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Abstract: Tetrodotoxin (TTX) is a potent neurotoxin, considered an emerging toxin in Europe where
recently a safety limit of 44 µg TTX kg−1 was recommended by authorities. In this study, three
specimens of the large gastropod trumpet shell Charonia lampas bought in a market in south Portugal
were analyzed using a neuroblastoma cell (N2a) based assay and by LC-MS/MS. N2a toxicity was
observed in the viscera of two individuals analyzed and LC-MS/MS showed very high concentrations
of TTX (42.1 mg kg−1) and 4,9-anhydroTTX (56.3 mg kg−1). A third compound with m/z 318 and
structurally related with TTX was observed. In the edible portion, i.e., the muscle, toxin levels
were below the EFSA recommended limit. This study shows that trumpet shell marine snails are
seafood species that may reach the markets containing low TTX levels in the edible portion but
containing very high levels of TTX in non-edible portion raising concerns regarding food safety if
a proper evisceration is not carried out by consumers. These results highlight the need for better
understanding TTX variability in this gastropod species, which is critical to developing a proper
legal framework for resources management ensuring seafood safety, and the introduction of these
gastropods in the markets.

Keywords: tetrodotoxin; marine biotoxins; seafood safety; HILIC-MS/MS

Key Contribution: Today, TTX is considered an emerging toxin in Europe, where bivalve mollusk
and pufferfish are seen as toxin vectors. This study refocuses the TTX risk presented by large
gastropods, such as trumpet shell.

1. Introduction

Food-borne illnesses caused by seafood containing tetrodotoxin (TTX) are well known
in East Asian countries and are primarily associated with the consumption of pufferfish
and marine gastropods [1]. TTX-bearing gastropods have been extensively described,
including incidents with large marine snails such as the trumpet shell (Charonia sauliae) [2–5].
Tetrodotoxin (TTX) is a potent neurotoxin that blocks the conduction of Na+ ions by binding
with high specificity to voltage-gated sodium channels in mammalian muscle and nerve
tissues [6–8]. This mode of action can lead in extreme cases to paralysis and death by
respiratory and heart failure.

In Europe, there is no regulation established for TTX yet, but certain fish belonging
to the family Tetraodontidae or products derived from it cannot be placed on the Eu-
ropean markets (Regulation (EC) No. 853/2004; Regulation (EC) No. 854/2004) [9,10].
The first and only known TTX food poisoning case occurred in late 2007 when a 49 year
old man consumed a trumpet shell Charonia lampas lampas bought in a market in South
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Spain. In addition to the edible portion of the snail, i.e., the white muscle of the trumpet
shell, also the viscera was consumed. The symptoms began a few minutes after ingestion
and were characterized by numbness in the mouth and arms, abdominal pain, nausea,
vomiting, and general paralysis including the respiratory muscles [11]. TTX concentra-
tions as high as 315 mg kg−1 were determined in viscera of trumpet shell and levels of
211 and 26.4 ng mL−1 were detected in urine and serum of the patient, respectively [12].

After this incident, the original site of collection of the causative trumpet shell was
traced back and suspected to be the South coast of Portugal, where a few other speci-
mens were caught for analysis. However, TTX was not detected in specimens caught
afterwards [12]. A later survey carried out in 2009–2010, found TTX concentrations ranging
only from 6.2 to 90.5 µg kg−1 in several gastropod species, including C. lampas from the
North west Portuguese coast [13].

Although marine gastropods were responsible for the first TTX human intoxication
in Europe, higher attention was given to TTX after its detection in bivalve mollusks. TTX
levels determined in UK Pacific oysters (Crassostrea gigas) between 2013 and 2016, up to
253 µg kg−1, were much lower than levels determined in trumpet shell, but ignited the
debate regarding TTX exposure in Europe, which was supported by the afterward detection
of TTX in bivalve mollusks from Greece, The Netherlands, France and Italy [14–18].

Based on these new findings and considering TTX a marine emerging toxin the Eu-
ropean Food Safety Authority (EFSA) has stated a scientific opinion on the risk related to
the presence of TTX and TTX analogues in bivalves mollusks and marine gastropods [19].
Accordingly, concentrations lower than 44 µg TTX equiv. kg−1 are not expected to cause ad-
verse effects in humans. EFSA also stated that a risk characterization for marine gastropods
was not possible to carry out due to limited consumption data and lack of occurrence data.

