @ )
i=1

discharges have upper and lower limits

0 <

14

Qs

Qeqi

U ji Q

ji
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A total outflow less than total inflow

3 =i i=1 i=1,2,...,11
j=1,2,3
R T k= 1,23
k=1 j=1 i=1 i=1
net storage less than V
\
i=1 3 3 i=
i=1,2,...,11
i=1 k=1 j=1 1=l > j=1,2,3
k = 1,2,3
12 3 3 12
I Q1 = I | z ) U s
i=1 k=1 j=1 1i=1 /
where
0,Q',Q" - capacity of aqueduct sections
qkji - discharge to region k, in month 1, in benefit
function range j
v - reservoir size
iji - unit benefit of qkji
Cr - - cost of reservoir of volume V
QQ - cost of aqueduct section 1,2,3 of capacity
Q,Q',Q"
Q; - monthly (average) inflow.

For a given volume V, and assumed values of Q,Q',Q", the

author suggests maximizing the ret benefits by linear programming.
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Values of Q,Q',Q" are then changed to increase the net benefits
by some type of sampling scheme. Ramaseshan further suggests that
it is possible to find the optimum V by using sensitivity analysis.

This model provides a significant improvement over the initial
model given by Hall (35), however the solution procedure suggested
is rather cumbersome and the mode] is only formulated for one
reservoir and three aqueduct sections. This model and approach
would be intactable if applied to a multiple reservoir and
canal system.

orfman (22) presents a similar trial and error method to find
the optimal reservoir sizes, energy and irrigation outputs for a
Tinear programming model of a hypothetical river basin. In this
model two reservoirs, an irrigation district and a power plant are
assumed. Reservoir sizes are assumed, and the maximum net benefits
are computed from energy and irrigation releases. Sensitivity
analysis is then performed to determine whether an increase or
decrease in reservoir size is required for the next trial.

Loucks (62) is responsible for a variety of linear programming
models with extensions to include the inherent stochastic nature of
water resources planning problems. One mode] considers a single
reservoir with downstream users. Uncontrolled streamfiow plus
initial storage is available for downstream demands. The objective
of the model is to determine reservoir capacity, réservoir storage
and target drafts that maximize the total annual benefits less annual

costs of reservoir construction and losses from deviations of
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storages and releases from their respective targets. Loucks derives
a Markov chain for transition probabilities for summer and winter
streamflow. The ergodic nature of the streamflows is then utilized
to determine the steady state unconditional probability of each inflow
in each season. These probabilities are used to determine the mean
summer and winter inflow which are then used in the deterministic
Tinear programming model.

Loucks also structures the same basic model as a stochastic

design model assuming an operating policy of

L - the integer portion of (i+k/2)
where

L - the final reservoir volume

i - infiow

k - initial reservoir volume.

The probability of each storage level and reservoir draft is computed
and added to the objective function of the basic model. Linear
programming is then utilized to determine the optimal design variables
for the given operating policy.

A stochastic operating policy model is next presented to
determine if any improvement can be made in the operating policy by
holding constant the design variables furnished by the solution of
the stochastic design model. The objective function of the operating

policy model conforms to the probabilistic portion of the design
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model objective function with the addition of one subscript. The
constraints are formulated from the equations used to compute the
probability of an initial storage k in period t, Pskt’ and the
probability of a draft Dkit given an initial storage k, and inflow i
in period t. The solution of this model specifies the steady state
probaoilities PDkit’ Pskt’ and PkiLt’ the joint probability of an
initial volume k, inflow i and final volume L in period t. The joint
probabilities PkiLt enable one to calculate the conditional
probabilities of a final volume L given an initial volume k and

inflow i by the following relation:

Prob { L|k,i,t } = ' kiLt ¥ Kk,i,L,t.
r P
L

kilLt

Loucks points out that these are usually 0, 1 or pure policies in
which one L is specified for a given k and i.

The design model is then resolved incorporating the revised
probabilities PSkt and PDkit and the new operating policy in the
continuity equations. If an improved design results, the operating
policy model is again resolved to determine if a better operating
policy exists. This two stage process is contunued until no
improvement can be made. Loucks indicates that in multi-reservoir
problems the policy portion of the models could become too large. He
suggests that an examination of the dual variables of the continuity

constraints would indicate the possibility of policy improvement.



14

Although the two models presented indicate possible approaches
to the stochastic nature of the problem, an attempt must still be
made to extend this theory to include a multi-reservoir system.
Loucks has also defined linear programming models for
sequential operating policies where the design variables are assumed
known and fixed. The unknowns are the reservoir releases given
the initial reservoir volume, inflows, discharges and time periods.
He assumes the inflow adequately represents the range of continuous
variables and that the distribution of inflows will be the same in
any month t regardless of the year.
The objective of this model is expressed as an expected vatue

in the following form:

maximize £ I ¢ I Bkidt Pkidt
k i d t

where

B s gt net benefits in period t resuiting from lake

levels ranging from k to k+i-d with a discharge of d.

In the event that benefits cannot be formulated, Loucks proposes

the following objective:

minimize £ £ I & {at((k—vt)z) + (]-at)((d-at)z)} Pidt
k i d t
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v - 1initial t reservoir volume target period
§ - discharge target in period t
O0<a< T- weighting factor expressing priority of reservoir

discharges in period t.

Loucks points out that any Tinear or nonlinear function of k,i,d,

and t can be used to measure the value of initial reservoir volume,
inflow and discharge in a given period since the unknowns are the
joint probabilities Pkidt and remain linear in the objective function.
The constraints reflect the fact that these joint probabilities

must satisfy certain continuity constraints. Finally, the result

of the linear programming solution specifies optimal values of

P These values are then used to compute the conditional

kidt®
probabilities of discharging d given a reservoir state of k, i and
t with the following expression:
_ Preidt
Po £df kyi}=s ——m— ¥ k,i,d,t.
., P .
d kidt
Loucks indicates that usually these probabilities will be either
0 or 1 and define an unambiguous policy. The possibility of mixed

policies is alluded to but the general problem is not discussed

in detaild.
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Loucks utilizes linear programming for comparison purposes
with dynamic programming. Three models are formulated based on
Markovian properties of a first order Markov process. The first

medel is given by the following equations:

T
maximize Iz
t k i d

where
ft.- return from an initial volume k, inflow i and release
d in period t
subject to:
I Lz pkidt =1 ¥y t
k i d
Prigt 2 0 ¥ k,i,d,t
further
if t=T then t+1 =1

min - ‘max

min - ]max
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max {dmﬁn’ k#i-L o P<d<min { dmax’ k+1'Lmin}

(t) _ )
Eron Peage Pig 7 7 T PLseute ¥L,J,t
k i d e
K+4-d=1

The final constraint specifies that the joint probability of a

final volume L in period t times the probability of an inflow j in
period t+1 equals the joint probability of an initial volume L and
inflow j in period t+]1 with a release of e in period t+]. The policy
is then derived from the conditional probabilities given by the

following calcuiation:

Prd] ki, ty = Pkiclt//E Pridt
d

The second model formulated by Loucks is similar to the previous
model with the exception that immediate past inflow is used to
determine the present policy instead of present inflow. If there
was an inflow h in period t-1, the following linear programming

model is formulated as,

.
(t)

hi f

r & P

maximize ¢ & &
t h k i d

t Pxnat
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subject to:
L £ thdt = ] ¥t
k d
(t) ,
EE 2 Prndt P Lietn ¥ Bt
k h e
k+i-d-=1
thdt > 0 ¥ k,h,d,t

The discharge policy is derived in a similar manner as in the

previous model using the following equation:

P{d]| khyt} = P

Pehdt khdt

o

The third model presented by Loucks is formulated to consider the
possibility that the initial reservoir volume and inflow state is
transient and therefore without a release policy. The effect of

discount rates is also considered in this model. Loucks defines

A= 1/{1+r) where r is the interest rate, y as the year with
t=1,2,...,7T periods and Pkil as the joint probability of a
particular volume k and inflow i in period t = 1 of year y = 0. The

following expressions are assumed for Pk11:

R R T T TR A
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If an initial state probability vector whose elements satisfy the
above relations is provided and 0 <« A< 1, the following model is

soived by linear programming:

.. ! y T (}')
maximize I X T I I T ft Pkidt
y=0 t k i d
subject to
(0) .
EoPid T P ¥ k,i
d
(y) (1) (y) ‘
5 E Pryge Pig o T T PLje voLaty
k i d e
where

the number of years to reach steady state

L
i

T+ 1inyeary =t =11in year y + 1.

ot
it

Finally, the conditional probabilities for the policy are given by

. ) . ply)
P{d | k,i,t,y} = Pidt L Pkidt
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Although a number of other linear programming models have been
formulated and may be found in a discussion paper by Manne (66),
the models mentioned above represent the basic structure of most
Tinear programming models. The majority of previous research efforts
has been with single-site reservoirs. The need for more effective
methods for evaluating the systems interaction is still needed in
water resource planning.

A final example of linear programming points out the fact that
this technique may be used to evaluate a system interaction.
Sharif (88) formulated the "Backward Elimination Simplex" for the
selection and ranking of reservoir sites. This model attempts to
provide a means of determining how many reservoirs out of a large
number of possible locations should be constructed to minimize
system costs. In essence, Sharif computes an inefficiency factor
for each site to reflect the amount of unused storage space. This
unused storage space is then given a weighted dollar value and the
most inefficient site is eliminated. The linear programming solution
is then resolved. If the new problem is infeasible or gives a
higher cost than the previous solution, the locations from the
previous soclutions are chosen. Even though the model does not
reflect changes in canal and reservoir sizes, the concept appears to

have merit and should be given practical consideration.

Dynamic Programming and Stochastic Design Models

Dynamic programming has been applied in a number of cases to
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water resources problems Buras and Hall (38,37,39) demonstrated
the feasibility of dynamic programming as a solution technique

for water resource studies. Meier and Beightler (71) extended the
use of dynamic programming to water resource planning to include
multi-stage branching systems. Mejer (72) further made nonserial
dynamic programming computationally feasible for water resource
planning problems through the development of branch compression.

Falkson {23) extended the work of Thomas and Watermeyer (96)
to include the stochastic nature of inflows utilizing Howard's (42)
combination of dynamic programming and Markov processes. A
discussion of every application of dynamic programming to water
resource planning probiems would be prohibitive, however, the close
consideration of a selection of the more salient contributions is
in order.

Hall (39) presented a dynamic programming model to determine
the optimum aqueduct capacity for one reservoir and an aqueduct of
n reaches. Hall avoided the seasonal effect on canal capacity, the
capacity limitations on the reservoir, the relation between cost and
capacity of the reservoir and the seasonal distribution of inflows
into the reservoir. The previously discussed paper by Ramaseshan
attempted to solve these deficiencies, however, the trial and error
solution presented raises questions as to its practicality in a system
context.

Hall (36) has also formulated a possible model to evaluate

optimum aqueduct routes by dividing the problem into three
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subproblems. The first subproblem is the division of the general
route into polyhedron surfaces in order to locate network nodes.
The second subproblem involves 1ift and reach cost calculations

in order to find the minimum tink costs. Finally, dynamic
programming is used to determine the most economic routes connecting
any two points in the network. Both Buras (11) and Deininger (21)
have suggested possible improvements in the model. Buras (11)
suggests pumping directly from the lower to the upper source rather
than a combination of 1ifts and reaches. Deininger (21) points out
that Hall only considers one source and one sink, while the problem
might require the transfer of water from several sources to several
sinks as in a transshipment probiem.

Schweiq and Cole (87) used dynamic programming to determine
optimal releases and transfers from two linked reservoirs with the
constraint of transfers only from the Targer to the smaller
reservoir. The state variable was the contents of the reseryoir at
the beginning and end of each month.

Keckler and Larson {47) use dynamic programmina to investigate
four types of water resource planning problems. First, the optimum
short term operation of a combined pumped hydro and irrigation
storage facility for two reservoirs was solved usina forward dynamic
programming. In their example reseryoir storage was the state
variable and pumping rate the decision variable. Second, the short
term operation of a multi-purpose four reservoir system with power

generation, irrigation, flood control and recreation was solved using



successive approximations. In this effort the decision variable was
the amount released from the ith reservoir over the kth time
interval with reseryoir level as the state variable and each stage
taken to be a time interval. Inflows were assumed constant over a
day. Third, iteration in the policy space was applied to the
optimal management of a single reservoir over a one year period with
stochastic variation of inputs. Finally, forward dynamic programming
was used to consider the optimal planning of adding additional
reservoirs to a system over a 30 year period.

Loucks (62} has formulated three dynamic programming models to
serve as a comparison for the three previously discussed tinear
programming models. The recursive optimization for the first model

is given by the foliowing equation:

(n) % d,ji,t+1) ¥ k,i,t
= : - + sl
Vit max (ft + 3 Pij Vit .t i
d J
where
ft - return from initial volume k, inflow i and release d
in period t,
(t) . .
pij - transition probability of system states
(n) . . .
Vkit - the total expected return in n remaining periods

beginning in state (k,i) in period t.
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This model assumes knowledge of net inflows i during the same period
in which release decisions d are made. When the release d in each
period t is the same each year for a specific combination of volume
and inflow, the solution has reached steady state conditions and
further calculations are not necessary.

The second dynamic programming model due to Loucks (62} derives
the releases d using initial volumes k and past inflows h. The

recursive equations are given by the following relations:

(1 (t)

no= 1 Vppy = omax (z Pri ft)
d i
W@ © -
no= 2 Ve o= omax (0P [fp Vg s g d)
d i
{n) ) (t) (n-1)
noEon Vg = omax (3P Dt Visg g e D)
d i

Louck's third stochastic dynamic programming model extends the
first model to include a discounted return. If r is the annual

discount rate, the following modification is formulated:



(n) (t)  (n-1)
Vit T omax (Fp 4 apn Pog Vg5 )
d J

where

_)1 Q+r) ift =T
t 1 otherwise,

Sharif (88) utilized dynamic programming to determine optimal
water allocations for both cerial and nonserial systems with
intermediate inputs. In his model the states were the inputs to and
outputs from the reservoirs or stages. The problem was made
mathematically tractable by a redefinition of variables. The
"pseudo stage principle" developed by Meier (72) was used to
convert the nonserial system into a series of equivalent serial
problems.

Dynamic programming offers a number of advantages over other
techniques which account for its popularity among water resources
analysts. Buras (12) has summarized some of these advantages

as follows:

25

(1) Analytically, the method always yields an absolute optimum,

(2) The technique converges to a stationary state solution
for stochastic problems,
(3) Constraints given as a; < X3 < b, speed up computations

by reducing the state values.
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(4) Nonlinear functions pose no theoretical difficulty.
(5) Tabular functional values are easily handled.
(6) Sensitivity information such as the effect of carrying
] on the process for one more stage is available.

In spite of the fact that water resources planning problems
‘ are inherently nonlinear, very little research has been done in
3 the application of nonlinear programming as a planning tool. Young
and Pisano (99) have used a gradient method in an effort to find
the least cost mix of alternatives to satisfy future water demands
within a region. Such alternatives as surface water, ground water,

{ desalination, electrodialysis, and treated waste water are included

in their study. The strategy, given water demands and sources,
is to develop a network of possibie water supplies linked by

pipelines which permit the optimum sources of water to be tapped

and transmitted to the area.

Queuing and Inventory Theory

e A I st

Inventory and queuing theory have also been applied to water

resource planning problems usually in the context of a single

site-reservoirs. Avi-Itzhak and BenTuvia {1} applied inventory

theory to find the combination of reservoir size and pump capacity to
utilize a certain quantity of water at minimum cost. The assumptions
ﬂ were made that there was no serial correlation, the rate of outflow

was constant, the inflow occurred only during the winter and the

operation was under steady state conditions. Moran {77) has done
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extensive research into storage theory and the formidable mathematical
problems involved. Langbein (53) and Fiering (26) have both applied
queuing theory to single multi-purpose reservoirs, however, pertinent
research into queuing theory applications for total water resource
systems is still needed. Lloyd and Odoom (59), and Fiering (27)

nave applied statistical methods to various water storage problems

and have done a great deal to clearify the statistical methods

available to the water resource planner.

Combined Techniques

The fact that there appears to be no single technique available
which solves all the problems has prompted some researchers to
combine methods in an iterative format. For example, the use of
linear programming and simulation has been previously mentioned.

One of the more interesting combinations of techniques has been
developed by Hall, Butcher and Esogbue (36). The objective of

Hall's method is to find that particular operating policy which

will set the firm energy and firm water commitments during a

specific "critical period". The problem is formulated as a system
with a "master wholesaler" and "individual producer relationship".

The individual reservoir returns are optimized using dynamic
programming and a set of prices furnished by the "master wholesaler”.
The individual reservoirs then report their outputs for each time
period to the "master". With these outputs as available resources,

the "master" applies linear programming to maximize the returns from
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water and power contracts. As part of this analysis, the "master"
utilizes the dual of the linear program to furnish a new set

of shadow prices to the individual reservoir operators. This
procedure is continued with a new set of shadow prices and tne
iteration process terminates when the improvement of the solution
is negligible.

Hall's method of analysis involved dynamic programming, linear
programming, and a modi fied gradient procedure. The resulting
computational time was estimated to be 20 minutes per iteration
and a complete computer run was never made because of financial

Timitations.
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CHAPTER III
STOCHASTIC METHODOLOGY FOR RESERVOIR OPERATION

Operations research methodology and systems analysis has in the
last decade facilitated the water rescurce planner in the develop-
ment of reservoir management techniques. The planner must integrate
the many functions of a reservoir or system of reservoirs in order to
obtain decision policies.

In a recent paper ReVelle et al. (83) proposed a linear deci-
sion rule for a single reservoir design and operation. The lTinear
decision rule permitted the structure of a chance-constrained linear
programming model for determining the reservoir capacity required to
maintain a range of storage volumes and releases during specified
time periods.

ReVelle's linear decision rule, as applied to a reservoir, has

the simple form
X‘—‘S'b,

where x 1is the release during a period of reservoir operation;
s is the storage at the end of the previous period; and b 1is a
decision parameter chosen to optimize some criterion function.
The linear decision rule was applied in two contexts: (1) the
stochastic context where the magnitudes of reservoir inputs are
treated as random variables unknown in advance and (2) the deter-

ministic context where the magnitude of each input in a sequence
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is specified in advance.

This chapter is an extension of the work of ReVelle for
reservoir modeling. The emphasis will be mainly on stochastic
systems since the deterministic case is merely a special case of
the stochastic model. The linear decision rule discussed by both
ReVelle and Loucks {63} is not utilized in this model. By not
restricting the formulation to linear decision rules, several
advantages arise. Paramount among these are the ability to include
the release gquantities, X in the objective function, the exten-
sion to a linked multiple reservoir system is readily obtained, and
the inclusion of stochastic as opposed to deterministic demands
adds no conceptional difficulties, This approach is first applied
to a single multi-purpose reservoir and then to the even more

important case of systems of linked multi-purpose reservoirs.
Single Multi-Purpose Reservoir

In this section a single multi-purpose reservoir with chance-
constraints is modeled based on a formulated continuity or material
balance equation. The formulation provides decisions that specify
the release during different time periods of reservoir operation.
The decisions for the entire time horizon are determined by solving
a linear programming problem. The linear programming problem is
the deterministic equivalent of the original stochastic system.

The continuity equation consists of the reservoir inventory for the

previous periods random inflow, deterministic demands, and scheduled
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releases.

Chance-constraints for each time period are established.
Chance-constrained means that the specified constraints may not be
satisfied all the time, but will be satisfied at least some prespec-
ified amount. The purpose of utilizing the chance-constrained
formulation is the convenience in which the random variables can be
handled in the constraints. The stochastic constraints selected
involve maintaining (1) a specified maximum capacity minus a time
requirement variable for upper storage space and (2) a time depen-
dent minimum pool level.

The chance-constraints contain random inflow for each time
period. The random inflows are assumed to be additive and essen-
tially independent from one time period to the next. By making
this assumption a density function for the sum of the independent
random variables is obtained by convolution. The independence
assumption is not necessary. It does, however, simplify the
presentation of this approach and hence will be followed in further
discussion. By using the convoluted random variables for each
constraint, a deterministic set of equivalent linear constraints
is generated.

Objective functions are then appended to this mathematical
formulation for analysis of various decision policies. Both linear
and quadratic objective function forms subsequently will be dis-

cussed. More general convex objective functions with linear

constraints also can be handled readily (Rosen, 85, and
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Goldfarb, 33). However, the size of the general problem which can
be solved routinely is much smaller than the more specialized

linear and guadratic forms.

Continuity Equation

The continuity equation is based on the reservoir model shown

in Figure 3.7.

. .

Figure 3.1: Single Multi-purpose Reservoir

The total unregulated flow Ty enters the reservoir in time
period t . The infiow is randomly distributed with a probability
density function {(p.d.f.) ft(Yt) . Therefore, the inflow in a
particular period is known only with some probability. The inflow
plus the storage volume St during the previous time period is
available for downstream release X, , and extracted demands dt .

The current ending storage volume or inventory level S is

then expressed as

(3.1) S R I L



in which - = <x <%, -«<y<e and integrated over the range

X+ y <s ., Changes in the Timits of integration are then made to

(s) f [fs_x F oy)dy 1 dx .

Now, G(s) 1is differentiated with respect to s and the p.d.f. of

the C.D.F. and

s 1is obtained

ca

g(s) = .[ f (x, s - x) dx .

-

When x and y are independent, then
fx.y) = £, (x} £, {y)

and the resulting p.d.f. of s , denoted by gc(s) , is

For the case where it is required to obtain the convolution
of three or more random variables the formulas are applied
recursively until the density function of the total sum is obtained.

As an example, let

= Xq t X, + ...t X
s 1 2 n

where X1s Xos aevs X ave independent random varjables. Then to

obtain the p.d.f, of s , start first by obtaining the p.d.f. of

S,0= Xy F Xo Next with regard to 57 = S, t Xq and continue

2
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in this manner until Sp = Spo1 T X -
The convolution operation also can be extended to the discrete

case, that is,
p(s) = . By (x) pp (57X -
all x

As an example of the discrete case, consider the density function of
the random inflow Yt into a reservoir over a certain time

period t given by

Yt}O]Z

plv,) ’ .2 .3 5

where " is the number of units of inflow (usually expressed in
day-second-feet or acre-feet) into the reservoir for the time
period. Assuming that this distribution is the same for each time
period and that each time period is statistically independent, find
the distribution of random inflow for two time periods. By the

application of the convolution formula, the discrete case yields,

QO
—
o
L
I

= p, (0) pp (0) = .2 x .2 = .04

o
P
—
—
I

= py (0) p, (1} +py (1) py (o)

2 x .3+ .3 x.2=.12



p (2) = py (0) py (2) + py (1) py (1) + py (2) py (0)
= .2x.5+.3x.3+.5x.2=.29
p (3) = py (1) py (2) +py (2) p, (1)

3 x .5+ .5x .3=.30
p (4) =p, (2)p, (2) = .5 x.5=.25
The distribution of the random inflow for the two time periods is

Y1+, l 0 1 2 3 4

plyq + v,) ‘ 04 020 .29 .30 .25

Deterministic equivalent. Chance-constraint (3.2) can now be

converted to an equivalent linear constraint. For time period
t = 1 , substitute the continuity equation (3.1) into constraint
(3.2) to yield
- - ( —

P { ey S, + T dI Xy = ¢ vy } z_al .
The random variable Yy is taken to the right-hand side of the
constraint and the inequality sign reversed to give

P { Ci -V -8 S, + d] Xy Z vy } Z.a] .