Replying to EFSA recommendations, several studies were carried out to understand
the risk posed by bivalve molluscs vectoring TTX. The first results from Portugal and
Spain point to a low risk, as only trace levels or very low TTX concentrations were deter-
mined in mussels, oysters or clams [20–22]. TTX was also found in native Guinean puffer
Sphoeroides marmoratus from Madeira Island, Portugal [23]. Despite these studies, little has
been done to understand the occurrence of TTX in marine gastropods [24].

TTX analysis has been performed via several techniques and detection methods
throughout the years [25]. While mouse bioassay has been used for decades, it is not
specific to TTX and raises many ethical concerns. Alternatively, sensitive cell based as-
says have been developed using mouse neuroblastoma cell lines [26]. But it has been via
chemical methods that detection of marine toxins has evolved in many countries including
the European Union. Reverse phase liquid chromatography with tandem mass spectrom-
etry is today well established for monitoring lipophilic toxins in shellfish in the EU and
several methods have been developed and optimized for TTX detection [26,27]. How-
ever, it was after developing methods based on hydrophilic interaction chromatography
(HILIC) that LC-MS/MS analysis of TTX and its analogues gained excellent resolution and
sensitivity [28–31].

The aim of the present study was to evaluate the TTX toxicity in trumpet shell
Charonia lampas from the South Portuguese coast by means of cell (N2a) based assay and
HILIC-MSMS, and assess TTX distribution between edible and non edible tissues to better
understand the risk for human consumption.

2. Results
2.1. Detection of TTX by Cell Based Assay

The assay enabled the detection of TTX based on the antagonistic effects of the toxin
on a N2a cell culture exposed to sublethal concentrations of ouabain (O) and veratridine
(V) (Figure 1). The noxious effects of the sodium influx triggered by O and V agonists could
be inhibited by TTX. In the cell based assay, the response obtained from treatment with OV
corresponds to TTX-related toxicity. TTX-like toxicity was found in the viscera of specimen
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1 (Cl-1) and specimen 3 (Cl-3) (Figure 1). No toxicity was observed in the muscle of any of
the samples analyzed.
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Figure 1. Toxic response of the cytotoxicity test for: (a) TTX standard with ouabain and veratridine (OV); (b) sample (viscera Cl-1)
with toxic response (c) sample (muscle Cl-2) without toxic response; (d) sample (viscera Cl-3) with toxic response for TTX.

2.2. Determination of TTX and TTX Analogues by HILIC-MSMS

After analysing the TTX toxicity by cell-based assay, samples were analyzed with
HILIC-MS/MS using different MS operation modes. In order to identify the presence
of TTX and possible analogues, typical ions of the TTX fragmentation pattern were
screened, namely m/z 162.1, 178.1, 284.1, and 302.1. A common chromatographic peak at
3.2 and 4.2 min was observed for each ion fragment, suggesting the presence of TTX and
analogues. These retention times were confirmed to correspond to TTX and 4,9-anhydro
TTX after injecting the reference standard.

Considering that ions with m/z 162.1 (C8H8N3O) and m/z 178.1 (C9H12N3O2) are com-
mon for almost all TTX analogues and used as fingerprint in MS2 analysis [30], precursor
ion search mode was then selected for monitoring parent ions that can be the source of
these daughter ions. Cleaned extract samples and TTX reference standard, which contains
low amount of 4,9-anhydroTTX, were used for identification purposes. Chromatographic
results in terms of MS2 analysis, and comparison of retention times of reference standard
solution and sample extract, confirmed the presence of TTX, 4,9-anhydroTTX and also a
parent ion with m/z 318 (Figure 2).

MRM mode with six transitions including with m/z values 162.1; 178.1, 190.1 and 210.1
observed for TTX fragmentation was used for the identification and confirmation of the
presence of TTX and additional analogues (4,9-anhydroTTX, 4-epiTTX and two compounds
with m/z 318.1) in the trumpet shell extract (Figure 3).
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Full scan product ion from m/z 100 to 400 was used for structural qualitative infor-
mation of parent ion with m/z 318. For this elucidation study, TTX standard was used as
reference, and similarly to TTX MS2, mass spectra data were obtained for 4,9-anhydroTTX
and TTX analogue with m/z 318.1 (Figure 4).
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An identical fragmentation pattern was observed for parent ions 320.1, 302.1 and 318.1
in the sample extract when compared with TTX reference standard (Figure 4). With this
result, it is possible to clearly identify the presence of TTX, 4,9-anhydro TTX and the TTX
analogue with m/z 318.1.

The analogue strictly followed the TTX fragmentation pattern in reference standard,
with two water loss molecules from molecular ion and two fragments corresponding to
the 2-aminohydroxyquinazolines with m/z 162.1 and 178.1 [27]. In addition, the MS/MS
data highlighted the presence of two chromatographic peaks for trumpet shell extract,
suggesting the presence of two compounds with a very similar chemical structure and the
same molecular weight (Figure 3E).

Finally, the quantification of the TTX compounds present in the trumpet shell samples
was performed against the TTX certified reference standard, containing certified values of
TTX and 4,9-anhydroTTX. Calibration curves were prepared using matrix match standards
(MMS), being 0.3 and 0.9 µg kg−1 the estimated values for LOD and LOQ respectively.
Table 1 shows the level of TTXs toxins achieved for trumpet shell samples. Extremely high
concentration of both TTX and 4,9-anhydroTTX were founded in the samples of trumpet
shell viscera that provided positive results by cell-based assay. Despite the high levels
determined in the viscera, the muscle tissue, which is the edible part of this seafood species
showed very reduced levels, reaching 31.3 and 88.0 µg kg−1 of TTX and 4,9-anhydroTTX
in specimen Cl-3, respectively.

Table 1. Concentration (µg kg−1) of tetrodotoxin (TTX) and its analogue 4,9-anhydroTTX determined
in muscle and viscera of Charonia lampas by HILIC-MS/MS.

Sample Toxins Concentration (µg kg−1)

TTX 4,9-anhydroTTX

Edible muscle
Cl-1 15.0 35.4
Cl-2 <LOD <LOD
Cl-3 31.3 88.0

Non edible viscera
Cl-1 10,961.4 12,652.0
Cl-2 8.5 <LOD
Cl-3 42,163.0 56,325.5

LOD: Limit of Detection.

3. Discussion

After the first human intoxication due to consumption of trumpet shell that occurred in
2007 in Spain [11], some attempts have been made to understand the accumulation of TTX
in this marine organism. Rodriguez et al. [12] analyzed the trumpet shell involved in the hu-
man poisoning, determining very high levels of TTX (315 mg kg−1) and 5,6,11-trideoxyTTX
in the viscera. However, analysis of subsequent samples collected in South Portugal did
not reveal TTX contamination [12]. Further studies, carried out by Silva et al. [13,24] with
the attempt to characterize the TTX occurrence in seafood species from the Portuguese
coast, reported TTX below the limit of detection, or when detected it was at very low levels.
These studies suggest a large variability in the occurrence of TTX in trumpet shell, which
seems to vary from not detected to extremely high levels.

The present study brings more data to this topic, and once again pointing to a great
variability on TTX accumulation. From the three specimens analyzed, two of them pre-
sented high TTX levels in the viscera, but in the third specimen TTX was practically absent.
The trumpet shells were bought from a market in Olhão (South Portugal), without confirma-
tion of the harvesting place, highlighting the risk for seafood safety. This gastropod species
is not the target of any fisheries fleet, being most of the time a bycatch of other fisheries. It
can be presumed that trumpet shells were caught in the nearby Atlantic coast of South Por-
tugal, where this species is a delicacy offered in many regional restaurants. Nevertheless,
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concentrations lower than the EFSA safety limit (44 µg TTX equiv kg−1), were determined
in the edible muscle, even though very high TTX levels were found in viscera. In addition
to TTX, also the 4,9-anhydroTTX analogue and a TTX-like compound with molecular m/z
at 318 were detected. Further studies, involving high resolution LC-MS/MS, are needed to
better understand and confirm the identity of this compound. According to the available
studies, the potency of TTX analogues is usually much lower than the parental compound.
EFSA suggests applying a relative toxicity of 0.02 to the 4,9-anhydroTTX analogue [19].

In terms of food safety, the accumulation of TTX in the viscera of trumpet shell may
resemble that of the accumulation of domoic acid in the digestive gland of scallops. In
pectinidae, evisceration significantly reduces the toxin content enabling the adductor muscle
and roe to be placed on the market. The EU Commission Decision 2002/226/EC allows
harvesting scallops (Pecten maximus and P. jacobaeus) with a whole body concentration
exceeding the regulatory limit for domoic acid (20 mg kg−1) but lower than 250 mg kg−1 if
the parts to be placed on the market, contain less than 4.6 mg kg−1 [32]. After confirming
the preliminary results of the present study, a similar strategy may be adopted for the
trumpet shell.