Since v, has a known p.d.f., the C.D.F. FY evaluated at the
1

argument

37
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L Cp = Vq - &5 ¥ dy + x ]
must be greater than or equal to ay - Thus,

FY1 [ €1 - V9 - &S, + d] * X ] 2. oy

For specified S the chance-constraint becomes
cpmvp syt xRy

o
where (Rl) ! is the value of Y1 from the cumulative distribution

FY such that only 100 (1—a]) percent of the random values of
1 ,
1 are greater than the argument.

For t =2 , constraint (3.2) is

<

P { €5 S + Yo - d2 - Xy 2 €y - Vo } i_a] .

Substituting for 51 from the continuity equation (3.1),

P { e, €1 S, + & Y1 - & d] - e X * Yy - d2 - X5 i_cz -V, } i_a].
Grouping
P{e,e s, - (e2 dy + d2) - (e2 X7 ¥ xz) -¢cy t Y,

- (ezy] +Y2) })'_a.l

and reversing the inequality sign the constraint becomes
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P { Cp - Vy - &, ey 5, + (e2 Xy * x2) te, d1 + d2)
>_(ez Y'I +Y2) }>_C¢-I
The C.D.F.

Fe vty b (G2 7 Vo = & &y So) (&g X+ xp) + (e 4y +d5) 1,
which is obtained by convoiuting the p.d.f.'s of €5 ¥y and Yo o
evaluated at the argument must be greater than or equal to o

Again for specified a s the chance-constraint becomes

(cy - vy = ey s)) + (&) xp + x5) + ey dy +dy)

which is linear in X, and X5
a

The expression (e2 R] * R2) L represents a value on the

convoluted cumulative distribution of the random variables Yy and

Yo evaluated at the point o
Then for the general nth time period, defining €nt] © 1,
(3.5) " Do(n el )
3.5) P{s. N e, + I 0 e J{y, -d, -x,) ¢ -v}>a
0 4=1 t £21  Kket+] | S t t n n 1

The sum of the random variables is taken to the right-hand side of

the constraint to give
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Rearranging,

n n \
> (n ey, tZa
t=1 ket+1 <t ]
n n
The C.D.F. for vp = 2 ( =« ek) Yi evaluated at the argument is
t=1 k=t+]
n n n

F {c -v.-s T e, + ¢ [ (n e)d +x)711,
g "N 70 g=1  k=t+1 Kt Ot

which must be greater than or equal @y - By specifying ay s the

chance-constraint becomes

n n n
(c. ~v. -s_ 1 e+ ¢ [ (1 el +x)]
L I B L
n n
> * {10 e, }y
t=1 k=t+1 K T

or
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n n n Q
(3.6) (c -v -s T e)l+ t [( 1 e)d +x)]1>QR.).,
n Ty Vg kst+] Kt Tt *n

where (R*n)al is the value at the oy point on the cumulative
of the convoluted distribution.

Constraint {3.6) is the deterministic equivalent of (3.2),
where the release quantities Xy are the decision variables. Al}l
other variables are state variables selected by the water resource
planner.

Chance-constraint (3.3} is next converted to an equivalent
linear constraint for two time periods followed by the general
constraint for the nth time period constraint.

Constraint {3.3) is

P{s,2s5 }2u«
and for t =1

P{s;2s
Then, substitution of (3.1) into (3.3) yields

P { ey S, v vy - d] - X Z_gq } 2, .
Taking the random variable to the right-hand side

P { € S, - d1 SR B R } Z 0y

and reversing the inequality yields



42

P{(sy-e s)+dy+x Syl Za, -

The deterministic equivalent for this equation, one minus the C.D.F.,

FY , evaluated at the argument
1

[(§_‘|'e'|s)+d +X'|]

0 1

must be greater than or equal to oy - Thus,

TR [ {5y - ey sg) +dy+xp Jzey

or

F E e - e s Hd oy 121 -0y

For specified dp s the chance-constraint becomes

1-&2
<
(5, - &y 5g) +dy + xp (R ) ;

1-a
where R, ) 2 s the value of (1-a2) from the cumulative

distribution F
!
For t =2 , constraint (3.3) is

>
P { 5o 25, F 2y
Substitution of continuity equation (3.1) twice yields

Py xp ey vyt ey dy ey ey s byt Gyt Xy 25y ) Zap



Regrouping and reversing the inequality yields

P { (_s__2 - e, € so) + (e2 d1 + d2) + (e2 Xp ¥ x2)

ﬁ.(e2 vyt Yz) }Za, .

As before, to obtain the deterministic equivalent for this equation,

one minus the C.D.F. evaluated at the argument must be greater than

or equal to % s

1- Fe2y1+y2 [ (s, - e, ey 5) + (e; dy +dy)

t ey xp %) 12a, .

]-(22

Letting (e2 Ry *R represent the (1-a2) value on the

2)

cumulative distribution F , the deterministic constraint is

€¥1%Y,

T-az

- < *

(35 - &5 &y s0) + (ey dy +dp) + &y Xy + %) = (e Ry * Ry)
The generalized formulation of equation (3.3) follows that of

equation (3.2) and the convolution of the sum of the random vari-

ables £ is in general:

n n n

s -s @I e + ¢ {(n e){d +x)
B TR IS L

n n ]-az
S{ « ( n ek) Rt }
t=1 k=t+]

43
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or
) oe)t f (n )< R, 2
(3.7 s -s I e )+ & (n e){d +x.)=(R
M0 P g ke KOE n

Constraint (3.7) is the linear deterministic equivalent of (3.3)

with the release x, (t =1,2,...,n) being the decision variable

t
necessary to insure that storage Sy exceeds the minimum pool

level 5h with a probability ay

Stochastic Inflows and Demands

The development for both stochastic inflows and stochastic

demands is similar to that for stochastic inflows. The main

difference is that the convolution of the inflows minus the demands

must now be obtained.
Consider the general stochastic-constraint on reservoir

capacity (3.5),

n n n
P{s m e, + £ (n e)ly,-d, -x.)%2c -v }2a,.
O 21 b 421 k=t+] k'Yt t t n n 1

The sum of the random variables i and dt is again taken to the

right-hand side of the constraint and upon rearranging,

(3.8) P{c¢c =-v_ -5 T e + £ ( 1 ek) X¢
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The distribution of the random variable

n n
g.= L (n e )y, -d)
N ge] kete1 KE O E

must now be obtained. This can be accomplished by convolution or

by application of Fourier transforms (Churchill, 16, and Parzen, 80).

Let F represent the distribution function (C.D.F.) of 5n S0

“n

that equation (3.8) becomes

Thus,

(3 ) n n ( ] ) a-l
.9 ¢c - v -s II e+ T I e ) x, 2R s

8
where R(l*d)n represents the value of the random variable &n for

which 100a] percent of the area of the distribution is to the left

of ¢ , or equivalently the ay point on the (C.D.F.) FE

n n

Constraint (3.9) is the deterministic equivalent of equation
(3.2) when both the demands and inflows are stochastic. Similarly,
equation {3.3) becomes,

n n n 1-a2

{3.10) s -s ©n e + £ (nm e)x LR
=n £21  kett] k7t {y#d)n
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The minimum and maximum constraints on releases remain as before.
Hence, for stochastic inflows and demands, the constraints on the

system are equations (3.9), (3.10), and (3.4).

System of Multi-Purpose Reservoirs

The natural extension of the single multi-purpose reservoir
model is to 1ink a system of such reservoirs. The reservoirs can
be Tinked by a series of canals or pumping facilities as well as
normal flow between certain reservoirs and random inflow into all
reservoirs. The formulation is structured so that each reservoir
can be linked to any other reservoir.

For the development of a linked system of reservoirs, it is
assumed that there are two general linkage types. These linkages
consist of the normal channel flow for reservoir releases, and pipe
lines or pumping canals. The model is completely general in the
sense that any connecting system can be modeled. Thus, each
reservoir could be connected to every other reservoir and could
receive releases from any or all other reservoirs as dictated by the
particular system under consideration.

For the purposes of this discussion, each reservoir in gach
time period is assumed to receive random unregulated inflow,
requlated inflow from reservoir releases, and inflow from pumping.
The reservoir level is depleted by means of scheduled releases,
deterministic demands, evaporation and seepage losses, and pumping

to other reservoirs. Stochastic demands can be handled by a simple



extension to the model presented.

The system of multi-purpose reservoirs with chance-constraints
is modeled based on material balance equations for reservoir inven-
tory levels. The formulation provides decisions that specify the
release and pumping quantities during different time periods of
system operation. The release and pumping decisions for the entire
planning horizon are determined by solving a linear programming
problem. The Tlinear problem is the deterministic equivalent of
the original chance-constrained system.

The chance-constraints for each reservoir and each time period
are identical to those developed for a single multi-purpose reser-
voir. The random inflows for each reservoir are assumed to be
independent from one time period to the next. However, this
assumption, while simplifying, is not necessary to the model devel-

opment.

h
Pt )
pj‘t

Figure 3.2: Linked Multi-purpose Reservoir

47
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Continuity Eguation

The multi-purpose linked kth reservoir is based on the model

shown in Figure 3.2 and the following notation:

m - the number of reservoirs,

yt - random unregulated inflow into reservoir k in time
period t ,

c: - reservoir k's design maximum capacity in period t ,

vt - conservation, flood control, or surcharge storage in the
upper reservoir,

st - ending reservoir inventory level for period t ,

gi - minimum specified inventory level,

et - fraction of inventory remaining after evaporation and
seepage losses,

k

x- - scheduled downstream release from reservoir,

t

§t - maximum downstream release,

k .

X, = minimum downstream release, and
dt - deterministic extracted demand.

The total unregulated random inflow yt enters the kth reser-

voir in time period t . The inflow is randomly distributed with

a p.d.f. ft(yt) . The regulated inflow x% is the release from

the jth reservoir into the kth. The regulated pumped inflow pit



is the water pumped from reservoir j into reservoir k. The pumping
and release into reservoir k can be from several reservoir, thus j
can vary over all these reservoir numbers.

The releases from the kth reservoir in time period t are
(1) the deterministic extracted demands dt . (2) the decision
variable for downstream release xt , and (3) the decision variable
p§t for pumping water from reservoir k to reservoir j; again,
reservoir k could pump to several different reservoirs. The
releases plus the inflows and previous storage volume constitute
the current inventory level st . The continuity equation for

reservoir k in time period t s
{3.11) sy = e

where

K 1 if reservoir j releases flows into reservoir k
1T -

J 0 otherwise, and

K {1 if reservoir k pumps to reservoir j
0. -

J

0 otherwise.

Chance-Constraints with Stochastic Inflows

The chance-constraint for the probability of not exceeding

the maximum capacity of the kth reservoir is

49
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(3.12) P{s 1,2,...,m, and

1
=
+
——
[ v
=
_—
“
=
1]

t=1,2,...,7,

where ct is the design maximum capacity of the kth reservoir,

vt is the upper storage space required in time period t of the

kth reservoir, and a% are specified constants between zero and

one.
The probability a; at the end of time period t for storage
si to exceed the minimum pool level is
k., k,s K _
(3.13) P { S¢ =S¢ }__az , k=1,2,....m,
where §F is the minimum storage that must be maintained.

t
The downstream release xt must satisfy the minimum Ei and

the maximum §£ reservoir release constraints, i.e.,

(3.14) X

The chance-constraints (3.12) and 3.13) are converted to their
equivalent Tinear deterministic constraints in a similar manner as
the chance-constraints of the single mul ti-purpose reservoir model.
The general equivalent linear deterministic result for chance-

constraint {3.12) with t =n fis
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n
(3.15) ck - vﬁ -5 I et + ¢ (( =& eL) [ dt + xt
t=1 t=1 L=t+1
in . N . o4
k . J i3 .k Kk > o 1
e (T5 ¢ + O Pg = 95 P¢) 13 =R n
J#k

o
where Rk]*n are the values at the a% points on the convoluted

distribution. Chance-constraint (3.13) becomes

n n
+ ¢ (1 eL) [ dt v X -

' (IB x-
t=1 L=t+] )

k k J
(3.16} S, 7 S, tz1 ey t

ST |

Jj=1
Jj#k

o (1-0..)
i J Lok ok 2
+0p Pig = 05 Pi¢d I < Rian

(1-a,)
where R, *nZ are the values at the (l-az) points on the con-

voluted distribution. Equations (3.15) and 3.16) are linear in the
decision variables xt and p?t . The releases and pumping units
during different time periods of reservoir operation are, therefore,

determined by solving a linear programming problem.

Reservoir Models and Solutions

In this section two models are presented to illustrate the
chance-constraint formulation. For the first model three example
problems are solved. The first two example problems are solved
by linear programming. One of the problems assumes stochastic

inflow and the other example both stochastic inflow and demand.
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The third example problem appends a quadratic objective function to
the original model, which is then solved by quadratic programming.
The second model presented is based on the formulation of a system
of multi-purpose reservoirs. One example problem is solved using

linear programming.

Single Multi-Purpose Reservoir

Linear objective function with stochastic inflow. In the

single multi-purpose reservoir example, it is assumed that the
objective is to maximize the profit of releasing Xt units of
water for two time periods. The releases are subject to the

chance-constraints

and

from which the equivalent deterministic constraints (3.6) and (3.7)
were derived.

For two time periods, constraints (3.6) and (3.7) are, respec-

tively,

o
1
TSy ey tdy txytcy -y LR,

- 8o &) T dp oyt s, Ry
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and
(-so e] e2 + e2 x1 + x2 + e2 dI + d2 + c2 - v2
> “1
*
_.(e2 R, Rz)
t=2<
TSy 8 Byt ey Xt xy e, dytd, b
T-az
<

\

1
1 =%
t=1 ¢ N
x]ix1

\

/
X, 2 X
t=2{ B
Xo i_x2

\
By assuming the values in Table 3.1 for the state variables,

the problem to be solved is
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maximize x0 = X + x2
subject to - x] 2
x] <5
X1 7
- X < -1

-.95 Xy =X, < 11.1
.95 x] +x <5.9

2
x2 < 8.0
-x2 < -3.0

Application of linear programming reveals the critical values of
release X1s Xo @S 1, 3 units and a maximum profit X, of 4

units.

Linear objective function with stochastic inflow and demand.

In the previous example problem, only stochastic inflows were
assumed. The distribution of inflows was known and the input to
the program was listed in Table 3.1. In this example problem, the
same system is assumed, Now, however, the demands and inflows are
assumed to be normally distributed with the means and variances
listed in Table 3.2. The corresponding convoluted inflows and
demands to be used in the problem formulation are also listed. The
minimum reservoir Tevel for time period two was adjusted to a unit
value. This adjustment was necessary, since the previous problem

with these inflows and demands is infeasible.



55

Table 3.1

Stochastic Inflow Data

Variable

Time 1 2
dy 6.0 8.0
Ct = Vg 15.0 25.0
EE 7.0 8.0
X4 1.0 3.0
ey 1.0 0.95
St 3.0 3.0
Ss 8.0

“

Ry 11.0

R]( 2/ 6.0

“
(92 R, * RZ) 20.0

)
2
(e, Ry * R,) 15.0
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Table 3.2

Stochastic Inflow and Demand Data

Variable
Time ] 2
ct - vt 15.0 25.0
§£ 7 8.0
X4 1.0 3.0
ey 1.0 0.95
S4 3.0 1.00
s0 8.0
E {dt} 6.0 8.0
o2 (d,) 1.0 1.0
E {yt} 8.0 7.0
uz {Yt} 1.0 1.0
“1
R1 4,336

('['32)
RI -0.336

*1
(e2 R1 * RZ) 4.12

)
(e, Ry * Ry) 2 -2.32
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The solution to this problem is again obtained by the method
of Tinear programming. The critical values of releases in periods
one and two, X and X, 5 are 1.3474 and 3.0, respectively, with

a maximum profit X, of 4.347 units.

Quadratic objective function. Consider a quadratic objective

function for the same system as example 1. Let the objective be:

_ 2 2
minimize x =X, + x, + 3 (x] - 3} + 5 (x2 - 5)+3 Xy Xo -

The solution to this problem is readily obtained by quadratic
programming techniques (Frank and Wolfe, 28, and tolfe, 97). A
quadratic programming algorithm, which was developed by Schuermann
(86), was used to solve the quadratic programming problem. The
critical values of releases X and X, are 1.0 and 4.6 with a

minimum cost X, of 32.2 units.
System of Multi-Purpose Reservoirs

Linear objective function. The second model presented is a

system of multi-purpose reservoirs. Figure 3.3 is the model formu-
tated for illustration. The linked reservoir system is composed of
three reservoirs, two of which have pumping capabilities. Random
inflows and predetermined demands are assumed for each reservoir.
Table 3.3 describes the state variables assumed for each reservoir
and time period. The objective is to minimize the operating cost

of the system for two time periods.
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07Py¢
1.1 2
0 ] IZXt Xt
A
Yl. d! 2 a2
t Y t
3
p]t xz
0 34
3 3
Yt dy

Figure 3.3: System of Connected Multi-purpose Reservoirs

The decision variables are to be determined for each time
period. They are (1) the units of water released from reservoir
one, two, and three and (2) the number of units of water pumped into
reservoir one from reservoirs two and three. The total number of
variables to be determined is the product of the number of time
periods with the sum of the number of reservoirs and pumping
variables.

The decision variables must satisfy the equivalent determinis-

tic constraints (3.15) and (3.16) and the upper and lower limits on

release (3.14). By taking advantage of the fact that the decision



Table 3.3

59

Data Used in Example Problem for Linked System of Reservoirs

Time 1 2
Reservoir 1 2 3 1 2 3
d,lé 6.0 | 5.0 |710.0 8o | 7.0 | 7.0
Kk
k- vk 10.0 | 2000 115.0 | 10.0 | 19.0 |716.0
I’; 7.0 | 15.0 | 20.0 8.0 | 12.0 | 20.0
X 1.0 | 2.0 | 1.0 3.0 | 3.0 | 1.0
et 10 | 1.0 | 1.0 0.95| 0.97 | 0.98
g'; 3.0 | 4.0 | 3.0 30 | 2.0 | 4.0
K
s 8.0 | 2000 | 6.0
o
R, 1.0 | 100 |12.0
(1-a,
R, 60 | 9.0 | 8.0
*1

*
(e, Ry * Ry) 20.0 | 15.0 | 20.0

L g1 15.0 | 14.0 |17.0
(ez Ry Rz) | . . )

variables are bounded from above and below, the number of constraints

can be reduced considerably.

Using bounded variable techniques

discussed in Taha (89), the number of constraints is the product

of twice the number of reservoirs multiplied by the number of
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time periods.

The structure of the problem can now be put in the form

minimize Z=hy
subject to (A,)y=b
Liysu

where y is the decision vector and consists of release, pumping,
slack and artificial variables. The values chosen for the cost

coefficient of the objective function are
h =[1.0, - 2.0, 0.0, - .75, .65, 1.0, - 2.1, 0.0, - .80, .70]

and the linear constraints are given by specifying the matrix A

and the vectors b, 2, u as

S 0 0 1 1 0 0 0 0 0]
1 0 o -1 -1 0 0 o 0 o0
1 1A o 0 0 0 0 o0

-1 1 - 1 O 0 0 0 0 0

0 0o -1 o -1 0 0 0 0 0

pe| 0 0 0 T 0 0 0 0 0
-95 0 0 95 .95 -1 0 0 1 1

95 0 0 -.95 -95 1 0 0 -1 -l

97 -.97 .97 -97 0 1 -1 1 -1 o0

-97 .97 =97 .97 0 -1 1 -1 1 0

0 0 -.98 0 -.98 -] -1

0 0 98 0 98 0 1 1



-, -
5 1] [ 7]
5 2 15
20 1 20
7 0 10
1 0 5

b= L= us= -
-3.9 3 8
5.9 3 12
6.45 1 20
19.55 0 10
6.92 0 5 |
2.08

Application of the revised simplex method in conjunction with the

bounded variable technique reveals the critical values of y:
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F—x} ) _-7 ]
x? 8
x? 1
Py 4
3 0
Yy = : =
X5 8
xg 3
xg 1
p?z 4.85
_p?aL 0]

and an optimum cost of operating the system as -16.11 or a profit

of 16.11 units. The program documentation is listed in Appendix A.

Summary and Conclusion

In this Chapter an extension of the single multiple purpose
stochastic constrained reservoir model was presented. The linear
decision rules utilized by ReVelle et al. (83) and Loucks (63) are
omitted in the model. The purpose of using linear decision rules
is to disconnect the release in the nth period from the ending

inventory level in period n-1. The advantage of the Tinear decision
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rule is that only the random inflow for the current period need be
considered. However, the actual quantity to be released in the nth
period is not known until the random inflow in periods 1 through
n-1 are observed. Thus, for planning purposes where operation

of the reservoir is important or when the release variables are
represented in the objective function, this formulation is unsat-
isfactory since releases are actually random variables and not
exactly determined by the reservoir planner.

The formulation proposed in the section on Single Muiti-
Purpose Reservoirs requires that the distributions of sums of
random inflows for all time periods be obtained. This is a
relatively simple task for models with a large number of time
periods. Since by the central 1imit theorem {(Parzen, 80), the
distribution of the sums derived from the sampling of these parent
distribﬁtions tends to become normal as the sample size increases.

By not using any form of decision rule, the constraints on
upper and Tower release quantities become deterministic and need not
be represented by chance-constraint formulation. Also, quadratic
of even general convex objective functions of the release quantities
can be considered,

In the section on System of Multi-Purpose Reservoirs a mathe-
matical model is developed for a linked system of muitiple purpose
reservoirs with stochastic unregulated inflows. The mathematical
model is obtained as a straight forward generalization of the

single reservoir model. The chance-constrained formulation for
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reservoir capacities and minimum inventory levels is converted to
a linear system of constraints. Linear, quadratic, or even general
convex objective functions can be appended to this system and the
solution obtained with facility.

If Tinear objective functions are assumed, which could be
operational or of a capacity nature, very large problems can be
solved. Since the cumulative inflows will be nearly normally
distributed for these problems, their formulations and solutions
are a matter of course. The probliem of capacity expansion dealt
with in the next chapter is generally not well modeled as a
continuous linear problem. Capacity expansion models are usually
limited to fixed time periods and have nonlinear costs as a func-

tion of size.
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CHAPTER IV

BENDERS ' DECOMPOSITION APPLIED TO TIME PHASING
OF CAPACITY EXPANSION MULTIPLE-RESERVQIR MODELS

An essential consideration in models of water resource plan-
ning is economic uncertainty. This uncertainty refers to the fact
that water resource planners often do not know the relevant benefit
and loss functions to evaluate the performance of various system
designs and operating policies. Since water resource projects are
durable, their time horizon can extend into the distant future.

The benefit functions will probably shift over time and it is
usuaily impossible to determine exactly how benefit functions may
effect future planning. This is one major source of economic un-
certainty in water resource planning. Ancther uncertainty is tech-
nological change which cannot be predicted perfectly, because there
is economic uncertainty about future cost functions.

The dynamic variations of benefit functions posed by Marglin
(67) lead to questions concerning the time phasing of investment
planning in water resource development. As demand grows at an
almost steady rate over time, capacity expansion models must be
used to determine an optimal investment program. Since investment
programs are usually legislated, capacity expansion can only occur
at a finite number of points in time. With capacity fixed for cer-
tain time frames and demand growing almost continuously, the optimal

operating policy for a reservoir system is quite dynamic.




66

In this chapter a procedure is proposed for the analysis of
time phasing of reservoir system operation with capacity expansion.
The formulation is based on the multiple-reservoir stochastic model
developed in Chapter III. The objective is to select the reservoir
(construction) sizing, timing, and to establish operating policies
such that the total cost associated with the system of linked
reservoirs is minimized. The formulation is a mixed integer-
continuous linear programming problem. Due to the size of the
resulting problem and its general structure, Benders' decomposition
technique (Lasdon, 55) is applied. Benders' method allows for the
problem to be separated into a pure linear program and an almost
pure integer program. The computational efficiency of the solution
procedure is greatly enhanced by the application of Benders' tech-

nique.
Problem Formulation

The general problem to be considered is one of selecting the
set of reservoir capacities along with the system operational deci-
sions which minimize the total reservoir system cost over a planning
horizon. The system planner defines the feasible reservoir segments
and sizes for each time period where expansion is feasible. For
example, after the initial reservoir segment has been buiit, the
next phase may not be feasible for five years hence. This delay
could be of financial nature or due to construction lag time. Thus,

the planner must select, from the various possible combinations
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available, the time phasing which meets a set of demands which are
also varying over time. The inflow of water into the system is not
known exactly in advance. However, distributions of flow can be
estimated from historical data or by streamflow synthesis (Fiering,
25). The time periods associated with demands are normally much
smaller than those associated with reservoir expansion periods.
For instance, demands might be monthly as opposed to five year
incremental opportunities for capacity expansion.

The availability of capacity in the problem formulation will
be represented by binary variables (0 or 1) yt’s times the segment

size R§ . The following notation will be used:

] - if capacity segment s for reservoir k is
k activated during time period t ,

0 - otherwise,

Rt - capacity size of segment s for reservoir K,
K: - cost of installation and maintenance of segment

from time t until the end of the planning

harizon.

Thus, the available capacity for reserveir k and time period

T 1is obtained by:

K _
(4.1) cr= I

tsQT S

n i
o)

1

where Nk is the number of segments to be considered for reservoir
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k, and Qr is the set of all time periods less than or equal to

T during which reservoir expansion is permitted. The cost of reser-

voir capacity including operation, maintenance, and replacement

over the whole planning horizon of T time periods for an

m reservoir system is:

m

(4.2) )
k=1 teQT s

Utilizing the stochastic multi-reservoir model developed

in Chapter II1I, operation of the system at minimum cost for a

specified set of capacities is obtained by selecting the release

variables xk for each reservoir and each time period. If the

t
costs associated with releases are assumed to be linear, then the
total problem is a mixed integer-continuous linear programming
problem. A model is now formulated for a connected system of

reservoirs and will be used for the remainder of the discussion.

Connected Stochastic Multiple-Reservoir Model

Consider a connected system of multi-purpose reservoirs. The
reservoirs may be connected by channels, where the release of one
reservoir flows into a downstream reservoir. In addition, any
network of canals or pumping links can be defined on the system.

Figure 4.1 is an example of such a connected reservoir system,



Two restrictions on the reservoir ending inventory level will
be considered, as well as limitations on releases and pumping.
These restrictions are basic to the stochastic formulation of the
system. They are: {1) the reserved capacity portion of the reser-
voir must not be viclated more than some specified ]OOa1 percent of
the time, and (2) the minimum pool level cannot be violated more
than 100a2 percent of the time. These restrictions are represented

mathematically as:

- k. k
(4.3) pisteck vl 2
and
(4.4) piskashyza,

The connection between ending inventory levels for successive
time periods is a function of the demands, unregulated inflows,
evaporation or loss, and the decisions for release and pumping.

The material balance equation describing this relationship is given

as:
m . .
(4.5) sk -= ek sk |+ K-k e k3 1) x)
J:
J#k
m N . m
i3 k _k
+ ¥ 0y p - L 05 p; ,
j=1 k Tk,t j=1 J "It
Jik j#k

71
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where ek is the fraction of the ending inventory gquantity which is

t
available in the next time period; the difference is the loss due
to evaporation, and normal reservoir and channel losses.

The stochastic formulation utilized in this Chapter and that of
ReVelle et al., differ mainly in the handling of the material

balance equation {4.5). ReVelle's choice of a linear decision rule

of the form

was convenient in the sense that, when substituted into his material
balance equation, the current inventory level St became indepen-
dent of s, ; . However, by restricting oneself to such rules, the
actual release Xy is not known until the quantity Sy is ob-
served. Loucks (63) suggested an altered linear decision rule and
obtained sufficient improvements in his results.

It is the contention that no decision rule is necessary. By
working with the actual release variables and treating the stoch-
astic infloﬁs simultaneously, that is without disconnecting the
re]ationsﬁip between ending reservoir inventory levels by some
arbitrary decision rule, a more exacting model can be obtained.
This single reservoir model has the advantage of being easily
extended to multiple-reservoir systems. However, the computational
effort for preparing the data for an analysis of the system is

increased due to the necessity of obtaining distributions of the
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sums of random variables.
Equation (4.5) when'repeated]y substituted into equation (4.3)

yields, for some fixed time period n ,

k M o n ko rak . kK
P{s I e - (0 e)[di+x -y
Ot=1 b =) pegep L0 E TE O TE
U IO S k k
"5 Coxe - Okt 05 ey
J#k
k  k
where
k.
en+-|_]-

Taking the random variables yt to the right-hand side and

reversing the inequality sign yields:

k k kM o M Tk k. k
P{c  ~v, -5s. 1 e, + ¢ (0 @) [di + x

t t 0 =1 t t=1  L=t+] L t t

m . . . .

JJ_ad o k _k
o G OPige t 05 Py )]
J#k
n n Ky k.,
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The equation states that some linear function of the decision vari-
ables must be greater than or equal to the value of the sum of the
random variables at least 100a1 percent of the time. Figure 4.2

is a graphical representation of this equation. The random variable
can take on any value over its range. However, the decision
variables must be chosen before the random variables are observed.
Thus, to insure the equation is satisfied a given percent of the
time, the decision variables must be selected such that the area

of the random distribution to the left of the equation value is
greater than or equal to ay - This is equivalent to selecting the

value of the random variable associated with 100a] percent from the

o

cumulative distribution, denote this value by Fk1

*n and specify-

ing that the equation value must always be greater than or equal

to this value. This procedure yields the equation:

n n n
(4.6) ck - vk - sg T ek + & { 1 et) [dt + xt
' t=1 L=t+#]

Proceeding in a similar manner, the deterministic equivalent for

equation (4.4) is obtained:



Frequency
£

\

Value of the Random Variable

Figure 4,2: Z 1is the Point on the Distribution Such That
100a] Percent of the Values of the Random

Variable Fall to the Left of Z .

k k" x, " n k. ok
(4.7) s,-s 1 e+ & (& ) [d + x
t 770 4o b =) L=te1 b T
m . .. (1-a,)
1d L3 _ad 4l k k 2
+j§1(1k"t O Pt * 05 Py e = Fi e
J#k

(4.8) Kook <3 for all K, t,

and the restrictions on maximum pumping capacities are,

(4.9) 0< pI;’t _B*J?,t for all k, j and t.

Hence, the minimum operating cost for a fixed capacity system

75

js obtained when equation (4.10) is minimized subject to constraints
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(4.6), (4.7), (4.8), and {(4.9).

T m

+ z
t=1 k=1 j=
j#k

This problem, with the assumed linear form of cost equation

T mo
(4.10) z Ioag X
t=1 k=1

k

k
bi,t Pi,t

o x
i~ 3

(4.70), can readily be solved by linear programming techniques. A
bounded variables procedure is used so that all of the constraints
from equations {4.8) and {4.9) can be omitted from explicit consid-

eration in the model.
Solution Procedure

Let the capacity of each reservoir be a function of the deci-
sion variables equation (4.1), then the general capacity expansion

problem for the multiple-reservoir systems is to minimize:

: ) m k K T m :
4.11 I L I K y + I I (a, x
k=1 teo; s=I SERATE T s L
n
k k
+ : A ,
ji] bJ:t pJ!t)
j#k

subject to constraints (4.6), (4.7), (4.8), (4.9), Yt s e{0,1} and

(4.12) I Yyg< for all k, s.
tEQT



Constraint set (4.12) insures that each segment for each reservoir
is used at most one time.

For general reservoir systems, the number of operation and
pumping variables is very large in comparison to the number of
possible reservoir segments. If all variables are considered
simultaneously, the resulting problem is a very large mixed integer-
continuous linear program. The difficulties encountered in solving
this type of problem indicates that a decomposition scheme could be
used to improve the computational efficiency. The nonlinear decom-
position technique of Benders (Lasdon, 55) presents an attractive
solution procedure. It has been successfully applied to similar
problems such as warehouse location problems by Balinski (2) and
to plant Tocation problems by Balinski and Wolfe (3) and
Lasdon (55).

For simplicity of notation, the general problem of minimizing
equation (4.11) subject to (4.6), (4.7), (4.8}, (4.9) and (4.12)

is written in matrix form as:

(4.13) minimize  ax + by

subject to Ax + Fy 2 ¢
xeX
yey

where X represents the operational decision variables xi and

77
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k
Pj,t
lends itself immediately to Benders' problem.

with a as their cost coefficients, etc. Problem (4.13)

Benders' decomposition. Benders' decomposition algorithm for

mixed-variable programming problems assumes an initial problem (P1)

form:
(P1) minimize ¢'x + f(y)
subject to Ax + Fly)zb

x>0 yeES.

The matrix A is mxn , x and c n vectors, y a p vector,

f a scalar-valued function of y , F an m vector whose components

are functions of y , b an m vector, and S an arbitrary subset
of the p-space. The functions f(y) and F(y) need not be linear
and in problem (4.13) F(y) is integer. Therefore problem (P1)

is a mixed integer-continuous linear problem. Problem (P1) is

converted (Lasdon, 55) to the master problem:

(MP2) minimize Z
subject to 1> fly) + b - Ep1" of iel
T r .
[b-Fy] u,20 iel,

Yy €5




where I] and 12 are proper subsets of the integers 1,...,n

and 1,...,nr , respectively. Also, gf s i=1,...,np and
r

Ui s i=1,...,nr are the extreme points and extreme rays,

respectively, of the polyhedron
P={ufAusc,u20}

associated with the dual constraint set:
maximize [b - ij)]T u

Zc

subject to Al

|=

uzg
The primal of this problem is:
minimize ¢'x
subject to Ax > b - F(y)
x20

which is obtained by fixing y in (P1). If P is empty the
primal is unbounded as is the original problem (P1). If P s
nonempty the dual takes on an extreme point of P or approaches

+= along an extreme ray of P . If the dual approaches += along
an extreme ray then the primal is infeasible, however this is con-

trary to the assumption that y is contained in the set

79
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r

R=(y | [b-FWI W <0, =1, yes)

r.’
Therefore only the extreme points gg s i=],...,np of P need to
be considered. Solution of the original problem (P1} is reduced to

solving problem (MP2) for (Zo,xp) and then solving the Tinear

program:
minimize ¢'x
. > 0
subject to Ax Zb - Fly")

x20

to obtain the optimal values of Xx .
Benders' algorithm, therefore, involves iteration between
two problems. The first is the problem (MP2) in the variables
(Z,y) to which constraints are successively added. The second is
the dual linear program (or the primal) which tests the optimality
of a solution to (MP2) and, if necessary, provides a new constraint.
The following steps are a summary of the iterative procedure.
Step 1. Initialize problem (MP2), where a few or none of
jts constraints are binding.
Step 2. Solve the integer problem (MP2). If (MP2) is
infeasible, so is {P1). Otherwise, either obtain
a finite optimal solution (ZO,XP) or the informa-
tion that the solution is unbounded. If the solu-

tion is unbounded set ZO = -= , let xp be an



Step 3.

Step 4.

Step 5.

Step 6.

arbitrary element of S and procede to Step 3.
Solve the dual linear program {(or the primal, if

it is feasible). If the dual is infeasible then
the original problem (P1) has an unbounded solution.
If the dual is unbounded, go to Step 6.

If the optimal objective value obtained in Step 3

0 _ f(xp) , the solution (Zo,xp)

is equal to £
solves (MP2). 1If 59 solves the dual then
(§P,xp) solves (P1).

If the optimality test in Step 3 is not passed
and the dual has a finite optimal solution, which

is the extreme point gp » then
T
20 <5+ b - FOIT

and the current solution to (MP2) does not satisfy

the constraint,
22 [b - F@1 o+ f(y)

which is added to (MP2) and return to Step 2.

When the dual has an unbounded solution, the simplex
method Tocates an extreme ray 39 and extreme point
gp such that the dual objective approaches +=

along the half-line

u= u0 + Agp , A 20

31
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The inequality
b - FyNIT > 0
is satisfied, so xp does not satisfy the con-

straint

b - Fy)1' v <o

This constraint is then added to {MP2). 1If, in

addition

T y0

20 < £1,%) + b - £y

for the extreme point gp

the constraint
220 - F(y)]T W0+ £(y)

is added to (MP2) and return to Step 2.

The procedure will terminate in a finite number of iterations,

either with the information that (P1) is infeasible or unbounded,

or with an optimal solution to (P1).

Decomposition results.

conversion of the problem to an iteration procedure between two

problems.

The master problem is to solve for the continuous

variable Z and binary variables y from

The result of the decomposition is the
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(4.14) minimize Z
subject to Z>by+[c- E(x)]T g? Vi
[c- £l o] 20 Vi
k
and LYy <1 ¥ k,s .
teq,  °*°
=T

Where g? and gg are the extreme points and extremal rays,

respectively, of the Tinear problem, for fixed y ,

(4.15) minimize ax
subject to Ax 2 ¢ -~ Fy
xeX

Since the number of extreme points and extremal rays can be
quite large even for small linear programs, relaxation is applied
to problem (4.14). Thus, only a small number of constraints are
utilized at one time. For fixed y's, the Tinear problem (4.15)
is solved ending with an extreme point gg if the problem is
feasible or with an extremal ray gg if it is not feasible, If
the associated constraint for problem (4.14) is satisfied, then
the optimal solution to the original problem has been obtained.
Otherwise, a new constraint is appended to problem (4.14). Problem
(4.14) is resolved and the procedure repeated. Finite convergence

for this procedure is guaranteed since there are only a finite



number of rays and extreme points for problem (4.15).

The main difficulty of the capacity expansion reservoir system
under consideration is one of obtaining a feasible system. With
reservoir capacity limitations and a network of connections be-
tween reservoirs, the isolation of the reservoir whose capacity
should be increased, and by how much, is not straightforward. In
the analysis of a reservoir with infeasible capacity, decisions
- must be made concerning the effects of increasing the capacity of
other reservoirs in the system, on the reservoir under considera-
tion. These decisions are reflected in the problem by the devel-
opment of an extremal ray. The method of generating the extremal
rays is the critical factor in the solution of this problem. Rays
which do not restrict capacities to nonoptimal Tevels must consider
the interplay between reservoirs. That is, consideration of water
that can be moved to other reservoirs in the system to minimize
operating cost, meet demands, and constraint requirements.

The ray generation procedure utilized is to first isolate the
most violated reservoir constraint in the linear programming sub-
problem. Once this constraint is determined, the inflows from all
other reservoirs are analyzed. For all reservoirs which contribute
nonzero inflows into the specified reservoir, the possibility of
increasing these reservoir capacities as well as the isolated reser-
voir should be considered. Estimates are made of reduced contribu-
tion for increased capacities in these reservoirs. Thus, a con-

straint is added to the integer master problem which takes into
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consideration expansions in other reservoirs along with the in-
feasible reservoir. This extremal ray or additional constraint
insures that the previously obtained infeasibility will be decreased,
but not necessarily removed.

The integer master problem (4.14) is then solved yielding a new
expansion policy. This policy is tested for operational feasibility
by the linear programming subproblem {4.15). This procedure is

repeated until the optimal policy has been determined.

Example Problem

Consider a three-reservoir two time period capacity expansion
problem. The system of connected reservoirs is displayed in
Figure 4.1. The data relative to each reservoir for this problem is
contained in Table 4.1. Each reservoir has three possible expansion
segment sizes for each time period. These segments may be utilized
in any order. The cost of capacity expansion in each of the pos-
sible time periods varies. For this example the possible capacity
expansion periods coincide with the reservoir systems operating
periods. The capacity expansion data by time period 1is Tisted in
Table 4.2.

The technique is started by defining an initial feasible
reservoir capacities scheme. The scheme chosen for this example is
to incorporate in period one reservoir segments one and two for
reservoir one, segments two and three for reservoir two, and seg-

ment one of reservoir three. In the initial capacities scheme the
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Table 4.1

Reservoir Data Used in Example Analysis

Reservoir One Reservoir Two Reservoir Three

Parameters TIME TIME TIME TIME TIME TIME
1 2 1 2 1 2
Demands 6 8 5 7 10 7
Pumping Capacity 0 0 10 10 5 5
Pumping Profit 0 -.75 -.80 0.65 0.70
Max. Inflows 11 30 10 15 12 20
Min. Inflows 6 25 9 14 8 17
Fixed Capacity 0 0 1 1 0
Min. Inventory 3 3 4 2 3 4
Max. Release 7 8 15 12 20 20
Min. Release 1 3 2 3 1
Release Profit 1 1 -2.0 -2.1 0 0
Evaporation 1.0 95 1.0 97 1.0 .98
Starting Inv. 8 20 6
Table 4.2

Capacity Expansion Data Used in Example Analysis

Reservoir One Reservoir Two Reservoir Three

Parameters TIME TIME TIME TIME TIME TIME
1 2 1 2 1 2
Seg. 1 Capacity 5 5 10 10 10 10
Seg. 2 Capacity 5 5 10 10 6 6
Seg. 3 Capacity 15 15 10 10 5 5
Seg. 1 Cost 52 56 102 111 102 111
Seg. 2 Cost 52 56 102 111 62 67

Seg. 3 Cost 252 56 52 56 52 56
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the only expansion to period two is for segment three of reservoir
one. Utilizing the initial feasible capacities, the operating cost
is 14.39 units. Since the linear programming solution is feasible,
an extreme point is generated for the integer master program
problem (4.14). However, no constraints (extremal rays) for the
integer problem have been generated to insure continued feasibility
of the reservoir system operation. Thus, the optimal integer solu-
tion is not to use any reservoir capacity segments. These results
are displayed in iterations 0 and 1 in Table 4.3. Table 4.3
lists the linear and integer program results by iteration for the
complete solution procedure.

Given that no reservoir expansion should be made, the resulting
reservoir system operation is infeasible. The maximum violation of
a constraint occurs for reservoir one in time period two with an
infeasibility of 18.91 units. This result is obtained from the
linear programming subproblem. Thus, an extremal ray must be
generated to insure that this infeasibility is decreased. Since no
releases from the other reservoirs flow into reservoir one, the only
possible interplay is pumping. During period two, no pumping into
the reservoir was made (problem (4.15) results). Hence, the infea-
sibility needs to be covered by expansion in reservoir one. The
infeasibility occurred in time period two, therefore, the expansion
can be made in either period one or period two. The corresponding
integer program constraint is generated and the process repeated.

For the solution to this example problem, the number of iterations
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is seven and the iteration results are displayed in Table 4.3.

Table 4.3

Iteration Results for Subproblems

ITERATION L.P. SOLUTION INTEGER SOLUTION
1 2 _
0 Y2,3 = \:’]’2 = ]
1 . 2 _
Y],]—] Y1’3_]
1 3
‘(]’2 =] Y],T =
1 -14.39 A1l Y's =0
Z = 67.37
. 1 _ 1
2 Res. T, Time 2 Y1 o = 1 Y2 3 = 1
Infeasible by 18.91 ? i
z = 169.12
3 Res. ]? Time 1 1 1
Infeasible by 11.0 Y],] =] Y2,3 =1
T 2
1,21 Yy3=1

N
il
N
=
o)
o
[#%]
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Table 4.3 (Continued)

ITERATICN L.P. SOLUTION INTEGER SOLUTION
. | 1T _
4 Res. 3, Time 1 Y] 1° ] Y2 3= 1
Infeasible by 6.0 ? ?
1 2 _
Y]’2 =] YT.3 =]
3 _
Y],2 =1
Z = 308.63
. 1 |
B Res. 1, Time 1 Y1 ] = 1 Y2 3= 1
Infeasible by 4.0 : :
1L 2 _
Vi1 Yy
2 3
YT,3 = ] Y1,2 = ]
z = 390.39
. 1 1 _
6 Res. 3, Time 2 Y1 1= 1 Y2 3 = 1
Infeasible by 1.0 1’ :
_ 2 _
Y127V Y71
2 3
Y131 Y=
z = 430.39
7 -14.39 Y} L=l =
Optimal Solution 1’ i
_ 2  _
1,251 Y=
3 2
Y-E,]_-I Y-',3“'T

N
il
-
(78]
o
[#]
(Vo)
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The optimal capacity expansion scheme is to expand reservoir
one with segments one and two in time period one and segment three
is added in period two. For reservoir two, segments one and three
are added in time period one. The expansion for the third reser-
voir consists of segment one in time periocd one. The resultant
optimal capacity expansion cost is 416 units and 14.39 units for
operating expense resulting in a total cost of 430.39 units. The
computer coded documentations for Benders' decomposition applied
to time phasing of capacity expansion multiple-reservoir models

is in Appendix B.

Summary and Conclusion

In this chapter a procedure was developed for the analysis of
time phasing of reservoir system development. The formulation was
based on the multi-purpose stochastic reservoir model developed
in Chapter III. The objective was to select the reservoir sizing,
timing, and to establish operating policies such that the total cost
associated with the system of linked reservoirs was minimized.

The capacity expansion aspect was formulated as a mixed integer-
continuous linear programming problem. The time periods for pos-
sible reservoir capacity expansion do not need to coincide with
the operational time periods.