Since TTX is found at high concentrations in the viscera, it can be assumed that
accumulation in trumpet shell is via dietary route. Trumpet shell, C. lampas, is a voracious
predator of starfish, although they also feed on sea urchins and holothurians [33]. Several
starfish species have been associated with TTX and even TTX-producing bacteria have
been isolated from starfish [2,3,34,35]. More clues on the marine trophic relationships and
the toxin transfer will certainly contribute to better understand the occurrence of TTX in
trumpet shell.

New toxins and new organisms acting as toxin vectors have been identified as one
of the challenges to the EU harmonized monitoring programs for marine toxins [36]. In
line with it, this study reports new data, which although very preliminary due to the
reduced number of individuals analyzed, points out the need to improve knowledge on
TTX occurrence in marine gastropods, particularly in trumpet shells. More data is needed
in order to provide policymakers the relevant information for a proper management of this
marine resource. As reported in this study, consumption of white muscle of trumpet shell
may not represent a risk to consumers, but incorrect evisceration or consumption of the
whole soft body may drastically increase food safety risk.

4. Materials and Methods
4.1. Obtention and Preparation of Samples for TTX Extraction

Three Charonia lampas specimens were bought in the market of Olhão (South Portugal)
in late 2017. The length of the three specimens varied between 21.5 and 27.1 cm, and the
weight of the eviscerated soft tissues ranged between 169.0 and 213.5 g (Table 2).

Table 2. Trumpet shell Charonia lampas. Shell length and weight of soft tissue.

Charonia lampas (Cl) Length
(cm) Weight of Soft Tissue (g)

Cl-1 21.5 169.0
Cl-2 27.1 213.2
Cl-3 25.2 191.3

A portion of the edible muscle, located at the most anterior region of the trumpet shell,
and a portion of the viscera, located at the posterior region of the animal was dissected and
prepared for toxins extraction. The muscle and viscera samples were then homogenized in
a blender. Toxin extraction was performed according to the Standard Operating Procedure
(SOP) for determination of TTX provided by the European Union Reference Laboratory [37].
A 5 g of homogenized shellfish meat was extracted with 5 mL of 1% acetic acid by vortexing
for 90 s and heating for 5 min in a boiling water bath. Samples were cooled down until
room temperature was achieved and were again vortexed for another 90 s. After that,
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centrifugation of the samples for 10 min at 4000× g was conducted. A clean-up step using
Graphitised Carbon SPE was carried out following the method described by [31,36,38]. A
total of 5 µL of 25% v/v of NH3 were added to 1 mL of the supernatant and was centrifuged
at 10,000× g for 1 min before performing the SPE clean-up step.

The ENVI-Carb cartridge (Supelclean, Supelco, Sigma-Aldrich, Sintra, Portugal) was
first conditioned with 3 mL of 20% v/v CH3CN + 1% v/v CH3COOH and 3 mL of 0.025% v/v
NH3. A 400 µL aliquot of sample extract was loaded onto the cartridge and washed with
700 µL deionized water. Toxin elution was carried out through the addition of 2 mL 20% v/v
CH3CN + 0.25% v/v CH3COOH. The eluted extract was dried under N2, resuspended with
culture medium and analysed by N2a assay. This same extract was diluted by transferring
100 µL to a vial and adding 300 µL of acetonitrile for LC-MSMS analysis.

4.2. TTX Analysis
4.2.1. Reagents and Standards

Chemicals for cell-based assay: RPMI-1640 medium (R8758, Sigma-Aldrich, Irvine, UK),
fetal bovine serum (F2442, Sigma-Aldrich, St. Louis, MO, USA), sodium pyruvate so-
lution (S8636, Sigma-Aldrich, Irvine, UK), L-glutamine solution (G7513, Sigma-Aldrich,
Irvine, UK), penicillin-streptomycin (P4558, Sigma-Aldrich, St. Louis, MO, USA), ouabain
(O3125, Sigma-Aldrich, St. Louis, MO, USA), veratridine (V5754, Sigma-Aldrich, St. Louis,
MO, USA), tetrazolium (MTT, M5655, Sigma-Aldrich, St. Louis, MO, USA).