Due to the resulting problem size and its general structure,
Benders' decomposition technique was applied. Benders' method

allowed for the problem to be separated into a pure linear program



and an almost pure integer program. Using Benders' approach, the
size and computational speed for a solution to this type of problem

is greatly enhanced.
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CHAPTER V

LINKED RESERVOIRS WITH STOCHASTIC RELEASES
SATISFYING FIXED DOWNSTREAM DEMANDS

The hydrologic uncertainty or the stochastic nature of stream-
flows is of essential consideration for developing models of water
resource systems. The performance of a water resource system cannot,
therefore, be predicted with absolute certainty. In particular,
given the system design or level of inputs (such as storage capaci-
ties, sizes of hydropower plants, etc.) determine an operating
policy (i.e., the reservoir release rules) which will satisfy a
fixed downstream demand. This chapter is primarily concerned with
a system of linked reservoirs having stochastic releases that must
satisfy fixed downstream demands. The mathematical models presented
are concerned with stochastic constraints associated with both

linear and quadratic objective functions.

System Description

The Northeast Texas river basis system was selected to serve
as a basis for model development and formulation. The Cypress
Creek Basin in particular was chosen since it is situated in the
Northeast corner of the State of Texas (Figure 5.1). The Cypress
Creek Basin (Figure 5.2} is bounded on the North by the Sulphur
River Basin and on the South by the Sabine River Basin. The basin

is part of the Red River drainage system and is included in the



Figure 5.1:

Cypress Creek Basin
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Fllison Creek

Franklin Co. Lake 0'The Pines
Mount Pleasant Jonnson Creek
\
1
Pittsburg LRy
]

¥ — Marshall

Marsha]l’///

Figure 5.2: Cypress Creek Basin Enlargement
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draft on the Red River. The total drainage area of the Cypress
Creek Basin is approximately 2,812 square miles. Cypress Creek,
which is in southeastern Hopkins County raises to an elevation of
about 550 feet above sea level and flows southeasterly into Caddo
Lake on the Texas-lLouisiana borderline. The backwater area eleva-
tion of the streambed of Caddo Lake is approximately 168 feet.

The average annual rainfall in the basin ranges from about 48
inches at the Louisiana 1ine to about 42 inches in the western part
of the basin. The average annual runoff in the basin ranges from
approximately 700 to 800 acre-feet per square mile in the western
part of the basin to about 600 acre-feet in the southern part. The
variations in runoff rates are due largely to physiography and
geology varijations within the basin.

The Cypress Creek Basin is densely forested and in 1964 less
than one thousand acres was under irrigation. Scattered acreages
of specialty crops and pasture lands is expected to be jrrigated
and to total not more than 5 thousand acres by 2020.

The chemical quality of streamflows throughout the Cypress
Creek Basin is excellent. The discharge-weighted average concen-
trations of dissolved solids in principle streams generally ranges
between 100 and 200 mg/1. The Lake O'The Pines on Cypress Creek
normally contains about 100 mg/1 of dissolved solids. 0il field
drainage and other industrial wastes degrade the quality of Sugar,
Glade, and Grays Creeks, which are tributaries of Little Cypress

Creek. This problem needs to be corrected but its present effects
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are comparatively minor. The overall flood damage along Cypress

Creek and its tributaries has been relatively minor although locally

severe dammage has occurred,

There are presently three reservoirs in the Cypress Creek
Basin, Lake 0'The Pines, ElTison Creek, and Johnson Creek.
Franklin County Reservoir is presently under construction and the
existing Caddo Lake Dam is currently being replaced by a new down-
;:i stream dam. This dam was designed so that it can be subsequentiy
raised and the reservoir area enlarged. Congress has authorized
the construction of projects and channel modifications to provide
navigation up the Red River in Louisiana into Cypress Creek near
Daingerfield, Texas.

Three major reservoirs have been proposed for construction

under the Texas Water Plan (90). They are Titus County, Marshall,
and Black Cypress. These reservoirs, plus existing and under-
construction reservoirs, would theoretically supply all projected
in-basin requirements to the year 2020. They would also develop

an additional 641 thousand acre-feet of water per year.

Physical System and Model Formulation

The Cypress Creek Basin described in the previous section
can be represented by a schematic diagram as shown in Figure 5.3.
Since Ellison Creek and Johnson Creek reservoirs are small as
compared to Lake 0'The Pines they will be combined with Lake 0'The

Pines. Franklin County Reservoir will also be combined with Titus
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Figure 5.3: Schematic Diagram of Cypress Creek Basin
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County Reservoir. ‘he five reservoirs, two existing and three

proposed, are identified as follows:

1 - Marshal?l

2 - Lake 0'The Pines
3 - Black Cypress

4 - Titus

5 - Caddo.

The triangles correspond to existing and proposed reservoir sites.
The arrows typify the river reach and the direction of streamflow.

The primary objective of this river basin system will be to
meet a hypothetical navigation water demand at Caddo, Reservoir 5.
Therefore, the problem is tc keep the capacity of Reservoir 5
greater than or equal to a target capacity sg . The requirement
to maintain the capacity is based on two stochastic constraints.
Referring to Figure 5.3 the following notation is used to describe
the system:

current level of reservoir 1,

tn
1

- maximum capacity of reservoir i,

k; - random variation of distribution of actual release
per unit scheduled release N{u,c) ,

X; - scheduled release at reservoir i,

d - demand or withdrawal during the period of investi-

gation from Caddo, Reservoir 5.
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Linear Objective Function Chance-Constrained

In this section two methods, developed by Curry and Wadsworth
(18), for solving chance-constrained programming problems are
utilized to obtain a solution to the reservoir system shown in
Figure 5.3. The two solution techniques discussed are linear
programming and contraction mapping, and parametric programming.

The cost function for the reservoir system is assumed to be

where,

Ci - is the cost of meeting the target output,

n - is the number of reservoirs in the system.
The scheduled release placed on each reservoir is X5 s however
only a certain percent of the water released will reach its desti-
nation. Assume that the actual flow is kixi , 1=1,2,3 which is
the system supply available to meet the demand d at Reservoir 5.

The uncertainty associated with meeting this demand is

3
(5.1) P{ r k.,x,2d}l} 3_@1 .

It is also required that the maximum capacity 55 of Reservoir 5

must not be violated more than oy percent of the time, thus
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or

by

3 5
P { E k-X.'i'SO-dF_S }inz.

The scheduled releases X; must be Tess than or equal to the inven-

tory available at each reservoir

i ;-
(5.3) 0 x; Ss)  1=1,2,3,4.

Also, the constraint
2
(5.4) Xg = X 257 - s

will insure that the quantity of water released from Reservoir 4
for use by Reservoir 2 will not exceed Reservoir 2's capacity
limit S% .

The structure of the problem is now of the form

maximize cx

| ~
=0

subject to Ax

|
{v

o
where the objective function and the right-hand side coefficients
are assumed to be deterministic. Certain a;5 € A are assumed

normally and independently distributed, with a known mean E { aij }
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. 2 . .
and variance 9%j - The procedure of chance-constrained programming

(Taha, 89) is to reformulate the problem
maximize 23

1,240, M

n ey =
=1
| A
o
ot
v
Q
—
1l

subject to P {
x. >0 jJ=1,...,n

to a deterministic equivalent. The name "chance-constraint" is due

to the fact that each constraint

is realized with a minimum probability of as s 0 E‘ai =T1.
The goal is to convert the ith constraint into a legitimate
Tinear programming constraint, so that the simplex method can be

used in solving the problem. Consider the ith constraint

13

a..x. b, } 2 a,

P {
1 137 i j

J

Then, subtracting and dividing both sides of the inequality by the

mean and variance respectively, the constraint beccmes

n n n
I a.,:X., - I Ela,.;Ix; b, - £ E{fa..}x
P J:] 17 J J=] ]J J - 1 J:'l 1\] -J -
- i
n 1/2 n 1/2
(1 o2, x9) (1 &%, x8)
jap 17 j=1 13
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Since the a..'s are assumed to be normally distributed

iJ
n n
I a..X. - I Ela..lx
j=1 133 j=1 13°J
n 1/2
( z U?. x?)
j=1 J J

is normally distributed with mean zero and variance one. Which

means that
, n 4
< =
P{ji1afjxj—bi} YR o, L2
( %3 xj)
. j=] F

where & represents the cumulative distribution function, C.D.F.,
of the standard normal distribution.

Let Ka be the standard normal value such that
i

¢ (Ku.) = wso.

Then the statement,




This yields the following nonlinear constraint:

n N o 2 172
. i , + - . X5 < b,
(5.6) ji] Efa; ) % Kai (ji1013 xJ) < by
Now let
n 1/2
(5.7) e. =K (= o?.xz.) .
1 cc_i j=1 J ]

then (5.6) becomes

(5.8)

k]

Ht1>3

< -
E{aij} Xj _'bi 9

J=1

and the equivalent problem of (5.5) is of the form

maximize CX

| A
=2

subject to Ax -8

0

[=
|v
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Linear programming and contraction mapping iterative procedure,

The solution to problem (5.9} is obtained by an iterative procedure

of initially choosing § , solving the associated linear subproblem

with equation (5.7) relaxed, and then utilizing (5.7) to adjust the

value of 8 . The Tinear subproblem is solved by the simplex

method of linear programming.

It is proved by Curry and Wadsworth (18) that the optimal

solution x* (8) of the parametric linear programming problem
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(5.9) (with one chance-constraint) satisfies Lipschitz's condition.
The proof is to consider the solution for 6 2 0 . Then the vector

of basic variables,

xg =B b -
-1 -1

Xg =B b -0B " g

Xg = a - 6d )

is a linear function of ¢ . To show that Xp satisfies Lipschitz's

condition, let

ol < g < g2

be the range of 6 where the set of basic variables indexed by B

remains valid. Then Xg remains optimal and satisfies Lipschitz's

conditions since:
la - e'd-a+e"d|| = [d(e" - 6"}
[d(e" - 6" < [ld[] - [le" - o'[]
[ld]] - [le" - o'|] <slfe" ~6'|| forall &' ,e" e [al,6].

With © within its range of validity and 6 > 0 , there are a
finite number of critical points. The critical points are the
change in the basis B . At each critical point ei , excluding
eo = (0 , the optimal solution is degenerate and the dual simplex

procedure can be used to obtain a new optimal basis. Due to the
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degeneracy, the basic variables remaining in the basis will have

the same value as before the basis change. The new basic variable
enters at a zero level. Therefore, for each variable the parametric
solution 5; (6) consists of connected linear segments each with a
Lipschitz's constraint By - Then X3 (s) satisfies Lipschitz's
condition with a constant

The technique was shown to converge to the optimal solution of

problem (5.9) when the sequence

65y > ox
where
n 2 5 1/2
= *
(5.10) o K“I [ j; TR (%) 1]

Equation (5.7) satisfies Lipschitz's condition with constant «o
since the derivative exists and is bounded everywhere except at
x =0 . Equation (5.10) is thus the composition of two functions
which are Lipschitz with a constant Ba . If Ba <1, equation
(5.10) is a contractive map and can be solved by the method of

false position (Kunz, 52), that is
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and

k+1

B B

The solution is unique and the iterative procedure converges to the
optimal solution of problem {5.9).

If the variance equation (5.7) is strongly contractive or if
multiple chance-constraints have strongly contractive character-
istics, the problem can be solved by the iterative procedure.
Strongly contractive is defined to mean that the composition of
the optimal solution variables and the variance constraint satis-
fies Lipschitz's condition, with a constant less than one.

The iterative procedure is:

Step 1. For any feasible solution 59 obtain g}
from equation {(5.7).
Step 2. Solve a linear programming problem (5.9} for

QF fixed. The solution is EF (gﬁ) .

k+1

Step 3. Compute & k

from (5.7) using the new X

obtained in Step 2. Test I§F+] - §F| to be
less than a specified tolerance, if so, stop,

otherwise return to Step 2.

Iterative procedure example problem. Assume that the prob-

ability of satisfying the demand at Reservoir 5 is to be maintained
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at least 95% of the time. Then equation (5.1)
n
P{ £ k, x,>2d 1} Z 95%

j=1 ' 1

is converted to the deterministic equivalent (5.8)

n
- < -d -
121 E{ki} X, < d a]
where
n 1/2
o, =K (1 gfx;‘f)
1 i=1
and
K = 1.645
o

1
Likewise, to insure that the maximum capacity 55 is not violated

by more than 95%, equation (5.2) is

3
P{ 3 k. x.<50+d-s>}2 95%
j=p 101 o
and the deterministic equivalent
S ko x <P e d-sd-
- it - 0 2
i=1
where 6, for this example is equal to 8y Table 5.1 represents

the data used and the resulting deterministic equivalent probiem is:
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(5.11) minimize Xg = Xq * 2x2 3y ¥ 4x,
subject to X <5
X, %4 1
X3 23
-Xy Xy <2
Xp o+ Xp o xg 11 - 8,
X'I+ x2+ X3 26 +82
2 2 2 ,1/2
8] = 02 = 1.645 [ .05x] + .05x2 + .05x3 ]

x],xz,x3,x4 >0

The solution to this problem is obtained in eight iterations to
yield an optimal cost of 13.051 units and scheduled releases Xx*
of (5, 1, 2.017, 0). The stopping criterion used is a test on the
change in the objective function value to be less than 0.000].

The solution results are listed in Table 5.2.

Parametric linear programming. Parametric linear programming

is used to investigate the behavior of an optimal solution as a
result of predetermined linear variations in the parameters of a
problem. The linear programming problem before parameterization is

defined as
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maximize x0 = ¢

subject to (A,I)x = 90

x)

=]

The following four types of linear varjations can be made:
1. wvariations in ¢ ,
2. variations in by »
3. variations in the nonbasic vector gj .
4. simultaneous variations in ¢ and go .
Let 8 define the parameter of variation. Then the linear function

necessary to change the requirements vector OQO is

_-090+6§_

where e is a specified, but arbitrary, vector and ¢ is a non-
negative scalar. For the problem (5.9), it is desired to find the
largest value & for which the optimal basis vector x* (9)

yields a feasible solution.

The first step is to solve problem (5.9} for & =0 . If

058 is the corresponding optimal solution, then
0, _0x-10
xg = B by 20
0

The variations in the 90 vector can only effect the feasibility
of the problem. Therefore only the feasibility of the problem need

be investigated.
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Table 5.1

Iterative Pracedure Example Data

Reservoir i 1 2 3 4 5
Ci 1 2 3 4 0
5‘1? 5 1 3 2 7
E} 0 3 0 0 12
E{ki} 1 1 1 1 0
01? .05 .05 .05 0 0
Table 5.2
Iterative Procedure Results

Iteration XO x] x2 X3 x4

1 7 5 1 0 0

2 12.627 5 1 .876 0

3 12,995 5 1 .998 0

4 12.044 5 1 014 0

5 13.050 5 1 L017 0

6 13.051 5 1 017 0

7 13.051 5 1 017 0

8 13.051 5 1 017 0
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In order to determine the critical values of 6 , the procedure
is initiated by using the solution 058 obtained at o6 = 0 . Next
let o and B be two consecutive critical values of 6 , (a Z8) ,
where it is assumed that the basic solution at & = o 1is known and
given by GEB . The next critical value & = g 1is determined in

the following manner.

The basic solution GEB will remain feasible for some range of

8 2« as long as

tn-1 U -
B %by 20

is satisfied. Which can be expanded to

'.i B _ O‘.B-] (O

*g by = 8 by + &) + (6 - a)“§4 e

or

- ocB-l o

: 1
B bp= B by e

+ (e - a) "B

Now Tet (“gf] “by); and (%" e); be the ith element of

ag-! “b, and “B™" e respectively. Since
OLB—] be > O
= _0 — 4 3
it follows from the condition
ap-1 6.
B by20

that
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1. If (aB'] e}, >0, for all i , then “x, remains

= =B
feasible for all 8 Z o .,

2. If (“Ef] g)i < 0, for at least one i , there exists
a critical value, 0 = § , where

-1
(B by)y | (B &)y <0

[L==;

Therefore, for & > g8 , ugg will no longer be feasible. At
& =8 , an alternative basic solution, 858 » can be obtained by
using the dual simplex method. As the variable corresponding to
g is the first to go infeasible, it is selected as the leaving
variable o =g .

The procedure is repeated on HEB to obtain a new critical
value of ¢ , that is, the range of 0 over which 658 remains
feasible. When the condition occurs that no feasible solutions
exist for 8 the procedure is terminated. The resulting solution
set of 6's and 658 are next used to find the smallest value of

8 that satisfies equation (5.7). The solution to (5.7) is then the

optimal solution to the problem.

For multipie chance-constraints the changes in the requirement
vector (the right-hand side) are not linear functions of o . This
makes it quite difficult to obtain the parametric solution. There-
fore, only multiple chance-constraints having the same variance

equation can be solved by this technique.
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Parametric programming examplie. The example problem solved is

identical to problem {5.11) solved by the iterative procedure.
Application of the parametric programming method reveals the
critical values of ¢ as 0, 2.5. The solution, Xq (6) and

x {8) 1is in Table 5.3.

Table 5.3

Parametric Linear Results

Range on & Xg X1 Xo X3 Xg
0.0 7 5 1 0 0
2.5 14.5 5 1 2.5 0

From Table 5.3 the critical value for 6 that satisfies equation
(5.7) is 2.01706. The resulting optimal cost Xxj (6) s 13.051

units. The scheduled releases x* (&) are (5, 1, 2.017, 0).

Quadratic Objective Function Chance-Constrained

In this section two methods, developed by Curry and Rice (17),
for solving chance-constrained problems with quadratic objective
functions are used to solve the reservoir system shown in Figure 5.3.
The two solution techniques discussed are, quadratic programming and
contraction mapping iterative procedure, and parametric quadratic
programming.

The name quadratic programming refers to the problem of
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maximizing or minimizing a quadratic objective function subject to
linear constraints, and non-negative restrictions on the decision
variables. The quadratic programming problem differs from the
Jinear programming probTem in the respect that objective function
also includes x? and X%y (j # k) terms. The general quadratic

J
problem is to find X sXgsee.sX, SO QS to

n n n
minimize L oCc.x, - 1/2 ¥ L XX ,
{J'=1~” /j=1k=1q3k3k}
n
. < 1 =
subject to jil aijxi —'bi , for i=1,2,...,m,
and x. >0 , for j=1,2,....n,

i

where the qjk are given constants such that 4y T Ay -
The cost function assumed for the reservoir system in

Figure 5.3 is

minimize

I ™

5 c; (Li - X
The constants Li are the scheduled releases, the o¥ the cost of
deviating from the schedule, and X; the variable scheduled release
from the ith, i=1,2,3,4, reservoir. The objective function
represents the cost or profit deviation from the target releases.
The constraints are (5.1), (5.2), (5.3), and (5.4). The chance-

constraints are converted to their deterministic equivalent (5.8)

and the problem is formulated as (5.9) only with a quadratic
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objective function. The quadratic problem to be solved with chance-

constraints is

(5.12) minimize Xy = 1§1 c. (Li - xj)2
subject to Ax = b - se
x20
with
(5.13) 8, = K, | { -g o$j x?)w2
i j=1

Quadratic programming and contraction mapping jterative

procedure. The solution to probiem {5.12) is obtained by an
iterative procedure of initially choosing x , solving the associ-
ated quadratic subproblem with (5.13) fixed. Once a solution to
(5.12) is obtained, by quadratic programming, the value of 8 1is
adjusted with the new x value and the problem resolved. The

iterative procedure is the same as discussed for linear programming

and contraction mapping.

Quadratic procedure example problem. Assume the probability

of satisfying the demand at Reservoir 5 is maintained by 95%. Then

equation (5.1):

k.x, =~ d} 2 95%
p 1

it Lo

P
;
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is converted to the deterministic equivalent (5.8)

3
- I Efk x,=-d-87 ,
i=1 1771 1
where
n 1/2
0; = K (> o? x?)
*i =
and KDL = 1.645. Likewise, to insure that the maximum capacity
i
Eé is not violated by more than 95%, equation (5.2} is
3 — 0
< _ > [
P { 121 kixi < sg +d Sg }Z 95%

and the deterministic equivalent
3 — 0

: < - -

i E {ki} X < Sg +d s = 0,

i=1

where 8, for this example is equal to 0, - Table 5.4 represents

the data used and the resulting deterministic equivalent problem is

e _ 2 2 2
minimize X5 = 501 - x]) +1.0(1 - x2) + 1.5(1 - x3)

+ 2,001 - x4)2

subject to X =5

(5.14) X., SN



N _ 2 £.2 2
8y = 85 = 1.645(.05x] + .05x; + .05x3)

+X

+X

x],xz,x3,x4 > 0

Table 5.4

1/2

<3
<2
22
<11 -8
> 6 + 8

Quadratic Iterative Procedure Exampie Data

Reservoir i i 2 3 4 5
c; 0.5 | 1.0 | 1.5 | 2.0
L. 10 L 10 | 1.0 ] 1.0
3 s0 | 1.0 | 3.0 ] 201 7.0
5, 3.0 12.0

Ek; ) 10 | 1.0 | 1.0 ] 1.0

cf 0.05| 0.05 | 0.05

VTR N RS
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The solution to this problem is obtained in seven iterations
to yield an optimum cost of 6.1331 units and scheduled releases
x* of (3.6997, 2.1166, 1.8999, 1.1166). The solution results are
listed in Table 5.5

Table 5.5

Quadratic Iterative Procedure Results

Iteration x] x2 x3 x4 91 62 X

1 2.6364 1.8182 1.5455  1.0000 0.0000 0.0000 -7.5455

0

2 3.4275 2.0713 1.8092 1.0713 1.3080 1.3080 5.0864
3 3.6332  2.1055 1.8777 1.1055 1.6164 1.6164  5.8669
3.6835  2.1139 1.8945 1.1139 1.6970 1.6920 6.0677
3.6959  2.1160 1.898 1.1160 1.7106 1.7106  6.1177

(= T T

3.6990  2.1165 1.8997 1.1165 1.7152 1.7152  6.1301
7 3.6997 2.1166 1.8999 1.1166 1.7163 1.7163  6.1331

Parametric quadratic programming. Parametric quadratic program-

ming is a variation of parametric linear programming. The objective
function of the linear program is replaced by a quadratic function.
The optimal solution is obtained as a result of predetermined

Tinear variations in the requirements vector. The quadratic pro-
gramming problem before parameterization is defined in the previous
section. Let & define the parameter of variation. Then the

linear function necessary to change the requirements vector 90 is
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b=by+ se

where e s a specified, but arbitrary vector.

For the example presented in this section, parametric quadratic
programming is used to solve the problem of the type (5.12) and
(5.13). The particular application dealt with is the change (5.13)
of the requirements vector of equation (5.12}. The parametric
change ¢ results in progressively raising the value of the objec-
tive function. The smallest value of 6 which satisfies equation
(5.13), with X a function of & , results in an optimal solution

to (5.9) (Curry and Rice, 17).