Chemicals for LC-MSMS: acetonitrile (LC-MS grade, Merck, Darmstadt, Germany),
water (LC-MS grade, J.T. Baker, Center Valley, PA, USA), ammonium hydroxide (LC-MS
grade, Fluka Analytical, Steinheim, Germany), formic acid (LC-MS grade, Fluka Analytical,
Steinheim, Germany), methanol (LC-MS grade) and acetic acid (LC-MS grade, Fluka
Analytical, Steinheim, Germany).

Certified Tetrodotoxin (TTX) and 4,9-anhydroTTX material was purchased from
CIFGA Laboratorio S.A. (Lugo, Spain) for LC-MS/MS analysis and TTX standard solution
from Tocris-Bioscience (Bristol, UK) for cytotoxicity analysis.

4.2.2. Cell-Based Assay (CBA)

The cell assay was performed using neuro-2a (N2a) cells purchased from the American
Type Culture Collection (CCL-131, ATCC) and cultured in 75 cm2 culture flasks containing
25 mL RPMI-1640 medium supplemented with 10% fetal bovine serum, 1 mM sodium
pyruvate solution, 2 mM L-glutamine solution, and 1000 units per litre of penicillin-
streptomycin. The cell line was routinely maintained in a humidified incubator (Model
3111, Forma Scientific, Inc., Marjeta, OH, USA) at 37 ◦C under 5% CO2. The conditions
used in this assay were proposed by [39,40] with slight modifications to accommodate the
assay to the detection of TTX [20]. Cell cultures were incubated for approximately 24 h
in 96-well culture plates. Culture wells received sample dilutions, which were prepared
with RPMI-1640 medium supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine,
and 1000 units per litre of penicillin-streptomycin solution. Dilutions were tested in
replicates of four wells. Ouabain (5 mM) and veratridine (0.5 mM) were also added and
cells were incubated for 20 h. Cell viability was measured by the colorimetric method
using tetrazolium metabolism. Plates were read on a spectrophotometer (Multiskan™ FC
Microplate Photometer, Thermo Fisher Scientific Oy, Ratastie, Finland) at 570 nm for testing
and 630 nm for reference.

4.2.3. HILIC-MS/MS Analysis

HILIC-MS/MS analyses were carried out following the conditions described by
Leao et al. 2018, following these summarized conditions, chromatographic separation
was carried out using an Agilent 1290 Infinity LC system (Waldbronn, Germany). Chro-
matographic conditions used in the analysis of TTX followed the conditions described
in [17]. TTX and analogues were separated injecting 2 µL of standard solution or cleaned
extract on a HILIC column (Acquity UPLC Glycan BEH amide column 130A, 1.7 µm,



Toxins 2021, 13, 250 9 of 11

2.1 mm × 150 mm) from Waters (Dublin, Ireland) thermostatized at 60 ◦C. The samples
and standard solutions in the autosampler were cooled to 4 ◦C. Mobile phase A was water
containing 75 µL of formic acid and 300 µL of 25% v/v ammonium hydroxide and mobile
phase B was acetonitrile:water (7:3) v/v that contains 100 µL of formic acid.

MS detection was performed using an Agilent 6495 Triple Quad MS/MS (QQQ)
equipped with an iFunnel Jet Stream ESI source (Waldbronn, Germany) following the
conditions described in [17]. LC-MS/MS in multiple reaction monitoring (MRM) mode
was used for confirmation and quantitation purposes (Table 3). The system was calibrated
with TTX standard solutions prepared in matrix match (uncontaminated shellfish cleaned
extract). A five-point calibration curve of TTX with a correlation >0.990 was set up for
quantification purposes and limits of detection (LOD) and quantification (LOQ) were
evaluated based on the signal to noise ratios for TTX in shellfish extract with external
standard addition.

Table 3. MS/MS data used for the MRM acquisition of the analysis of TTX and its analogues on a
6495 Agilent Technologies mass spectrometer.

Compound Precursor Ion Product Ions

TTX and 4-epi TTX 320.1 302.1 162.1
11-deoxyTTX and 5-deoxy TTX 304.1 286.1 162.1

4,9-anhydro TTX 302.1 284.1 162.1
6, 11-dideoxy TTX 288.1 270.1 162.1

5,6,11- trideoxy TTX 272.1 254.1 162.1

Mass scan (range from 100 to 400), Precursor Ion and Product Ion search modes were
used to monitoring fragment ions with m/z 162.1; 178.1 and 210.1 in order to identify
and confirm the presence of TTX and possible analogues in cleaned extract samples from
trumpet shell.
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