Parametric quadratic programming example. The example problem

solved is identical to problem (5.14) solved by the jterative
quadratic procedure. Application of the parametric quadratic
programming method reveals the critical values of & as 0.0,
0.6667, 2.5, 3.6667, 5.1667, 5.3571. The solution Xy (¢) and
x (6) 1is in Table 5.6. From Table 5.6 the critical value for o
that satisfies equation (5.13) is 1.717. The resulting optimal

cost x* (9) is 6.134 units. The scheduled releases x* (8)

0
are (3.7, 2.117, 1.9, 1.117).
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Table 5.6
Parametric Quadratic Results
Range on s X X5 X3 X4
0.0 2.636 1.812 1.5 1.0
0.667 3.0 2.0 1.667 1.0
2.5 4.222 2.204 2.074 1.204
3.667 5.0 2.333 2.188 1.333
5.167 5.0 2.833 3.0 1.833
5.357 5.0 3.0 3.0 2.0

Summary and Conclusion

In this chapter the stochastic nature of streamflow was con-
sidered for the development of a water resource system. In partic-
ular a system was designed from an existing river basin. The basin
served for model formulation and design. This system was designed
to meet a demand placed on a particular reservoir. The flow into
that reservoir was not known with absolute certainty. This uncer-
tainty lead to a set of stochastic constraints on the reservoir
inventory level. The stochastic constraints were then converted to
their equivalent deterministic constraints.

Two types of objective function forms were appended to the
linear constraint set, linear and quadratic. The resulting linear
problem was solved by two solution techniques. The first technigue

was that of linear programming and contraction mapping. The second
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Tinear procedure was that of parametric linear programming. Both
techniques lead to identical results based on the problem formulated.

The parametric approach was to obtain the parametric solution
x* (5) for problem (5.9) and then solve equation (5.7) for o .

For noncontractive problems, @ unique solution was not guaranteed.
For multiple chance-constraints the iterative procedure was found

to be superior to the parametric procedure when the variance
equations (5.7) are strongly contractive. The parametric procedure,
however, can be used when the variance equations are identical.

The quadratic objective function with chance-constraints was
solved by two techniques. The first technique is similar to the
linear programming contraction mapping technique. It essentially
uses the same logic with the linear simplex code replaced by a
quadratic code developed by Schuermann (86). The second quadratic
technique called parametric guadratic programming was also presented.
The parametric changes were restricted to changes in the require-
ments vector. Like the linear parametric technique it can only be
used on problems where the variance equations are identical.

However, the parametric quadratic approach is applicable to any

single chance-constrained guadratic problem.
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CHAPTER VI

BICRITERIA OBJECTIVE FUNCTIONS FQR
STOCHASTIC RESERVOIR MODELS

Water resource planners face the problem of developing alterna-
tive water resource systems at various points in time. This evalua-
tion leads to an investment decision. The problem is to investigate
how the relevant variables affect that decision,

A planner should allocate his planning resources to studying
those variables which have the greatest relative impact on the
planning decisions, assuming that there will be a positive payoff
from such a study. For some variables there will be little or no
reduction in return for expenditure of substantial additional
funds. For others there may be relatively large returns for small
expenditures. Even if the latter is the case, if the impact on
the total system is small, because of the much larger relative
importance of planning variables whose returns cannot be changed
by additional expenditures, there may be no justification for
further study.

This chapter will apply parametric variations in the objective
function of linear and quadratic programming problems to investigate
the importance of the return associated with the planning variables
for chance-constrained connected multi-purpose reservoir systems.
This approach of mathematical programming is referred to as

bicriteria mathematical programming. Bicriteria programs often
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arise in the application of mathematical programming when there are
incommensurate objectives to be extremized.

Once an optimum solution to a reservoir or system of reservoirs
is attained, the analyst may find it desirable to study the
effects of discrete changes in the cost coefficients in order to
observe the‘change in the current optimal solution and the decision
variables. One way to accomplish this is to solve the problem for
each change desired. This, however, may be computationally ineffi-
cient. To improve efficiency, use can be made of the properties of
the simplex solution procedure for linear programming. By using
parametric linear programming it is possible to reduce the addi-

tional computations considerably.
Linear Objective Function

Parametric linear programming. In this section the method of

parametric Tinear programming (Taha, 89) will be used to investi-
gate the postoptimal solution of the reservoir model presented in
the section System of Multi-Purpose Reservoirs in Chapter III.
Parametric linear programming is used to investigate the behavior
of an optimal solution as a result of predetermined linear varia-
tions in the parameters of a problem. The linear programming prob-

lem before parameterization is defined as
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(6.1} maximize Xg = X
subject to (A,I)x = by
X2 0

The variation in ¢ 1is the linear variation under investigation.
Let © define the parameter of variation. Then the linear function

necessary to change the objective function parameters is

or

g (O 0 )

Cpsenes Couun) * e(e1,...,e

where the parameter & 1is assumed to be nonnegative. Problem (6.1}
is first solved with o = 0 by the revised simplex method to

obtain an optimal solution. Next the effect of the predetermined
changes, e , in the objective function, ¢ , are determined by
postoptimaiity analysis (Taha, 89, Chapter 9). The resulting
parametric changes in s give the analyst the complete range of

solutions that result from his choice of cost variations.

Parametric programming example. The Tinked reservoir system

under consideration is illustrated in Figure 3.3 (p. 58). It is
composed of three reservoirs, two of which have pumping capabjlities.
Randem intlows and predetennined demands are assumed for each

reservoiv,  Table 3.3 (p. 59) in Chapter 1II describes the state



125

variables assumed for each reservoir and time period. The objec-
tive is to minimize the operating cost of the system for the two
time periods and then to investigate parametric changes in the
objective function. The parametric changes will affect the opti-
mality of the operating policy. It will also affect the decision
variables associated with changes in the objective function.

The decision variables to be determined for each time period
are: the units of water released from reservoir one, two, and
three; and the number of units of water pumped into reservoir one
from reservoir two and three. The total number of variables to be
determined is the product of the number of time periods with the
sum of the number of reservoirs and pumping variables. The decision
variables must satisfy the equivalent deterministic constraints
(3.15), (3.16) and the upper and tower 1imits on release (3.14)
discussed in Chapter III.

In order to solve this problem by the revised simplex proce-
dure, slack and artificial variables must be appended to the
appropriate inequalities. This increases the size of the problem to
twenty-eight constraints and forty-eight variables. Ten of the
original variables are of concern.

The structure of the problem is of the form:
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minimize z = (h + se)y
subject to (A,l)y = b
Liyzu
where uzgzo

The values chosen for the cost coefficient of the objective func-

tion are:
h =1Tl1.0, -2.0, 0.0, -.75, .65, 1.0, -2.1, 0.0, -.80, .70]

In the cost coefficient vector h2 and h7 correspond to water
released, x% and xg » from the reservoir system (Figure 3.3) in
time period one and two, respectively. This means that if these
coefficients are parametrically changed the resulting optimal cost
might be Towered. Or stated another way, a loss in profit might
result in a net return. The parametric objective function vector

selected to investigate these changes is then,
e=1[0,1,0,0,0,0,1, 0,0, 0]

The linear constraints are given by the matrix A and the vectors

b, 2, u as
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Application of the revised simplex method in conjunction with para-
metric linear variations in the cost vector reveals the following

critical values of & and y :

Lo ] [o J[eo] [21]
i x} ] r- ] P-7 | 7 ]
X 9 15 15
X ] 1 1
pd, 4 4 4

y = p3 =] o 0 0
x; 8 8 8
x5 3 3 12
X 1 ] ]
o2, 4.85| | 4.85| | 4.85
P | JLU L

The optimal cost of operating the system is for o = 0 a cost of
-16.11 units or a profit of 16.11 units. When 0 < 8 < 2 , there
is a cost of 7.88 units which is a corresponding loss in profit.
For 2 <8 = 2.1, the cost becomes 9.68 units.

It is interesting to notice that when o = 2 the release in
time period one, x? » Changed from 9 to 15 units. This means that

it will cost 8.23 units to release an additional 6 units of water.
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Also, when 8 = 2.1 the release in time period two, xg » Changes
from 3 to 12 units. Now, however, the 9 units of release only cost

1.80 units.
Linear and Quadratic Programming

Parametric quadratic programming. In this section a method of

quadratic programming, developed in a paper by Wolfe (97), will be
used to find a solution to the reservoir model presented in

Chapter V. In Chapter V a quadratic objective function with
chance-constraints was solved parametrically for changes in the
requirements vector. In this section the quadratic objective func-
tion will be parametrically changed. The parametric change will

be due to the addition of a linear objective function. The objec-
tive function can be thought of as bicriteria, having both a linear
and quadratic function to be extremized. The quadratic function

is first optimized and then parametric changes associated with the

linear function are optimized.

Parametric quadratic programming example. The cost function

assumed for the reservoir system in Chapter V, Figure 5.3 (p. 97)
is

X

minimize
p 1

[
g
It 09 4=

2
c.{L: - x;)° + 0
j ‘i i ;
The constants Li are the scheduled releases, the cj the cost of

deviating from the schedule, and X5 the variable scheduled
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release from the ith reservoir. The objective function represents
the cost deviation from the target releases plus an additional
linear cost. The additional linear cost might represent a cost
associated with release for recreation, irrigation or water quality
and quantity control. Thé analyst can then observe the additional
cost associated with a parametric change o of adding additional
purposes for the scheduled release, Xg of water.

The parametric quadratic problem solved is

4 2 4
(6.2) minimize x, = -E Ci(Li - xi) + e-E X
i=1 i=1
subject to Ax = b
x20

The value chosen for the cost coefficients of the objective function

are,
c= (.5, 1.0, 1.5, 2.0}
L=(.0,1.0, 1.0, 1.0) ,

and the linear constraints are given by specifying the matrix A

and the vector b as:
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0 a1 a0 (6 |
] ] 10 1
] 0 0 0 5
A= {0 ] 0 1, b= |1
0 0 10 3
0 0 0o 2
0 -1 0 2 |,

Application of the simpiex method for quadratic programming
yields the values of 6 as 0.0, .778, 2.0, 3.0, 5.0. The solution
Xg s X are presented in Table 6.1. From Table 6.1 the analyst
can observe the resulting changes in the cost, Xg for changes in
the parameter 6 . When ¢ =0 the linear function has no effect

on the quadratic function, which represents the cost or profit

Table 6.1

Parametric Quadratic Objective Function Results

§] XO X-I X2 X3 X4

0.0 5.519 3.556 1.259 1.185 0.259
0.778 12.691 2.778 1.778 1.444 0.778
2.000 21.000 2.000 2.000 2.000 2.000
3.000 29.000 3.000 3.000 3.000 2.000
5.000 55.000 5.000

3.000 3.000 2.000
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deviation from the target releases. This result indicated the
single effect of the opcrating cost. No consideration is given to
the additional linear expenses. However, when o is not equal to
zero the linear function, which might represent a cost for water
quality control, increases the total operating cost. The changes
in the scheduled release variables X; can be observed as the
linear function is brought into solution. This gives the analyst
the ability to make realistic weighting consideration about sched-
uled releases. He can observe the cost implications with regard

to individual scheduled releases.
Summary and Conclusion

Reservoir systems were modeled and solved by both linear and
quadratic programming to yield an optimal solution. This analysis,
however, does not include all the additional variations in the
cost function associated with certain decision variables. The
analyst has the choice of either computing separately each
additional variation or he can use postoptimal analysis to observe
the variations in the decision variables and cost function. This
chapter presented the application of postoptimal analysis to
illustrate how the analyst can obtain a set of optimal solutions.
From the set of solutions he can select the solution which best
meets his budget requirements. He can then eliminate the vari-
ables which will produce Tittle or no return for additional

expenditures. He can also determine the relative importance of



the decision variables whose returns cannot be changed by additional

expenditures.

3
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The preceding chapters of this text were divided into four

major sections to present methodology for the systematic planning of

regional water management. Chapter III presented the stochastic
formulation for a single multi-purpose reservoir and its extension
to systems of multi-purpose reservoirs. Chapter IV applied this
formulation to the problem of time phasing of reservoir capacity
expansion with reservoir operation. In Chapter V the stochastic
nature of streamflow is considered based on two types of objective
functions. Parametric analysis for the requirements vector is
applied in each case. The final chapter, Chapter VI, applies
postoptimal analysis to linear and quadratic objective functions.
The parametric objective function analysis gives a set of optimal
solutions and the associated decision variables. The analyst can
then decide which solution best meets his requirements and budget
constraints.

In Chapter III an extension of the single multi-purpose
stochastic constrained reservoir model was presented. The linear
decision rules utilized by ReVelle et al. (83) and Loucks (63) are
omitted in the model. The purpose of using linear decision rules
is to disconnect the release in the nth period from the ending
inventory level in period n-1. The advantage of the linear deci-

sion rule is that only the random inflow for the current period
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need be considered. However, the actual quantity to be released

in the nth period is not known until the random inflow in periods 1
through n-1 are observed. Thus, for planning purposes where
operation of the reservoir is important or when the release vari-
ables are represented in the objective function, this formulation
is unsatisfactory since releases are actually random variables and
not exactiy determined by the reservoir planner,

The formulation proposed in the section on Single Multi-
Purpose Reservoirs requires tnat the distributions of sums of
random infiows for all time periods be obtained. This is a rela-
tively simple task for models with a large number of time periods.
Since by the central limit theorem {Parzen, 80), the distribution
of the sums derived from the sampling of these parent distributions
tends to become normal as the sample size increases.

By not using any form of decision rule, the constraints on
upper and lower release quantities become deterministic and need
not be represented by chance-constraint formulation. Also, quad-
ratic or even general convex objective functions of the release
quantities can be considered.

In the section on System of Multi-Purpose Reservoirs a mathe-
matical model is developed for a linked system of multi-purpose
reservoirs with stochastic unregulated inflows. The mathematical
model is obtained as a straightforward generalization of the single
reservoir model. The chance-constrained formulation for reservoir

capacities and minimun inventory levels is converted to a linear
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system of constraints. Linear, quadratic, or even general convex

objective functions can be appended to this system and the solution

gbtained.

If linear objective functions are assumed, which could be
operational or of a capacity nature, very large problems can be
solved. Since the cumulative inflows will be nearly normally
distributed for these problems, their formulation and solutions are
a matter of course. The problem of capacity expansion dealt with
in Chapter IV is generally not well modeled as & continugus linear
problem. Capacity expansion models are usually Timited to fixed
time periods and have nonlinear costs as a function of reservoir
size.

In Chapter IV a procedure was developed for the analysis of
time phasing of reservoir system development. The formulation was
based on the multi-purpose stochastic reservoir model developed in
chapter III. The objective was to select the reservoir sizing,
timing, and to establish operating policies such that the total cost
associated with the system of linked reservoirs was minimized. The
capacity expansion aspect was formulated as a mixed integer-
continuous linear programming problem. The time periods for pos-
sible reservoir capacity expansion do not need to coincide with the

operational time periods.

Due to the resulting problem size and its general structure,

: genders' decomposition technique was applied. Benders' method

allowed for the problem to be separated into a pure linear program

e vt ol atpems it
e
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and an almost pure integer program. Using Benders' approach, the
size and computational speed for a solution to this type of problem
is greatly enhanced.

In Chapter V the stochastic nature of streamflow was considered
for the development of a water resource system. In particular a
system was designed from an existing river basin. The basin served
for model formulation and design. This system was designed to
meet a demand placed on a particular reservoir. The flow into the
reservoir was not known with absolute certainty. This uncertainty
led to a set of stochastic constraints on the reservoir inventory
Tevel. The stochastic constraints were then converted to their
equivalent deterministic constraints.

Two types of objective function forms were appended to the
linear constraint set, linear and quadratic. The resulting Tinear
problem was solved by two solution techniques. The first technique
was that of linear programming and contraction mapping. The second
Tinear procedure was that of parametric linear programming. Both
techniques led to identical resuits based on the problem formulated.

The parametric approach was used to obtain the parametric
solution to the problem formulated and then to solve the nonlinear
variance equation for the particular solution. For noncontractive
problems, a unique solution was not guaranteed. For multiple
chance-constraints the iterative procedure was found to be superior
to the parametric procedure when the variance equations are strongly

contractive. The parametric procedure, however, can be used when
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the variance equations are identical.

The quadratic objective function with chance-constraints wag

solved by two techniques. The first technique used was similar to
the linear programming contraction mapping technique. It essenti-
ally used the same logic with the linear simplex code replaced by

a quadratic code developed by Schuermann (86). The second quadratic
technique called parametric quadratic programming was also pre-
sented. The parametric changes were restricted to changes in the
requirements vector. Like the linear parametric technique it can
only be used on problems where the variance equations are identical.

However, the parametric quadratic approach is applicable to any

single chance-constrained quadratic problem.

Reservoir systems were modeled and solved by both linear and
quadratic programming to yield an optimal solution. This analysis,
however, does not include all the additional variations in the cost
function associated with certain decision variables. The analyst
has the choice of either computing separately each additional
variation or he can use postoptimal analysis to observe the varia-
tions in the decision variables and cost function. In Chapter VI
application of postoptimal analysis was used to illustrate how the
analyst can obtain a set of optimal solutions. From the set of

solutions he can select the solution which best meets his budget

requirements. He can then eliminate the variables which will
produce 1ittle or no return for additional expenditures. He can

also determine the relative importance of the decision variables
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whose returns cannot be changed by additional expenditures.
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CHAPTER VIII

RECOMMENDATIONS FOR FUTURE RESEARCH

The planning methodology presented in this text provides a
means of obtaining operating policies for regional water manage-
ment. There are, however, several areas associated with the method-
ology presented which offer opportunities for profitable future
research.

In Chapter III the continuity equation (3.11) incorporated the
variable et , which represented the fraction of inventory remain-
ing after evaporation and seepage losses. This variable was
assumed to be deterministic. Another interesting application

would evolve if et is considered as a stochastic variable. When

k
t

chance-constraints (3.12) or (3.13) the resulting convoluted

e. 1is a random variable and is substituted into one of the two
distribution will involve the products of random variables.

An extension to the stochastic methodology presented in
Chapter III would be to develop a production program capable of
obtaining an operating policy for an existing river basin system.
Once a production model is operational, it could be used to make
comparisons concerning the operating policies of the system using
historical streamflow data versus simulated streamflow data.

Another application concerning Chapter III would be to sub-
divide each time period into four possible types, depending on the

unregulated streamflow. The particular types of periods might be
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very dry, dry, wet, and very wet. From historical or simulated
streamfiow records the steady-state probability of each discrete
flow interval or time period could be determined for each type of
period. The range of flows included in each interval and the par-
ticular discrete flow associated with each interval could be
selected so that the first two moments of a probability distribu-
tion of unregulated streamflows at a particular observation station
in each period could be obtained. The two moments could then be
used to calculate the mean flow and the variance of the flow distri-
bution in each of the four periods. Using this information, an
operating policy for the basin under consideration could be
obtained.

A final application of the stochastic methodology in Chapter
111, would be to estabiish, based on the deterministic initial
reservoir storage volume 55 , a set of reservoir system configura-
tions. Each reservoir system configuration in the set would be
solved to obtain several different operating policies. The
sensitivity of the various operating policies could then be
investigated to determine the effect of the initial storage level.

In Chapter IV, Benders' decomposition technique was applied
to the time phasing of capacity expansion multiple-reservoir models.
An integer code was not available which would solve the problem in
a reasonable length of time. It would be worthwhile to consider the
incorporation of the Balas zero-one algorithm (Taha, 89, Chapter 10)

into the technique presented. Egon Balas (1965) developed the
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algorithm to solve linear programming problems with binary (zerc
or one) variables. It would appear that his algorithm might best
e solve the multiple-reservoir model within an acceptable time

Timit.
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Chapter III Program Documentation

The Tinear programming system which is used to solve the muiti-
purpose reservoir chance-constrained problem is based on the
revised simplex method with bounded variables. The bounded vari-
ables procedure is a method by which constraints that have upper
or lower bounds on individual variables are handied implicitly
rather than explicitly in the program. Since the work involved
in solving Tinear programs is mainly a function of the number of
constraints, speed and accuracy can be improved significantly by
utilizing the bounded variables procedure. This is particularly
important for linked multi-purpose reservoir models since at least
one-half of the constraints are bounded. A detailed discussion of
the revised simplex procedure with bounded variables is given by
Taha (70, Chapter 8).

The program is FORTRAN based which offers the greatest flexi-
biTity for interfacing with the remaining subroutines and for con-
version to other computers. The program was developed to run under

WATFIV and 0S 360 FORTRAN systems on the IBM 360/65.

Program Structure

The basic structure of the linked multi-purpose computer
program consists of a master program which reads the input data,
develops the linear programming formulation, submits the problem to
the linear programming subroutine LPSIM, and interprets the results

for printout. The general problem salved by the linear program
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(1.p.) subroutine is:
maximize cy

subject to (A,I)y =b > o

=
| A
| A
{e
-

Y

where y is the decision vector and consists of release, pumping,
slack and artificial variables. The variables are stored into Y

in the following manner (the notation is that given in Chapter III):

all releases all pumping variables

N, A,

_ 1.2 m 2 3 1 .
Yy = [x1,x1,...,x], P11sP11s--+sPoyseess  time 1
1.2 m 2 1 . .
XosXoseeesXos  Pios  +en Pogsenss time 2
L m 2 - ] time T .

XpsXpse-esXps  PI7o

In narrative form the sequence of variables is (1) each release
variable xi for each reservoir for time period one, followed by
all first period pumping variables; (2) the pumping variables are
ordered by all pumping into reservoir one, then reservoir two, etc.;
(3) this sequence is repeated for each of the T time periods;

and (4) the slack and artificial variables occur next, one each

for every constraint.

MASTER Program Input Formats

The notation which is used in FORTRAN to designate whether a
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variable is an integer or a floating point variable is I or F ,
respectively. For I type variables, the data must be read in
right adjusted in the field. For floating point variables, F
designation, the decimal point may be included and the data inserted
anywhere within the specified field. An alphanumeric field type of

A is used for title information and can be any alpha or numeric

character,
CARD FIELD TYPE NAME DESCRIPTION
1 1 I5 NT -  number of time periods,

2 I5 NR - number of reservoirs.

The remaining cards are read in sets. One set for each reser-
voir. A1l of the pertinent data for each reservoir is included
within the set. Each reservoir in the system must be given a
designation number; these numbers must be sequential starting with

one. A title card also is included to identify the reservoir.

SET
CARD FIELD TYPE NAME DESCRIPTION
1 1 AB0 ITIB reservoir title card, can be any
alphanumeric characters, a maximum
of 80 columns is availabie.
2 1 F10 D reservoir extracted demand for
period one,
2 F10 demand for period two,
NT Fi0 demand for period NT {If more than

8 periods are to be studied, con-
tinue data on successive cards.

A maximum of 8 periods per card
until NT reached.).
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DESCRIPTION

number of other reservoirs that this
reservoir can pump to (If this num-
ber is zero, place a one in column

5 of the card.),

the number of one of the reservoirs
which is pumped to,

the number of one of the reservoirs
which is pumped to,

(Repeat reservoir numbers until all
reservoirs that are pumped to from
this reservoir have been included.
The maximum number on each card is
9 reservoirs on the first card.
This is followed successively by 10
reservoirs per card. The limit of
9 on the first card is because NP
takes up one field on this card.).

(The following set cards 4 and 5 are repeated for each
reservoir pumped to from this reservoir or NP times.
However, if no pumping is allowed from the reservoir omit

SET
CARD FIELD TYPE NAME
3 1 15 NP
2 I5 10
3 15 I0
set cards 4 and 5.)
4 1 F10 MSIO
NT F10
5 1 F10 PROPUM
NT F10

pumping canal maximum capacity for
first time period,

pumping canal maximum capacity for
time period NT.

profit per unit pumped through canal
in first time period (costs are
considered as negative profit),

profit per unit pumped through canal
in period NT.
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¢
4 SET
CARD FIELD TYPE
6 1 15
2 15
NP 15
7 1 F10
2 F10
NT F10
8 1 F10
NT F10

NAME
NP

NSRF

NSRF

RIF

RIFL

DESCRIPTION

number of other reservoirs for which
the normal channel release flows into
this reservoir (If this number is
zero, place a one in column 5.),

the number of one of the reservoirs
which releases into this reservoir,

the number of one of the reservoirs
which releases into this reservoir
(Maximum number per card is 9 on
first and 10 each on successive
cards. Reasons are same as that
for set card 3.).

maximum inflow into reservoir in
period one (This is the a, point
from distribution 1n;]ow aﬂd was

designated by (R*]) 1 in previous
discussions.),

maximum inflow intg reservoir in
period two, (R*Z) ' s

maximum inflow into reservoir in last
time period.

minimum inflow int? reservoir i
. =0
period one, (R*]) 2

minimum reservoir inflow in period
~ay
N R 4



SET
CARD  FIELD TYPE NAME
9 1 F10 RCAP
NT F10
10 1 F10 SMIN
NT F10
11 1 F10 RFUL
NT F10
12 1 F10 RFLL
NT F10
13 1 F10 PRRES
NT F10
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DESCRIPTION

maximum reservoir capacity minus
surcharge (c? - v?)
period one,

for time

maximum reservoir capacity minus

surcharge (ck - vk )} for time
NT NT
period NT.

I . k
minimum reservoir pool level s,
for time period one,

minimum reservoir pool level §§T

for time period NT.

. —%
maximum normal channel release Xq
from reservoir in period one,

maximum normal channel release EﬁT
from reservoir in period NT.

C k
minimum normal channel release x,
from reservoir in period 1,

. k
minimum normal channel release X
s . NT
from reservoir in period NT.

profit per unit for releasing from
reservoir in period 1 (cost
considered as negative profit),

profit per unit for releasing from
reservoir in period NT.
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gttt R e

SET
CARD FIELD TYPE NAME
14 1 F10 E
NT F10
15 1 F10 SO

DESCRIPTION

evaporation factor, e% » for time
period one (This is the fraction of
previous period ending reservoir
inventory quantity which is not lost

- due to evaporation or Teakage.),

evaporation factor, ehT , for time
period NT.

starting reservoir water quantity.

A 1ist of the input cards for the linked multiple-reservoir
example, Figure 3.3 (p. 58), discussed in Chapter III and using the
data in Table 3.3 (p. 59), is given below.
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EXAMPLE INPUT FOR MASTER

COLUMNS
1 5 1 1 2 2 3 3 4 4 5
0 5 0 5 0 5 0 5 0
2 3
RESERVOIR ONE
6. 8.
1 0
1 0
l11. 20,
6. 15.
10.0 10.0
3. 3.
7. 8.
l. 3.
1.0 1.0
1. 95
8.
RESERVOIR THWO
5. 7.
i 1
10. 10.
-« 75 -.80
2 1 3
10. 15.
9. 14.0
20.0 19.0
4 2.
15. 12.
2. 3.
—20 -2-1
1. .97
20.
RESERVOIR THREE
10.0 7.0
1 1
5- 5-
«65 « 70
1 0
12.0 20.0
8.0 17.0
15,0 16.0
3.0 4,0
20.0 20.0
1.0 1.0
OI
1.0 -98

6.0
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RESERVOIR 3 RESERVOIR THREE
DEMANDS 10.000 7.000
PUMP TG 1,CAP, 5.000 5.000
PUMPING PROFIT 0.650 0.700
RELEASE FROM 0
INFLOWS 12.000 20.000
L INFLOWS 8.000Q 17.000
CAP.—FREEBD. 15.000 16,000
SMIN 3.000 4.000
FLOW LIMIT U 20.000 20.000
FLOW LIMIT L 1.000 1.000
RELEASE PROFIT 0.000 0.000
EVAPORATION 1.000 C.980
STARTING RESERVOIR QUANTITY 6.000
VAR LOWER BOUND UPPER BOUND
1 1.000 7.000
2 2.000 15.000
3 1.000 20.000
4 0.000 10.000
5 0.000 5.000
6 3,000 8.000
7 3.000 12.000
8 1.000 20.000
9 6.000 10,000
10 0.000 5.000
INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 =2.0000
INFEASIBLE INITIAL RHS FOR CONSTRAINT 3 ~5.0000

INFEASIBLE INITIAL RHS FOR CONSTRAINT 9 ~4.5%00
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80°¢
269
55°61
L3R
06*°%
06°€—
oo 1
co°* L
00" 0¢
00—
00*¢%

00 t-
21

00*1 00°0 O00°1
00°1- 00*0 0Q00°1-
00°0 00°1T 00°I-
00*0 00°t- 00°1
00*1-~ 00°1— 00°0
00*1 00°*1 00°0
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TIME

TIME

OPTIMAL SOLUTION

X
x4
XA
X
X{
x{
x{
Xt
x{
Xt
X(
X{
X{
X(
xX{
X{

CBJECTIVE FUNCTION VALUE IS

l1})=

2)=

3)=

4)=

6)=

T)=

8)=

9})=

10) =

13)=

17)= 1
19)=
23)=
27)=
29)= 1
31)=

PERICD 1.

RELEASE
RELEASE
PUMPING
RELEASE
PUMPING

FROM
FROM
FROM
FROM
FROM

PERIQD 2

RELEASE
RELEASE
PUMPING
RELEASE
PUMPING

FROM
FROM
FROM
FROM
FROM

7.000
9.000
1.000
4,000
8.000
3.000
1.000
4.850
0.100
2000
5.000
8.000
2.000
0.150
5.850
9.000

RESERVOIR
RESERVOIR
RESERVOIR
RESERVOIR
RESERVOIR

RESERVOIR
RESERVOIR
RESERVOIR
RESERVOGIR
RESERVOIR

(U FA O S N

Ww NN -~

C. 1000000
-0,2000000E
0.0000000E
~-0.7500000€
0.1000000E
-0.2100000E
0.0000000E
-C.8000000€
C.7000000E
0. 0000000
0.0000000QE
0. 0000000E
C. 0000000E
0.0000000E
0.000000QE
0.0000000¢

01
01
00
00
o1
01
00
oo
00
00
00
00
00
00
00
00

~0.1611002€ 02

INTO CHANNEL
INTO CHANNEL
TO RESERVOIR
INTO CHANNEL
TO RESERVOIR

INTO CHANNEL
INTO CHANNEL
TO RESERVOIR
INTO CHANNEL
TO RESERVOIR

BED
BED

1 IS
BED

BED
BED

BED

IS
IS

Is

IS
IS
L IS
Is
1 IS

QO =
L
o000 O0

=R N RV )
" s & o
-~ 0000



Program Flowchart

READ/WRITE
Input data

Y

Develop Linear
Program Form

WRITE Linear
Program
Generated

CALL LPSIM
LINEAR PROGRAM

WRITE Linear
Program
Results

END
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Program Deck Setup and Listing

The reservoir model program is listed below. A complete input

system for running the program in WATFIV is depicted as:

/ *
INPUT A

//$DATA )
NEWBI )
LPSIM
MASTER )
WATFIV. )

JOB CARD




c

C

3

4

5

C

6
8

10

11

C
19

c
21
920

c

"

c

C
921

922
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MASTER PROGRAM

REAL MsSIQ

INTEGER T

DATA ART /-1.E9/

CUMMON NXB(25),CB(25)

DIMENSION XUB{99) 4 XLB(99),PAL25),P(25),C(99)
Ly XP{99) 4 NPV(25),10(25425),0(25,25),RIF(20,25)
2+RIFLI25425) yNPYSX(25),RCAP(25,25) RFUL(25,25)
3yRFELLU25,25) sSMINI25425) 4yE(25,25)450(25) ,NRF(25)
4yNSRF{25425)4MSIC(25,5425) ,TAB(25,99) ,NPTR(25}
5+NVPTR(25,25),ITIB{20),PRRES(25,25)
6,PROPUM(25,5,25)

FORMAT(8F10.3)

FORMAT (! 1)

WRITE(6,4)

CARD 1

READ{540+END=500) NT,NR

FORMAT(1015)

FORMAT(20A4)

WRITE(6, LOINT4NR

FORMAT( 5X,'NUMBER OF TIME PERIODS= ',I5/5X,

1 'NUMBER OF RESERVOIRS = ' [5/)
WRITE(6,11) (JrlevNT)

FORMAT{"'~ TIME PERIOD'10(17,3X%)
1L, 10(/13X, 10110))

NPVVY=0

DO 40 I=1,NR
SET CARD 1]
READ(548) ITIB
WRITE(6,19) 1, ITIB
FORMAT(* - RESERVOIR!' I3,10X, 2044}
SET CARD 2
READ(5,3) (D(14J)yJ=1,NT)
WRITE(6,21) { DU(IyJd)ed=1,4NT)
FORMAT(8X' DEMANDS' 10F10.3,10(/16X 10F10.3))
DO 920 T=1,NT
PROPUMITI,,1,T) =0.0
MSIO(I,1,T) = 0.0
SET CARD 3
READ(S54+6) NP,( IC(I,Jd)sJd=1,NP)
IF{ 10(I,1) .EQ. O) GO TO 922
READ PUMPING CAP. AND COSTS
DO 921 J=1,NP
SET CARD 4
READIS5,3) { MSIO(I434T),T=1,yNT)
SET CARD 5
READ(S5,3 ) {PROPUMIT 4 JsT),yT=1,NT)
DU 23 J=1,NP
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WRITE(6522) I0({I,J), { HSIU(I!J:T)1T=19NT)

22 FORMAT(' PUMP TO'I3',CAP.' 10F10.3,

1 10(/16Xy 10F10.3})

23 WRITE(6524) | PROPUMII+JT),T=1,NT}
24 FORMAT(' PUMPING PROFIT' 10F10.3,

35

1 10(/16Xy 10F10.3)}

NPV(I)=NP

IFCIC(I,1)1.EQ.O0) NPV{I)=0
SET CARD &

READ(546) NP,{ NSRF{IsJ)d=1,NP}

NRF{I) = NP

IF{ NSRF(I,1) .EQ.0) NRF{I) = O

WRITE(6,25) (NSRF(IyJd) yd=]l NP}

FORMAT(4X,"RELEASE FROM' 10I10,10(16X/10110))
SET CARD 7

READ(5493) (RIF{I,4J),J=1,NT)

WRITE(6,928) (RIF(I+J)yJ=1,NT)

FORMAT{9X, ' INFLOWS' 3 10F10.3,10(/16X,F10.3))
SET CARD B

READ(543) {RIFL(I9J),yJ=1,NT)

WRITE(6y29) (RIFL{I4J)}ed=1,NT)

FORMAT(7X,* L INFLOWS',10F10.3410{/16X,F10.3})
SET CARD 9

READ(S543) (RCAP(I4Jd)4J0=1,NT)

WRITE(6430) {RCAP(I,d),d=1,NT)

FORMAT{4X,"CAP,~FREEBD."'10F10.3,10{/16X,F10.3))
SET CARD 10

READ {(5,3) {SMIN(I,J),Jd=1,NT)

WRITE(6y31)(SMIN{I4J),J=1,NT)

FORMAT(12X* SMIN' 10F10.3,10(/16X%X,10F10.3))
SET CARD 11

READ(5,3' (RFUL(I.J)’J=1-NH

WRITE(6532) (RFUL(I¢J),J=1,NT)

FORMAT(4X,'"FLOW LIMIT U 10F10.3,10(/16X410F10.3))
SET CARD 12

READ(543) (RFLL(I yJ) ¢J=1,NT)

WRITE(6y34) (RFLL{TI+J),J=1,NT}

FORMAT(4X,'FLOW LIMIT L' 10F10.3,10{/16X¢10F10.3})

PROFIT FROM RELEASE BY TIME PEROID
SET CARD 13

READ(593) { PRRES(I3J)sd=1eNT}

WRITE(6,35)(PRRES(I4J)yJ=1,NT)

FORMAT(2ZX'RELEASE PROFIT' 10F10.3,10(/16X,10F10.3))
SET CARD 14

READ (5, 3) (ECIyJ)yJ=1,yNT)

WRITE(6, 361} {E{Isd)sd=1,NT)

FORMAT(SX, *EVAPORATION' ,10F10.3410(/16X,10F10.3))
SET CARD 15
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READ{5,43) SG(1)

WRITE(6,38) SO(I)

FORMAT(S X, ! STARTING RESERVUOIR QUANTITY *F10.3)
CONTINUE

COMPUTE THE L.P. SIZE

NV=NR*NT

NP =0
NPVSX{1) =9

DU 45 [=14NR
NP=NPV(I)+NP
NOTR(T) = O
NPVSX(1+1)=NP

SETUP INTO PUMPING VAR. ARKAY
NPTRIK) ~ NU. INFLOWS TO RES. K
NVPTR{K,J)—-NQO. OF VAR, PUMPED INTO RES. K

DO 48 K=1,4NR

J= NPV{K)

IF{J.LE.O) GO T3 48
N= NPVSX{K)+ NR

NO 47 I=1,J

RES. PUMPED INTO

L= T0(K, I)

Kl= NPTRIL) + 1
N= N+1
NVPTR(L,Kl) = N

47 NPTR{L}) = K1
48 CONTINUE
NV=NV+NP ENT
NC= 2%NRENT
WRITE(SH:5T) NVNC
FORMAT(? 1L .P. PROBLEM SIZE NUMBER OF VARTABLES !
1,15,5X * NUMBER (OF CONSTANTS' I5)
NVT=2%NL + NV
DO 59 I=1,NVT
ClIl) = 0.0
XtB(I) = Q.0
XP{I) = 0,0
59 XUB(I) = 1.0E30
NRHS=NV+1
NOBJ=NC+ 1}
DO 60 [=1,NOBJ
DO 60 J=L1,NRHS
TAB(1,4)=0.0
DO 90 N=14NT
ICN= 2%=NR*(N-1}
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DO 90 K=1,NR

ICN=ICN+ 1
PE=S50{(K)
DO 65 T=1,4N
65 PE=PE*E{K,T)
C
C START DEVELOPMENT OF CONSTRAINT 3.15 AND 3,16
C
TAB(ICN,NRHS}=-RIF1K.NI-PE+RCAPIK'N3
TAB(Icn+1.NRH5I=RIFL(K,N)+PE-SHIN1K.N)
0O 85 T=1,N
INVR=(NP+NR)*(T-1)
PE=1.0
IF(T.EQ.N) GO TO 73
Kl=T+1
B0 70 L=Kl,N
70 PE=SPE®E{K,L)
73 TAB(ICN,NRHSI=TAB(ICN.NRHS)+PE*D(K.T)
TABIICN+1,NRHS}=TAB(ECN+1,NRH$)~PE*D(K,T1
C
c END DEVELOPMENT QOF CONSTRAINT 3.15 AND 3.16
C RELEASE VARIABLE RES. K
C
ISUB= INVR+K
TABE ICN, ISUB) = =PE
TAB{ ICN+1,ISUB )= PE
IFINPVI(K}.EQ.O0) GO TG 77
IXV=INVR+NR+NPVSX (K]}
Ki=NPV{(K)
DO 75 J=1,K]
IXV=IXV+ 1
C
C PUMPING FROM RES. K VAR,
C
TAB(O ICN+1,IXV)=PE
75 TAB{ ICN, IXV)==pg
17 Kl= NRF{K)
IFIK1.EQ. O} GO TO 80
DO 79 L=1,K1
J= NSRF{K,L)
C
C VAR. INTO RES. K THAT ARE RELEASES FROM OTHER RES.
¢
TAB{ICN, INVR+J} = PE
79 TAB({ ICN+1, INVR+J) = -PF
C
C VAR. FOR PUMPING INTO RES. K FROM OTHER RES.
C

80 K1= NPTR (K)
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82
85

30

110
115

135

137

IF{ K1.£Q.0) GO TO 85
NO 82 L=]sK1

J= NVPTR({K,L)

TABL ICNy INVR4+J) = PE
TAB( ICN+ 1, INVR+J)} = -PE
CONT INUE

RELEASE VAR, CAP, BY TIME PERQID

XUBL INVR+K)
XLB{ INVR+K)

RFUL{K N}
RFLL{KsN)

COST FUNCTION FOR RELEASE VARIABLE

CUINVR+K) = PRRES(K,N)
ICN=ICN+1

K1=NPVIK)

IF(K1.EQ.0) GO TO 90
IXV=INVR+NR+NPVSX (K}
DO 89 L=1,K1
[XV=IXve 1l

PUMP ING VAR, CAP., BY TIME PERDID
XUBLIXV]) = MSIO(K,LyN)
COST FUNCTIOUN FOR PUMPING VARIABLE

COIXV) = PROPUM(KyL,yN)

CONT INUE

CONTINUE

DO 110 I=14NC

WRITE(6,115) 14( TAB(IyJ}sJ=1yNRHS)
FORMATI(® TAB 'I3,11F6.2,9(/ 8X,11F6.2))
TXV= NV

Nv= 2%NC+ NV

DO 135 I=1,NC

PA({I) = C.0

PLI) = TAB(I¢NRHS)

DO 137 I=NRHS, NV

BO 137 J=1,NC

TABlds1) = 0.0

DO 140 I=14NC,2

IXv= IXV+ 1}

TAB{I,IXV) = 1.0

STARTING BASIS VARIABLE IN LP SuUB.
{A,I1)X = P FDRM
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NXB{ I )= IXv
CB{I} = C(IXV)
IXV= IXV+1

THIS IS THE ARTIFICIAL VARIABLE

TAB{I,IXV) = ~1,0
CUIXV)=ART
IXV= IXv+]l
TAB{I+1,IXV) = 1,0

STARTING BASIS VARIABLE IN LP SUB.

NXB{I+l)= IXv
CBUI+1)1=C(IxXV)
IXV=IXV+1

THIS IS THE ARTIFICIAL VARIABLE

TAB(I+1,IXV) = ~1.0
140 C{IXV)=ART

CALL LPSIH(NV:NC:0,01TAB,P,PA,C,XUB,XLB,XZERO,XP)

QUTPUT L INEAR PROGRAM SOLUTIGN

WRITE(6,300) XZEROy( XP{I),1=1,NV)

300 FORMATI('0 SOLUTION XO0,X{I) ' 1F10.4,

1 100 722X 5F10.4 })
IX= 0
WRITE(6,4)
BO 330 T=1,NT
WRITE(6,320) T
320 FORMAT('-' 14X'TIME PERIGD *I3)
DO 330 K=1,4NR
IX= IX+l
WRITEL{6,325) K, XP(IX}
325 FORMAT{20X*RELEASE FROM RESERVOIR' 14,
1 * INTO CHANNEL BED IS' F9,1)
NP= NPV(K)
IF{ NP.EQ.O} GO TO 330
DO 329 J=1,NP
[X= IXx+1
WRITE(G,327) Ky I0(KeJ)}yXPLIX)
327 FORMAT{Z0X'PUMPING FROM RESERVOIR'I4,
1 ' TO RESERVOIR'I4,' IS' F9.1)
329 CONTINUE
330 CONTINUE
WRITE(G6,4)
DO 350 T=1,NT



DO 350 K=14NR

IX=1X+2

IF{ XP{IX) EQ. 0.0) GO TO 340
WRITE(64+335) T,K,XP(IX)

335 FORMAT(15X'TIME' 14,' RESERVOIR'I4,’

1 *CONSTRAINT VIOLATED BY'F10.1)
340 IX= IX+2
IF{ XP{IX) .EQ. 0.0) GC TO 350
WRITE(64345) T4Ks XP(IX)
345 FORMAT({L1S5X*'TIME® [4,' RESERVOIR'I4,!
1 'CONSTRAINT VIOLATED BY'Fl0.1)
350 CONTINUE
GO YO 5
500 STOP
END

CAPACITY

MIN

POOL

+
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10
L5
20

SUBROUTINE NEWBI (NC, BI, ALPHA, IL )
DOUBLE PRECISION BI,ALPHA, BETA, P,DABS
DIMENSION BI(25,2%), ALPHA{25) , BETA{25)
P = 1.0/ ALPHA(IL)

DO 5 F=1,NC

BETAC(I) = BI{IL,I)

DO 20 I=1,NC

IF(I .EQ. IL ) GO 7O 10

DO 9 J=1,NC

BI(IJ) = BIlI,J} — P*ALPHA(I)}*BETA(J)
IF(DABS(BI(I,J)).LE.1.0D-09)BI([,J}=0.0000
GO TO 20

DO 15 J=1,NC

BIt{L+J) = BI{I,4)%pP

CONT INUE

RETURN

END
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15

25
30

935

936
937
938

941
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SUBROUTINE
LPSIM(NV,NC|K!LrA1P'pArCQxUB'XLBQXZERO,XP)
PROGRAM TU DO REVISED SIMPLEX AND PARAMETRIC
RHS RANGING, NO ATTEMPT FOR PRCGRAMMING
EFFICIENCY HAS BEEN MADE,s THE PRCBLEM FORM IS
8-20-71 GUY CURRY

H

CX
(A, I)X

MA X
S5.T.

P GE Oy X GE ©

THE VARIABLES USED IN THIS CODE
FOLLOW THE STYLE OF TAHA (89).

NV - NUMBER OF VARTABLES,
NC - NUMBER OF CONSTRAINTS

INCLUDES ALL SLACKS, ETC.

PROGRAM EXTENDED TU DO BOUNDED VARIABLES 12-8-71
LOWER BOUNDS ARE SUBSTITUTED QUT IN THIS MODEL

IXP{I)=0 MEANS ORIGINAL VARIABLES IN PROBLEM
IXP{I}t=L MEANS COMPLEMENT Of VARIABLE IN PROBLEM

DATA TOL/0.0001/

COMMON NXB,CB

OOUBLE PRECISION BI,ALPHA vICB, IMC
DIMENSION Al25499) ,B1(25,25),X%XP(99),
1 PCTH(25,25), P(25), PA(25), C{99)},
2 NXB(25), ZCB(25), ALPHA(25), ZMC(99),
3QUBJV(25,'XLB(99,rXUB(QQJvIXP(ggl

00 15 I=14NV

IXP(I1) 0

DO 30 I=1,NC

DO 25 J=1,NC

Cat2s5), x8(25),
STH{25)

BI{I.+Jd) = 0.0

BI(I,[} = 1.0

WRITE(6,935)

FORMAT{"® VAR LOWER BOUND UPPER BOUND' )

D0 937 I=1,NV
IF{ XUB{I).GT.
WRITE(6,938) [, XLBUI),xUBII)
IF( XLB(T) .LE. 0.0) GO TQ 937
Xys{(1) XUB(I) —=XLB(I)

RO 936 J=1,NC

PLI) PUJ) — Al4,11%XLB(])
CONTINUE
FORMAT(I5, F13.3,
00 953 I=1,NC

1.6E29 LANDe XLB{I}.LE.0.0) GU 10 937

Flé.3 )

[Ft P(I}) .GE. 0.0) GO TU 953
WRITE(64941) I, P(I)
FORMAT(* INFEASIBLE INITIAL RHS FOR CONSTRAINT!
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945

953
39

40

50

60

T0

1 15,F10.4)

CONVERT TO POSITIVE RHS CONSTRAINTS

PLI) = -P(])

DO 945 Jd=1,NV
A(IpJ, = ‘-AII'J)
J= NXB(1]) +1
NXB(I) = J

CB(IY = CLI)
X8{E) = P(I)
IMIN = 0.0

D0 40 I=1,NC

Z2CB(I) = 0.0

0O 40 J=1,NC

ZCBUI) = ZCBLI) + CBLJ) *BItJ,I)
DO 60 I=1,NV

IMC(E) = -~C(I)

DO 50 J=1,NC

IMCUL) = ZMCLI) + 2CBLJ) * AtJ, 1)
IF{ ZMC(I} .GT. ZMIN ) GO TO 60
IMIN = ZMC(I)

IMIN = I

CONTINUE

{F CJ-CJ GE O FOR ALL J, OPT. SOL. GO TO 200

IF (ZMIN .GE. -0.00100) GO TO 200

DO 70 I=14NC

ALPHA(I)= 0.0

DO 70 J=1,NC

ALPHA(I) = ALPHA(I) + BI(1,3) * A(J,IMIN)

COMPUTE LEAVING VARIABLE BY MIN (XB(I)/ ALPHA{I),
FOR ALPHA(IL) LT O }

ICODE=0

VALUE=XUB(IMIN)

ILEAVE= O

DO 90 I=1,NC

IF (ALPHA({I).LE. ~TOL } GO T¥O 80
IF [ALPHA(TI).LE. TOL ) GO TG 90

POSITIVE ALPHA

RATIO =XB{I)/ALPHAI(L)

IF (RATIO .GE. VALUE ) GO TC 90
HL.EAVE=]

VALUE =RATIO
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100

110
115

125

127
130

132

i50

ICODE =1
GC TO 30

NEGATIVE ALPHA

J=NXB(1)

RATIO= (—-xUB(J)} + XB(L})} / ALPHA{I)

IF (RATIO .GE. VALUE } GO TQ
ILEAVE =1

VALUE =RATIQ

ICADE =-1

CONT INUE

IF( VALUE .LT. 1.0E28) GO 1O
IF{ILEAVE) 110,110,91
IFCICODE .lLE. Q@ ) GO TG 125
J=NXB(ILEAVE)

CBUILEAVE) = CUIMIN)
NXB{ILEAVE}= IMIN

CALL NEWBEL NC, BL s ALPHA,
DO 100 I=14NC

xXB(I) = 0.0

DO 100 J=14¢NC

90

91

[LEAVE )

XB{1) = xB{I) + BI(I,J) % P{J)

GO 70 39

WRITE(6,115)

FORMAT (f* - UNBOUNDED SOLUTICN
RETURN

IFL ICODELNEL.O) GO TO 150

r )

NONBASIC VARIABLE CAN NOT ENTER BECAUSE IT HAS

ENCOUNTERED ITS UPPER BOUNG,
COMPLEMENT AND CONTINUE

J=IMIN

IFC IXP{JY EQ. 0) GO TO 127
IXPtJ) = 0

GO TO 130

IXP{J) = 1

DO 132 I=14NC

AlLqsJ) = —A(I4d}

P(D) PLI) + A(l.Jd)=XUB(J)
c(J} -C(J}

GO TO 97

ALPHA IS NEGATIVE

J=NXB{ILEAVE)
CB(ILEAVE) = C{IMIN)
NXB{ILEAVE)I=IMIN

REPLALCE

IT BY ITS
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200

205

206

209
210

211
212

215

CALL NEWBI (NC+BI,ALPHA,ILEAVE)
IXPLJ) =1

DO 160 [=14NC

Alled} ==A{1,J)

P{TI)=P{I) +A{],J}%®xUB(J)}

Cid)y = =C{J)

GO TQ 97

OPTIMAL SOLUTION HAS BEEN OBTAINED

XZERD = Q.0

WRITELG6,205)

FORMAT(* 1 QPTIMAL SOLUTIONY/)
DG 206 I=1,NV

XP{1) = XLB(I)

IF{ IXPUI) .EQ.O0) GO TO 206
C{I}) = =-C{D)

XP(E) =XP(I) +XUBI(I)
CONTINUE

DO 210 [=1,NC

J= NXB(I)

IFL {XP{J) .EQ.O) GO TO 209
XP{J)=XP{J)—-XB(I)

GO TO 210

XPLJ)=XP{J)+XBII)

CONT INUE

DO 212 I=1,NV

IF( XP(I }.EQ.0.0) GO TQ 212
XLERO=XZIERO+C(I}* XP(T)
WRITE(6+211L 01+ XP(I)LC(I)
FORMAT(® X(*I3%)=' F10.3,5XE20.7)
CONTINUE

WRITE(6,215} XZ2ERC

FUORMAT( * OBJECTIVE FUNCTION VALUE IS

RETURN
END

E20.7,/7'1")
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Chapter IV Program Documentation

Program Structure

The structure of the Benders computer program consists of a
SUPERVISOR program, a MASTER program, an integer program, INTSUB,
and a Tinear program, LPSIM. The SUPERVISOR program reads in the
possible segment capacity expansions for each time period and the
associated segment costs. The SUPERVISOR program controls the six
iteration steps discussed in Chapter IV under the section Benders'
Decomposition.

The MASTER program has the same input and function as discussed
in Appendix A. The input to MASTER follows the capacity expansion
input. The Tinear program LPSIM also was discussed in Appendix A.
The integer subroutine, INTSUB is not an actual integer program, but
was designed to simulate one. For this example problem INTSUB
contains the answers that an integer program would return for each

iteration.

SUPERVISOR Input Format

The notation which is used in FORTRAN to designate whether a
variable is an integer or a floating point variable is I or F R
respectively. For I type variables, the data must be read in
right adjusted in the field. For F type variables, the decimal
point may be included and the data inserted anywhere within the

specified field.




EXAMPLE INPUT FOR MASTER

COLUMNS
1 5 1 1 2 2 3 3 4 4 5
0 5 0 5 Q 5 0 5 0
2 3
RESERVOIR ONE
6. 8.
1 0
1 0
lt. 30.
6. 25.
O.
3. 3.
T 8.
1. 3.
i.0 1.0
l. «35
8.
RESERVOIR TWO
S5e T
1 1
10. 10.
—.75 "'080
2 1 3
10. 15.
9. 14.0
0.0 1.0
4o 2
15. 12.
2e 3.
—2e -2.1
le 097
20.
RESERVOIR THREE
10.0 7.0
1 1
5 Se
-65 « 70
1 0
12.0 20.0
8.0 17.0
1.0 0.0
3.0 4.0
20.0 20.0
1.0 1.0
O.
1.0 .98
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Program Qutput

The program output result is explained in Chapter IV and the

iteration results given in Table 4.3 (p. 88). A complete computer

run for the data listed is included with the explanatory titles.



RESERVOIR SEGMENT CAPACITIES

1 5.000 5.000 15.000
2 1C. 000 10.000 10.000
3 10.000 6,000 5.000
; COST Cap, 1 1 52.000 52,000
% COST CaApP. 1 2 1C2.000 102.000
{ COST Car, H 3 1C2.000 62.000
; COST CAP. 2 1 56.000 56.000
; COST CAP. 2 2 111.000 111.000
COST CaAP. 2 3 111.000 57,000
Y{ 2, 15 3l= 1.0
Y { 1, l, 1)= 1.0
YA l! 1! 2) = 1.0
i Y 1, 2, 2)= 1.0
: Y{ 1, 2y 3)= 1.0
: Y{ 1, 3, 1)= 1.0
NUMBER OF TIME PERICDS= 2
NUMBER OFf RESERVOIRS = 3
RESERVOIR 1 RESERVOIR (ONE
TIME PERIOD 1 2
DEMANDS 6.000 8.000
PUMP TQ 0,CAP. 0.000 0.000
PUMPING PROFIT 0.000 0.000
RELEASE FR(OM 0
INFLOWS 11.000 3C.000
L INFLOWS 6.000 25.000
CAP.—-FREEBD. 0.000 0.000
SMIN 3.N60 3.000
FLOW LIMIT U 7.000 8.000
FLOW LIMIT L 1.000 3.000
RELEASE PROFIT 1.000 1.000
EVAPORATION 1.000 C.350
STARTING RESERVOUIR QUANTITY 8.000

252.000
52.000
52.000
56 .000
56.000
56.000
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RESERVDIR 2

TIME PERIQD
DEMANDS

PUMP TQ 1,.,CAP.
PUMPING PROFIT
RELEASE FR(M
INFLOWS

L INFLOWS
CAP.—-FREEBRD,
SMIN

FLOwW LIMIT U
FLOW LIMIT L
RELEASE PROFIT
EVAPORATION

1

5.000
10.000
~0.750
1
10.000
9.000
0.000
4,000
15.000
2.000
=2.000
1.000

RE SERVIIR

2

71.0200
10.000
-0.800
3
15.00C
14,000
1.000
2.000
12.000
3.000
C.970

STARTING RESERVOIR QUANTITY

RESERVODIR 3

TIME PERIDD
DEMANDS

PUMP TO 1,CAP,
PUMP ING PROFIT
RELEASE FRUOM
INFLOWS

L INFLOWS
CAP.~-fREEBD.
SMIN

FtLOow LIMIT U
FLOW LIMET L
RELEASE PROFIET
EVAPORATION

1

10.000
5.000
0.650
G
12.000
8.000
l1.000
3.000
2C.00C
1.400
0.000
1.000

RESERVOIR

2
7.000
5.000
0.700

2C.000
17.000
0.000
4,000
20,000
1.000
0.300
C.980

STARTING RESERVOIR QUANTITY

Thi

20,000

THREE

6.000



T S S U

L.P. PROBLEM SIZE NUMBER OF VARIABLES

NUMBER OF CONSTANTS 12
FaB 1 -1.00 0.00 0. 00 1.20 1.00
0.00 0.00 0.00 0.00 =-13.00
TAB 2 1.00 D.OO O-OO "1.00 "'1000
0.00 0.00 0. 00 Q.00 5.00
TAB 3 1.00 -1.00 1.C0 -1.00 0.00
0. OO 0.00 Oo 00 0.00 _25. 00
TAB 4 -1.00 1.00 -1.00 1.00 0.00
0.00 0.00 0.00 .00 20.00
TAB 5 0.00 N.00 —-1.00 0.00 -1.00
0.00 0.00 0. 00 .00 -7.00
TAB 6 0.00 0.00 1.00 0.00 1.00
0.00 C.00 0. 00 .00 1.00
TAB T -0.95 0.00 0. 00 0.95 C.95
0.00 .00 l. 00 1.00 -23.90
TAB 8 C.95 0.00 0.00 -0.95 -C.95
0.00 0.00 -1.00 -1.00 15%.90
TABE 9 0.97 -0.97 0.97 =0.97 0.00
-1.00 1.00 -1.00 0.00 -21.55
TAB 10 -0.97 0.97 =0.97 0.97 0.0n
l.00 -1.00 l. GO 0.00 19.55
TAg 11 0.00 0.00 -0.98 0.00 -0.98
0,00 -1.00 0.00 -1.00 -9.08
TAB 12 0.00 0.00 0.98 0.00 C.98
0.00 1.00 0. 00 1.00 2.08

NolNe B NI JRT R R VLR R

10

REVISED SIMPLEX
NUMBER OF .CONSTRAINTS IS 12

VAR

1.000 -2.000
1.000 -2.100

LOWER BOUND
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

10
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0.00
0.00C

0.00

NUMBER OF VARIABLES IS 34

0.000
0.000

UPPER BOUND

6.000
13,000
19.000
10.000

5.000

5.000

9.000
19.000
10.000

5.000

INFEASIBLE INITIAL RHS FOR CONSTRAINT
INFEASIBLE INITIAL RHS FCR CONSTRAINT
INFEASIBLE INITIAL RHS FOR CONSTRAINT

1
3
g9

-5,0000
-2.5500
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UPTEMAL SOLUTION

X{
XA
X{
X1
x{
X{
XA
Xt
X
X (
X{
X (
Xt
X
X{
X {

OBJECTIVE FUNCTION

1)= 7.200
2)= 9.000
3)= 1.000
4)= 4.000
61= 8.000
T)= 3.000
8)= 1.000
9} = 2.700
10)= 0.100
13)= 2.N00
17T)= 15.000
19}= 4.000
23)= 9.150
251)= 7.850
29)= 18.000
31)= 3,000

C. 1000000E
-0.2000000E
0.000000CE
-0.7500000E
C. 1000000
-0.2100000¢
0, 0000000k
-0.8000000E
0.7000000E
¢. 0000000E
0.000000CF
0.000000CE
G.0000000CE
0.00Q000CCE
C. CO0000QE
0.00000C00E

—0.1438997E 02

01
0l
G0
00
01
01
00
00
0o
go
QQ
0o
00
00
00
00
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00°0 00°
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1
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1
Z

00*0
00°0
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00°"0
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XV
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XV
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XV
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LENR



OPTIMAL SGLUTIGN 67.370

INFEASIBLE INITIAL RHS FOR CONSTRAINT I -12.0000

INFEASIBLE INITIAL RHS FCR CONSTRAINT 3 -25.0000

INFEASIBLE INITIAL RHS FCR CONSTRAINT 5 -6.0000

INFEASIBLE INITIAL RHS #0R CONSTRAINT 7 -19.9500

INFEASIBLE INITIAL RHS FOR CONSTRAINT 9 =22.5500
1

INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 -7.1000

OPTIMAL SOLUTION

X{ 1= 6.835 0. 1000000E 01
X{ 2)= 15.000 -0.2000000€E 01}
Xt 3)= 1.000 0.0000000E a0
Xt 4)= 10.000 =C.750000CE 00
X{ 6)= 8.000 0.1000000€ 01
X{ 7)= 12.000 -0.210000CE 01}
X{ 8)= 1.100 C. 00C0Q00E 00
X{ 12)= 16.165 -0.100000CE 10
X{ 13)= B.165 0.0000000€E 00
X{ 16)= 7.835 ~0.100000CE 10
X{ 17)= 2.835 0.0000000€ 00
X{ 20}= 6.000 —0.1000000CE 190
X{ 24)= 18.907 -C.1000000¢ 10
X{ 25)= 10.907 0.0000000€ 00
X{ 28}= 2.000 —0.1000000E 10
X( 32)= 7.000 -C.100000CE 10

OBJECTIVE FUNCTION VALUE IS -0.5790654F 11
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UR

INFEASIBLE INITIAL
INFEASIBLE INITIAL
INFEASIBLE INITIAL
INFEASIBLE INITLAL
INFEASIBLE INITTAL

OPTIMAL SOLUTION

X
X
L8 |
X (
X ¢
X
X{
XA
X{
X4
XA
X{
x{
Xt
X
x{
X{

OBJECTIVE FUNCTION VALUE

1=
2)=
3)=
4)=
6=
1)=
8)=
)=
10})=
12)=
13})=
16} =
17)=
20)=
25) =
28)=
32)=

11

7.000
15.000
1.000
10.000
5.000
10.910
1.000
1.150
0.100
11.000
8.000
8.000
3.000
6.000
12.000
2.000
7.000

1.000
-0.000

RHS
RHS
RHS
RHS
RHS

FOR
FUOR
FOR
FCOR
FCR

0. 000

0.000 -0.000

)

CONSTRAINT
CONSTRAINT
CONSTRAINT
CCONSTRAINT
CONSTRAINT

0.1000000E
-0.,2G600000E

1
3
5
9
i

1

01
01

C. 0000000E 0O

-0, 750000CE

00

0.1000000E 01
-0, 21000CCE D1

0. 000000QE

00

-0.800000CE 0O
0. 7C00000E OO0
-0.10C000CE 10

€.00CQQ000E
-0, 100000CE
0.0C0000CE
-0.100000CE
C. 0000000E
-0.100000CE
-0,1000000E

00
10
00
10
00
10
10

-=7.0000
-25.0000
-6.0000
-22.5500
—-7.1000

-0.3399999E 11

0.000
0.000

0.000
0.000

0.000

b e e A i
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Y( 1, 1y 1) 1.0
Yi 1, 1y, 2)= 1.0
Y{ 2' 1, 3}= 1.0
Y{ Ly 2, 3) 1.0
UPTIMAL SOLUTION 246.630
INFEASIBLE INITIAL RHS FCR CONSTRAINT 1 -2.0000
INFEASIBLE INITIAL RHS FCOR CONSTRAINTY 3 -15.0000
INFEASTIBLE INITIAL RHS FLCR CCNSTRAINTY 5 -6.0000
INFEASIBLE INITIAL RHS FOR COUNSTRAINT 9 =-12.5500
INFEASIBLE INITIAL RHS FCR CONSTRAINT 11 -7.1000
OPTIMAL SOLUTION
X 1)= 7.000 CG.1000000E 01
XA 2)= 15.000 -0.2000000& 01
Xt 3)= 1.000 0. 000000CE 0©O
X{t 4)= B.000 -N,7500000F 00
X { 6)= g.00n C.100000QE 01
X{ 7})= 3,000 -0.2100000E 01
X{ 8)= 1.000 C. COOC0O00E 00
X{ 9)= 3.000 -C. 8000000 00O
X{ 10)= 5.000 C. 7000000CE 00
X{ 12¥= 4,000 -0.100000CE 10
X{ 13)= 6,000 0.0000000E 00
X{ 17})= 5.000 C.000000CE 00
X( 20)= 6.000 -C.100C0000F 10
Xt 23)= 0.150 0.0000000€ QO
X{ 25)= 16.850 0.0000000E a0
X{ 291}= 8.000 C.0000000E OO
X{ 32)= 2.100 -C.1000000E 10
X{ 34)= 4.900 -0.100000CE 10

OBJECTIVE FUNCTION VALUE IS -0.1699999¢ 11

UR 12 0.000 0.000 -0.000 0.000 1.000
~0.,000 0.000 g.00cC -0.000 0.000
0.000 0.9000
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YO 1y 1, 1)=
Y{ 1y 1, 2)=
Y( 21 1' )=
Y{ 1y 2¢ 3)=
Y( 1, 3, 2)=

— e et e
a = = & @
O OO0

OPTIMAL SOLUTION 308.630

INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 -2.0000
INFEASIBLE ENITIAL RHS FOR CONSTRAINT 3 -15.0000
INFEASIBLE INITIAL RHS FOR CGNSTRAINT 9 =-12.5500
INFEASIBLE INITIAL RHS FCR CUNSTRAINT 11 -1.1000

OPTIMAL SOLUTION

X{ 1l)= 7.000 0.1000000€ 01
X{ 2)= 15.000 -0.2000000E 01
X({ 3)= 1.0090 0.000000CE 00
Xt 4)= 8.000 -0, 7500000 00
X{ &)= 8.000 0.1000000E 01
X( 7= 3.000 =-0.2100000E 0}
x{ 8)= L .000 0.0Q000000E 0O
X{ 9= 3.000 -0.800000CE 00
X{ 10)= 1.100 C.700000CGE 00
X{ 12)= 4.000 -C.100090CE 10
X{ 13)= 6.000 0.000CO00CE 00
X{ 17)= 5.000 C.CI0000GCE 0O
Xt 23})= 4.050 C. 0000000E 00
X{ 25)1= 12.950 0.0000000E 0O
X( 29)= 8.000 C. 0000000E 00
X{ 34)= 1.000 -C. 100000CE 10
JBJECTIVE FUNCTION VALUE 15 -0.4999995c 10
UR 13 1.000 0. 000 -0.000 g.000 0.000
0.000 U« 000 J.3J00 -0.300C 0.000

0.000 -0, 000
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UR

Y{ ly 1y 1)=
Yi 1y 1y 2)=
Yl 2y 1, 3=
Y{ 1y 24 1)=
Y{ 1y 24 3)=
Y( 1, 3, 2)=

— e et et i

COoCOoO0OCOoOO0O

OPTIMAL SOLUTION 390,390

INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 -2.0000
INFEASIBLE INITIAL RHS FOR CONSTRAINT 3 -5.0000
INFEASIBLE INITIAL RHS FCR CONSTRAINT 9 -2.5500
INFEASIBLE INITIAL RHS FCR CONSTRAINT 11 -1.1000

OPTIMAL SOLUTION

Xt 1)= T7.000 C.1000000€ 01

Xt 2= 9.000 -(0.2N000000E 01

Xt 3)= 1.000 0.0000000F 00

X{ &)= 4.000 =0.750000CE 00

Xt 61})= 8.000 C. 1000000E 01

Xt 7)= 3.000 -0.2100000E Q1

X{ 8)= 1.000 0.0000000E 00

X{ 9}= 2.700 -0.800000CE 00

X{ 10)= 1.100 C. TO00000E 00

Xt 13)= 2.000 0.000000CE 00

X{ 1l7)= 15.000 0.00000C0E QO

X{ 23)= 8.150 0. 000C0O00E 00

X{ 25)= 8.850 C.0Q00000CE 00

Xt 29)= 18.000 0.0000G00E 0O

X{ 34)= 1.000 -0.100000CE 10

OBJECTIVE FUNCTION VALUE IS -0.9999969E 09

l4 -0.000 0.000 =-0.000 0.000 0.000
0.000 0.000 0.000 -0.000 0.000

1.000 =0, 000
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00*91 00°0 00°0 00°0 00°0 00°0 00*0 0" 0 00*01 XV

00*0 GG*0 00°0 0070 0070 00°*st 00°0 00°*¢ 0o*0 009 XV
16°81 000 00°0 00°0 0G0 00°0 00°0 000 00°0 Xy
00°0 00*"0 cG*0 00°0 00°s1 00°sT 0O0°g 00°*¢ Q0°*s 00°s Xy
oo°1 coT1 Q0° 1 00*0 co*o 00*0 00°0 00*0 00*0 Xy
00°0 000 000 00*0 00°0 00°0 00°0 Q0*0 00°0 0070 Xy
oo*1 00°0 00*0 001 00°1 0070 00*0 00°0 00°0 XV
00"0 00*0 00°0 00°0 00°0 00°0 00°0 00°*0 00°0 00°0 XV
00°*1 00°0 00°0 00°0 00°0 0G*1 00*1 00°0 0Q* 0 XV
00°0 Q0*0 00°0 00*0 00*0 000 oc*0 00°0 00*0 ao*o Xy
00°1 00°0 g0°0 060 000 00°*0 000 0o0*1 00°1 XV
000 000 000 ¢J3°0 00°0 00°0 00*0 00*0 00°0 00*0 Xy

00°1 00°0 00*0 00°0 00°0 00*0 00°0 00°0 00°0 Xy
001 00°1 060°0 00*0 00°0 60°0 000 00°0 0060 ° 00°0 XV
00°1 00°0 00°0 Go0°0 00°0 00°*0 00*0 00°0 00°90 Xy

00°0 00°0 0o*1 00°1 00°0 00°0 0o*o 00°0 00°0 00*0 xXv
00°*1 00*0 00*0 00°0 20°0 00°0 00*0 06°0 00°0 Xy
00*0 00°*0 00*0 000 001 00°71 60*0 co*o 000 00*0 Xy
00*1 00°0 co*o Q00 00°0 000 00*0 00*0 00°0 XV
00°0 00*0 00°0 00*0 00*0 060°0 0071 060°1 o0 000 xXv
00*1 00°*0 00°0 00°*0 00°0 00°0 0070 00*0 00°*0 Xy
co0*0 00°0 000 00"0 00*0 00°0 00*0 000 00°*1 001 Xv

LEL9—~ 00°9S5 00°2% 00°L9 00°2Z9 00°*111 00°201 00°8% OL°1¢ X3
0C°€0T 9L°18 OQO0°€E01 9L°18 00°96 GZ°€€2 00°96 G2°°Gh 00°95 Gl1°GYy XJ
81 L1 91 ST #1 €l 21 11
o1 & 8 L 9 S Y £ Z 1
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¥{ 11 1, )=
Yi 1, Ly 2)=
Y( 2‘ 1, )=
Y{ 14 2, 1)=
Y{ 1, 2y 3)=
Y{ 1+ 3, 1)=

bt et et
" ® & * 3 3
COoOO0OO0OCD

OPTIMAL SOLUTION  430.390

INFEASIBLE INITIAL RHS FOR CONSTRAINT 1 -2.0000
INFEASIBLE INITIAL RHS FOR CONSTRAINT 3 =5.,0000
INFEASIBLE INITIAL RHS FCR CCNSTRAINT 9 =2.5500

OPTIMAL SOLUTION

X{ 1)= 7.000 0.1000000F 01

Xt 21= 9.000 =-C.2000000€ 01

xX({ 3})= 1.000 0.000000CE 0O

X{ 4)= 4.000 -0.7500000& 00

X{ 6)= 8.000 C.1000000E 01

Xt 7)= 3.000 -, 210000CE Q1

X( 8)= 1.000 0. 0000000E 00

X{ 9)= 2.700 -0.800000CF 00

Xt 10)= 0.100 0.70000G0E 00

X 13)= 2.000 C.00000CCE 0O

X{ 17)= 15.000 . 0000000E 00

X{ 19)= 4.000 0.0000000€ 00

X{ 23)= 9.150 0.0000000E 00

X{ 25)= 7.850 0.00000CCE 0O

X{ 29)= 18.000 0.0000000€ 0O

X{ 31)= 3.000 0.C0C0000CE 00
UBJECTIVE FUNCTION VALUE IS ~0,1438997E 02
ITER = 7 COST OF POLICY = 430.39 MAXIMUM ERRCR = 0.00

OPTIMAL SOLUTION
Y{ i, 1y 1)= 1.0
¥Y{ 1y 1y 2)= 1.0

Yi 1, 2, )= 1.0
Y ( 1' 2y 3= 1.0
Y{ 1y 3, l)= 1.0
Y{ 29 1[ 3= 1.0

COosT 430.4




Program Fiowchart

/ SUPERVISOR \

Control Program for
Benders' decomposition

READ
Capacity Segments
and cost data

\
/ MASTER
\

Input 0perat1ng/>
data

STEP 1

Initialize Integer
problem (MP2)

STEP 2

INTSUB

Solve integer
problem {MP2)

solution to
MP2
infeasible

Solution is unbounded

y = element of 3

STEP 3
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Optimal
solution

(Zo.xp)
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STEP 3

/  LpSIM

Solve dual
linear program

Dual
Unbounded

STEP 6

Finite optimal ------=---=~---

STEP 4

Objective 0 0
function = (Z°,y7)
0. f(yo) solves MP2
set flag ‘
(50 ._v_o)
soives Pl




( STEP 5 )
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Add constraint (C)
to integer problem
MP2

STEP 2

If optimality test in
Step 3 is not passed and
the dual has a finite
optimal solution which is
the extreme point uv ,
then

and the current solution
to MP2 does not satisfy
the constraint

(¢) 2b-F(y) Tul+f(y)

Dual was unbounded and

the linear program simplex
located an Sxtreme ray Vv

and point u0 such that the
dual objective—e + =,

Q-E(y_o) Ty.o

is satisfied add
this constraint
to MP2

cO=¢(y0)+b-F(x%) TwO

Y MP2

Add constraint (C)
to integer problem

STEP 2
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Program Deck Setup and Listing

Benders' decomposition algorithm as applied to the time
phasing of reservoir system operation with capacity expansion is
Tisted below. Programs MASTER, LPSIM, and NEWBI are listed in

Appendix A. A complete input system for running the program in

/ L3
INPUT N

WATFIV is depicted as:

J/$DATA
INTSUB )
NEWBI )
LPSIM )
MASTER 3\
SUPERVISOR )
WATFIV )

JOB CARD




OO

10
15

OO0 0

20

22

OO0

25
30

OO0
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SUPERVISOR

INTEGER T

DIMENSION TAB{25,99) 4 XP(99),C(99) ,XLB(99)
L XUB{99) JNXB(25),CB{25) ¢4NSRKI(25},NRESFC {25}
248PRIE25) 4CY{10410,10),UPL25,25),PT{50)
34NRCS{10),JT(L0) 4 JK{L10) ,YIN(10),JU(€10),RCS5(10,101)
4 4HXO{25) 4HBB{25) ,Y(10,10,10)

COMMON /CLINK/10{25,25) + NPTR(25), NVPTR(25,25)4NP
1 4, NRPTR{25,25) 4 NRF(25), NSRF(25,+25)

COMMON /CLPSIM/ NV,NC,TAB,C,XUBsXLB,XP,NXB,CB
COMMON /CMAINL/ NARTV,; UR(25,25), NURy NURC ,PAL(99}
1, ASUMP(25) , ISUMC

CUMMON /CINTP/ NURH(25), NURHC(25,25),CX{10C)
LsAX(25,100),RSUM(25)

RCS - RESERVOIR CAPACITY SEGMENT

INITY —= O NO INITIAL Y READ

NOT 0 INITIAL Y READ

PA HAS TRUE LOWER BCUNDS STORED IN IT

DATA TOL/ 1.0/

FORMAT{1615])

FORMAT(8F10.3)

NUMBER OF RESERVOIRS AND TIME PERIODS
CARD 1

READ(54104END=500) NR,NT,INITY,MITER,

1 (NRCS{I),I=14NR)

WRITE{(6,22)

FORMAT(' 1'14X"RESERVOIR SEGMENT CAPACITIES '}
DO 25 K=1,4NR

N=NRCS(K)

CARD 2
READ{S5415) (RCS{Ked)sJ=1,4N)}
WRITE(6,30) Ky{RCS{KsJ) 2J=1,N)}
FORMAT(10X15,410F10.3,10{/15X,10F10.31})
DG 35 T=]NT
DO 35 K=1+NR
N=NRCS{K)
COSY FOR CAPACITY

CARD 3

READ(5415) (CY(T4Ke1),I=1yN)
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WRITE(G,32) T,K,(CY{T,KyI[}tyI=1,N)

32 FORMATI{SX'COST CAP.'2I5410F10.3,10{/24X10F1C.3))
DC 35 d=14N

35 Y{T,K,4)=0.0
IF{INITY,.EQ.O0)} GO TO 60

Y VALUES REPRESENT WHICH RESERVOIR IS TO BE
ADDED IN TIME PERIOD SPECIFIED
READ INITIAL Y VALUES

CARD 4

OO0 O0O0O0

40 READ(S5y45) (JT(I)JK{L}yJJ(T )} YINCI),I=1,10)
45 FORMAT(10(312,F2.01)

IF(JTLLHLEQ.O) GO T 60

DO 50 [=1,10

T=JT(1)

[IF{T.EQ.D) GG TA 40

K=JKi 1)

J=JJ (D)

WRITE(6455) TeKedsYIN(I)
55 FORMAT(25X, Y[ Y127, 12" ,'12%)= ",F3.1,15,F10.3)
50 YTy Ked)=YINLI)

GO TOQ 40

C

C STEP 1

C

60 CALL MASTER(BPR,NC)

C SETUP INTEGER PROGRAM
£0= -1.0E30
NADDC= 0

DO 61 K=1sNR
61 NURHI(K) =0
NUR=0
fCoL= 0
DO 62 K=1.NR
ICOL= ICOL+ NRCS(K)*NT
62 NUR= NUR+ NRCSI(K)
D0 63 I=1,NUR
DO 63 J=1,1C0L
63 AX(I,d) = 0.0
NUR=0
ICOL=0
DO 64 K=1,NR
N= NRCSI(K)
DO 64 [=1,N
NUR= NUR+1
DO 65 T=1,NT
ICOL= ICGL+y 1




OO0

OOO0

s Nale

OO

OO0

65
64

66

68

70

75

19
80

81
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AX{NUR, ICOL) = 1.0
RSUMINUR) = 1.0
NURF= NUR

END STEP 1

GO TO LINEAR PROGRAM SETUP AND CALL

1Ft INITY.NE.O) GO TQ 126
IF{ NADDC+NUR .EQ. 0) GO TO 250

STEP 4
NO CONSTR., THEN ANY FEASIBLE Y wWILL DO

ITER = NADDC + NUR = NURF

[F{ ITER .LE. MITER)} GO TO 10
WRITE(6,68) MITER

FORMAT(' MAXIMUM NUMBER OF ITERATIONS ' I5)
SYOP

SETUP FOR INTEGER SUB.

10= ~HXO(NADDC)

1COoL=0

DO 80 K=14NR

N= NRCS{K)

DO 80 J=1N

DO 79 T=1sNT

1COL=1COL*]

SUM':OOO

DO 75 L1=TyNT

[SUB= l+2%(K-11+ 2«NR*(L1-1)

SUM = SUM - ABSI UP(1SUB,NADDC} 1}
10= 10 + SUMRRCS( K J) 3Y({ T Ky J)
CX{ICOL) = SUMXRCS{K,J) + CY (T Ky Jd)
CONT INUE

CONTINUE

END STEP 4

IF{ NURC .EQ.0) GO TO 91

NSRKI{K) - NUMBER OF INTEGER VARIABLE STARTING RES.
VARIABLE IN INTEGER PROBLEM

IVAR=1

RSUM (NUR } =ASUMP (NUR)
DO B1 K=1,NR
NSRKI(K)=IVAR
TVAR=NTENRCS(K)+IVAR

K



208

STEP 5

LOCATE MOST VIOLATED CONSTRAINT BY
RESERVOIR AND TIME PERIOD

sEeEsleRale!

ICON=0

DO 84 T=1,NT

DO A4 K=1,NMR

ICGN=ICON+1

[FOICONLNE.ISUMC}Y GO T3 83
B2 TCONT=T

ICONR=K

GO TO 7&4
83 ICON=ICUN+I

IF(ICUN.EQ.ISUMC) GO TG 82
B84 CONTINUE

NRESFCIK)I-RES. K CONSTRANT FEASIBLE -0
CRITICAL TIME PERIUD

NRESFCIKI-RES. K CONSTRAINT NUOT FEASIBLE -1
CRITICAL TIME PERIUD

o000

784 IVAR=NARTV+4%NR*(ICONT-1)+1
DO 87 K=1,NR
NRESFC(K)=0
IF{XPLIVAR).NE.O.O) GO TO 85
IF{ XP(IVAR-1) .NE. 0.0} GO TO 86
85 NRESFCI(KI)=]
86 IVAR=IVAR+2
[FI{XP{IVAR).EQ.Q0.0} GO TO 87
NRESFC(KY = 1
37 IVAR=IVAR+Z

[COL IS THE TOTAL NUMBER OF [NTEGER VAR,

laNaNe]

DO &8 I=1,IC0L
a8 AXINUR,11}=0Q.0

C GENERATE MUST VIULATED CONSTRAINT A COEFICLENT

N=NRCS{]CONR)
IVAR=NSRKI { I CONR)
DO 90 I=1,N
DO 89 T=1,ICONT
RSUM{NUR I =RCSCICONR [ )2Y (T ,1CONR, [ 1+RSUMINUR)
AX{NUR,IVAR)Y= RCS(ICCNR,I}
89 IVAR = [VAR+1
90 [VAR=IVAR+NT—ICONT



OO0

895

896

OO0

900

910

OO0

9990

J=NPTRIICONR)
IF(J.EQ.0) GO TO 991
DO 990 Ki=l4J

K= NRPTR {ICONR,XL1)

K-RESERVOIR THAT PUMPS TO I CONSTRAINT

NOF=(NP+NR)®(ICONT—-L)+NVPTR{ICONR+K1]}
IF{ XPINOF) .LE. 0.0) GO TO 990
SUMC=0.0

N=NRCSI{K}

DO 895 I=1,N

DO 895 T=1,I1CONT

SUMC=SUMCH+ Y(T 4K, 1)

ALLOC= 0.0

[F( SUMC.EQ.0.0) GO TO 896
ALLOC=({XUB(NOF }—X®P {NOF} ) /SUMC
RSUM(NUR)I=RSUM{NUR)=XP(NDF) + XUB{NOF)
ICOL T=NSRKI (K}

COSTM=1.0E30

STORE AVERAGE CAPACITY UTILIZED INTO
ALLOCATED COEFFICIENT

DO 910 L[=1.N

00 900 T=1,1CONTY
AX{NUR,ICOLT)=ALLOC #*Y(T,K,I1}
IF( T.NE. ICONT) GO TO 900
IF(Y(T,K,1) .NF.0.0} GO TO 900
IF{CX({ICOLT).GE.COSTM) GO TO 900
IMINC=ICOLT

IMINS=1]

COSTM=CX({ICOLT)

ICOLT=ICOLT+1

ICOLT= ICOLT+ NT-ICOCNT
CONTINUE

[F{NRESFC(K).EQ.0} GC TU 990

RES. CAP. VIOLATED CHOOSE NEXT CHEAPEST

RES. SEQ TO ALLOC REMAINING PUMPING CAPACITY

ALLOC=XP {NGF)}
IF{COSTM.GT,.1.,0E28) GO TO 990

IF{ALLOC . GT.RCS{K,IMINS)} ALLOC=RCS{K,IMINS)

AXINUR, IMINC)=ALLOC
CONTINUE

NSRF (K,J) — RES.NO. OF RES. REL. INTO K

NRF{K) - ND. REL TO RES. K

209
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OO0

991

995

1000

1005
1010

1220
91

CHECK RELEASE VARIABLE

J=NRF{ICGNR)
[F(J.EQ.0Q0) GO TO Gt
DO 1020 Kil=1.,J
K=NSRF{ICONRs+Kl)

K IS RES. THAT REL. TC RES. ICONK

NUF=({NP+NR}* {(ICUNT-1)+K
IFI(XP(NOF}.LE.XLB{NOF)} GO TO 1020

RELEASE EXTRA QUANTITY INTC RES. ICONR

N=NRCS(K)

SUMC=0.0

DO 995 I=1,N

DO 995 T=1,1CONT
SUMC=SUMC+Y(T,K,I)

ALLUC=0.0

IF{(SUMC.EQ.D.0} GO ¥C 1000
ALLOC={XUBI(NOF}-XP{NOF))/SUMC
RSUMINUR }=RSUM(NUR]I+XUB{NOF)=-XP(NUF)
[COLT=NSRKI(X)

COST¥M=1.0kE30

STURE AVG. RELEASE INTO ALLOC COEF.

DO 1012 I=1sN

00 1005 T=1,ICONT
AXINURZICOLTI=ALLOC#:Y{T,K,I}

IF( Y{TsKsI) NE. 0.0} GO TO 1005
IF{ CX(ICOLT).GE. COSTM) GO TGO 1005
IMINC= ICOLT

IMINS = 1

COSTM= CX{ICOLT)

ICOLT= JCOLT+ 1

ICOLT= ICOLT+ NT-ICONT

IF{ NRESFCIK) LEQ.0) GO TO 1020

PUT POSSABLE ALLGC. INTC CHEAPEST NONALLOC. RES.
ALLUC = XP(NOF}~- XLB(NOF)

IF{ COSTM.GT. 1.0E28) GO TO 1020
IF{ ALLUC.GT. RCS{K,IMINS}) ALLOC= RCS{K,IMINS)

AXINUR, IMINC) = ALLOC
CONT INUE
WRITE(6,96) ( [,I=1,ICOL)

[F{NURC.EQ.0) GO TO 92



92
33
94

95
96
97

OGCOOOOO0

120

OO0

126
130

140
145

OGO O

170

OO0 OO0

20=10HD

GO 7O 93

I0HD=10

WRITE(6,94) ( CX(I),I=1,1COL},20
FORMAT{* CX '10F7.2 )}

IF{NUR.EQ.O0) GO TO 120

DO 95 J=1,NUR

WRITE(6,97) { AX(JeI),I=1,ICOL}, RSUMLJ)
FORMAT(1X 1017)

FORMAT(* AX ' 10F7.2)

END STEP 5

STEP 2
CALL TO INTEGER SUBRQOUTINE

CALL INTSUB(ZO, Y, NRCS,y NT, NR)

CALL TO MASTER PROGRAM wHICH SETS UP
THE NFwW LINEAK PROGRAM FOR L P S 1 M

CALL MASTER (BPR,NC)

DO 130 I=1,NC

PT{L)= BPR(I)

DO 14959 T=1,NT

DD 145 K=1,NR

N=NRCS(K)

DO 140 L=T,NT
[SUB=142%(K-1)+2*NR*{L—1)
DO 140 J=1,N
PTLISUB)=PTLISUBI+Y{T,KeJI*RCS(K,y J)
CONT INUE

NADDC=NADDC+1

STEP 3
CALL TO LINEAR PROGRAM
CALL LPSIM(PT,X0,UP{1,NADDC))
HXO{NADDC) = —-XO
NADDC= NADDC-NURC
GO TO INTEGER PROGRAM SET UP AND CALL
IF{ NURC.NE.O) GO TO 66

STEP 6

211
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OO0 m

OO0

OO0

180

120

200
205

230

235

250

255
260

265

SUM==X0

DO 180 T=1,NT

DO 182 K=1,NR

N= NRCS{K)

DO 180 J=1lsN

SUM= SUM+ Y{T, K, J1*CY({T,K,J)

AMDIF= SuM - 20

[TER= NADDC + NUR = NURF

WRITE{6,190) 1TER, SUM, AMDIF

FORMAT('—[TER =*[3,' LOST CF PCLILY ='FT7.2,
v MAXI{MUM ERRCR ="' +7.2)

SOLUTION NOT UPTIMAL, TEST IFf WITHIN TOLUKANCE
COMPUTE MAXIMUM ERROR ON OBJECTIVE FUN. VALUE

IF{ ABS{AMDIF) .LE. TCL) GC TO 2G0
GO TQ 66

STEP 2 BRANCH POINT AND END
OPTIMAL SOLUTION

WRITEL6,205)

FORMAT['1* 24X'0CPTIMAL SOLUTICN®')
Ix= 0

DO 230 T=14NT

D0 230 K=1,4NR

N= NRCS(K)

[X= [xX+1

DU 230 J=1.N

IF( Y(T,K,J} «EQdse 0.0) GO TO 230
WRITE{6,55) TaKedyY{T,,K,d)

CONT INUE

WRITE(6,235) SUM

FORMAT{' (' 24X 'COST ' F1l0.14/)
GO TO 20

NO SUBPROBLEM CONSTRAINTS , ANY VALUE FUR Y
wWwibti DO

DO 260 K=1sNR

N=NRCS{K)

DO 269 J=1.N

Y{l,K,Ji=1.0

DO 255 T=2,NT

Y(T,yKsJ)= 0.0

CONT INUE

10= 1.0E30

WRITE(6, 2651

FORMAT{*—*,15X*ARBITRARY VALUES STORED INTO Ye)



213

GO TO 126

500 STOP
END
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SUBROUTINE INTSUB(Z,Y NRCSyNTsNR)
C THIS PROGRAM IS NOT AN INTEGER PROGRAM
C 1T WAS DESIGNED TO SIMULATE AN INTEGER PROGRAM
COMMON /CINTP/ NURH(25),NURHC(25,25)
1, CX{100)4AX{25,100) 4RSUM(25])
DIMENSION Y(10,10,10), NRCS(10)
DATA ITR/0/ 4 MITR/G&/
[TR= [TR+1
[F{ ITR.GT. MITR} STOP
D0 40 K=1sNR
N= NRCS{K}
DO 40 I=1,N
DO 40 J=1,4NT
40 Y{JsKsI) = 0.0
GO TO (142+39495+6),1TR

1 GO 70 50

2 Y{2,1,3) = 1.0
Y{lylse2) = 1.0
GO TO 50

3 Yi{ly1l,1) = 1.0
Y{i,142) = 1.0
¥i2s1+3) = 1.0
Y{1l,2,3) = 1.0
GO TO 50

4 Yllylel) = 1.0
Y(lglpZ) = 1.0
Y{2y193) = 1.0
Y(1,2+43) = 1.0
Y{ly3,2) = 1.0
GO 70 50

5 Y{ly1s1) = 1.0
¥Y{lyls2) = 1.0
Y{(2y1s3} = 1.0
Y{ly243) = 1.0
Y(1ls241) = 1.0
Y{ls3,2) = 1.0
GO TO 50

6 Y{lsL,1) = 1.0
Y{ls,1+2) = 1.0
Y(2y143) = 1.0
Y{ls2,3) = 1.0
Y{le2+L) = 1.0
Y(113v1) = 1.0

50 WRITE{6,51)

51 FORMAT(*-1)
I=-1
icCoL=0

DO 55 K=1,yNR
N= NRCS{K)
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52
55

60
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DO 5% I=1sN

DO 55 J=1sNT

ICOL= ICOL+1

IFL Y(JsKeIl)} «EQ. 0.0} GO TO 55

2= 72 + Y(JeK,I) * cx{1coL)

WRITE(6,452) JeKyls Y{JeKsl)
FORMAT(24X'YL® 12,%," [2','12%)=* Fa.l)
CONT INUE

WRITE(6,560) Z

FORMAT{'~-* 20X 'OPTIMAL SOLUTIONY F10.3 )
RETURN

END



